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Preface

The purpose of computing is insight, not numbers.
—- Richard W. Hamming, 1962

This book is tailored for students and researchers who are interested in both power
systems and analytical tools for understanding their structural properties. It prepares
students for research by equipping them with, not only power system knowledge, but
also analytical techniques and a way of thinking.

It complements several excellent texts on power system analysis, e.g., [1, 2, 3, 4, 5,
, 7]. In terms of topic, it develops from scratch basic power system concepts, single-
phase and unbalanced three-phase models, and theory and algorithms for power flow
optimization. It focuses on steady state modeling and analysis, as opposed to dynamics
or electricity markets. In terms of style, it focuses on analytical tools and structural
properties. It does not focus on computational issues or specific applications such as
state estimation, unit commitment, economic dispatch, or voltage control, but uses
these applications to illustrate models and techniques that are widely applicable.

The book has three main parts. Part I introduces the basics of power system analysis,
from phasor representation to single-phase models to optimal power flow problems
and the use of these concepts to analyze power system operations. Part II studies the
theory and algorithms for power system optimization, from convex programming to
semidefinite relaxations to nonsmooth and stochastic optimization. Part III develops
from scratch a comprehensive mathematical theory of unbalanced three-phase power
flow. It is motivated by emerging applications on distribution systems where control-
lable devices are the single-phase devices that make up three-phase devices in Y or
A configurations. It explains the crucial role of device models and how single-phase
analysis extends directly to unbalanced three-phase networks. Such a theory is not
currently available in textbook form. (See Chapters 0.1 and 0.2 for a more detailed
summary.)
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Introduction

0.1

How to use this book

This book can be used as a research reference. It can also be used as a textbook and
we suggest three possible courses that can be constructed from this book.

Power System Analysis I: models and operation. A 13-week course for senior
undergraduate and beginning graduate students that covers Part I of the book. It
develops from scratch single-phase network models and formulates optimal power
flow problems. These models are then used to describe and analyze power system
operation such as mechanisms for balancing power, controlling frequency, pricing
electricity and reserves, estimating state, and stabilizing voltages. This course does not
require prior power system knowledge or optimization theory, but does require circuit
analysis, linear algebra and interest in or exposure to mathematical analysis.

Specifically it covers

1. Basic concepts: Kirchhoff’s laws, phasors, device models, three-phase systems,
complex power (Chapter 1).

2. Branch models: transmission line (Chapter 2), transformers (Chapters 3, possibly
skipping Chapter 3.1.5).

3. Network models: bus injection models (Chapter 4, possibly skipping Chapter
4.4.4), branch flow models for radial networks (Chapter 5, possibly skipping
Chapter 5.4).

4. Power system operation, I: control mechanisms for balancing power, including
unit commitment, real-time dispatch, secure operation, primary and secondary
frequency control, as well as market mechanisms for pricing electricity and re-
serves using locational marginal prices (Chapter 6).

5. Power system operation, II: state estimation, voltage control on distribution net-
works, and network topology identification (Chapter 7).

Power System Analysis Il: power flow optimization. A 13-week graduate course
that covers Part II of the book on power flow optimization. It focuses on analytical
tools for and structural properties of power systems and prepares students for research.
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. Power system basics: Reviews models and basic operation of power systems (topics

from Chapters 4, 5, 6 depending on students’ prior knowledge).
Convex optimization: convex analysis, optimality conditions, special convex pro-
grams, optimization algorithms, convergence analysis (Chapters 8).

. Optimal power flow (OPF): OPF in bus injection models and branch flow models,

NP-hardness, global optimality, techniques for scalability (Chapter 9).
Semidefinite relaxations of OPF: SDP, chordal, SOCP relaxations of OPF, exact-
ness conditions (Chapters 10 and 11).

. Nonsmooth convex optimization: normal cones and feasible sets, CPC functions

and subgradients, optimality conditions, special convex programs (Chapter 12).
Stochastic OPF: robust optimization, chance constrained optimization, convex
scenario program, two-stage optimization with recourse (Chapter 13).

Unbalance Three-phase Power System. A 10-week undergraduate/graduate
course that covers Part III of the book on unbalanced three-phase networks. It de-
velops from scratch three-phase component and network models, three-phase optimal
power flow and its semidefinite relaxations. It shows how models and analysis for

single-phase networks extend directly to a three-phase setting and where the difference

is. Prior knowledge of single-phase power networks or optimization theory will be
helpful but not absolutely necessary.

1.

Review: Single-phase power networks (topics from Chapters 4 and 5 depending
on students’ prior knowledge).

Component models: mathematical properties of three-phase systems, three-phase
devices in Y and A configurations, three-phase transmission or distribution lines,
three-phase transformers (Chapters 14 and 15).

Bus injection model: network models, three-phase analysis, balanced network
(Chapter 16, possibly skipping Chapter 16.3).

Branch flow model: network models, equivalence, linear models and solution
(Chapter 17, possibly skipping Chapter 17.4).

Review: basic convex optimization theory and algorithms (topics from Chapter 8
depending on students’ prior knowledge).

Power flow optimization: three-phase OPF, semidefinite relaxations, example ap-
plications (Chapter 18).

Overview

The book consists of three parts and an appendix.
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Part | Power network: models, operation, analysis

1. Chapter 1 introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system, including circuit models, Kirchhoff’s laws,
phasor representation, balanced three-phase systems, per-phase equivalent, and
complex power.

2. Chapter 2 develops circuit models for the terminal behavior of a balanced three-
phase transmission line that map the voltage and current at one end of the line to
those at the other end.

3. Chapter 3 develops models for balanced three-phase transformers and their per-
phase equivalent and analysis techniques for circuits containing transformers,
including per-unit normalization.

4. Chapter 4 uses the component models of previous chapters to construct a class of
network models we call the bus injection model (BIM). It introduces the network
admittance matrix Y that relates linearly bus voltages and current injections, its
Kron reduction, and their analytical properties. It also introduces power flow
equations that relate nonlinearly bus voltages and power injections and presents
iterative algorithms for solving these equations. Finally it introduces a linearized
power flow model called the DC power flow model that is widely used for electricity
market operation.

5. Chapter 5 introduces the branch flow model (BFM) for radial networks with a
tree topology and proves its equivalence to the bus injection model. It presents a
fast iterative algorithm called the backward forward sweep for solving power flow
equations for radial networks. Finally it introduces a linearized model that admits
an explicit solution which bounds nonlinear power flow solutions.

6. Chapter 6 overviews three control mechanisms at different timescales, unit com-
mitment, real-time dispatch and frequency control, that balance power supply and
demand. It also studies pricing of electricity and reserves using locational marginal
prices and optimality properties of these prices.

7. Chapter 7 illustrates the models and tools developed in earlier chapters through
three applications: state estimation, voltage control on distribution networks, and
topology identification.

Part Il Power flow optimization

1. Chapter 8 formulates convex optimization problems and introduces some of the
most useful tools for convex analysis. We develop a general theory to charac-
terize optimal solutions and provide sufficient conditions for their existence, and
then apply the general theory to special classes of convex optimization problems
widely used in applications. We describe iterative algorithms for solving convex
optimization problems and basic techniques for analyzing their convergence.

2. Chapter 9 formulates optimal power flow (OPF) problems that underly numerous
power system applications, in both the bus injection model and the branch flow
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model. It proves that OPF is NP-hard but a subclass characterized by a Lyapunov-
like condition can be solved efficiently to global optimality. Finally it describes
common techniques for scaling OPF solutions.

3. Chapter 10 studies the semidefinite relaxation of the nonconvex OPF problem
formulated in BIM as a quadratically constrained quadratic program. It develops
the concept of partial matrices and their positive semidefinite rank-1 completion
to exploit the sparsity of large networks. Finally it proves two sufficient conditions
for exact second-order cone program (SOCP) relaxations of OPF on single-phase
radial networks. Convex relaxation complements linear approximation and local
iterative algorithms as one of the main tools for dealing with the nonconvexity of
OPF.

4. Chapter 11 studies the semidefinite relaxation of OPF in BFM for radial networks.
It formulates SOCP relaxation and proves its equivalence to the SOCP relaxation
in BIM. Finally it proves two sufficient conditions for exact SOCP relaxation for
single-phase radial networks.

5. Chapter 12 generalizes the structural results of Chapter 8.3 to a convex but non-
smooth setting, motivated by stochastic OPF studied in Chapter 13. It shows that
convexity is fundamental, but not smoothness, and, once the basic framework is
established, the more abstract approach here that relies only on convexity is both
more natural and simpler conceptually.

6. Chapter 13 studies basic methods for stochastic optimization, robust optimization,
chance constrained optimization, scenario programming, and two-stage optimiza-
tion with recourse. A focus is on problems (e.g., two-stage optimization) that are
convex, but often nonsmooth, to which optimality conditions studied in Chapter
12 are applicable and computation algorithms studied in Chapter 8 can be adapted
by replacing gradients with subgradients. Finally we present examples to illustrate
concepts of stochastic OPF.

Part lll: Unbalanced three-phase networks

1. Chapter 14 studies the mathematical properties that underly the behavior of un-
balanced three-phase systems and derives models of three-phase voltage sources,
current sources, power sources, and impedances in Y and A configurations.

2. Chapter 15 derives models of three-phase lines and transformers.

3. Chapter 16 uses the component models of Chapters 14 and 15 to extend the
bus injection model to the unbalanced three-phase setting. It also introduces the
sequence coordinate in which sequence networks become decoupled when there
is a certain symmetry in the original phase coordinate.

4. Chapter 17 extends the branch flow model to the unbalanced three-phase setting.

5. Chapter 18 extends OPF and its semidefinite relaxations (studied in Chapters 9,
10, 11) from single-phase to unbalanced three-phase networks.

Appendix: Linear algebra preliminaries Appendix A collects mathematical prelim-
inaries used in the rest of the book.
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0.3

Notation

Vector and matrix. Let C denote the set of complex numbers, R the set of real
numbers, R; the set of nonnegative real numbers, R_ the set of nonpositive real
numbers, N the set of integers and N, the set of positive integers. We use i to denote
V=1.For a € C, its real and imaginary parts are denoted by Re a and Im a respectively.
Its complex conjugate is usually denoted by @ or a" (though & also denotes a particular
vector in R” when it is clear from the context that X is a real quantity). For any set
A C C", conv A denotes the convex hull of A. Fora € R, [a]* :=max{a,0}. Fora,b € C,
a < b means Rea < Reb and Ima < Imb. We sometimes abuse notation to use the
same symbol a to denote either a complex number Rea +ilma or a size 2 real vector
a = (Rea,Ima) depending on the context. The empty set is denoted (.

In general scalar or vector variables are in small letters, e.g. u,w,x,y,z. Most
power system quantities however are in capital letters, e.g. Sk, Pjk,Q k.1, V;. Unless
otherwise specified, a vector is a column vector and is written interchangeably as

X1
x=|: or x = (X[,...,Xp)
Xn

A variable without a subscript usually denotes a vector with appropriate components,
eg s:=(s;,j=0,...,n), S :=(Sjr,(j, k) € E). For a vector x = (x1,...,x,), x_; de-
notes (xy,...,X;i—1,Xi+1,-- - ,Xn) Without the x; component. For a subset A C {1,...,n},
x_a = (x;,i ¢ A). For vectors x,y, x < y denotes componentwise inequality. We freely
refer to x as singular if we mean the vector x or as plural if we mean its components
X1,...,Xx,. For example we may refer to A* as a locational marginal price or locational
marginal prices. B¢ (x*) may denote the open ball or the closed ball centered at x* with
radius € > 0.

Matrices are usually in capital letters. Let M, N be index sets with m := | M|, n :=|N|.
An m x n matrix with a;; € C as its (i, j)th entry for i € M, j € N, can be written as
A =(a;jj,i € M,j € N). Its null space, range space, and trace are denoted respectively
by null(A) := {x € C" : Ax = 0}, range(A) = span(A) := {Ax € C™ : x € C"}, and
tr(A) := ); Aj;. The dimension of range(A) is rank(A) < n and that of null(A) is
nullity(A) < n (they sum to n; see Appendix A.1.2). Given an n X n matrix A, diag(A)
denotes the column vector (Ajy,...,Axx) consisting of A’s diagonal entries. Given n
scalars ay,...,ay, or a vector a := (ay,...,a,), Diag(ay,...,a,) and Diag(a) denote
the n X n diagonal matrix with a; on its diagonal; we sometimes also denote Diag(a)
by diag(a) when it is clear a is a vector. We use A to denote the componentwise
complex conjugate of a matrix A. The transpose of a matrix A is denoted by AT and
its Hermitian (or conjugate) transpose by A" := AT. A vector x* € R” or x* € C" or
a matrix X* € S” is usually used to denote an optimal solution of an optimization
problem. We use interchangeably (y*)" and y*H. A matrix A is Hermitian if A = A", A
complex matrix A is positive semidefinite (or psd), denoted by A > 0, if A is Hermitian
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and xH Ax > 0 for all x € C". A real matrix A is positive semidefinite (or psd), denoted
by A > 0, if A is symmtric and x" Ax > 0 for all x € R”. In particular if A > 0 then by
definition A = A™ if A is complex and A = AT if A isreal. ! A is negative semidefinite
(nsd) if —A is psd. For matrices A,B, A > B means A — B is psd. Let S” be the set of
all n x n Hermitian matrices, S the set of n X n psd matrices, and S” the set of n X n
nsd matrices.

The vector 1,, usually denotes the vector of all 1s of size n and I, usually denotes the
identity matrix of size n. Without the subscript, the vector 1 and the identity matrix I
either denote the corresponding vector and matrix of size 3 (in unbalanced three-phase
systems) or a generic size depending on context. For the study of three-phase power
systems, both balanced and unbalanced, ¢“ := (1,0,0), el = (0,1,0), e :=(0,0,1),
and e?’ € {0,1}" is the unit vector with a single 1 in the j#th position. We often use
@ = ¢727/3_ The standard balanced vector in positive sequence is @, := (1,@,a?) and
that in negative sequence is a_ := (1,a?,@). The following conversion matrices are
key to the understanding of three-phase power systems:

1 -1 0 1 0 -1
r=1(o 1 -1/, rr:=|-1 1
-1 0 1 0 -1 1

Its properties are explained in Theorems 1.2 and 14.2. The similarity transformation
to obtain symmetrical components due to Fortescue is defined by the eigenvectors
(1,ay,a_) of T'.

Sequence and limit. By a sequence in R" or C", we mean either an ordered or
an unordered set of vectors depending on context, and denote it interchangeably by
(x; eR":ieN, :=1,2,...) or {x; e R":i e N, :=1,2,...}. We often refer to the
sequence by {x; } or simply x; if it should be clear from the context that we are referring
to the sequence {x;}, not the element x;. The sequence {x;} is said to converge to a
vector x* if every component of x; converges to the corresponding component of x* as
i — oo. In this case we call the unique vector x* the limit point of the sequence {x;}
and write lim; . x; = x* or simply lim; x; = x* or x; — x*. If A is an infinite and strict
subset of N, then the subsequence {x; € R" :i € A} is also denoted {x;}4. If there
is a subsequence {x;}4 that converges to a vector x*, we call x* a limit point of the
sequence {x;} (also called a cluster point), even though {x;} itself may not converge.

In this case we write lim;ea ;o0 X; =X* Or x; — x™ as i ﬂ co. We use e to denote the
constant lim,(1+1/n)" and e; € {0,1}" the unit vector of appropriate size n with a
single 1 in the jth position. We use In = log, to denote the natural log. When there is
no confusion we may also use log to denote In.

' As explained in Definition A.2 and Remark A.1 of Chapter A.5, for a complex matrix, x? Ax > 0 for all
x € C™ implies that A is Hermitian, so including Hermitian in the definition of psd is redundant and
only for uniformity. For a real matrix, xT Ax > 0 for all x € R” does not imply A is symmetric.
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Given a function f : R" — R™, % is the m X n matrix whose (j, k)th entry is

of) 9k
0x Jjk ' 6xk

(‘x)’ j=1,...,m, k=1,...,n

T
and Vf(x) := (g—i) is its transpose. In particular if m = 1 then ??_{c is a row vector and

V f(x) is a column vector.

Graph. A graph G = (N, E) consists of a set N of nodes and a set E C N XN of
edges. If G is undirected then (j,k) € E if and only if (k,j) € E. If G is directed then
(7, k) € Eonlyif (k,j) ¢ E; in this case we will use (j, k) and j — k interchangeably to
denote an edge pointing from j to k. Therefore, for an undirected graph, X’ (; x)er Xk
includes both x;; and xi; for each edge (j,k) € E, whereas, for a directed graph,
2.(j.k)eE X jk includes a single term x jx for each directed edge j — k. Sometimes, we
write X (j x)eE (xjx +xk.,-) instead of ) (; xyeg Xjk to emphasize the undirected nature
of the graph. By “j ~ k” we mean an edge (j, k) if G is undirected and either j — k
or k — j if G is directed. Sometimes we write j € G or (j,k) € G to mean j € N or
(j,k) € E respectively. A path p :=(J1,...,Jjk) is an ordered set of nodes j; € N so
that (jk, ji+1) € E for k=1,...,K — 1. In this case we also refer to p as the order set of
edges (Jk,jk+1), and refer to a node or an edge in the path by jix € p or (jk,jk+1) € P
respectively. A cycle is a path where jx = ji. A simple cycle is a cycle that visits every
node at most once. In this book, we refer to j interchangeably as a node or a bus and
J ~ k interchangeably as a link, a branch, a line or an edge.

Probability. A measurable space is a pair (Q,F) where the sample space Q is an
arbitrary nonempty set. The o-algebra & C 22 is a collection of subsets A C Q called
events that satisfies: (i) Q € F; (i) if A € ¥ then Q\ A € F; and (iii) if A; € ¥ for
i=1,2,...,then U;A; € ¥. Given a measurable space (Q,F), a probability measure P
is a function P: ¥ — [0, 1] such that (i) P(Q) = 1; and (ii) if A; € ¥ fori=1,2,... are
pairwise disjoint, then P (U; A;) = 3; P(A;). The triple (Q, F,P) is called a probability
space. When P(A1\ Ay))+P(A2\ A)) =0, i.e., A} and A, differ by a set of measure
zero, we say A| = Ay almost surely or a.s.

A random variable or random vector Z defined on the probability space (Q, F,P)
is a function Z : Q — R™ such that P({w € Q : Z(w) < z}) is called the probability
of the event {Z < z} and denoted by P(Z < z). The probability distribution function
or distribution function Fz : R™ — [0,1] of the random variable Z is the function
defined by the probability measure P, Fz(z) =P ({w € Q: Z(w) < z}). Two random
variables Z;,Z, defined on the same probability space are said to be equal almost
surely or equal a.s. if the measurable sets Z; ' (z) = Z;'(z) a.s. for all z.

Given two probability spaces (1, %,P) and (£, %3,P,), one can define a prob-
ability measure P on the product measurable space (Q X Q,, % X ) and form the
probability space (2 XQy, F1 X %>, P). For random variables Z; defined on (Qy, #1,P)
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and Z; defined on (3, #2,P>), the function
Fz,2,(21,22) = P({(w1,w2) € Q1 X Q) : (Z1(w1), Z2(w)2) < (21,22)})

is called the joint probability distribution function. The distribution functions Fz, and
Fz, defined by P; and P, respectively are called the marginal distribution functions
of Z; and Z,. The probability measure P is called the product measure and the joint
distribution function Fz, z, the product distribution function if

P((Z1,22) < (z1,22)) = P1(Z1 £ 21)P2(Z3 £ 22),
Fz,.7,(z1,22) = Fz(Z1 £21)F7,(Z2 £ 22)

In this case, the random variables Z; and Z, are called independent. If, in addition,
(Q1,%1,P;) and (Q5,F>,P,) are identical, then Z; and Z, are called independent and
identically distributed, abbreviated as i.i.d. or iid. We then write the product measure
P as P2.

1

In this book we ignore measurability issues, i.e., we assume all random variables
or processes encountered are well defined, they generate appropriate o-algebra on
which appropriate probability measures are defined, and all functions encountered are
measurable. We often say two sets A; = A, when we mean A = A; a.s.

Due to the breadth of topics covered, we often overload notation and use the same
letter to denote different quantities depending on context; e.g., I may denote current
or the identity matrix, G a graph or the real part of an admittance matrix ¥ = G +iB,
and x a generic variable or the imaginary part (reactance) of an impedance z = r +ix.
Finally, as defined above, e :=lim, (1+1/n)" but e; is the unit vector.

Units

The unit of a quantity is specified usually the first time the quantity is introduced.
Commonly used units in this book are collected here for convenience. We often overload
notations so that the same symbol may refer to different quantities depending on the
context, e.g., I may denote a vector of current phasors I = (I;,i = 1,...,n) or the identity
matrix of appropriate size, V may denote a vector of voltage phasors V = (V;,i=1,...,n)
or their unit volt.

1. voltage v(t),V: volt (V).

2. current i(t),I: ampere (A).

3. real power P : watt (W); reactive power Q : volt-ampere reactive (var); complex
power S := P +iQ, apparent power |S|: volt-ampere (VA).

4. resistance r, reactance x = iwl or 1/iwc, impedance z := r +ix: ohm (Q).

5. conductance g :=r/(r>+x?), susceptance b := —x/(r> +x?), admittance y 1=z~ =:
g +ib: Siemen (S) or mho (Q71).
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6. inductance /: henry (H); magnetic flux linkage A(¢) = [i(t) : weber-turn (Wb-turn).
7. capacitance c: farad (F); electric charge ¢(¢) = cv(t) : coulomb (C)

We will sometimes overload notation, e.g., [ is used sometimes to denote inductance,
sometimes inductance per unit length, some times a line index. The meaning should
be clear from the context.
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Power network: models,
operation, analysis






Basic concepts

1.1

This chapter introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system where voltages and currents are sinusoidal
functions of time. For us, steady state means that the frequencies of voltages and
currents in the entire network are at their nominal value (e.g., 60 Hz in the US,
50 Hz in China and Europe). In Chapter 1.1 we describe phasor representation of
sinusoidal voltages and currents, introduce single-phase device models, and review
circuit analysis. In Chapter 1.2 we explain balanced three-phase systems and how to
simplify their analysis using per-phase models. In Chapter 1.3 we define the concept
of complex power for single-phase and three-phase systems, and illustrate through
an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

Single-phase systems

An AC system consists of generators and loads connected by transmission or distribu-
tion lines and transformers. Their behavior can be described using quantities such as
voltages, currents, and powers which are sinusoidal functions of time. These quantities
obey laws of physics. For our purposes they are the Kirchhoft’s current law (KCL),
Kirchhoff’s voltage law (KVL), and Ohm’s law. These laws allow us to analyze or sim-
ulate system behavior in the time domain. For steady-state behavior it is often easier
to transform these quantities to the phasor domain, apply the corresponding physical
laws in the phasor domain to analyze the steady state of a power network, and then
translate the results back to the time domain, as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of
generators, loads, and lines using voltage sources, current sources, and impedances.
We also summarize KCL, KVL and Ohm’s law in the phasor domain. They can be
used to analyze a network of these circuit elements. Finally we derive the equivalent
circuit of a one-line diagram.
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Figure 1.1 Phasor representation and analysis.
1.1.1 Voltage and current phasors

The quantities of interest, voltage v(¢), current i(¢), and power p(t), are physical and
can be empirically measured. The potential energy gained in moving a unit of charge
from point k to point j is called the voltage, or electric potential difference, between
J and k, denoted by v . Its SI unit (International Systems of Units) is volt (V),
or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for all
voltages in the system under study. In that case we refer to the voltage at point j with
respect to the reference point simply as the voltage at j and denote v ;o simply by v;.
Then the voltage between two points j and k is v :=v; —v. While vz represents
the energy required to move a unit of