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Preface

The purpose of computing is insight, not numbers.
—- Richard W. Hamming, 1962

This book is tailored for students and researchers who are interested in both power
systems and analytical tools for understanding their structural properties. It prepares
students for research by equipping them with, not only power system knowledge, but
also analytical techniques and a way of thinking.

It complements several excellent texts on power system analysis, e.g., [1, 2, 3, 4, 5,
6, 7]. In terms of topic, it develops from scratch basic power system concepts, single-
phase and unbalanced three-phase models, and theory and algorithms for power flow
optimization. It focuses on steady state modeling and analysis, as opposed to dynamics
or electricity markets. In terms of style, it focuses on analytical tools and structural
properties. It does not focus on computational issues or specific applications such as
state estimation, unit commitment, economic dispatch, or voltage control, but uses
these applications to illustrate models and techniques that are widely applicable.

........

The book has three main parts. Part I introduces the basics of power system analysis,
from phasor representation to single-phase models to optimal power flow problems
and the use of these concepts to analyze power system operations. Part II studies the
theory and algorithms for power system optimization, from convex programming to
semidefinite relaxations to nonsmooth and stochastic optimization. Part III develops
from scratch a comprehensive mathematical theory of unbalanced three-phase power
flow. It is motivated by emerging applications on distribution systems where control-
lable devices are the single-phase devices that make up three-phase devices in . or
� configurations. It explains the crucial role of device models and how single-phase
analysis extends directly to unbalanced three-phase networks. Such a theory is not
currently available in textbook form. (See Chapters 0.1 and 0.2 for a more detailed
summary.)
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�ic/6; file size opt.) 113

3.21 (a) The two 150 kVA transformers and two electric panels in Caltech
ACN to which charging stations and electric subpanels are connected.
(b) The transformer ratings. 115

3.22 Referring series impedance in the secondary to the primary. 117

3.23 Referring shunt admittance in the secondary to the primary. 118

3.24 Referring (IB , HB) in the secondary to the primary. 118

3.25 (a) Thévenin equivalent Ieq of two impedances I1, I2 in series. (b)
Thévenin equivalent Ieq of two impedances I1, I2 in parallel. 119

3.26 Driving-point impedances 120

3.27 Driving-point impedance +1/�1 on the primary side. 120

3.28 Driving-point impedance +2/�2 on the secondary side. 121

3.29 Example 3.7: per-phase analysis. 123

3.30 General transmission line model between stepup and stepdown
transformers. 125

3.31 Two buses connected in a loop with two parallel transformers. 126

3.32 Per-phase equivalent circuit of balanced three-phase transformers with
gain  (=). (Nov 16, 2025: file size scaled.) 131

3.33 Example 3.9 with rated voltage magnitude of E and rated apparent
power of B. (Nov 16, 2025: file size scaled.) 133

3.34 Normalization of an o�-nominal transformer. 134

3.35 Normalization when connection-induced phase shifts cannot be ignored. 135

3.36 Impedance diagram of a three-phase transformer bank. (Nov 16, 2025:
file size scaled.) 139
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3.37 Exercise 3.1: ) equivalent circuit of transformer with = := #2/#1 and
0 := #1/#2. 141

3.38 Referring (IB , HB) on the secondary to the primary of a transformer. 142

3.39 Example 3.11: one-line diagram. 143

3.40 The three-phase transformer is connected to a three-phase voltage
source and a three-phase load through two three-phase lines. (Nov 16,
2025: file size scaled.) 144

3.41 Caltech ACN network design. 145

3.42 (a) American Wire Gauge (AWG) standard: dependence of wire cross-
sectional area U(G) on ampacity G. (b) The data for U(G) in the table can
be approximated by the quadratic function in (3.26b). The black solid
line is the plot of the data and the orange dashed line is the quadratic fit. 147

4.1 Network graph and notations. 150

4.2 Multiple devices connected to the same bus. (Nov 23, 2026: file size
scaled.) 151

4.3 ⇧-circuit model of a single-phase branch. 153

4.4 Single-phase transformer. (Nov 23, 2026: file size opt.) 155

4.5 System model. (Nov 30, 2025: file size opt.) 156

4.6 Example 4.2: A generator supplying a load through a network. (Nov
23, 2025: file size scaled.) 157

4.7 Example 4.3: One-line diagram and its equivalent circuit. (Nov 23,
2025: file size opt.) 158

4.8 ⇧-circuit model of transformer in series with transmission line. 159

4.9 Three-bus network of Example 4.4. 161

4.10 Kron reduction: #red := {1,2,3} with internal bus 4. While the original
network is a tree, the Kron reduced network is fully connected. 166

4.11 The fixed point iteration G(C +1) = 5 (G(C)) := G2 (C) is not a contraction
mapping and its convergence depends on the initial point G(0) = G0. 176

4.12 Newton-Raphson algorithm: The next iterate G(C + 1) is obtained by
approximating 5 by its linear approximation at G(C) and setting the
linear approximation 5̂ (G) = 0. 177

4.13 An ideal transformer with turns ratio 0 = =�1 followed by a transmission
line modeled by a series admittance H. 206
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4.14 Exercise 4.22. 212

5.1 System model. (Nov 30, 2025: file size opt.) 214

5.2 Line model under assumption C5.1. 215

5.3 Graph orientations for radial networks. 223

5.4 High and low voltage solutions E1 as functions of injection ?1. 226

5.5 Equivalence of BFM and BIM. Proof focuses on X̃ ⌘ Xmeshed and
Xmeshed ⌘ Xtree. Nov 30, 2025: file size opt.) 231

5.6 General backward forward sweep. 236

5.7 Spatially recursive structure of power flow equations (5.36). 239

6.1 Generating unit 9 , its setpoint D 9 (C), local injection f9 (C), and line
power % 9: (C). (Nov 30, 2025: file size scaled.) 268

6.2 Block diagram in Laplace domain of the turbine-governor dynamic
(6.14). (Nov 30, 2025: file size scaled.) 270

6.3 Block diagram in Laplace domain of the generator dynamic (6.15).
(Nov 30, 2025: file size scaled.) 270

6.4 Block diagram of primary frequency control (6.16). (Nov 30, 2025: file
size scaled.) 271

6.5 Block diagram of primary and secondary frequency control (6.16)
(6.17) in area 9 . (Nov 30, 2025: file size scaled.) 275

7.1 Piecewise linear control with a deadband (�X/2,X/2). (Nov 30, 2025:
file size scaled.) 302

8.1 Definition of a convex set: every point in between two points in the set
lies in the set. 319

8.2 Convex function: The straight line connection 5 (G) and 5 (H) lies above
5 . The linear approximation of a di�erentiable convex function 5 lies
below 5 . 324

8.3 Proof of Theorem 8.2.1. 325

8.4 Proof of Lemma 8.4: Construction of (G: , I: ) from H̃ and H: . 330

8.5 Example 8.7: minG�0 G2. If 0  0 then the unique minimizer is G⇤1 = 0
where 5 0(G⇤) = 0. If 0 > 0 then the unique minimizer is G⇤2 = 0 where
5
0(G⇤) > 0. 335
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8.6 Cones and their a�ne hulls. (a) A pointed convex cone  . It is not a
subspace; its a�ne hull a�( ) =R2. (b) A non-pointed nonconvex cone
 . It is not a subspace; its a�ne hull a�( ) = R2. (c) A non-pointed
convex cone  which is a subspace. Hence a�( ) =  . 337

8.7 Cones cone(-) generated by - ✓ R=. 337

8.8 (a) Nonconvex cone  ̃ := {(G, C) 2 R=+1 : kGk22  C2}. (b) Second-order
cone  soc =  ̃ \�. 338

8.9 Example 8.8. (a) When U = 1/2, ⇠̃ = {G : G1 = G2} is convex. (b)
When U = 1, ⇠̃ = {G : G � 0}[ {G : G  0} is nonconvex. In both cases
⇠ = ⇠̃ \� is convex. 340

8.10 The point I := [G]- is the unique closest point to G in the convex set -
under the Euclidean norm. For all other points H 2 - , the inner product
of H� I and G� I is nonpositive. (Dec 13, 2025: file size scaled.) 343

8.11 Proof of Theorem 8.10. The vectors 0,08 are in the normal cones of
cl(-) at Ĝ⇤ and Ĝ8 respectively and � := {G 2 R= : 0T

G = 0T
G
⇤} is a

hyperplane separating cl(-) and G⇤. In Case 1 the separating hyperplane
is nonunique: even with the same 0, 1 can take any value in (0T

Ĝ
⇤,0T

G
⇤)

and {G : 0T
G = 1} will be a separating hyperplane. (Dec 13, 2025: file

size scaled.) 344

8.12 Theorem 8.12.1: Farkas Lemma. 347

8.13 Theorem 8.12.2: Decomposition of R< into range(�) and null(�T). 347

8.14 Special classes of convex problems studied in this section and Chapter
12.9 using nonsmooth methods. 370

8.15 Theorem 8.26: optimality condition at G⇤ = 0 where ⌘(G) is nondi�er-
entiable with 5 (G) := 2T

G and without �G = 1. (a) 2 2  soc: G⇤ = 0 and
5
⇤ = 0. (b) 2 8  soc: 5 ⇤ = �1. 380

8.16 Moving away from G
⇤ to another feasible G locally increases the cost. 386

8.17 Example 8.16. Optimal value 5 ⇤ = �1 which is upper bounded by 5
max

throughout the algorithm. The shaded areas are the feasible sets of
various subproblems. (Nov 30, 2025: file size opt.) 404

8.18 Benders decomposition. (Nov 30, 2025: file size opt.) 411

9.1 Problem instances of OPF. Theorems 9.2 and 9.3 provide a su�cient
condition and a necessary condition respectively that characterize the
intersection. (Dec 22, 2025: file size scaled.) 464
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9.2 Three types of local optima. The cost function decreases in the direction
of the arrow. Point 1 is a global optimum, 2 a pseudo local optimum,
and 0,3 are genuine local optima. (Dec 22, 2025: file size scaled.) 465

9.3 Notation for the proof of Lemma 9.5. Point G and ✓(C†) will be proved
to be identical. (Dec 22, 2025: file size scaled.) 467

9.4 (a) The nonsmooth functions 5 (G) := max(0,G) and 6(G) := min(0,G)
and their smooth approximations 5

n (G) and 6
n (G) respectively

(n = 0.05). (b) The smooth approximation ⌘n (G) of the nonsmooth
function ⌘(G) := [G]1

0
(n = 0.05, 0 = �0.2, 1 = 0.2). 479

10.1 Example 10.1: The overlapping maximal cliques of chordal extensions
-
2 (� ) are in shades. (Dec 22, 2025: file size scaled.) 499

10.2 Example 10.4. 513

10.3 Condition C10.1’ for OPF on a line ( 9 , :) 2 ⇢ . The quantities
( [� 9 ] 9: , [�: ] 9: , [ 9 ] 9: , [ : ] 9: ) on the left-half plane correspond
to finite upper bounds on (? 9 , ?: ,@ 9 ,@: ) in (10.23a)(10.23b);
(�[� 9 ] 9: ,�[�: ] 9: ,�[ 9 ] 9: ,�[ : ] 9: ) on the right-half plane corre-
spond to finite lower bounds on (? 9 , ?: ,@ 9 ,@: ). 517

10.4 The feasible set of OPF (10.26) for the two-bus network is a subset of
an ellipse without the interior, hence nonconvex. The SOCP relaxation
(10.27) includes the interior of the ellipse. If the cost function ⇠ is
strictly increasing in (% 9: ,%: 9 ) then the Pareto front of the SOCP
feasible set lies on the lower part of the ellipse, O(P\ ) = P\ , and
hence (10.27) is exact. The points % := (% 9: (\ 9: ),%: 9 (\: 9 )) = 0 when
\ 9: = 0, % 9: = cmin

9:
when \ 9: = \min

9:
, and %: 9 = cmin

: 9
when \ 9: = \min

: 9
. 523

10.5 (a) The set conv(P\ ) is the intersection of the ellipse, including its
interior, and a half-space. (b)(c) conv(P\ \P?) ✓ conv(P\ ) \P? . If
the cost ⇠ (?) is strictly increasing in ? 9 but independent of ?: then
the vertical darkened segment in (c) is part of the Pareto front of the
relaxation but only the point on the ellipse is feasible, i.e., in P\ \P? ,
and hence optimal. 525

10.6 Lower bounds ?min on injections a�ect exactness of relaxation. 526

10.7 Exercises 10.4 and 10.5. 529
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11.1 Feasible set of OPF for a two-bus network without any constraint. It
consists of the (two) points of intersection of the line with the convex
surface (without the interior), and hence is nonconvex. SOCP relaxation
includes the interior of the convex surface and enlarges the feasible
set to the line segment joining these two points. If the cost function
⇠ is increasing in ✓ or (?0,@0) then the optimal point over the SOCP
feasible set (line segment) is the lower feasible point 2, and hence the
relaxation is exact. 543

11.2 Impact of voltage upper bound Emax
1 on exactness. (a) When Emax

1
(corresponding to a lower bound on ✓) is not binding, the power flow
solution 2 is in the feasible set of SOCP and hence the relaxation is
exact. (b) When Emax

1 excludes 2 from the feasible set of SOCP, the
optimal solution is infeasible for OPF and the relaxation is not exact. 544

11.3 Linear network and notations. Line < in the proof is the line closest
to bus 0 where the inequality in (11.26) is strict, i.e., (11.26) holds
with equality at lines 9 = 1, . . . ,< � 1, strict inequality at line <, and
inequality at lines 9 = < +1, . . . ,# . 547

12.1 Polar cones and dual cones of - ✓ R=. For the leftmost set - which is
nonconvex, both its polar cone and dual cone contain only the origin.
The other three sets - are closed convex cones and therefore (-�)� = - .
Note that (-�)� < �-� = -⇤ unless - is self-dual. 557

12.2 Polar cone -� = cone� (-) according to Proposition 12.1. 558

12.3 Normal and tangent cones of closed cones  ✓ R2 at a boundary
point Ḡ (see Exercise 12.2 for derivation). (Nov 28, 2025: Fig (c):
(i)  � area should be part of  in blue (see Fig 12.4); (ii) Change
# (Ḡ)! # (Ḡ) = {0}.) 560

12.4 archieved figure. (Nov 28, 2025: To delete after fixing.) 560

12.5 The tangent cones )- (Ḡ) = cl (cone(- � Ḡ)) and the normal cones
#- (Ḡ) = cone� (- � Ḡ) of - at Ḡ. At Ḡ where the boundary of -
is “smooth”, the left panel illustrates the importance of “cl” in the
definition of )- (Ḡ) and why #- (Ḡ) is a singleton. 561

12.6 Orthogonal decomposition of R= using singular value decomposition
of matrix �. 570

12.7 Example 12.3: while . is a cone, -1 is not. -�
1
= �T (. � 1)� and

#-1
(Ḡ) = �T

#. ( H̄1) (Corollary 12.7). (Dec 17, 2025: (a) The label
-
�
1
= �T (. � 1)� is too obscure.) 572

12.8 Theorem 12.8 when rank(�) = = : linear transformation . of a convex
cone - and their polar cones .� = #. (0) and -� = #- (0) respectively. 574
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12.9 Example 12.4. Since � is singular, (a) �T
.
�
( -

�; (b) �T
.
� = -�;

moreover �T
#. ( H̄) = #- (Ḡ). 575

12.10Example 12.5: while - is a cone, .1 is not. -� = �T (.1 � 1)� and
#- (Ḡ) = �T

#.1
( H̄1) because � is nonsingular (Corollary 12.9). 576

12.11Theorem 12.10: The normal cone # ((Ḡ, B̄)) is the line segment on the
boundary of the lower cone  �soc in the direction of Ḡ. (April 19, 2025:
Change  !  soc and  � !  

�
soc.) 577

12.12Example 12.7. (Dec 3, 2025: Fig (a): Solid/black dots (circles) for
X- (G) =1 at G = �1 and G = 1.) 583

12.13For a nonempty closed convex - , mf- (Ḡ) is a supporting hyperplane
of - at H̄. (Dec 13, 2025: (i) Stretch circle diagonally in north-east
direction into oval; add label - for set. (ii) Add blue color to oval.) 590

12.14Example 12.9: Normal cone of set intersection. (Dec 13, 2025: middle
panels for both (a) and (b): �!  .) 594

12.15The primal and dual problems (12.48) defined by the nonempty set " .
Their optimal values are (F⇤,3⇤) respectively. The normal (`⇤, V⇤ := 1)
of the nonvertical hyperplane attains the dual optimal solution `⇤, i.e.,
3 (`⇤) = 3⇤. (a) Nonzero duality gap 3⇤ < F⇤ when " is not convex.
(b) Zero duality gap 3⇤ = F⇤ when " is convex (even though " is
nonconvex). In both cases, 0 2 ri(⇡

"
) which ensures that V⇤ > 0

(nonvertical hyperplane). (Dec 15, 2025: (a)(b) (i) Change " to black.
(ii) Blue boundaries of " can be black and normal (or thicker) black
lines.) 609

12.16Every dual optimal `⇤ 2 &⇤ defines a hyperplane � that passes through
(0,F⇤) and separates (0,F⇤) from cl("). The shaded region labeled �
in the figure shows all the hyperplanes defined by &⇤. (Nov 30, 2025:
Check if color! greyscale will be OK?) 610

12.17The (D,F) space: " := (⌘(- 0), 5 (- 0)) := {(⌘(G), 5 (G) : G 2 dom( 5 )\
-
0} and its positive extension " . (Nov 15, 2025: Follow same

convention as for Figure 12.15.) 614

12.18Exercise 12.3. 628

13.1 (-lemma: (, ) and their separation. 653

13.2 Example 13.6: neither /1 nor /2 may contain the other, depending on n . 671

13.3 Example 13.7. (Dec 23, 2025: (a) G⇤
#

should touch smallest circle
instead of largest.) 680
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13.4 Partitioning of /# according to (a) support constraints in �B and (b)
generalized support constraints in �C for CSP(#) that is not uniformly
supported (see Chapter 13.3.5). 683

14.1 A simple model of a three-phase system consisting of a source connected
through a line to a load. 738

14.2 A power source f9 supplying a load (current source) �: through a
distribution line HB

9:
. 738

14.3 Internal and terminal variables associated with a single-terminal
three-phase device. 740

14.4 Overall model of the system in Figure 14.1. (Oct 7, 2025: (i) Change
“single-terminal device” to “device model”; (ii) Change “line model” to
“branch model”; (iii) Add underbrace{ network model } to the middle
part.) 744

14.5 Three-phase devices in . configuration. (a) A voltage source. (b) A
current source. (c) A power source. (d) An impedance. Note that the
direction of �. and f. is terminal-to-neutral. Oct 8, 2025: (iv) Power
source: f0! f

0=,f1! f
1=,f2! f

2=.) 758

14.6 Three-phase devices in � configuration. (a) A voltage source. (b) A
current source. (c) A power load. (d) An impedance. Note the direction
of �� and f�. 765

14.7 Comparison of single-phase and three-phase voltage sources. 779

14.8 Comparison of single-phase and three-phase current sources. 780

14.9 Comparison of single-phase and three-phase power sources. Oct 8,
2025: Fig (b): f0 ! f

0=,f1 ! f
1=,f2 ! f

2=. Also, this PDF is
from iPad, not Megan?) 780

14.10Comparison of single-phase and three-phase impedances. 781

14.11Terminal power B and internal power B. . 785

15.1 A four-wire line characterized by 4⇥ 4 series and shunt admittance

matrices
⇣
Ĥ
B

9:
, Ĥ<
9:

, Ĥ<
: 9

⌘
. 790

15.2 A three-wire line characterized by 3⇥ 3 series and shunt admittance

matrices
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. 792

15.3 A voltage source connected to an impedance load through a three-phase
line. (Oct 8, 2025: I0

9
! I

0=

9
, I1
9
! I

1=

9
, I2
9
! I

2=

9
.) 795

15.4 Nonideal three-phase sources in . configuration. (Oct 8, 2025: (a) :
I
0! I

0=, I1! I
1=, I2! I

2=. (b) : H0! H
0=, H1! H

1=, H2! H
2=.) 797
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15.5 Nonideal three-phase sources in � configuration. 798

15.6 A voltage source connected to a current source through a three-phase
line. (Oct 8, 2025: I0

9
! I

0=

9
, I1
9
! I

1=

9
, I2
9
! I

2=

9
.) 798

15.7 Single-phase transformer: simplified model. The internal variables
(+̂ 9 , �̂ 9 ), (+̂: , �̂: ) and terminal variables (+ 9 ,+=

9
, � 9 ), (+: ,+=

:
, �: ). 799

15.8 (a) Circuit model of admittance matrix .2wire and (b) when neutrals are
grounded with zero grounding impedances, +=

9
=+=

:
= 0. 801

15.9 Primary side of a three-phase transformer in . (left) or � (right)
configuration. 802

15.10Secondary side of a three-phase transformer in . (left) or � (right)
configuration. 803

15.11.. -configured transformer. 808

15.12��-configured transformer. 811

15.13�. -configured transformer. 813

15.14.�-configured transformer. 814

15.15Open ��-configured transformer. 815

15.16Unitary voltage network in each phase q of a three-phase transformer. 820

15.17Primary side of a three-phase transformer with unitary voltage networks. 821

15.18Three-phase transformer models with unitary voltage networks. 822

15.19Radial network in Example 15.10. (Oct 12, 2025: Add transformer
configurations?) 830

15.20�. -configured transformer with zero shunt admittances. 833

16.1 Network graph and notations. 841

16.2 The admittance matrix . for a 3-bus network with no shunt admittances. 845

16.3 A clique of ⌧3q corresponding to line ( 9 , :) in ⌧. 848

16.4 Example 16.3: An ungrounded . -configured generator connected
through a three-phase line to an ungrounded . -configured impedance
load. 859

16.5 Example 16.5: An ungrounded . -configured generator connected
through a four-wire line to an ungrounded . -configured impedance load. 861

16.6 Example 16.6: A �-configured generator connected through a three-
phase line to a �-configured impedance load. 862
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16.7 The sequence networks of a voltage source
�
⇢
. , I. , I=

�
with balanced

impedance I. := I0=I. ⇢̃.0 = ⇢̃.� = 0 if ⇢. := ⇢0=U+ is balanced. 893

16.8 The sequence networks of a voltage source
�
⇢
�, I�

�
with balanced

impedance I� := I01I. ⇢̃�0 = ⇢̃�� = 0 if ⇢� := ⇢01U+ is balanced. 895

16.9 The sequence networks of a current source
�
�
. , H. , I=

�
with balanced

impedance H. := I0=I. �̃.+ =
p

3�0= and �̃.0 = �̃.� = 0 if �. := �0=U+ is
balanced. 897

16.10The sequence networks of a current source
�
�
�, H�

�
with balanced

impedance H� := I01I. ⇢̃�0 = ⇢̃�� = 0 if ⇢� := ⇢01U+ is balanced. 898

16.11Example 16.14: Three-phase unbalanced sources supplies power two
balance loads in parallel through symmetric lines. 903

16.12Example 16.14: Circuit models of sequence networks. 904

16.13Exercise 16.7: An ungrounded . -configured generator connected
through a four-wire line to an ungrounded . -configured impedance load. 909

16.14Three-phase . -configured current source connected through a three-
phase line to a �-configured impedance load. 909

16.15Sequence components of unbalanced phase currents in balanced load II. 913

17.1 Example 17.1. 931

17.2 BFS on unbalanced three-phase radial networks. 936

17.3 Solution of linear branch flow model for unbalanced three-phase radial
networks. 945

A.1 Change of bases. The new matrix �̃ is similar to � when = = < and
* =+ . 991

A.2 Matrix decompositions. Singular value decomposition (Thm A.11),
Diagonalizability (Thm A.6), Spectral theorems (Thms A.13, A.15,
A.16), Takagi’s decomposition (Thm A.17). 997

A.3 Orthogonal decomposition of C= and C< and pseudo-inverse �†. For
any G 2 range(�� ), G = �†(�G) which is generally di�erent from
G
0 = �H (�G). 1006

A.4 Orthogonal decomposition of C= and C< using singular value
decomposition of �. 1008

A.5 The boundaries of unit balls for ;1, ;2 and ;1 norms. 1013

A.6 The edge space R< = null(⇠) � range(⇠T) and the vertex space
R
= = null(⇠T) � range(⇠). (The dimensions are for a connected graph.) 1030
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A.7 A connected graph with a spanning tree ) , with cycle subspace
null(⇠) and cut subspace range(⇠T). The cycle subspace has dim 2
with a basis vector for each ;̂ 8 ) , e.g., I(cyc() , ;̂)) = (0,�1,1,1,0).
The cut subspace has dim 3 with a basis vector for each ; 2 ) , e.g.,
I(cut() , ;)) = (0,0,1,�1,0). 1031
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1.1 Circuit elements commonly used for modeling generators, loads, lines,
and transformers. 18

1.2 Power delivered to RLC elements. 54

3.1 Typical distribution system voltages (line-to-line) and their total
(three-phase) power rating at 400A current. 100
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6.1 Exercise 6.2: Imbalance and underlying errors. 295

8.1 Summary of characterization and existence of primal and dual optimal
solutions. 349

8.2 Primal-dual feasible counterexamples to Theorems 8.16 and 8.17. 361

8.3 Summary: strong duality, dual optimality and KKT condition. 370

8.4 Four possibilities: Strong duality in Theorem 8.23 excludes 4 possibil-
ities labeled “⇥(sd)”. The 5th impossibility, labeled “⇥(wd)”, violates
weak duality. Optimal values are attained only in one case. 375

12.1 The tangent cones and normal cones of convex sets. The function ⌘
is assumed to be continuously di�erentiable, convex and satisfies the
Slater condition. 569

12.2 Indicator function X- (G) := 0 if G 2 - and 1 otherwise, support
function f- (G) := sup

H2- H
T
G, their conjugates and subdi�erentials

(#- (G) is normal cone of - at G). 589

12.3 Summary of characterization and existence of primal and dual optimal
solutions. 596

13.1 Tractable robust programs. 640
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13.2 Summary of concentration inequalities. k. (_) := ln⇢4_. and k⇤
.
(C) :=

sup
_2R (C_�q. (_)). . is sub-Gaussian if k. (_)  `_+ (f2/2)_2. 675

13.3 Key concepts in the proofs on tail probability bounds. 687

13.4 Example 13.9. The set of generalized support constraints is �C =
�
B [ !C�B . 695

14.1 Internal and terminal variables of single-terminal three-phase devices.
The notation G. /� is a shorthand for the pair (G. ,G�). 741

14.2 System model = device model + network model. 745

14.3 Specification, internal and external models of three-phase components. 782

14.4 External models of ideal single-terminal devices in . configuration.
The quantity W := += is the neutral voltage. If all neutrals are directly
grounded and voltages are defined with respect to the ground, then
W :=+= = 0 for all . -configured devices. 782
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0 Introduction

0.1 How to use this book

This book can be used as a research reference. It can also be used as a textbook and
we suggest three possible courses that can be constructed from this book.

Power System Analysis I: models and operation. A 13-week course for senior
undergraduate and beginning graduate students that covers Part I of the book. It
develops from scratch single-phase network models and formulates optimal power
flow problems. These models are then used to describe and analyze power system
operation such as mechanisms for balancing power, controlling frequency, pricing
electricity and reserves, estimating state, and stabilizing voltages. This course does not
require prior power system knowledge or optimization theory, but does require circuit
analysis, linear algebra and interest in or exposure to mathematical analysis.

Specifically it covers

1. Basic concepts: Kirchho�’s laws, phasors, device models, three-phase systems,
complex power (Chapter 1).

2. Branch models: transmission line (Chapter 2), transformers (Chapters 3, possibly
skipping Chapter 3.1.5).

3. Network models: bus injection models (Chapter 4, possibly skipping Chapter
4.4.4), branch flow models for radial networks (Chapter 5, possibly skipping
Chapter 5.4).

4. Power system operation, I: control mechanisms for balancing power, including
unit commitment, real-time dispatch, secure operation, primary and secondary
frequency control, as well as market mechanisms for pricing electricity and re-
serves using locational marginal prices (Chapter 6).

5. Power system operation, II: state estimation, voltage control on distribution net-
works, and network topology identification (Chapter 7).

Power System Analysis II: power flow optimization. A 13-week graduate course
that covers Part II of the book on power flow optimization. It focuses on analytical
tools for and structural properties of power systems and prepares students for research.
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1. Power system basics: Reviews models and basic operation of power systems (topics
from Chapters 4, 5, 6 depending on students’ prior knowledge).

2. Convex optimization: convex analysis, optimality conditions, special convex pro-
grams, optimization algorithms, convergence analysis (Chapters 8).

3. Optimal power flow (OPF): OPF in bus injection models and branch flow models,
NP-hardness, global optimality, techniques for scalability (Chapter 9).

4. Semidefinite relaxations of OPF: SDP, chordal, SOCP relaxations of OPF, exact-
ness conditions (Chapters 10 and 11).

5. Nonsmooth convex optimization: normal cones and feasible sets, CPC functions
and subgradients, optimality conditions, special convex programs (Chapter 12).

6. Stochastic OPF: robust optimization, chance constrained optimization, convex
scenario program, two-stage optimization with recourse (Chapter 13).

Unbalance Three-phase Power System. A 10-week undergraduate/graduate
course that covers Part III of the book on unbalanced three-phase networks. It de-
velops from scratch three-phase component and network models, three-phase optimal
power flow and its semidefinite relaxations. It shows how models and analysis for
single-phase networks extend directly to a three-phase setting and where the di�erence
is. Prior knowledge of single-phase power networks or optimization theory will be
helpful but not absolutely necessary.

1. Review: Single-phase power networks (topics from Chapters 4 and 5 depending
on students’ prior knowledge).

2. Component models: mathematical properties of three-phase systems, three-phase
devices in . and � configurations, three-phase transmission or distribution lines,
three-phase transformers (Chapters 14 and 15).

3. Bus injection model: network models, three-phase analysis, balanced network
(Chapter 16, possibly skipping Chapter 16.3).

4. Branch flow model: network models, equivalence, linear models and solution
(Chapter 17, possibly skipping Chapter 17.4).

5. Review: basic convex optimization theory and algorithms (topics from Chapter 8
depending on students’ prior knowledge).

6. Power flow optimization: three-phase OPF, semidefinite relaxations, example ap-
plications (Chapter 18).

0.2 Overview

The book consists of three parts and an appendix.
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Part I Power network: models, operation, analysis

1. Chapter 1 introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system, including circuit models, Kirchho�’s laws,
phasor representation, balanced three-phase systems, per-phase equivalent, and
complex power.

2. Chapter 2 develops circuit models for the terminal behavior of a balanced three-
phase transmission line that map the voltage and current at one end of the line to
those at the other end.

3. Chapter 3 develops models for balanced three-phase transformers and their per-
phase equivalent and analysis techniques for circuits containing transformers,
including per-unit normalization.

4. Chapter 4 uses the component models of previous chapters to construct a class of
network models we call the bus injection model (BIM). It introduces the network
admittance matrix . that relates linearly bus voltages and current injections, its
Kron reduction, and their analytical properties. It also introduces power flow
equations that relate nonlinearly bus voltages and power injections and presents
iterative algorithms for solving these equations. Finally it introduces a linearized
power flow model called the DC power flow model that is widely used for electricity
market operation.

5. Chapter 5 introduces the branch flow model (BFM) for radial networks with a
tree topology and proves its equivalence to the bus injection model. It presents a
fast iterative algorithm called the backward forward sweep for solving power flow
equations for radial networks. Finally it introduces a linearized model that admits
an explicit solution which bounds nonlinear power flow solutions.

6. Chapter 6 overviews three control mechanisms at di�erent timescales, unit com-
mitment, real-time dispatch and frequency control, that balance power supply and
demand. It also studies pricing of electricity and reserves using locational marginal
prices and optimality properties of these prices.

7. Chapter 7 illustrates the models and tools developed in earlier chapters through
three applications: state estimation, voltage control on distribution networks, and
topology identification.

Part II Power flow optimization

1. Chapter 8 formulates convex optimization problems and introduces some of the
most useful tools for convex analysis. We develop a general theory to charac-
terize optimal solutions and provide su�cient conditions for their existence, and
then apply the general theory to special classes of convex optimization problems
widely used in applications. We describe iterative algorithms for solving convex
optimization problems and basic techniques for analyzing their convergence.

2. Chapter 9 formulates optimal power flow (OPF) problems that underly numerous
power system applications, in both the bus injection model and the branch flow



4 Introduction

model. It proves that OPF is NP-hard but a subclass characterized by a Lyapunov-
like condition can be solved e�ciently to global optimality. Finally it describes
common techniques for scaling OPF solutions.

3. Chapter 10 studies the semidefinite relaxation of the nonconvex OPF problem
formulated in BIM as a quadratically constrained quadratic program. It develops
the concept of partial matrices and their positive semidefinite rank-1 completion
to exploit the sparsity of large networks. Finally it proves two su�cient conditions
for exact second-order cone program (SOCP) relaxations of OPF on single-phase
radial networks. Convex relaxation complements linear approximation and local
iterative algorithms as one of the main tools for dealing with the nonconvexity of
OPF.

4. Chapter 11 studies the semidefinite relaxation of OPF in BFM for radial networks.
It formulates SOCP relaxation and proves its equivalence to the SOCP relaxation
in BIM. Finally it proves two su�cient conditions for exact SOCP relaxation for
single-phase radial networks.

5. Chapter 12 generalizes the structural results of Chapter 8.3 to a convex but non-
smooth setting, motivated by stochastic OPF studied in Chapter 13. It shows that
convexity is fundamental, but not smoothness, and, once the basic framework is
established, the more abstract approach here that relies only on convexity is both
more natural and simpler conceptually.

6. Chapter 13 studies basic methods for stochastic optimization, robust optimization,
chance constrained optimization, scenario programming, and two-stage optimiza-
tion with recourse. A focus is on problems (e.g., two-stage optimization) that are
convex, but often nonsmooth, to which optimality conditions studied in Chapter
12 are applicable and computation algorithms studied in Chapter 8 can be adapted
by replacing gradients with subgradients. Finally we present examples to illustrate
concepts of stochastic OPF.

Part III: Unbalanced three-phase networks

1. Chapter 14 studies the mathematical properties that underly the behavior of un-
balanced three-phase systems and derives models of three-phase voltage sources,
current sources, power sources, and impedances in . and � configurations.

2. Chapter 15 derives models of three-phase lines and transformers.
3. Chapter 16 uses the component models of Chapters 14 and 15 to extend the

bus injection model to the unbalanced three-phase setting. It also introduces the
sequence coordinate in which sequence networks become decoupled when there
is a certain symmetry in the original phase coordinate.

4. Chapter 17 extends the branch flow model to the unbalanced three-phase setting.
5. Chapter 18 extends OPF and its semidefinite relaxations (studied in Chapters 9,

10, 11) from single-phase to unbalanced three-phase networks.

Appendix: Linear algebra preliminaries Appendix A collects mathematical prelim-
inaries used in the rest of the book.
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0.3 Notation

Vector and matrix. Let C denote the set of complex numbers, R the set of real
numbers, R+ the set of nonnegative real numbers, R� the set of nonpositive real
numbers, N the set of integers and N+ the set of positive integers. We use i to denotep
�1. For 0 2 C, its real and imaginary parts are denoted by Re 0 and Im 0 respectively.

Its complex conjugate is usually denoted by 0̄ or 0H (though Ḡ also denotes a particular
vector in R= when it is clear from the context that Ḡ is a real quantity). For any set
� ✓ C=, conv � denotes the convex hull of �. For 0 2R, [0]+ :=max{0,0}. For 0,1 2C,
0  1 means Re0  Re1 and Im0  Im1. We sometimes abuse notation to use the
same symbol 0 to denote either a complex number Re0 + i Im0 or a size 2 real vector
0 = (Re0, Im0) depending on the context. The empty set is denoted ;.

In general scalar or vector variables are in small letters, e.g. D,F,G, H, I. Most
power system quantities however are in capital letters, e.g. ( 9: ,% 9: ,& 9: , � 9 ,+ 9 . Unless
otherwise specified, a vector is a column vector and is written interchangeably as

G =

2666664

G1
...
G=

3777775
or G = (G1, . . . ,G=)

A variable without a subscript usually denotes a vector with appropriate components,
e.g. B := (B 9 , 9 = 0, . . . ,=), ( := (( 9: , ( 9 , :) 2 ⇢). For a vector G = (G1, . . . ,G=), G�8 de-
notes (G1, . . . ,G8�1,G8+1, . . . ,G=) without the G8 component. For a subset � ( {1, . . . ,=},
G�� := (G8 , 8 8 �). For vectors G, H, G  H denotes componentwise inequality. We freely
refer to G as singular if we mean the vector G or as plural if we mean its components
G1, . . . ,G=. For example we may refer to _⇤ as a locational marginal price or locational
marginal prices. ⌫n (G⇤) may denote the open ball or the closed ball centered at G⇤ with
radius n � 0.

Matrices are usually in capital letters. Let" ,# be index sets with< := |" |, = := |# |.
An < ⇥ = matrix with 08 9 2 C as its (8, 9)th entry for 8 2 " , 9 2 # , can be written as
� = (08 9 , 8 2 " , 9 2 #). Its null space, range space, and trace are denoted respectively
by null(�) := {G 2 C= : �G = 0}, range(�) = span(�) := {�G 2 C< : G 2 C=}, and
tr(�) :=

Õ
8
�88 . The dimension of range(�) is rank(�)  = and that of null(�) is

nullity(�)  = (they sum to =; see Appendix A.1.2). Given an =⇥= matrix �, diag(�)
denotes the column vector (�11, . . . , �:: ) consisting of �’s diagonal entries. Given =
scalars 01, . . . ,0=, or a vector 0 := (01, . . . ,0=), Diag(01, . . . ,0=) and Diag(0) denote
the =⇥ = diagonal matrix with 08 on its diagonal; we sometimes also denote Diag(0)
by diag(0) when it is clear 0 is a vector. We use �̄ to denote the componentwise
complex conjugate of a matrix �. The transpose of a matrix � is denoted by �T and
its Hermitian (or conjugate) transpose by �H := �̄T. A vector G⇤ 2 R= or G⇤ 2 C= or
a matrix -

⇤ 2 S= is usually used to denote an optimal solution of an optimization
problem. We use interchangeably (HB)H and HBH. A matrix � is Hermitian if � = �H. A
complex matrix � is positive semidefinite (or psd), denoted by � ⌫ 0, if � is Hermitian
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and GH
�G � 0 for all G 2 C=. A real matrix � is positive semidefinite (or psd), denoted

by � ⌫ 0, if � is symmtric and GT
�G � 0 for all G 2 R=. In particular if � ⌫ 0 then by

definition � = �H if � is complex and � = �T if � is real. 1
� is negative semidefinite

(nsd) if �� is psd. For matrices �,⌫, � ⌫ ⌫ means �� ⌫ is psd. Let S= be the set of
all =⇥ = Hermitian matrices, S=+ the set of =⇥ = psd matrices, and S=� the set of =⇥ =
nsd matrices.

The vector 1= usually denotes the vector of all 1s of size = and I= usually denotes the
identity matrix of size =. Without the subscript, the vector 1 and the identity matrix I
either denote the corresponding vector and matrix of size 3 (in unbalanced three-phase
systems) or a generic size depending on context. For the study of three-phase power
systems, both balanced and unbalanced, 40 := (1,0,0), 41 := (0,1,0), 42 := (0,0,1),
and 4q

9
2 {0,1}3= is the unit vector with a single 1 in the 9qth position. We often use

U := 4�i2c/3. The standard balanced vector in positive sequence is U+ := (1,U,U2) and
that in negative sequence is U� := (1,U2,U). The following conversion matrices are
key to the understanding of three-phase power systems:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
Its properties are explained in Theorems 1.2 and 14.2. The similarity transformation
to obtain symmetrical components due to Fortescue is defined by the eigenvectors
(1,U+,U�) of �.

Sequence and limit. By a sequence in R= or C=, we mean either an ordered or
an unordered set of vectors depending on context, and denote it interchangeably by
(G8 2 R= : 8 2 N+ := 1,2, . . . ) or {G8 2 R= : 8 2 N+ := 1,2, . . . }. We often refer to the
sequence by {G8} or simply G8 if it should be clear from the context that we are referring
to the sequence {G8}, not the element G8 . The sequence {G8} is said to converge to a
vector G⇤ if every component of G8 converges to the corresponding component of G⇤ as
8!1. In this case we call the unique vector G⇤ the limit point of the sequence {G8}
and write lim8!1 G8 = G⇤ or simply lim8 G8 = G⇤ or G8! G

⇤. If � is an infinite and strict
subset of N+, then the subsequence {G8 2 R= : 8 2 �} is also denoted {G8}�. If there
is a subsequence {G8}� that converges to a vector G⇤, we call G⇤ a limit point of the
sequence {G8} (also called a cluster point), even though {G8} itself may not converge.

In this case we write lim82�,8!1 G8 = G⇤ or G8! G
⇤ as 8

82��!1. We use 4 to denote the
constant lim= (1+ 1/=)= and 4 9 2 {0,1}= the unit vector of appropriate size = with a
single 1 in the 9 th position. We use ln = log

4
to denote the natural log. When there is

no confusion we may also use log to denote ln.

1 As explained in Definition A.2 and Remark A.1 of Chapter A.5, for a complex matrix, GH
�G � 0 for all

G 2 C= implies that � is Hermitian, so including Hermitian in the definition of psd is redundant and
only for uniformity. For a real matrix, GT

�G � 0 for all G 2 R= does not imply � is symmetric.
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Given a function 5 : R=! R<, m 5
mG

is the <⇥= matrix whose ( 9 , :)th entry is
m 5

mG

�
9:

:=
m 5 9

mG:

(G), 9 = 1, . . . ,<, : = 1, . . . ,=

and r 5 (G) :=
⇣
m 5

mG

⌘T
is its transpose. In particular if < = 1 then m 5

mG
is a row vector and

r 5 (G) is a column vector.

Graph. A graph ⌧ = (# ,⇢) consists of a set # of nodes and a set ⇢ ✓ # ⇥ # of
edges. If ⌧ is undirected then ( 9 , :) 2 ⇢ if and only if (: , 9) 2 ⇢ . If ⌧ is directed then
( 9 , :) 2 ⇢ only if (: , 9) 8 ⇢ ; in this case we will use ( 9 , :) and 9! : interchangeably to
denote an edge pointing from 9 to : . Therefore, for an undirected graph,

Õ
( 9,:)2⇢ G 9:

includes both G 9: and G: 9 for each edge ( 9 , :) 2 ⇢ , whereas, for a directed graph,Õ
( 9,:)2⇢ G 9: includes a single term G 9: for each directed edge 9 ! : . Sometimes, we

write
Õ

( 9,:)2⇢
�
G 9: + G: 9

�
instead of

Õ
( 9,:)2⇢ G 9: to emphasize the undirected nature

of the graph. By “ 9 ⇠ :” we mean an edge ( 9 , :) if ⌧ is undirected and either 9 ! :

or : ! 9 if ⌧ is directed. Sometimes we write 9 2 ⌧ or ( 9 , :) 2 ⌧ to mean 9 2 # or
( 9 , :) 2 ⇢ respectively. A path ? := ( 91, . . . , 9 ) is an ordered set of nodes 9: 2 # so
that ( 9: , 9:+1) 2 ⇢ for : = 1, . . . , �1. In this case we also refer to ? as the order set of
edges ( 9: , 9:+1), and refer to a node or an edge in the path by 9: 2 ? or ( 9: , 9:+1) 2 ?
respectively. A cycle is a path where 9 = 91. A simple cycle is a cycle that visits every
node at most once. In this book, we refer to 9 interchangeably as a node or a bus and
9 ⇠ : interchangeably as a link, a branch, a line or an edge.

Probability. A measurable space is a pair (⌦,F ) where the sample space ⌦ is an
arbitrary nonempty set. The f-algebra F ✓ 2⌦ is a collection of subsets � ✓ ⌦ called
events that satisfies: (i) ⌦ 2 F ; (ii) if � 2 F then ⌦ \ � 2 F ; and (iii) if �8 2 F for
8 = 1,2, . . . , then [8�8 2 F . Given a measurable space (⌦,F ), a probability measure P
is a function P : F ! [0,1] such that (i) P(⌦) = 1; and (ii) if �8 2 F for 8 = 1,2, . . . are
pairwise disjoint, then P ([8�8) =

Õ
8
P(�8). The triple (⌦,F ,P) is called a probability

space. When P(�1 \ �2)) +P(�2 \ �1) = 0, i.e., �1 and �2 di�er by a set of measure
zero, we say �1 = �2 almost surely or a.s.

A random variable or random vector / defined on the probability space (⌦,F ,P)
is a function / : ⌦! R< such that P ({l 2 ⌦ : / (l)  I}) is called the probability
of the event {/  I} and denoted by P(/  I). The probability distribution function
or distribution function �/ : R< ! [0,1] of the random variable / is the function
defined by the probability measure P, �/ (I) := P ({l 2 ⌦ : / (l)  I}). Two random
variables /1,/2 defined on the same probability space are said to be equal almost
surely or equal a.s. if the measurable sets /�1

1 (I) = /�1
2 (I) a.s. for all I.

Given two probability spaces (⌦1,F1,P1) and (⌦2,F2,P2), one can define a prob-
ability measure P on the product measurable space (⌦1 ⇥⌦2,F1 ⇥F2) and form the
probability space (⌦1⇥⌦2,F1⇥F2,P). For random variables /1 defined on (⌦1,F1,P1)
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and /2 defined on (⌦2,F2,P2), the function

�/1,/2 (I1, I2) := P ({(l1,l2) 2 ⌦1⇥⌦2 : (/1 (l1),/2 (l)2)  (I1, I2)})

is called the joint probability distribution function. The distribution functions �/1 and
�/2 defined by P1 and P2 respectively are called the marginal distribution functions
of /1 and /2. The probability measure P is called the product measure and the joint
distribution function �/1,/2 the product distribution function if

P((/1,/2)  (I1, I2)) = P1 (/1  I1)P2 (/2  I2),
�/1,/2 (I1, I2) = �/1 (/1  I1)�/2 (/2  I2)

In this case, the random variables /1 and /2 are called independent. If, in addition,
(⌦1,F1,P1) and (⌦2,F2,P2) are identical, then /1 and /2 are called independent and
identically distributed, abbreviated as i.i.d. or iid. We then write the product measure
P as P2

1.

In this book we ignore measurability issues, i.e., we assume all random variables
or processes encountered are well defined, they generate appropriate f-algebra on
which appropriate probability measures are defined, and all functions encountered are
measurable. We often say two sets �1 = �2 when we mean �1 = �2 a.s.

Due to the breadth of topics covered, we often overload notation and use the same
letter to denote di�erent quantities depending on context; e.g., � may denote current
or the identity matrix, ⌧ a graph or the real part of an admittance matrix . = ⌧ + i⌫,
and G a generic variable or the imaginary part (reactance) of an impedance I = A + iG.
Finally, as defined above, 4 := lim= (1+1/=)= but 4 9 is the unit vector.

0.4 Units

The unit of a quantity is specified usually the first time the quantity is introduced.
Commonly used units in this book are collected here for convenience. We often overload
notations so that the same symbol may refer to di�erent quantities depending on the
context, e.g., � may denote a vector of current phasors � = (�8 , 8 = 1, . . . ,=) or the identity
matrix of appropriate size,+ may denote a vector of voltage phasors+ = (+8 , 8 = 1, . . . ,=)
or their unit volt.

1. voltage E(C),+ : volt (V).
2. current 8(C), �: ampere (A).
3. real power % : watt (W); reactive power & : volt-ampere reactive (var); complex

power ( := %+ i&, apparent power |( |: volt-ampere (VA).
4. resistance A, reactance G = il; or 1/il2, impedance I := A + iG: ohm (⌦).
5. conductance 6 := A/(A2+G2), susceptance 1 :=�G/(A2+G2), admittance H := I�1 =:
6 + i1: Siemen (S) or mho (⌦�1).
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6. inductance ;: henry (H); magnetic flux linkage _(C) = ;8(C) : weber-turn (Wb-turn).
7. capacitance 2: farad (F); electric charge @(C) = 2E(C) : coulomb (C)

We will sometimes overload notation, e.g., ; is used sometimes to denote inductance,
sometimes inductance per unit length, some times a line index. The meaning should
be clear from the context.





Part I

Power network: models,
operation, analysis





1 Basic concepts

This chapter introduces basic concepts in modeling the steady-state behavior of an
alternating current (AC) power system where voltages and currents are sinusoidal
functions of time. For us, steady state means that the frequencies of voltages and
currents in the entire network are at their nominal value (e.g., 60 Hz in the US,
50 Hz in China and Europe). In Chapter 1.1 we describe phasor representation of
sinusoidal voltages and currents, introduce single-phase device models, and review
circuit analysis. In Chapter 1.2 we explain balanced three-phase systems and how to
simplify their analysis using per-phase models. In Chapter 1.3 we define the concept
of complex power for single-phase and three-phase systems, and illustrate through
an example that a three-phase system saves power and conductors compared with a
single-phase system serving the same load.

1.1 Single-phase systems

An AC system consists of generators and loads connected by transmission or distribu-
tion lines and transformers. Their behavior can be described using quantities such as
voltages, currents, and powers which are sinusoidal functions of time. These quantities
obey laws of physics. For our purposes they are the Kirchho�’s current law (KCL),
Kirchho�’s voltage law (KVL), and Ohm’s law. These laws allow us to analyze or sim-
ulate system behavior in the time domain. For steady-state behavior it is often easier
to transform these quantities to the phasor domain, apply the corresponding physical
laws in the phasor domain to analyze the steady state of a power network, and then
translate the results back to the time domain, as illustrated in Figure 1.1.

In this section we define voltage and current phasors, present simple models of
generators, loads, and lines using voltage sources, current sources, and impedances.
We also summarize KCL, KVL and Ohm’s law in the phasor domain. They can be
used to analyze a network of these circuit elements. Finally we derive the equivalent
circuit of a one-line diagram.
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physical system
(v(t), i(t), p(t))

analysis/sim
(time domain)

results
(time domain)

physical laws
(time domain

KC/VL, Ohm’s)

phasor
representation

(V, L, S )

analysis/sim
(phasor domain)

results
(phasor domain)

physical laws
(phasor domain
KC/VL, Ohm’s)

Figure 1.1 Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage E(C), current 8(C), and power ?(C), are physical and
can be empirically measured. The potential energy gained in moving a unit of charge
from point : to point 9 is called the voltage, or electric potential di�erence, between
9 and : , denoted by E 9: . Its SI unit (International Systems of Units) is volt (V),
or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for all
voltages in the system under study. In that case we refer to the voltage at point 9 with
respect to the reference point simply as the voltage at 9 and denote E 90 simply by E 9 .
Then the voltage between two points 9 and : is E 9: := E 9 � E: . While E 9: represents
the energy required to move a unit of charge from point : to point 9 , E 9 represents the
energy to move a unit of charge from the reference point to 9 . The flow rate of electric
charge through a point is called the current through that point. Its SI unit is ampere
(A), or equivalently, coulomb/second. The rate of energy transfer when a unit of charge
is moved through an electric potential di�erence (voltage) between two points is called
electric power. Its SI unit is watt (W), or equivalently, joule/second. It is equal to the
product of voltage and current between these two points.

A sinusoidal voltage function is

E(C) = +max cos(lC + \+ ) = Re
�
+max4

i\+ · 4ilC
 

where +max is the amplitude (i.e., maximum magnitude) of the voltage E(C), l is the
steady-state frequency in radian, and \+ is the phase angle. In steady state,l is assumed
fixed systemwide, and hence a voltage function is fully specified by two parameters
(+max,\+ ). This motivates the definition of voltage phasor

+ :=
+maxp

2
4

i\+ volt (V)

such that

E(C) = Re
⇣p

2|+ | · 4i(lC+\+ )
⌘

(1.1)

The period of E(C) is ) := 2c/l. The magnitude of the voltage phasor

|+ | :=
+maxp

2
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current 8(C) through it are related by Ohm’s law:

E(C) = A8(C)

Using (1.1)(1.2), this is equivalent to:

Re
n
+ ·
p

24ilC

o
= Re

n
A � ·
p

24ilC

o
Hence Ohm’s law in the phasor domain for a resistor is:

+ = A �

The current across a resistor is called in phase with the voltage.

An ideal inductor ; is characterized by

E(C) = ;

38(C)
3C

Substituting (1.1) and

38(C)
3C

= �l�max sin(lC + \� ) = l�max cos(lC + \� + c/2)

we have

Re
n
+ ·
p

24ilC

o
= Re

n
il;� ·

p
24ilC

o
or in the phasor domain:

+ = (il;) �

The current across an inductor is said to lag the voltage by c/2 radian.

Similarly an ideal capacitor 2 is characterized by

8(C) = 2

3E(C)
3C

Substituting (1.2) and

3E(C)
3 (C) = �l+max sin(lC + \+ ) = l+max cos(lC + \+ + c/2)

we have

Re
n
� ·
p

24ilC

o
= Re

n
il2+ ·

p
24ilC

o
or in the phasor domain:

+ =
1

il2
�

The current across a capacitor is said to lead the voltage by c/2 radian.

In summary we define the impedances of these elements, a resistor A, an ideal
inductor ;, and an ideal capacitor 2 in the phasor domain as respectively (Figure 1.2):

IA := A, I; := il;, I2 :=
1

il2
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Instead of impedance I, sometimes it is convenient to use its inverse, called the
admittance H := I�1. The voltage + across an impedance I (or admittance H) and the
current � through it are related in the phasor domain by

+ = I�, � = H+

An important advantage of phasor representation of an AC circuit is that circuit analysis
involves only algebraic operations rather than di�erential equations in the time domain.

Example 1.1. A voltage E(C) is applied to a resistor A and an inductor ; in series
and the current through these devices is 8(C). Derive the dynamic equation that relates
(E(C), 8(C)) in the time domain and the corresponding equation that relates their phasors
(+ , �).

Solution. Let E1 (C) = A8(C) denote the voltage drop across the resistor and E2 (C) the
voltage drop across the inductor that satisfies E2 (C) = ; 3

3C
8(C). Then the relation between

(E(C), 8(C)) is given by KVL: E(C) = E1 (C) + E2 (C) or

E(C) = A8(C) + ; 3
3C

8(C)

Noting that E(C) = Re
np

2+4ilC

o
and 8(C) = Re

np
2�4ilC

o
, we multiply both sides of

the equation above by 4ilC to get
p

2+ 4ilC = A

p
2�4ilC + ;

⇣
il

p
2�4ilC

⌘
+ = (A + il;)�

Hence the resistor and inductor in series can be modeled in the phasor domain by an
impedance I := A + il;. ⇤

Voltage source (⇢ , I). In the phasor domain, a voltage source is a circuit model with
a constant internal voltage ⇢ in series with an impedance I, as shown in Figure 1.3(a).
Its external behavior is described by the relation between its terminal voltage + and

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3 A voltage source (⇢ , I) and a current source (�, H).

terminal current �:

+ = ⇢ � I�

Hence the open-circuit (terminal) voltage + equals the internal voltage ⇢ . We often
adopt an ideal voltage source with I = 0. In this case + = ⇢ .
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Current source (�, H). In the phasor domain, a current source is a circuit model
with a constant internal current � in parallel with an admittance H, as shown in Figure
1.3(b). Its external behavior is described by the relation between its terminal voltage
and current (+ , �):

� = � � H+

Hence the closed-circuit (terminal) current � equals the internal current �. We often
adopt an ideal current source with H = 0. In this case � = �.

Remark 1.1. 1. A nonideal voltage source (⇢ , I) and current source (�, H) are equiv-
alent, i.e., have the same terminal voltage and current relationship if their param-
eters satisfy

� :=
⇢

I

(closed-circuit equivalent)

H := I
�1 (open-circuit equivalent)

2. Ideal voltage or current sources are reasonable models as their series impedances
or shunt admittances can be combined with the series impedance and shunt ad-
mittances of a transmission or distribution line to which they are connected, as we
will see in Chapter 2. We will therefore often use ideal voltage and current sources
in this book with zero series impedances and shunt admittances. ⇤

Power system devices. Power system devices such as generators, loads, transmis-
sion and distribution lines, transformers, and other control devices can be modeled
by the circuit elements presented above. For instance, a generator can be modeled
by a voltage source or current source. A load can be modeled by an impedance (or
admittance), a current source, or a voltage source. A transmission or distribution line
can be modeled by a series impedance and a shunt admittance at each end of the
line; the details are described in Chapter 2. A transformer can be modeled by a series
impedance and a shunt admittance followed by voltage and current gains; the details
are described in Chapter 3. We will introduce in Chapter 1.3 the concept of complex
power. This leads to a circuit element that we will call a power source that generates or
draws a constant power. These are summarized in Table 1.1. They are abstract models

Device Circuit model

Generator Voltage source, current source, power source
Load Impedance, current source, voltage source, power source
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1 Circuit elements commonly used for modeling generators, loads, lines, and
transformers.

of physical devices. For relation to a common load model, called ZIP, that describes
how power consumed by a load depends on the voltage magnitude |+ | across the load,
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KCL, KVL. Kirchho�’s current law (KCL) states that the incident currents at any
node 9 sum to zero: 1

�
’

8:8! 92⇢̂
�8 9 +

’
:: 9!:2⇢̂

� 9: = 0 (1.3a)

For the example in Figure 1.4 this means ��;1 + �;2 + �;3 + �;4 = 0 at node 2. Kirchho�’s
voltage law (KVL) states that voltage drops around any cycle 2 sum to zero. Consider
a cycle 2 in the graph with an arbitrary orientation, say, clockwise. A link ; in the cycle
that is in the same direction as 2 is denoted by ; 2 2 and a link ; that is in the opposite
direction to 2 is denoted by �; 2 2. Then KVL states that the voltage drops around any
cycle 2 sum to zero: ’

;22
*; �

’
�;22

*; = 0 (1.3b)

For the cycle indicated in Figure 1.4(a) we have*;1 +*;3 �*;5 = 0.

We can represent (1.3) compactly in vector notation. Let * :=
�
*; , ; 2 ⇢̂

�
and � :=�

�; , ; 2 ⇢̂
�

denote the vectors of voltages and currents respectively across these lines.
Let ⇠̂ 2 {�1,0,1} |#̂ |⇥ |⇢̂ | be the node-by-link incidence matrix defined by:

⇠̂ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 #̂ , ; 2 ⇢̂

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix
A.11). Then Kirchho�’s current law (1.3a) states that

KCL: ⇠̂� = 0 (1.4a)

Kirchho�’s voltage law is equivalent to the condition that there exist nodal voltages
+ 2 C |#̂ | (with respect to the common reference point) such that

KVL: * = ⇠̂
T
+ (1.4b)

i.e., given line voltages *, there must exist nodal voltages such that *; = + 9 �+:
where ; = 9 ! : , from which (1.3b) follows. This seems intuitive and can be proved
mathematically using concepts in algebraic graph theory (Exercise 1.2). Without loss
of generality we use node #̂ as the common reference point for all voltages, i.e., we
have by definition

+
#̂

:= 0 (1.4c)

1 An equivalent statement for KCL is: the line currents on any cut of the graph ⌧̂ sum to zero; see
Exercise 1.4.



1.1 Single-phase systems 21

Circuit analysis. Consider a circuit represented by an incidence matrix ⇠̂. The
|#̂ | ⇥ |⇢̂ | incidence matrix ⇠̂ is of rank |#̂ | � 1 since ⌧̂ is connected, with span(1)
as its null space (see Chapter A.11 for more details). Therefore (1.4) consists of
|#̂ | + |⇢̂ | + 1 complex equations in |#̂ | + 2|⇢̂ | complex variables (+ , �,*), of which
|#̂ | + |⇢̂ | equations are linearly independent. To obtain another |⇢̂ | linearly independent
equations we note that across every link ; is exactly one of the following devices:

1. impedance with a given I;: Its behavior is described by Ohm’s law

*; = I;�; (1.5a)

2. ideal voltage source with a given D;: Its behavior is described by

*; = D; (1.5b)

3. ideal current source with a given 9;: Its behavior is described by

�; = 9; (1.5c)

Partition the set ⇢̂ of links into three disjoint sets ⇢̂ =: ⇢̂1 [ ⇢̂2 [ ⇢̂3 where ⇢̂1 is the
set of impedances, ⇢̂2 voltage sources, and ⇢̂3 current sources. Then (1.4)(1.5) specify
|#̂ | + 2|⇢̂ | + 1 equations in |#̂ | + 2|⇢̂ | variables (+ , �,*), of which at most |#̂ | + 2|⇢̂ |
equations are linearly independent:

2666666666664

0 ⇠̂ 0
0 �/ I |⇢̂1 |
0 0 I |⇢̂2 |
0 I |⇢̂3 | 0
⇠̂

T 0 �I |⇢̂ |
4

T
|#̂ | 0 0

3777777777775

266664
+

�

*

377775
=

2666666666664

0 |#̂ |
0 |⇢̂1 |
D

9

0 |⇢̂ |
01

3777777777775

(1.6)

where / := Diag
�
I; , ; 2 ⇢̂1

�
is the diagonal matrix of impedances, D := (D; , ; 2 ⇢̂2) and

9 := ( 9; , ; 2 ⇢̂3) are given vectors of voltage and current sources respectively, 0< is
the zero vector of size <, I< is the identity matrix of size <, and 4= 2 {0,1} |#̂ | is
the unit vector with a single 1 in the =th entry. A circuit analysis problem is to solve
(1.4)(1.5), or equivalently (1.6), for variables (+ , �,*). A su�cient condition is given
in Theorem 1.1 for the existence and uniqueness of solution. A necessary condition
for the existence of a solution is that the given voltage and current vectors (E, 9) are
consistent, e.g., if only current sources are incident on a node : , then these given
currents must satisfy KCL at node : , or if a set of voltage sources form a cycle 2 then
these given voltages must satisfy KVL on 2.

The system of equations (1.6) can be simplified, as follows. Order the links such
that the incidence matrix decomposes into submatrices ⇠̂1,⇠̂2,⇠̂3 corresponding to
impedances, voltage sources, and current sources respectively (see Figure 1.4b):

⇠̂ =:
⇥
⇠̂1 ⇠̂2 ⇠̂3

⇤
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Partition the branch voltages* and branch currents � accordingly:

* :=
266664
*1

D

*3

377775
, � :=

266664
�1

�2

9

377775
where E and 9 are the given vectors of voltage and current sources respectively. Then
KCL and KVL are

⇠̂1�1 + ⇠̂2�2 = �⇠̂3 9

*1 = ⇠̂
T
1+ , D = ⇠̂

T
2+ , *3 = ⇠̂

T
3+

for some nodal voltages + . Use Ohm’s law*1 = / �1 to eliminate*1 to obtain

26666664

0 ⇠̂1 ⇠̂2 0
⇠̂

T
1 �/ 0 0
⇠̂

T
2 0 0 0
⇠̂

T
3 0 0 �I |⇢̂3 |

37777775

26666664

+

�1

�2

*3

37777775
=

26666664

�⇠̂3 9

0
D

0

37777775
(1.7)

The desired quantities (+ , �1, �2,*3) are solutions of (1.7) if they exist. Given �1, *1

is given by*1 = /�1.

Recall that we take without loss of generality node #̂ as the common reference point
for nodal voltages and assign +

#̂
:= 0. We can consider the ( |#̂ | � 1) ⇥ |⇢̂ | reduced

incidence matrix ⇠ obtained from ⇠̂ by deleting the last row corresponding to the
reference node #̂ . The advantage of using ⇠ is that it has a full row rank of |#̂ | � 1.
Let +�#̂ :=

�
+ 9 , 9 < #̂

�
be the vector of all non-reference nodal voltages. Similarly

partition ⇠ into ⇠ =: [⇠1 ⇠2 ⇠3]. Then (1.7) is equivalent to the following equation:

26666664

0 ⇠1 ⇠2 0
⇠

T
1 �/ 0 0
⇠

T
2 0 0 0
⇠

T
3 0 0 �I |⇢̂3 |

37777775|                          {z                          }
"

26666664

+�#̂
�1

�2

*3

37777775
=

26666664

�⇠3 9

0
D

0

37777775
(1.8)

The key feature of this model, compared with (1.7), is that it does not contain the
reference node #̂ .

Example 1.2. Consider the circuit in Figure 1.4 represented by the directed graph
⌧̂ = (#̂ , ⇢̂) with

#̂ := {1,2,3,4}
⇢̂ := {;1 := 1! 2, ;2 := 2! 3, ;3 := 2! 4, ;4 := 2! 4, ;5 := 1! 4, ;6 := 3! 4}

The incidence matrix ⇠̂ can be partitioned into submatrices

⇠̂1 :=

26666664

1 0 0 0
�1 1 1 1
0 �1 0 0
0 0 �1 �1

37777775
, ⇠̂2 :=

26666664

1
0
0
�1

37777775
, ⇠̂3 :=

26666664

0
0
1
�1

37777775
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The reduced incidence submatrices are then

⇠1 :=
266664

1 0 0 0
�1 1 1 1
0 �1 0 0

377775
, ⇠2 :=

266664
1
0
0

377775
, ⇠3 :=

266664
0
0
1

377775
The equation (1.8) becomes:

2666666666666666664

0 0 0 1 0 0 0 1 0
0 0 0 �1 1 1 1 0 0
0 0 0 0 �1 0 0 0 0
1 �1 0 �I;1 0 0 0 0 0
0 1 �1 0 �I;2 0 0 0 0
0 1 0 0 0 �I;3 0 0 0
0 1 0 0 0 0 �I;4 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 �1

3777777777777777775

2666666666666666664

+1

+2

+3

�;1

�;2

�;3

�;4

�;5

*;6

3777777777777777775

=

2666666666666666664

0
0
96

0
0
0
0
D5

0

3777777777777777775
⇤

We now discuss the existence and uniqueness of solutions to (1.8).

Theorem 1.1. Suppose the graph ⌧̂ is connected. The matrix " in (1.8) is invertible
if the following square matrices of sizes |#̂ |�1 and |⇢̂2 | respectively are invertible:

.1 := ⇠1/
�1
⇠

T
1 , ⇠

T
2.
�1
1 ⇠2

where ⇢̂2 is the set of voltage sources. ⇤

The conditions in Theorem 1.1 are reasonable and intuitive.

Remark 1.2 (Implications of Theorem 1.1). Let ⌧1 denote the subgraph of ⌧̂ with all
non-reference buses induced by the set of impedances in ⇢̂1.

1. The ( |#̂ | � 1) ⇥ |⇢̂1 | matrix ⇠1 is called the reduced incidence matrix and the
( |#̂ |�1)⇥ ( |#̂ |�1) matrix.1 :=⇠1/

�1
⇠

T
1 is called the reduced admittance matrix

of the subgraph⌧1. For the circuit in Figure 1.4,⌧1 consists of nodes 1, 2, 3 and is
connected. When I; are real and positive (i.e., resistive network),.1 is nonsingular
if and only if⌧1 is connected. This is because / :=Diag(I;) is positive definite and
⇠1 is of full row rank (for a proof, see Theorem 4.13 of Chapter 4.6.1 on Laplacian
matrix). When I; are complex, however, ⌧1 being connected is necessary but not
su�cient for the nonsingularity of .1 (see Chapter 4.5).

2. KCL can be equivalently stated as: the line currents on every cut of the circuit ⌧̂
sum to zero. If ⌧1 is connected then no current sources in ⇢̂3 form a cut in the
subgraph of ⌧̂ induced by all non-reference nodes (and links in ⇢̂). This ensures
that no given 9 can violate KCL in the original graph ⌧̂. See Exercise 1.4.

3. If the matrix⇠T
2.
�1
1 ⇠2 is nonsingular, then⇠2 is of full column rank. The converse

does not necessarily hold because.1 is complex symmetric but not Hermitian. The
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matrix ⇠2 having full column rank is equivalent to the condition that no voltage
sources in ⇢̂2 form a cycle in the original graph ⌧̂. This ensures that no given D
can violate KVL in ⌧̂. See Exercise 1.5. ⇤

The proof of Theorem 1.1 relies on the following fact. Let " 2 C=⇥= and partition
it into blocks:

" =

�1 ⌫

⇡ �2

�

where �1 2 C:⇥: , : < =, and the other submatrices are of matching dimensions. If �2 is
invertible then the :⇥ : matrix"/�2 := �1�⌫��1

2 ⇡ is called the Schur complement of
block �2 of matrix " . In that case " is nonsingular if and only if "/�2 is nonsingular.
Similarly if �1 is invertible then the (=� :) ⇥ (=� :) matrix "/�1 := �2 �⇡��1

1 ⌫ is
called the Schur complement of block �1 of matrix " , and " is nonsingular if and
only if "/�1 is nonsingular; see Theorem A.4 in Appendix A.3.

Proof of Theorem 1.1 We can interchange the second and third rows and interchange
the second and third column and write (1.8) equivalently in terms of the matrix

"̃ =

26666664

0 ⇠2 ⇠1 0
⇠

T
2 0 0 0
⇠

T
1 0 �/ 0
⇠

T
3 0 0 �I |⇢̂3 |

37777775
The matrix " is nonsingular if and only if "̃ is. Since / and I |⇢̂3 | are both nonsingular,

"̃ is nonsingular if and only if the Schur complement of Diag
⇣
�/ ,�I |⇢̂3 |

⌘
:

( :=


0 ⇠2

⇠
T
2 0

�
+


⇠1 0
0 0

� 
/
�1 0
0 I |⇢̂3 |

� 
⇠

T
1 0
⇠

T
3 0

�
=


⇠1/

�1
⇠

T
1 ⇠2

⇠
T
2 0

�

is nonsingular. The Schur complement ( is a square matrix of size (#̂ �1) + |⇢̂2 | where
⇢̂2 is the set of voltage sources. If ⇠1/

�1
⇠

T
1 is nonsingular then " is nonsingular if

and only if the Schur complement

(/
⇣
⇠1/

�1
⇠

T
1

⌘
:= �⇠T

2

⇣
⇠1/

�1
⇠

T
1

⌘�1
⇠2

is nonsingular. ⇤

Tellegen’s theorem An important result in circuit theory is Tellegen’s theorem that
expresses a relation between voltage drops across links and currents on these links. It is
a simple consequence of Kirchho�’s laws and algebraic graph theory (see Chapter A.11
for more details). Since the rank of the |#̂ |⇥ |⇢̂ | incidence matrix ⇠̂ is |#̂ |�1 assuming

⌧̂ is connected, rank
⇣
⇠̂

T
⌘
= rank(⇠̂) = |#̂ | � 1 and the dimension of the null space

null(⇠̂) is |⇢̂ |� |#̂ | +1. Recall that the subspaces null(⇠̂) and range
⇣
⇠̂

T
⌘

are orthogonal
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complements of each other and they span C |⇢̂ | , i.e., C |⇢̂ | = null(⇠̂) + range
⇣
⇠̂

T
⌘
. The

KCL and KVL (1.4a)(1.4b) say that the branch current (vector) � is in null(⇠̂) and the

branch voltage (vector)* is in range
⇣
⇠̂

T
⌘

respectively. Therefore

Tellegen’s theorem: �
H
* = 0.

It is remarkable that this relation holds for any branch current � and branch voltage
*, even if they are from di�erent networks as long as these networks have the same
incidence matrix ⇠̂. In circuit analysis, it takes both the Kirchho�’s laws (1.4) and the
link characteristics (1.5) to determine a unique solution. The Kirchho�’s laws (1.4) are
graph properties that depend only on the incidence matrix ⇠̂. Tellegen’s theorem is a
consequence of the graph properties, independent of link characteristics.

1.1.4 One-line diagram and equivalent circuit

A power system is often not specified as a circuit of the form we study in Chapter 1.1.3.
Instead it is usually specified by what is called a one-line diagram. A one-line diagram
is equivalent to a circuit that includes the common reference point for nodal voltages as
an addition node. Each line in the one-line diagram may represent a transmission line,
a distribution line or a transformer, single or multi-phased. As we will see below if a
single-phase line has a equivalent⇧ circuit then the line translates into three links in the
equivalent circuit. In this subsection we formally define one-line diagram and derive
its equivalent circuit. A one-line diagram can be analyzed by applying the method of
Chapter 1.1.3 to its equivalent circuit.

One-line diagram. A one-line diagram specifies a network topology and admittance
parameters associated with the lines; see an example in Figure 1.5 for a three-bus
network. Formally we define a one-line diagram as a pair (⌧,Y) where ⌧ := (# ,⇢)
is a graph and Y :=

⇣
H
B

9:
, H<
9:

, H<
: 9

, ; = ( 9 , :) 2 ⇢
⌘

is a set of line parameters for every

line ; 2 ⇢ (we assume here a single-phase system and HB
9:

= HB
: 9

). Each node 9 2 #
represents a bus in the power system. We will therefore refer to 9 as a bus or a node
interchangeably. Each link ; 2 ⇢ represents a transmission or distribution line or a
transformer. We will therefore refer to ; as a line, a link or a branch interchangeably.
The line parameter HB

9:
2 C is called the series admittance associated with line ( 9 , :)

and
⇣
H
<

9:
, H<
: 9

⌘
2 C2 is called its shunt admittances. We will see below how these

parameters determine the equivalent circuit of the line. There can be multiple lines
between two buses, though for notational simplicity we assume, unless otherwise
specified, there is a single line between each pair of buses in which case a line ;
between buses 9 and : can be identified by ( 9 , :).

There can be a nodal device at each node 9 2 # . The device can be an impedance
I 9 , an ideal voltage source E 9 , or an ideal current source 8 9 . The interpretation is that
these devices are connected between node 9 and the common voltage reference point
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I1

I2 I3
V2

V1

V3
(a) Graph ⌧ = (# ,⇢)

Figure 1.5(b)
Separable constraints

� := ((ys12, ym12, ym21),
(ys23, ym23, ym32),
(ys31, ym31, ym13))

(b) Line parameters Y

Figure 1.5 One-line diagram for a three-bus network (⌧,Y). It is not a circuit but has an
equivalent ⇧-circuit model.

and behave according to (1.5). (We will introduce later the nodal device called a power
source.)

The behavior of the network specified by a one-line diagram is described in terms
of its equivalent circuit.

Equivalent circuit. Associated with each node 9 are a nodal voltage + 9 2 C with
respect to an arbitrary but common reference point and a nodal current injection � 9 2 C
from the common reference point. Our goal is to derive the relation between the
nodal voltage vector + 2 C# and nodal current vector � 2 C# . We will first derive an
equivalent circuit of the one-line diagram and then apply the method of Chapter 1.1.3
to the circuit.

We illustrate this with a simple 2-bus network. The method and the conclusion
extend directly to general networks.

Example 1.3 (Equivalent ⇧ circuit of a single line). Figure 1.6(a) specifies a one-line
diagram (⌧,Y) for a network consisting of two nodes 1 and 2 connected by a line
; = (1,2). Suppose there is an ideal current source at each node with given current
injections (�1, �2). The nodal voltages are (+1,+2). The line parameter

�
H
B

12, H<12, H<21

�
defines the equivalent circuit in Figure 1.6(b) called the ⇧ circuit of line ; = (1,2).2
Apply KVL, KCL, and Ohm’s law on the ⇧ circuit to derive a relation between (�1, �2)
and (+1,+2).

Solution. Let the directed graph ⌧̂ := (#̂ , ⇢̂) represent the ⇧ circuit where

#̂ := {1,2,3}
⇢̂ := {;1 := 1! 2, ;2 := 1! 3, ;3 := 2! 3, ;4 := 1! 3, ;5 := 2! 3}

as shown in Figure 1.6(b). Note that the graph ⌧ of the one-line diagram has 2 nodes
while the graph ⌧̂ of its equivalent circuit has 3 nodes with node 3 being the voltage
reference point. For each link ; 2 ⇢̂ let*; and �; denote the voltage and current across
link ; in the direction of ;. Let* := (*; , ; 2 ⇢̂) and � := (�; , ; 2 ⇢̂). The devices on the

2 We will explain the origin of the equivalent circuit in Chapter 2.
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( ys12 , y
m
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m
21 )

V2V1

I1 I2

(a) One-line diagram (⌧,Y)

ys12

ym12 ym21

Jl3 Jl5

Ul5 = V2

Jl4 Jl2

Ul2Ul4 = V1 Ul3

Ul1
1

3

2

I1 I2

Jl1

(b) Equivalent ⇧ circuit

Figure 1.6 One-line diagram (⌧,Y) with two nodes 1,2 connected by a line ; = (1,2) and its
equivalent ⇧ circuit. The nodal current injections (�1, �2) and the nodal voltages (+1,+2) in the
one-line diagram become current sources and branch voltages respectively between nodes 1,2
and the reference node 3 in the ⇧ circuit.

links ;1, ;2, ;3 are admittances with

;1 : �;1 = H
B

12*;1 , ;2 : �;2 = H
<

12*;2 , ;3 : �;3 = H
<

21*;3

Since the nodal devices at nodes 1 and 2 are ideal current sources with given currents
�1 and �2 respectively, we have

;4 : �;4 = ��1, ;5 : �;5 = ��2
The node-by-link incidence matrix ⇠̂ of the ⇧ circuit is

⇠̂ :=
266664

1 1 0 1 0
�1 0 1 0 1
0 �1 �1 �1 �1

377775
The KCL, KVL and Ohm’s law in terms of ⇠̂,*, � for the ⇧ circuit in Figure 1.6(b)
are:

KCL : ⇠̂� = 0 (1.9a)

KVL : 9 + := (+1,+2,+3) s.t. * = ⇠̂
T
+ (1.9b)

Ohm’s law : �;1 = H
B

12*;1 , �;2 = H
<

12*;2 , �;3 = H
<

21*;3 (1.9c)

nodal current sources : �;4 = ��1, �;5 = ��2 (1.9d)
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We will set the nodal voltage +3 := 0, i.e., node 3 in #̂ is chosen to be the voltage
reference point. This allows us to eliminate branch variables (*, �) from (1.9) to
obtain a relation between the nodal currents � := (�1, �2) and voltages + := (+1,+2):

�1 = H
B

12 (+1�+2) + H<12+1, �1 = H
B

12 (+2�+1) + H<21+2

In vector form this is � = .+ with

. :=

H
B

12 + H<12 �HB12
�HB12 H

B

12 + H<21

�

The matrix . is called the admittance matrix of the network, a single-line in this

example. The admittance matrix. can be expressed using the submatrix⇠1line :=


1
�1

�

of ⇠̂ corresponding to link ;1 with the series admittance HB12. Note that ⇠1line includes
every node in the equivalent circuit except the reference node 3, i.e., ⇠ describes the
connectivity between exactly the set of nodes in the original one-line diagram. If we

let ⇡B
H

:= [HB12] and ⇡<
H

:=

H
<

12 0
0 H

<

21

�
then

. := ⇠1line⇡
B

H
⇠

T
1line + ⇡<H

⇤

For a general network specified by a one-line diagram (⌧ = (# ,⇢),Y) let
+ := (+ 9 , 9 2 #) and � := (� 9 , 9 2 #) denote the vectors of nodal voltages and cur-
rent injections from the nodal devices respectively. We interpret the line parameter⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
of each line ( 9 , :) as defining a ⇧-circuit model for the line, as ex-

plained in Example 1.3. This induces an equivalent circuit for the entire network that
can be described by a directed graph ⌧̂ = (#̂ , ⇢̂) constructed from ⌧ = (# ,⇢), as
follows. The set #̂ of nodes in the equivalent circuit is

#̂ := # [ {|# | +1}

where the additional node #̂ := |# | + 1 is the reference point for all voltages, i.e.,
+
#̂

:= 0.

For each node 9 2 # in the one-line diagram, there is a link ; = 9 ! #̂ in the
equivalent circuit corresponding to the nodal device at 9 . The voltage *; across line
; = 9 ! #̂ is*; =+ 9 and the current �; across link ; in the direction of ; is �; = �� 9 . If
the nodal device at node 9 is an impedance I 9 , then + 9 =*; = I 9�; = �I; � 9 ; if it is an
ideal voltage source + 9 , then *; = + 9 is given; if it is an ideal current source � 9 , then
�; = �� 9 is given. If there is no nodal device at node 9 , then we set �; = �� 9 := 0.

For each line ( 9 , :) 2 ⇢ parametrized by
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
in the one-line dia-

gram, there are 3 links
⇣
; 9: , ; 9 #̂ , ;

: #̂

⌘
in ⇢̂ in the equivalent circuit. The currents
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⇣
� 9: , � 9 #̂ , �

: #̂

⌘
and voltages

⇣
* 9: ,* 9 #̂ ,*

: #̂

⌘
across these links satisfy:

; 9: = 9 ! : : � 9: = HB
9:
* 9:

;
9 #̂

= 9 ! #̂ : �
9 #̂

= H<
9:
*
9 #̂

;
: #̂

= :! #̂ : �
: #̂

= H<
: 9
*
: #̂

The set of links ; = 9 ! : corresponding to series admittances is the set ⇢ in the
one-line diagram. Let ⇢̂

#̂
denote the set of links ; = 9! #̂ connecting nodes 9 2 # to

the reference node #̂ . They correspond to the shunt admittances on each line ( 9 , :) 2 ⇢
and the nodal device at each node 9 2 # . The set ⇢̂ in the equivalent circuit is the
disjoint union of these two types of links:

⇢̂ = ⇢ [ ⇢̂
#̂

See the two-bus network in Figure 1.6 and its equivalent⇧ circuit for an example. If bus
9 2 # is connected to < 9 other buses : 2 # in the one-line diagram, then there will be
< 9 links ;

9: #̂
= 9 ! #̂ in the equivalent circuit, for : = 1, . . . ,< 9 , all between node 9

and #̂ , representing shunt admittances H<
9:

on these lines. Therefore |⇢̂
#̂
| = |# | +2|⇢ |.

Let ⇠1line be the incidence matrix for the subgraph of the circuit consisting of non-
reference nodes # and links in ⇢ connecting them, i.e.,⇠1line describes the connectivity
between exactly the nodes in the one-line diagram:

[⇠1line] 9; :=

8>><
>>:

1 if ; = 9 ! : in ⇢
�1 if ; = 8! 9 in ⇢

0 otherwise
, 9 2 # , ; 2 ⇢

Let ⇡B
H

:= Diag
⇣
H
B

9:
, ( 9 , :) 2 ⇢

⌘
denote the diagonal matrix of series admittances

on the lines. Let ⇡<
H

:= Diag
⇣
H
<

9 9
, 9 2 #

⌘
denote the diagonal matrix of total shunt

admittances H<
9 9

:=
Õ
::( 9,:)2⇢ H

<

9:
incident on each bus 9 . Then the linear relation

between nodal current injections and voltages found in Example 1.3:

� = .+ (1.10a)

holds for the general network with the admittance matrix . given by (Exercise 1.7)

. = ⇠1line⇡
B

H
⇠

T
1line + ⇡<H (1.10b)

The relation (1.10) serves as a formal identification of a one-line diagram (⌧,Y)
with an equivalent ⇧ circuit. Moreover given (⌧,Y) we can directly write down the
admittance matrix . without going through the circuit analysis conducted above. We
therefore often refer to the one-line diagram itself as a circuit model. This relation will
be studied in detail in Chapter 4.3.1.

Remark 1.3 (Transformers). The equivalent-circuit interpretation above of a one-
line diagram assumes every line ( 9 , :) in the one-line diagram is parameterized by⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
and therefore has a circuit representation. Not all transformers ( 9 , :)
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have such a representation. As we will see in later chapters, the interpretation of a one-
line diagram can be extended to include transformers by allowing the line parameters to

be Y :=
⇣
(HB
9:

, H<
9:
), (HB

: 9
, H<
: 9
), ; = ( 9 , :) 2 ⇢

⌘
, i.e., HB

9:
and HB

: 9
may be di�erent. ⇤

1.2 Balanced three-phase systems

To motivate three-phase systems, consider the single-phase system in Figure 1.7(a)
composed of three identical circuits each consisting of a generator modeled as a voltage
source in series with an impedance I6, a forward conductor and a return conductor
each modeled as an impedance IC , and a load modeled as an impedance I; . The same
loads can also be supplied by a three-phase system shown in Figure 1.7(b). As we will
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zl
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(a) Single-phase system

zl

zl zl

zg

zg zg

zt

zt

zt

(b) Balanced three-phase system

Figure 1.7 A single-phase system and a balanced three-phase system that transfer power from
generators through transmission lines to loads.

illustrate in Chapter 1.3.3, such a three-phase system needs half as much the conductor
and incurs half as much the thermal loss as the single-phase system. In this section we
explain the operation of three-phase systems.

Three-phase sources and loads can be arranged in . (Wye) or � (Delta) configura-
tions. This is explained in Chapter 1.2.1. A three-phase system is balanced if all the
sources are balanced, loads are identical, and transmission lines are identical and have
symmetric geometry. A balanced three-phase system has several simplifying proper-
ties. In Chapter 1.2.2 we prove a theorem that summarizes the mathematical structure
of balanced three-phase systems that underlies these properties. We apply this theorem
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to balanced system in . configuration (Chapter 1.2.3) and � configuration (Chapter
1.2.4). This leads to per-phase analysis of a balanced system described in Chapter
1.2.5. Finally we present in Chapter 1.2.6 example configurations common in a power
distribution system.

Even though power systems are generally multiphased, single-phase models are
widely used as per-phase models of balanced three-phase systems, especially for trans-
mission system applications. Unbalanced three-phase systems are studied in Part III of
this book.

1.2.1 Internal and terminal variables

Three single-phase devices can be arranged in either an . or a � configuration as
shown in Figure 1.8. They can be three voltage sources, three current sources, or

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n'

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 1.8 Three-phase systems, not necessarily balanced, in . and � configurations.

three impedances and they may not be identical, e.g., the three impedances may have
di�erent values.

. configuration. For the . configuration, the internal voltage (vector) is +. :=
(+0=,+1=,+2=). These voltages are called phase-to-neutral or phase voltages. The
internal current (vector) �. := (�0=, �1=, �2=) is defined to flow from each terminal to
the neutral as shown in Figure 1.8(a). The external behavior of a three-phase device is
described by what is measurable on the terminal of the device. The terminal (or nodal
or bus) voltage + := (+0,+1 ,+2) are voltages with respect to an arbitrary but common
reference point, and the terminal (or line) current � :=

�
�
0, �1 , �2

�
is defined to be the

current coming out of the device as shown in the figure. If the common reference point
is taken to be the neutral of this device then + = +. , i.e., the terminal voltage is the
same as the phase voltage for . configuration. Otherwise + = +. �+=1 where 1 is
three-dimensional vector of all 1s. As we will see in Chapters 1.2.3 and 1.2.4, for a
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balanced systems, the neutrals of all. -configured devices are often at the same voltage
and, in this case, can serve as the common reference point. This is not necessarily the
case for an unbalanced system, which we will study in Part III of this book (the ground
usually serves the common reference point).

Hence, for . configuration, when the neutral is directly grounded and the ground is
the common reference point so that+= := 0, the terminal voltage and current (+ , �) are
determined by the internal voltage and current

�
+
. , �.

�
according to:

+ = +
. , � = ��. (1.11)

By convention, when += := 0, the neutral current �= := 0. When += < 0, we have
+ =

�
+
. ++=1

�
. In general � = ��. and 1

T
� = �1

T
�
. = �= where 1 := (1,1,1) is the

column vector of all 1s.

Instead of the terminal voltage + it is also common to describe the behavior of the
three-phase device in terms of its line-to-line or line voltage + line :=

�
+
01 ,+12 ,+20

�
.

To relate + line to + or to +. , define the matrices � and its transpose �T:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
(1.12)

We call � and �T conversion matrices. They can be interpreted as the bus-by-line
incidence matrices of the directed graphs shown in Figure 1.9. Then

1

3 2

(a) �

1

3 2

(b) �T

Figure 1.9 Directed graphs of which � and �T are incidence matrices.

266664
+
01

+
12

+
20

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0=

+
1=

+
2=

377775

or in vector form:

+
line = �+ = �+. (1.13)

This holds for both . and � configurations and whether or not the common reference
point for + is the neutral of a . -configured device (since �1 = 0).
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� configuration. For the � configuration in Figure 1.8(b), the internal voltage (vec-
tor) is the line-to-line voltage +� := (+01 ,+12 ,+20) = + line, and the internal current
�
� := (�01 , �12 , �20) is the line-to-line current. As for the . configuration, the terminal

voltage + := (+0,+1 ,+2) are voltages with respect to an arbitrary but common ref-
erence point. The terminal current is � :=

�
�
0, �1 , �2

�
as shown in Figure 1.8(b). The

terminal voltage and current (+ , �) is determined by the internal voltage and current�
+
�, ��

�
according to

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
=

266664
+
01

+
12

+
20

377775
,

266664
�
0

�
1

�
2

377775
= �

266664
1 0 �1
�1 1 0
0 �1 1

377775|              {z              }
�T

266664
�
01

�
12

�
20

377775

or in vector form (for arbitrary common reference point for +):

�+ = +
�, � = ��T

�
� (1.14)

Equivalent . configuration. For any � configuration with given internal voltage
+
� := (+01 ,+12 ,+20) and current �� := (�01 , �12 , �20), an equivalent . configuration

is one that has the same external behavior. This means that, if +.eq := (+0=,+1=,+2=)
and �.eq := (�0=, �1=, �2=) are the internal voltage and current of the . -equivalent and
+
=

eq is its neutral voltage, then they are related to
�
+
�, ��

�
according to (from (1.13)

(1.14)):

�+.eq = �(+.eq ++=eq1) = +
�, �

.

eq = �T
�
� (1.15)

The second equation above implies that the neutral current �=eq = 1
T
�
.

eq = 0 where
1 := (1,1,1). One way to ensure �=eq = 0 is to assume that the . -equivalent has no
neutral line and the neutral is not grounded, in which case the neutral voltage +=eq will
be determined by interaction of the device with other parts of the system. Note that
(1.15) holds regardless of the value of +=eq.

Summary. The external behavior (1.11) and (1.14) for . and � configurations re-
spectively as well as their equivalence (1.15) hold for any three-phase system whether
or not it is balanced. The relation (1.13) between line-to-line voltage+ line and terminal
voltage + holds for . and � configurations whether or not the system is balanced.

The behavior of a three-phase system is determined by the mathematical properties
of the conversion matrices� and�T. When a system is balanced the conversion becomes
particularly simple because the transformation of balanced vectors under � and �T

preserves their balanced nature (Corollary 1.3). We now explain these mathematical
properties and then apply them to the analysis of balanced systems in Chapters 1.2.3
and 1.2.4.
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1.2.2 Balanced vectors and conversion matrices �,�T

Definition 1.1 (Balanced vector). A vector G := (G1,G2,G3) with G 9 = |G 9 |4i\ 9 2 C,
9 = 1,2,3, is called balanced if G 9 have the same magnitude and they are separated by
120�, i.e.,

|G1 | = |G2 | = |G3 |

and either

\2� \1 = �2c
3

, \3� \1 =
2c
3

(positive sequence) (1.16a)

or

\2� \1 =
2c
3

, \3� \1 = �2c
3

(negative sequence) (1.16b)

⇤

A balanced vector G is said to be in a positive sequence if G satisfies (1.16a) and in
a negative sequence set if G satisfies (1.16b). Let

U := 4
�i2c/3

Clearly U2 = 4
i2c/3, U3 = 1; see Figure 1.10. (Also see Exercise 1.8 for more properties

of U.) Define the vectors

30°
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1 Re

(a) Phase shift U := 4�i2c/3

Im

Re

Eca

30°

Ean

Eab

Ecn

Ebn

Ebc

(b) Phase and line voltages

Figure 1.10 Balanced vectors and examples: phase voltage ⇢. = ⇢0=U+ and line voltage
⇢

line = �⇢. = (1�U)⇢. .

U+ :=
266664

1
U

U
2

377775
, U� :=

266664
1
U

2

U

377775
(1.17a)

Then U+ is a balanced vector in a positive sequence and U� is a balanced vector in
a negative sequence. Moreover the set of all balanced positive-sequence vectors is
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span(U+) and the set of all balanced negative-sequence vectors is span(U�), i.e., G is a
balanced vector in a positive sequence and H a balanced vector in a negative sequence
if and only if

G = G1U+, H = H1U�, G1, H1 2 C (1.17b)

Note that U+ = U� where for any vector G, G is its componentwise complex conjugate.
Define the matrix � whose columns are U+,U� as well as 1 normalized:

� :=
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(1.18)

All main properties of balanced three-phase systems originate from the mathemat-
ical properties of the vectors U+, U� and their transformation under the matrices �,�T

defined in (1.12), summarized in Theorem 1.2. Its proof is left as Exercise 1.9. The
theorem implies in particular that the transformations � and �T preserve the balanced
nature of a vector and hence ensures that the entire network stays balanced. The key en-
abling property is that the voltages and currents from balanced sources are in span(U+)
or span(U�) and (U+,U�) are eigenvectors of �,�T (according to (1.19a)(1.20a)).

Theorem 1.2 (Transformation of balanced vectors by �,�T). Let U := 4�i2c/3. Recall
the balanced vectors (U+,U�) defined in (1.17a), the matrices � in (1.18) and �,�T in
(1.12).

1. Suppose the entries G 9 of G := (G1,G2,G3) 2 C3 have the same magnitude. Then G
is balanced if and only if G1 + G2 + G3 = 0.

2. The columns of � are orthonormal. Both � and �̄ are complex symmetric, i.e.,
�

T = � and �̄T = �̄, where �̄ is the componentwise complex conjugate of �. Hence

�
�1 = �

H = �̄ =
1p
3

⇥
1 U� U+

⇤

3. � is a normal matrix, ��T = �T� = 3I�11
T. 3

4. Spectral decomposition of �:
(a) The eigenvalues and eigenvectors of � are

�1 = 0, �U+ = (1�U)U+, �U� = (1�U2)U� (1.19a)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
(b) Therefore the spectral decomposition of � is:

� = �

266664
0

1�U
1�U2

377775
�̄ (1.19b)

5. Spectral decomposition of �T:

3 ��T = �T� are Laplacian matrices of the graphs in Figure 1.9; real Laplacian matrices are studied in
Chapter 4.6.1.
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(a) The eigenvalues and eigenvectors of �T are

�T
1 = 0, �T

U� = (1�U)U�, �T
U+ = (1�U2)U+ (1.20a)

where 1�U =
p

34ic/6 and 1�U2 =
p

34�ic/6.
(b) Therefore the spectral decomposition of �T is:

�T = �̄

266664
0

1�U
1�U2

377775
� (1.20b)

The following corollary of the theorem is repeatedly used in the analysis of balanced
systems. It says that the transformation of a balanced vector G under � and �T reduces
to a scaling by (1�U) and (1�U2) respectively (see Figure 1.10).

Corollary 1.3. For any balanced positive-sequence vector G 2 span(U+) and W 2 C, we
have

1. �(G +W1) = (1�U)G.
2. �T (G +W1) = (1�U2)G.
3. ��T (G +W1) = �T�(G +W1) = 3G.

Informally a three-phase system is called balanced if all voltages and currents are
balanced vectors in, say, positive-sequence sets. The main consequence of the corollary
is the following. A three-phase system consists of voltage sources, current sources, and
impedances connected by lines. The voltage and current at any point in the system are
induced by the internal voltages of voltage sources and the internal currents of current
sources. When these sources are balanced positive-sequence sets, their internal voltages
and currents are in span(U+) and U+ is an eigenvector of � and �T. This means that
balanced voltages and currents remain in span(U+) after being transformed by �,�T,
but are scaled by their eigenvalues 1�U and 1�U2 respectively. Since the voltage
and current at every point in the system are linear combinations of transformed source
voltages and source currents, transformed by �, �) and line admittance matrices, they
remain in span(U+) when the sources are balanced and the lines are identical and
phase-decoupled. This is the key property that enables balanced sources to induce
balanced voltages and currents throughout the network, leading to per-phase analysis
of three-phase systems. A formal statement and its proof have to wait till Chapter 16
(Theorem 16.5) after we have developed a general theory of unbalanced three-phase
system. In this chapter we will use the corollary to analyze example circuits to build
intuition.
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1.2.3 Balanced systems in . configuration

Figure 1.11 shows an ideal three-phase voltage source ⇢. := (⇢0=,⇢1=,⇢2=), current
source �. := (�0=, �1=, �2=) and impedance I. := Diag(I, I, I) = II in . configuration.
The ideal voltage source ⇢

. is called balanced when its internal phase voltages
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V a
Ia

I b

I c

V b

V c

Jan

JbnJ cn Vn

(b) Current source �.
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Figure 1.11 Ideal and balanced three-phase devices in . configuration.

(⇢0=,⇢1=,⇢2=) is a balanced vector according to Definition 1.1, i.e.,

positive sequence: ⇢
0= = 1\\, ⇢

1= = 1\\ �120�, ⇢
2= = 1\\ +120�

or

negative sequence: ⇢
0= = 1\\, ⇢

1= = 1\\ +120�, ⇢
2= = 1\\ �120�

where their magnitudes are normalized to 1. See Figure 1.10 where \ = 0. For a
balanced voltage source in a positive sequence, the instantaneous voltages in the time
domain reach their maximum values in the order 012. We call 012 in such an order
a positive sequence and the voltages

�
⇢
0=,⇢1=,⇢2=

 
a (balanced) positive-sequence

set. Whether a voltage source is in a positive or negative sequence depends only on how
one labels the wires. Therefore, unless otherwise specified, we will always consider
012 to be a positive sequence. If there are multiple three-phase sources connected to
the same network their phase sequences must be the same.

Similarly, the ideal current source �. := (�0=, �1=, �2=) is called balanced if �. is a
balanced vector. The impedance I. := Diag(I, I, I) = II, where I is the identity matrix
of size 3, is called balanced when its constituent impedances are equal.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age and current sources:

1. Sum to zero: The internal (phase) voltages ⇢0= +⇢1= +⇢2= = 0 and the internal
currents �0= + �1= + �2= = 0. This is because ⇢. = U+⇢0= and hence 1

T
⇢
. =⇣

1
T
U+

⌘
⇢
0= = 0; similarly for �. .

2. Ideal voltage source: line voltage + line is balanced: The line voltage of an ideal
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voltage source is equal to+ line = �⇢. from (1.13) and hence Corollary 1.3 implies

+
line = �⇢. = (1�U)⇢.

since U+ is an eigenvector of �. Therefore ⇢01 =
p

34ic/6
⇢
0=, ⇢12 =

p
34ic/6

⇢
1=

and ⇢20 =
p

34ic/6
⇢
2=. This is illustrated in Figure 1.10.

3. Ideal current source: terminal current � is balanced: From (1.11), the terminal
current of an ideal current source is � = ��. which is clearly a balanced vector.

In fact all voltages and currents in a balanced network driven by balanced voltage and
current sources are in a balanced positive sequence, i.e., all are in span(U+). The phases
are therefore decoupled, i.e., the variables in each phase depend on quantities only in
that phase, and can be analyzed separately. A full understanding of phase decoupling
and per-phase analysis is postponed till Chapter 16 (Theorem 16.5) in Part III of the
book. In the following we will illustrate this property with simple examples.

Example 1.4 (Balanced . -configured system and phase decoupling). Consider the
circuit in Figure 1.12(a) when a balanced three-phase impedance is connected to a
balanced three-phase positive-sequence voltage source in . configuration. Show that

1. The neutral-to-neutral voltage is zero, +==
0
= 0.

2. The internal voltages and currents across the impedances are in a balanced positive
sequence.

a'a

c b c' b'

z

zz

Ean

Ecn Ebn

n n'

Ia

Ib

Ic

(a) Balanced three-phase system

zEan

Ia a'a

n n'

(b) Equivalent per-phase system

Figure 1.12 Balanced three-phase system in . configuration and its per-phase model.

Solution. Referring to Figure 1.12(a) let

• ⇢. :=
�
⇢
0=,⇢1=,⇢2=

�
and+ 0. :=

�
+
0
0
=
0
,+1

0
=
0
,+2

0
=
0 �

denote the internal voltages
from terminals to neutrals, and � 0. :=

�
�
0
0
=
0
, �1

0
=
0
, �2

0
=
0 �

denote the internal current
between the terminals 00,10,20 and the neutral =0 across the impedances I.

• + :=
�
+
0,+1 ,+2

�
denote the terminal voltage (vector), with respect to an arbitrary

and common reference point, not necessarily the neutral = or =0;
• += and+=

0
denote the neutral voltages with respect to the common reference point.
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Given the balanced positive-sequence voltage ⇢. and balanced impedance I. = II
where I denote the identity matrix of size 3, we wish to show that += = +=

0
, that

+
0. , � 0. are in a balanced positive sequence, and that phases are decoupled.

KVL, KCL, and Ohm’s law imply

⇢
. = + �+=1, +

0. = + �+=01, +
0. = I�

0. , 1
T
�
0. = 0 (1.22)

Therefore ⇢
. �+ 0. =

�
+
=
0 �+=

�
1 and hence 1

T �
⇢
. �+ 0.

�
= 3

�
+
=
0 �+=

�
. Since

1
T
⇢
. = 0 we have

3
⇣
+
=
0 �+=

⌘
= �1

T
+
0. = �I

⇣
1

T
�
0.

⌘
= 0

showing that the voltage across the neutrals +==
0
= 0. Substituting it into (1.22) yields

(denoting H := I�1)

+
0. = ⇢

. +
⇣
+
= �+=0

⌘
1 = ⇢

. , �
0. = H+

0. = H⇢
.

Hence both + 0. and � 0. are in a balanced positive sequence. Moreover the phases are
decoupled in that +q=0 and �q=0 , q = 00,10,20, depend only on ⇢q= but not on voltages
in other phases. ⇤

Remark 1.4. 1. Since +==
0
= 0, even if = and =0 are connected, the current on that

wire will be zero. We can therefore either assume = and =
0 are connected or

disconnected in our analysis, whichever is more convenient.
2. Since the currents are balanced, �0 + �1 + �2 = 0 or 80 (C) + 81 (C) + 82 (C) = 0 at

all times C, the currents flow from and return to the sources only via the wires
connecting the sources to the loads, and no additional physical wires are necessary
for return currents. This halves the amount of required wire compared with three
separate single-phase circuits; see Chapter 1.3.3. ⇤

As a consequence, each phase of the balanced system is decoupled and equivalent
to the circuit in Figure 1.12(b). We can therefore analyze the phase 0 equivalent circuit
(see Chapter 1.2.5). The voltages and currents in phase 1 and phase 2 circuits will be
the corresponding phase 0 quantities shifted by �120� and 120� respectively, assuming
the source is of positive sequence.

Example 1.5 (Balanced . -configured system and phase decoupling). Figure 1.13
shows a balanced three-phase source ⇢.0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ) of positive sequence
supplying two sets of balanced three-phase loads in parallel through balanced trans-
mission lines. The transmission lines have a common admittance C and all loads have
a constant admittance ;, as shown in the figure. Suppose the neutrals are connected by
lines with a common admittance H < 0 and C = H/`, ; = H/`2 for some real number
` < 0.

Denote the internal voltages and currents in stage : = 1,2, by +
.

:
:=

(+0:=: ,+1:=: ,+2:=: ) and �.
:

:= (�0:=: , �0:=: , �0:=: ) respectively. Denote the voltages
and currents from stage : �1 to stage : , : = 1,2, by +: := (+0:�10: ,+1:�11: ,+2:�12: )
and �: := (�0:�10: , �1:�11: , �2:�12: ) respectively. Show that
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a1 a2a0

c0 b0 c1 b1 c2 b2

l l

t t

t

yy

t

t t

l l l l

Ean

Ecn Ebn

n0 n1 n2

One-line diagram: 

Figure 1.13 Balanced three-phase system in . configuration (Example 1.5).

1. +=0=1 =+=1=2 = 0.
2. For : = 1,2, +.

:
,+: , �.

:
, �: are balanced positive-sequence sets.

3. The phases are decoupled, i.e., ⇢.0 =+1 ++.1 and +.1 =+2 ++.2 .

This implies that the three phases of the balanced system in Figure 1.13 are decoupled
and can be studied by analyzing the per-phase circuit shown in Figure 1.14 where the
line admittances connecting the neutrals are set to zero.

l zEan

a0 a2a1

n0 n2n1

t t

Figure 1.14 The per-phase equivalent circuit of the balanced system in Figure 1.13.

Solution.

1. We will apply Ohm’s law and Kirchho�’s current and voltage laws (KCL and KVL)
to derive two linear equations in (+=0=1 ,+=1=2 ) and show that +=0=1 = +=1=2 = 0
is the only solution to these equations. By Ohm’s law across each admittance, the
currents are in terms of voltages:

�
.

:
= ;+

.

:
, �: = C+: , : = 1,2 (1.23)
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This allows us to eliminate currents �.
:

, �: and express KCL and KVL in terms
only of voltages +.

:
,+: .

Making use of (1.23), apply KCL at node (01,11,21) to obtain

C+
0001 = ;+01=1 + C+0102 , C+

1011 = ;+11=1 + C+1112 , C+
2021 = ;+21=1 + C+2122

and similarly for KCL at nodes (02,12,22). This in vector form is

C+1 = ;+
.

1 + C+2, C+2 = ;+
.

2 (1.24)

Apply KCL at nodes (=0,=1,=2) to obtain

C

⇣
1

T
+1

⌘
+ H+=0=1 = 0, ;

⇣
1

T
+
.

1

⌘
+ H+=0=1 = H+

=1=2 , ;

⇣
1

T
+
.

2

⌘
+ H+=1=2 = 0

where 1 := (1,1,1) is the column vector of all 1’s. Hence, since H/C = ` and
H/; = `2, we have

1
T
+1 = �`+=0=1 , 1

T
+
.

1 = �`2
+
=0=1 + `2

+
=1=2 , 1

T
+
.

2 = �`2
+
=1=2 (1.25)

Finally, apply KVL around the loops from stage 0 to stage 1 and similarly from
stage 1 to stage 2, we have, in vector form,

⇢
.

0 = +1 ++.1 �+=0=11 (1.26a)

+
.

1 = +2 ++.2 �+=1=21 (1.26b)

where ⇢.0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ). Substitute (1.24) into (1.26b) to eliminate +2:

+
.

1 =
✓

1
`

+1
◆
+
.

2 �+=1=21 (1.26c)

To obtain a system of equations that involves only (+=0=1 ,+=1=2 ), multiply (1.26)
by 1

T and apply (1.25) to obtain (using 1
T
⇢0 = 0 since the source are balanced):

`
2 + `+3 �`2

�`2 2`2 + `+3

� 
+
=0=1

+
=1=2

�
=


0
0

�
(1.27)

We now argue that the determinant of the matrix in (1.27) is nonzero, and hence
+
=0=1 =+=1=2 = 0. Let ⌫ := `2 + `+3. Then

determinant = ⌫(⌫+ `2)� `4

If determinant is zero then ⌫ =�`2
⇣
1±
p

5
⌘
/2. By the definition of ⌫we therefore

have (3±
p

5)`2 +2`+6 = 0. It is easy to check that no real number ` satisfies this
equation, and hence +=0=1 =+=1=2 = 0.

2. We now show that (+.
:

,+: ) are balanced positive-sequence sets. Since +=1=2 = 0,
(1.26c) implies

+
.

2 =
`

`+1
+
.

1
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Substitute this into (1.24) to obtain

+1 =
1
`

+
.

1 + 1
`

+
.

2 =
2`+1
`(`+1)+

.

1

Substitute into (1.26a) to get

⇢
.

0 =
2`+1
`(`+1)+

.

1 ++.1

Hence

+
.

1 =
`(`+1)
`

2 +3`+1
⇢0, +1 =

`(2`+1)
`

2 +3`+1
⇢0

Hence +1,+.1 are balanced positive-sequence sets since ⇢0 is. Furthermore+2,+.2
are balanced positive-sequence sets from (1.24). Then (1.23) implies that all
currents (�.

:
, �: ) are balanced positive-sequence sets.

3. To show that the phases are decoupled, substitute +
=0=1 = +=1=2 = 0 in

(1.26a)(1.26b). ⇤

Remark 1.5 (Phase-decoupling of lines). 1. A key enabling property that allows the
balanced nature of voltages and currents to propagate from one node to the next is
the assumption that three-phase lines are phase-decoupled (see Example 1.5 and
Exercise 1.13). This assumption is valid only if the lines are symmetric and the
sources and loads are balanced such that currents and charges both sum to zero in
these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase
model of transmission lines should be used; see Part III of this book.

2. If the lines are symmetric but the sources or loads are unbalanced then variables of
di�erent phases are coupled. A similarity transformation can be used to transform
the system to a so called sequence coordinate in which the lines become decoupled
and single-phase analysis can then be applied in the sequence coordinate; see
Chapter 16 in Part III of this book. ⇤

1.2.4 Balanced systems in � configuration

Figure 1.15 shows an ideal three-phase voltage source ⇢� := (⇢01 ,⇢12 ,⇢20), current
source �� := (�01 , �12 , �20) and impedance I� := Diag(I, I, I) in � configuration. As
for . configuraiton, the ideal voltage source is balanced if ⇢� is a balanced vector
according to Definition 1.1, i.e., assuming positive sequence:

⇢
12 = 4

�i2c/3
⇢
01 , ⇢

20 = 4
i2c/3

⇢
01

The ideal current source is balanced if �� is a balanced vector. The impedance I� = II
is balanced when its constituent impedances are equal.

A balanced three-phase system in � configuration enjoys the same properties as
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(a) Voltage source ⇢�
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(c) Impedance I�

Figure 1.15 Ideal and balanced three-phase devices in � configuration. (10/11/2025: File sizes
opt.)

such a system in . configuration. In particular the line voltages and the line currents
sum to zero (from (1.14)):

⇢
01 +⇢12 +⇢20 = 1

T (�+) = 0, �
0 + �1 + �2 = 1

T (��T
�
�) = 0

Moreover all voltages and currents in a balanced system driven by balanced three-phase
positive-sequence�-configured sources are balanced positive sequences. Moreover the
phases are decoupled. We illustrate this in the next example.

Example 1.6 (Balanced �-configured system and phase decoupling). Figure 1.16
shows a balanced three-phase source ⇢� := (⇢0010 ,⇢1020 ,⇢2000 ) positive sequence
supplying a balanced three-phase load through balanced transmission lines in � con-
figuration. The transmission lines have identical admittance C < 0 and the loads are
of constant admittance ; < 0. Denote the terminal current by � := (�0001 , �1011 , �2021 ),

a1a0

c0 b0 c1 b1
Eb0c0

Ec0a0 Ea0b0

t

t

t

l

l l

Figure 1.16 Example 1.6.

the voltage across the transmission line by + := (+0001 ,+1011 ,+2021 ), and the line-to-
line voltage by*� := (+0111 ,+1121 ,+2101 ). Show that �,+ ,*� are in balanced positive
sequences, provided the ratio ` := C/; < �3.

Solution. Apply KCL at nodes 01,11,21 to get (from (1.14)):

� = ;�T
*
� = C+ (1.28)
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Apply KVL to get

⇢
� = *

� +�+ (1.29)

where � is defined in (1.12). Eliminate + from (1.28) and (1.29) to get

⇢
� =

1
`

⇣
`I+��T

⌘
*
� =

1
`

266664
`+2 �1 �1
�1 `+2 �1
�1 �1 `+2

377775
*
� (1.30)

where ` := C/; and I is the identity matrix of size 3. The matrix `I + ��T has a
determinant of `(` + 3)2 and hence is nonsingular provided ` < 0,�3. Since ⇢� :=
⇢
01
U+ is a balanced positive-sequence matrix we have⇣

`I+��T
⌘
*
� = `⇢

01

U+

It therefore su�ces to show that U+ is an eigenvector of `I+��T with an associated
eigenvalue _, because then

*
� = `⇢

01

⇣
`I+��T

⌘�1
U+ =

`⇢
01

_

U+

showing that*� is also a balanced positive-sequence voltage (note that if �G = _G for a
nonsingular matrix � then ��1

G = 1
_
G). To show that U+ is an eigenvector of `I + ��T,

we apply Theorem 1.2 to get⇣
`I+��T

⌘
U+ = `U+ +�(1�U2)U+ =

⇣
`+ (1�U) (1�U2)

⌘
U+ = (` + 3)|   {z   }

_

U+

as desired. This shows that*� is indeed a balanced positive-sequence voltage. Indeed

*
� =

`

`+3
⇢
�

To show that voltage + is also a balanced positive sequence and decoupled, use
(1.28) and Corollary 1.3 to get

+ =
1
`

�T
*
� =

1
`

⇣
1�U2

⌘
*
� =

1�U2

`+3
⇢
�

The expression � = C+ from (1.28) then implies that the phase current � is also in a
balanced positive sequence and that the phases are decoupled. ⇤

� and . transformation. A balanced �-configured system also has a per-phase
equivalent circuit. We now explain how to transform between � and . configuration.
This is the first step in per-phase analysis of balanced three-phase system described
in Chapter 1.2.5 where all balanced devices in � configuration are transformed into
their equivalent . configuration, the per-phase circuit of the . -equivalent network is
then analyzed and the result translated back to the original system with �-configured
devices. The validity of this procedure is studied in Chapter 16.2.6 (see Remark 16.7).
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and current across the �-configured impedance /�. Then +� = /��� and

+
line = +

� = /
�
�
�, � = ��T

�
� = �(1�U2)��

where the last equality follows from Corollary 1.3. Hence, for�-configured impedance,
the line-to-line voltage + line is related to the terminal current � according to

+
line = � 1

1�U2
/
�
�

For the. -equivalent, let+. 2 C3 and �. 2 C3 be its internal voltage and current across
the. -configured impedance /. and+= its neutral voltage. Let /. :=Diag

�
I
. , I. , I.

�
.

Then +. = /. �. and Corollary 1.3 implies

+
line = �(+. ++=1) = (1�U)/. �. , � = ��.

Hence, for . -configured impedance, the line-to-line voltage + line is related to the
terminal current � according to

+
line = �(1�U)/. �

The relationships between the line-to-line voltage + line and the terminal current � for
both the �-configured impedance and its . -equivalent will be identical if and only if

I
. =

I
�

(1�U) (1�U2) =
I
�

3
(1.31b)

The corresponding admittances H. :=
�
I
.
��1 and H� :=

�
I
���1

are related by H. = 3H�.
As for the. -equivalent of a voltage or current source, the. -equivalent of an impedance
/
� is ungrounded and has no neutral line so that 1

T
�
. = 0.

1.2.5 Per-phase analysis of balanced systems

A balanced three-phase system consists of balanced three-phase sources and loads
connected by balanced (identical) transmission lines. Given a balanced three-phase
system with all sources and loads in Y configuration, assuming the neutral voltages are
zero at all voltage sources and impedances, then

• all neutral voltages are at the same potential (zero);
• all phases are decoupled;
• all network variables are in balanced sets of the same sequence as the sources.

These properties lead to equivalent per-phase circuits, as explained in Chapter 1.2.3.
Even though we have only illustrated these properties for simple systems, they hold
more generally. They allow us to study such a system by analyzing a single phase,
say, phase 0. The corresponding variables in phases 1 and 2 lags those in phase 0 by
120� and 240� respectively when 012 is a positive sequence, and by 240� and 120�

respectively when 012 is a negative sequence.
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When some or all of the sources and loads are in � configuration, the phases are still
decoupled and can be analyzed separately. To obtain the equivalent per-phase circuit,
however, we first transform each �-configured device into an equivalent . -configured
device using the transformation (1.31a) for voltage and current sources and (1.31b) for
impedances. The neutral voltages += of these . equivalents are taken to be zero (and
by convention, the neutral currents �= are zero). We then analyze the equivalent circuit
consisting of only . -configured devices. Finally we translate the results for equivalent
. configuration back to the corresponding quantities in � configuration.

We emphasize that these transformations hold only in the balanced case with bal-
anced sources, identical impedances, and symmetric transmission lines. Moreover
the equivalence of these two configurations is with respect to their external behav-
ior (+01 , �0, etc); for internal behavior, we have to analyze the original circuit; see
Example 1.7.

In summary, the procedure for per-phase analysis is:

1. Convert all voltage sources, current sources and impedances in � configuration
into their equivalent Y configurations, ungrounded and without neutral lines, using
(1.31a) for sources and (1.31b) for loads.

2. Solve for the desired phase 0 variables using equivalent phase 0 circuit with all
neutrals directly connected (since all neutrals are at the same potential).

3. If all sources are in positive-sequence sets, the phase 1 and 2 variables are deter-
mined by subtracting 120� and 240� respectively from the corresponding phase 0
variables. (If all sources are negative-sequence, add 120� and 240� instead.)

4. If variables in the internal of a � configuration are desired, derive them from the
original circuits.

This procedure is formally justified in Chapter 16.2.6. We illustrate it with an example.

Example 1.7 (Per-phase analysis). Consider the balanced three-phase system shown in
Figure 1.18. The three-phase sources are a balanced positive sequence in � configura-
tion with line voltage ⇢01 =

p
34ic/6

⇢
0=, etc. The�-configured loads are balanced with

identical admittances ;1, and the Y-configured loads are balanced with identical admit-
tances ;2. The transmission lines are modeled by admittances C1 and C2. Find the current
81 (C) and voltage E2 (C) in the diagram. Assume 3;1;2 +3;1C2 + ;2 (C1 + C2) + C1C2 < 0.

Solution. First we convert the �-configured source to its . -equivalent . using (1.31a)
and the �-configured loads to their . equivalents using (1.31b). The result is shown in
the upper panel of Figure 1.18(b). Then we construct the equivalent per-phase circuit
with all neutrals =,=1,=2 connected, as shown in the lower panel of Figure 1.18(b).

We analyze the per-phase circuit to solve for voltages

+1 := +
01=1 , +2 := +

02=2
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(b) Equivalent per-phase system

Figure 1.18 Balanced three-phase system and its per-phase equivalent circuit. (10/11/2025: file
sizes opt.)

Applying KCL to nodes 01 and 02 we get

C1 (⇢0= �+1) = 3;1+1 + C2 (+1�+2) , C2 (+1�+2) = ;2+2

Hence 
3;1 + C1 + C2 �C2

C2 �(;2 + C2)

� 
+1

+2

�
=


C1⇢

0=

0

�

By assumption, the determinant

� := � (3;1;2 +3;1C2 + ;2 (C1 + C2) + C1C2) < 0
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Hence 
+1

+2

�
=

1
�


�(;2 + C2) C2

�C2 3;1 + C1 + C2

� 
C1⇢

0=

0

�
=
�C1⇢0=
�


;2 + C2
C2

�
(1.32)

Since +02=2 =+2, we get:

E2 (C) =
p

2 |+2 | cos (lC + \+2)

where l is the steady-state system frequency and +2 is given by (1.32). To calculate

81 (C) =
p

2 |�0121 | cos (lC + \�0121 ) (1.33)

we use (1.31a) to first get

+
0111 =

p
34ic/6

+1

where +1 is given by (1.32). Hence

�
0111 = ;1+

0111 =
p

3;14ic/6
+1

Since the sources are a positive sequence we have

�
0121 = ��2101 = ��0111

4
i2c/3 = �

p
34i5c/63;1+1 = 3

p
34�ic/6

;1+1

where +1 is given by (1.32). Substituting �0121 into (1.33) yields 81 (C). ⇤

1.2.6 Example configurations

The secondary sides of three-phase distribution transformers in the US are commonly
configured as shown in Figure 1.19. For our purposes we can treat them as three-
phase sources. Figure 1.19(a) shows the secondary side of a typical 5-wire three-phase

Vcn

n

a

c b

|Van| = 120V

|Vbn| = 120V

|Vab| = 208V

(a) 208. /120+ 3-phase .

d

a

c

b

|Vad| = 120V

|Vbd| = 120V

|Vbc| = 240V
|Vcd| = 208V

|Vab| = 240V

(b) 240+ split phase �

Figure 1.19 Common distribution transformer configurations.

transformer in . configuration. Three phase wires (labeled 0,1,2) and a neutral wire
(labeled =) are shown. The fifth wire, not shown, is the earth ground wire, typically
connected to neutral. A di�erent voltage magnitude can be supplied to a load depending



50 Basic concepts

on how it is connected. The voltage magnitude between a phase wire and the neutral
is 120V and that between a pair of phase wires is 120

p
3V = 208V.

Figure 1.19(b) shows a 5-wire transformer in � configuration with one of the phases
center-tapped to provide three voltage levels. Four phase wires (labeled 0,1,2,3) are
shown but an earth ground wire is not shown. The voltage magnitude between wires
03 or 13 is 120V, whereas that between wire 23 is 208V (derive this). The line-to-line
voltage magnitude is 240V.

Figure 1.20(a) shows a . -configured voltage source connected to a set of loads in �
configuration. The voltage source is the secondary side of a three-phase 208./120V
transformer shown in Figure 1.19(a). The voltage magnitude across each load is the
line-to-line voltage 208V. Figure 1.20(b) shows the electric panel arrangement to

a2a1

c1c0 b1 c2 b2

a0

b0

Van

Vcn Vbn
7

5

1

11

3

8

6

2

4

9 12 10

Ia0

Ic0

Ib0

(a) Voltage source supplying loads in parallel

1 04/19/17 PLAN CHECK

2

11/17/15
2nd HD PC
& BLDG. 
DEPT.

11/11/15 1st HD PC

2 08/03/17 CLIENT REVISION

E-1.0

M

(b) Panel
arrange-
ment

Figure 1.20 (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase
panel used to connect loads in parallel to the voltage source.

connect the loads to the voltage source. The dot in the first row indicates that the wires
numbered 1 and 2 are connected to phase 0, the dot in the second row indicates that
the wires numbered 3 and 4 are connected to phase 1, the dot in the third row indicates
that the wires numbered 5 and 6 are connected to phase 2, and so on. Therefore the
load connected between wires 1 and 3 is connected between phase 0 and phase 1 lines
(see the corresponding labels on the loads in Figure 1.20(a)). Similarly for the load
connected between wires 2 and 4, and other loads connected between di�erent phases.

The currents �0 := (�0001 , �1011 , �2021 ) supplied by the three-phase source to the
loads represent loading on the transformer. Suppose each phase of the secondary side
of the transformer (the voltage source) is rated at �max. In order not to overload the
transformer, we require that the current magnitude in each phase be bounded by �max:

|� ?0 ?1 |  �
max, ? = 0,1,2 (1.34)
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Suppose the loads are not impedance loads, but constant current loads that draw
specified currents. Let the current drawn by the load in Figure 1.20(a) between wires 1
and 3 be �0111 , that between wires 9 and 11 be �1121 , that between wires 5 and 7 be �2101 .
In general let the load currents in the :th three-phase load be ��

:
:= (�0:1: , �1:2: , �2:0: ).

We therefore are interested in bounds on the load currents (��
:
, : = 1, . . . , ) that

enforce the limit (1.34) on transformer loading (see Exercise 1.11). This problem
arises in the smart charging of electric vehicles where each load is a vehicle. The goal
is to determines the charging rate, i.e., current magnitude |� ?:@: |, for each vehicle
to optimize certain objective subject to capacity constraints such as (1.34) and other
constraints. Such an algorithm can be applied periodically, e.g., every minute, to update
the charging rates (this is called model predictive control). Note that in this kind of
applications, the system is unbalanced since the loads |� ?:@: | are generally not identical
across phases.

1.3 Complex power

1.3.1 Single-phase power

Instantaneous power. When a voltage E(C) is applied across two ports and a current
8(C) flows between them, as shown in Figure 1.21(a), energy is delivered to the network
that connects the ports. We define the instantaneous power supplied as:

?(C) := E(C)8(C) =
+max�max

2
(cos(\+ � \� ) + cos(2lC + \+ + \� )) (1.35)

Since the last term inside the bracket of (1.35) is sinusoidal with twice the nominal
frequency l the average power delivered is

1
)

π
)

0
?(C)3C =

+max�max

2
cos(\+ � \� )

where) := 2c/l, i.e., the average power depends only on the magnitudes of the voltage
and current and their relative phase angle.

Complex power. Define the complex power in terms of the voltage and current
phasors as:

( := + �̄ =
+max�max

2
4

i(\+ �\� ) = |+ | |� |4iq (1.36)

where �̄ denotes the complex conjugate of �; see Figures 1.21(b) and (c). Here q :=
\+ � \� is called the power factor angle and cosq is called the power factor. Power
engineers often says a leading or lagging power factor: lagging means current � lags
voltage + so that q > 0. A leading power factor has q < 0. A unity power factor means
q = 0. Figure 1.22 shows four complex powers with %,& > 0 and \ 2 [0,c/2]:

(1 := %+ i&, (2 := %� i&, (3 := �%+ i&, (4 := �%� i&
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i(t)

v(t) p(t)

(a) Instantaneous power

I

V S

(b) Complex power

Im

Re

I

V

(c) ( = + �̄

Figure 1.21 Definition of power.

Q

Figure 1.22 Power factor angles q and power factor cosq.

with power factor angles q1 := \, q2 := �\, q3 := c� \, and q4 := �c + \ respectively.
Their power factors are related according to:

cosq1 =
%p

%
2 +&2

= cosq2, cosq3 =
�%p
%

2 +&2
= cosq4

Therefore the power factors cosq8 do not di�erentiate between (1 and (2 or between (3

and (4. Power engineers specify (1 as power factor cos\ lagging (q1 > 0 and therefore
&1 :=& > 0) and (2 as power factor cos\ leading (q2 < 0 and&2 := �& < 0). Similarly
(3 has a power factor �cos\ lagging (q3 > 0 and &3 := & > 0) and (4 has a power
factor �cos\ leading (q4 < 0 and &4 := �& < 0). For example “a load draws 100kW
at a power factor of 0.707 leading” means that the real power Re(() = 100 kW and
cosq = 1/

p
2. Since the power factor is leading, q = �45� and ( = 100� 9100 kVA .

Note that ( is not a phasor because
p

2|( | cos(lC +q) is not the instantaneous power
in the time domain. This complex quantity is important in power flow analysis in the
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phasor domain, as we will see. The real part of (

% := |+ | |� | cosq

is called the active or real power and its unit is W (watt). The imaginary part of (

& := |+ | |� | sinq

is called the reactive power and its unit is var (volt-ampere reactive). We write both
( = %+ 9& and ( = |+ | |� |4iq . The magnitude |( | = |+ | |� | is called the apparent power
and its unit is VA (volt-ampere). Given an active power % and a power factor cosq, the
complex power ( is given by (since % = |( | cosq)

( =
%

cosq
4

iq

i.e. the complex power is completely determined by the active power % and the power
factor angle q. Power is balanced at every node in a network. If � 9: and ( 9: are sending-
end current and power respectively from node 9 to node : , then power balance at node
9 means

Õ
:
( 9: = 0. This is a consequence of KCL

Õ
:
� 9: = 0 and the definition of

branch power ( 9: :=+ 9 �̄ 9: .

Relation between instantaneous and complex power. The complex power ( in
the phasor domain is related to the instantaneous power in the time domain as follows.
We can use (1.35) to express the instantaneous power ?(C) in terms of active power %
and reactive power & as (Problem 1.14):

?(C) = %+% cos2(lC + \� )�& sin2(lC + \� ) (1.37)

It is then clear that the active power % is equal to the average power delivered (in the
time domain):

% =
1
)

π
)

0
?(C)3C

as the last two terms in (1.37) average to zero over a cycle ) . The reactive power &
determines the magnitude of the instantaneous power ?(C).

Power delivered to an impedance. The current and voltage across an impedance I
is related by Ohm’s law, + = I� and hence

|I | = |+ |
|� | , \I = \+ � \� =: q

Therefore from (1.36)

( = I |� |2 = |I | |� |24iq

and

% = |I | |� |2 cosq, & = |I | |� |2 sinq

The active and reactive power for the three passive elements are given in Table 1.2.



54 Basic concepts

|I | q = \I % &

Resistor I = A A 0 A |� |2 0

Inductor I = il; l; c/2 0 l; |� |2

Capacitor I = (il2)�1 (l2)�1 �c/2 0 �(l2)�1 |� |2

Table 1.2 Power delivered to RLC elements.

In particular the complex power delivered to a resistor is active (& = 0) with
instantaneous power ?(C) := E(C)8(C)

?(C) := A8
2 (C) = A �

2
max cos2 (lC + \� ) = % (1+ cos2 (lC + \� ))

which is (1.37). The complex power delivered to an inductor or a capacitor is reactive
(% = 0). Substituting into (1.37), the instantaneous power ?(C) to a purely reactive load
depends only on the reactive power &:

?(C) =
⇢
�& sin2(lC + \� ) for inductor I = 9l;
& sin2(lC + \+ ) for capacitor I = ( 9l2)�1

i.e., the instantaneous power is sinusoidal with twice the frequency and has an amplitude
&, and hence the average power delivered to a reactive load is zero.

Example 1.8. Suppose I = 9l; (inductance) or I = ( 9l2)�1 (capacitance). Prove
directly in the time domain that the average delivered power is 0 and the amplitude of
the instantaneous power is &.

Solution. Suppose power is delivered to an inductor I = 9l;. Let the current be 8(C) =
�max cos(lC + \� ). Then the voltage E(C) across the inductor is given by

E(C) = ;

38

3C

(C) = �l;�max sin(lC + \� )

and therefore

?(C) = E(C)8(C) = �l;�2max sin(lC + \� ) cos(lC + \� )

= �l; �
2
max

2
sin2(lC + \� ) = �l; |� |2 sin2(lC + \� )

= �& sin2(lC + \� )

where the last equality follows from& = |I | |� |2 sin\I =l; |� |2 since \I = c/2. Moreover
the average power delivered is

% =
1
)

π T

0
?(C)3C = 0

The case of capacitor load I = ( 9l2)�1 is similar and omitted (see Exercise 1.16). ⇤
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1.3.2 Three-phase power

Under balanced three-phase operation, the total instantaneous power delivered is con-
stant and the total complex power is 3 times the per-phase complex power.

Specifically for a balanced three-phase system let ( := +0= �̄0= = +1= �̄1= = +2= �̄2=

denote the per-phase complex power and (3q :=+0= �̄0= ++1= �̄0= ++2= �̄0= denote the
three-phase power. For a balanced positive-sequence device we have

+
. := +

0=

U+, �
. := �

0=

U+, +
0=, �0= 2 C

where U+ := (1,U,U2). Hence we have (using properties of U+ in Exercise 1.8)

(3q = �
.H
+
. = +

0=

�̄
0= (UH

+U+) = 3(

For instantaneous power, we have from (1.35), for a balanced three-phase positive-
sequence device,

?3q (C) := E
0 (C)80 (C) + E1 (C)81 (C) + E2 (C)82 (C)

= |+0 | |�0 | (cosq+ cos(2lC + \+ + \� ))
+ |+0 | |�0 | (cosq+ cos(2lC + (\+ �2c/3) + (\� �2c/3)))
+ |+0 | |�0 | (cosq+ cos(2lC + (\+ +2c/3) + (\� +2c/3)))

= 3|+0 | |�0 | cosq+ |+0 | |�0 | (cos\ (C) + cos(\ (C)�4c/3) + cos(\ (C) +4c/3))
= 3%

where \ (C) := 2lC + \+ + \� and % is the per-phase active power. Here the last equality
follows from

cosG + cos(G�4c/3) + cos(G +4c/3) = Re
⇣
4

iG + 4i(G�4c/3) + 4i(G+4c/3)
⌘

and ⇣
4

iG + 4i(G�4c/3) + 4i(G+4c/3)
⌘
=

⇣
4

iG + 4i(G+2c/3) + 4i(G�2c/3)
⌘
= 0

where the last equality follows from Theorem 1.2.

1.3.3 Advantages of three-phase power

There are two main advantages of balanced three-phase systems over a system with a
single phase or that with other polyphases.

First it o�ers several benefits to motor operation. The total instantaneous power
?3q (C) = 3% delivered is constant over time in a balanced three-phase system. On a
generator or motor this produces a constant mechanical torque, reducing vibrations,
noise, wear and tear, and other mechanical issues. A three-phase system can also
self-start an induction motor.
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In contrast, the instantaneous power

?1q (C) = %+ |+ | |� | cos(2lC + \+ + \� ) =: %+ |+ | |� | cos\ (C)

in a single-phase system, where \ (C) := 2lC + \+ + \� , is a sinusoidal signal with
twice the system frequency. This is the case also with a two-phase system where the
instantaneous power is

?2q (C) = |+0 | |�0 | (cosq+ cos(2lC + \+ + \� )) +
|+0 | |�0 | (cosq+ cos(2lC + (\+ + c) + (\� + c))) = %+2|+0 | |�0 | cos\ (C)

It can be shown that for  � 3, a balanced  -phase system has ? q (C) =  % in-
dependent of C (Exercise 1.15). Even though a balanced four-phase system also has
time-invariant instantaneous power, its design is more complex than a three-phase
system.

Second a three-phase system saves materials and thermal loss (A |�2 |) compared
with a single-phase system that serves the same load. For example, it is clear that
the single-phase system that consists of three identical subsystems shown in Figure
1.7(a) needs twice as much transmission line and incurs twice as much thermal loss in
transmission as the balanced three-phase system in Figure 1.7(b), since the balanced
three-phase system has zero return current and hence does not need a neutral line.

The following example compares a balanced three-phase system with a single one-
phase circuit with a higher ampacity, as opposed to three identical subcircuits in Figure
1.7(a), to supply the same load. The same conclusion holds that the three-phase system
needs half as much conductor and incurs half as much transmission loss.

Example 1.9 (Single-phase vs three-phase systems). Consider two systems that deliver
a specified apparent power |( | at a specified voltage magnitude |+ | to a constant power
load, as shown in Figure 1.23. The distance between the generation and the load is
3. The first system is single-phased and the second system is balanced three-phased.
Compare the required amount of wire and thermal loss in the line in these systems.

The line has an impedance I := A + 9G per unit length where the resistance A per unit
length is inversely proportional to the area of the line with proportionality constant d.
The current density limit of the line is X in ampere per unit area.

I
z  = r + jx

z0 = z or 0

|V||S|

Figure 1.23 A system that delivers power |( | to a load at voltage |+ |.
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Solution. A single-phase system requires two cables, one for return current, each
carrying a current of magnitude |�1q | = |( |/|+ |. This is illustrated in Figure 1.23 with
I0 = I. A balanced three-phase system requires three cables, each carrying a per-phase
apparent power of |( |/3 and a per-phase current of magnitude |�3q | = |( |/(3|+ |). The
per-phase equivalent circuit is illustrated in Figure 1.23 with I0 = 0.

For the single-phase system the required cross-sectional area of the cable is �1q :=
|�1q |/X = |( |/X |+ |. Hence the amount of material (volume of the cable) required is

<1q := 2�1q3 = 2
3 |( |
X |+ |

Moreover the resistance per-unit length of the cable is A1q := d/�1q = dX |+ |/|( | and
hence the active power loss in the cable is

;1q := 2A1q |�1q |23 =
2dX |+ |
|( | · 3 |( |

2

|+ |2 = 2
dX3 |( |
|+ |

For the balanced three-phase system the required cross-sectional area of the cable
in each phase is �3q := |�3q |/X = |( |/3X |+ |. Hence the amount of material required is

<3q := 3�3q3 =
3 |( |
X |+ | =

1
2
<1q

Moreover the resistance A3q per unit length of the cable is A3q := d/�3q = 3dX |+ |/|( |
and hence the active power loss in the cable is

;3q := 3A3q |�3q |23 =
9dX |+ |
|( | · 3 |( |

2

9|+ |2 =
dX3 |( |
|+ | =

1
2
;1q

Therefore the balanced three-phase system uses half as much material and incurs half
as much loss as the single-phase system. ⇤

Remark 1.6. 1. Example 1.9 also shows that thermal loss A |� |2 is inversely propor-
tional to |+ |. Intuitively a higher load voltage |+ | requires a smaller load current
|� | to deliver the same amount of power |( |, resulting in a smaller thermal loss in
the grid.

2. It is shown in Exercise 2.7 that, given a desired load power, the active line loss is
inversely proportional to the square |+ |2 of the load voltage magnitude, rather than
|+ | derived here. This is because, in Exercise 2.7, the line resistance is given and
independent of load power and voltage |+ |, whereas, here, the line resistance A3q

is chosen to be proportional to |+ | (reducing the dependence of line loss A3q |�3q |2
from |+ |2 to |+ |).

3. Note that + is the voltage drop across the load, not the voltage drop across trans-
mission line I which is I3� = I3(̄/+̄ . In the case of balanced three-phase system
(where I0 = 0 in Figure 1.23), if the load power ( and voltage + are specified then
the required squared voltage magnitude at the source is

|I3� ++ |2 =
����I3 (̄
+̄

++
����
2

= |+ |2 + |I |232 |( |2
|+ |2 +23Re( Ī()
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4. In practice most three-phase systems do include a grounded neutral line to carry
the unbalanced current during asymmetrical conditions (e.g., due to line faults)
and reduce voltage transients during line switching or lightning events. Since the
unbalanced current is much smaller than the phase currents, the neutral line is
typically much smaller in size and ampacity and therefore much cheaper. ⇤

1.4 Chapter summary

1. The steady-state behavior of a power system can be described by voltage and
current phasors (+ , �) and represented by one-line diagrams. A one-line diagram is
a shorthand for an underlying equivalent circuit. These phasors satisfy Kirchho�’s
laws (1.4) and Ohm’s law (1.5). Circuit analysis can be conducted in the phasor
domain and the results translated back to the time domain in terms of sinusoidal
voltage and current functions (E(C), 8(C)) and instantaneous power ?(C) := E(C)8(C).

2. A three-phase device such as a voltage or current source or an impedance can be
in . or � configuration. In a balanced system, �-configured voltage and current
sources can be transformed into their . -equivalents through the transformation
(1.31a) and �-configured impedances can be transformed through (1.31b). This
yields a per-phase circuit that is equivalent to the balanced three-phase system.
Analysis can be conducted on the per-phase circuit and the results translated back
to the three-phase system. Per-phase analysis is a consequence of the spectral
properties of conversion matrices (�,�T) in Theorem 1.2 and Corollary 1.3.

3. Complex power ( := + �̄ can be defined in terms of voltage phasor and current
phasors (+ , �) whose real part Re(() is the average instantaneous power ?(C) :=
E(C)8(C), averaged over a cycle. A three-phase system requires a smaller amount
of conductor material and incurs a smaller power loss than a single-phase system
that provides the same amount of load power.

1.5 Bibliographical notes

There are many excellent textbooks on basic power system concepts, e.g., [1, 2, 3, 4, 5, 6, 7]. Many materials

in this chapter follow [1]. The example comparing the savings of single-phase and three-phase systems is

from [4]. Circuit theory is a well established field. For general circuit analysis using KCL and KVL, see,

e.g., [8, Chapter 12]. The connection with algebraic graph theory is recently surveyed in [9].

1.6 Problems

Chapter 1.1.
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Exercise 1.1 (ZIP load model). A common load model, called ZIP, assumes that the
real and reactive power (?,@) consumed by a load depends on the voltage magnitude
|+ | across the load:

? := 02 |+ |2 + 01 |+ | + 00, @ := 0
0
2 |+ |2 + 001 |+ | + 000

for some real numbers (00,01,02) and (000,001,002). This can be equivalently described
in terms of the complex power B := ? + i@ consumed by the load, as 4

B := 12 |+ |2 + 11 |+ | + 10 (1.38a)

where 18 = 08 + i0
0
8
. Instead of the complex power B, a ZIP model may describe how

the apparent power |B | consumed by the load depends on |+ |:

|B | := 22 |+ |2 + 21 |+ | + 20 (1.38b)

for some real numbers (20,21,22). Given a ZIP load, specified either by (1.38a) or
(1.38b), show that its power consumption is equivalent to the sum of power consumed
by a constant impedance I, a constant current device (source) �, and a constant power
device (source) f, and express the parameters (I, �,f) of these devices in terms of the
parameters of the ZIP load.

Exercise 1.2 (KVL). Prove that Kirchho�’s voltage law (1.3b) is equivalent to (1.4b).
(Hint: See Appendix A.11 and use Theorem A.35.)

Exercise 1.3 (Circuit analysis). Consider a 3-node 3-link circuit specified by its

incidence matrix ⇠̂ :=
266664

1 0 1
�1 1 0
0 �1 �1

377775
=:

⇥
⇠̂1 ⇠̂2

⇤

a voltage source E13 and two impedances I12 = I23 = 1. Determine the line currents
� := (�12, �23, �13), line voltages * := (*12,*23) and nodal voltages + := (+1,+2),
assuming that node 3 is the reference node with +3 := 0.

Exercise 1.4 (Theorem 1.1 and KCL). 1. For any circuit ⌧̃, the cut-based KCL is:
the line currents on every cut of ⌧̃ sum to zero. Show that it is equivalent to the
node-based KCL (1.4a), in two steps.
(a) If (1.4a) holds, show that cut-based KCL holds. (Hint: Use the property (A.37)

of the indicator function I(^) of a cut ^ defined in Appendix A.11.)
(b) If cut-based KCL holds, show that (1.4a) holds. (Hint: Use I(^) and induction.)

2. With regard to Remark 1.2, show that the invertibility of .1 := ⇠1/
�1
⇠

T
1 implies

that the current sources 9 cannot violate KCL in the original graph ⌧̂. (Hint: Use
part 1 and the fact that the incidence matrix ⇠̂ of ⌧̂ has zero column sums.)

4 The power consumption may depend also on the frequency. During transient, this dependence can be
made explicit by the time-domain model

B (C) :=
⇣
02 |E (C) |2 + 01 |E (C) | + 00

⌘
(1+ 03�l (C))

where B (C) := E (C)8 (C) is the instantaneous power in the time-domain and �l (C) is the deviation from
the nominal frequency during transient.
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Exercise 1.5 (Theorem 1.1 and KVL). With regard to Remark 1.2, suppose both .1

and ⇠T
2 (.�1

1 )⇠2 are nonsingular.

1. Show that⇠2 is of full column rank. (The converse does not necessarily hold when
.1 is complex symmetric but not Hermitian.)

2. Show that⇠2 having full column rank is equivalent to the condition that no voltage
sources in ⇢̂2 form a cycle in the original graph ⌧̂. This implies that no D can
violate KVL on ⌧̂.

(Hint: Use (A.36) in Appendix A.11.)

Exercise 1.6 (Circuit analysis). For the three-bus network in Figure 1.5, derive the
current balance equation (1.10) by analyzing the equivalent circuit using KCL, KVL,
and Ohm’s law, as explained in Chapter 1.1.4. Draw the equivalent circuit.

Exercise 1.7 (One-line diagram and⇧ circuit). Derive (1.10) � =.+ from the one-line
diagram of a general network by analyzing its equivalent circuit.

Chapter 1.2.

Exercise 1.8 (U := 4�i2c/3 and U+,U�). Prove the following properties of U := 4�i\120� ,
U+ := (1,U,U2) and U� := (1,U2,U):

1. U2 = Ū, U3 = 1, U4 = U, U: = U: mod 3 where 0̄ denotes the complex conjugate of
0.

2. 1+U+U2 = 0.
3. 1�U =

p
3\30�, 1�U2 =

p
3\�30�, (1�U) (1�U2) = 3.

4. 1+U = �U2 = 1\�60�, 1+U2 = �U = 1\60�.
5. Ū+ = U�, Ū� = U+.
6. UH

+U+ = 3, diag(U+UH
+ ) = 1 where 1 := (1,1,1) is the column vector of all 1s.

Exercise 1.9. Prove Theorem 1.2.

Exercise 1.10. Show that the voltage magnitude |+23 | = 208+ in the split-phase Delta
transformer in Figure 1.19(b), assuming the system is a balanced three-phase positive
sequence.

Exercise 1.11 (Line limit). This problem derives bounds on the magnitudes of the
load currents ��

:
:= (�0:1: , �1:2: , �2:0: ) to enforce the limit (1.34). Let the total load

current in each leg of the � configuration be denoted by

�
01 :=

 ’
:=1

�
0:1: , �

12 :=
 ’
:=1

�
1:2: , �

20 :=
 ’
:=1

�
2:0: (1.39)

1. Show that the limit (1.34) is equivalent to: |�01 � �20 |  �max, |�12 � �01 |  �max

and |�20 � �12 |  �max. (Hint: Show that �0 = �T Õ
 

:=1 �
�
:
.)
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2. Suppose the current phasors �0:1: have the same, and known, phase angle \01 for
all :; similarly for �1:2: and �2:0: . Show that the limit (1.34) is equivalent to the
following convex quadratic bound on the magnitudes of the load currents:

|�01 |2 + |�20 |2�2|�01 | |�20 | cosq0001  (�max)2

where cosq0001 := \20 � \01 is known, and similarly for phases 1 and 2.
3. Show that a su�cient condition for the limit (1.34) is the following linear bound

on the magnitudes of the load currents:

 ’
:=1

⇣
|�0:1: | + |�2:0: |

⌘
 �

max (1.40)

and similarly for phases 1 and 2.
4. Suppose the load currents are balanced, i.e., for all : = 1, . . . , , �0:1: = �4i\01 ,
�
1:2: = �4i\12 , �2:0: = �4i\20 where � > 0 is the common magnitude of the load

currents, and \01 � \12 = 120�, \12 � \20 = 120� and \20 � \01 = 120�. Show that
the linear bound (1.40) is conservative by ⇠ 13% compared with the exact limit.

Exercise 1.12. Consider the balanced three-phase system in . configuration shown in
Figure 1.24. Show that +=0=1 = 0 provided I < �(I1 + ;1)/3.5

a

c b

n0 n1

z1

z1

z1

z

l1l1

l1Ean

EbnEcn

One line diagram: 

Figure 1.24 Balanced three-phase system in . configuration where the impedances I, I1, ;1 are
given. (Aug 31, 2025: Move caption to the side.)

Exercise 1.13 (Balanced system in . configuration). Consider the balanced three-
phase system in . configuration shown in Figure 1.25 where a three-phase voltage
source in positive sequence supplies < three-phase loads in parallel. All transmission
lines have a common admittance C = 1 and all loads have a common admittance ;.
Consider the following 10< variables:

5 Suppose the impedances I, I1, ;1 all have positive resistance, which is the case in practice. Then this
condition is automatically satisfied. If 3I = �(I1 + ;1) holds, however, then + =0=1 can take any value
and Kirchho�’s laws will be satisfied because � =0=1 + �0 + �1 + �2 = 0 will always be satisfied for any
value of + =0=1 .
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a0

c0 b0

Ea0n0

Ec0n0 Eb0n0

n0 n1

a1

c1 b1
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cm bm
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l
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t

t

t

t

t
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l

One-line diagram: 

Figure 1.25 A balanced voltage source supplies < balanced loads in parallel.

• a voltage and a current for each phase at each stage : = 1, . . . ,<:

+̃: :=
266664
+
0:=:

+
1:=:

+
2:=:

377775
, �̃: :=

266664
�0:=:

�1:=:

�2:=:

377775
, : = 1, . . . ,<

for a total of 6< variables.
• a current for each phase from stage : �1 to stage ::

�̃:�1,: :=
266664
�0:�10:

�1:�11:

�2:�12:

377775
, : = 1, . . . ,<

for a total of 3< currents.
• a voltage between neutrals from stage : �1 to stage :: +=:�1=: , : = 1, . . . ,<, for a
total of < voltages.

1. Show that +=:�1=: = 0 for : = 1, . . . ,<.
2. Show that

+
0:=: = V:⇢

00=0 , +
1:=: = V:⇢10=0 , +

2:=: = V:⇢
20=0 , : = 1, . . . ,<

where V: is:

V: :=
A
:

1 A
<

2 (A2�1)� A:2 A<1 (A1�1)
A
<

2 (A2�1)� A<1 (A1�1)
and A1,A2 are given by:

A1,2 =
1
2

⇣
(; +2) ±

p
; (; +4)

⌘
(1.41)
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(Hint: Derive a recursion on +̃: across stages : and solve the di�erence equation
for each phase 0,1,2 separately.)

3. Show that +̃: , �̃: , �̃:�1,: are balanced positive-sequence sets for : = 1, . . . ,<.

Chapter 1.3.

Exercise 1.14. Show that the instantaneous power in the time domain can be expressed
in terms of real and reactive powers in the phasor domain:

?(C) = |+ | |� | (cosq+ cos(2lC + \+ + \� ))
= %(1+ cos2(lC + \� ))�& sin2(lC + \� )

where q := \+ � \� is the power factor angle, % := |+ | |� | cosq is the real power and
& := |+ | |� | sinq is the reactive power.

Exercise 1.15 (Instantaneous power). Consider a balanced  -phase system with  � 3
and for : = 0, · · · , �1,

E: (C) =
p

2|+ | cos
✓
lC +

✓
\+ + : 2c

 

◆◆
, 8: (C) =

p
2|� | cos

✓
lC +

✓
\� + :

2c
 

◆◆

Show that ? q (C) :=
Õ
 �1
:=0 E: (C)8: (C) =  % where % := (1/))

Ø
)

0 E0 (C)80 (C)3C =
|+ | |� | cos(\+ � \� ) and ) := 2c/l.

Exercise 1.16. Suppose I = 1/il2 (capacitance).

1. Prove directly in time domain that the average delivered power is 0.
2. Derive the instantaneous power ?(E) in terms of &.

Exercise 1.17 (Power meter). A power meter measures voltage and current magnitudes
(rms values) ( |+ |, |� |) and instantaneous power ?(C) over 1 or more period) . In addition
to reporting ( |+ |, |� |), it also reports real and reactive power (%,&), apparent power
|( |, and power factor cosq. Explain how to calculate these quantities from ( |+ |, |� |)
and ?(C).

Exercise 1.18. Consider Figure 1.26.

1. Shunt capacitor is Var source: Show that in Figure 1.26(a), (2 = (1 + il⇠ |+ |2.
2. Short transmission line is inductive: Show that in Figure 1.26(b), if |+2 | = |+1 | then
(2 = (̄2.
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VC

s

S1 S2

(a) Shunt capacitor is VAR source

V1

I

L

V2S1 S2

(b) Short transmission line is inductive

Figure 1.26 Conservation of power



2 Transmission line models

An electric network consists of transmission and distribution lines that transfer power
from generators to loads. In this chapter we develop models for the end-to-end behavior
of a three-phase transmission or distribution line that map the voltage and current at one
end of the line to those at the other end, in two steps. In Chapter 2.1 we derive inductance
and capacitance parameters of a transmission line as functions of line geometry. In
Chapter 2.2 we use these parameters to develop circuit models for single-phase short,
medium, and long-distance transmission lines. These line models are building blocks
for single-phase network models developed in later chapters.

2.1 Line characteristics

The alternating currents in the conductors of a three-phase transmission line create
electromagnetic interactions among them that couple the voltages on, and currents and
charges in these conductors. In a balanced operation however the interactions are as if
the phases are decoupled. This allows per-phase analysis where, in each phase, the line
can be characterized as a combination of a series impedance and a shunt admittance
parameterized by:

series impedance per meter I := A + il; ⌦/m
shunt admittance per meter to neutral H := 6 + il2 ⌦�1/m

In this section we present models for these per-meter line parameters (A, ;) and (6,2).
In the next section we will use these parameters to derive a lumped-circuit model
of the line. This will justify modeling a transmission line by the ⇧ circuit model of
Example 1.3 in Chapter 1.1.4.

A three-phase line consists of multiple wires and therefore we need to derive the
series inductance ; and shunt capacitance 2 due to currents and charges in multiple
wires. The key property that will be important in our derivation is that the set of wires
carry currents in both directions so that the currents and charges in all the wires sum
to zero at all times, as expressed in (2.2) and (2.5) below.
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2.1.1 Series resistance A and shunt conductance 6

The direct current (dc) resistance of a conductor is

Adc :=
d)

�

⌦/m

where d) is called the conductor resistivity at temperature) and � is the cross-sectional
area of the conductor. Hence the per-meter resistance is inversely proportional to the
size of the line. The alternating current (ac) resistance (or e�ective resistance) of a
conductor is defined to be

Aac :=
%loss

|� |2 ⌦/m

where %loss is the real power loss in W and |� | is the root-mean-square of the current in
A in the conductor. The current distributes uniformly throughout the conductor’s cross-
sectional area for dc. For ac, the current density is lower at the conductor center and
higher near the conductor surface. This is called the skin e�ect and is more pronounced
at higher ac frequencies. As frequency increases, the real power loss, and hence the
ac resistance, also increase. At 60 Hz the ac resistance is at most a few percent higher
than dc resistance. These e�ects are modeled by the series resistance A in ⌦/m in
transmission line models.

Shunt conductance 6 in ⌦�1/m accounts for real power loss between conductors
or between conductors and the ground, typically due to either leakage currents at
insulators or to corona. Insulator loss depends on the environment such as moisture
level. Corona occurs when a strong electric field at a conductor surface ionizes the air,
causing it to conduct. It depends on meteorological conditions such as rain. Losses due
to insulator leakage and corona are typically negligible compared to resistance loss
A |� |2. It is therefore common to assume zero shunt conductance 6 in transmission line
models.

2.1.2 Series inductance ;

Roughly, the per-meter series inductance ; in henrys/m of a wire is the proportionality
constant between the current 8 in a meter of the wire and the total magnetic flux linkages
_, i.e., _(C) = ;8(C), where 8(C) is in ampere and _ is in webers. We now study how the
per-meter series inductance ; of a wire depends on the geometry of the transmission
lines.

Single conductor. Consider a straight infinitely long wire of radius A with uniform
current density in the wire with a total current 8 (dropping C from the notation for
simplicity). The total flux linkages _' per meter of the wire within a radius ' of the
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wire is related to the current 8 and the geometry by:

_' =
`0

2c

✓
`A

4
+ ln

'

A

◆
8

where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A
is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.

conductor 1
radius r1

current i1

ik

Rk
d1k

R1 a

Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
': the distance of the center of conductor : from point 0. Then the total flux linkages
of conductor 1 is

_1 = lim
'1!1

`0

2c

 
81

✓
`A

4
+ ln

'1

A1

◆
+

=’
:=2

8: ln
':

31:

!
(2.1)

where ln denotes the natural log. We make the key assumption
=’
:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel
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each other at infinity. Formally, we add� ln'1
Õ
=

:=1 8: into the bracket on the right-hand
side of (2.1) to get

_1 = lim
'1!1

`0

2c

 
81

✓
`A

4
+ ln

1
A1

◆
+

=’
:=2

8: ln
1
31:

!
+ `0

2c

=’
:=1

8: ln
':

'1

As '1!1, ln(':/'1)! 0. Hence

_1 =
`0

2c

 
81 ln

1
A
0
1

+
=’
:=2

8: ln
1
31:

!

where A 01 := A14
�`A /4 is the radius of an equivalent hollow conductor with the same

flux linkages as the solid conductor of radius A. For a nonmagnetic wire, `A ⇡ 1 and
A
0
1 ⇡ 0.78A1.

In general the total flux linkages _: of conductor : depends not only on current 8:
but currents 8:0 in other conductors as well, and is given by

_: =
✓
`0

2c
ln

1
A
0
:

◆
8: +

’
:
0<:

✓
`0

2c
ln

1
3::0

◆
8:0 , : = 1, . . . ,= (2.3a)

where A 0
:

:= A:4�`A /4. In vector form this is

_ = !8 (2.3b)

where _ := (_: , : = 1, . . . ,=), 8 := (8: , 8 = 1, . . . ,=), and the (: , : 0)th entry of the =⇥ =
matrix ! is

!::0 =
⇢
� `0

2c lnA 0
:

if : = : 0

� `0
2c ln3::0 if : < : 0

(2.3c)

The voltage drop E: (C) between two points on conductor : that are separated by an
infinitesimal distance is related to the rate of change of the total flux linkages _: (C)
(Faraday’s law), i.e., E(C) = §_. Hence from (2.3b)

E(C) =
3

3C

_(C) = !

3

3C

8(C)

This relation, in the phasor domain, is used in Chapter 2.2.1 to derive a circuit model
of a transmission line. In a circuit model, the term

!:: := � `0

2c
lnA 0

:
henrys/m

is called the self-inductance per meter of conductor : and the term

!::0 := � `0

2c
ln3::0 henrys/m

is called the mutual inductances per meter between conductors : and : 0. The larger
the conductor A: the smaller the self-inductance !:: .
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2.1.3 Shunt capacitance 2

Roughly, the per-meter shunt capacitance 2, in farads/m, of a wire is the proportionality
constant between the charge @, in coulombs/m, in a meter of the wire and the voltage
E on the surface of the wire, i.e., @(C) = 2E(C). We now study how the per-meter shunt
capacitance 2 of a wire depends on the geometry of the transmission lines.

Consider the situation in Figure 2.1 with multiple conductors. A similar analysis to
that in Chapter 2.1.2 shows that the voltage, with respect to a reference at infinity, at a
point on the surface of conductor : is (cf. (2.3))

E: =
✓

1
2cn

ln
1
A:

◆
@: +

’
:
0<:

✓
1

2cn
ln

1
3::0

◆
@:0 , : = 1, . . . ,= (2.4a)

where n is the permittivity of the medium (n = 8.854⇥10�12 farads/meter in free space
and n ⇡ 1 farad/meter in dry air). The details are explained in [1, pp.75–79]. As before,
A: is the radius of conductor : and 3::0 is the distance between the centers of conductors
: and : 0. Here @: is the total charge per unit length of wire : in coulombs/m. In vector
form this is

E = �@ (2.4b)

where E := (E: , : = 1, . . . ,=), @ := (@: , : = 1, . . . ,=), and the (: , : 0)th entry of the =⇥=
matrix � is

�::0 =
⇢
� 1

2cn lnA: if : = : 0

� 1
2cn ln3::0 if : < : 0

(2.4c)

Taking time derivatives relates the currents in the conductors to the rate of change in
a voltage on the surface of the conductor relative to the reference, §E = �8(C), or

8(C) = ⇠

3

3C

E(C)

where ⇠ := ��1. The diagonal entries 2:: of ⇠ are called self-capacitances per meter
of conductor : and the o�-diagonal entries 2::0 of ⇠ are called mutual capacitances
per meter between conductors : and : 0, in farads/m. The larger the conductor A: the
larger the self-capacitance 2:: .

The key assumption (among others) in deriving (2.4) is (cf. assumption (2.2))
=’
:=1

@: (C) = 0 at all times C (2.5)

Example 2.1. The voltage E: in (2.4) is the potential, or voltage with respect to the
reference at infinity, at a point on the surface of conductor : . The voltage di�erence
E 9: between two points on the surfaces of two parallel conductors 9 and : that are on
a plane perpendicular to conductor 9 is:

E 9: := E 9 � E: =
1

2cn
©≠
´
@ 9 ln

3: 9

A 9

� @: ln
3 9:

A:

+
’
:
0< 9,:

@:0 ln
3::0

3 9:0

™Æ
¨
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2.1.4 Balanced three-phase line

Consider the simplest model of a symmetric three-phase transmission line in balanced
operation, as shown in Figure 2.2, with the assumptions:

1. the conductors are equally spaced at ⇡ and have equal radii A;1

2. 80 (C) + 81 (C) + 82 (C) = 0 at all times C;
3. @0 (C) + @1 (C) + @2 (C) = 0 at all times C.

D D

D

r

Figure 2.2 Per-meter inductance and capacitance of a symmetric three-phase transmission line
in balanced operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the e�ect
of mutual inductances and capacitances among the transmission lines is particularly
simple, resulting in the following equal per-phase inductance for each line:

; =
`0

2c
ln
⇡

A
0 H/m (2.6a)

where A 0 := A4�`A /4, and equal per-phase capacitance for each line:

2 =
2cn

ln(⇡/A) F/m (2.6b)

Note that ; and 2 include not only the self-inductance and self-capacitance of the line,
but also mutual inductances and capacitances. Two implications are as follows:

1. Although there is magnetic coupling between phases, the conditions 80 (C) + 81 (C) +
82 (C) = 0, @0 (C) + @1 (C) + @2 (C) = 0 and the symmetry (equal radii A and distances
⇡) reduce the e�ect of the magnetic coupling to the term ln⇡. This allows us
to model the magnetic e�ect as if it consists of only self-inductance and electric
e�ect as if it consists of only self-capacitance. Moreover, the inductances and
capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance due to inductance or capacitance, we can reduce the
spacing ⇡ or increase the wire radius A. Both have limitations. Other techniques
are used in practice to approximate condition 1 above on the symmetry of line
geometry, e.g., conductor bundling and transposition of the transmission lines.

1 We use A to denote both the per-meter series resistance and the radius of the conductor; the meaning
should be clear from the context.
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Consider any point ? that is equidistant from the centers of the conductors 0,1,2,
e.g., the point at the center of the triangle in Figure 2.2. The potential, or the voltage
relative to the reference point at infinity, at this point ? can be shown to be

E? =
1

2cn

✓
@0 ln

1
3?0

+ @1 ln
1
3?1

+ @2 ln
1
3?2

◆
(2.7)

where 3?0 = 3?1 = 3?2 are the distances between ? and the centers of the conductors.
Since @0 + @1 + @2 = 0 we have E? = 0, and hence ? has the same potential as the
reference point at infinity and can therefore be taken as the reference point. We will
construct an imaginary geometric line parallel to the conductors pass through the
equidistance point from these conductors. Every point on this line is the reference
potential. By default we will pick this as the neutral potential that defines the phase-to-
neutral voltages. The current supplied to the transmission line capacitance is called the
charging current and the corresponding capacitance is also called the line charging.
Figure 2.3 shows the corresponding circuit model of a transmission line. When the

a

c b

n

c

c c

F/m to neutral 

Figure 2.3 Circuit model of the cross section of a balanced three-phase transmission line.

phase 0 line-to-neutral voltage is +0=, the phase 0 charging current is

�0,charging = il2+0= A/m

from phase 0 conductor to neutral. This is the origin of the shunt admittances of
transmission line models studied in the next section.

2.2 Line models

Consider a three-phase transmission line in balanced operation in sinusoidal steady
state, modeled as in Figure 2.3. A key conclusion of Chapter 2.1.4 is that for balanced
three-phase lines, we can analyze each phase separately. Consider now a transmission
line on one of the phases. Let

series impedance per meter I := A + il; ⌦/m
shunt admittance per meter to neutral H := 6 + il2 ⌦�1/m
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where the per-meter resistance A > 0 and conductance 6 � 0 depend on the material
and size of the line, and the per-meter inductance ; > 0 and parameter 2 > 0 of the
line can be calculated as in Chapters 2.1.2–2.1.4. In this section we use the per-phase
line parameter (I, H) to model the end-to-end behavior of a balanced three-phase
transmission line, and derive two equivalent models. The first model represents the
terminal behavior, i.e., the mapping of the voltage and current between one end of
the line and those at the other end, by a transmission matrix in (2.10) below. The
second model represents the terminal behavior of the line by a linear circuit with series
impedance and shunt admittances given in (2.15) below.

2.2.1 Transmission matrix

Distributed-element model. We start by deriving the+-� relations between two ends
of a transmission line. Figure 2.4 shows a per-phase model of a balanced three-phase
line of length ✓. The voltages are phase (line-to-neutral) voltages as illustrated in Figure
2.3. We will call the left end the sending end and the right end the receiving end. When
we apply a voltage +1, with respect to neutral, at the sending end driving a current �1
towards the receiving end, the voltage drops and the current leaks from the sending
end to the receiving end so that the voltage+ (G) and current � (G) at each point G of the
line vary. We will derive a relation between the sending end (+1, �1) and the receiving
end (+2, �2) by solving for (+ (G), � (G)) in terms of (+2, �2) for all 0  G  ✓.

V1

I1
zdx

V2V(x)V(x)+dV ydx

I2I(x)

dI

dx x

Figure 2.4 Per-phase model of a balanced three-phase line of length ✓ with impedance
parameters I, H.

To this end consider the infinitesimal segment of length 3G at a distance G from the
receiving end. This segment is modeled by the circuit with series impedance I3G and
shunt admittance H3G to neutral as shown in Figure 2.4. Let the voltage and current
at point G be + := + (G) and � := � (G) respectively. Let the corresponding quantities at
point G + 3G be + (G) + 3+ and � (G) + 3�. Applying Kirchho�’s laws to the segment, we
have

3+ = I� (G)3G
3� = (+ (G) + 3+)H3G ⇡ H+ (G)3G
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where the approximation results from ignoring the second-order term 3+3G. Hence
we have "

3+

3G

3�

3G

#
=


0 I

H 0

� 
+

�

�
(2.8)

Transmission matrix. The ordinary di�erential equation (2.8) can be easily solved
using standard method (see below for details), and the general solution is:

+ (G)
� (G)

�
= *


4
WG 0
0 4

�WG

� 
:1

:2

�
(2.9a)

for some constants :1, :2, where

* :=

/2 �/2
1 1

�
, *

�1 :=
1

2/2


1 /2

�1 /2

�
(2.9b)

Here

/2 :=
r
I

H

⌦ and W :=
p
IH <

�1 (2.9c)

are called the characteristic impedance and propagation constant of the line respec-
tively. At G = 0, + (0) =+2 and � (0) = �2. From (2.9) we have

+2

�2

�
= *


:1

:2

�

and hence 
+ (G)
� (G)

�
= *


4
WG 0
0 4

�WG

�
*
�1


+2

�2

�
, G 2 [0,✓]

The sending-end voltage and current are therefore related to the receiving-end
(+2, �2) as 

+1

�1

�
= *


4
W✓ 0
0 4

�W✓

�
*
�1


+2

�2

�

Expanding, we have 
+1

�1

�
=


cosh(W✓) /2 sinh(W✓)

/
�1
2

sinh(W✓) cosh(W✓)

� 
+2

�2

�
(2.10)

where coshG := (4G + 4�G)/2 and sinhG := (4G � 4�G)/2. This defines a linear mapping
that maps the voltage and current (+2, �2) at the receiving end to the voltage and current
(+1, �1) at the sending end. The matrix in (2.10) is called a transmission matrix.

The ratio +1/�1 at the sending end is called the driving-point impedance. It is the
equivalent impedance across the two sending-end terminals.
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Example 2.2 (Driving-point impedance). Consider the terminal model (2.10) of a
transmission line. Suppose the receiving end is connected to an impedance load /; .
Show that the driving-point impedance +1/�1 is equal to the characteristic impedance
/2 of the line under one of the following conditions:

• if the load is matched to the line, i.e., /; = /2; or
• if the line length ✓ grows to infinity, since the line parameters satisfy A ,G,6,2 > 0.

The second condition implies that as the line grows in length its impedance comes to
dominate the load impedance /; .

Solution. Since +2 = /; �2, we have from (2.10) that when /; = /2

+1

�1
= /2

cosh(W✓) + sinh(W✓)
sinh(W✓) + cosh(W✓) = /2

For the second case, we have from (2.10)

+1

�1
= /2

/; cosh(W✓) + /2 sinh(W✓)
/; sinh(W✓) + /2 cosh(W✓) = /2

/; + /2 tanh(W✓)
/; tanh(W✓) + /2

Now W =
p
IH =:

p
Ŵ where Ŵ := (A6�l2

;2) + il(A2+6;). Note that ImŴ > 0 and hence
\Ŵ 2 (0,c) and W 2 (0,c/2). If we write W =: U+ iV then U > 0. Hence

cosh(W✓) =
1
2

⇣
4
W✓ + 4�W✓

⌘
=

1
2

⇣
4
(U+iV)✓ + 4�(U+iV)✓

⌘

sinh(W✓) =
1
2

⇣
4
W✓ � 4�W✓

⌘
=

1
2

⇣
4
(U+iV)✓ � 4�(U+iV)✓

⌘

and

tanh(W✓) =
4
(U+iV)✓ � 4�(U+iV)✓

4
(U+iV)✓ + 4�(U+iV)✓ =

1� 4�2(U+iV)✓

1+ 4�2(U+iV)✓ ! 1 as ✓!1

Hence +1/�1! /2 as ✓!1. ⇤

Example 2.3 (Matched load). Suppose the line is terminated in its characteristic
impedance /2 , i.e., +2 = /2 �2. Then (2.10) yields

+1 = (cosh(W✓) + sinh(W✓))+2 = +2 4
W✓

�1 = (cosh(W✓) + sinh(W✓)) �2 = �2 4
W✓

Therefore the driving-point impedance +1/�1 is also the characteristic impedance /2
of the line, as shown above. Moreover the ratio of the receiving to sending end voltages
and currents are

+2

+1
=
�2

�1
= 4

�W✓

The ratio of the receiving power to the sending power is

�(21

(12
=
+2 �̄2

+1 �̄1
= 4

�W✓
⇣
4
�W✓

⌘H
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Using W =
p
IH =

p
(A6�l2

;2) + il(A2+6;) =: U+ iV, we have

�(21

(12
= 4

�2U✓

Since 4�2U✓ is real, the powers have the same phase angle \(�(21) = \(12 =: \. This
implies that the ratio of the complex powers is the same as the ratio of the real power
�%21 received and real power %12 sent, or the transmission e�ciency [:

[ :=
�%21

%12
=
�(21 cos\
(12 cos\

= 4
�2U✓

Hence for an impedance load that is matched to the line impedance /2 , the transmission
e�ciency [ decreases exponentially in the line length ✓. For high-voltage transmission
lines, U ⇡ 0 so the loss is small and [ ⇡ 1.

Indeed, for a lossless line, A = 6 = 0. Then I = il; and H = il2. Hence

/2 =
r
I

H

=

r
;✓

2✓

=

r
!

⇠

is real, where ! and ⇠ are the total inductance and capacitance of the line respectively,
and

W =
p
IH = il

p
;2

is purely imaginary (U = 0). The transmission e�ciency is [ = �%21/%12 = 1. We will
study lossless lines in more detail in Chapter 2.2.4. ⇤

Solution of (2.8). First we note that even though (+ , �) and the parameters (H, I) are
complex variables, the variable G (distance from terminal 2) is a real variable. Hence
the ordinary di�erential equation (ode) (2.8) can be solved in the same way as an ode
in the real domain. To see this consider a general ode:

§I :=
3I

3C

= "I (2.11)

where I := G + 9 H 2 C= with G, H in R= and " := �+ 9⌫ 2 C=⇥= with �,⌫ in R=⇥=,
with the interpretation §G + 9 §H = (�+ 9⌫) (G + 9 H). Rewrite this in the real domain:

§G
§H

�
=


� �⌫
⌫ �

�
|     {z     }

"̃


G

H

�
(2.12)

The two matrices

" = �+ 9⌫ and "̃ =

� �⌫
⌫ �

�

are equivalent, written "$ "̃ , in the sense that for any I = G + iH with G, H 2 R=,
Re("I)
Im("I)

�
= "̃


G

H

�
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Since

"
2 =

⇣
�

2�⌫2
⌘
+ 9 (�⌫+⌫�) and "̃

2 =

�

2�⌫2 �(�⌫+⌫�)
�⌫+⌫� �

2�⌫2

�

we have "̃2 $ "
2, and by induction "̃: $ "

: for all : . Hence 4"̃ $ 4
" . This

implies that a trajectory I(C) 2 C= is a solution of (2.11) if and only if (G(C), H(C)) 2 R2=

with I(C) =: G(C) + iH(C) is a solution of (2.12). Hence solving (2.12) using "̃ in the
real domain is equivalent to solving (2.11) using " directly in the complex domain.

We now solve the ode (2.8). Let

� :=

0 I

H 0

�

Then the eigenvalues of � are ±W where W :=
p
HI is the propagation constant defined

in (2.9c). Recall the characteristic impedance of the line /2 :=
q
I

H
also defined in

(2.9c). The corresponding eigenvectors are (any vectors proportional to) the columns
of the matrix* defined in (2.9b). Let*�1 be its inverse. Since �* =*diag(W,�W), if
we define 

+̃ (G)
�̃ (G)

�
:= *

�1

+ (G)
� (G)

�
(2.13)

then

3

3G


+̃

�̃

�
= *

�1
�


+ (G)
� (G)

�
= *

�1
�*

✓
*
�1


+ (G)
� (G)

� ◆
= diag(W,�W)


+̃ (G)
�̃ (G)

�

i.e., +̃ and �̃ are decoupled. Hence

+̃ (G) = :14
WG and �̃ (G) = :24

�WG

for some constants :1, :2. Then (2.13) implies that the general solution of (2.8) is
(2.9). ⇤

2.2.2 ⇧-circuit model

If we are only interested in the terminal voltages and currents of a line, then we can
represent the line by a lumped-circuit model as shown in Figure 2.5 that consists of a
series impedance / 0 and a shunt admittance . 0/2 at each end of the line. This is called
the ⇧ model or ⇧-circuit model of a transmission line. We now derive the parameters
(/ 0,. 0) in the ⇧ model in terms of line characteristics (/2 ,W).

Applying Kirchho�’s laws we have

�1 =
.
0

2
+1 +

.
0

2
+2 + �2

+1�+2 = /
0
✓
.
0

2
+2 + �2

◆
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V1

I1

V2

I2

Y'
2

Z'

Y'
2

Figure 2.5 Lumped-circuit ⇧ model of a transmission line.

Hence, in terms of the transmission matrix,
+1

�1

�
=


1+ / 0. 0/2 /

0

.
0(1+ / 0. 0/4) 1+ / 0. 0/2

� 
+2

�2

�
(2.14)

Comparing (2.14) and (2.10) we find that the ⇧ model in Figure 2.5 is given by:

/
0 = /2 sinh(W✓) =

r
I

H

sinh(W✓) = /

sinh(W✓)
W✓

(2.15a)

.
0

2
=

1
/2

cosh(W✓)�1
sinh(W✓) =

1
/2

sinh(W✓/2)
cosh(W✓/2) =

.

2
tanh(W✓/2)
W✓/2 (2.15b)

where / := I✓ is the total series impedance of the line and . := H✓ is the total shunt
admittance to neutral of the line. An equivalent representation of (2.14) is in terms of
an admittance matrix that we will use extensively in later chapters that maps (+1,+2)
to (�1,��2): 

�1

��2

�
=


/
0�1 +. 0/2 �/ 0�1

�/ 0�1
/
0�1 +. 0/2

� 
+1

+2

�

When |W✓ | ⌧ 1 then sinh(W✓)/(W✓) ⇡ 1 and tanh(W✓/2)/(W✓/2) ⇡ 1, in which case
the ⇧ model in Figure 2.5 can be approximated by the total series impedance / and
total shunt admittance . to neutral of the line.

In summary each phase of a balanced three-phase transmission line can be modeled
as follows:

• Long line (✓ > 150 miles approximately): Use either (2.10) or the ⇧-circuit model
with / 0 and . 0 given by (2.15).

• Medium line (50 < ✓ < 150 miles approximately): Use the ⇧-circuit model with
/ := I✓ and . := H✓ instead of / 0 and . 0. Here / = ' + il! is the total series
impedance of the line and . = il⇠ is the total shunt admittance to neutral of the
line. In particular, for medium lines, the shunt resistance is negligible.

• short line (✓ < 50 miles approximately): Use the ⇧-circuit model with / only and
neglect . .
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2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1
are (from Kirchho�’s laws):

(12 := +1 �̄1 =
1

/̄
0

⇣
|+1 |2�+1+

�

2

⌘
+ .̄
0

2
|+1 |2

(21 := +2 (��̄2) =
1

/̄
0

⇣
|+2 |2�+2+

�

1

⌘
+ .̄
0

2
|+2 |2

They are not negatives of each other because of power loss along the line. Indeed the
total complex power loss is their sum:

(12 + (21 =
1

/̄
0 |+1�+2 |2 +

.̄
0

2

⇣
|+1 |2 + |+2 |2

⌘
= /

0 |�B12 |2 +
.̄
0

2

⇣
|+1 |2 + |+2 |2

⌘

where �B12 denotes the current through the series impedance / 0. The first term on the
right-hand side is loss due to series impedance and the last term are losses due to shunt
admittances of the line. Suppose / 0 = 'B + i-

B with 'B > 0, -B > 0 (inductive) and
the shunt admittance is purely capacitive, i.e., . 0 = i⌫

< with ⌫< > 0. Then, over the
transmission line,

real power loss Re ((12 + (21) = '
B |�B12 |2

reactive power loss Im ((12 + (21) = -
B |�B12 |2�

⌫
<

2

⇣
|+1 |2 + |+2 |2

⌘

Remark 2.1 (High voltage reduces line loss). Consider a load supplied by a source
through a transmission line modeled by a series impedance ' + i- and zero shunt
admittances. Suppose the load draws an active power %load with power factor cosq at
a specified voltage magnitude |+load |. It can be shown that, given a desired active load
power %load, the active line loss %line is inversely proportional to the square of the load
voltage magnitude |+2 | and its power factor cosq (Exercise 2.7):

%line = ' |�load |2 = '

%
2
load

|+2 |2 cos2
q

Therefore a higher voltage (magnitude) reduces line loss.

Note that the higher voltage refers to the voltage |+2 | across the load (and eventually
the source voltage |+1 |), not the voltage across the transmission line which is |+1�+2 |;
see Figure 2.5. It is derived in Example 1.9 that, given a desired load power, the active
line loss is inversely proportional to |+2 |, rather than |+2 |2. This is because, in Exercise
2.7, the line resistance ' is given and independent of load power and voltage |+2 |,
whereas, in Example 1.9, the line resistance ' is chosen to be proportional to |+2 |
(reducing the dependence of line loss ' |�load |2 from |+2 |2 to |+2 |). ⇤
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2.2.4 Special case: lossless line

In this subsection we consider the special case where the series resistance and the shunt
conductance are negligible, i.e., where the line parameters A = 6 := 0. A lossless line is
an important model because a high-voltage transmission line typically has very small
power loss compared with the power flow on the line, and can be modeled as a lossless
line. As noted above the characteristic impedance and propagation constant of the line
become:

/2 =
r
I

H

=

r
il;

il2
=

r
;

2

⌦

W =
p
IH =

p
(il;) (il2) = il

p
;2 =: iV <

�1

with V := l
p
;2. Therefore /2 is purely resistive while W is purely reactive. The

characteristic impedance /2 is called a surge impedance for a lossless line. This
implies

cosh(WG) = cos(VG), sinh(WG) = isin(VG) (2.16)

⇧-circuit model. Substituting (2.16) into (2.10) the transmission matrix reduces to
+ (G)
� (G)

�
=


cos(VG) i/2 sin(VG)

i/
�1
2

sin(VG) cos(VG)

� 
+2

�2

�
, G 2 [0,✓] (2.17)

The circuit elements / 0 and . 0 in the ⇧-circuit model of a transmission line reduces
to (from (2.15)):

/
0 = /2 sinh(W✓) = i/2 sin(V✓) =: i- ⌦ (2.18a)

.
0

2
=
.

2
tanh(W✓/2)
W✓/2 =

.

2
tan(V✓/2)
V✓/2 =: i

l⇠
0

2
⌦�1 (2.18b)

where - :=
p
;/2 sin(V✓), . := il2✓ and ⇠ 0 := 2✓ (tan(V✓/2)/(V✓/2)). If ✓ is small

then ⇠ 0 ⇡ 2✓. When V✓ < c radian, both - > 0 and l⇠ 0 > 0, i.e., the series impedance
is purely inductive and the shunt admittances are purely capacitive. In practice, for
overhead lines, 1/

p
;2 ⇡ 3⇥108 ms�1. At 60 Hz (using V := l

p
;2)

c

V

=
c

2c(60)
p
;2

⇡ 2,500 km

Hence a lossless overhead transmission line less than 2,500 km can be modeled by the
simple circuit in Figure 2.6 where - and ⇠ 0 are given in (2.18). It is a model for either
a single-phase line or the phase-to-neutral of a balanced three-phase line.

Voltage profile. Usually power must be delivered to a load at a specified nominal
voltage magnitude |+2 | at the load. To see how the voltage magnitude changes along a
line from the source G = ✓ to the load G = 0, we determine the voltage+ (G) for G 2 [0,✓]
using (2.17):

+ (G) = +2 cos(VG) + i/2 �2 sin(VG) (2.19)
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V1

I1 iX

V2

I2

2

Figure 2.6 ⇧-circuit model for a lossless line with length ✓ < c/V.

Suppose the line terminates at an impedance load /load := 'load + i-load. Then the
voltage + (G) at each point G depends on the load impedance because +2 = /load�2.
There are four cases of load impedance:

1. No load �2 = 0: Then+ (G) =+2 cos(VG) and hence the voltage magnitude |+ (G) | =
|+2 | cos(VG) increases from the source at G = ✓ to the end of the line at G = 0 as
long as V✓ < c/2 radian.

2. Surge impedance load /load = /2: The voltage magnitude |+ (G) | = |/2 �2 | is con-
stant, independent of G. Moreover the power delivered ((G) at every point G 2 [0,✓]
is real and constant |+2 |2//2 , so only real power is delivered. See Exercise 2.4.

3. Full load: Since �2 =+2//load we have

+ (G) =
✓
cos(VG) + i

/2

/load
sin(VG)

◆
+2

=
✓
cos(VG) + /2-load

|/load |2
sin(VG) + i

/2'load

|/load |2
sin(VG)

◆
+2 (2.20)

In Exercise 2.5 we derive su�cient conditions under which the voltage magnitude
|+ (G) | decreases from the source at G = ✓ to the load /load at G = 0.

4. Short circuit +2 = 0: + (G) = i/2 �2 sin(VG). Hence the voltage magnitude |+ (G) |
decreases from the source at G = ✓ to the load at G = 0 as long as V✓ < c/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude

no load I2 = 0

full load

SIL z load = zc 

short circuit V2 = 0

|V(x)|

x = 

Figure 2.7 Voltage magnitude |+ (G) | on a lossless line.

towards the load (case 3 above) can be problematic because loads are generally designed
to work with specific voltages. As mentioned above low load voltage also increases line
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loss in the network. Voltages are regulated tightly around their nominal values through
various voltage compensation devices in generating units and inside the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic
load we have from (2.18) that

�2 =
+1�+2

i-
� i
l⇠
0

2
+2

Hence the complex power delivered is

�(21 = +2 �̄2 = �
✓ |+2 |2�+2+̄1

�i-
� i
l⇠
0

2
|+2 |2

◆

and the real power delivered is

�%2 =
|+1 | |+2 |
-

sinX

where X := \+1 � \+2 is the angle di�erence between +1 and +2. Hence the maximum
power is delivered on a lossless line if X = c/2 and the maximum power would have
been |+1 | |+2 |/- . This X = c/2 is called the steady-state stability limit. If the load
exceeds this limit, there is no solution for X for this equation. In practice a transmission
network operates with X⌧ c/2 because a line is typically limited by three other factors.
First the voltage drop from the source to the load must be small, e.g., |+2 |/|+1 | � 95%.
Second X is usually limited to 30� or 35� by transient stability. Third X can be limited
by the thermal rating of the conductor insulation materials. ⇤

2.2.5 Special case: short line

In this subsection we consider the special case where the shunt susceptance is negli-
gible, i.e., where the line parameter H := 6 + il2 := 0. This is a good model for a short
transmission line which can be represented by a⇧ circuit with only a series impedance
/ = ' + i- and no shunt admittances. We explain some properties of the complex
power transfer over this line.

Let +8 and �8 be the voltages and currents at buses 8 = 1,2. Let (8 9 , 8, 9 = 1,2, be the
sending-end complex power from bus 8 to bus 9 , 8 < 9 , and �8 9 be the complex current
from bus 8 to bus 9 . Then

(8 9 = +8 �̄8 9 = +8

+̄8 � +̄ 9
/̄

=
1

/̄

⇣
|+8 |2�+8+̄ 9

⌘
(2.21)

If the voltage magnitudes |+8 |, 8 = 1,2, are fixed, the branch powers depend only on the
power angle \8 9 := \8 � \ 9 :

(8 9 =
1

/̄

⇣
|+8 |2� |+8 | |+ 9 |4 9 \8 9

⌘
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Taking the sum of the branch powers in (2.21), the complex loss over the line is

(12 + (21 =
|+1�+2 |2

/̄

= / |�12 |2

where �12 is the current from buses 1 to 2. In particular the real power loss is %12+%21 =
' |�12 |2.

Nose curve and voltage collapse. Suppose bus 1 has a generator with a fixed
+1 := |+1 |\0� supplying a load at bus 2 through a line with impedance / . Let the power
supplied to the load be �(21 = |(21 | (cosq+ isinq) =: %(1+ i tanq) where % > 0 is the
active load power and q is the power factor angle. The power flow equation (2.21)
hence becomes

%(1+ i tanq) = � 1

/̄

⇣
|+2 |2� |+2 | |+1 |4i\21

⌘
(2.22)

where \21 := \+2 � \+1 = \+2. Voltage support is typically available on the generator
side, so we assume |+1 | is fixed even when the load power varies.2 Voltage support
may not be available on the load side and we are interested in the behavior of the load
voltage |+2 | as the active load power % increases while keeping the power factor angle
q constant.

Fix+1 and q. For each %, (2.22) defines two real equations in two variables |+2 | and
\21. For this simple system we can analytically solve for |+2 | for each %. Depending
on the value of %, there may be zero, one, or two solutions for |+2 |. As % varies, the
solutions |+2 | trace out a curve called a nose curve. As % increases from zero with
fixed power factor angle q, there are exactly two solutions for |+2 |, one with a high
voltage and the other with a low voltage. The di�erence between the high-voltage
solution and the low-voltage solution of |+2 | decreases until they coincide. This is the
point where the active load power % = %max is maximum and represents the limit of
power transfer from the voltage source +1 through the transmission line / to the load.
If % increases further, real solutions for |+2 | cease to exist. This phenomenon is called
voltage collapse. This is studied in Exercise 2.9.

Short and lossless line A := 0, H := 0. Suppose the series resistance is negligible
(which is a reasonable approximation for high voltage transmission lines), / = i- .
Then (2.21) reduces to

(8 9 = i
1
-

⇣
|+8 |2�+8+̄ 9

⌘

2 An ideal voltage source whose complex bus voltage is fixed regardless of its power generation is called
an infinite bus.
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Hence

%12 =
|+1 | |+2 |
-

sin\12 = �%21 (2.23)

&12 =
1
-

⇣
|+1 |2� |+1 | |+2 | cos\12

⌘

&21 =
1
-

⇣
|+2 |2� |+1 | |+2 | cos\12

⌘

where \12 := \+1� \+2. This has the following implications.

1. Transmission e�ciency. The transmission e�ciency [ := �%21/%12 = 1 since there
is zero real power loss. The maximum power transfer |+1 | |+2 |/- is proportional
to voltage magnitude product. This is another reason why transmission networks
tend to operate at very high voltage levels. Indeed doubling the voltage increases
the maximum power transfer capability by fourfold.

2. DC power flow model. When voltage magnitudes are fixed, the real power depends
only on the power angle \12. When the power angle is small |\12 | ⇡ 0, sin\12 ⇡ \12

and the real powers %8 9 are roughly linear in the phase angles (\1,\2). These
assumptions are called the DC power flow approximation (' = 0, fixed |+8 |, small
|\8 9 |, ignore &8 9 ). This model is studied in Chapter 4.6.2.

3. Decoupling. When |\12 | ⇡ 0, there is a decoupling between real and reactive
powers:

m%12

m\12
= �m%21

m\12
=

|+1 | |+2 |
-

cos\12 ⇡
|+1 | |+2 |
-

m%12

m |+8 |
= �m%21

m |+8 |
=

|+ 9 |
-

sin\12 ⇡ 0, 8, 9 = 1,2

i.e., the real powers %8 9 depend strongly on \12 but not on the voltage magnitudes
|+: |.

On the other hand

m&8 9

m\12
=

|+1 | |+2 |
-

sin\12 ⇡ 0

i.e., the reactive powers &8 9 depend weakly on the power angle \12. Moreover

m&12

m |+2 |
= � |+1 |

-

cos\12 < 0,
m&21

m |+2 |
=

1
-

(2|+2 |� |+1 | cos\12)

Typically |+1 | ⇡ |+2 | and hence the second expression above is positive. Hence to
maintain a high load voltage |+2 |, we should increase&21 and/or decrease&12, i.e.,
the load should supply reactive power and the generation should absorb reactive
power. This motivates the use of reactive power to regulate voltage magnitudes.
The decoupling property holds in a network setting as well and leads to a fast
algorithm to solve power flow problems studied in Chapter 4.4.3.

4. Out-of-step generators. When generators are not synchronized, i.e., they operate
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with slightly di�erent frequencies, the long-run average active power transmitted
across a lossless line is zero. To see this, consider voltages at buses 1 and 2:

E1 (C) =
p

2|+1 | cos(l0C + \1), E2 (C) =
p

2|+2 | cos(lC + \2)

where the frequency l0 at bus 1 is slightly out of step, with l0 ⇡ l. Write

E1 (C) =
p

2|+1 | cos(lC + \ 01 (C))

with a slowly-varying phase \ 01 (C) := \1 + (l0 �l)C. If the phase \ 01 (C) varies
slowly enough, we can still use the steady-state expressions above as reasonable
approximations of powers. Then the short-term active power is given by (from
(2.23)):

%12 =
|+1 | |+2 |
-

sin ((l0 �l)C + \12)

Hence the long-term average of active power transfer is zero. This is not only
ine�ective, but highly undesirable because the line current can be very large. In
practice protective devices would remove the out-of-step generator.

2.3 Chapter summary

1. Electromagnetic interactions couple the voltages and currents in di�erent con-
ductors in a three-phase transmission line. In a balanced operation however these
interactions are as if the phases are decoupled, giving rise to a single-phase model
in which a line is characterized by per-meter impedance I and shunt admittances
H.

2. These line characteristics yield a lumped-element⇧ circuit that relates the voltages
and currents at both ends of the line in terms of a transmission matrix (2.10) or
(2.14), or equivalently, an admittance matrix.

2.4 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]; see also [2, Chapter 4]. The line characteristics in Chapter 2.1 depend on basic results in physics
that we do not elaborate on. For example, the derivation of the shunt capacitance 2 of a transmission line in
Chapter 2.1.3 is explained in [1, Chapters 3.7–3.8] or [2, Chapters 4.8–4.12]). The expression (2.7) for the
potential E? at the center of a balanced three-phase transmission line is from [1, Example 3.8, p. 79]. Some
of the materials on lossless lines follow [2].

2.5 Problems

Chapter 2.1.
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Exercise 2.1 (Balanced three-phase line). Derive the per-phase inductance and capac-
itance per meter (2.6) of a symmetric three-phase transmission line.

Chapter 2.2.

Exercise 2.2 (Line characteristics). Consider the per-phase transmission line model
described by (2.10). We are to determine the line characteristic impedance /2 and
propagation constant W✓ from two measurements:

1. Open-circuit test. The load side is open-circuited so that �2 = 0 and the driving-
point impedance is measured as />2 :=+1/�1.

2. Short-circuit test. The load side is short-circuited so that +2 = 0 and the driving-
point impedance is measured as /22 :=+1/�1.

Derive /2 and W✓ in terms of />2 and /B2 (sign ambiguity is fine).

Exercise 2.3 (⇧ circuit representation). Consider a transmission line modeled by a
general transmission matrix ) that maps the receiving-end voltage and current (+2, �2)
to those (+1, �1) at the sending-end:

+1

�1

�
=


0 1

2 3

�
|  {z  }

)


+2

�2

�

1. Show that the transmission matrix ) in (2.10) has the property 03 � 12 = 1.
2. Suppose 1 < 0 in ) . Show that 03� 12 = 1 is a necessary and su�cient condition

for the transmission line to have a ⇧ circuit representation (with possibly di�erent
shunt admittances at the sending and receiving ends).

Exercise 2.4 (Surge impedance load (SIL) on lossless line.). Consider a lossless line
with A = 6 = 0 that terminates in an impedance load that is equal to the characteristic
(surge) impedance /load = /2 =

p
;/2 ⌦ of the line. The power delivered by a lossless

line to the resistive load /2 is called the surge impedance loading (SIL).

1. Show that the voltage magnitude |+ (G) | is constant over G 2 [0,✓].
2. Calculate SIL in terms of the load voltage magnitude |+2 | (a load typically has a

known nominal operating voltage magnitude).

Exercise 2.5 (Voltage drop along lossless line). We have derived in Chapter 2.2.4 the
voltage + (G) at each point G 2 [0,✓] along a lossless line terminating at an impedance
load /load = 'load + i-load to be (from (2.20)):

+ (G) =
✓
cos(VG) + /2-load

|/load |2
sin(VG) + i

/2'load

|/load |2
sin(VG)

◆
+2

Assume V✓ < c/4. Prove the following:
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1. If the load is purely resistive /load = 'load then |+ (G) | is an increasing function for
all G 2 [0,✓] (i.e., the voltage magnitude |+ (G) | drops from the source at G = ✓ to
the load /load at G = 0) if and only if 'load  /2 .

2. If the load is purely inductive /load = i-load with -load > 0 then |+ (G) | is an
increasing function for all G 2 [0,✓] if and only if

-load 
sin(2V✓)

1� cos(2V✓) /2

3. If /load = 'load (1+ i) then |+ (G) | is an increasing function for all G 2 [0,✓] if and
only if

'load 
 s

1+ 1

sin2 (2V✓)
� cot(2V✓)

!�1

/2

Exercise 2.6 (Voltage, reactive power compensation). Consider a generator with volt-
age and power injection (+ 9 , B 9 ) supplying a load with voltage and power injection
(+: , B: ) through a transmission line parametrized by series and shunt admittances⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. Power balance at the load bus : is (with HB

: 9
= HB

9:
)

B: = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2 (2.24)

Let HB
: 9

=: 6B
: 9

+ i1
B

: 9
and H<

: 9
=: 6<

: 9
+ i1

<

: 9
and suppose 6B

: 9
� 0, 1B

: 9
< 0 (inductive)

and 6<
: 9
� 0, 1<

: 9
� 0 (capacitive). Let B: =: ?: + i@: , and +8 =: |+8 | 4i\8 , 8 = 9 , : . Use

(2.24) to express the receiving real power �?: and receiving reactive power �@: in
terms of the voltage magnitudes |+ 9 |, |+: |, and the angle di�erence \: 9 := \: � \ 9 .

Suppose H<
: 9

= 0 (zero shunt), 6B
9:

= 0 (loss line), and 0 < |\: 9 |  c/2 (power flow
solution stability).

1. Show that real power is delivered to the load (i.e., �?: > 0) if and only if �c/2 
\: 9 < 0.

2. The next few questions study the relation between load voltage magnitude |+: |
and reactive power injection @: . Show that:
(a) For DC load (i.e., @: = 0), we must have |+: | < |+ 9 |, i.e., the load voltage

magnitude must be smaller than the generator voltage magnitude.
(b) On the other hand, |+: | = |+ 9 | implies that @: > 0, i.e., the load must inject

reactive power to maintain a high load voltage magnitude.
(c) If �@: > 0 (i.e., the load withdraws reactive power), then |+: | < |+ 9 | cos\: 9

(i.e., load voltage magnitude will be further suppressed).
3. The power factor angle is q: := tan�1 (@:/?: ) and the power factor PF is cosq: .

Show that

1+ tanq: tan\: 9 =
|+: |

|+ 9 | cos\: 9

When |+: | = |+ 9 | cos\: 9 , what is the PF and is the load withdrawing or injecting
real power?
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4. Suppose further that + 9 := 1\0� and 1
B

9:
= �1. Suppose that the load voltage

magnitude |+: | must lie between [1� n ,1+ n].
(a) At unity power (@: = 0), find the maximum received power �?: and the

corresponding load voltage phasor+: = |+: | 4i\: . Conclude that the maximum
received real power satisfies �?:  1

2 .
(b) Show that the maximum received real power is �?: = (1+ n) when the load

must inject the reactive power @: = (1+ n)2.

Exercise 2.7 (Voltage, line loss and voltage drop). Consider two buses 1 and 2 con-
nected by a transmission line modeled by a per-phase ⇧ circuit model with series
impedance I and shunt admittance (line charging) H/2 at each end of the line, as shown
in Figure 2.8. Let (12 be the sending-end complex power from buses 1 to 2 and (21

One-line diagram: 

V1

I1

S12 S21

V2

I2

y
2

y
2

z

V2V1

S21

z 2
y

2
y,,( )

S12

Figure 2.8 Two buses connected by a transmission line.

be the sending-end complex power from buses 2 to 1 (or, equivalently, �(21 is the
receiving-end complex power at bus 2). Note that the direction of load current �2 is
opposite to the convention we used in Chapter 2.2.2.

1. Calculate the complex line loss as a function of voltages (+1,+2). Can you express
the complex line loss in terms of the load voltage and current (+2, �2) instead?

2. Suppose bus 2 is connected to a load that draws a fixed active power %load with a
fixed power factor cosq at a fixed voltage magnitude |+2 |. Suppose I = A + iG and
the shunt admittance H/2 = i1/2 is purely reactive. Calculate the active power loss
%line over the line in terms of the active load power %load, the power factor angle
q, and the load voltage |+2 |.

For the following subproblems, assume H = i1 = 0 (short transmission line). Suppose
the active load power %load is fixed and given.

3. Show that the active line loss %line derived in part 2 of the problem is

%line = A

%
2
load

|+2 |2 cos2
q

i.e., it is inversely proportional to the squared load voltage |+2 |2 and to the squared
power factor cos2

q.
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4. Suppose now the load at bus 2 is an electric vehicle that draws an active power
of %load = 20 kW with unity power factor at a voltage magnitude of |+2 | = 200V.
Calculate the ratio of the active power loss to the active load power if A = 0.04⌦
(wires with gauge number 6 at 100ft).

5. Show that the relative voltage drop across the transmission line is:

|+1�+2 |
|+2 |

= |I | %load

|+2 |2 cosq

Hence the larger the load voltage the smaller the voltage drop across the line.

Exercise 2.8. Consider the short-line model (12 = ( Ī)�1 �
|+1 |2�+1+̄2

�
of a transmis-

sion line with I := H�1
4

iq that connects bus 1 and bus 2, where H 2 R is real. Let +1,+2

be the complex voltages at buses 1 and 2 respectively and assume |+1 | = |+2 | = 1. Let
\12 := \+1� \+2.

1. For what value of \12 is (12 real and nonzero?
2. What is the maximum real power �%21 that can be received at bus 2 and what is
\12 that delivers it?

Exercise 2.9 (Nose curve and voltage collapse). Consider a voltage source with a
fixed magnitude |+1 | supplying a load through a line modeled by a series impedance
I := |I | 4i\I with |\I | < c/2. Let the complex power supplied to the load be (2 =
|(2 | (cosq+ isinq) =: %(1+ i tanq) where % > 0 is the active load power and q is the
power factor angle. The power flow equation is:

%(1+ i tanq) = �1
Ī

⇣
|+2 |2� |+2 | |+1 |4i\21

⌘
(2.25)

where \21 := \+2 � \+1. Suppose |+1 | := 1 and q are fixed and given. As the desired
load power % changes, |+2 | and \21 vary.

1. For each %, solve (2.25) for |+2 | as nonunique roots of a polynomial equation in %.
2. Show that, as % increases from % = 0, the resulting nonunique roots |+2 | trace out

a curve called the nose curve. As % keeps increasing, eventually, the polynomial
equation has no real root, which is the phenomenon of voltage collapse.

3. Find the maximum power transfer % = %max at which solutions for |+2 | exist.



3 Transformer models

A large electric network is composed of multiple areas that have di�erent nominal
voltage magnitudes. These areas are connected by transformers that convert between
di�erent voltage levels. The ease of converting between voltage levels is an important
advantage of AC over DC transmission systems. It allows, for example, the transmission
network to operate at 765 kV to reduce power loss and household appliances to operate
at 120 V for safety. In this chapter we develop transformer models and explain how to
analyze a balanced three-phase system that contains transformers.

We start in Chapter 3.1 with models of a single-phase transformer and use them
in Chapter 3.2 to develop models of three-phase transformers in balanced operation.
We describe in Chapter 3.3 how to refer impedances from one side of a transformer
to the other side. We apply this method in Chapter 3.4 to simplify per-phase analysis
of circuits that contain transformers. We explain in Chapter 3.5 per-unit normalization
that further simplifies the analysis of balanced three-phase systems.

3.1 Single-phase transformer

We first model an ideal single-phase transformer by a transmission matrix and then
describe circuit models of a nonideal single-phase transformer.

3.1.1 Ideal transformer

An ideal transformer has no loss (zero winding resistance and core losses), no leakage
flux, and the magnetic core has infinite permeability. Let #1 be the number of turns in
the primary winding, #2 that in the secondary winding, and

= :=
#2

#1
, 0 :=

1
=

=
#1

#2

An ideal transformer is represented schematically in Figure 3.1. We will call = the
voltage gain and its reciprocal 0 the turns ratio. The voltage gain = relates the voltages



90 Transformer models

v1

i1 i2

v2

N1

N2n := 

N2

N1a := 

N1  :  N2

Figure 3.1 Single-phase ideal transformer.

and currents in the primary and secondary circuits, both at all times in the time domain:

E2 (C)
E1 (C)

= =,
82 (C)
81 (C)

= 0

and in the phasor domain:

+2

+1
= =,

�2

�1
= 0

This relation can also be written as
+1

�1

�
=


0 0
0 =

� 
+2

�2

�
(3.1)

The matrix on the right-hand side is called a transmission matrix of an ideal transformer.
It maps (+2, �2) to (+1, �1). The dot notation in Figure 3.1 indicates that the currents �1, �2
are defined to be positive when one flows into and the other out of the dotted terminals.
This notation is convenient when we use single-phase transformers to construct three-
phase transformers.

The ratio of the complex receiving-end to sending-end power is

�(21

(12
:=

+2 �̄2

+1 �̄1
= = · 0 = 1

i.e., an ideal transformer has no power loss.

3.1.2 Nonideal transformer

A real transformer has power losses due to resistance in the windings (A |� |2), eddy
currents and hysteresis losses. It also has nonzero leakage fluxes and finite permeability
of the magnetic core. Figure 3.2(a) shows elements of a (nonideal) transformer. The
primary winding has #1 turns around the magnetic core and the secondary winding
has #2 turns. The mutual flux�< due to the currents 81 and 802 links all the turns of the
primary and secondary coils. The two dots indicate that the mutual flux components
due to 81 and 802 add when these currents both enter (or exit) the dotted terminals
according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
coils. The flux linkages _;1 =: !;181 and _;2 =: !;2802 due to�;1 and�;2 are proportional
to the currents 81 and 802 respectively. The proportionality constants !;1,!;2 are called
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(a) Nonideal transformer

ym

zp zs

V̂1V1 V̂2

I1 I2

N1   :   N2

Îm
V2

(b) Circuit model

Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2. (Nov 4, 2025: file size opt.)

inductances. Then the total flux linkages _1,_2 of the primary and secondary circuits
are the sums of the leakage flux linkages and the mutual flux linkage:

_1 = _;1 +#1�<, _2 = _21 +#2�<

The voltages are

E1 = A181 +
3_1

3C

= A181 + !;1
381

3C

+#1
3�<
3C

(3.2a)

E2 = A28
0
2 +

3_2

3C

= A28
0
2 + !;2

38
0
2

3C

+#2
3�<
3C

(3.2b)

where A181 and A28
0
2 represent power losses due to winding resistances. The model for

an ideal transformer neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in
(3.2) and hence E1 = #1

3�<
3C

and E2 = #2
3�<
3C

, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 802 is proportional to the
mutual flux �<:

� = #181 +#28
0
2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define

Ê1 := #1
3�<
3C

= !<

38̂<

3C

, Ê2 := #2
3�<
3C

=
#2

#1
Ê1

1 Instead of 8< := ('/#1)�<, we can define 80
<

:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit.
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where !< := #2
1/'. Substituting into (3.2) yields, denoting 82 := �802, we have

Nonideal elements: E1 = A181 + !;1
381

3C

+ Ê1, Ê1 = !<

38̂<

3C

E2 = �A282� !;2
382

3C

+ Ê2

Ideal transformer: Ê2 =
#2

#1
Ê1, 82 =

#1

#2

�
81� 8̂<

�
where the last equality follows from substituting '�< = #18̂< into (3.3). This set of
transformer equations in the phasor domain is

Nonideal elements: +1 = I? �1 + +̂1, �̂< = H<+̂1 (3.4a)

+̂2 = IB �2 ++2 (3.4b)

Ideal transformer: +̂2 =
#2

#1
+̂1, �2 =

#1

#2

�
�1� �̂<

�
(3.4c)

where I? := A1 +l!;1 and IB := A2 +l!;2 model the winding losses and leakage
fluxes in the primary and secondary circuits respectively, and the imaginary part
1/(l!<) = '/(l#2

1 ) of H< models the finite permeability of the core. The real part
of H< models core losses due to hysteresis and eddy currents in the magnetic core,
which is much smaller and often neglected. The model (3.4) can be interpreted as the
circuit in Figure 3.2(b). Variables with hats denote internal variables. With respect to
this circuit model we will call (I? , IB) the leakage impedances or series impedances
and H< the shunt admittance of the transformer.

The end-to-end behavior of the nonideal transformer can be described by a trans-
mission matrix that maps (+2, �2) to (+1, �1). Eliminating the internal variables (with
hats) from (3.4), the transmission matrix is given by (Exercise 3.1)

+1

�1

�
=


0
0

0
0
IB +=I?

0H< =+ 0IBH<

� 
+2

�2

�
(3.5)

where = := #2/#1, 0 := #1/#2, and 00 := 0(1+I?H<). We will refer to such a model that
describes the end-to-end behavior as an external model. An equivalent external model
to the transmission matrix is an admittance matrix that maps (+1,+2) to (�1,��2):

�1

��2

�
=

1
[


=+ 0IBH< �1
�1 0

0

� 
+1

+2

�
(3.6)

where [ := 00IB +=I? . We will freely use either the transmission matrix or the admit-
tance matrix for describing the end-to-end behavior of a two-terminal device such as
a transformer or a transmission line.

In the following we present three circuit models derived from that in Figure 3.2(b).
Their relation is shown in Figure 3.3. The circuit model in Figure 3.2(b) is equivalent
to a ) equivalent circuit (Chapter 3.1.3). The ) equivalent circuit can be approximated
by a simplified model whose parameters can be determined by short-circuit and open-
circuit tests (Chapter 3.1.4). The circuit model in Figure 3.2(b) is also equivalent to
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transformer circuit model

transformer equations

T equivalent
circuit

unitary voltage
network

simplified model

Figure 3.3 Relation between di�erent circuit models of transformers.

a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.

3.1.3 ) equivalent circuit

ym

zp

V1

I1 I2

N1   :   N2

V2

a2zs

Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
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the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB
to the primary side. The internal variables in (3.4) are for the model in Figure 3.2(b),
but not the ) equivalent circuit in Figure 3.4. For instance, when the secondary circuit
is shorted, i.e., setting +2 = 0, the internal variables +̂1 and +̂2 in Figure 3.2(b) are
determined by (3.4) and generally nonzero. The ) equivalent model in Figure 3.4 will
however incorrectly predict that the internal voltages on the ideal transformer will be
zero. This is because the circuit model in Figure 3.4 is equivalent only in the sense that
it has the same external behavior as that of the model in Figure 3.2(b). ⇤

Parameter identification. Two tests are often used to determine the transformer
parameter (I? , IB , H<):

1. Short-circuit test (+2 = 0). With the secondary circuit short-circuited, the primary
voltage+sc and primary current �sc are measured. The primary short-circuit voltage
+sc is called the impedance voltage. Let �sc,2 denote the secondary current.

2. Open-circuit test (�2 = 0). With the secondary circuit open, the primary voltage
+oc and primary current �oc are measured. Let +oc,2 denote the secondary voltage.

These tests measure the external behavior of the transformer whose parameter
(I? , IB , H<) is the same in the models (3.4), or Figure 3.2(b), or Figure 3.4. We can
therefore use any of these models to determine (I? , IB , H<) from the measurements. It
is easy to use the ) equivalent circuit in Figure 3.4.

During the short-circuit test, the voltage on the primary side of the ideal transformer
is zero in Figure 3.4. Hence

+sc =

 
I? +

✓
H< + 1

0
2
IB

◆�1
!
�sc (3.7a)

During the open-circuit test, the secondary current �2 = 0, and hence there is zero
current on the primary side of the ideal transformer. Therefore

+oc =
✓
I? +

1
H<

◆
�oc (3.7b)

If the secondary current �sc,2 during the short-circuit test and the secondary voltage
+oc,2 during the open-circuit test are also measured, then KCL and the voltage divider
rule at the T-junction in Figure 3.4 yield respectively

0�sc = (1+ 02
IBH<)�sc,2, 0+oc,2 =

1/H<
I? +1/H<

+oc (3.7c)

These equations do not involve any internal variable, and therefore can also be derived
from (3.4) or the circuit model in Figure 3.2(b) (Exercise 3.2). These are four nonlinear
equations in three unknowns (I? , IB , H<). Solving these nonlinear equations can be
di�cult, especially in the presence of measurement noise.
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In general, given a set of noisy measurements of primary voltage and current
(+ :1 , �:1 , : = 1, . . . , ) and secondary voltage and current (+ :2 , �:2 , : = 1, . . . , ), their
relation (3.5) provide  nonlinear equations in the unknown parameter (I? , IB , H<) in
the transmission matrix. These data can therefore be used to identify (I? , IB , H<) by
regression. Specifically write (3.5) as

+
:

1
�
:

1

�
= ) (I? , IB , H<)


+
:

2
�
:

2

�
+ Z : , : = 1, . . . , (3.8)

where Z : are (unknown) measurement errors. Then a popular method to estimate the
transformer parameter is to minimize the measurement error, i.e., choose (I? , IB , H<)
to be a solution of the optimization problem:

min
(I? ,IB ,H<)2

 ’
:=1

����) (I? , IB , H<)

+
:

2
�
:

2

�
�


+
:

1
�
:

1

�����
2

2

subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).

ym

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(a) Simplified model

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.
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Transmission matrix. Apply KCL, KVL and Ohm’s law to the model in Figure
3.5(a) to get:

+1 = I; �1 + 0+2, �1 = H< (0+2) + =�2
Hence the transmission matrix "̂ is given by

+1

�1

�
=


0 (1+ I;H<) =I;

0H< =

�
|                   {z                   }

"̂


+2

�2

�
(3.9a)

We mostly use the simplified model in Figure 3.5, or equivalently, in (3.9a). The
relation (3.9a) can be equivalently expressed in terms of an admittance matrix . :

�1

��2

�
=


H; �0H;
�0H; 0

2 (H; + H<)

�
|                     {z                     }

.


+1

+2

�
(3.9b)

where H; := 1/I; . When I; = H< = 0 the model (3.9a) reduces to (3.1) for an ideal
transformer.

Approximation to ) equivalent circuit. We now justify the model in Figure 3.5(a)
with I; = I? +02

IB as a reasonable approximation of the ) equivalent circuit in Figure
3.4(b) when H< is small. Let " and "̂ denote that transmission matrices in (3.5) and
(3.9a) respectively. Their di�erence is

"̂ �" = n


0 �=I?
0 �=

�

where n := 02
IBH<. The conductance in the shunt admittance is negligible in practice

and hence the shunt admittance H< due to the primary magnetizing current takes the
form H< = (iG<)�1 = �i1< with 1< > 0. The leakage impedance I? takes the form
I? = A? + iG? with A? > 0 and G? > 0; similarly for IB . Suppose I? = [IB for some real
number [ > 0 and |n | ⌧ 1. Then the relative error can be shown to satisfy (Exercise
3.3)

k"̂ �" k
k" k < |n | ⌧ 1

where the matrix norm k�k is the sum norm k�k :=
Õ
8, 9 |�8 9 |, or the ;1 vector norm

when the =⇥ = matrix � is treated as a vector in C=
2
. Note that for 0 < 1, the model

parameters (I; , H<) should be on the high voltage side. When the shunt admittance is
neglected H< = 0, these two models are the same, i.e., "̂ = " .

Parameter identification. The parameters (I; , H<) of the simplified model in Figure
3.5(a), or equivalently, in (3.9a), can be uniquely determined from two simple tests:

1. Short-circuit test (+2 = 0). With the secondary circuit short-circuited, the primary
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voltage +sc and current �sc are measured. Then, from Figure 3.5,

I; =
+sc

�sc

The primary short-circuit voltage +sc is called the impedance voltage.
2. Open-circuit test (�2 = 0). With the secondary circuit open, the primary voltage
+oc and current �oc are measured. Then +oc = (I; +1/H<)�oc and hence

1
H<

=
+oc

�oc
� +sc

�sc

Example 3.1 (Parameter identification). Consider a single-phase distribution (step-
down) transformer with the following ratings: 2.9 MVA, 7.2 kV / 240 V. Construct the
equivalent circuit model in Figure 3.5 from the following test results:

1. Short-circuit test (+2 = 0). With the secondary circuit short-circuited, a voltage
|+sc | = 500V is applied to the primary circuit that causes the rated primary current
|�sc | to flow.

2. Open-circuit test (�2 = 0). With the secondary circuit open, the rated voltage
|+oc | = 7.2kV is applied to the primary circuit. This caused a current of |�oc | = 7A
to flow in the primary circuit.

Assume I; = iG; and H< = (iG<)�1. Determine G; and G<.

Solution. In the short-circuit test the secondary voltage+2 = 0. Since the rated primary
current is |�sc | = 2.9MVA/7.2kV = 403A, we have |+sc | = |�scI; | = |�sc | G; . Hence
G; = 500V/403A = 1.24⌦.

In the open-circuit test the secondary current �2 = 0 and hence there is zero current
on the primary side of the ideal transformer (see Figure 3.5). Hence |+oc | = |�oc (I; +
1/H<) | = |�oc | (G; + G<), and G< = |+oc |/|�oc |� G; = 7.2kV/7A�1.24⌦ = 1.03k⌦.

As expected, |H< | ⌧ 1/|I; |. ⇤

In transformer ratings, the ratio of secondary open-circuit voltage to the primary
open-circuit voltage is usually taken to be the voltage gain =, even though more precisely
it should be

+2

+1
= =

1/H<
I; +1/H<

In practice the resistances due to winding losses are much smaller than the reactances
due to leakage fluxes and finite permeability of the core so that I; ⇡ iG; and H< ⇡ �i1<.
Moreover 1< ⌧ 1/G; . For Example 3.1

+2

+1
= =

G<

G; + G<
= =

1.03k⌦
1.03k⌦+1.24⌦

' =

If H< := 0 then the model parameter is just the leakage impedance I; in the primary
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circuit, which can be determined from the short-circuit test, I; = +sc/�sc. Moreover its
magnitude can be determined from typical transformer ratings; see Chapter 3.2.3.

3.1.5 Model with unitary voltage network

As far as the end-to-end behavior is concerned, the transformer model in Figure 3.2(b)
is equivalent to the model in Figure 3.6(a) where the ideal transformer with turns ratio
#1/#2 is replaced by two ideal transformers in series with turns ratios #1 and 1/#2.
Referring the leakage impedances (I? , IB) and shunt admittance H< to the other sides

ym

zp

V1

I1

N1  :  1 1  :  N2

zs
I2

V2

(a) Equivalent model

V1

I1

N1  :  1 1  :  N2

I2

V2

z1 z2

y0

unitary voltage network

(b) Unitary voltage network

Figure 3.6 Models of nonideal transformer with unitary voltage network.

of the ideal transformers using (3.16) in Chapter 3.3, this model is equivalent to the
one in Figure 3.6(b) where

H0 := #
2
1 H<, I1 :=

I?

#
2
1

, I2 :=
IB

#
2
2

(3.10)

The network between the two ideal transformers is sometimes referred to as a unitary
voltage network because the nominal voltage of the network is 1 pu if the scaled
nominal voltages +nom

1 /#1 = +nom
2 /#2 on both sides of the (nonideal) transformer is

used as the voltage base for per-unit normalization (per-unit normalization is studied
in Appendix 3.5). The transformer model does not assume, and allows, any node to be
grounded. The main advantage of modeling a nonideal transformer this way is that the
unitary voltage network can be generalized from the simple network in Figure 3.6(b)
to a more general network that can be used to model nonstandard transformers with
multiple windings; see below.

We now derive the admittance matrix that maps (+1,+2) to (�1,��2). First focus on
the unitary voltage network, shown in Figure 3.7, where H1 := 1/I1 = #2

1 H? , H2 := 1/I2 =
#

2
2 HB with H? := 1/I? , HB := 1/IB . Variables with hats denote internal variables.2 The

variables (+̂0,+̂1,+̂2) are defined as voltage drops as shown in the figure and ( �̂0, �̂1, �̂2)
are the current injections at these nodes with �̂0 := 0. Then

�̂1 = H1 (+̂1� +̂0), �̂2 = H2 (+̂2� +̂0), �̂0 + �̂1 + �̂2 = H0+̂0 (3.11)

2 The explicit separation of internal variables (e.g., +̂8 , �̂8) and terminal variables (e.g., +8 , �8) may not be
significant for single-phase devices but turns out to be crucial in modeling three-phase devices; see
Chapters 14 and 15.
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y0

y2y1

V̂0V̂1 V̂2

Î2Î1
Î0 := 0

Figure 3.7 Unitary voltage network of the model in Figure 3.6(b).

or in vector form:

266664
�̂0

�̂1

�̂2

377775
=

266664
H0 + H1 + H2 �H1 �H2

�H1 H1 0
�H2 0 H2

377775
266664
+̂0

+̂1

+̂2

377775
The matrix above is called an admittance matrix, which we will study in Chapter 4.
Let +̂ := (+̂1,+̂2) and �̂ := ( �̂1, �̂2). Since �̂0 = 0 we can eliminate +̂0 and write �̂ =.uvn+̂

where .uvn is called the Kron-reduced admittance matrix and given by the Schur
complement of H0 + H1 + H2 (see Appendix A.3.1 for details of Schur complement):

.uvn :=

H1 0
0 H2

�
� 1Õ

8
H8


H1

H2

�⇥
H1 H2

⇤
=

1Õ
8
H8


H1 (H0 + H2) �H1H2

�H1H2 H2 (H0 + H1)

�
(3.12a)

Next connect the two ideal transformers to each side of the unitary voltage network;
see Figure 3.6(b). Let � := (�1,��2) and+ := (+1,+2). The conversion between internal
variables (+̂ , �̂) and terminal variables (+ , �) is +̂ = "+ and �̂ = "�1

� where

" :=

1/#1 0

0 1/#2

�
(3.12b)

Substitute into �̂ = .uvn+̂ to get the relation between the terminal variables + to �:

� = (".uvn")+ (3.12c)

where ".uvn" is called the admittance matrix of the transformer. It can be shown that
(3.12) is equivalent to the) equivalent circuit (3.5) (Exercise 3.4). As a consequence the
model parameters (H0, H1, H2) cannot be uniquely determined by just the short-circuit
and open-circuit tests.

We often do not know the numbers #1, #2 of turns of the primary and secondary
windings respectively, but can determine the turns ratio 0 := #1/#2 from the specified
rated voltages. The admittance matrix ".uvn" can also be written in terms of the
turns ratio 0 (Exercise 3.4):

... := ".uvn" =
H?HB

0
2
H< + 02

H? + HB


1+ 02

H</HB �0
�0 0

2 (1+ H</H?)

�
(3.12d)

If H0 = H< = 0 then both (3.5) and (3.12) are equivalent to the simplified model in
Figure 3.5(b). In this case the model parameter is just the leakage impedance I; in the
primary circuit, which can be determined from standard power ratings as described
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above. Recall that I; = I? + 02
IB and hence the leakage admittance in the simplified

model is

H; =
1
I;

=
1

1/H? + 021/HB
=

H?HB

0
2
H? + HB

Indeed, when H< = 0, the admittance matrix ... is the same for both the simplified
model and the unitary voltage network model, from (3.12d):

... = ".uvn" = H;


1 �0
�0 0

2

�

which is the same as (3.9b).

The single-phase circuit model in Figure 3.6(b) can be generalized in two ways,
or a combination. First, multiple copies of the single-phase model can be connected
in � or . configuration on each side to create models for three-phase transformers.
This is derived in detail in Chapter 15.3 for unbalanced three-phase systems. Second,
the unitary voltage network can be generalized to model nonstandard transformers
with more than two windings. This is illustrated in Chapter 3.1.6 in the modeling of a
split-phase transformer.

3.1.6 Split-phase transformer

In the US, single-phase or three-phase stepdown transformers are typical in the distri-
bution system. The most common three-phase nominal voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude)
and hence the line-to-neutral nominal voltage is |+0= | = 12.47/

p
3 = 7.2kV. A typical

primary side current rating is |�0= | = 400A. Hence the total (three-phase) rated apparent
power is |(3q | = 3|+0= | |�0= | = (3) (7.2) (400) = 8.6MVA. Other common distribution
system voltages and their total power at 400A are shown in Table 3.1. The advantages

line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|+01 | |+0= | |(3q |

4.8 2.8 3.3

12.47 7.2 8.6

22.9 13.2 15.9

34.5 19.9 23.9

Table 3.1 Typical distribution system voltages (line-to-line) and their total (three-phase) power
rating at 400A current.

of a higher-voltage system include:

• It can carry more power for a given ampacity.
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• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage
regulators and capacitor banks for voltage support (see Exercise 2.7.5).

• It has a smaller line loss for a given level of power flow (see Exercise 2.7).
• It can cover a larger service area since it has a smaller voltage drop and a smaller

line loss. Roughly, for the same load density, the area covered increases linearly
with voltage.

• It requires fewer substations since it covers a larger service area, which can be a
big cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.
• Crew safety is a bigger concern with a higher voltage.
• Higher voltage equipment costs more, from transformers to cables to voltage reg-

ulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary
phases and the other end connects to the transformer case which is connected to the
neutral wire of the three-phase system and also earth ground. On the secondary side,
the 240V is center-tapped and the center neutral wire is grounded, making the two ends
“hot” with respect to the center tap. These three wires run down the service drop to
the meter and electric panel of a house. This is shown in Figure 3.8. Connecting a load

240V

120V

120V

abcn

Figure 3.8 A common single-phase distribution transformer in the US.

between either hot wire and the neutral gives 120V while connecting it between both
hot wires gives 240V. Note that the transformer is single-phase. This is the split-phase
120/240 V system typical in the US.

Admittance matrix. We now derive the external model of a split-phase transformer.
A schematic of such a transformer is shown in Figure 3.9. The derivation of its external
model follows the same procedure as that in Chapter 3.1.5.

The internal voltages (+̂0,+̂1,+̂2,+̂3) and currents ( �̂0, �̂1, �̂2, �̂3) on the unitary voltage
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y0

y1
I1 I2

I3

unitary voltage network

V1

V2

V3

N1  :   1 1  :  N3

1  :  N2

y2

V̂3

V̂2

y3

Î2Î1

Î3V̂1 V̂0

Figure 3.9 Single-phase split-phase transformer.

network are defined in the figure. The admittance matrix that maps these voltages to
currents is given by:

26666664

�̂0

�̂1

�̂2

�̂3

37777775
=

26666664

Õ3
8=0 �H1 �H2 �H3

�H1 H1 0 0
�H2 0 H2 0
�H3 0 0 H3

37777775

26666664

+̂0

+̂1

+̂2

+̂3

37777775
Let +̂ := (+̂1,+̂2,+̂3) and �̂ := ( �̂1, �̂2, �̂3). Since �̂0 = 0 we can eliminate +̂0 to relate
�̂ = .uvn+̂ where .uvn is the Kron-reduced admittance matrix:

.uvn :=
266664
H1 0 0
0 H2 0
0 0 H3

377775
� 1Õ3

8=0 H8

266664
H1

H2

H3

377775
⇥
H1 H2 H3

⇤

=
1Õ
8
H8

266664
H1 (H0 + H2 + H3) �H1H2 �H1H3

�H2H1 H2 (H0 + H1 + H3) �H2H3

�H3H1 �H3H2 H3 (H0 + H1 + H2)

377775
(3.13a)

This extends in a straightforward manner .uvn in (3.12) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in
Figure 3.9. The terminal voltages + := (+1,+2,+3) and currents � := (�1,��2,��3), as
well as the internal current �̂3 into the third winding, are defined in the figure. Let
" := diag(1/#1,1/#2,1/#3). Then +̂ = "+ and, using KCL,

�̂ = "
�1

266664
�1

��2
��2� �3

377775
=: "�1

��

where

� :=
266664
1 0 0
0 1 0
0 1 1

377775
(3.13b)
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Substituting into �̂ = .uvn+̂ we obtain a relation between the terminal variables + to �:

� = �
�1 (".uvn")+ (3.13c)

where .uvn is defined in (3.13a).

Case study: Riverside CA utility Figure 3.10 shows a typical pad-mounted split-
phase distribution transformer. We now present voltage and current measurements
from a split-phase distribution transformer in a Southern California municipal utility
grid. The transformer supplies 8 houses in a residential area in � configuration. It is
rated at 75 kVA, with 12 kV grounded-. on the high-voltage side and single split-phase
240V/120V with grounded neutral on the low-voltage side as shown in the figure. Even

(a) Split-phase distribution transformer

Ia

Iab

Ica

Ibc
b

a

c

Va

IbVb

IcVc

(b) Equivalent circuit

Figure 3.10 Typical distribution transformer and the equivalent circuit of the Southern
California system supplying 8 houses arranged in � configuration. (Nov 23, 2026: file size opt.)

though the transformer is single-phase, the split-phase system can be treated as a �-
configured three-phase load with one terminal grounded and analyzed using techniques
studied in Chapter 14.1.2 for unbalanced three-phase systems. We hence refer to the
three wires running down the service drops to the houses as phase 0,1,2 wires.

We measure the voltage and current phasors + := (+0,+1 ,+2) and � := (�0, �1 , �2)
respectively at the low-voltage terminals of the transformer. Terminal 1 is grounded
and used as the common reference point, i.e., +1 := 0. Note that the terminal current
is defined here to be into the load which is in the opposite direction to what we usually
use elsewhere in this chapter, corresponding to the direction in Figure 3.10. We assume
that the line loss between the transformer and the load (8 houses) is negligible, and
hence + and � are also the terminal voltage and terminal current respectively of the
load in � configuration. We reiterate that even though we use three-phase notations,
the loads are on a single (split-)phase on the low-voltage side of the transformer.

We illustrate in Figures 3.11 and 3.12 the behavior of the circuit using the noisy
time series of (+ , �) measured from the field on March 28 Thur, 2024.

1. Voltage behavior. The solid lines in Figures 3.11(a) and 3.11(b) show the magni-
tude and phase respectively of the terminal voltage + . We see from Figure 3.11(a)
that the magnitudes |+0 | and |+2 | are roughly 120 V but their phase angles in
Figure 3.11(b) are roughly 180� apart most of the time due to the split phase.
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(a) |+ q | and |� q |

(b) \+ 0 := 0, \+ 2 and \� q

(c) Terminal power Re(Bq)

(d) Terminal Im(Bq)

(e) Total powers 1
T
B = 1

T
B
�

Figure 3.11 Voltage, current and power behavior. (a)(b)(c)(d) Solid lines: voltages, dashed
lines: currents. Red: phase 0, green: phase 1, blue: phase 2. (e) Brown: real (kW), grey:
imaginary (kVar).

Notice that the green solid line |+1 | is zero in Figures 3.11(a) and there is no green
solid line for voltage angle on line 1. Instead, the red solid line \+0 = 0� in Figure
3.11(b). This is because voltage measurement E0 (C) in the time domain is actually
the voltage drop between terminal 0 and terminal 1, which is grounded, and hence
E
1 (C) := 0. This means that, in the phasor domain \+0 is arbitrary and it is set to

be 0� in our calculation, i.e., \+0 = 0 is the reference for all voltage, current and
power angles. Relative to the potential on the 1 terminal, E2 (C) is approximately a
half cycle o� from E

0 (C) and \+2 ⇡ �180� most of the time due to the split phase.
2. Current behavior. The dash lines in Figures 3.11(a) and 3.11(b) show the mag-

nitude and phase respectively of the terminal current �. There are three curves in
each of the figures for phases 0,1,2. As discussed above the angles \� q are relative
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to the reference \+0 := 0. The magnitudes of �0 and �2 are similar but their phases
are approximately 180� apart most of the time due to the split phase. Both the
magnitudes |�0 |, |�2 | and their phases \�0, \�2 show prominently the e�ect of
solar generation between roughly 8am to 5pm. In particular from Figure 3.11(b)
during 9am–5pm the power factor angles \+ q � \� q ⇡ �180� for both phases 0
and 2, resulting in negative real powers Re(Bq) = |+ q | |� q | cos180� during this
period, i.e., real powers flow from the loads towards the transformer on phases
0 and 2. The magnitude of �1 is much smaller in Figure 3.11(a) and its angle in
Figure 3.11(b) fluctuates between 0� and ±180�, indicating that a relatively small
amount of line 1 current flows back and forth between the transformer and the
loads. This means that the current �0 on line 0 mostly returns as �2 on line 2, and
hence their angles are approximately 180� apart as noted above.

3. Power behavior. We can construct the behavior of the terminal power B from that
of + and � and confirm that in the measurement. Here B := (B0, B1 , B2) where
the terminal power in each phase q 2 {0,1,2} is defined to be Bq := + q �̄ q . As
noted above, between 9am–5pm, the real powers Re(Bq) on phases 0 and 2 are
negative, shown as red and blue curves respectively in Figure 3.11(c), whereas
they are positive and flow from the transformer to the loads outside this period.
From Figure 3.11(d), the reactive powers Im(Bq) are small most of the time. The
green curve representing power on line 1 is zero because +1 := 0 by definition.

The total terminal power 1
T
B = B0 + B1 + B2 computed from (+ , �) measurements

is shown in Figure 3.11(e) which is the sums of the curves in Figure 3.11(c) for
the real part and those in Figure 3.11(d) for the imaginary part. (In the caption, B�

is called internal power and studied in see Chapter 14.1.2.)
4. Neutral current. From KCL we have �0+ �1 + �2 = �= where �= is the neutral current

from terminal 1 to the ground. Its magnitude |�= | is shown in Figure 3.12(a). It
is small most of the time compared with |�1 | on line 1. Its magnitude relative to
those of the phase currents averaged over the measurement period is

avg. norm. neutral current :=
1
)

)’
C=1

|�0 (C) + �1 (C) + �2 (C) |
( |�0 (C) | + |�1 (C) | + |�2 (C) |)/3 = 0.1752

5. Voltage and current waveforms. Figure 3.12(b) shows the voltage (solid lines) and
current (dashed lines) waveforms around midnight where the currents and voltages
are roughly in phase, indicating that real power flows from the transformer to the
loads. Figure 3.12(c) shows the voltage and current waveforms around noon where
the currents and voltages are roughly out of phase, indicating that real power flows
from the loads to the transformer.

3.2 Balanced three-phase transformers

In this section we develop models for balanced three-phase transformers and derive
their per-phase equivalents.
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(a) Neutral current |� = | = |� 0 + �1 + � 2 |

(b) Voltage and current waveforms around midnight 12am (in phase)

(c) Voltage and current waveforms around noon 12pm (out of phase)

Figure 3.12 (a) Neutral current. (b)(c) Voltage and current waveforms. Solid lines: voltages,
dashed lines: currents. Red: phase 0, green: phase 1, blue: phase 2.

3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in
four di�erent configurations: .. , ��, �. , .�. Figure 3.13(a) shows a primary three-

I1a

I1b

I1c

I1a

I1b

I1c

V1a V1a

V1b

V1b

V1c
V1c

n1

n1

(a) Primary winding in . configuration
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I2b

I2c

I2b

I2c

V2a

V2b

V2c

V2a

V2b

V2c

(b) Secondary winding in � configuration

Figure 3.13 Primary and secondary windings in . and � configurations respectively. The thick
lines in the schematic diagrams represent transformer windings. (Nov 4, 2025: file size opt.)
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phase winding in . configuration and its schematic diagram. The winding on the first
magnetic core goes from terminal 0 to neutral = and then connects with the neutral
terminals on the second and third magnetic cores. It matches the connectivity in the
schematic diagram where the windings are indicated by the thick lines. Figure 3.13(b)
shows a secondary three-phase winding in � configuration and its schematic diagram.
In both diagrams, the windings go from terminal 0 on the first magnetic core to terminal
1 on the second magnetic core to terminal 2 on the third magnetic core. The winding
of an ideal three-phase transformer in .. configuration and its schematic digram are
shown in Figure 3.14(a). The parallel lines in the schematic diagram indicate corre-
sponding primary and secondary windings in the single-phase transformers. Similarly
the winding of an ideal three-phase transformer in �� configuration and its schematic
digram are shown in Figure 3.14(b), and those for �. and.� configurations are shown
in Figure 3.15. The di�erent configurations of three-phase transformer banks can also

n1 n2

V1a

V1b

V1c

V2a

V2b

V2c

I1a I2a

I1a I2a
V1a

V1b

V1c
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V2b

V2c

n1 n2

(a) .. configuration

V1a

V1b

V1c

V2a

V2b

V2c

I1a I2a

V1a

V1b

V1c

V2a

V2b

V2c

I1a I2a

(b) �� configuration

Figure 3.14 Ideal three-phase transformers in .. and �� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings. (Nov 4, 2025:
file size opt.)

be represented compactly as in Figure 3.16 (see its caption for details).

Recall that the internal voltages and currents are denoted by+.
9

:= (+0=
9

,+1=
9

,+2=
9
) 2

C
3. �.

9
:= (�0=

9
, �1=
9

, �2=
9
) 2 C3 for . configuration and +�

9
:= (+01

9
,+12
9

,+20
9
) 2 C3,

�
�
9

:= (�01
9

, �12
9

, �20
9
) 2 C3 for � configuration. The terminal voltages and currents are
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Figure 3.15 Ideal three-phase transformers in �. and .� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings.
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Figure 3.16 Compact representation of ideal three-phase transformers in (a) .. , ��
configurations and (b) �. , .� configurations. For instance, in the .. configuration, the
vertical arrow represents the vector +0= in the complex plane. The arrow from 1 to 0 (not
shown) represents the vector +01 . The parallel lines in the diagram indicate corresponding
primary and secondary windings.

denoted by + 9 := (+0
9
,+1
9
,+2
9
) 2 C3 and � 9 := (�0

9
, �1
9
, �2
9
) 2 C3, with the current �1

flowing into the primary side of the transformer and �2 flowing out of its secondary
side (see Figure 3.13). The external behavior of an ideal three-phase transformer is
defined by the ratio of the line-to-line voltages on the secondary side to those on the
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primary side, and the ratio of the line currents on the secondary and primary sides. We
refer to these ratios as its external model. The phases of a balanced transformer are
decoupled and therefore it can be represented by its phase 0model, called its per-phase
equivalent.

The external model of an ideal balanced three-phase transformer and its per-phase
equivalent can be derived using the following procedure:

1. Internal model. Derive the internal voltage and current gains based on the pairing
of primary and secondary windings in di�erent configurations (see Figures 3.14
and 3.15):

.. : +
.

2 = =+
.

1 , ��.2 = 0�
.

1 (3.14a)

��: +
�
2 = =+

�
1 , ���2 = 0�

�
1 (3.14b)

�. : +
.

2 = =+
�
1 , ��.2 = 0�

�
1 (3.14c)

.�: +
�
2 = =+

.

1 , ���2 = 0�
.

1 (3.14d)

2. Conversion rules. Apply the conversion rules (1.13) (1.14) to express line-to-line
voltages and line currents on both sides in terms of the internal voltages and
currents respectively:

. config: +
line
9

= �+.
9

= (1�U)+.
9

=
p

34ic/6
+
.

9
(3.14e)

� 9 = ±�.
9

(3.14f)

� config: � 9 = ± �T
�
�
9
= ± (1�U2) ��

9
= ±
p

34�ic/6
�
�
9

(3.14g)

+
line
9

= +
�
9

(3.14h)

where we have assumed the balanced voltages +.
9

and currents ��
9

are in positive
sequence, i.e., in span(U+), and used Corollary 1.3.

3. External model. Derive the line-to-line voltage gains  (=) 2 C and line current
gains 1/ ̄ (=) 2 C for the three-phase transformer by eliminating the internal
variables from the internal model in Step 1 and the conversion rule in Step 2:

+
line
2 =  (=)+ line

1 , �2 =
1

 ̄ (=)
�1 (3.14i)

The fact that the voltage gain  (=) is a scalar means that the phases of a balanced
three-phase transformer are decoupled. The results for di�erent configurations are
given in Table 3.2 (see Example 3.2 for derivation).

4. Per-phase equivalent. The .. -equivalent of a balanced three-phase transformer is
a balanced transformer in .. configuration that has the same external model, i.e.,
they have the same voltage gain  (=) and current gain 1/ ̄ (=) given in (3.14i).
Since the phases are decoupled, the per-phase equivalent is the phase 0 model of
the .. -equivalent, i.e., a single-phase transformer with voltage gain  (=). See
Example 3.2.

Example 3.2 (External models and per-phase equivalents). In this example we apply
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Property Gain

Voltage gain  (=)
Current gain 1

 ̄ (=)
Power gain 1
Sec I

;
referred to pri I;

| (=) |2

Configuration Gain

..  .. (=) := =
��  �� (=) := =
�.  �. (=) :=

p
3= 4ic/6

.�  
.� (=) := =p

3
4
�ic/6

Table 3.2 Ideal complex transformer properties.

the method outlined above to derive the external models of ideal balanced three-
phase transformers in .. , ��, �. and .� configurations as well as their per-phase
equivalents. The external models are derived by eliminating internal variables (+.

9
, �.
9
)

and (+�
9
, ��
9
) from (3.14a)–(3.14h).

1. .. configuration. The external model is, from (3.14a) and (3.14e)(3.14f):

+
line
2 = (1�U)+.2 = (1�U)=+.1 = =+

line
1

�2 = ��.2 = 0�
.

1 = 0�
.

1

giving the voltage gain  .. (=) := = and the current gain 1/ ̄.. (=) := 1/= =: 0.
The per-phase equivalent is simply an ideal single-phase transformer with voltage
gain  .. (=) := =. Since we define the voltage gain = (external model) to be the
ratio of balanced line-to-line voltages (or balanced line-to-neutral voltages), the
external model does not depend on the neutral voltages+=

9
(which can be nonzero).

2. �� configuration. Similarly the external model is, from (3.14b) and (3.14g)(3.14h):

+
line
2 = +

�
2 = =+

�
1 = =+

line
1

�2 = �(1�U2)��2 = (1�U2)0��1 = 0�1

giving the same gains  �� (=) := = and 1/ ̄�� (=) := 0 as those for the .. config-
uration. Hence the per-phase equivalent is also an ideal single-phase transformer
with voltage gain  �� := =.

3. �. configuration. The external model is, from (3.14c) and (3.14e)–(3.14h):

+
line
2 = (1�U)+.2 = (1�U)=+�1 = (1�U)=+ line

1

�2 = ��.2 = 0�
�
1 =

0

1�U2
�1 =

0

1� Ū �1

giving the voltage gain  �. (=) := (1�U)= and current gain 1/ ̄�. (=) := 0(1�
Ū)�1. Hence the per-phase equivalent is an ideal single-phase transformer with
voltage gain  �. (=) := (1� U)= =

p
34ic/6

=. The �. configuration has several
advantages (e.g., a gain of

p
3 in addition to the gain = due to turns ratio) and is

the most commonly adopted transformer in practice.
4. .� configuration. The external model is, from (3.14d) and (3.14e)–(3.14h):

+
line
2 = +

�
2 = =+

.

1 =
=

1�U +
line
1

�2 = �(1�U2)��2 = (1�U2)0�.1 = (1�U2)0 �1 = (1� Ū)0 �1
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giving the voltage gain .� (=) := =/(1�U) and current gain 1/ ̄.� (=) := (1� Ū)0.
Hence the per-phase equivalent is an ideal single-phase transformer with voltage
gain  .� (=) := =/(1�U) = =/(

p
34ic/6). ⇤

Therefore the voltage gain  (=) and the current gain 1/ ̄ (=) given in Table 3.2
apply to line voltages/currents in both the original transformer and its .. equivalent.
For � configuration on the primary or secondary side, its . -equivalent in terms of
the line voltage + line

9
and line current � 9 can be derived from (3.14e)–(3.14h) (also

explained in (1.31a)). Specifically the . -equivalent of (+�
9
, ��
9
) is

+
. eq
9

=
1

1�U +
�
9

=
1p

34ic/6
+
�
9
, �

. eq
9

= ±
⇣
1�U2

⌘
�
�
9
= ±

p
3

4
ic/6 �

�
9

Using the per-phase equivalent of an ideal balanced transformer (i.e., phase 0 model
of an equivalent transformer in .. configuration), we conclude that its complex power
gain is 1:

�(2

(1
:=

+
0=

2 (��̄0=2 )
+
0=

1 ( �̄0=1 )
=  (=) 1

 (=) = 1

It often simplifies per-phase analysis of a balanced system to refer series impedances
and shunt admittances on one side to the other side of a transformer. This is explained
in Chapter 3.3. In particular, a secondary series impedance I; is referred to the primary
as I;/| (=) |2 according to (3.16) below. When terminated in a symmetric three-
phase impedance load Iload on the secondary side so that +0=2 = Iload�

0=

2 (using .. -
equivalent), the per-phase driving-point impedance on the primary side is:

+
0=

1

�
0=

1

=
+
0=

2 / (=)
�
0=

2  ̄ (=)
=

Iload

| (=) |2

These relations are also summarized in Table 3.2.

3.2.2 Nonideal transformers

In this section we first present circuit models of nonideal three-phase transformers and
then their per-phase equivalent circuits after all �-configured transformers have been
converted into their. -equivalents. Each nonideal single-phase transformer is modeled
using the simplified model studied in Chapter 3.1.4.

Per-phase equivalent circuits. Figure 3.17(a) shows a model of balanced three-phase
nonideal transformers in .. configuration and Figure 3.17(b) shows its per-phase
equivalent circuit. The per-phase circuit is identical to that in Figure 3.5(a). Figure
3.18(a) shows a model of balanced three-phase transformers in �� configuration.
Its .. equivalent and per-phase circuit are identical to those in Figure 3.17 except
that the equivalent leakage impedance I;/3 is one-third of the value in the original
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Figure 3.17 Three-phase transformers in .. configuration and its per-phase equivalent circuit.
(Nov 4, 2025: file size opt.)
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Figure 3.18 Three-phase transformers in �� configuration and its per-phase equivalent circuit.
(Nov 4, 2025: file size opt.)

�� circuit and the shunt admittance 3H< is three times the value in the original ��
circuit. This can be verified by checking the secondary open-circuit equivalent and
the secondary short-circuit equivalent of the original �� circuit. Figure 3.19 shows
a model of balanced three-phase transformers in �. configuration and its per-phase
equivalent circuit. Finally Figure 3.20 shows the model for .� configuration and its
per-phase circuit.

Hence balanced three-phase transformers in .. , ��, �. and .� configurations all
have the same per-phase equivalent circuit, with their respective leakage impedances
and shunt admittances as well as (complex) transformer gains  (=).

3.2.3 Parameter identification from transformer ratings

In this subsection we explain how to determine the leakage impedance I; in the primary
circuit from typical transformer ratings, assuming its shunt admittance H< is zero.

A typical specification of a three-phase transformer includes:



3.2 Balanced three-phase transformers 113

a

b

c

a

b

c

zl

zl
ym

ym

ym

zl
n

(a) �. configuration

3ym

zl /3

V1
an

I1
a I2

a

1  :  

(b) Per-phase circuit

Figure 3.19 Three-phase transformers in �. configuration and its per-phase equivalent circuit.
(Nov 4, 2025: file size opt.)
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Figure 3.20 Three-phase transformers in .� configuration and its per-phase equivalent circuit.
(Dec 1, 2025: (i) 4ic/6! 4

�ic/6; file size opt.)

• Three-phase power rating |(3q |.
• Rated primary line-to-line voltage |+pri | and rated primary line current |�pri |.
• Rated secondary line-to-line voltage |+sec | and rated secondary line current |�sec |.
• Impedance voltage V on the primary side, per phase, as a percentage of the rated

primary voltage. The shunt admittance is assumed zero.

The impedance voltage is the voltage drop across the leakage impedance I; on the
primary side of each single-phase transformer in a short-circuit test. The V specification
means that the voltage needed on the primary side to produce the rated primary current
across each single-phase transformer is V, as a percentage of the rated primary voltage.
We emphasize that the short-circuit voltage and current needed to derive I; should
be those across each single-phase transformer, which depends on the configuration of
the primary circuit. If the primary circuit is in � configuration then the short-circuit
voltage and current on the primary side of the single-phase transformer are (assuming
balanced positive sequence):

� configuration: |+sc | = |+01 | = V |+pri |, |�sc | = |�01 | =
���� �prip

3
4

ic/6
����
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If the primary circuit is in. configuration then the short-circuit voltage and current on
the primary side of the single-phase transformer are:

. configuration: |+sc | = |+0= | = V

���� +prip
34ic/6

���� , |�sc | = |�0= | = |�pri |

Since I; =+sc/�sc we therefore have,

� configuration: |I; | =
p

3V |+pri |
|�pri |

; . configuration: |I; | =
V |+pri |p
3|�pri |

(3.15a)

We reiterate that+pri denotes the line-to-line voltage even for. configuration; otherwise
|I; | = V |+pri |/|�pri | for . configuration if the rated voltage +pri is line-to-neutral.

Sometimes the primary line current |�pri | is not specified directly. In that case I;
can be determined from the power and voltage ratings ( |(3q |, |+pri |), as follows. If
the primary circuit is in � configuration then the short-circuit voltage and current
on the primary side of the single-phase transformer are (assuming balanced positive
sequence):

� configuration: |(3q | = 3|(q | = 3|+01 | |�01 |

|+sc | = |+01 | = V |+pri |, |�sc | = |�01 | =
|(3q |
3|+pri |

Note that |(3q |
3 |+pri | is the rated primary current produced in the short-circuit test. If the

primary circuit is in . configuration then the short-circuit voltage and current on the
primary side of the single-phase transformer are:

. configuration: |(3q | = 3|(q | = 3|+0= | |�0= |

|+sc | = |+0= | = V

���� +prip
34ic/6

���� , |�sc | = |�0= | =
|(3q |

3
��� +prip

34ic/6

��� =
|(3q |p
3|+pri |

Since I; =+sc/�sc we therefore have,

� configuration: |I; | =
3V |+pri |2
|(3q |

; . configuration: |I; | =
V |+pri |2
|(3q |

(3.15b)

As mentioned above, +pri denotes the line-to-line voltage even for . configuration;
otherwise |I; | = 3V |+pri |2/|(3q | for . configuration if the rated voltage +pri is line-to-
neutral.

Example 3.3 (Transformer ratings). The Adaptive Charging Network (ACN) for elec-
tric vehicles (EVs) in a Caltech garage consists of two three-phase stepdown trans-
formers in �. configuration with � on the primary side. Each of these transformers
is connected to an electric panel, to which charging stations and subpanels are con-
nected. Figure 3.21(a) shows the two three-phase transformers and the two electric
panels. Figure 3.21(b) shows a typical specification of a three-phase transformer in �.
configuration:
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(a) Transformers and panels (b) Transformer ratings

Figure 3.21 (a) The two 150 kVA transformers and two electric panels in Caltech ACN to
which charging stations and electric subpanels are connected. (b) The transformer ratings.

• Three-phase power rating |(3q | = 150kVA.
• Rated primary line-to-line (high) voltage |+pri | = 480V in � configuration with
rated primary line current |�pri | = 180A.

• Rated secondary line-to-line (low) voltage |+sec | = 208./120V in . configuration
with rated secondary line current |�sec | = 416A. This notation means that the
secondary side is . -configured with a line-to-line voltage of 208V and line-to-
neutral voltage of 120V.

• Impedance voltage V = 5.45% on the primary side (the shunt admittance is assumed
zero).

Verify that the rated line currents on the primary and secondary sides are consistent
with the power rating and voltage ratings. Determine the magnitude |I; | of the leakage
impedance of the transformer.

Solution. The primary side is in � configuration and hence we have

|(3q | = 3 |(01 | = 3 |+01 �̄01 | = 3 |+pri | |�01 |

Since (assuming balanced positive sequence)

�
0 = �01 � �20 = �

01

⇣
1� 4i2c/3

⌘
= �

01 ·
p

34�ic/6

we have |�pri | =
p

3 |�01 |. Hence

|(3q | =
p

3 |+pri | |�pri |

The rated line-to-line voltage |+pri | = |+01 | = 480V. The rated line current |�pri | = |�0 | =
180A. Hence

p
3 |+pri | |�pri | =

p
3 ·480 ·180 = 149.65 kVA

which is approximately the power rating |(3q | = 150 kVA.



116 Transformer models

The secondary side is in . configuration and hence we have

|(3q | = 3 |(0= | = 3 |+0= �̄0= | = 3
��� +secp

34ic/6

��� |�sec | =
p

3 |+sec | |�sec |

where the third equality follows since +sec = +01 = +0=
⇣p

34ic/6
⌘

is the line-to-end

voltage. The rated secondary line-to-line voltage is |+sec | = 208V and the line current
|�sec | = 416A, and hence

p
3 |+sec | |�sec | =

p
3 ·208 ·416 = 149.87kVA

which is approximately the power rating 150 kVA.

From (3.15a) the magnitude |I; | of the leakage impedance of each single-phase
transformer is (V is the impedance voltage on the primary side)

|I; | =
p

3V |+pri |
|�pri |

=

p
3 ·5.45% ·480V

180A
= 0.2517⌦

⇤

3.3 Equivalent impedance in transformer circuit

In this section we explain how to derive an “equivalent” impedance when looking into
the terminal of a transformer, either on the primary side or on the secondary side.
Consider the singe-phase equivalent circuit of a balanced three-phase transformer. A
series impedance IB in the secondary circuit of the transformer can be equivalently
replaced by a series impedance I? in the primary circuit, and vice versa, provided they
are related by:

I? =
IB

| (=) |2 or equivalently IB = | (=) |2I? (3.16a)

The first operation in (3.16a) is called referring IB in the secondary to the primary.
The second operation is called referring I? in the primary to the secondary. A shunt
admittance HB in the secondary circuit of the transformer can be equivalently replaced
by a shunt admittance H? in the primary circuit, and vice versa, provided they are
related by:

H? = | (=) |2HB or equivalently HB =
H?

| (=) |2 (3.16b)

These operations will be used as a shortcut in the analysis of circuits that contain
transformers the same way we use the Thévenin equivalent of impedances in series or
in parallel, as we will illustrate in Chapter 3.4.

Here “equivalence” means that the external behavior remains unchanged when a
series impedance or a shunt admittance on one side is referred to the other. We consider
two kinds of external behavior. In the first case (Chapter 3.3.1), the external behavior
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refers to the transmission matrix that maps (+2, �2) to (+1, �1). In the second case
(Chapter 3.3.2), the external behavior refers to the driving-point impedance on one
side of the transformer when the other side is connected to an impedance. We next
show that (3.16) is a simple consequence of Kirchho�’s and Ohm’s laws.

3.3.1 Transmission matrix

Consider the per-phase transformer circuits in Figure 3.22 of a balanced three-phase
system, one with a series impedance in the secondary circuit and the other in the
primary circuit. Let )B and )? denote the transmission matrices that maps (+2, �2) to

V1

I1 I2

V2K(n)

zs

ideal
transformer

(a) Series impedance IB in the secondary
circuit.

V1

I1 I2

V2K(n)

zp

ideal
transformer

(b) Series impedance I? in the primary cir-
cuit.

Figure 3.22 Referring series impedance in the secondary to the primary.

(+1, �1) in Figure 3.22(a) and Figure 3.22(b) respectively. We claim that the relation
(3.16a) between series impedances I? and IB ensures that )B = )? . It is in this sense
that we say these two circuits are equivalent.

To show that )B = )? let (+ , �) denote the voltage and current at the secondary
terminal of the ideal transformer in Figure 3.22(a). Then + =+2 + IB � and � = �2, or

+

�

�
=


1 IB

0 1

� 
+2

�2

�

Hence 
+1

�1

�
=


 
�1 (=) 0
0  ̄ (=)

� 
1 IB

0 1

� 
+2

�2

�
=


 
�1 (=)  

�1 (=)IB
0  ̄ (=)

�
|                      {z                      }

)B


+2

�2

�

Similarly, for the circuit in Figure 3.22(b), we have
+1

�1

�
=


1 I?

0 1

� 
 
�1 (=) 0
0  ̄ (=)

� 
+2

�2

�
=


 
�1 (=)  ̄ (=)I?
0  ̄ (=)

�
|                   {z                   }

)?


+2

�2

�

Hence )B = )? if and only if (3.16a) holds.
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The relation (3.16b) between shunt admittances H? and HB ensures that the transmis-
sion matrix for the circuit in Figure 3.23(a) is the same as that in Figure 3.23(b). This

V1

I1 I2

V2K(n)

ideal
transformer

ys

(a) Shunt admittance HB in the secondary
circuit.

V1

I1 I2

V2K(n)

ideal
transformer

yp

(b) Shunt admittance H? in the primary cir-
cuit.

Figure 3.23 Referring shunt admittance in the secondary to the primary.

is left as Exercise 3.7. The operations in (3.16) can be repeatedly applied to a circuit
involving multiple impedances and admittances, as illustrated in the next example.

Example 3.4. A combination of a series impedance IB and a shunt admittance HB in
the secondary circuit, as shown in Figure 3.24(a), can be referred to the primary one
element at a time, starting from the element that is closest to the ideal transformer. The

ys

zs
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I1 I2

N1  :  N2

V2

ideal
transformer

(a) (IB , HB) in the secondary cir-
cuit.

ysV1
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(b) Refer IB to the primary.

n2ys

a2zs

V1

I1 I2

N1  :  N2

V2

ideal
transformer

(c) Refer HB to the primary.

Figure 3.24 Referring (IB , HB) in the secondary to the primary.

transformer gain is  (=) = = = 1/0 := #2/#1. Referring the series impedance IB to
the primary yields the equivalent circuit in Figure 3.24(b) with an equivalent primary
impedance 02

IB . Referring then the shunt admittance HB to the primary yields the
equivalent circuit in Figure 3.24(c) with an equivalent shunt admittance =2

HB . ⇤

3.3.2 Driving-point impedance

In the second case the external behavior refers to the driving point impedances on
one side of the transformer when the other side is connected to an impedance. In
general suppose we apply a voltage + across two terminals that are connected to a
network of impedances and transformers. Suppose a current � flows between these two
terminals through the network. The ratio +/� is called the driving-point impedance at
these terminals. For networks consisting of a cascade of impedances in series and in
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parallel, the driving-point impedance is also called the Thévenin equivalent impedance.
The Thévenin equivalent impedance of such a network can be derived by repeatedly
applying simple reduction rules for the two basic configurations shown in Figure 3.25.
For two impedances I1, I2 in series depicted in Figure 3.25(a), the Thévenin equivalent

V

I

zeq= z1+ z2V

I

z1

z2

(a) Impedances in series

V

I

V

I

z1 z2 zeq= z1
1

z2
1+( )–1

(b) Impedances in parallel

Figure 3.25 (a) Thévenin equivalent Ieq of two impedances I1, I2 in series. (b) Thévenin
equivalent Ieq of two impedances I1, I2 in parallel.

impedance Ieq is defined such that the two networks in Figure 3.25(a) have the same
driving-point impedance:

+

�

= I1 + I2 =: Ieq (3.17a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted
in Figure 3.25(b) is defined to be:

+

�

=
✓

1
I1

+ 1
I2

◆�1

=: Ieq (3.17b)

These are simple consequences of Kirchho�’s and Ohm’s laws. Repeated application
of (3.17) reduces a cascade of impedances in parallel and series into a single equivalent
impedance that preserves the driving-point impedance.

When such a network contains not just impedances, but also transformers, the
relation (3.16) allows us to reduce it to a single Thévenin equivalent impedance with
the same driving-point impedance. As we explain below, the key element of this
procedure is the driving-point impedance seen from two terminals of one side of a
single-phase transformer when the other side is connected to an impedance Ieq that
may be the Thévenin equivalent of a network of impedances. This yields an equivalent
network where the transformer and Ieq is replaced by a scaled impedance and the
number of transformer is reduced by 1. Repeated application of (3.16) and (3.17)
can then be used to remove all transformers from the equivalent network, allowing
the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as
we will see in Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side
of an ideal transformer is connected to an impedance I2,eq as shown in Figure 3.26(a),
the transformer and the impedance I2,eq can be replaced by the Thévenin equivalent
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impedance I2,eq/| (=) |2 in the sense that the driving-point impedance +1/�1 on the
primary side is the same in both circuits in Figure 3.26(a). This is the same operation
that refers I2,eq in the secondary to the primary expressed in (3.16a). It is a consequence
of the Kirchho�’s and Ohm’s laws and is derived in Exercise 3.9. Similarly when

V1

I1

ideal
transformer

K(n) z2,eq V1

I1

z2,eq|K(n)|2
1

(a) +1/�1 on the primary side

V2

I2

ideal
transformer

K(n)z1,eq V2

I2

|K(n)|2z1,eq

(b) +2/�2 on the secondary side

Figure 3.26 Driving-point impedances

the primary side is connected to an impedance I1,eq as shown in Figure 3.26(b),
the transformer and the impedance I1,eq can be replaced by the Thévenin equivalent
impedance | (=) |2 I1,eq in the sense that the driving-point impedance +2/�2 on the
secondary side is the same in both circuits in Figure 3.26(b). This is the same operation
that refers I1,eq in the primary to the secondary expressed in (3.16a) (Exercise 3.9).

We caution that the shortcut (3.16) and (3.17) are not always applicable. For example
they may not be applied to a circuit that contains parallel paths; see Example 3.8 in
Chapter 3.4.2. In that case we analyze the circuit using Kirchho�’s and Ohm’s laws.
The shortcut is usually applicable to a radial system that does not contain parallel paths.
We now illustrate its application in the derivation of the driving-point impedances on
the primary and the secondary side.

Example 3.5 (+1/�1 on the primary side.). Consider the network in Figure 3.27(a)
where the secondary side is connected to a network whose Thévenin equivalent is I2,eq.
What is the driving-point impedance +1/�1?

V1

I1 I1' I2'

V1' V2'

ideal
transformer

K(n) z2,eq

z1,eq

y1,eq

(a) Transformer circuit

V1

I1

z2,eq|K(n)|2
1

z1,eq

y1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.27 Driving-point impedance +1/�1 on the primary side.

Solution. We first derive the driving-point impedance directly using Kirchho�’s and
Ohm’s laws. We then use the result to verify the shortcut expressed in (3.16) and (3.17).
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Circuit analysis: We have for the primary circuit
+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
+
0
1
�
0
1

�

Hence 
+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
 
�1 (=) 0
0  ̄ (=)

� 
+
0
2
�
0
2

�

Substituting + 02 = I2,eq �
0
2 we have

+1

�1

�
=


1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
| (=) |�2 0

0 1

� 
I2,eq

1

�
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=

1+ I1,eq H1,eq I1,eq

H1,eq 1

� 
I2,eq/| (=) |2

1

�
 ̄ (=) � 02

Hence the driving-point impedance is

+1

�1
=

(1+ I1,eq H1,eq)
�
I2,eq/| (=) |2

�
+ I1,eq

H1,eq
�
I2,eq/| (=) |2

�
+1

= I1,eq +
✓
H1,eq +

1
I2,eq/| (=) |2

◆�1

(3.18)

It is the Thévenin equivalent on the primary side of a network consisting of impedances,
admittances, as well as an ideal transformer. The Thévenin equivalent (3.18) has a
simple interpretation, as we now explain.

Shortcut: Use (3.16a) to refer I2,eq in the secondary to the primary, we can replace
the ideal transformer and I2,eq by the equivalent impedance I2,eq/| (=) |2 and arrive at
the equivalent circuit in Figure 3.27(b) seen from the primary side. The application of
(3.17) then yields the driving-point impedance (3.18). ⇤

Example 3.6 (+2/�2 on the secondary side.). Consider the circuit in Figure 3.28(a)
where the primary side is connected to the impedance I1,eq. Use (3.16a) to refer I1,eq

V2

I2

ideal
transformer

K(n)z1,eq

z2,eq

y2,eq

(a) Transformer circuit

V2

I2z2,eq

y2,eq|K(n)|2z1,eq

(b) Equivalent circuit seen on the sec-
ondary side

Figure 3.28 Driving-point impedance +2/�2 on the secondary side.

in the primary to the secondary, we can replace the ideal transformer and I1,eq by the
equivalent impedance | (=) |2 I1,eq and arrive at the equivalent circuit in Figure 3.28(b)
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seen from the secondary side. The application of (3.17) then yields the driving-point
impedance:

+2

�2
=

✓
H2,eq +

1
I2,eq + | (=) |2 · I1,eq

◆�1

⇤

3.4 Per-phase analysis

In this section we apply the techniques developed in the previous sections in the
analysis of a balanced three-phase power system consisting of generators, transformers,
transmission lines, and loads, in a mix of . and � configurations. We first explain how
to obtain a per-phase equivalent circuit of the system and then illustrate, through an
example, the per-phase analysis using the shortcut (3.16) and (3.17). Finally we discuss
a circuit that contains parallel paths to which the shortcut is not applicable. We explain
why the end-to-end complex transformer gains on these paths should be equal.

3.4.1 Analysis procedure

We have explained in Chapter 1.2.5 how to convert all sources, series impedances,
shunt admittances in � configurations into their equivalent. configurations and obtain
a per-phase equivalent circuit. Chapter 3.2.1 shows that an ideal balanced three-phase
transformer has a per-phase equivalent model specified by a complex voltage gain (=)
that relates the voltages and currents on two sides of the transformer. Chapter 3.2.2
shows how to incorporate the transformer series impedance and shunt admittance into
the per-phase model for both . and � configurations. Chapter 3.3.1 explains how to
refer series impedances and shunt admittances on one side to the other and Chapter
3.3.2 explains how to use this shortcut to simplify circuit analysis the same way we use
Thévenin equivalent of impedances in series or in parallel. Putting everything together
the procedure for per-phase analysis of a balanced three-phase system is as follows:

1. Convert all sources and loads in � configuration into their . equivalents using
(1.31a) for sources and (1.31b) for loads.

2. Convert all ideal transformers in � configuration into their . equivalents with
voltage gains  (=) given in Table 3.2.

3. Obtain the phase 0 equivalent circuit by connecting all neutrals.
4. Solve for the desired phase 0 variables. Use Thévenin equivalent of series

impedances and shunt admittances in a network containing transformers to sim-
plify the analysis when applicable, e.g., for a radial system.

5. Obtain variables for phases 1 and 2 by subtracting (or adding) 120� and 240�

from the phase 0 variables for positive-sequence (negative-sequence) sources. If
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variables in the internal of the � configurations are desired, derive them from the
original circuits.

We illustrate this procedure in the next example.

Example 3.7 (Per-phase analysis). Consider the balanced system described by the
one-line diagram in Figure 3.29(a) where a three-phase generator is connected to a
stepup three-phase transformer bank (primary on the left) in �. configuration, which
is connected through a three-phase transmission line to a stepdown transformer bank
(primary on the right) in�. configuration, and then to a load. The terminal line voltage

Vline

z line

z load
Y Y

(a) One-line diagram

1 : 

(b) Per-phase circuit

Figure 3.29 Example 3.7: per-phase analysis.

of the generator is +line. The transmission line is modeled by a series impedance Iline

and the load by an impedance Iload. The transformer banks are made up of identical
single-phase transformers each specified by a series impedance of 3I; and a turns ratio
of 0 := 1/=. Find the generator current, the transmission line current, the load current,
the load voltage, and the complex power delivered to the load.

Solution. The per-phase equivalent circuit is shown in Figure 3.29(b). Note that the
stepdown �. transformer near the load has its primary side on the right and secondary
side on the left so that, going from left to right, the voltage (current) angle is shifted
down (down) by 30� and their magnitudes scaled down (up) by

p
3=; see Exercise 3.5.

The primary sides of both the stepup and stepdown transformers have been converted
from � to its . equivalent, with an equivalent series impedance I; that is 1/3 of the
original impedance 3I; . The phase (line-to-neutral) voltage of the generator in the
per-phase equivalent circuit is

+1 :=
+linep
34ic/6

Our solution strategy is as follows. We will use (3.16) and (3.17) to refer all the



124 Transformer models

(load, transformer, and transmission line) impedances to the primary side of the stepup
transformer. This calculates the driving-point impedance seen at the generator. Given
generator phase voltage +1, we can derive the generator current �1. We then propagate
this towards the load to calculate the other quantities.

Let  (=) :=
p

3=4ic/6. Going from right to left, we cross the stepdown transformer
)2 from the primary to the secondary. Referring the impedance I1,eq := Iload + I; on
the primary to the secondary (see Figure 3.26(b)), the equivalent impedance at the
right-end of the transmission line is

| (=) |2 (Iload + I;)

Hence the equivalent impedance at the secondary side of the stepup transformer )1 is

I2,eq := Iline + | (=) |2 (Iload + I;)

Referring this impedance to the primary side of )1 (see Figure 3.26(a)), the driving
point impedance at the generator is:

+1

�1
= I; +

1
| (=) |2 ·

⇣
Iline + | (=) |2 (Iload + I;)

⌘

= 2I; +
Iline

| (=) |2 + Iload

Hence the primary side of )1 sees the series impedance I; of the two transformers, a
scaled down version of the line impedance Iline, and the load Iload, all in series. Note
that, seen from the generator, the load Iload goes through a stepdown transformer and
a stepup transformer and therefore the scaling e�ects of these two transformers cancel
each other out.

Given the bus voltage +1 of the generator, the generator current is then

�1 =
+1

2I; + Iline
| (=) |2 + Iload

The transmission line current is

�2 =
�1

 ̄ (=)
=

+1

 ̄ (=)
⇣
2I; + Iline

| (=) |2 + Iload

⌘
The load current is

�3 =  ̄ (=) �2 = �1

i.e., the e�ects of stepup and stepdown transformers cancel each other out and the load
current is equal to the generator current. The load voltage is

+3 = Iload �3 = Iload �1 = +1 ·
Iload

2I; + Iline
| (=) |2 + Iload

Hence +3 is related to +1 according to the voltage-divider rule where +1 is the voltage
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drop across the series of impedances 2I; + Iline
| (=) |2 + Iload and +3 is the voltage drop

across Iload. The complex power delivered to the load is

+3 �̄3 = Iload ·
�����

+1

2I; + Iline
| (=) |2 + Iload

�����
2

= Iload ·
|+line |2

3
���2I; + Iline

| (=) |2 + Iload

���2
⇤

Simplified per-phase diagram for external behavior. In Example 3.7, only the
transmission line current �2 that is in between the pair of transformers depends on the
connection-induced phase shift 4ic/6 in the complex transformer gain  (=). Outside
the pair of transformers, the driving point impedance +1/�1, the generator current �1,
the load current �3, the load voltage +3, and the power delivered to the load do not.
They depend only on | (=) |2. This is the case even if we use the more detailed⇧model
of the transmission line instead of the short-line model used here. Indeed, suppose the
series impedance Iline in Figure 3.29(b) is replaced by the transmission matrix in (2.10)
or (2.14)(2.15) as in Figure 3.30(a). Then the voltage and current (+1, �1) on the left is

V1

I1 I2

V2[
transmission

line

A
C

B
D

e i

(a) Transformers with complex gains

V1

I1 I2

V2[
transmission

line

A
C

B
D]

1 : 

(b) Equivalent circuit without connection-induced phase shift

Figure 3.30 General transmission line model between stepup and stepdown transformers.

related to the voltage and current (+2, �2) by
+1 | (=) |4ic/6

�1 | (=) |�1
4

ic/6

�
=


� ⌫

⇠ ⇡

�
·

+2 | (=) |4ic/6

�2 | (=) |�1
4

ic/6

�

+1 | (=) |
�1 | (=) |�1

�
=


� ⌫

⇠ ⇡

�
·

+2 | (=) |
�2 | (=) |�1

�

Therefore the external behavior is as if the connection-induced phase shift 4ic/6 is
absent, as shown in Figure 3.30(b). This motivates a simplified per-phase diagram
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for external behavior that ignores all connection-induced phase shifts of transformers
as long as every path contains stepup and stepdown transforms in pairs and wired in
opposite directions. This is generally true for radial networks in practice where no
transmission lines nor transformers are in parallel. Radial networks are a special case
of a normal system that we discuss next.

3.4.2 Normal system

A system is called normal if, in the per-phase equivalent circuit, the product of the
complex ideal transformer gains around every loop is 1. Equivalently, on each parallel
path,

1. the product of ideal transformer gain magnitudes is the same, and
2. the sum of ideal transformer phase shifts is the same.

Normal systems have a normalization that greatly simplifies analysis which we will
discuss in Chapter 3.5. The following example motivates such a system.

Example 3.8 (Loop flows). Consider a generator and a load connected by two three-
phase transformer banks in parallel forming a loop as shown in Figure 3.31(a). The

load
gen

zl'

zl'

1 : K1

1 : K2

(a) Transmission line ⇧-model

zl

zl
z loadVloadVgen

Iload

I2'

I1'I1
K1

K2
I2

(b) Equivalent circuit

Figure 3.31 Two buses connected in a loop with two parallel transformers.

transformer in the upper path is characterized by a series impedance and a complex gain
 1. The transformer in the lower path is characterized by the same series impedance and
a possibly di�erent complex gain  2. Suppose line-to-neutral voltage of the generator
bus is +gen, the series impedance I; of the transformer and the load impedance Iload

in the per-phase equivalent circuit are given, as shown in Figure 3.31(b). Derive the
currents �load, � 01, � 02 in terms of +gen, I; , Iload. Discuss the implications when

1.  2 =  1. This is the case if both transformer banks are .. -configured.
2.  2 =  1 4

i\ . This is the case if the upper transformer bank is .. -configured with
a voltage gain of = but the lower transformer bank is �. -configured with a voltage
gain of =/

p
3 and \ = c/6.

3.  2 = : · 1, : > 0. This is the case if both transformer banks are .. -configured
but with di�erent turns ratios.
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Solution. We cannot directly apply the shortcut (3.16) and (3.17) to refer the impedances
Iload and I; to the primary side because of the parallel paths, and must analyze the
per-phase circuit using Kirchho�’s and Ohm’s laws.

We have five unknowns currents �load, � 01, � 02, �1, �2. The five equations that relate
them are

�load = �
0
1 + � 02, �

0
9
=

� 9

 ̄ 9

, 9 = 1,2

Iload�load =  1 ·
�
+gen� I; �1

�
, Iload�load =  2 ·

�
+gen� I; �2

�
where the first equations expresses KCL and current gains of the transformers, and the
second equations express the load voltage seen on the upper and lower paths, respec-
tively, and follow from the transformer equation and KVL. Eliminating �load, � 01, � 02 we
have

Iload

✓
�1

 ̄1
+ �2

 ̄2

◆
=  1 ·

�
+gen� I; �1

�
, Iload

✓
�1

 ̄1
+ �2

 ̄2

◆
=  2 ·

�
+gen� I; �2

�
or 

I; + Iload | 1 |�2
Iload ( 1  ̄2)�1

Iload ( ̄1 2)�1
I; + Iload | 1 |�2

�
·

�1

�2

�
=


+gen

+gen

�

Inverting the matrix, we obtain

�1 =
+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·U1, �2 =
+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·U2

where

U1 = 1+ Iload

I;

·  1� 2

 1 | 2 |2
, U2 = 1+ Iload

I;

·  2� 1

| 1 |2 2

Hence

�
0
1 =

�1

 ̄1
=

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� · U1

 ̄1

�
0
2 =

�2

 ̄2
=

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� · U2

 ̄2

and

�load = �
0
1 + � 02 =

+gen

I; + Iload
�
| 1 |�2 + | 2 |�2

� ·
✓

1

 ̄1
+ 1

 ̄2

◆

where we have used

U1

 ̄1
+ U2

 ̄2
=

✓
1

 ̄1
+ Iload

I;

·  1� 2

| 1 |2 | 2 |2
◆
+

✓
1

 ̄2
+ Iload

I;

·  2� 1

| 1 |2 | 2 |2
◆
=

1

 ̄1
+ 1

 ̄2

1. When  2 =  1, then U1 = U2 = 1 and

�
0
1 = �

0
2 =

+gen

I; + Iload
�
2| 1 |�2

� · U1

 ̄1
=

 1+gen

| 1 |2I; +2Iload
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and

�load =
+gen

| 1 |2I; +2Iload|             {z             }
�0

·2 1 = �0 ·2 1 (3.19)

2. When  2 =  14
i\ , then, for 8 = 1,2,

�
0
8
=

+gen

I; + Iload
�
2| 1 |�2

� · U8
 ̄8

=
+gen

| 1 |2I; +2Iload
· (U8  8)

Since U1 1 +U2 2 =  1 + 2 =  1 (1+ 4i\ ) and | 1 | = | 2 |, we have

�load =
+gen

| 1 |2I; +2Iload
·
⇣
1+ 4i\

⌘
 1 = �0

⇣
1+ 4i\

⌘
 1

Hence �load reduces to the load current in (3.19) when the transformer gains are
equal with \ = 0. When the transformer gains  1 and  2 are not in phase,

�
1+ 4i\

�
can be much smaller than 2 and the current |�load | that enters the load can be much
smaller than the currents |� 0

8
|, 8 = 1,2. In particular

|�load |
|� 01 |

=
|1+ 4i\ |
|U1 |

,
|�load |
|� 02 |

=
|1+ 4i\ |
|U2 |

To appreciate the issue, take  1 = 10,  2 = 104ic/6, +gen = 8kV, I; = 90.05⌦,
Iload = 800\0�⌦. Then

�
0
1 = 3,754.99 \�164.85 A, �

0
2 = 4,527.24 \14.88 A

�load = �
0
1 + � 02 = 772.50 \13.57 A,

|�load |
|� 01 |

= 20.57%,
|�load |
|� 02 |

= 17.06%

Hence |� 01 | and |� 02 | are much larger than |�load |. The interpretation is that most of
the current loops between the two transformer banks without entering the load.
This is undesirable because the circulating current serves no purpose and heats up
the transformers. The problem arises because the connection-induced phase shifts
in the two parallel paths are di�erent. In practice we will not parallelize these
transformers.

The complex generation power and load power are respectively

(gen := +get ( �̄1 + �̄2) = 182.98 \70.97�MVA

(load := Iload |�load |2 = 59.68 \0�MVA

Again the apparent load power is a small fraction of the apparent generation
power. However, since the transformers have zero resistance, their real powers are
the same:

%gen = %load = 59.68MW
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3. When  2 = : · 1, we have

�
0
1 =

 1+gen

| 1 |2I; +
�
1+ :�2

�
Iload

·U1, �
0
2 =

 1 +gen

| 1 |2I; +
�
1+ :�2

�
Iload

· U2

:

�load =
+gen

| 1 |2I; +
�
1+ :�2

�
Iload

·
✓
1+ 1

:

◆
 1

Hence

|�load |
|� 01 |

=
1+ :�1

|U1 |
,

|�load |
|� 02 |

=
1+ :
|U2 |

If we take  1 = 10,  2 = 20, +gen = 8kV, I; = 90.05⌦, Iload = 800\0�⌦. Then

�
0
1 = 3,260.76 \76.40 A, �

0
2 = 3,213.39 \�86.58 A

�load = �
0
1 + � 02 = 959.23 \�2.29 A,

|�load |
|� 01 |

= 29.42%,
|�load |
|� 02 |

= 29.85%

Again |� 01 | and |� 02 | are much larger than |�load | and there is a large loop flow
between the transformer banks. This time the problem arises because the voltage
gains in the two parallel paths are di�erent. In practice we will not parallelize these
transformers. ⇤

3.5 Appendix: Per-unit normalization

In this appendix we describe a normalization method that will simplify the analysis
of balanced three-phase systems. For a normal system where all connection-induced
phase shifts of transformers can be ignored in the per-phase equivalent circuit, the
system after normalization will contain no transformers if there is no o�-nominal
transformer in the original system. For general systems, normalization may simplify
the equivalent circuit and per-phase analysis, but the system after normalization may
contain ideal transformers with real or complex voltage gains. Normalization was
important before the widespread use of powerful computers because it simplifies
computation significantly. It is less important today, and some people argue, sometimes
more error-prone than worth the e�ort.

We are usually interested in four types of generally complex quantities: power (,
voltage+ , current �, and impedance I and functions of these quantities. We will choose
base values for these quantities and define the quantities in per unit as:

quantity in p.u. :=
actual quantity

base value of quantity

The base values are chosen to be real positive values and have the same units as the
corresponding actual quantities. For example a power base (⌫ will be in unit VA
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when it serves as the base value for complex power, W for real power, var for reactive
power. Hence the per-unit quantities generally have di�erent magnitudes from, but
always the same phase as, the corresponding actual quantities. Furthermore they are
dimensionless. The base values are chosen so that the per-unit quantities behave exactly
as the actual quantities do, as we now explain.

Consider a power network that consists of multiple areas connected by transformers.
It represents either a single-phase system or the per-phase equivalent circuit of a
balanced three-phase system. The nominal voltage magnitudes are the same within
each area and those in neighboring areas are related by transformer turns ratios. It is
common to choose the power base value (⌫ for the entire network and the voltage
base value +1⌫ for one of the areas, say, area 1. For example the base value +1⌫ can be
chosen to be the nominal voltage magnitude for area 1 and the base value (⌫ can be
the rated apparent power of one of the transformers in area 1, so that its rated voltage
is 1 pu and the rated power is 1 pu. The base values for all other quantities in the entire
network are then calculated from these two values ((⌫,+1⌫) so that these base values
satisfy:

• Kirchho�’s laws within each area;
• ideal transformer gains across areas;
• three-phase relations.

We derive in Appendix 3.5.1 the base values within area 1 and in Appendix 3.5.2 the
base values of other areas connected by transformers to area 1. In Appendix 3.5.3 we
describe the normalization of o�-nominal transformers. In Appendix 3.5.4 we describe
how to calculate base values of three-phase quantities in a balanced three-phase system.
In Appendix 3.5.5 we summarize the procedure for per-unit per-phase analysis.

3.5.1 Kirchho�’s and Ohm’s laws

Consider a single-phase system or the per-phase equivalent circuit of a three-phase
system. Start with area 1 for which we have the power base (⌫ in VA (or W or var for
real and reactive powers respectively) for the entire network, and the voltage base +1⌫

in V. The base values �1⌫, I1⌫ of currents and impedances respectively are calculated
as:

�1⌫ :=
(⌫

+1⌫
A, I1⌫ :=

+
2
⌫

(⌫

⌦ (3.20)

so that the base values satisfy the Kirchho�’s laws:

+1⌫ = I1⌫ �1⌫ V, (⌫ = +1⌫ �1⌫ VA

Since

+1

+1⌫
=

I1�1

I1⌫ �1⌫
,

(1

(⌫

=
+1 �̄1

+1⌫ �1⌫
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the per-unit quantities satisfy Kirchho�’s laws as the actual quantities do:

+1pu = I1pu�1pu, (1pu = +1pu �̄1pu

We can therefore perform circuit analysis using the per-unit quantities instead of the
actual quantities. We can convert the result of the analysis back to the original quantities
by multiplying the per-unit quantities by their base values.

Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + i&1pu. The base value for resistances and reactances is I⌫ so that

A1pu :=
A1

I1⌫
, G1pu :=

G1

I1⌫

and I1pu = A1pu + iG1pu. Similarly H1⌫ := 1/I1⌫ in ⌦�1 is the base value for admittances
H1 := 1/I1 = 6� i1 in ⌦�1 as well as conductances 6 and susceptances 1 also in ⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.32(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫, I1⌫) for area 1 calculated in

V1

I1 I2

V2V̂1

Î1

ym

zl

K(n)

(a) In standard unit

V1pu

I1pu Î1pu =  I2pu

V̂1pu =V2puympu

zlpu

(b) In per unit

Figure 3.32 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).
(Nov 16, 2025: file size scaled.)

Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ V, �2⌫ :=
�1⌫

| (=) | A, I2⌫ := | (=) |2I1⌫ ⌦ (3.21)
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The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.32(a), the per-unit quantities (+̂1pu, �̂1pu) at the input and the
per-unit quantities (+2pu, �2pu) at the output of the ideal transformer satisfy (0 := 1/=)

+̂1pu =
+̂1

+1⌫
=

+2

 (=)
| (=) |
+2⌫

= +2pu4
�i\ (=)

�̂1pu =
�̂1

�̂1⌫
=

 ̄ (=)�2
| (=) |�2⌫

= �2pu4
�i\ (=)

This also implies that the per-unit power (̂1pu := +̂1pu ( �̂1pu)H = +2pu (�2pu)H = (2pu. If
\ (=) can be taken as zero then on the input side of the transformer, (+̂1pu, �̂1pu, (̂1pu)
can be replaced by (+2pu, �2pu,(2pu), i.e., the voltages, currents, and power remain the
same, in per unit, when crossing an ideal transformer. Within each side of the ideal
transformer the per-unit quantities ((8pu,+8pu, �8pu, I8pu) satisfy the Kirchho�’s laws as
explained in Chapter 3.5.1. Hence the per-phase equivalent circuit can be simplified
into that in Figure 3.32(b) where the ideal transformer has disappeared. The voltage
gain angle \ (=) = 0 if (i) the system is single phased, or (ii) it is balanced three phased
with transformers in .. or �� configuration, or (iii) it is a normal system where the
connection induced phase shift \ (=) can be ignored as far as external behavior
is concerned. Hence ideal transformers and connection-induced phase shifts can be
omitted in a normal per-phase system if we use simplified per-phase diagram and per-
unit normalization. This simplified per-phase per-unit diagram is called an impedance
diagram. Otherwise the per-unit circuit will contain a phase-shifting transformer with
voltage gain 4 9\ (=) ; see Example 3.10.

We proceed in a similar manner to calculate the base values ((⌫,+8⌫, �8⌫, I8⌫)
in each neighboring area 8, until all connected areas are covered. It can be easily
checked that the per-unit quantities in each area satisfy the Kirchho�’s laws, as long
as the per-unit quantities in area 1 satisfy the Kirchho�’s laws and those in other
areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer
gain magnitudes is the same, and (ii) the sum of ideal transformer phase shifts is the
same. As discussed above these properties prevent loop flows between transformers, as
illustrated in Example 3.8. Note that in Figure 3.31(b) of that example, the secondary-
side voltages of the two ideal transformers are the same but their primary-side voltages
are di�erent when  2 =  14

9 \ with \ < 0. The first property also ensures that the
calculation (3.21) of base values across areas is consistent, i.e., does not depend on the
order in which the areas are chosen for calculation; see Exercise 3.15.

Example 3.9 (Single-phase system). Consider the single-phase system in Figure 3.33
where the voltage source has a nameplate rated voltage magnitude of EV and a name-
plate rated power of BVA. Calculate the base values for the system.
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1  :  N1 N2  :  1

area 1 area 2 area 3

zl zlz line

z load yve j

Figure 3.33 Example 3.9 with rated voltage magnitude of E and rated apparent power of B. (Nov
16, 2025: file size scaled.)

Solution. Let the base value for power be (⌫ := B in VA for the entire system and the
base value for voltage in area 1 (where the voltage source is) be +1⌫ := E in V. Then
the base values for currents and impedances in area 1 are respectively:

�1⌫ :=
B

E

A, I1⌫ :=
E

2

B

⌦

The base values in area 2 connected by the first transformer with a voltage gain =1 are:

+2⌫ := =1+1⌫ = =1E V, �2⌫ :=
�1⌫

=1
=

B

=1E
A

I2⌫ := =
2
1I1⌫ =

(E1E)2

B

⌦, H2⌫ :=
1
I2⌫

=
B

(E1E)2
⌦�1

The base values in area 3 connected by the second transformer are:

+3⌫ :=
+2⌫

=2
=
=1

=2
E V, �3⌫ := =2 �2⌫ =

=2

=1

B

E

A

I3⌫ :=
1

=
2
2

I2⌫ =
=

2
1

=
2
2

E
2

B

⌦, H3⌫ :=
1
I3⌫

=
=

2
2

=
2
1

B

E
2
⌦�1

⇤

3.5.3 O�-nominal transformer

Power systems employ two types of regulating transformers. The first type regulates
voltage magnitudes, e.g., through variable taps on some of its windings that control the
number of turns and hence the voltage gain. Such a transformer is usually connected
at the end of a line to regulate the voltage magnitude at a node. Its turns ratio may be
variable and di�erent from the ratio of the voltage bases in its primary and secondary
areas. The second type regulates phase angle displacement between two nodes. Their
voltage gains may be complex  (=) = d\q where q may be variable and cannot be
omitted in normalization. These transformers are said to be o�-nominal. They will not
disappear under per-unit normalization but will appear as a transformer with a di�erent
(normalized) voltage gain, as we now explain.

Consider an ideal transformer with a possibly complex voltage gain +2
+1

=:  (=) as
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shown in Figure 3.34(a). Suppose the ratio of the voltage base in area 2 to that in area

V1

I1 I2

1  :  K(n)

V2

(a) O�-nominal transformer (standard
unit)

V1

I1

1  :  1  :  

(b) Equivalent transformer in series (standard
unit)

1  :  K(n)

(c) Per-unit equivalent circuit

Figure 3.34 Normalization of an o�-nominal transformer.

1 is +2⌫
+1⌫

=: d. Since

+2 =  (=)+1 =
 (=)
d

· d+1

the transformer is equivalent to two ideal transformers in series with voltage gains
d and  (=)/d respectively as shown in Figure 3.34(b). Since the first transformer
has an voltage gain of d, it disappears in per-unit normalization and hence the per-unit
equivalent circuit of the original transformer has a gain reduced by d as shown in Figure
3.34(c). For instance for a phase shifting transformer with voltage gain  (=) = d\q its
voltage gain in the per-unit circuit will be 1\q.

Example 3.10 (Normalization with connection-induced phase shifts). Consider a bal-
anced three-phase ideal transformer in �. or .� configuration with a complex volt-
age gain  (=). Let the bases for one side of the transformer be ((⌫,+1⌫, �1⌫, I1⌫).
Choose the bases for the other side according to (3.21). Suppose we cannot ignore the
connection-induced phase shift. Then the per-unit equivalent circuit of the ideal trans-
former will be an o�-nominal phase shifting transformer with a gain  (=)

| (=) | = \ (=)
as shown in Figure 3.35. ⇤
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V1

I1 I2

1  :  e i   K(n)

V2

Figure 3.35 Normalization when connection-induced phase shifts cannot be ignored.

3.5.4 Three-phase quantities

In Chapters 3.5.1–3.5.3 we explain how to choose bases for a single-phase system.
They are also applicable to the per-phase equivalent of a three-phase system where the
voltages and currents are line-to-neutral voltages and line-to-neutral currents. Suppose
the base values ((1q

⌫
,+1q
⌫

, �1q
⌫

, I1q
⌫
) for a single-phase system are given. When single-

phase devices (sources, loads, impedances, transformers) are connected to form a
balanced three-phase system, three-phase quantities are created for which base values
need to be defined. For instance the ratings of a three-phase transformer are always
specified in terms of three-phase power and line-to-line voltages. In this subsection we
will derive these base values, in terms of ((1q

⌫
,+1q
⌫

, �1q
⌫

, I1q
⌫
), in a way that respects

three-phase relations. The main issue is to define the meaning of these base values and
the relation they intend to capture in . and in � configurations.

Let ((1q ,+1q , �1q , I1q) denote respectively the power generated or consumed by
a single-phase device, the voltage across and current through the device, and the
impedance of the device. We are interested in the following three-phase quantities. The
three-phase power (3q is defined to be the sum of power generated or consumed by
each device in either . or � configuration. The line-to-line voltages + line and terminal
(line) currents �3q are external quantities. In an . configured three-phase device, a
line-to-neutral voltage + l2n and a three-phase impedance I3q are equal to the voltage
+

1q and impedance I1q respectively associated with each single-phase device. For a �
configured three-phase device,+ l2n and I3q are defined to be the line-to-neutral voltage
and the impedance respectively in its . equivalent circuit. As explained in Chapter 1
these quantities are related to the corresponding single-phase quantities according to:3

3
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(
3q = 3(1q , +

line =
p

34ic/6
+

an (3.22a)

�
3q =

⇢
�
0= = �

1q for . configuration
�
01 � �20 =

p
34�ic/6

�
1q for � configuration

(3.22b)

+
l2n =

(
+

1q for . configuration⇣p
34ic/6

⌘�1
+

1q for � configuration
(3.22c)

I
3q =

⇢
I

1q for . configuration
I

1q/3 for � configuration
(3.22d)

Motivated by the three-phase relations (3.22) we define the base values
((3q
⌫

,+ line
⌫

, �3q
⌫

,+ l2n
⌫

, I3q
⌫
) for the three-phase quantities ((3q ,+ line, �3q ,+ l2n, I3q) in

terms of the single-phase base values ((1q
⌫

,+1q
⌫

, �1q
⌫

, I1q
⌫
) as follows:

(
3q
⌫

:= 3(1q
⌫

+
line
⌫

:=
p

3+ l2n
⌫

(3.23a)

�
3q
⌫

:=

(
�
1q
⌫

for . configurationp
3�1q
⌫

for � configuration
(3.23b)

+
l2n
⌫

:=

8>><
>>:
+

1q
⌫

for . configuration⇣p
3
⌘�1

+
1q
⌫

for � configuration
(3.23c)

I
3q
⌫

:=

(
I

1q
⌫

for . configuration
I

1q
⌫
/3 for � configuration

(3.23d)

In light of (3.20) we could also have defined the base values �3q
⌫

and I3q
⌫

in terms of

(
3q
⌫

and + line
⌫

as (see Exercise 3.16):

�
3q
⌫

:=
(

3q
⌫p

3+ line
⌫

, I
3q
⌫

:=

�
+

line
⌫

�2

(
3q
⌫

(3.23e)

These definitions replace (3.23b) and (3.23d) and are applicable for both . and �
configurations (note that+ line

⌫
are di�erent functions of+1q

⌫
for. and� configurations).

With these base values the per-unit quantities satisfy the following relations (see
Exercise 3.17):

(
3q
pu = (

1q
pu , +

line
pu = +

l2n
pu , I

3q
pu = I

1q
pu (3.24a)����3qpu

��� = ����1qpu

��� , ��
+

l2n
pu

�� = ���+1q
pu

��� (3.24b)

Therefore in per unit, the three-phase power, voltage, current and impedance equal
their per-phase quantities (at least in magnitude). In particular when one says that the
voltage magnitude is 1 pu, it means that the line-to-line voltage magnitude is 1 pu
(i.e., equal to its base value + line

⌫
which is

p
3+1q
⌫

for . configuration and +1q
⌫

for �
configuration), and the phase voltage magnitude is 1 pu (i.e., equal to its base value

+
l2n
⌫

which is +1q
⌫

for . configuration and
⇣p

3
⌘�1

+
1q
⌫

for � configuration). We hence
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need not specify whether a per-unit voltage is line-to-line or line-to-neutral, or whether
a per-unit power is single-phase or three-phase. In � configuration the line-to-neutral
voltage + l2n

pu is related to single-phase voltage +1q
pu according to

+
l2n
pu :=

+
l2n

+
l2n
⌫

=

⇣p
34ic/6

⌘�1
+

1q

⇣p
3
⌘�1

+
1q
⌫

= 4
�ic/6

+
1q
pu

Similarly for line currents �3qpu and �1qpu .

The next example illustrates the calculation of three-phase bases from single-phase
bases. It shows in particular that impedances, including transformer parameters, will
have the same per-unit values in single-phase or three-phase circuits and regardless of
. or � configuration.

Example 3.11 (Three-phase system). Consider a single-phase distribution transformer
with nameplate ratings of

• Power rating (1q): 50 kVA;
• Voltage ratio: 408 V – 120 V;
• Transformer parameter: G; = 0.1 pu, G< = 100 pu (referred to the primary).

They are used to build three-phase transformer banks in .. , ��, �. or .� config-
urations. Find the per-unit normalization “induced” by the nameplate ratings and the
impedance diagram of the per-phase circuit in per unit.

Solution. The nameplate-induced base for the single-phase transformer is such that the
power rating is 1pu and voltage rating is 1pu. Hence

(
1q
⌫

:= 50kVA, +
1q
1⌫ := 408V, +

1q
2⌫ := 120V

Therefore the current bases are

�
1q
1⌫ :=

(
1q
⌫

+
1q
1⌫

=
50kVA
408V

= 122.55A, �
1q
2⌫ :=

(
1q
⌫

+
1q
2⌫

=
50kVA
120V

= 416.67A

Since ( = |+ |2/I, the impedance base for the single-phase transformer induced by the
nameplate ratings is:

I
1q
1⌫ =

⇣
+

1q
1⌫

⌘2

(
1q
⌫

=
(408V)2

50kVA
< = 3.33⌦, I

1q
2⌫ =

⇣
+

1q
2⌫

⌘2

(
1q
⌫

=
(120V)2

50kVA
= 0.29⌦

Hence the actual transformer reactances G; and G< in⌦ in the single-phase system are:

G; = (0.1)I1q1⌫ = 0.333⌦, G< = (100)I1q1⌫ = 333⌦

Consider now a three-phase transformer bank obtained from connecting three of
these single-phase transformers. We consider first the base values for the primary side;
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the base values for the secondary side can be similarly chosen. What we will find is that
if we choose our bases ((3q

⌫
,+ line
⌫

, �3q
⌫

, I3q
⌫
) according to (3.23), then the impedance

diagram of the per-phase equivalent circuit is independent of . or � configuration.

Case 1: primary side in. configuration. From (3.23), the base values of the three-phase
power and line-to-line voltage induced by the nameplate ratings are

(
3q
⌫

:= 3(1q
⌫

= 3(50) = 150kVA, +
line
1⌫ :=

p
3+1q
⌫

=
p

3 (408) = 706.68V

These three-phase quantities are used as the power and voltage ratings on the three-
phase transformer nameplate. Hence a line voltage of 1 pu corresponds to the rated
primary voltage (706.68 V) on the nameplate. The base values for the terminal currents
and impedances are:

�
3q.
1⌫ := �

1q
1⌫ = 122.55 A, I

3q.
1⌫ := I

1q
1⌫ = 3.33⌦

It can be checked that ((3q
⌫

,+ line
⌫

, �3q
⌫

, I3q
⌫
) as defined indeed satisfy three-phase rela-

tions:

�
3q.
1⌫ =

(
3q
⌫p

3+ line
1⌫

, I
3q.
1⌫ =

�
+

line
⌫

�2

(
3q
⌫

Since I3q.1⌫ = I1q1⌫, G; = 0.1pu and G< = 100pu as before for the three-phase transformer.

Case 2: primary side in� configuration. From (3.23), the base values of the three-phase
power and line-to-line voltage induced by the nameplate ratings are

(
3q
⌫

:= 3(1q
⌫

= 3(50) = 150kVA, +
line
1⌫ := +

1q
⌫

= 408V

The terminal current and the impedance bases are:

�
3q�
1⌫ :=

p
3�1q1⌫ =

p
3(122.55) = 212.26A, I

3q�
1⌫ =

I
1q
⌫

3
=

3.33
3

= 1.11⌦

To convert the transformer circuit model in � configuration to its equivalent . con-
figuration, the transformer reactances are reduced by a factor of 3, i.e., G.

;
= G;/3 and

G
.

<
= G</3. Hence the transformer reactances in pu are:

G
.

;pu :=
G
.

;

I
3q
1⌫

=
G;/3
I

1q
1⌫/3

=
G;

I
1q
1⌫

= 0.1pu

G
.

<pu :=
G
.

<

I
3q
1⌫

=
G</3
I

1q
1⌫/3

=
G<

I
1q
1⌫

= 100pu

as expected.

In summary, with the three-phase base values defined in (3.23), the transformer
reactances G; and G< remain the same in pu regardless of how the single-phase trans-
formers are connected into a three-phase transformer bank. The impedance diagram
of its per-phase circuit is shown in Figure 3.36. ⇤
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V1pu V2pu

I2puI1pu

ixmpu

ixlpu

Figure 3.36 Impedance diagram of a three-phase transformer bank. (Nov 16, 2025: file size
scaled.)

3.5.5 Per-unit per-phase analysis

Consider a balanced three-phase normal system. Recall that the nameplate ratings of
three-phase transformers are specified in terms of their three-phase power and line-to-
line voltages. The procedure for per-unit per-phase analysis is summarized as follows:

1. For a single-phase system, pick a power base (1q
⌫

for the entire system and a
voltage base + l2n

1⌫ in one of the areas, say, area 1, induced by the nameplate ratings
of one of the single-phase transformers (either the primary or secondary circuit).

2. For a balanced three-phase system, pick a three-phase power base (3q
⌫

and line-to-
line voltage base + line

1⌫ induced by the nameplate ratings of one of the three-phase
transformers in area 1 (choose either the primary or secondary circuit as area 1).
Then choose the power and voltage bases for the per-phase equivalent circuit of
the balanced three-phase system according to (3.23a):

(
1q
⌫

:=
(

3q
⌫

3
, +

1q
1⌫ :=

+
line
1⌫p
3

(
1q
⌫

will be the power base for the entire per-phase circuit.
3. Calculate the current and impedance bases in that area by:

�1⌫ :=
(

1q
⌫

+
1q
1⌫

, I1⌫ :=

⇣
+

1q
1⌫

⌘2

(
1q
⌫

4. Calculate the base values for voltages, currents, and impedances in areas 8 con-
nected to area 1 by the magnitudes =8 of the transformer gains (assuming area 1 is
the primary side of the transformers):

+
1q
8⌫

:= =8+
1q
1⌫ , +

line
8⌫

:= =8+
line
1⌫ , �8⌫ :=

1
=8

�1⌫, I8⌫ := =
2
8
I1⌫

Continue this process to calculate the voltage, current, and impedance base values
for all areas.

5. For real, reactive, apparent power in the entire system, use (1q
⌫

as the base value.
For resistances and reactances, use I8⌫ as the base value in area 8. For admittances,
conductances, and susceptances, use H8⌫ := 1/I8⌫ as the base value in area 8.
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6. Draw the impedance diagram of the entire system, and solve for the desired per
unit quantities.

7. Convert back to actual quantities if desired.

3.6 Chapter summary

1. A nonideal single-phase transformer can be modeled as a circuit with the admit-
tance matrix 3.6. It is equivalent to the ) equivalent circuit (3.4) or the model with
unitary voltage network described by the admittance matrix (3.12). A widely used
simpler but approximate model is the admittance matrix (3.9b).

2. The voltage gain  (=) of the per-phase equivalent of a balanced three-phase trans-
former can be real (.. or �� configuration) or complex (�. or.� configuration).
They can be derived using Corollary 1.3.

3. The analysis of a single-phase circuit containing transformers can be simplified by
referring impedances or admittances from one side of a transformer to the other
using (3.16).

4. The per-phase circuit of a balanced three-phase system containing transformers
can be derived using Corollary 1.3. Analysis can be conducted on the per-phase
circuit and the results translated back to the three-phase system.

5. The variables such as power (, voltage + , current �, impedance I and admittance
H, as well as functions of these quantities, can be normalized by base values.
These base values are carefully chosen so that the per-unit quantities also satisfy
Kirchho�’s and Ohm’s laws, transformer gains, and three-phase properties. Per-
phase analysis can be conducted using per-unit quantities. The result in terms of
actual quantities can then be obtained by scaling the per-unit quantities by their
base values.

3.7 Bibliographical notes

There are many excellent textbooks on basic power system concepts and many materials in this chapter
follow [1]. A model for single-phase split-phase transformer is introduced in [10] (see also [11] which also
verifies single-phase models using AMI data and quantifies modeling errors). Some of the materials on
per-unit normalization, e.g., o�-nominal regulating transformer in Chapter 3.5.3, follow [2].

3.8 Problems

Chapter 3.1.
Exercise 3.1 () model of transformer). 1. Derive the transmission matrix given in

(3.5) by eliminating the internal variables (with hats) from (3.4).
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2. Show that the transmission matrix for the ) equivalent circuit of transformer in
Figure 3.37 is also given by (3.5).

V1

I1 I2

N1  :  N2

V2Û1 ym

zp
nI2

aV̂2

a2zs

Figure 3.37 Exercise 3.1: ) equivalent circuit of transformer with = := #2/#1 and 0 := #1/#2.

3. If H< = 0 then 
+1

�1

�
=


0 =

�
I? + 02

IB

�
0 =

� 
+2

�2

�

which is the same as the transmission matrix in (3.9a).

Exercise 3.2 () model of transformer). Given the primary voltages and primary
currents (+B2 , �B2) and (+>2 , �>2) of a short-circuit and open-circuit tests respectively,
derive (3.7) from (3.4).

Exercise 3.3 (Simplified model). Consider the transformer model in Figure 3.5 and
its transmission matrix "̂ in (3.9a). This question shows that when the shunt admit-
tance matrix H< is small compared with the leakage admittances IB , "̂ is a good
approximation of the transmission matrix " in (3.5). Let n := 02

IBH<.

1. Show that their di�erence is "̂ �" = n

0 �=I?
0 �=

�
.

2. Suppose I? = [IB = [(AB + iGB) for some real number [ > 0 with AB > 0 and GB > 0,

H< = �i1< with 1< > 0, and |n | ⌧ 1. Show that k"̂�" kk" k < |n | ⌧ 1, where k�k
denotes the sum norm k�k :=

Õ
8, 9 |�8 9 |.

Exercise 3.4 (Unitary voltage network). 1. Show that the ) equivalent circuit de-
scribed by (3.5) is equivalent to the transformer model � = (".uvn")+ given by
(3.12a)–(3.12c).

2. Derive ".uvn" in (3.12d) in terms of 0 instead of #1,#2.

Chapter 3.2.

Exercise 3.5 (�. and .� configurations). Consider ideal balanced three-phase trans-
formers in �. and .� configurations shown in Figure 3.16(b).

1. Show that their voltage gains satisfy  .� (1/=) = 1/ �. (=).
2. What is the implication on a path that contains a �. transformer followed by the

same �. transformer connected in the reverse direction?
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Exercise 3.6 (Nonideal�. transformer). Consider a balanced three-phase transformers
in �. configuration and its per-phase equivalent circuit shown in Figure 3.19. Show
that the transmission matrix of the per-phase equivalent circuit is given by:

+
0=

1
�
0

1

�
=


 
�1
�. (=) (1+ I;H<)  ̄�. (=) (I;/3)
 
�1
�. (=) (3H<)  ̄�. (=)

� 
+
0=

2
�
0

2

�

where  �. (=) :=
p

3= 4ic/6.

Chapter 3.3.

Exercise 3.7 (Referring shunt admittance in one side to the other). Show that the
transmission matrix for the circuit in Figure 3.23(a) is the same as that in Figure
3.23(b) provided that the relation (3.16) between shunt admittances H? and HB holds.

Exercise 3.8 (Transmission matrix). Consider a balanced three-phase ideal transformer
with a complex gain  (=) connected to a balanced three-phase series impedance IB
and a balanced three-phase shunt admittance HB on the secondary side. The per-phase
equivalent circuit is shown in Figure 3.38(a). Show directly that the circuit in Figure

V2

I2I1

V1 V

I

ysK(n)

zs

ideal
transformer

(a) (IB , HB) in the secondary

V1

I1 I2

V2yp

zp

K(n)

ideal
transformer

(b) (I? , H?) in the primary

Figure 3.38 Referring (IB , HB) on the secondary to the primary of a transformer.

3.38(a) and that in Figure 3.38(b) have the same transmission matrix, provided that
(3.16) holds for the impedances/admittances (I? , H?) and (IB , HB).

Exercise 3.9 (Driving-point impedance). Refer to Figure 3.26.

1. Show that the driving-point impedance +1/�1 on the primary side is the same in
both circuits in Figure 3.26(a).

2. Show that the driving-point impedance +2/�2 on the secondary side is the same in
both circuits in Figure 3.26(b).

Exercise 3.10 (Driving-point impedance on primary side). Suppose the secondary
sides of the (equivalent) circuits in Figure 3.38 are connected to an identical load Iload

so that +2 = Iload�2 in both circuits.

1. Show that the driving-point impedances on the primary side of the circuit in Figure
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3.38(a) is:

+1

�1
=

1
| (=) |2

 
IB +

1

HB + I�1
load

!
(3.25a)

without using (3.16). The term in the bracket is the Thévain equivalent impedance
in the secondary circuit, seen from the output of the ideal transformer.

2. Show that the driving-point impedances on the primary side of the circuit in Figure
3.38(b) is:

+1

�1
= I? +

1

H? + | (=) |2 I�1
load

(3.25b)

without using (3.16).
3. Show that (3.25a) and (3.25b) are equivalent provided that (I? , H?) and (IB , HB)

satisfy (3.16).

Chapter 3.4.

Exercise 3.11 (Per-phase analysis). Consider the balanced three phase system in Figure
3.39 where the line-to-line voltage of the three-phase generator in � configuration is
+gen. The 3q transformer consists of single-phase transformers in �. configuration.
Each single-phase transformer is modeled by a leakage impedance I; (and negligible
shunt admittance) on the primary side followed by an ideal transformer with voltage
gain =. The transmission line is modeled by a ⇧-model with a series impedance Iline

and a shunt admittance H</2 at each end of the line. The transmission line is connected
to a balanced 3q impedance load in . configuration with an impedance Iload in each
phase.

Vgen
z load

Y

Figure 3.39 Example 3.11: one-line diagram.

1. Draw the equivalent per-phase circuit.
2. Derive the complex power delivered to the load /load in each phase.

Exercise 3.12 (Caltech ACN: estimating distribution line impedances). Suppose the
�. transformer in the Caltech ACN in Example 3.3 is balanced. Suppose its primary
side is connected to a balanced three-phase voltage source in � configuration with a
line voltage of |+scr | = 480+ through a three-phase distribution line, as shown in Figure
3.40. Its secondary side is connected to a balanced three-phase load through another
three-phase distribution line. Suppose the system is balanced so that the distribution
lines are modeled by (diagonal) series impedances Iline,1I and Iline,2I respectively
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Vscr load

Y

Figure 3.40 The three-phase transformer is connected to a three-phase voltage source and a
three-phase load through two three-phase lines. (Nov 16, 2025: file size scaled.)

(Figure 3.40), where I is the identity matrix of size 3. The secondary side of the �.
transformer is directly grounded so that its neutral voltage is zero. Its phase 0 line-
to-neutral voltage is measured to be +0=. The load is a balanced three-phase current
source in � configuration with a known (EV charging) current �load from phase 0 to
phase 1. The voltage is measured to be +load across the load between phases 0 and 1.

Assume without loss of generality that the voltage source has \+scr = 0� and is
balanced in a positive sequence set.

1. Derive the single-phase equivalent circuit.
2. Determine the distribution line impedances Iline,1 and Iline,2 in terms of the line

voltage |+scr |, the leakage impedance I; of the transformer, and the complex gain
 (=) of the ideal �. transformer, as well as the measured transformer voltage+0=

and load voltage and current (+load, �load).

Exercise 3.13 (Caltech ACN: network design). This problem considers the deployment
costs of di�erent network designs for ACN. Referring to Figure 3.21(a), the output
(secondary side) of each of the 150 KVA transformers is connected to the input of one
of the two electric panels. A wire connects a circuit breaker in the panel to an electric
vehicle (EV) charger or a subpanel and these wires are housed in conduits. We consider
the network that connects all the EV chargers to one of the two panels in Figure 3.21(a).
In this network, the main components are wires, conduits, and subpanels and the types
and sizes of these hardware determine the deployment costs, both parts and labor. The
types and sizes depend on the current limit (ampacity) of each wire segment required
to carry the current to chargers it supplies and the distance of that wire segment.
Consider an idealized layout in Figure 3.41 where the network connects a total of =:
EV chargers to the electric panel. These chargers are clustered into = groups. Each
group 8 is associated with a junction 8 = 1, . . . ,= as shown in the figure. Every group
consists of : identical chargers labeled by ⇢+1, . . . ,⇢+: . Each charger can draw a
maximum current of � (in A).

Design 1. The first design runs a wire from the electric panel at junction 0 directly to
each charger following the path labeled in black in Figure 3.41(a). Let (⇡, �8) denote
the distance and the cross-sectional area of the wire between each junction 8� 1 to 8.
Let (3,0) denote the distance and the cross-sectional area of the wire from a junction
to every EV in its group. The cross-sectional area of a wire depends on the maximum
current it needs to supply. We assume the maximum current that can be drawn by any
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0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

EV1 EVk EV1 EVk EV1 EVk

(a) Design 1

EV1 EVk EV1 EVk EV1 EVk

0 1 2 n
(D,A1)

(d,a) (d,a) (d,a)

(D,A2) (D,An)

(b) Design 2

Figure 3.41 Caltech ACN network design.

charger is the same, and therefore the wires from a junction to any EV in its group all
have the same size 0. The wire size �8 between junctions 8 � 1 and 8 depends on the
layout. In design 1, �8 = 0 for all 8. This will be di�erent in design 2 (see below).

For example, the wire connecting ⇢+1 in group 1 goes from junction 0 (electric
panel) to junction 1 to the charger, as shown in blue, and has a total length of ⇡ +3 and
size 0. The wire connecting ⇢+: in group = goes from junction 0 to junctions 1, . . . ,=,
to the charger, and has a total length of =⇡ + 3 and size 0.

Design 2. In this design a single wire of length ⇡ and size �1 connects the electric
panel at junction 0 to an electric subpanel at junction 1; see Figure 3.41(b). Then :
wires each of length 3 and size 0 connects the : chargers in group 1 to the subpanel.
A single wire of length ⇡ and size �2 < �1 connects the subpanel at junction 1 to a
subpanel at junction 2, and : wires each of (3,0) then connects the : chargers in group
2, and so on.

For both design 1 and design 2, the cross-sectional area of the wire used for any
segment of the layout depends on the maximum current (called the ampacity of the
wire in ampere) that it needs to carry. That is, the wire sizes 0, �8 above are functions
U(G) where G is the ampacity. See below for an example of U(G).

Deployment costs. The total deployment cost (parts and labor) involve mainly three
types of hardware.
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1. Wire. The cost of deploying a wire of length _ and cross-sectional area U is denoted
by the function ⇠F (_,U).

2. Conduit. The cost ⇠2 (_,U) of deploying a conduit of length _ that carries wires
with a total cross-sectional areas U has two components:

⇠2 (_,U) := ⇠21 (_,U) +⇠22 (U)

The first component ⇠21 (_,U) depends on the length _ and total wire size U, the
longer and larger the conduit, the higher the cost. The second component ⇠22 (U)
depends only on the total wire size U and is usually a step function: when the total
wire size exceeds a threshold, a special machine is needed to deploy the conduit
at an extra cost. In Design 1, all wires that share the same segment (say) between
junctions 8� 1 to 8 will be housed in the same conduit. For example, the conduit
between junction 1 and junction 2 will carry (=�1): wires. We assume that if a
conduit carries wires of areas U1, . . . ,U<, then the total wire size is simply its sum
U :=

Õ
<

8=1U8 .
3. Subpanel. For simplicity we assume every subpanel (in design 2) has the same

cost 2B .

Assumptions on cost functions. Assume the cost functions take the following form:

⇠F (_,U) := 2F_U, ⇠21 (_,U) := 22_U, ⇠22 (U) = V1(U � g) (3.26a)

where 1(G) = 1 if G is true and 0 if G is false.

Figure 3.42(a) shows the wire size dependence U(G) on ampacity G from (a version
of) the American Wire Gauge (AWG) standard. Based on the data, Figure 3.42(b)
shows that U(G) can be well approximated by a quadratic function

U(G) := G
2 +0.6G +4 (3.26b)

with G in A and U(G) in mm2. The quadratic term represents the fact that the thermal
power loss due to a current �0 through a wire with resistance A is roughly A �20 . Doubling
the current means that the resistance must be scaled down by a factor of 4 in order
to maintain the same heat loss. Since A is inversely proportional to the cross-sectional
area of the wire, this requires a wire with 4 times the area.

1. Evaluate the total cost of network design 1 and design 2.
2. Prove that design 1 is always less expensive than design 2 as long as the maximum

current � that can be drawn by a charger is at least 2A.4

Exercise 3.14 (Caltech ACN: network design). This problem generalizes problem
3.13 to show that design 2 is more expensive even for very general cost functions and
wire size dependency. Suppose the cost functions ⇠F (_,U),⇠21 (_,U),⇠22 (U) and the
dependency of wire size U(G) on its ampacity satisfy the following conditions:

4 Currently a level-2 EV charger typically has a current limit of 32A or higher.
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AWG"#" ""
area"

(mm^2)" ""
ampacity"

(enclosed,"A)"
10   5.269   33 
8   8.347   46 
6   13.332   60 
4   21.156   80 
2   33.593   100 
1   42.429   125 
0   53.456   150 
00   67.491   175 
000   84.949   200 

0000   107.146   225 

(a) AWG table

y#=#0.9558x2#+#0.5749x#+#3.7561#

0.000#

20.000#

40.000#

60.000#

80.000#

100.000#

120.000#

33# 46# 60# 80# 100# 125# 150# 175# 200# 225#

area"(mm^2)"vs"ampacity"(A)"

(b) AWG plot

Figure 3.42 (a) American Wire Gauge (AWG) standard: dependence of wire cross-sectional
area U(G) on ampacity G. (b) The data for U(G) in the table can be approximated by the
quadratic function in (3.26b). The black solid line is the plot of the data and the orange dashed
line is the quadratic fit.

C1: For any fixed U, ⇠F (_,U) is linear in _. For any fixed _, ⇠F (_,U) linear and
increasing in U.

C2: ⇠21 (_,U) is increasing in U for any fixed _. ⇠22 (U) is increasing in U.
C3: There is an ampacity set - such that for all G 2 - , U(8G) � 8U(G) for any integer

8 � 1.

Prove that design 2 is more expensive for any ampacity G 2 - .

It can be easily verified that the cost functions and U(G) in (3.26) satisfy these
conditions. In particular the ampacity set - in condition C3 is - = {G � 2A}. Therefore
the conditions C1–C3 allow a much larger set of cost functions and U(G) than (3.26).

We now interpret these conditions to illustrate that they are realistic. Condition
C1 says that the total deployment cost (parts and labor) grows linearly in wire length
_ and in wire size U. If either one doubles, the cost exactly doubles. Condition C2
says that regardless of its length, both the first and second cost components of the
conduit increase as the cross-sectional area of the conduit increases. Finally condition
C3 implies in particular that, for any ampacity G in - , doubling the ampacity more
than doubles the cost. As explained immediately after (3.26b), since thermal loss is
quadratic in ampacity, the required wire size satisfies this condition. The proof reveals
that this is the key condition that makes design 2 more expensive than design 1, i.e.,
it is always cheaper to use more and longer small wires because the wire size grows
faster than linearly in ampacity.

Appendix 3.5.

Exercise 3.15 (Base values across transformers). For a normal system, on each parallel
path in its per-phase equivalent circuit, the product of ideal transformer gain magnitudes
is the same. Show that this property allows us to consistently define base values between
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two neighboring areas using (3.21). (Hint: Show that around any loop, (3.21) holds
only if the product of voltage gain magnitudes around the loop is 1.)

Exercise 3.16 (Terminal current and three-phase impedance bases). Show the defini-
tion (3.23b) (3.23d) for base values �3q

⌫
and I3q

⌫
respectively are equivalent to definition

(3.23e).

Exercise 3.17 (Per-unit properties). Prove the per-unit properties (3.24).

Exercise 3.18 (Per-unit normalization for dynamical systems [12]). Consider the linear
time-invariant system

§G = �G(C) +⌫D(C), H(C) = ⇠G(C) +⇡D(C) (3.27)

where � 2 R<⇥=, ⌫ 2 R<⇥: , ⇠ 2 R?⇥= and ⇡ 2 R?⇥: . Let the base values for
(G(C),D(C), H(C)) be the =⇥= diagonal matrix -⌫, the : ⇥ : diagonal matrix*⌫ and the
?⇥ ? diagonal matrix.⌫ respectively. Per-unit normalization for (3.27) is the similarity
transformation with per-unit variables

Gpu (C) := -
�1
⌫
G(C), Dpu (C) := *

�1
⌫
D(C), Hpu (C) := .

�1
⌫
H(C) (3.28)

Show that:

1. The per-unit variables (Gpu (C),Dpu (C)) satisfy a linear time-invariant model

§Gpu = �puGpu (C) +⌫puDpu (C), Hpu (C) = ⇠puGpu (C) +⇡puDpu (C) (3.29)

Derive the system model (�pu,⌫pu,⇠pu,⇡pu).
2. Show that the per-unit system (3.29) and (3.27) have the same system eigenvalues,

i.e., �pu and � have the same eigenvalues.
3. Show that the per-unit system (3.29) is structure-preserving in the sense that the

entries of (�pu,⌫pu,⇠pu,⇡pu) are zero if and only if the corresponding entries of
(�,⌫,⇠,⇡) are zero.



4 Bus injection models

A power system has two types of components: (i) generation resources and loads
which we will call devices, and (ii) a network of transmission lines, distribution
lines and transformers that connect these devices. In Chapter 4.1 we summarize these
component models that we have studied in detail in the previous chapters. In Chapter 4.2
we illustrate through examples the use of these components to build a power system
model, consisting of a device model and a network model. A network model is a relation
between nodal voltages, currents and powers of a power network. In Chapter 4.3.1 we
study network admittance matrix that linearly relates nodal currents to nodal voltages
and in Chapter 4.3.4 we present power flow equations that relate nodal power injections
and nodal voltages. In Chapter 4.4 we discuss classical solution methods to solve power
flow equations. In Chapter 4.6 we study a linearized model, called the DC power flow
model, that is widely used in power systems applications such as electricity markets.

4.1 Component models

In this section we summarize models of devices, transmission lines and transformers.
They will be used to construct system models in Chapters 4.2 and 4.3.

4.1.1 Devices: sources and impedance

In Chapters 1.1.2 and 1.3.1 we describe circuit models of single-phase single-terminal
devices. They are also per-phase models of balanced three-phase devices. Associated
with each device 9 is its terminal power, current, and voltage (B 9 , � 9 ,+ 9 ) 2 C3. There
is an arbitrary reference point with respect to which all voltages are defined. If the
common reference point is taken to be the ground then voltage + 9 is the voltage drop
between terminal 9 and the ground. The terminal current � 9 is defined to flow out of
the device from terminal 9 to the reference point (opposite to the current direction in
Chapter 1.1.2.). Such a single-terminal device is characterized by relations between its
terminal variables (B 9 , � 9 ,+ 9 ). We will refer to these relations as a device model, which
will be used to construct a system model in Chapter 4.2.
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1. Voltage source
�
⇢ 9 , I 9

�
. This is a device with a constant internal voltage ⇢ 9 in

series with an impedance I 9 as shown in Figure 1.3(a). Its external model is the
relation+ 9 = ⇢ 9 �I 9 � 9 between its terminal voltage and current

�
+ 9 , � 9

�
. This yields

a relation B 9 =+ 9 �̄ 9 =+ 9
�
⇢̄ 9 � +̄ 9

�
/Ī 9 between the terminal variables

�
+ 9 , B 9

�
.

2. Current source
�
� 9 , H 9

�
. This is a device with a constant internal current � 9 in

parallel with an admittance H 9 as shown in Figure 1.3(b). Its external model is
the relation � 9 = � 9 � H 9+ 9 between its terminal voltage and current

�
+ 9 , � 9

�
. This

yields a relation B 9 =+ 9 �̄ 9 =+ 9
�
�̄ 9 � H̄ 9+̄ 9

�
between the terminal variables

�
+ 9 , B 9

�
.

3. Power source f9 . This is a device with a constant internal power injection f9 out
of the device. Its external model is the relation B 9 = + 9 �̄ 9 = f9 which relates the
terminal power B 9 to the internal power f9 .

4. Impedance I 9 . The external (and internal) model is+ 9 =�I 9 � 9 and B 9 =�
��
+ 9

��2 /Ī 9 .
We often assume voltage and current sources are ideal in which case I 9 , H 9 are zero.
These four devices can be used to model generators, loads, capacitor banks, inverters,
etc.

4.1.2 Buses

A power network is a network of transmission lines, distribution lines, and transformers.
It connects devices that represent generation resources and loads. We model a power
network by a connected undirected graph ⌧ = (# ,⇢) of # + 1 nodes and " lines,
where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . We use “bus, node, terminal”
interchangeably and “line, branch, link, edge” interchangeably.

Each bus 9 in # represents a busbar to which zero, one or more devices (volt-
age/current/power source or an impedance) may be connected. Associated with bus 9
are its nodal power, current and voltage (B 9 , � 9 ,+ 9 ) 2 C3; see Figure 4.1. The voltage+ 9

j k
Vj VkIjk , Sjk

sj , Ij

Skj , Ikj
Ik , sk

( ys
jk , y

m
jk ) ( ys

kj , y
m
kj )

Figure 4.1 Network graph and notations.

is the voltage drop between bus 9 and the common reference point, e.g., the ground. It
is also the terminal voltage of any device connected to bus 9 . Bus 0 is often designated
the slack bus. Its voltage is assumed to be fixed, e.g., +0 = 1\0� per unit (pu), i.e., the
voltage drop between bus 0 and the reference point is 1\0�.
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the sending-end line current �: 9 from : to 9 . Let ( 9: :=+ 9 �̄ 9: denote the sending-end
line power from 9 to : and (: 9 :=+: �̄: 9 denote that from : to 9 . Each line ( 9 , :) 2 ⇢ is

characterized by four admittances
⇣
H
B

9:
, H<
9:

⌘
2 C2 from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
2 C2 from

: to 9 ; see Figure 4.1. We call
⇣
H
B

9:
, HB
9:

⌘
the series admittances and

⇣
H
<

9:
, H<
9:

⌘
the

shunt admittances of line ( 9 , :). The series and shunt admittances of a transmission or
distribution line are derived in Chapter 2.2.2 and those of a transformer in Chapters 3.1
and 3.2. They are summarized below, after we have explained the external model

(end-to-end behavior) of a generic branch characterized by
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
.

4.1.3.1 External model

The external model of a line ( 9 , :) is a relation between the line currents
�
� 9: , �: 9

�
and

the nodal voltages (+ 9 ,+: ), or that between the line powers
�
( 9: ,(: 9

�
and (+ 9 ,+: ).

The current-voltage (�+) relation of line ( 9 , :) is a linear relation:

� 9: = H
B

9:
(+ 9 �+: ) + H<9:+ 9 , �: 9 = H

B

: 9
(+: �+ 9 ) + H<: 9+: (4.2a)

or in matrix form:
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.branch


+ 9

+:

�
(4.2b)

where .branch is called the admittance matrix of line ( 9 , :). The power-voltage (B+)
relation is a nonlinear relation:

( 9: := + 9 �̄ 9: = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2 (4.3a)

(: 9 := +: �̄: 9 = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2 (4.3b)

We emphasize that the series admittances HB
9:

and HB
: 9

may be di�erent and therefore
this general model may not have a ⇧-circuit representation. We will often restrict
ourselves to the special case where the following assumption holds:

C4.1: The series admittances HB
9:
= HB

: 9
for every line ( 9 , :) 2 ⇢ .

In this case (4.2) reduces to

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

9:
(+: �+ 9 ) + H

<

: 9
+: (4.4a)

or in terms of the admittance matrix .branch:
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#

|                        {z                        }
.branch


+ 9

+:

�
(4.4b)
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Therefore .branch is symmetric and line ( 9 , :) has a ⇧-circuit representation, as illus-

trated in Figure 4.3. We characterize such a line by three admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
.

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.3 ⇧-circuit model of a single-phase branch.

This model may not be suitable as the per-phase model of a nonideal balanced three-
phase transformer in �. or .� configuration whose series admittances HB

9:
and HB

: 9

are di�erent (see below). It is however widely used, e.g., when the network does not
contain transformers with complex voltage gains or when used in per unit systems
where transformers disappear and connection-induced phase shifts can be ignored.1

We therefore often adopt this model and will explicitly state it as assumption C4.1
when we use it.

We next summarize two special branches, a transmission or distribution line and a
transformer studied in detail in previous chapters.

4.1.3.2 Transmission line

Suppose ( 9 , :) represents a single-phase transmission or distribution line, or a per-
phase model of a balanced three-phase line. In Chapter 2.2.2 we have derived its series

admittances
⇣
H
B

9:
, HB
9:

⌘
and shunt admittances

⇣
H
<

9:
, H<
9:

⌘
in terms of the characteristic

impedance /2 and propagation constant W of the line. The series admittances in both
directions are equal, i.e., HB

9:
= HB

: 9
, i.e., it satisfies assumption C4.1. Hence a transmis-

sion or distribution line is characterized by a three-tuple (HB
9:

, H<
9:

, H<
: 9
) 2 C3 and has

an equivalent ⇧-circuit representation (Figure 4.3). The shunt admittances (H<
9:

, H<
: 9
)

of ( 9 , :), also called line charging, model its line capacitance. The currents through
these shunt admittances are the currents supplied to the line capacitance and are called
charging currents.

The external model of line ( 9 , :) is given by (4.4). The sending-end currents�
� 9: , �: 9

�
are generally not negative of each other when the shunt admittances are

nonzero. Since HB
9:
= HB

: 9
, their sum represents the total current loss along the line due

to nonzero shunt admittances:

� 9: + �: 9 = H
<

9:
+ 9 + H<: 9+: < 0

1 As the examples in Chapter 4.2 show, a line ( 9, :) in the graph ⌧ or the matrix .9: may also contain
generator and load impedances.
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Thermal limits on branch current flows should be imposed on both |� 9: | and |�: 9 |:

|� 9: | =
���HB
9:
(+ 9 �+: ) + H<9:+ 9

���  �
max
9:

|�: 9 | =
���HB
: 9
(+: �+ 9 ) + H<: 9+:

���  �
max
: 9

not just on |HB
9:
(+ 9 �+: ) | unless the shunt admittances are zero.

The sending-end line power flows (( 9: ,(: 9 ) are related to nodal voltages (+ 9 ,+: )
according to (4.3) with HB

9:
= HB

: 9
. They are not negatives of each other because of

power loss along the line. Since HB
9:
= HB

: 9
, the total complex power loss is:

( 9: + (: 9 = H̄
B

9:

��
+ 9 �+:

��2 + H̄<
9:
|+ 9 |2 + H̄<: 9 |+: |2 (4.5)

The first term on the right-hand side is loss due to series impedance and the last two
terms are losses due to shunt admittances of the line. Thermal limits on line power
flows should be imposed on both |( 9: | and |(: 9 |:

|( 9: | =
���H̄B
9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2

���  (
max
9:

|(: 9 | =
���H̄B
: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2

���  (
max
: 9

not just on | H̄B
9:

�
|+ 9 |2�+ 9+̄:

�
| and | H̄B

: 9

�
|+: |2�+:+̄ 9

�
| unless the shunt admittances

are zero.

If the shunt admittances H<
9:

and H<
: 9

of the line are zero then the power loss has a
simple relation with line currents. Setting H<

9:
= H<

: 9
= 0 in (4.4a) and (4.5) and using

H
B

9:
= HB

: 9
, we have

( 9: + (: 9 = I
B

9:
·
���HB
9:

���2 ��+ 9 �+: ��2 = I
B

9:

��
� 9:

��2
because � 9: = HB

9:
(+ 9 �+: ) = ��: 9 when the shunt elements are zero and HB

9:
= HB

: 9
.

This is not the case otherwise.

4.1.3.3 Transformer

Suppose ( 9 , :) represents a single-phase transformer or the per-phase model of a
balanced three-phase transformer. A single-phase transformer is characterized by its
voltage gain = 9: (or equivalently, its turns ratio 0 9: := 1/= 9: ), a leakage admittance
H̃
;

9:
and a shunt admittance H̃<

9:
in its primary circuit, as shown in Figure 4.4(a). The

leakage admittances H̃;
9:

models conductor resistance and leakage inductance and the
shunt admittance H̃<

9:
models the magnetizing currents. If the single-phase transformer

is the per-phase model of a balanced three-phase transformer, then its voltage gain
 (= 9: ) can be complex, e.g.,  (= 9: ) =

p
3= 9:4ic/6 for �. configuration.

In Chapters 3.1 and 3.2 we have derived its series admittances
⇣
H
B

9:
, HB
9:

⌘
and

shunt admittances
⇣
H
<

9:
, H<
9:

⌘
in terms of the voltage gain  (= 9: ) and admittances
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we have to use the admittance matrix .transformer for power flow analysis. Equivalently,
.transformer can be rewritten as .branch in (4.2b) with

H
B

9:
:=

H̃
;

9:

 9: (=)
, H

<

9:
:=

✓
1� 1

 9: (=)

◆
H̃
;

9:
(4.8a)

H
B

: 9
:=

H̃
;

9:

 ̄ 9: (=)
, H

<

: 9
:=

1� 9: (=)
| 9: (=) |2

H̃
;

9:
+ 1
| 9: (=) |2

H̃
<

9:
(4.8b)

i.e., the transformer is characterized by two pairs of admittances, (HB
9:

, H<
9:
) from 9 to

: and (HB
: 9

, H<
: 9
) in the opposite direction. They reduce to (4.7) when  (=) = =.

4.2 System model = device model + network model

In this section we explain how to use the component models of Chapter 4.1 to model
a single-phase system consisting of generators and loads connected by a network of
transmission lines, distribution lines and transformers. The overall system consists of
a device model and a network model, as illustrated in Figure 4.5. The device model

system model
1 or 3-phase

= +device model
voltage scr, current scr,
power scr, impedance

network model
BIM, BFM

Figure 4.5 System model. (Nov 30, 2025: file size opt.)

is summarized in Chapter 4.1.1. The network model can be constructed by applying
Kirchho�’s and Ohm’s laws to the underlying circuit of the network represented by the
graph⌧ = (# ,⇢) in Figure 4.1 and the external model of the branches in Chapter 4.1.3.2

The procedure to derive the system model consists of two steps:

1. Derive a circuit model of the overall system using the component models of
Chapter 4.1.

2. Apply Kirchho�’s and Ohm’s laws to the circuit, e.g., to derive the relation between
terminal (nodal) voltages and current injections.

We illustrate in this section this procedure using two simple examples. As will be clear
from these examples, for single-phase systems, the device model is simple. Most of
the analysis is to derive and solve the network model, which will be studied in the
following sections.

2 The key di�erence between a single-phase system and an unbalanced three-phase system is in the
models of devices and transformers. These models are subtler in a three-phase system due to . and �
configurations. Their interaction on the network through terminal variables (+9 , � 9 ,B 9 ) is almost
identical whether the system is single or three-phased (see Part III).
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voltage+0 := ⇢1 and nodal current injection �0 out of the device. Node 1 (corresponding
to the left end of the transmission line) has a nodal voltage +1 but zero nodal current
injection. Then the device model and the network model (4.9) becomes:

�2 = � f̄2

+̄2
� +2

I2
,

266664
�0

0
�2

377775
=

266664
1/I1 �1/I1 0
�1/I1 1/I1 + H �H

0 �H H

377775
266664
⇢1

+1

+2

377775
(4.10)

i.e., four equations in four unknowns (�1, �2,+1,+2). ⇤

Example 4.3 (With transformer). Suppose a transformer is added to the system of
Example 4.2 between the generator and the transmission line, as shown in Figure 4.7(a),
where

• The generator is modeled as a current source with a given parameter (�1, H1).
• The load is modeled as a current source with a given parameter (�2, H2).
• The network is modeled as a nonideal single-phase transformer with a real voltage
gain =, a leakage admittance H̃; and a shunt admittance H̃< in the primary circuit,
in series with a transmission line with a given series admittance H (and zero shunt
admittances).

Derive the circuit model of the system and the network admittance matrix . .

generator

transformer

load
transmission 

line

(a) One-line diagram

ys13

y1 y2ym13 ym31

V3

J1 J2

y

generator line loadtransformer

V1 I1 V2I2

(b) Equivalent circuit

Figure 4.7 Example 4.3: One-line diagram and its equivalent circuit. (Nov 23, 2025: file size
opt.)

Solution. Let network nodes 1 and 2 be the terminals of the generator and load current
sources respectively, with nodal voltages and current injections (+1, �1) and (+2, �2)
respectively. The system model consists of a device model and a network model. The
device model for the two current sources is

�1 = �1� H1+1, �2 = �2� H2+2 (4.11a)

The circuit model of the network is shown in Figure 4.8 where the transformer is
modeled by a ⇧ circuit with parameters (from (4.7))

H
B

13 := 0H̃
; , H

<

13 := (1� 0) H̃; , H
<

31 := 0(0�1) H̃; + 02
H̃
<

since it has a real turns ratio 0 := =�1. To determine the relation between (�1, �2) and
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V1

I1= I13 I23= I2

V2

I31 I32

ym13

ys13

ym31 V3

y

I3= 0

transformer line

Figure 4.8 ⇧-circuit model of transformer in series with transmission line.

(+1,+2), we introduce an additional network node 3 between the transformer and the
transmission line with an auxiliary voltage+3 and an auxiliary current injection �3 := 0
at node 3, as shown in Figure 4.8. Since the voltage gain = is real, use the transformer
model (4.7) and the branch model (4.4) to get

�13

�31

�
=


H
B

13 + H<13 �HB13
�HB13 H

B

13 + H<31

� 
+1

+3

�
,


�32

�23

�
=


H �H
�H H

� 
+3

+2

�

where � 9: denotes the branch current from node 9 to node : . Kirchho�’s current law
at each node gives:

�1 = �13, 0 = �3 = �31 + �32, �2 = �23

Eliminating branch currents relates nodal currents (�1, �2, �3) to nodal voltages
(+1,+2,+3) through the admittance matrix . :

266664
�1

�2

�3

377775
=

266664
H
B

13 + H<13 0 �HB13
0 H �H
�HB13 �H H + HB13 + H<31

377775|                                  {z                                  }
.

266664
+1

+2

+3

377775
, �3 = 0 (4.11b)

The matrix . is complex symmetric and therefore has a ⇧-circuit representa-
tion. The system model consists of (4.11), with six equations in six unknowns
(�1, �2, �3,+1,+2,+3), as illustrated in Figure 4.7(b). The model is linear since it does
not involve any power source.

If we treat the current sources as ideal sources with internal currents �8 and absorb
their H8 as additional shunt admittances at nodes 8, 8 = 1,2, then H8 should be added to
the first two diagonal entries of . . Therefore the device model and the network model
(4.11) becomes

�1 = �1, �2 = �2, �3 = 0

266664
�1

�2

�3

377775
=

266664
H
B

13 + H<13 + H1 0 �HB13
0 H + H2 �H
�HB13 �H H + HB13 + H<31

377775
266664
+1

+2

+3

377775
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or, upon substituting (�1, �2, �3),
266664
�1

�2

0

377775
=

266664
H
B

13 + H<13 + H1 0 �HB13
0 H + H2 �H
�HB13 �H H + HB13 + H<31

377775
266664
+1

+2

+3

377775
(4.12)

⇤

In both Examples 4.2 and 4.3 the network model takes the form � = .+ where �,+
are the nodal current injections and voltages respectively, and . is called the network
admittance matrix. This is the case whether we treat the sources as nonideal ((4.9) and
(4.11)) or ideal ((4.10) and (4.12)) ). Moreover the device model is simple and the bulk
of the analysis is to derive . using Kirchho�’s and Ohm’s laws.3 We next derive . for
general networks and study its properties.

4.3 Network models

As the examples of Chapter 4.2 show, the main feature of a single-phase system is the
network model that relates nodal (terminal) powers, currents and voltages (B 9 , � 9 ,+ 9 ) 2
C

3, 9 2 # , not the device model given in Chapter 4.1.1. These nodal variables are
related by B 9 = + 9 �̄ 9 for each bus 9 2 # . The power and current injections (B 9 , � 9 )
can be interpreted as flowing from terminal 9 to the common reference point in the
circuit model. In this section we study two types of network models in detail. The
first type expresses nodal current balance and takes the form of � = .+ . The second
type expresses nodal power balance using power flow equations. We refer to this set of
models as bus injection models.

In Chapter 4.3.1 we derive the admittance matrix. for general networks and present
a method for solving � =.+ numerically. In Chapter 4.3.2 we define Kron reduction of
an admittance matrix which produces a linear relation between the nodal voltages and
currents at a subset of network nodes. When the network graph is a tree, called a radial
network, a reduced admittance matrix is always invertible and we derive explicitly
its inverse in Chapter 4.3.3. In Chapter 4.3.4 we present several forms of power flow
equations that express nodal power balance.

4.3.1 �+ relation: admittance matrix .

� = .+ . The nodal current injections � := (� 9 , 9 2 #) and voltages + := (+ 9 , 9 2 #)
are linearly related. Applying the line model (4.2a) to KCL � 9 =

Õ
:: 9⇠: � 9: at each

3 In contrast, for an unbalanced three-phase system, the device model is subtle and the network model is
almost identical to that for a single-phase system (see Chapter 16).
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node 9 , we have

� 9 =
’
:: 9⇠:

� 9: = ©≠
´
’
:: 9⇠:

H
B

9:
+ H<

9 9

™Æ
¨
+ 9 �

’
:: 9⇠:

H
B

9:
+: , 9 2 # (4.13a)

where H<
9 9

denotes the total shunt admittance of the lines ( 9 , :) incident on bus 9 :

H
<

9 9
:=

’
:: 9⇠:

H
<

9:
(4.13b)

In vector form, this is � = .+ where the matrix . is given by:

. 9: =

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
;: 9⇠; H

B

9;
+ H<

9 9
, 9 = :

0 otherwise

(4.13c)

We refer to . that maps nodal voltages to nodal current injections as an admittance
matrix of the network, or a network admittance matrix or bus admittance matrix.
Equation (4.13c) prescribes a way to write down the admittance matrix. by inspection
of the network connectivity and line admittances: its o�-diagonal entries are the

negatives of series admittances
⇣
H
B

9:
, HB
: 9

⌘
in each direction on line ( 9 , :) while its

diagonal entries are the sum of the series and shunt admittances incident on the
corresponding buses. Note that . 9: and .: 9 may not be equal if ( 9 , :) represents the
per-phase model of a transformer in �. or .� configuration. If we restrict ourselves
to the special case where HB

9:
= HB

: 9
for all ( 9 , :) 2 ⇢ (assumption C4.1) then each line

( 9 , :) has a⇧-circuit representation and the admittance matrix. is complex symmetric.
It is not Hermitian unless . is a real matrix.

Example 4.4. Consider the three-bus network shown in Figure 4.9. Under condition

I1 I2

I3

V2V1

V3

( ys12 , y
m
12 , y

m
21 )

( ys13 , y
m
13 , y

m
31 ) ( ys23 , y

m
23 , y

m
32 )

I12 I21

I13

Figure 4.9 Three-bus network of Example 4.4.

C4.1, each line ( 9 , :) is modeled by a ⇧ circuit with series and shunt admittances⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. The sending-end branch current from bus 9 to bus : is � 9: and that

from bus : to bus 9 is �: 9 . Applying Kirchho�’s current law and Ohm’s law at bus 1
gives

�12 = H
B

12 (+1�+2) + H<12+1, �13 = H
B

13 (+1�+3) + H<13+1

) �1 = �12 + �13 =
�
H
B

12 + HB13 + H<12 + H<13

�
+1� HB12+2� HB13+3
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Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain

266664
�1

�2

�3

377775
=

266664
H
B

12 + HB13 + H<11 �HB12 �HB13
�HB12 H

B

12 + HB23 + H<22 �HB23
�HB13 �HB23 H

B

13 + HB23 + H<33

377775|                                                            {z                                                            }
.

266664
+1

+2

+3

377775

where HB
9:
= HB

: 9
and H<

9 9
:=

Õ
:: 9⇠: H

<

9:
. Again the o�-diagonal entries of the admittance

matrix . are given by the series admittances on the lines:

. 9: :=

(
�HB

9:
if 9 ⇠ : ( 9 < :)

0 otherwise

and the diagonal entries of . are given by the sum of series and shunt admittances
incident on buses 9 :

. 9 9 :=
’
:: 9⇠:

H
B

9:
+ H<

9 9
=

’
:: 9⇠:

⇣
H
B

9:
+ H<

9:

⌘

⇤

Under Assumption C4.1, the admittance matrix . given in (4.13) can also be
expressed in terms of more elementary matrices. Fix an arbitrary orientation for the
graph ⌧ := (# ,⇢) so that a line ; = 9 ! : 2 ⇢ is now considered pointing from bus 9
to bus : . Let ⇠ 2 {�1,0,1} |# |⇥ |⇢ | be the bus-by-line incidence matrix defined by:

⇠ 9; =

8>>><
>>>:

1 if ; = 9 ! : for some bus :

�1 if ; = 8! 9 for some bus 8

0 otherwise

(4.14)

Let ⇡B
H

:= Diag
⇣
H
B

;
, ; 2 ⇢

⌘
be the |⇢ |⇥ |⇢ | diagonal matrix with the series admittances

H
B

;
as its diagonal entries. Let ⇡<

H
:= Diag

⇣
H
<

9 9
, 9 2 #

⌘
be the |# | ⇥ |# | diagonal

matrix with the total shunt admittances H<
9 9

in (4.13b) as its diagonal entries. Then the
admittance matrix in (4.13c) is, when HB

9:
= HB

: 9
,

. = ⇠ ⇡B
H
⇠

T + ⇡
<

H
(4.15)

Clearly the matrix⇠⇡B
H
⇠

T has zero row and column sums. It verifies that. is symmetric
but not Hermitian unless ⇡B

H
and ⇡<

H
are real matrices. This representation can be used

to study the inverse of . ; see Exercise 4.14.

Solving � = .+ . Suppose we are given � 2 C#+1 and want to determine + 2 C#+1

from � =.+ . In Chapter 4.5.3 we study su�cient conditions under which. is invertible.
For large networks taking the inverse of . can be di�cult computationally even when
it exists. In this section we present a common method for solving � = .+ using !*
factorization of . , i.e., factorize . into . = !* where ! is a lower triangular matrix
with all diagonal entries being 1 and* an upper triangular matrix. Any square matrix
� 2 C=⇥= has an LU factorization after possibly an appropriate re-ordering of the rows,
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i.e., there exists a permutation matrix % such that %� = !* for some !,*. If � is
invertible then it admits an LU factorization without permutation (i.e., � = !* for
some !,*) if and only if all its leading principal minors are nonzero.4 In that case, the
!* factorization is unique. For a singular �, necessary and su�cient conditions for
the existence and uniqueness of !* factorization are known but are more involved.

Possibly after an appropriate permutation of . (such that e.g. .11 < 0), we can
compute the entries of ! and* recursively. From

266666664

.00 .01 · · · .0#

.10 .11 · · · .1#
...

...
. . .

...
.# 0 .# 1 · · · .##

377777775
=

266666664

1 0 · · · 0
!10 1 · · · 0
...

...
. . .

...
!# 0 !# 1 · · · 1

377777775

266666664

*00 *01 · · · *0#

0 *11 · · · *1#
...

...
. . .

...
0 0 · · · .##

377777775
we proceed as follows:

1. The 0th row of* is set to the 0th row of . since !00 = 1:

*0 9 = .0 9 , 9 = 0, . . . ,#

2. To compute row-1 entry !10 of !, we have

.10 = !10*00 ) !10 =
.10

*00

To compute row-1 entries*1 9 of*, we have for columns 9 = 1, . . . ,# ,

.1 9 = !10*0 9 +*1 9 ) *1 9 = .1 9 � !10*0 9

3. In general, to compute row-8 entries !8 9 of ! (8 = 2, . . . ,#), we have for columns
9 = 0, . . . , 8�1,

.80 = !80*00 ) !80 =
.80

*00

.81 = !80*01 + !81*11 ) !81 =
1
*11

(.81� !80*01)

...
...

4 Consider a matrix � 2 C=⇥=. Let � := {81, . . . , 8: } ✓ {1, . . . ,=}, � := { 91, . . . , 9; } ✓ {1, . . . ,=}, and
�� � denote the submatrix obtained from deleting rows not in � and columns not in � .

• If : = ;, i.e., �� � is square, then the minor "� � of � is the determinant of the submatrix �� � .
• If � = � , then �� � is called a principal submatrix and "� � a principal minor of �.
• If � = � = {1, . . . , : } with :  =, then �� � is called a leading principal submatrix of order : and
"� � a leading principal minor of order :.
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until

.
8 (8�1) =

8�2’
9=0

!8 9* 9 (8�1) + !8 (8�1)*(8�1) (8�1)

) !
8 (8�1) =

1
*(8�1) (8�1)

©≠
´
.
8 (8�1) �

8�2’
9=0

!8 9* 9 (8�1)
™Æ
¨

To compute row-8 entries*8 9 of* (8 = 2, . . . ,#), we have for columns 9 = 8, . . . ,# ,

.88 =
8�1’
9=0

!8 9* 98 +*88 ) *88 = .88 �
8�1’
9=0

!8 9* 98

.
8 (8+1) =

8�1’
9=0

!8 9* 9 (8+1) +*8 (8+1) ) *
8 (8+1) = .

8 (8+1) �
8�1’
9=0

!8 9* 9 (8+1)

...
...

.8# =
8�1’
9=0

!8 9* 9# +*8# ) *8# = .8# �
8�1’
9=0

!8 9* 9#

Once the factorization is obtained we have � = .+ = !*+ . Hence, given �, + can
be solved in two steps from:

� = !+̃ , +̃ = *+

In step 1, +̃ is solved by forward substitution (compute +̃1 then +̃2 and so on). In step
2, + is solved by backward substitution (compute += then +=�1 and so on).

Example 4.5. Suppose

. =
266664
2(0.5� 9) + 90.5 �0.5+ 9 �0.5+ 9
�0.5+ 9 (0.5� 9) + 90.1 0
�0.5+ 9 0 (0.5� 9) + 90.2

377775
Then . = !* with

! =
266664

1 0 0
�0.6154+ 90.0769 1 0
�0.6154+ 90.0769 �1.6763+ 90.8960 1

377775
* =

266664
1� 91.5 �0.5+ 9 �0.5+ 9

0 0.2692� 90.2462 �0.2308+ 90.6538
0 0 0.4682+ 91.1566

377775
Given �, + can be obtained in two steps: solve for +̃ from:

266664
�1

�2

�3

377775
=

266664
1 0 0

�0.6154+ 90.0769 1 0
�0.6154+ 90.0769 �1.6763+ 90.8960 1

377775
266664
+̃1

+̃2

+̃3

377775
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and then solve for + from:

266664
+̃1

+̃2

+̃3

377775
=

266664
1� 91.5 �0.5+ 9 �0.5+ 9

0 0.2692� 90.2462 �0.2308+ 90.6538
0 0 0.4682+ 91.1566

377775
266664
+1

+2

+3

377775
⇤

4.3.2 Kron reduction ./.22

In many applications we are interested in the relation between the current injections
and voltages at only a subset #red ⇢ # of the buses. For example we are interested
in the external behavior of a system defined by the relationship between currents and
voltages of the end devices. In this subsection we define Kron reduction that describes
the relation between the nodal voltages and current injections at buses in #red and
study its properties.

Denote the number of buses in #red also by #red. Without loss of generality we can
partition the buses such that �1 2 C#red denotes the first #red current injections and
�2 the remaining # + 1�#red current injections. Similarly partition the voltages into
(+1,+2) with +1 2 C#red , +2 2 C#+1�#red . Partition the admittance matrix . so that

�1

�2

�
=


.11 .12

.21 .22

�
|       {z       }

.


+1

+2

�

If .22 is invertible then we can eliminate +2 by substituting +2 = �.�1
22 .21+1 +.�1

22 �2 to
obtain ⇣

.11�.12.
�1
22 .21

⌘
|                {z                }

. /.22

+1 = �1 � .12.
�1
22 �2 (4.16)

The #red ⇥ #red matrix ./.22 := .11 �.12.
�1
22 .21 is the Schur complement of .22 of

matrix . (see Appendix A.3 for its properties). It can be interpreted as the admittance
matrix of the reduced network consisting only of buses in #red and describes the
e�ective connectivity and line admittances of the reduced network. The quantity �1 �
.12.

�1
22 �2 describes the e�ective current injections at these buses. This is called a Kron

reduction of network⌧. If. is complex symmetric, its Kron reduced admittance matrix
./.22 is also complex symmetric and hence satisfies Assumption C4.1 (Exercise 4.18).
Two buses 9 and : are adjacent in the Kron-reduced network, i.e., [./.22] 9: < 0, if
and only if 9 and : are adjacent in the original graph (i.e., . 9: < 0) or if there is a path
in the original graph that connects 9 and : .

Example 4.6 (Kron reduction). Consider the network shown in Figure 4.10(a). Under
condition C4.1 its admittance matrix . is (0 and symmetric entries are omitted for
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1

2 3

4

(a) Original network

1

2 3

(b) Kron reduced network

Figure 4.10 Kron reduction: #red := {1,2,3} with internal bus 4. While the original network is
a tree, the Kron reduced network is fully connected.

simplicity)

. :=

266666664

H
B

14 + H<11 �HB14
H
B

24 + H<22 �HB24
H
B

34 + H<33 �HB34Õ
9
H
B

94 + H<44

377777775
with .22 :=

Õ
9
H
B

94 + H<44. The Schur complement ./.22 of .22 is

.11 � .12.
�1
22 .21

=
266664
H
B

14 + H<11
H
B

24 + H<22
H
B

34 + H<33

377775
� 1
.22

266664
�HB14
�HB24
�HB34

377775
⇥
�HB14 �HB24 �HB34

⇤

=

266666664

H
B

14
.22

⇣
H
B

24 + HB34

⌘
+

�
H
<

11 +WHB14

� �HB14H
B

24
.22

�HB14H
B

34
.22

H
B

24
.22

⇣
H
B

14 + HB34

⌘
+

�
H
<

22 +WHB24

� �HB24H
B

34
.22

H
B

34
.22

�
H
B

14 + HB24

�
+

⇣
H
<

33 +WHB34

⌘
377777775

where W := H<44/.22 = H<44/
⇣Õ

9
H
B

94 + H<44

⌘
. The Kron reduced network corresponding to

./.22 is fully connected as shown in Figure 4.10(b).

The e�ective current injections in the Kron reduced network are

266664
�1

�2

�3

377775
�.12.

�1
22 �3 =

266664
�1

�2

�3

377775
+

266664
H
B

14
H
B

24
H
B

34

377775
�3

.22

⇤

An admittance matrix . has zero row, and hence column, sums if and only if all
line charging admittances are zero, H<

9:
= H<

: 9
= 0 for ( 9 , :) 2 ⇢ . In that case the Kron-

reduced admittance matrix ./.22 also has zero, and hence column, sums (Exercise
4.18). The converse may not hold.

Given current injections � = (�1, �2), we can obtain +1 in terms of the Schur com-
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plement ./.22 and the e�ective current injection:

+1 =
⇣
.11�.12.

�1
22 .21

⌘�1 ⇣
�1 � .12.

�1
22 �2

⌘

In many applications, the current injection �2 = 0. For example the buses in #\#red

represent internal buses without generators or loads (see Example 4.3). Then (4.16)
reduces to:

�1 =
⇣
.11�.12.

�1
22 .21

⌘
+1 =: ./.22+1

i.e., the Schur complement ./.22 relates +1 and �1.

4.3.3 Radial network

Suppose

• The network graph ⌧ is a (connected) tree.
• Assumption C4.1 holds (i.e., HB

9:
= HB

: 9
) and H<

9:
= H<

: 9
= 0 for all ( 9 , :) 2 ⇢ .

Distribution systems are mostly radial, i.e., its graph⌧ is a tree. The second assumption
is reasonable if all ( 9 , :) model distribution lines where shunt admittances (H<

9:
, H<
: 9
)

are often negligible (but may not be suitable for modeling nonideal transformers).

Inverses of reduced incidence and admittance matrices (⇠̂,.̂ ). Under these as-
sumptions, the admittance matrix. is complex symmetric and has zero row and column
sums. Such a matrix is sometimes called a complex Laplacian matrix. From (4.15), we
can write

. = ⇠⇡
B

H
⇠

T (4.17)

where the incidence matrix⇠ is defined in (4.14) and the # ⇥# diagonal matrix ⇡B
H

:=

Diag
⇣
H
B

;
, ; 2 ⇢

⌘
of series admittances HB

;
is nonsingular. Clearly⇠ is singular. The null

space null(⇠T) = span(1) and its (# + 1) ⇥ # pseudo-inverse is (⇠T)† = ⇠
�
⇠

T
⇠

��1

(Exercise 5.2). Hence . is nonsingular with null(. ) = span(1). Consider the reduced
incidence matrix ⇠̂ obtained from⇠ by removing its row corresponding to the reference
bus 0 and the reduced admittance matrix .̂ obtained from . by removing the row and
column corresponding to the reference bus 0. We now show that, for a radial network,
both of the # ⇥# matrices ⇠̂ and .̂ are invertible. Moreover the inverse .̂�1 has a very
useful structure.

Denote by 2T
0 the first row of the incidence matrix ⇠ corresponding to bus 0 and by

⇠̂ the # ⇥# submatrix consisting of the remaining rows of ⇠:

⇠ =:

2

T
0
⇠̂

�
(4.18a)
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The submatrix ⇠̂ is called the reduced incidence matrix. Then

. =

2

T
0
⇠̂

�
⇡
B

H

⇥
20 ⇠̂

T⇤ =

2

T
0⇡

B

H
20 2

T
0⇡

B

H
⇠̂

T

⇠̂⇡
B

H
20 ⇠̂⇡

B

H
⇠̂

T

�
=:


.00 .01

.10 .̂

�
(4.18b)

Hence the # ⇥ # reduced admittance matrix is .̂ = ⇠̂⇡B
H
⇠̂

T. Suppose the lines are
directed with an arbitrary orientation. Let T 9 denote the subtree rooted at bus 9 ,
including 9 , and P 9 denote the unique path from bus 0 to bus 9 . Buses : in T 9 are
called descendants of 9 . If : 2 T 9 and they are adjacent, ( 9 , :) 2 ⇢ , then 9 is called a
parent of : . We use “; 2 P 9” to mean a directed line ; in P 9 that points away from bus
0, and “�; 2 P 9” to mean a directed line ; in P 9 that points towards bus 0. The proof
of the next theorem is left as Exercise 4.2.

Theorem 4.1 (Radial network: inverses of ⇠̂ and .̂ ). Consider a radial network for
which ⌧ is a (connected) tree. Suppose assumption C4.1 holds (i.e., HB

9:
= HB

: 9
) and

H
<

9:
= H<

: 9
= 0 for all ( 9 , :) 2 ⇢ .

1. The reduced incidence matrix ⇠̂ is nonsingular and

⇥
⇠̂
�1⇤

; 9
=

8>><
>>:
�1 ; 2 P 9

1 �; 2 P 9
0 otherwise

(4.19)

Furthermore ⇠̂�T
20 = �1# where ⇠̂�T :=

⇣
⇠̂

T
⌘�1

.

2. The reduced admittance matrix .̂ is nonsingular and /̂ := .̂�1 = ⇠̂�T
⇡
B

I
⇠̂
�1, i.e.,

/̂ 9: =
’

;2P 9\P:

I
B

;
=

’
;2P 9\P:

1/HB
;

(4.20)

where ⇡B
I

:= Diag
⇣
1/HB

9:
, ( 9 , :) 2 ⇢

⌘
. Hence /̂ 9: is the sum of impedances on the

common segment of the unique paths from the reference bus 0 to buses 9 and : .
3. Suppose 8 is a parent of 9 , i.e., (8, 9) 2 ⇢ and 9 2 T8 . Then

/̂ 9: � /̂8: =

(
I
B

8 9
if : 2 T 9

0 if : 8 T 9

Remark 4.1. 1. The nodal voltages and currents (+̂ , �̂) at non-reference buses are
not related by �̂ = .̂+̂ . From (4.18b) they are related by

�̂ =
⇣
⇠̂⇡

B

H
20

⌘ ⇣
2

T
0⇡

B

H
20

⌘�1
�0 +

✓
.̂ �

⇣
⇠̂⇡

B

H
20

⌘ ⇣
2

T
0⇡

B

H
20

⌘�1 ⇣
2

T
0⇡

B

H
⇠̂

T
⌘◆

|                                              {z                                              }
. /.00

+̂

If the current injection �0 = 0 then �̂ = (./.00)+̂ where the # ⇥# matrix ./.00 is
the Kron reduction of . studied in Chapter 4.3.2.

2. Corollary 4.10 and Theorem 4.10 says roughly that, for a general network, su�cient
conditions for a strict leading submatrix .22, such as .̂ , to be nonsingular are
6
B

9:
> 0 for all lines ( 9 , :) 2 ⇢ or 6B

9:
� 0, 1B

9:
 0 for all ( 9 , :) 2 ⇢ . In the former
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case, Re(.22) � 0 whereas in the latter case, Re(.22) � Im(.22) � 0. Theorem 4.1
shows that, for a radial network, .̂ is always nonsingular, even though the positive
definite properties may not hold.

3. The nonsingularity of .̂ and the simple structure of its inverse /̂ originate from
the inverse ⇠̂�1 in (4.19) of the reduced incidence matrix ⇠̂ of a tree graph, and
are independent of whether the “weight matrix” ⇡B

H
is real or complex, positive or

not, as long as ⇡B
H

is nonsingular. It therefore applies to the real Laplacian matrix
! := ⇠⌫⇠T of the DC power flow model of Chapter 4.6.2, the linear DistFlow
model of Chapter 5.5.2 (see Theorem 5.3), and the linearized polar-form power
flow model of Chapter 7.3.1. The expression (4.20) for /̂ = .̂�1 is particularly
useful for various applications in radial networks. We illustrate its application for
voltage control in Chapter 7.2 and topology identification in Chapter 7.3. ⇤

Radiality condition. Many applications can be formulated as a constrained opti-
mization problem, e.g., state estimation, voltage regulation, feeder reconfiguration,
or topology identification. Some of these applications involve computing an opera-
tional network from a set of possibilities, e.g. feeder reconfiguration and topology
identification. A common setup in these applications assumes that a typically meshed
infrastructure network is given. Some of the lines contain switches that can be opened
or closed. The switches are configured so that at any time the operational network is
a spanning tree that connects all nodes. Let there be # +1 nodes and " � # +1 lines
in the infrastructure network, and assume without loss of generality that every line
has a switch that can be configured. Our goal is to identify/optimally choose the set
of switches that are/should be closed. As part of an optimization problem, this can be
specified as two constraints:

• The number of switches that are closed should be exactly # .
• The resulting network should be connected.

These two conditions ensure that the resulting graph is a (connected) tree.

A convenient way to specify the second condition is the following linear constraint
from [13] on the reduced incidence matrix ⇠̂ of the resulting network, defined in
(4.18a), among an arbitrary set of (# + 1) ⇥ # incidence matrices ⇠. It says that a
network is a (connected) tree if and only if there is a power flow solution when all non-
reference buses inject a unit of power into the network. This property is used in [13]
for joint optimization of feeder reconfiguration and volt/var control on a distribution
grid.

Lemma 4.2 (Connectivity). Suppose a network ⌧ has # + 1 buses and # lines with
a reduced incidence matrix ⇠̂. It is connected (i.e., a tree) if and only if there exists a
line flow % 2 R# such that ⇠̂% = 1.

Proof Exercise 4.2 shows that if the network is radial and connected then ⇠̂ is
invertible, and therefore % = ⇠̂�1

1 is well defined. Conversely suppose there exists
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% that satisfies ⇠̂% = 1. Since there are # + 1 buses and only # lines, the network
is connected if and only if it is a tree. Suppose then the network is not connected.
Consider a maximal connected component that does not contain the reference bus
0, and let #1 ( # denote its nodes. Without loss of generality we can partition ⇠̂
into a block-diagonal matrix according to nodes in #1 and those in its complement
#0 := # \#1:

⇠̂ =:

⇠̂0 0
0 ⇠̂1

�

where ⇠̂1 is the (full) incidence matrix of the maximal connected component #1.
Since⇠T

1 = 0 we have ⇠̂T
1 11 = 0 (whereas ⇠̂T

0 10 may not be the zero vector as ⇠̂0 is the
reduced incidence matrix of the subgraph #0 that contains bus 0). This means that 11

is in the null space of ⇠̂T
1 and therefore orthogonal to the range space of ⇠̂1, i.e., there

does not exist any %1 such that ⇠̂1%1 = 11. This contradicts ⇠̂% = 1 for some %. ⇤

4.3.4 B+ relation: power flow equations

The network model in Chapter 4.3.1 is an admittance matrix . that relates linearly
the nodal current injections and voltages, � = .+ . This is simple as it involves linear
equations only. Given (+ , �), the power injection at each node 9 can be computed
as B 9 = + 9 �̄ 9 . All other quantities, such as line power flows or real power loss over a
network, can be computed from + (Exercise 4.4). In many applications however loads
and generators are not specified as current or voltage sources. They may be described
instead in terms of power injections or removals. For instance, for electric vehicle
charging, the travel need is specified in terms of the number of miles required which
translates to the amount of energy in kWh required that must be delivered by a deadline.
For example it requires roughly 3 kWh for an electric vehicle to travel 10 miles. Hence
a charging facility is often characterized by its power requirement to support a certain
electric vehicle charging capacity. In this section we present power flow equations that
describe the relation between nodal power injections B 9 and voltages+ 9 on the network.
As we will see this involves nonlinear equations which are much more di�cult to solve.

We often use B 9 to denote both the complex number ? 9 + i@ 9 2 C and the real pair
(? 9 ,@ 9 ) 2 R2 depending on the context.

Complex form. The bus injection model (BIM) in its complex form is defined by
power balance B 9 =

Õ
:: 9⇠: ( 9: at each node 9 where ( 9: are sending-end line powers

from 9 to its neighbors : . Given line admittances (HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
), the power

flows on line ( 9 , :) 2 ⇢ are

( 9: := + 9 �̄ 9: = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2

(: 9 := +: �̄: 9 = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2
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This leads to the power flow equations that relate power injections and voltages:

B 9 =
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2, 9 2 # (4.21a)

where, from (4.13b), the total shunt admittance H<
9 9

:=
Õ
:: 9⇠: H

<

9:
associated with bus

9 is the sum of shunt admittances H<
9:

of all lines ( 9 , :) incident on bus 9 . We can also
express (4.21a) in terms of the elements of the admittance matrix . as

B 9 =
#’
:=0

.̄ 9:+ 9+̄: , 9 2 # (4.21b)

where . is given by:

. 9: =

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
8: 9⇠8

⇣
H
B

98
+ H<

98

⌘
9 = :

0 otherwise

(4.21c)

When the total shunt admittance H<
9 9
=

Õ
8: 9⇠8 H

<

98
= 0, (4.21a) reduces to

B 9 =
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
, 9 2 #

For convenience we include +0 in the vector variable + := (+ 9 , 9 2 #) with the un-
derstanding that +0 := 1\0� is fixed. There are # +1 equations in (4.21a) in 2(# +1)
complex variables (B 9 ,+ 9 , 9 2 #).

This model does not require assumption C4.1.

Polar form. We may alternatively treat (4.21) as 2(# + 1) equations in 4(# + 1)
real variables (? 9 ,@ 9 , |+ 9 |,\ 9 , 9 2 #) where B 9 := ? 9 + i@ 9 are the complex injections
and + 9 := |+ 9 | 4i\ 9 are the complex voltages. Let HB

9:
=: 6B

9:
+ i1

B

9:
denote the series

admittance and H<
9:

=: 6<
9:
+ i1

<

9:
the shunt admittance of line ( 9 , :) from 9 to : , and

similarly (HB
: 9

, H<
: 9
) in the opposite direction. As discussed in Remark 4.5, if ( 9 , :)

models a transmission or distribution line then usually 6B
9:
� 0, 1B

9:
< 0 (inductive

line), 6<
9:
� 0, but 1<

9:
� 0 (capacitive shunt). Moreover 1B

9:
+ 1<

9:
 0 typically since

|1<
9:
| is usually much smaller than |1B

9:
|.

Substituting all this into (4.21) the admittance matrix is defined by

. 9: =

8>>><
>>>:

�(6B
9:
+ i1

B

9:
), 9 ⇠ : ( 9 < :)Õ

8: 9⇠8
⇣
6
B

98
+6<

98

⌘
+ i

Õ
8: 9⇠8

⇣
1
B

98
+ 1<

98

⌘
9 = :

0 otherwise

and the power flow equations become: for all 9 2 # ,

B 9 =
’
:::⇠ 9

⇣
(6B
9:
+6<

9:
)� i(1B

9:
+ 1<

9:
)
⌘ ��
+ 9

��2� ’
:::⇠ 9

⇣
6
B

9:
� i1

B

9:

⌘ ��
+ 9

�� |+: | 4i\ 9:
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where \ 9: := \ 9 � \: is the voltage phase angle di�erence across each line ( 9 , :) 2 ⇢ .
Then we can write (4.21a) in the polar form: for all 9 2 # ,

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(4.22a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(4.22b)

This model does not require assumption C4.1.

Cartesian form. The power flow equations (4.21) or (4.22) can also be reformulated
in the real domain by writing+ 9 in terms of its real and imagineary components (2 9 ,3 9 ),
i.e., + 9 =: 2 9 + i3 9 . Then (4.22) becomes (using 2 9 = |+ 9 | cos\ 9 and 3 9 = |+ 9 | sin\ 9 ):
for all 9 2 # ,

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘ ⇣
2

2
9
+ 32

9

⌘
�

’
:::⇠ 9

⇣
6
B

9:
(2 92: + 3 93: ) + 1B

9:
(3 92: � 2 93: )

⌘

(4.23a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘ ⇣
2

2
9
+ 32

9

⌘
�

’
:::⇠ 9

⇣
6
B

9:
(3 92: � 2 93: )� 1B

9:
(2 92: + 3 93: )

⌘

(4.23b)

These are 2(# + 1) quadratic equations in 4(# + 1) variables (? 9 ,@ 9 ,2 9 ,3 9 , 9 2 #).
This model does not require assumption C4.1.

Types of buses. Each set of power flow equations (4.21)(4.22)(4.23) is a set of
2(# + 1) nonlinear real equations in 4(# + 1) real variables (? 9 ,@ 9 , |+ 9 |,\ 9 , 9 2 #)
Given any 2(# + 1) of these real variables, these equations can be used to solve for
the remaining 2(# +1) real variables. There can be zero, unique or multiple solutions.
Solving for these solutions is the power flow or load flow problem (Chapter 4.4).

A popular formulation of the power flow problem uses the polar form where each
bus 9 is classified into one of three types based on which two of the four real variables
(? 9 ,@ 9 , |+ 9 |,\ 9 ) are specified:

• %+ bus. This is a bus where the real power injection ? 9 and the voltage magnitude
|+ 9 | are specified and the reactive power injection @ 9 and voltage angle \ 9 are to be
determined. It usually models a bus with a conventional generator.

• %& bus. This is a constant-power bus where the injection (? 9 ,@ 9 ) is specified and
the complex voltage |+ 9 | 4 9 \ 9 is to be determined. It usually models a load but can
also model a renewable generator with undispatchable generation.

• Slack bus. Bus 0 is taken as a slack bus where +0 = |+0 | \0� is specified and the
injection B0 = (?0,@0) is to be determined. This is usually used for mathematical
convenience to avoid an ill specified power flow problem that has no solution.

A slack bus (or a set of slack buses) is needed because power needs to be balanced
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over the network. For example if the resistance of every line is zero then
Õ
9
? 9 must

be zero. If all buses are %+ or %& buses then all active powers ? 9 are specified; if the
specified values do not satisfy power balance then the set of power flow equations will
have no solution. This is resolved by taking an arbitrary bus (denoted by bus 0 here)
as a slack bus with its power injection B0 unspecified in order to balance power. For
instance a distribution system with a substation at bus 0 and # constant power loads or
generations can be modeled by a slack bus and # PQ buses with+0 and (? 9 ,@ 9 , 9 2 #)
specified. The power flow problem solves the power flow equations for the # complex
voltages (+ 9 , 9 2 #), and the power injection B0 (see Chapter 4.4).

For optimal power flow problems ? 9 and |+ 9 | on generator buses or B 9 on load buses
can be variables as well. For instance economic dispatch optimizes real power gener-
ations ? 9 at generator buses; demand response optimizes demands B 9 at load buses;
and volt/var control optimizes reactive powers @ 9 at capacitor banks, tap changers, or
inverters. We will discuss optimal power flow problems in Part II of the book.

4.4 Computation methods

Suppose we are given a set of power flow equations in the bus injection model. Suppose
2(# +1) of the 4(# +1) real variables are specified and we are interested in solving for
the remaining variables, called a power flow solution. We now present four solution
methods. These methods do not require assumption C4.1.

These methods are iterative, i.e., starting from an initial point G(0), they use an
algorithm, represented by a function 6, to compute a sequence {G(C), C = 0,1, . . . , } by

G(C +1) := 6(G(C)) (4.24)

Di�erent algorithms are specified by di�erent functions 6. Under appropriate con-
ditions, the sequence {G(C), C = 0,1, . . . , } converges to a power flow solution G⇤. An
important application of iterative algorithms for solving a system of equations is in op-
timization where the system of equations specify an optimality condition (e.g. the KKT
condition). We will therefore postpone the convergence analysis of iterative algorithms
to Chapter 8.6 after we have introduced a basic theory of and popular algorithms for
optimization.

4.4.1 Gauss-Seidel algorithm

The power flow equations studied in Chapter 4.3.4 can be represented as

G = 5 (G) (4.25)

where 5 : C= ! C= or 5 : R= ! R=. A power flow solution G⇤ that satisfies (4.25)
is called a fixed point of 5 , i.e., starting from G

⇤, the function 5 takes it back to G⇤.
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The Gauss algorithm, also called a fixed-point iteration, computes a fixed point of 5
iteratively using (4.24) where the algorithm 6 is simply 5 , i.e., G(C +1) := 5 (G(C)). We
illustrate the algorithm using the power flow equation (4.21a) in complex form.

Consider first the case with a slack bus and load buses only.

Case 1: Given +0 and (B1, . . . , B# ), determine B0 and (+1, . . . ,+# ). The power flow
equations are:

B0 =
’
:

.̄0:+0+̄: (4.26a)

B 9 =
’
:

.̄ 9:+ 9+̄: , 9 2 # (4.26b)

Once we have computed (+1, . . . ,+# ), B0 can be evaluated using (4.26a). Hence the
main task is to compute (+1, . . . ,+# ) from (4.26b). We have from (4.26b):

B̄ 9

+̄ 9

= . 9 9+ 9 +
#’
:=0
:< 9

. 9:+: , 9 2 #

Rearrange to obtain

+ 9 =
1
. 9 9

©≠≠≠
´
B̄ 9

+̄ 9

�
#’
:=0
:< 9

. 9:+:

™ÆÆÆ
¨
=: 5 9 (+1, . . . ,+# ) , 9 2 #

Hence a power flow solution+ := (+1, . . . ,+# ) is a fixed point of 5 := ( 51, . . . , 5# ) with

+ = 5 (+)

The Gauss algorithm is the fixed point iteration + (C +1) = 5 (+ (C)), or

+1 (C +1) = 51 (+1 (C), . . . ,+# (C))
+2 (C +1) = 52 (+1 (C), . . . ,+# (C))

...

+# (C +1) = 5= (+1 (C), . . . ,+# (C))

Starting from an initial vector + (0) (e.g., + 9 (0) = 1\0� pu for all 9), it produces a
sequence + (1),+ (2), . . . . If the sequence converges to a limit +⇤ then +⇤ is a fixed
point of 5 and a power flow solution.

When +2 (C + 1) is to be computed, +1 (C + 1) is already known and can be used in
the computation of +2 (C +1), and so on. This is the Gauss-Seidel algorithm where the
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latest value +8 (C +1) is used to compute + 9+1 (C +1) for 9 > 8:

+1 (C +1) = 51 (+1 (C),+2 (C), . . . ,+# (C))
+2 (C +1) = 52 (+1 (C +1),+2 (C), . . . ,+# (C))

...

+# (C +1) = 5# (+1 (C +1), . . . ,+#�1 (C +1),+# (C))

Case 2: Given (+0,+1, . . . ,+<) and (B<+1, . . . , B# ), determine (B0, B1, . . . , B<) and
(+<+1, . . . ,+# ). In this case, first determine (+<+1, . . . ,+# ) from the reduced set of
power flow equations (4.26b) for 9 = < + 1, . . . ,# , using the same algorithm. Then
determine (B0, B1, . . . , B<) given (+0, . . . ,+# ).

The Gauss-Seidel algorithm is simple and does not require the evaluation of any
derivatives. If the function 5 is a contraction mapping then it has a unique fixed point
+
⇤ and the Gauss or Gauss-Seidel algorithm converges linearly to +⇤. The formal

definition and convergence properties of a contraction mapping are studied in Chapter
8.6.1 (but see Exercise 4.5 for an example). Otherwise there is no guarantee that the
algorithms will converge, but if it does, it produces a fixed point which is a power flow
solution +⇤. Whether it converges can depend on the choice of the initial vector + (0),
as the next example shows. The convergence of Gauss-Seidel algorithm is studied in
Chapter 8.6.2.

Example 4.7 (Fixed-point iteration). Take for an example G = 5 (G) := G2 for G 2 R
as shown in Figure 4.11. It has two fixed points G⇤ = 0 or 1. The fixed point iteration
G(C + 1) = 5 (G(C)) = G2 (C) converges to G⇤ = 0 if the initial point G(0) 2 (�1,1) and
diverges to positive infinity if |G(0) | > 1. The fixed point G⇤ = 0 is stable in the sense
that the iterate G(C) converges back to the origin after a small perturbation. The fixed
point G⇤ = 1 is unstable in the sense that G(C) leaves and will not return after a small
perturbation in the positive direction. ⇤

4.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

5 (G) = 0

where G 2 R= and 5 is a vector-valued function 5 :R=!R=. The iteration is motivated
by the Taylor series expansion of 5 . Suppose we have computed G(C) and wish to
determine the next iterate G(C +1) =: G(C) +�G(C). The Taylor series of 5 around G(C) is

5 (G(C) +�G(C)) = 5 (G(C)) + � (G(C))�G(C) + higher-order terms
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x*= 0 x1x2 x0

f (x) = x2

y = x

x

(a) Convergence

x1 x2x0

f (x) = x2

y = x

x

(b) Divergence

Figure 4.11 The fixed point iteration G(C +1) = 5 (G(C)) := G2 (C) is not a contraction mapping
and its convergence depends on the initial point G(0) = G0.

where � (G(C)) is the Jacobian of 5 evaluated at G(C):

� (G) :=
m 5

mG

(G) =

26666664

m 51
mG1

(G) · · · m 51
mG=

(G)
...

...
...

m 5=

mG1
(G) · · · m 5=

mG=

(G)

37777775
If we ignore the higher-order terms in the Taylor expansion and set 5 (G(C +1)) = 0 then
we have

� (G(C))�G(C) = � 5 (G(C)) (4.27)

This is illustrated in Figure 4.12. If � (G(C)) is invertible then �G(C) =
���1 (G(C)) 5 (G(C)), yielding the Newton-Raphson iteration:

G(C +1) = G(C)� ��1 (G(C)) 5 (G(C)) (4.28)

In practice we usually do not evaluate the inverse ��1 (G(C)) except for very small
systems. Instead we solve the linear equation (4.27) for �G(C). The next iterate is then
G(C +1) = G(C) +�G(C).
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where ? := (? 9 , 9 2 #), @ := (@ 9 , 9 2 #?@) are constants and

?(\, |+ |) :=

2666664

?1 (\, |+ |)
...

?# (\, |+ |)

3777775
, @(\, |+ |) :=

2666664

@1 (\, |+ |)
...

@#?@
(\, |+ |)

3777775
Our goal is to compute a root of 5 (\, |+ |) = 0 iteratively. The Jacobian of 5 is the
(# +#?@)⇥ (# +#?@) matrix

� (\, |+ |) :=

"
m?

m\

m?

m |+ |
m@

m\

m@

m |+ |

#
(4.31)

Hence the Newton-Raphson algorithm is:

1. Choose an initial point (\ (0), |+ | (0)).
2. Iterate until converge (or the maximum number of iterations has been reached):

(a) Solve (�\ (C),�|+ | (C)) from

� (\ (C), |+ | (C))

�\ (C)
�|+ | (C)

�
= �


�?(\ (C), |+ | (C))
�@(\ (C), |+ | (C))

�
(4.32)

(b) Set 
\ (C +1)
|+ | (C +1)

�
:=


\ (C)
|+ | (C)

�
+


�\ (C)
�|+ | (C)

�

The right-hand side of (4.32) is defined in (4.30) and represents the mismatch in injec-
tions at iteration C. This mismatch is used to compute the increment (�\ (C),�|+ | (C))
that updates the current iterate (\ (C), |+ | (C)).

The Newton-Raphson algorithm is widely used in industry to compute power flow
solution and solve optimal power flow problems. It converges, typically quadratically,
to a solution if it starts close to a solution; see Kantorovich Theorem in Exercise 4.7.
Like the Gauss-Seidel algorithm, it may not converge if the initial point is far away
from a solution.

Remark 4.2. Usually the injection @ 9 at a %+ bus 9 must be constrained within a
range. After solving for (\, |+ |) and evaluating the resulting @ 9 at bus 9 , if it hits or
exceeds its limit then @ 9 is set to the limit and bus 9 is re-classified as a %& bus
with |+ 9 | (as well as \ 9 ) to be determined. The updated power flow equations are then
re-solved for the remaining unknown quantities. ⇤
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4.4.3 Fast decoupled algorithm

We now take a closer look at the Jacobian � in (4.31). Using (4.29) it can be shown
that the diagonal blocks are (Exercise 4.8):

m? 9

m\:

=

8>>>><
>>>>:

�|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 ⇠ : , 9 , : 2 #

�@ 9 (\, |+ |) �
⇣Õ

8:8⇠ 9 1
B

98
+ 1<

98

⌘
|+ 9 |2, 9 = : , 9 2 #

(4.33a)

m@ 9

m |+: |
=

8>>>><
>>>>:

�|+ 9 |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 ⇠ : , 9 , : 2 #?@

@ 9 (\ , |+ |)
|+9 | � Õ

8:8⇠ 9
⇣
1
B

98
+ 1<

98

⌘
|+ 9 |, 9 = : , 9 2 #?@

(4.33b)

and the o�-diagonal blocks are:

m? 9

m |+: |
=

8>>>><
>>>>:

�|+ 9 |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 ⇠ : , 9 2 # , : 2 #?@

? 9 (\ , |+ |)
|+9 | +Õ

8:8⇠ 9
⇣
6
B

98
+6<

98

⌘
|+ 9 |, 9 = : , 9 , : 2 #?@

(4.33c)

m@ 9

m\:

=

8>>>><
>>>>:

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 ⇠ : , 9 2 #?@ , : 2 #

? 9 (\, |+ |)�
Õ
8:8⇠ 9

⇣
6
B

98
+6<

98

⌘
|+ 9 |2, 9 = : , 9 2 #?@

(4.33d)

Hence the sparsity of the network graph induces a sparse Jacobian matrix �.

Moreover if line losses and angle di�erences \ 9: are small then it is reasonable
to approximate 6B

9:
= 6<

9:
= 0 and sin\ 9: = 0 for all ( 9 , :) 2 ⇢ . In this case it can be

verified that the o�-diagonal blocks are approximately zero (Exercise 4.8), i.e.,

m? 9

m |+: |
⇡ 0,

m@ 9

m\:

⇡ 0, 8 9 , :

This means that the voltage magnitudes and the real power injections (at the same or
di�erent buses) are approximately decoupled, and the voltage angles and the reactive
power injections are approximately decoupled. This motivates a fast decoupled algo-
rithm where an approximate Jacobian �̂ matrix with the o�-diagonal blocks of � set to
zero is used in place of � in the Newton-Raphson’s algorithm (step 2):

�̂ (\, |+ |) :=

"
m?

m\
0

0 m@

m |+ |

#

Then equation (4.32) to compute the increments in the Newton-Raphson algorithm is
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replaced by the following equations that decouple active and reactive powers:

m?

m\

(\ (C), |+ | (C))�\ (C) = ��?(\ (C), |+ | (C)) (4.34a)

m@

m |+ | (\ (C), |+ | (C))�|+ | (C) = ��@(\ (C), |+ | (C)) (4.34b)

There are other properties of � one can exploit to obtain symmetric matrices that
saves storage and computation in executing the exact Newton-Raphson algorithm; see
[1, p. 350–351]. The fast decoupled algorithm (4.34) can be further simplified with
more approximations; see [1, p. 353–354].

4.4.4 Holomorphic Embedding Load-flow Method (HELM)

We now explain a solution method from [14] for solving power flow equations that
adopts a very di�erent approach from those in Chapters 4.4.1, 4.4.2 and 4.4.3.

Holomorphic functions. A complex-valued function 5 : C! C is complex di�er-
entiable at I 2 C if

5
0(I) := lim

⌘2C
⌘!0

5 (I+ ⌘)� 5 (I)
⌘

(4.35)

exists. When 5
0(I) exists we will call it the complex derivative or derivative of 5 at

I 2 C. Note that 5 0(I) is generally a complex number. If 5 is complex di�erentiable at
every I 2 / ✓ C then 5 is called holomorphic on / . Complex di�erentiability in (4.35)
is a much stronger notion than di�erentiability of real-valued functions because ⌘must
approach 0 from all directions in the complex plane; see Chapter A.9 for details. The
most important property of holomorphic functions is that they are (complex) analytic,
i.e., they can be expressed as a power series. Specifically a complex-valued function
5 : / ! C on an open set / ✓ C is holomorphic on / if and only if at every point
I0 2 / there is a neighborhood ⌫X (I0) := {I 2 / : |I� I0 | < X} around I0 such that

5 (I) =
1’
:=0

0: (I� I0): , I 2 ⌫X (I0) (4.36)

wher 0: =
5
(:) (I0)
:! , i.e., 5 (I) can be expressed as a Taylor series on ⌫X (I0). The

neighborhood ⌫X (I0) is called the region of convergence for (4.36).

Power flow equations. Suppose the voltage phasor+0 at bus 0 and power injections
B := (B 9 , 9 2 #) at buses 9 < 0 are given. Bus 0 is referred to as a slack bus where its
voltage +0 is specified and its power injection B0 is a variable. Our goal is to compute
a solution + := (+ 9 , 9 2 #) 2 C# to the complex-form power flow equations:

#’
:=0

. 9:+: =
B̄ 9

+̄ 9

, 9 2 # (4.37)
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where . 9: are the 9 :th entries of the admittance matrix . 2 C(#+1)⇥(#+1) and for
0 2 C, 0̄ denotes its complex conjugate. Here is a summary of the HELM procedure
(see [14] for details).

Holomorphic embedding Introduce a new variable _ 2 C and embed (4.37) inC#+1

so that the voltage + := + (_) := (+ 9 (_), 9 2 #) becomes a vector function of _, i.e.,
consider the polynomial equations

. 90+0 +
#’
:=1

. 9:+: (_) =
_B̄ 9

+̄ 9 (_̄)
, 9 2 # (4.38)

Note that the denominator on the right-hand side is +̄ 9 (_̄), not +̄ 9 (_), in order for+ 9 (_)
to be a holomorphic function. Instead of solving (4.37) for + , HELM solves (4.38)
rewritten as:

. 90+0 +
#’
:=1

. 9:+: (_) =
_B̄ 9

+̃ 9 (_)
, .̄ 90+̄0 +

#’
:=1

.̄ 9:+̃: (_) =
_B 9

+ 9 (_)
, 9 2 # (4.39a)

+̃ 9 (_) = +̄ 9 (_̄), 9 2 # (4.39b)

for two sets of complex-valued functions (+ (_),+̃ (_)) := (+ 9 (_),+̃ 9 (_), 9 2 #).

At _ = 0, (4.39a) reduces to

. 90+0 +
#’
:=1

. 9:+: (0) = 0, .̄ 90+̄0 +
#’
:=1

.̄ 9:+̃: (0) = 0, 9 2 #

Decomposing the admittance matrix. =:

,00 ,

T
10

,10 ,11

�
according to+0 and+ := (+ 9 , 9 2

#) where,00 2 C and,11 2 C#⇥# , the system of equations above becomes

,11+ (0) = �+0,10, ,̄11+̃ (0) = �+̄0,̄10

where ,̄11 and ,̄10 are the componentwise complex conjugates of ,11 and ,10

respectively. If,11 is nonsingular then the unique solution is

+ (0) = �+0,
�1
11,10, +̃ (0) = �+̄0,̄

�1
11 ,̄10 (4.40)

Note that the solution (+ (0),+̃ (0)) satisfies (4.39b) as well. This is the solution driven
by the given voltage source +0 at bus 0 and zero injections at other buses.

The solution to the original power flow equation (4.37) corresponds to a solution
(+ (_),+̃ (_)) of (4.39) at _ = 1. HELM uses a continuation method to compute this
solution, starting from (+ (0),+̃ (0)) in (4.40).

Power series. To show that the functions (+ 9 (_),+̃ 9 (_), 9 2 #) are holomorphic,
Gröbner basis can be used to express +̃1, (+2,+̃2), . . . , (+# ,+̃# ) in terms of +1 and
reduce (4.39a) to a polynomial equation in +1:

P(+1) :=
"’
:=0

?: (_)+ :1 = 0 (4.41)
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The degree " of the polynomial in (4.41) is generally exponential in the number
# of original variables. This defines an algebraic curve which then implies that
(+ 9 (_),+̃ 9 (_), 9 2 #) are indeed holomorphic functions everywhere except at a fi-
nite number of points.

Therefore, for each 9 2 # , we can write + 9 (_) and 1/+ 9 (_) as power series in a
neighborhood of _ = 0, from (4.36),

+ 9 (_) =
1’
8=0

0 98_
8 ,

1
+ 9 (_)

=
1’
8=0

1 98_
8 , 9 2 # (4.42)

for some sequences (0 98 , 8 � 0, 9 2 #) and (1 98 , 8 � 0, 9 2 #). Hence 1/+̃ 9 (_) =�
1/+ 9 (_H)

�H =
Õ1
8=0 1̄ 98_

8 . Substituting into (4.39) we have

. 90+0 +
#’
:=1

. 9:

1’
8=0

0:8_
8 = _B̄ 9

1’
8=0

1̄ 98_
8 , 9 2 # (4.43a)

or in vector form

+0,10 +
1’
8=0

(,1108)_8 =
1’
8=0

�
B̄ � 1̄8

�
_
8+1 (4.43b)

where B := (B 9 , 9 2 #) is the vector of injections at buses 9 < 0, and for 8 � 0, 08 :=
(0 98 , 9 2 #) and 18 := (1 98 , 9 2 #) are #-dimensional column vectors of coe�cients.
For two vectors G and H, G � H is the column vector of componentwise products, i.e.,
(G � H) 9 := G 9 H 9 . We can compute these coe�cients (08 ,18 , 8 � 0) iteratively from
(4.43), as follows. Setting _ := 0, (4.43) yields, when,11 is nonsingular,

+0,10 +,1100 = 0, =) 00 = �+0,
�1
11,10 (4.44a)

Di�erentiating successively (4.43b) with respect to _ and setting _ := 0 yields

,1101 = B̄ � 1̄0, · · · , ,1108 = B̄ � 1̄8�1, · · · , (4.44b)

Since + 9 (_)
�
1/+ 9 (_)

�
= 1 for all _, we have 1 =

�Õ1
8=0 0 98_

8
� �Õ1

8=0 1 98_
8
�

for all _ for
9 2 # , or in vector form

1# =

 1’
8=0

08_
8

!
�

 1’
8=0

18_
8

!

where 1# is the column vector of all 1s of size # . Hence

1# = 00 � 10 + (00 � 11 + 01 � 10)_ + (00 � 12 + 01 � 11 + 02 � 10)_2 + · · ·

=
’
8�0

 
8’
:=0

0: � 18�:
!
_
8 , 8_ (4.44c)

Since (4.44c) holds for all _, the coe�cients of _8 must be equal on both sides for all
8 � 0. From (4.44) we can obtain (08 ,18 , 8 � 0) iteratively: 00 from (4.44a) and then 10

from (4.44c) by equating the coe�cients of _0:

00 = �+0,
�1
11,10, 10 = 1# ↵ 00 (4.45a)
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where, for two vectors G and H, G ↵ H is the column vector of componentwise division,
i.e., (G ↵ H) 9 := G 9/H 9 . For 8 � 1, we have from (4.44b) and (4.44b) by equating the
coe�cients of _8 , assuming,11 is nonsingular,

08 = ,
�1
11

�
B̄ � 1̄8�1

�
, 18 = �

 
8’
:=1

0: � 18�:
!
↵ 00, 8 � 1 (4.45b)

With the coe�cients (08 , 8 � 0) = (0 98 , 9 2 # , 8 � 0) from (4.45), the solution + 9 (_)
is given by (4.42) as a power series in _. In practice only an approximation +̂ 9 (_) :=Õ
 

8=0 0 98_
8 of + 9 (_) with a finite number of terms is computed.

Analytic continuation. We are interested in + (_) := (+ 9 (_), 9 2 #) at _ = 1. Even
though, for _ 2 ⌫X (0) in the region of convergence around _ = 0,

+ 9 (_) =
1’
8=0

0 98_
8 , 9 2 #

and we have the coe�cients (08 , 8 � 0) = (0 98 , 9 2 # , 8 � 0) from (4.45), the radius
X of convergence is typically much smaller than 1 so we may not be able to simply
substitute _ = 1 into the power series as the infinite sum may not converge. To deal with
this, Padé approximation is used to approximate the power series. Padé approximation
approximates a power series by a rational function and typically has much better
convergence properties than a power series (Taylor series). The power solution + 9 (_)
is computed as the analytic continuation of the Padé approximation, starting from
+ 9 (0) in (4.40). See [14] for details.

4.5 Properties of admittance matrix .

In this section we collect some analytical properties of the admittance matrix . ,
particularly on their invertibility. Invertibility is of interests because given � 2 C#+1

we may be interested in inverting . to obtain + 2 C#+1 from � = .+ (e.g. (4.12) in
Example 4.3). The inverse /bus :=.�1 is called a bus impedance matrix or an impedance
matrix and is useful for fault analysis. The admittance matrix . can be constructed
easily by inspection of a network graph or its one-line diagram as specified by (4.13c).
It inherits the sparsity structure of the network graph. The impedance matrix / on the
other hand cannot be easily inferred from the one-line diagram and is usually dense
even for a sparse network. LU decomposition can be used for both computing / and
solving + from � = .+ (as explained in Chapter 4.3.1).

In Chapter 4.5.1 we consider the case where the shunt admittances of lines are
zero, i.e., H<

9:
= H<

: 9
= 0 for all ( 9 , :) 2 ⇢ , so that all row sums of . are zero. In this

case . is not invertible and we present its pseudo-inverse. For . with nonzero shunt
admittances, we derive the inverse of . in Chapter 4.5.2, assuming . is invertible,
and study su�cient conditions under which . is indeed invertible in Chapter 4.5.3.



184 Bus injection models

Kron reduction in Chapter 4.3.2 requires that the submatrix .22 be invertible. The
invertibility of .22 is studied in Chapter 4.5.4. When .22 is nonsingular, properties of
the Kron reduced admittance matrix ./.22 are studied in Chapter 4.5.5.

We often assume C4.1 holds in this section and will explicitly state it where it is
needed.

4.5.1 Pseudo-inverse and Takagi decomposition

Suppose H<
9:

= H<
: 9

= 0 for all ( 9 , :) 2 ⇢ so that . has zero row (and hence column)

sums.5 Then . is not invertible. Its pseudo-inverse always exists and can be obtained
through singular value decomposition (see Chapter A.6 for singular value decomposi-
tion and Chapter A.7 for pseudo-inverse). Let .̄ denote the componentwise complex
conjugate of . , i.e., [.̄ ] 9: = .̄ 9: . Then . = .T =

�
.̄

�H. Let the singular value decom-
position of . be

. = *⌃,H

where ⌃ := Diag (f0, · · · ,f# ) is a (# +1) ⇥ (# +1) real nonnegative diagonal matrix
whose diagonal entries f9 � 0, called the singular values of . , are the nonnegative
square roots of the eigenvalues of ..̄ , and *,, 2 C(#+1)⇥(#+1) are unitary matrices
(see discussion after Theorem A.11 in Chapter A.6 for their derivation). The pseudo-
inverse of . is then

.
† :=,⌃†*H

where ⌃† is the real nonnegative diagonal matrix obtained from ⌃ by replacing the
nonzero singular values f9 by 1/f9 .

If null(. ) = span(1) then, for each current vector � with 1
T
� = 0, there is a subspace

of solutions to � = .+ given by

+ = .†
� + W1, W 2 C

parametrized by W. Hence+ is unique up to an arbitrary reference voltage. For example
the solution+ =.†

� corresponds to a solution with W = 0. Alternatively W can be chosen
so that +0 = 1\0� at bus 0. If null(. ) ◆ span(1) then � needs to be orthogonal to all
vectors in null(. ) for � = .+ to have a solution for + .

Under assumption C4.1, . is symmetric. Since it is generally not Hermitian, it
may not be unitarily diagonalizable. A matrix is unitarily diagonalizable if and only
if it is normal (Theorem A.13 in Appendix A.6). . may or may not be normal. See
Exercise 4.10 for su�cient conditions under which . is normal and hence unitarily
diagonalizable. Even when . is not normal, it can still be diagonalized but the unitary

5 If . were real symmetric with zero row sums, then its rank is # and its null space is span(1) when the
network is connected. This property may not hold when . is complex symmetric; see Exercise 4.9 for a
su�cient condition for this property.
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matrix*may consist of neither the singular vectors nor the eigenvectors of. , according
to Theorem A.17 in Appendix A.6.

Theorem 4.3 (Takagi decomposition of . ). Suppose H<
9:

= H<
: 9

= 0 for all ( 9 , :) 2 ⇢
and condition C4.1 holds. There exists a unitary matrix * 2 C(#+1)⇥(#+1) and a real
nonnegative diagonal matrix ⌃ := Diag(f0, . . . ,f# ) such that . = *⌃*T where the
diagonal entries f9 � 0 of ⌃ are the singular values of . . ⇤

Since*T <*H in general, the Takagi decomposition is generally di�erent from the
singular decomposition of . and therefore .† is generally not equal to*⌃†*T.

4.5.2 Inverse of .

In this subsection we derive the inverse of . , assuming it is invertible, in terms of its
real and imaginary parts when either is invertible. Using the result in this subsection
we will study conditions in Chapter 4.5.3 under which . is indeed invertible.

Let. =:⌧+ i⌫with⌧,⌫ 2R(#+1)⇥(#+1) . Let / := '+ i- with ',- 2R(#+1)⇥(#+1) .
By definition .�1 exists and is equal to / if and only if there exist unique (',-) such
that /. = ./ = I, the identity matrix of appropriate size. Consider

./ = (⌧ + i⌫) (' + i-) = (⌧'�⌫-) + i(⌫' +⌧-) = I

or 
⌧ �⌫
⌫ ⌧

�
|      {z      }

"


'

-

�
=


I

0

�
(4.46a)

Therefore .�1 exists if and only if the matrix " :=

⌧ �⌫
⌫ ⌧

�
is nonsingular. Suppose

⌧ is nonsingular. According to Theorem A.4 in Appendix A.3.1, " is nonsingular if
and only if the Schur complement "/⌧ :=⌧ +⌫⌧�1

⌫ of ⌧ is nonsingular (given that
⌧ is nonsingular). Moreover the inverse of " is

"
�1 =


("/⌧)�1 ("/⌧)�1

⌫⌧
�1

�⌧�1
⌫("/⌧)�1

⌧
�1�⌧�1

⌫("/⌧)�1
⌫⌧
�1

�

Hence if both ⌧ and "/⌧ are nonsingular, then . is nonsingular and, from (4.46a),
its inverse / := ' + i- is given by

'

-

�
=


("/⌧)�1

�⌧�1
⌫("/⌧)�1

�
=


(⌧ +⌫⌧�1

⌫)�1

�⌧�1
⌫(⌧ +⌫⌧�1

⌫)�1

�
(4.46b)
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Suppose ⌫ is nonsingular. Then (4.46a) can be written equivalently as
⌫ ⌧

⌧ �⌫

�
|      {z      }

"
0


'

-

�
=


0
�

�
(4.47a)

Applying again Theorem A.4 in Appendix A.3.1, " 0 is nonsingular if and only if
the Schur complement " 0/⌫ := �⌫ �⌧⌫�1

⌧ of ⌫ is nonsingular (given that ⌫ is
nonsingular). Moreover the inverse of " 0 is

"
0�1 =


⌫
�1 +⌫�1

⌧ (" 0/⌫)�1
⌧⌫
�1 �⌫�1

⌧ (" 0/⌫)�1

�(" 0/⌫)�1
⌧⌫
�1 (" 0/⌫)�1

�

Hence if both ⌫ and " 0/⌫ are nonsingular, then . is nonsingular and, from (4.47a),
its inverse / := ' + i- is given by

'

-

�
=


�⌫�1

⌧ (" 0/⌫)�1

(" 0/⌫)�1

�
=


⌫
�1
⌧ (⌫+⌧⌫�1

⌧)�1

�(⌫+⌧⌫�1
⌧)�1

�
(4.47b)

To recap, . is invertible when both ⌧ and "/⌧ are invertible or when both ⌫

and " 0/⌫ are invertible. When neither ⌧ nor ⌫ is invertible, . = ⌧ + i⌫ may still be
invertible though its inverse / := ' + i- is not given by (4.46b) or (4.47b) (Exercise
4.11).

4.5.3 Invertibility of .

We now use (4.46)(4.47) to study the invertibility of . . Nonzero shunt admittances do
not guarantee the invertibility of . . A strictly diagonally dominant matrix is invertible
(Theorem A.8 in Appendix A.3). Shunt admittances however does not guarantee strict
diagonal dominance, i.e., |.88 | >

Õ
9: 9<8 |.8 9 | may not hold for some 8. This can be the

case for a transmission line since the susceptances of line charging admittances and
those of series admittances are typically of di�erent signs. Strict diagonal dominance
is however only su�cient for invertibility and a network of transmission lines typically
has an invertible . (see Remark 4.4). We now discuss two su�cient conditions for .
to be invertible.

The first su�cient condition builds on (4.46) and (4.47). It ensures both⌧ and "/⌧
are nonsingular, or both ⌫ and " 0/⌫ are nonsingular. Recall that a real matrix � is
positive definite, denoted � � 0, if � is symmetric and ET

�E > 0 for all real vectors E
(see Remark A.1 in Appendix A.5). A positive definite matrix is nonsingular since all
its eigenvalues are strictly positive. A real matrix � is negative definite, denoted � � 0,
if �� � 0.

Theorem 4.4. Consider a complex symmetric matrix . = ⌧ + i⌫ (i.e., . satisfies
condition C4.1).
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1. If Re(. ) � 0 then .�1 exists, is symmetric, and Re(.�1) � 0.
2. If Im(. ) � 0 then .�1 exists, is symmetric, and Im(.�1) � 0.

Proof For part 1, suppose Re(. ) = ⌧ � 0. The Schur complement "/⌧ of ⌧ is,
from (4.46a), "/⌧ := ⌧ + ⌫⌧�1

⌫. Since ⌫ = ⌫T and ⌧,⌧�1 are positive definite,
"/⌧ := ⌧ + ⌫⌧�1

⌫ � 0. Therefore both ⌧ and "/⌧ are nonsingular, and hence
. is nonsingular according to Theorem A.4 in Appendix A.3.1. It also implies that
Re(.�1) � 0 since, from (4.46b), Re(.�1) = ("/⌧)�1 which is positive definite since
"/⌧ is.

Finally if / := .�1 then / is the unique matrix such that ./ = /. = I, the identity
matrix of appropriate size. Then

/
T
.

T = .
T
/

T = /
T
. = ./

T = I

Hence /T = .�1. Since inverse is unique, /T = / , i.e., .�1 is (complex) symmetric.

Part 2 follows the same argument and is left as Exercise 4.12. (Also see Exercise
4.13 for an alternative proof of the nonsingularity of . .) ⇤

Remark 4.3 (Generalization). Theorem 4.4 holds with small modifications as long as
either Re(. ) or Im(. ) is not indefinite. Specifically if . is complex symmetric then

1. .�1 exists and is symmetric if (a) Re(. ) � 0; or (b) Re(. ) � 0; or (c) Im(. ) � 0;
or (d) Im(. ) � 0.

2. (a) If Re(. ) � 0 then Re(.�1) � 0; and (b) if Re(. ) � 0 then Re(.�1) � 0.
3. (a) If Im(. ) � 0 then Im(.�1) � 0; and (b) if Im(. ) � 0 then Im(.�1) � 0. ⇤

The second set of su�cient conditions for the invertibility of . is in terms of the
series admittances HB

9:
and shunt admittances H<

9:
. These conditions ensure either

Re(. ) or Im(. ) is either positive or negative definite, and hence . is nonsingular by
Theorem 4.4 and Remark 4.3.

Let . = ⌧ + i⌫, i.e., for all ( 9 , :) 2 ⇢ ,

H
B

9:
=: 6B

9:
+ i1

B

9:
, H

<

9:
=: 6<

9:
+ i1

<

9:
, H

<

: 9
=: 6<

: 9
+ i1

<

: 9

Recall H<
9 9

:=
Õ
:: 9⇠: H

<

9:
and let 6<

9 9
:=

Õ
:: 9⇠: 6

<

9:
, 1<

9 9
:=

Õ
:: 9⇠: 1

<

9:
. Previous discus-

sion implies that, for. to be invertible, it is necessary to have at least one nonzero shunt

element. Additional conditions on
⇣
6
B

9:
,6<
9:

,6<
: 9

⌘
are needed to guarantee invertibility,

as follows.

C4.2: For all lines ( 9 , :) 2 ⇢ , 6B
9:

,6<
9:

,6<
: 9

are nonnegative.

C4.3a: For all buses 9 2 # , 6<
9 9

:=
Õ
:::⇠ 9 6

<

9:
< 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 6<
9:
< 0.

C4.3b: For all lines ( 9 , :) 2 ⇢ , 6B
9:
< 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 6<
9
0
:
0 < 0.
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Condition C4.2 can be replaced by: for all lines ( 9 , :) 2 ⇢ , all nonzero 6B
9:

,6<
9:

,6<
: 9

have the same sign, and the invertibility conditions below will still hold with obvious
modifications. Indeed if 6B

9:
,6<
9:

,6<
: 9

are all nonpositive then the proof below shows
that Re(. ) � 0 (see Remark 4.3).

Theorem 4.5. Suppose the network is connected and the admittance matrix. satisfies
condition C4.1. If C4.2 and one of C4.3a and C4.3b hold, then

1. Re(. ) � 0.
2. .�1 exists, is symmetric, and Re(.�1) � 0.

Proof Recall that Re(. ) =: ⌧ 2 R(#+1)⇥(#+1) is given by ⌧ 9: = �6B
9:

if 9 ⇠ : ,Õ
8: 9⇠8 (6B98 +6<98) if 9 = : , and 0 otherwise. Hence for any nonzero vector d 2 R#+1 we

have

d
T
⌧d =

’
9

’
:

d 9 d:⌧ 9: =
’
9

©≠
´
’
:: 9⇠:
�d 9 d:6B

9:
+ d

2
9

’
8: 9⇠8

(6B
98
+6<

98
)™Æ
¨

=
’

( 9,:)2⇢

⇣
d

2
9
�2d 9 d: + d2

:

⌘
6
B

9:
+

’
92#

d
2
9
6
<

9 9

=
’

( 9,:)2⇢

�
d 9 � d:

�2
6
B

9:
+

’
92#

d
2
9
6
<

9 9

Every summand is nonnegative by C4.2. Moreover if C4.3a holds then the second
summation is strictly positive since d < 0. If C4.3b holds then for the first summation
to be zero, d 9 = d: . Since the network is connected this implies d 9 = d1 for all 9 .
Then the second summation becomes

Õ
9
d

2
9
6
<

9 9
� d2

16
<

9
0
:
0 > 0 since d < 0. Therefore

Re(. ) = ⌧ � 0. Theorem 4.4 then completes the proof. ⇤

Instead of
⇣
6
B

9:
,6<
9:

,6<
: 9

⌘
conditions on

⇣
1
B

9:
,1<
9:

,1<
: 9

⌘
can also ensure the invert-

ibility of . .

C4.4: For all lines ( 9 , :) 2 ⇢ , 1B
9:

,1<
9:

,1<
: 9

are nonpositive.

C4.5a: For all buses 9 2 # , 1<
9 9

:=
Õ
:::⇠ 9 1

<

9:
< 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 1<
9:
< 0.

C4.5b: For all lines ( 9 , :) 2 ⇢ , 1B
9:
< 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 1<
9
0
:
0 < 0.

As before C4.2 can be replaced by: for all lines ( 9 , :) 2 ⇢ , all nonzero 1B
9:

,1<
9:

,1<
: 9

have the same sign, and the invertibility conditions below will still hold with obvious
modifications.

Theorem 4.6. Suppose the network is connected and the admittance matrix. satisfies
condition C4.1. If C4.4 and one of C4.5a and C4.5b hold, then

1. Im(. ) � 0.
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2. .�1 exists, is symmetric, and Im(.�1) � 0.

Proof The proof is similar to that for Theorem 4.5. For Im(. ) =: ⌫, for any nonzero
real vector d, the same calculation yields

d
T
⌫d =

’
( 9,:)2⇢

�
d 9 � d:

�2
1
B

9:
+

’
92#

d
2
9
1
<

9 9

Every summand is nonpositive by C4.4. Moreover if C4.5a holds then the second
summation is strictly negative since d < 0. If C4.5b holds then for the first summation
to be zero, d 9 = d1 for all 9 since the network is connected. Then the second summation
becomes

Õ
9
d

2
9
1
<

9 9
 d2

11
<

9
0
:
0 < 0 since d < 0. Therefore Im(. ) = ⌫ � 0. Theorem 4.4

then completes the proof. ⇤

Remark 4.4 (Transmission line). A transmission line ( 9 , :) typically has nonnegative
series conductance 6B

9:
� 0 and negative series susceptance 1B

9:
< 0 (inductive line). Its

shunt conductances 6<
9:
� 0 are usually nonnegative, but shunt susceptances 1<

9:
� 0

are usually nonnegative (capacitive).

1. Hence the conditions in Theorem 4.5 are usually satisfied for transmission lines
(but not for transformers; see Exercise 4.62).

2. Since 1
B

9:
< 0 but 1<

9:
� 0 for a typical transmission line, condition C4.4 in

Theorem 4.6 is usually not satisfied. ⇤

The conditions in Theorems 4.5 and 4.6 are su�cient but not necessary. Exer-
cise 4.62 shows that, even though Condition C4.2 in Theorem 4.5 is usually not
satisfied for a transformer, its admittance matrix may nonetheless be nonsingular.

4.5.4 Properties of .22

We now study su�cient conditions for the existence of Kron reduction, i.e., the in-
vertibility of .22. If either Re(. ) � 0 or Im(. ) � 0 then Theorem 4.4 implies that
Re(.22) � 0 or Im(.22) � 0 respectively and hence .22 is nonsingular following the
same argument as that in its proof. We next extend Theorems 4.5 and 4.6 to .22 by
deriving conditions on the admittances (HB

9:
= HB

: 9
, H<
9:

, H<
: 9
) under which Re(.22) � 0

or Im(.22) � 0.

Let � ( # denote the set of buses corresponding to .22 and assume � is a strict
subset of # . For the rest of this subsection denote the ( 9 , :) entry of a matrix " by
" [ 9 , :], e.g.,. [ 9 , :],.22 [ 9 , :]. Note that the indices 9 , : of.22 take values in �, e.g., if
.22 corresponds to the last = buses, they run from # �=+2, . . . ,# +1, not 1, . . . ,=. The
argument is similar to that for the invertibility of . . By definition .22 is singular if and
only if zero is an eigenvalue of.22. If _ is an eigenvalue and U 2 C= is a corresponding
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eigenvector then

U
H
.22U =

’
92�

’
:2�

. [ 9 , :]UH
9
U: = _ | |U | |22 (4.48)

where | | · | |2 denotes the Euclidean norm. Hence for .22 to be invertible it is su�cient,
but not necessary, that UH

.22U < 0 for all nonzero vectors U 2 C= (see Exercise 4.15).
We have from (4.13c)

.22 [ 9 , 9] =
’

:8�:( 9,:)2⇢
H
B

9:
+

’
:2�:( 9,:)2⇢

H
B

9:
+ H<

9 9
, 9 2 �

Substituting this and . [ 9 , :] = �HB
9:

for 9 ⇠ : into (4.48) we have

U
H
.22U

=
’
92�

©≠
´
©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+

’
:2�:( 9,:)2⇢

H
B

9:
+ H<

9 9

™Æ
¨
|U 9 |2�

’
:2�:( 9,:)2⇢

H
B

9:
U

H
9
U:

™Æ
¨

=
’

9,:2�:( 9,:)2⇢

⇣
H
B

9:
|U 9 |2� HB

9:
U

H
9
U: � HB

: 9
U

H
:
U 9 + HB

: 9
|U: |2

⌘
+
’
92�

©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+ H<

9 9

™Æ
¨
|U 9 |2

=
’

9,:2�:( 9,:)2⇢
H
B

9:

��
U 9 �U:

��2 +’
92�

©≠
´

’
:8�:( 9,:)2⇢

H
B

9:
+ H<

9 9

™Æ
¨
|U 9 |2

where the third equality uses HB
9:
= HB

: 9
(condition C4.1). The first term sums over links

in the subgraph induced by �. The second term sums over links between the subgraph
induced by � and that by # \ �. Recall HB

9:
=: 6B

9:
+ i1

B

9:
and H<

9 9
=: 6<

9 9
+ i1

<

9 9
. Then

Re
⇣
U

H
.22U

⌘
=

’
9,:2�:( 9,:)2⇢

6
B

9:

��
U 9 �U:

��2 +’
92�

©≠
´

’
:8�:( 9,:)2⇢

6
B

9:
+6<

9 9

™Æ
¨
|U 9 |2 (4.49a)

Im
⇣
U

H
.22U

⌘
=

’
9,:2�:( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 +’
92�

©≠
´

’
:8�:( 9,:)2⇢

1
B

9:
+ 1<

9 9

™Æ
¨
|U 9 |2 (4.49b)

The subgraph corresponding to.22 may consist of multiple connected components⇠8 ✓
� of the subgraph induced by � (recall that the overall network (# ,⇢) is connected).
Each connected component ⇠8 is a disjoint set of buses with [8⇠8 = � such that each
bus 9 2 ⇠8 may be connected to other buses in⇠ 9 or in # \ �, but not to buses in �\⇠8 .
Let

⌧ 9 :=
’

:8�:( 9,:)2⇢
6
B

9:
+6<

9 9
, ⌫ 9 :=

’
:8�:( 9,:)2⇢

1
B

9:
+ 1<

9 9
, 9 2 � (4.50a)
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Then we can rewrite (4.49) in terms of the connected components ⇠8 and ⌧ 9 ,⌫ 9 :

Re
⇣
U

H
.22U

⌘
=

’
8

©≠
´

’
9,:2⇠8 :( 9,:)2⇢

6
B

9:

��
U 9 �U:

��2 + ’
92⇠8

⌧ 9 |U 9 |2™Æ
¨

(4.50b)

Im
⇣
U

H
.22U

⌘
=

’
8

©≠
´

’
9,:2⇠8 :( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 + ’
92⇠8

⌫ 9 |U 9 |2™Æ
¨

(4.50c)

These expressions are similar to dT
⌧d and dT

⌫d in the proofs of Theorems 4.5 and
4.6 respectively. Hence Theorems 4.5 and 4.6 extend directly to .22 as stated in the
next two results.

Consider the following conditions on the conductances 6B
9:

and ⌧ 9 :

C4.6: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0 and for all buses 9 2 # , ⌧ 9 � 0.

C4.7a: For all buses 9 2 # , ⌧ 9 < 0,
C4.7b: For all lines ( 9 , :) 2 ⇢ , 6B

9:
< 0. Furthermore on each connected component

⇠8 there exists a bus 98 2 ⇠8 such that ⌧ 98
< 0.

Conditions C4.6 can be changed to 6B
9:

,⌧ 9 having the same sign.

Theorem 4.7. Suppose the admittance matrix . satisfies condition C4.1. If C4.6 and
one of C4.7a and C4.7b hold, then the strict principal submatrix .22 satisfies

1. Re(.22) � 0.
2. .�1

22 exists, is symmetric, and Re
�
.
�1
22

�
� 0.

Proof The proof is similar to that for Theorem 4.5. Condition C4.6 implies that
every summand in (4.50b) is nonnegative. Moreover if C4.7a holds then the second
summation is strictly positive if U < 0. If C4.7b holds then for the first summation to be
zero, U 9 = U: for all 9 , : in each connected component⇠8 . Then the second summation
becomes, on each ⇠8 ,

Õ
92⇠8 ⌧ 9 |U 9 |2 � ⌧ 98

|U 98 |2 > 0 unless U 9 = U 98 = 0 for all 9 2 ⇠8 .
Therefore Re

�
U

H
.22U

�
> 0 if d < 0, i.e., Re(.22) � 0. Since .22 is symmetric Theorem

4.4 then completes the proof. ⇤

Consider the following conditions on the susceptances 1B
9:

and ⌫ 9 :

C4.8: 1B
9:
 0 for all lines ( 9 , :) 2 ⇢ and ⌫ 9  0 for all buses 9 2 # .

C4.9a: For all buses 9 2 # , ⌫ 9 < 0,
C4.9b: For all lines ( 9 , :) 2 ⇢ , 1B

9:
< 0. Furthermore on each connected component

⇠8 there exists a bus 98 2 ⇠8 such that ⌫ 98 < 0.

Conditions C4.8 can be changed to 1B
9:

,⌫ 9 having the same sign respectively.
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Theorem 4.8. Suppose the admittance matrix . satisfies condition C4.1. If C4.8 and
one of C4.9a and C4.9b hold, then the strict principal submatrix .22 satisfies

1. Im(.22) � 0.
2. .�1

22 exists, is symmetric, and Im
�
.
�1
22

�
� 0.

The invertibility conditions in Theorems 4.7 and 4.8 for the submatrix .22 are less
restrictive than those in Theorems 4.5 and 4.6 for . , as we explain in Remark 4.5.
Therefore if conditions of Theorem 4.5 or 4.6 are satisfied then .�1, .�1

22 and ./.22 all
exist.

Remark 4.5 (Transmission line). As discussed in Remark 4.4, for a transmission line,
we usually have 6B

9:
� 0, 1B

9:
< 0, 6<

9 9
� 0 and 1<

9 9
� 0.

1. If all lines ( 9 , :) have strictly positive conductances, then conditions C4.6 and
C4.7b are satisfied. This is the case even with zero shunt admittances H<

9:
= H<

: 9
= 0

in which case . has zero row sums and is singular.
2. For C4.8, even though 1B

9:
and 1<

9 9
have opposite signs, the shunt susceptances

1
<

9:
are typically much smaller than the series susceptances 1B

9:
such that usually

⌫ 9 in (4.50a) has the same sign as 1B
9:

. Hence both C4.8 and C4.9a are likely to
be satisfied since 1B

9:
are usually nonzero for transmission lines. ⇤

When shunt admittances H<
9:
= H<

: 9
= 0. When H<

9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢

a symmetric admittance matrix. has zero row and column sums and is hence singular.
In this case ⌧ 9 and ⌫ 9 in (4.50a) becomes

⌧ 9 :=
’

:8�:( 9,:)2⇢
6
B

9:
, ⌫ 9 :=

’
:8�:( 9,:)2⇢

1
B

9:
, 9 2 �

Hence Theorems 4.7 and 4.8 imply the following simple conditions for the invertibility
of a strict principal submtirx .22 of . .

Corollary 4.9. Suppose the admittance matrix . satisfies condition C4.1 and H<
9:

=
H
<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . Consider the strict principal submatrix .22.

1. If 6B
9:

> 0 for all lines ( 9 , :) 2 ⇢ then .�1
22 exists and is symmetric. Moreover both

Re(.22) � 0 and Re
�
.
�1
22

�
� 0.

2. If 1B
9:

< 0 for all lines ( 9 , :) 2 ⇢ then then .�1
22 exists and is symmetric. Moreover

Im(.22) � 0 but Im
�
.
�1
22

�
� 0.

For a real symmetric Laplacian matrix ! with zero row and column sums (which is
the admittance matrix of the DC power flow model studied in Chapter 4.6), Theorem
4.13 shows that any strict principal submatrix !22 is nonsingular. See Remark 4.6 for
connection of the invertibility conditions of Corollary 4.10 for complex symmetric
matrices . to that in Theorem 4.13 for real symmetric Laplacian matrix !.
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When not all 6B
9:

are strictly positive and not all 1B
9:

are strictly negative, then neither
Re(.22) � 0 nor Im(.22) � 0 may hold. It turns out however that Re(.22)� Im(.22) � 0
as long as 6B

9:
� 0 and 1B

9:
 0 because they cannot be zero simultaneously, i.e., IB

9:
< 0

if ( 9 , :) 2 ⇢ . This implies the nonsingularity of .22, as the following result from [15]
shows.

Theorem 4.10. Suppose the admittance matrix . satisfies condition C4.1 and H<
9:

=
H
<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . If 6B

9:
� 0 and 1B

9:
 0 for all lines ( 9 , :) 2 ⇢ then the

strict principal submatrix .22 satisfies

1. Re(.22) ⌫ 0, Im(.22) � 0, but Re(.22)� Im(.22) � 0.
2. .�1

22 exists and is symmetric.

Proof Write . =:⌧ + i⌫ and .22 =:⌧22 + i⌫22. Denote the ( 9 , :) element of a matrix
" by " [ 9 , :], e.g., . [ 9 , :], ⌧22 [ 9 , :], etc. Since H<

9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ ,

. has zero row (and column) sums. For each row 9 , ⌧22 [ 9 , 9] =
Õ
:8�:( 9,:)2⇢ 6

B

9:
+Õ

:2�:( 9,:)2⇢ 6
B

9:
. Hence ⌧22 is diagonally dominant:

|⌧22 [ 9 , 9] | �
’

:2�:( 9,:)2⇢
6
B

9:
=

’
:2�::< 9

|⌧22 [ 9 , :] | , 9 2 �

Similarly ⌫22 is diagonally dominant:

|⌫22 [ 9 , 9] | �
’

:2�:( 9,:)2⇢
�1B

9:
=

’
:2�::< 9

|⌫22 [ 9 , :] | , 9 2 �

Since⌧22 and ⌫22 are real and symmetric their eigenvalues are all real. The Ger�gorin
disc theorem states that all eigenvalues of a real matrix " 2 R=⇥= lie in the union of =
discs

[=
8=1

(
I 2 C= : |I�"88 | 

’
9: 9<8

|"8 9 |
)

Therefore all eigvenvalues of the⌧22 are nonnegative and those of ⌫22 are nonpositive,
i.e., ⌧22 ⌫ 0 and ⌫22 � 0, since ⌧22 and ⌫22 are real symmetric. This implies that
⌧22�⌫22 ⌫ 0.

We now show that, indeed, ⌧22 � ⌫22 � 0 because the network is connected and
� ⇢ # is a strict subset. Since ⌧22 �⌫22 is real symmetric, consider, for any nonzero
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real vector d,

d
T (⌧22�⌫22)d =

’
92�

’
:2�

d 9 (⌧22 [ 9 , :] �⌫22 [ 9 , :])d:

=
’
92�

’
:2�:( 9,:)2⇢

d 9 (�6B
9:
+ 1B

9:
)d: +

’
92�

d
2
9

©≠
´

’
:2�:( 9,:)2⇢

(6B
9:
� 1B

9:
) +

’
:8�:( 9,:)2⇢

(6B
9:
� 1B

9:
)™Æ
¨

=
’

9,:2�:( 9,:)2⇢

�
d 9 � d:

�2 (6B
9:
� 1B

9:
) +

’
92�

d
2
9
(⌧ 9 �⌫ 9 )

where the third equality uses 6B
9:

= 6B
: 9

and 1B
9:

= 1B
: 9

from C4.1. Here ⌧ 9 � ⌫ 9 =Õ
:8�:( 9,:)2⇢ (6B9: � 1B9: ) for 9 2 � and the summation is not vacuous because the

network is connected and � ( # . For every line ( 9 , :) 2 ⇢ , HB
9:
< 0 and hence 6B

9:
�

1
B

9:
> 0 since 6B

9:
� and 1

B

9:
� 0. This implies ⌧ 9 � ⌫ 9 > 0 as well for all 9 2 �.

Therefore for dT (⌧22�⌫22)d > 0 for any real vector d < 0, i.e., ⌧22�⌫22 � 0.

Finally we use ⌧22 �⌫22 � 0 to show that .22 is nonsingular (it is clear that .�1
22 is

symmetric if it exists). If .22 is singular then it has a nonzero eigenvector U = d + in

corresponding to the zero eigenvalue and hence

0 = .22U = (⌧22 + i⌫22) (d + in) = (⌧22d�⌫22n) + i (⌧22n +⌫22d)

Therefore

⌧22d�⌫22n = 0, ⌫22d +⌧22n = 0

To solve for (d,n), subtract the second equation from the first to get (⌧22 � ⌫22)d =
(⌧22+⌫22)n . Since⌧22�⌫22 � 0 we have d = (⌧22�⌫22)�1 (⌧22+⌫22)n . Substituting
into the first equation we have

0 =
⇣
⌧22 (⌧22�⌫22)�1 (⌧22 +⌫22)�⌫22

⌘
n

=
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌧22 (⌧22�⌫22)�1
⌫22�⌫22

⌘
n

But ⌧22 (⌧22�⌫22)�1
⌫22�⌫22 = (⌧22� (⌧22�⌫22)) (⌧22�⌫22)�1

⌫22 = ⌫22 (⌧22�
⌫22)�1

⌫22 and hence

0 =
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌫22 (⌧22�⌫22)�1
⌫22

⌘
n

Multiplying on the left by nT we have

0 = n
T
⇣
⌧22 (⌧22�⌫22)�1

⌧22 +⌫22 (⌧22�⌫22)�1
⌫22

⌘
n

which implies n = 0 since (⌧22�⌫22)�1 � 0. But then d = (⌧22�⌫22)�1 (⌧22+⌫22)n =
0 and therefore U = d + in = 0, contradicting that the eigenvector U is nonzero. Hence
.22 is nonsingular. ⇤
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4.5.5 Properties of ./.22

Theorem 4.4 extends directly to the Schur complement ./.22 := .11�.12.
�1
22 .

T
12.

Theorem 4.11. Consider a complex symmetric matrix. =:

.11 .12

.
T
12 .22

�
(i.e.,. satisfies

condition C4.1). Suppose .22 is nonsingular.

1. If Re(. ) � 0, then (./.22)�1 exists and is symmetric. Moreover Re(./.22) � 0
and Re

�
(./.22)�1� � 0.

2. If Im(. ) � 0, then (./.22)�1 exists and is symmetric. Moreover Im(./.22) � 0
but Im

�
(./.22)�1� � 0.

Proof Since . is symmetric, .�1
22 and ./.22 are symmetric as well (Exercise 4.18).

From Theorem A.4 in Appendix A.3.1, . is nonsingular if and only if ./.22 is
nonsingular, given that .22 is nonsingular. If Re(. ) � 0 or Im(. ) � 0, Theorem 4.4
implies that .�1 exists and Re(.�1) � 0 or Im(.�1) � 0 respectively. Hence ./.22 is
nonsingular if Re(. ) � 0 or Im(. ) � 0.

Write .�1 in terms of the Schur complement ./.22 (from Theorem A.4):

.
�1 =


(./.22)�1 �(./.22)�1

.12.
�1
22

�.�1
22 .

T
12 (./.22)�1

�

�

where � :=.�1
22 +.�1

22 .
T
12 (./.22)�1

.12.
�1
22 . If Re(. ) � 0 then Theorem 4.4 implies that

Re(.�1) � 0. Hence all the principal submatrices of Re(.�1) are (symmetric and)
positive definite. In particular Re

�
(./.22)�1� � 0. But (./.22)�1 is symmetric and

therefore Theorem 4.4 implies that Re(./.22) � 0.

If on the other hand Im(. ) � 0, then Theorem 4.4 implies that Im(.�1) � 0. Hence
its principal submatrix Im

�
(./.22)�1� � 0. But (./.22)�1 is symmetric and therefore

Remark 4.3 implies that Im(./.22) � 0. ⇤

4.6 DC power flow model

A widely used linear model is called the DC power flow model. Before presenting
the model in Chapter 4.6.2, we first collect in Chapter 4.6.1 basic properties of a
graph Laplacian matrix which underlies the DC power flow model. These properties
are extensively used in, e.g., electricity market (Chapter 6.4), cascading failure, and
long-term planning applications where the DC power flow model is applicable.
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4.6.1 Laplacian matrix

Consider a graph ⌧ := (# ,⇢) where # := {1, . . . ,=} is a set of = nodes and ⇢ ✓ # ⇥#
is a set of < := |⇢ | lines. For an undirected graph we refer to its line by ( 9 , :) 2 ⇢
or 9 ⇠ : 2 ⇢ . We assume there are no self-loops, i.e., ( 9 , 9) 8 ⇢ for any 9 2 # . We
sometimes endow the graph with an arbitrary orientation in which case we refer to
a line in ⇢ by ( 9 , :), 9 ⇠ : , or 9 ! : interchangeably. With respect to this graph
orientation, let ⇠ 2 {�1,0,1}=⇥< denote the node-by-line incidence matrix defined in
(4.14) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Unless otherwise specified we usually assume ⌧ is connected.

Associated with each line ; := ( 9 , :) 2 ⇢ is a parameter 1; and let ⌫ := Diag(1; , ; 2
⇢). A key property we assume is that 1; > 0 for all ; 2 ⇢ , so ⌫ is positive definite and
invertible. The Laplacian matrix ! associated with ⌧ is defined to be

! := ⇠⌫⇠
T (4.51a)

Since the Laplacian matrix ! is symmetric it is often simpler to treat⌧ as an undirected
graph when working with !. The entries of ! are given by (Exercise 4.19):

! 9: :=

8>><
>>:
�1 9: ( 9 , :) 2 ⇢Õ
8:8⇠ 9 18 9 9 = :

0 otherwise
(4.51b)

The defining properties of the Laplacian matrix ! are:

• It is real symmetric. For notational convenience we define, for each ( 9 , :) 2 ⇢ , both
1 9: and 1: 9 with 1 9: = 1: 9 .

• All row sums, and column sums, are zero.
• 1; > 0 for all ; 2 ⇢ .

For the DC power flow model studied in Chapter 4.6.2, row/column sums are zero
because the shunt admittances ( H̃<

9:
, H̃<
: 9
) are assumed zero, and 1 9: > 0 becasuse

1 9: := �1̃B
9:
|+ 9 | |+: | where 1̃B

9:
< 0 are the series line susceptances and |+ 9 | are given

voltage magnitudes.

This leads to the following important property from which many other properties
of ! follow.

Lemma 4.12. For all G 2 R= we have GT
!G =

Õ
( 9,:)2⇢ 1 9: (G 9 � G: )2 � 0.
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Proof We have from (4.51)

G
T
!G =

’
9

’
:

! 9:G 9G: =
’
9

G 9

©≠
´
’
8:8⇠ 9

18 9G 9 +
’
:: 9⇠:
�1 9:G:™Æ

¨
=

’
(8, 9)2⇢

18 9

⇣
G

2
8
�2G8G 9 + G2

9

⌘
=

’
(8, 9)2⇢

18 9 (G8 � G 9 )2

where the third equality follows because we have defined both 1 9: = 1: 9 for each
( 9 , :) 2 ⇢ . ⇤

An immediate consequence of the lemma is a set of useful properties in Theorem
4.13. Before presenting them we review the concept of pseudo-inverse (see Appendix
A.7 for more details).

Spectral decomposition and pseudo-inverse. An arbitrary complex matrix � 2
C
=⇥= has a singular value decomposition

� = +⌃,H

where ⌃ = Diag(f9 , 9 = 1, . . . ,=) is a diagonal matrix of singular values f9 � 0, and
+ and, are unitary matrices whose columns are orthonormal sets of eigenvectors of
��

H and �H
� respectively (Theorem A.11 in Appendix A.6.1). The pseudo-inverse

of � is defined to be

�
† := ,⌃†+H

where ⌃† is a diagonal matrix obtained by replacing the positive f9 by 1/f9 in ⌃. The
main properties of pseudo-inverse are summarized in Theorem A.19 and Corollary
A.20 in Appendix A.7.

If � 2 C=⇥= is a normal matrix then it has a spectral decomposition

� = *⇤*H =
’
9

_ 9D 9D
H
9

where _8 2 C are complex eigenvalues of � and the columns (D 9 , 9 = 1, . . . ,=) of the
unitary matrix* are an orthonormal basis ofC= (Theorem A.15 of Appendix A.6.2). If
� 2 C=⇥= is positive semidefinite (necessarily Hermitian), then the eigenvalues _ 9 � 0
are real and nonnegative. Moreover Theorem A.16 shows that the singular value
decomposition coincides with the spectral decomposition of �, i.e., � = +⌃,H =
*⇤*H and f9 = _ 9 � 0. If � 2 R=⇥= is a real positive semidefinite matrix (necessarily
symmetric by definition), then * can be taken as a real and orthogonal matrix. In this
case

�
† = *⇤†

*
T =

’
9:_ 9>0

1
_ 9

D 9D
T
9

where ⇤† is a diagonal matrix obtained by replacing the positive _ 9 by 1/_ 9 in ⇤. Let
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rank � = =� : and

0 = _1 = · · · = _: < _:+1  · · ·  _=

Then

� = *⇤*T =
’
9>:

_ 9D 9D
T
9
, �

† = *⇤†
*

T =
’
9>:

1
_ 9

D 9D
T
9

(4.52)

Theorem 4.13 (Laplacian matrix !). Suppose the graph ⌧ = (# ,⇢) consists of  � 1
connected components. Consider its Laplacian matrix ! defined in (4.51).

1. ! is positive semideifinite.
2. ! is of rank =� with the null space of ! spanned by vectors that have G 9 = G:

for all buses 9 , : in the same connected component. In particular if⌧ is connected
( = 1) then ! is of rank =�1 with span(1) as its null space.

3. Suppose the graph ⌧ is connected, i.e.,  = 1. Then
• The pseudo-inverse !† of ! is given by

!
† =

✓
! + 1

=

11
T
◆�1

� 1
=

11
T =

#’
9=2

1
_ 9

E 9E
T
9

(4.53)

where 0 = _1 < _2  · · ·  _= are the eigenvalues of ! and E 9 are the corre-
sponding eigenvectors.

• Both ! and !† are symmetric and have zero row (and hence column) sums.
• We have

!!
† = !

†
! = I= �

1
=

11
T

where I= is the identity matrix of size =. Hence for all G 2 R= with 1
T
G = 0, we

have !†!G = G and !!†G = G.
4. Suppose the graph ⌧ is connected, i.e.,  = 1. Then

• Any : ⇥ : principal submatrix " of ! is positive definite and hence invertible,
:  =�1.

• Moreover both " and its inverse "�1 are symmetric.

Proof 1. Lemma 4.12 implies that ! is positive semidefinite since 1; > 0 for all
; 2 ⇢ .

2. First we claim that E is in the null space of ! if and only if ET
!E = 0. To see

the su�ciency, we have from (4.52) that ET
!E =

Õ
9
_ 9 (DT

9
E)2. Hence ET

!E = 0
implies that DT

9
E = 0 for all 9 such that _ 9 > 0, i.e., E 2 null(!) since (D 9 ,8 9) forms

a basis of R=. Suppose E 2 null(!). Lemma 4.12 then implies that E8 = E 9 for all
buses 8, 9 in the same connected component. If #: ✓ # , : = 1, . . . , , are connected
components of the graph ⌧, then an orthonormal basis of the null space consists
of  orthogonal vectors E: whose entries are:

E
:

8
:=

1(8 2 #: )p
|#: |

, 8 = 1, . . . ,=, : = 1, . . . , 
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where 1(·) is the indicator function. Hence the null space of ! has a dimension of
 . Since dim(null(!)) + rank(!) = =, rank(!) = =� .

3. Suppose now  = 1. By definition, ! is symmetric and has zero row sums. That
!
† =

Õ
9�2 (1/_ 9 )E 9ET

9
follows directly from (4.52). The formula (4.53) for !† is

proved in Exercise 4.20. The formula implies that !† is also symmetric. Its row
sum is

!
†
1 =

 ✓
! + 1

=

11
T
◆�1

� 1
=

11
T

!
1 =

✓
! + 1

=

11
T
◆�1

1�1

To show that this is zero, multiply both sides by ! + 1
=
11

T to get:✓
! + 1

=

11
T
◆
!
†
1 = 1�

✓
! + 1

=

11
T
◆

1 = 1�1 = 0

Since ! + 1
=
11

T is nonsingular, !†1 must be a zero vector, i.e., row sums of !† are
all zero.

Finally, since E 9 are orthonormal eigenvectors of !, we have from (4.53)

!!
† = !

’
9�2

1
_ 9

E 9E
T
9
=

’
9�2

E 9E
T
9
= I= �

1
=

11
T

where the last equality follows because
Õ
9�1 E 9E

T
9
= I= and E1 = 1/p=. Similarly

!
†
! = ©≠

´
’
9�2

1
_ 9

E 9E
T
9

™Æ
¨
! =

’
9�2

E 9E
T
9
= I= �

1
=

11
T

4. Consider a : ⇥ : principal submatrix " of ! with :  = � 1. Without loss of
generality we assume " consists of the first : rows and columns of !. As in
Lemma 4.12 we have for any nonzero G 2 R:

G
T
"G =

:’
8=1

:’
9=1

!8 9G8G 9 =
:’
8=1

!88G
2
8
+
’
8:

’
9:
8< 9

!8 9G8G 9

=
’
8:

©≠≠
´
’
9
0:
8⇠ 90

18 90 +
’
9
0
>:

8⇠ 90

18 90
™ÆÆ
¨
G

2
8
+
’
8:

’
9:
8⇠ 9

�18 9G8G 9

=
’

(8, 9)2⇢
8, 9:

18 9

⇣
G

2
8
�2G8G 9 + G2

9

⌘
+
’
8:

’
9
0
>:

8⇠ 90

18 90G
2
8

=
’

(8, 9)2⇢
8, 9:

18 9 (G8 � G 9 )2 +
’
8:

’
9
0
>:

8⇠ 90

18 90G
2
8
> 0 (4.54)

where the second to last equality follows because 18 9 = 1 98 and the inequality
follows because ⌧ is connected, : < =, and G < 0. Hence " is positive definite
and hence invertible.

Since ! is symmetric, so is the : ⇥ : principal submatrix " . The inverse of any
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symmetric nonsingular matrix is symmetric. To see this, first note that if " is a
nonsingular square matrix and ""̂ = �, then "̂ is unique because the 9 th column
"̂ 9 of "̂ is uniquely determined by ""̂ 9 = 4 9 . Since the inverse of " satisfies
""̂ = �, "̂ must be the inverse. If " is symmetric then ""̂

T = ("̂"T)T =
("̂")T = � where the last equality follows because "̂ is an inverse of " . This
means that "̂T is also an inverse of " and hence "̂T = "̂ , i.e., the inverse of "
is symmetric.

⇤

Hence a strict principal submatrix " of ! is always positive definite and invert-
ible, but it is not necessarily strictly diagonally dominant (only diagonally dominant)
even though 1 9: > 0 for all ( 9 , :) 2 ⇢ because strict diagonal dominance requiresÕ
9<8 |"8 9 | < |"88 | for all rows 8. The theorem is illustrated in Exercise 4.21.

Remark 4.6 (Comparison with complex symmetric admittance matrix). To summa-
rize:

1. For a complex symmetric admittance matrix . , a strict principal submatrix .22

is not always nonsingular. Theorems 4.7 and 4.8 provide su�cient conditions
(Re(.22) � 0 or Im(.22) � 0) for a strict principal submatrix.22 to be nonsingular.

2. For a complex symmetric admittance matrix . for a connected radial network, a
principal submatrix .̂ corresponding to removing any leaf node is always nonsin-
gular and .̂�1 has a simple structure, according to Theorem 4.1. By induction, this
holds for any strict principal submatrix .22 if the reduced network graph remains
a (connected) tree.

3. For a real symmetric Laplacian matrix ! with zero row and column sums, any
strict principal submatrix " is nonsingular, according to Theorem 4.13. This is
because all o�-diagonal entries ! 9: = �1 9: , 9 < : , are nonzero and of the same
sign, resulting in a positive definite " (when 1 9: > 0). Otherwise, it is possible
for a real symmetric matrix . with zero row sums whose o�-diagonal entries . 9:
may be of di�erent signs to have a rank strictly less than =�1 (see Exercise 4.9).

Indeed one can interpret Corollary 4.10 as an extension of the result here to a
complex symmetric admittance matrix. Corollary 4.10 shows that, for a complex
symmetric admittance matrix . with zero row and column sums, if 6B

9:
> 0 for all

( 9 , :) 2 ⇢ or if 1B
9:

< 0 for all ( 9 , :) 2 ⇢ , then indeed Re(.22) � 0 or Im(.22) � 0
respectively, and therefore.22 is nonsingular. The proof that Re(.22) � 0 or Im(.22) � 0
is essentially the same as that for Theorem 4.13 for a real Laplacian matrix (compare
(4.54) and (4.50)). In this sense we can regard the conditions Re(.22) � 0 or Im(.22) � 0
in Theorems 4.7 and 4.8 as the generalization of sign definiteness of o�-diagonal entries
. 9: for a complex symmetric admittance matrix . . ⇤
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4.6.2 Model

We again model a power network by a connected graph ⌧ = (# ,⇢) of # +1 nodes and
" lines, where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . Each line ( 9 , :) 2 ⇢
is characterized by series admittance and shunt admittances ( H̃B

9:
, H̃<
9:
) and ( H̃B

: 9
, H̃<
: 9
).

In this section we assume H̃B
9:

= H̃B
: 9

(assumption C4.1) and H̃<
9:

= H̃<
: 9

= 0. A popular
linearized model, called the DC power flow model, makes the following additional
assumptions:

• Line losses are negligible, i.e., the series conductances 6̃B
9:
⇡ 0, so H̃B

9:
⇡ i1̃

B

9:
. The

series susceptances 1̃B
9:

< 0.
• Voltage angle di�erences are small across each line, i.e., sin(\ 9 � \: ) ⇡ \ 9 � \: for

all lines ( 9 , :) 2 ⇢ .
• Voltage magnitudes |+ 9 | are given and fixed for all buses 9 2 # .
• Ignore reactive power, so variables in the DC power flow model are (? 9 ,\ 9 , 9 2 #).

The DC power flow model is widely used in the industry, e.g., in economic dispatch
of generators. The assumptions are reasonable for many problems in transmission
networks where the voltage magnitudes are high and real power losses are small. The
last two assumption in the model are justified because on transmission networks where
loss is low, there is decoupling between voltage angle \ 9 and reactive power @: and
between voltage magnitude |+ 9 | and real power ?: ; see Chapter 4.4.3. Hence it is
implicitly assumed that reactive power injections @: can be chosen to stabilize the
voltage magnitudes |+ 9 | separately from the determination of (? 9 ,\ 9 , 9 2 #). These
assumptions are not suitable for distribution systems where voltages are much lower,
the ratio of line resistance to reactance is high, and reactive power is often used to
stabilize voltages. The linear branch flow model of Chapter 5.5 is more suitable for
distribution systems.

Under these assumptions, the DC power flow model is defined by (substituting
6̃ 9: = 0, H̃<

9:
= H̃<

: 9
= 0 and replace sin\ 9: with \ 9 � \: in (4.22a)):

? 9 =
’
:: 9⇠:

(�1̃B
9:
|+ 9 | |+: |) (\ 9 � \: ) =:

’
:: 9⇠:

1; (\ 9 � \: ), 9 2 # (4.55a)

where 1; := �1̃B
9:
|+ 9 | |+: | > 0 where |+ 9 |, |+: | are given voltage magnitudes. ClearlyÕ

9
? 9 =

Õ
9

Õ
:
1; (\ 9 � \: ) = 0. This is a consequence of the lossless assumption

6̃
B

9:
= 0 and H̃<

9:
= H̃<

: 9
= 0.6

We can write the DC model (4.55a) in vector form, as follows. Let ⌫ = Diag(1; , ; 2
⇢) � 0 be the (weighted) susceptance matrix. Let ? := (? 9 , 9 2 #) be the power
injections at buses in # . Let \ := (\ 9 , 9 2 #) be the voltage phase angles at these buses.

6 For the special case of the flat voltage profile +9 = + flat for all 9 2 # where + flat is a common nominal
voltage, e.g., + flat = 1\0�, (4.55a) is also the linearization of the polar form power flow equation
(4.22a) around the flat voltage profile and the resulting injections (?flat,@flat) = (0,0); see Exercise 7.8.
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Let % := (%; , ; 2 ⇢) be the real power flows on line ;. The DC power flow model is
specified by the following equations in (?,%,\):

? = ⇠%, % = ⌫⇠
T
\ (4.55b)

Eliminate % to relate voltage angles \ directly to injections ?:

? = ⇠⌫⇠
T
\ =: !\

where the (# + 1) ⇥ (# + 1) matrix ! := ⇠⌫⇠T is the Laplacian matrix of the graph
⌧. This is (4.55a). When ⌧ is connected, ! has rank # and the null space is span(1)
(Theorem 4.13). Hence, given an injection vector ? that is orthogonal to span(1), i.e.,
power is balanced over the network 1

T
? =

Õ
92# ? 9 = 0, the DC power flow equation

(4.55b) has a subspace of solutions (%,\) given by:

% = ⌫⇠
T
!
†
?, \ = !

†
? + 01, 0 2 R (4.55c)

For example we can choose 0 so that \0 = 0 at bus 0. It is important that the line flows %
are unique regardless of the choice of \ because ⇠T

1 = 0. The models (4.55a), (4.55b)
and (4.55c) are equivalent models.

There is yet another way to specify the DC power flow model. Let ⇠̂ denote the
# ⇥" reduced incidence matrix obtained from ⇠ by removing the row corresponding
to the reference bus 0. Let !̂ := ⇠̂⌫⇠̂T be the reduced Laplacian matrix. Hence !̂ can
be obtained from ! by removing its row and column corresponding to bus 0. Then
!̂ is of rank # and invertible according to Theorem 4.13. Let ?̂ := (? 9 , 9 2 #) and
\̂ := (\ 9 , 9 2 #) be the power injections and voltage angels at non-reference buses.
Then, given any ?̂, the solution of (4.55b) can also be expressed in terms of !̂�1 and
( ?̂, \̂) at non-reference buses as:

% = ⌫⇠̂
T
!̂
�1
?̂, \̂ = !̂

�1
?̂ (4.55d)

This solution is unique and assumes that bus 0 is the angle reference bus, i.e., \0 := 0.
It is a special case of the solution (4.55c) in terms of the pseudo-inverse !† with 0
chosen so that \0 = 0. The solution (4.55c) is therefore more flexible since it works
for any reference bus whereas !̂ in (4.55d) generally changes when a di�erent bus is
chosen as a reference. We will mostly use !† in our analysis. The next result formally
states this relation; in particular, it shows that the line flow % is independent of the
choice of the angle reference bus or !̂.

Lemma 4.14. Consider the DC power flow model (4.55). For any injections ? with
1

T
? = 0 we have

% = ⌫⇠̂
T
!̂
�1
?̂ = ⌫⇠

T
!
†
?, \̂ = !̂

�1
?̂ (4.56)

when \0 := 0. This implies ⇠T
!
†
? = ⇠̂T

!̂
�1
?̂ and ⇠T

!
†
⇠ = ⇠̂T

!̂
�1
⇠̂.

Proof Write

⇠ =

2

T
0
⇠̂

�
, ? =


?0

?̂

�
, \ =


\0

\̂

�
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where 2T
0 is the first row of ⇠ corresponding to bus 0. Then

! =

2

T
0⌫20 2

T
0⌫⇠̂

T

⇠̂⌫20 !̂

�

with !̂ = ⇠̂⌫⇠̂T and the power flow equations (4.55b) become:

?0 = 20⌫2
T
0\0 + 20⌫⇠

T
\̂, ?̂ = ⇠̂⌫2

T
0\0 + !̂\̂ (4.57a)

% = ⌫

⇥
2

T
0 ⇠̂

T⇤ 
\0

\̂

�
= ⌫2

T
0\0 +⌫⇠̂T

\̂ (4.57b)

The power flow solution (4.56) corresponds to choosing 0 in (4.55c) so that \0 = 0
(% = ⌫⇠T

!
†
? is independent of the choice of 0 because !†1 = 0). Hence (4.57) implies

% = ⌫⇠T
!
†
? = ⌫⇠̂T

!̂
�1
?.

Finally equating % in (4.55) and (4.57) gives ⌫�1
% = ⇠T

!
†
? = ⇠̂T

!̂
�1
?̂ for any ?

with 1
T
? = 0. Substituting ? := ⇠ 9 and ?̂ := ⇠̂ 9 to be the 9 th columns of ⇠ and ⇠̂

respectively (which satisfies 1
T
? = 0), we have ⇠T

!
†
⇠ 9 = ⇠̂T

!̂
�1
⇠̂ 9 . Since this holds

for all 9 we have ⇠T
!
†
⇠ = ⇠̂T

!̂
�1
⇠̂. This completes the proof. ⇤

The quantities in the lemma are illustrated in Exercise 4.22. The lemma is general-
ized in Chapter 6.4.3.4 to the case where there can be a reference bus for angle and a
di�erent reference (slack) bus for pricing electricity (both are taken to be bus 0 here).
It is shown in Theorem 6.3 that the line flows %, and the optimal dispatch and LMP
(?⇤,_⇤) are independent of the choices of reference buses.

Remark 4.7 (Loop flow and uniqueness of %). We call a line flow vector % a loop flow
if it satisfies power balance with zero injections, i.e., ⇠% = 0. Hence %f is a loop flow
if and only if it is in the null space of ⇠. Given any balanced injection vector ? withÕ
9
? 9 = 0, the line flows % that satisfy ? = ⇠% are not unique. If % satisfies ? = ⇠%,

so does %+%f for any loop flow %f . The DC power flow model (4.55b) requires both
? = ⇠% and % = ⌫⇠T

\. The second equation ensures that loop flow %f = 0 and the
line flows % in a DC power flow solution are unique. To see this, suppose both (%,\)
and (%+%f , \̃) are power flow solutions, i.e., they satisfy

? = ⇠%, % = ⌫⇠
T
\

? = ⇠ (%+%f), %+%f = ⌫⇠
T
\̃

This implies ⇠%f = 0 and ⌫
�1
%f = ⇠T (\̃ � \) and hence %f and ⌫

�1
%f are in

orthogonal subspaces, i.e., %T
f

�
⌫
�1
%f

�
= 0 yielding %f = 0 since ⌫ is positive definite.

⇤

Power loss. The DC power flow model assumes zero real power loss. It is possible
to augment the basic equation (4.55) by adding a loss term, as the next example shows.

Example 4.8 (Loss in linear mdoel). Suppose H̃B
9:

= H̃B
: 9

for all lines ( 9 , :) 2 ⇢ (as-

sumption C4.1) and H̃<
9:
= H̃<

: 9
= 0. Write+ 9 := |+ 9 | 4i\ 9 and H̃B

9:
=: 6̃B

9:
+ i1̃

B

9:
. Then the
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total real power loss over a network is given by (Exercise 4.4):

2(\) :=
’
92#

? 9 =
’

9!:2⇢
6̃
B

9:

��
+ 9 �+:

��2 =
’

9!:2⇢
6̃
B

9:

⇣
|+ 9 |2 + |+: |2�2|+ 9 | |+: | cos\ 9:

⌘

where \ 9: := \ 9 � \: . As in the DC power flow model (4.55) we assume here voltage
magnitudes |+ 9 | are fixed and the total loss 2 is a function of the voltage angles \.

Recall the flat voltage profile where +flat
9

= `4i\
flat

for all 9 2 # , so that the resulting

power injection is
�
?

flat,@flat� = (0,0). To compute the Taylor expansion of 2(\) around
the flat voltage profile we have:

2(\flat) = 0

m2

m\8

(\flat) =
’

8!:2⇢
2`2

6̃
B

8:
sin\flat

8:
+

’
9!82⇢

�2`2
6̃
B

98
sin\flat

98
= 0

m
2
2

m\8m\ 9

(\flat) =

8>>>>><
>>>>>:

�2`2
6̃
B

8 9
cos\flat

8 9
= �2`2

6̃
B

8 9
if 8! 9 2 ⇢

�2`2
6̃
B

98
cos\flat

98
= �2`2

6̃
B

98
if 9 ! 8 2 ⇢Õ

::(8,:) or (:,8)2⇢ 2`2
6̃
B

8:
if 8 = 9

0 otherwise

Hence the second derivative m
2
2

m\
2 is a real symmetric Laplacian matrix with zero row

and column sums, and is therefore positive semidefinite. Let 6; := 2`2
6̃
B

;
for ; 2 ⇢ and

⌧ := Diag (6; , ; 2 ⇢). Define

!loss :=
m

2
2

m\
2
(\flat) = ⇠⌧⇠

T (4.58a)

where ⇠ is the incidence matrix of the network graph. Then a loss term can be
taken as the second-order Taylor expansion of 2(\) around the flat voltage profile (the
perturbation variable \ now denotes the deviations from \

flat):

2̂(\) = 2(\flat) + m2
m\

(\flat)\ + 1
2
\

T
!loss\ =

1
2
\

T
!loss\ (4.58b)

Since the matrix !loss in (4.58a) is positive semidefinite the loss 2̂(\) is a convex
quadratic function of \. ⇤

4.7 Chapter summary

1. A device is a voltage, current or power source or an impedance which can be
used to model generation resources, loads or control equipment. A device model
expresses the net nodal current injection � 9 or power injection B 9 at each bus 9as
the sum of terminal currents or powers of devices : connected to bus 9 , in terms of
the nodal voltage + 9 and device parameters (see (4.1) in Example 4.1). A network
model is a set of equations relating the nodal variables (B 9 , � 9 ,+ 9 ) at all the buses 9
in the network in terms of branch parameters (HB

9:
, H<
9:
) and (HB

: 9
, H<
: 9
). It expresses
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nodal current balance � =.+ in terms of an admittance matrix. or power balance
(B+ relation) in terms of power flow equations. A system model consists of a device
model and a network model. It is nonlinear if it contains power sources and can
be linear otherwise. We have presented common methods for solving nonlinear
power flow equations.

2. The Kron reduced admittance matrix./.22 describes a virtual network and linearly
relates the nodal voltages and current injections at a subset of buses in the network.

3. For a radial network, the reduced incidence and admittance matrix are nonsingular
and their inverses have a simple structure (Theorem 4.1). We will use this structure
in Chapters 7.2 and 7.3 for voltage control and topology identification respectively.

4. We have derived structural properties of an admittance matrix . and its Kron
reduction ./.22, especially su�cient conditions under which . is invertible or
./.22 exists. For instance, if Re(. ) � 0 then its inverse .�1 exists, is symmetric,
and Re(.�1) � 0. If Im(. ) � 0 then the inverse .�1 exists, is symmetric, and
Im(.�1) � 0 (Theorem 4.4).

5. We have presented the DC power flow model which is a linear approximation and
widely used in electricity market and planning applications. We have explained
the main properties of a real Laplacian matrix ! which underlies the DC power
flow model (4.55).

4.8 Bibliographical notes

The description of !* decomposition for solving � =.+ and algorithms to compute power flow solutions
are adapted from [1]. The use of Newton-Raphson algorithm for solving power flow problems is first proposed
in [16]. An implementation at BPA is reported in [17] with major improvements, especially a heuristic to
optimize the order of Gaussian elimination of the Jacobian matrix in solving � (G (C))�G (C) = � 5 (G (C) .
The Fast Decoupled algorithm is proposed in [18] and the holomorphic embedding load-flow method in
[14]. The DC power flow model has been widely used in applications, e.g., for formulating DC OPF [18, 19].
For properties of complex symmetric matrices such as the admittance matrix . , see [20, Chapter 4.4]. The
first part of Theorem 4.4 on the invertibility of. is from [21, Lemma 1] though we have used properties of
Schur complement to simplify its proof. See also [22].

4.9 Problems

Chapter 4.3

Exercise 4.1 (Ideal transformer and transmission line). Consider the cascade in the
one-line diagram of Figure 4.13(a) of an ideal transformer with voltage gain = and
a transmission line modeled by a series admittance H (and zero shunt admittances).
Show that its external behavior is equivalent to that of the ⇧ circuit in Figure 4.13(b).

Exercise 4.2 (Radial Network: inverses of ⇠̂ and .̂ ). Prove Theorem 4.1. (Hint: Let ⌫
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2. A popular concept is the thermal loss on transmission or distribution lines. Define
the total thermal loss as:

!2 (+) :=
’

( 9,:)2⇢
A
B

9:
|� 9: (+) |2

where IB
9:
= AB

9:
+ iG

B

9:
:= 1/HB

9:
and � 9: (+) is the sending-end current on line ( 9 , :)

from 9 to : . Show that !1 (+) reduces to !2 (+) when 6<
9:
= 6<

: 9
= 0.

Chapter 4.4

Exercise 4.5 (Gauss algorithm). Consider solving for the roots of

6(G) = 0G
2� G (4.59)

i.e., finding G such that 6(G) = 0. An G is a root of 6 if and only if it is a fixed point of
5 (G) := 0G2, i.e., if and only if G = 5 (G). The Gauss algorithm computes a fixed point
of 5 (G) by performing the fixed-point iteration G(C +1) := 5 (G(C)).

1. What are the roots of 6 in (4.59)?
2. Let - := [�1,1]. Whenever |0 | < 1, 5 maps - into - . Show that there exists an
U 2 [0,1) such that

| 5 (H)� 5 (G) |  U |H� G |, for all G, H 2 - (4.60)

if and only if |0 | < 1/2. In that case, 5 is called a contraction mapping on - . What
is the root of 6 that the Gauss algorithm computes when |0 | < 1/2?

3. Show that the Gauss algorithm converges to G⇤ = 0 if and only if G(0) satisfies
|0G(0) | < 1 regardless if G(0) 2 - . In that case, the convergence is quadratic (i.e.,
the error ratio |G(C +1) |/G2 (C) = 2 for some constant 2 > 0).

4. Use part 3 to argue that 5 being a contraction mapping on - is not necessary for
the Gauss algorithm to compute a root of 6? What is the advantage, if any, if 5 is
indeed a contraction mapping on -?

Exercise 4.6 (Newton algorithm). The Newton algorithm solves iteratively for G 2 R=
such that 6(G) = 0 where 6 : R= ! R=. In each iteration, it approximates 6 by its
linearization at the current iterate G(C) and moves to G(C + 1) where the linearization
vanishes. Show that if 6 is linear, 6(G) = �G +1 where � is invertible, then the Newton
algorithm solves 6(G) = 0 in one step wherever it starts.

Exercise 4.7 (Kantorovich Theorem). Consider 6 : ⇡! R= where ⇡ ✓ R= is an open
convex set. Suppose 6 is di�erentiable on ⇡. The Newton algorithm:

G(C +1) := G(C)� (r6(G(C)))�1
6(G(C)) (4.61)

converges if the initial point is close to a solution. This is made precise by the Kan-
torovich Theorem which says that the Newton algorithm will converge to a solution
G
⇤ in a neighborhood ⌫A (G0) of the initial point G0 provided the (product of) bounds

on the smoothness of 6, the inverse Jacobian (r6(G0))�1 and the Newton increment
(r6(G0))�1

6(G0) are small enough.
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Specifically suppose r6 is Lipschitz on ⇡, i.e., there is an ! such that

kr6(H)�r6(G)k  !kH� Gk, for all G, H 2 ⇡

where [r6(G)]
8 9

:= m68

mG 9

(G) and k · k is a induced matrix norm. Suppose G0 2 ⇡ and that
r6(G0) is invertible. Let V and [ be bounds on the inverse Jacobian and the Newton
increment respectively:

V �
��(r6(G0))�1

�� , [ �
��(r6(G0))�1

6(G0)
��

⌘ := V[!, A :=
1�
p

1�2⌘
⌘

[

The Kantorovich Theorem says that if the closed ball ⌫A (G0) ✓ ⇡ and ⌘  1/2 then
the Newton iteration (4.61) converges to a solution G⇤ of 6(G) = 0 in the closed ball
⌫A (G0).

1. Apply the Kantorovich Theorem to 6(G) := 0G2 � G to prove that the Newton
iterates converge to a root of 6 if the initial point G0 satisfies either of the following
conditions, assuming 0 > 0:

G0 
1
20

✓
1� 1p

2

◆
or G0 �

1
20

✓
1+ 1p

2

◆

Which root will the Newton iteration compute in each case?
2. The Kantorovich Theorem provides only a su�cient condition for convergence

of the Newton iterates. Show that, for 6(G) := 0G2 � G, as long as G0 < (20)�1 =
minG 6(G), the Newton iterates will converge. (Hint: use part 1.)

Exercise 4.8 (Fast decoupled algorithm). 1. Use (4.29) to prove (4.33).
2. Show that if 6B

9:
= 6<

9:
= 0 and sin\ 9: = 0 for all ( 9 , :) 2 ⇢ then the Jacobian

reduces to the approximating block-diagonal matrix �̂ (\, |+ |) :=

"
m?

m\
0

0 m@

m |+ |

#
.

Chapter 4.5

Exercise 4.9 (Real Laplacian matrix). Suppose the =⇥ = admittance matrix . of a
connected graph is real symmetric with zero row sums (e.g., . is the admittance
matrix of a DC network), i.e., . 9: = .: 9 for all 9 < : and . 9 9 = �

Õ
:: 9<:. 9: for all 9 .

1. If . 9: have the same sign for all ( 9 , :) 2 ⇢ , show that rank . = =�1 and hence .
is not invertible and null(. ) = span(1).

2. If . 9: have the same sign for all ( 9 , :) 2 ⇢ , show that the (=�1) ⇥ (=�1) matrix
.
0 obtained from . by removing the 9 th row and column, for any 9 , has rank =�1

and is hence invertible.
3. If . 9: may have di�erent signs for ( 9 , :) 2 ⇢ , give a counterexample to part 1.

Exercise 4.10 (Unitary diagonalizability of. ). Suppose condition C4.1 holds. Let the
bus admittance matrix . := ⌧ + i⌫ where ⌧ and ⌫ are real matrices (whose rows may
not sum to zero).
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1. Show that . is normal (i.e., ..� = .�. ) and hence unitarily diagonalizable if
and only if ⌧ and ⌫ commute, or if and only if ⌫⌧ is symmetric.

2. Suppose all lines have the same RX ratio, i.e., for some real U, 1B
9:

= U6B
9:

for all

( 9 , :) 2 ⇢ and 1<
9 9
= U6<

9 9
for all 9 2 # (or all shunt elements are zero). Show that

. is normal. (Hint: Use part 1.)

Exercise 4.11 (Inverse of . ). Consider a complex matrix � =: ⌧ + i⌫ where ⌧,⌫ 2
R
=⇥=. Show that, even if both ⌧ and ⌫ are singular, its inverse ��1 =: '+ i- may exist

though not given by the formulae (4.46b) or (4.47b). This is the case even if ⌧ and ⌫
are symmetric. (Hint: Provide a 2⇥2 counterexample.)

Exercise 4.12 (Invertibility of . ). Prove part 2 of Theorem 4.4.

Exercise 4.13 (Invertibility of . , [21]). This is an alternative proof from [21, Lemma
1] of (part of) Theorem 4.4: a complex symmetric matrix. is nonsingular if Re(. ) � 0
or if Im(. ) � 0. Prove the claim by showing that there exists no nonzero vector U such
that .U = 0.

Exercise 4.14 (Invert . using matrix inversion lemma). Recall that, under condition
C4.1, the admittance matrix . can be written in terms of the incidence matrix ⇠ as
(from (4.15)):

. = ⇠⇡
B

H
⇠

T +⇡<
H

where ⇡B
H

:= Diag
⇣
H
B

;
, ; 2 ⇢

⌘
and ⇡<

H
:= Diag

⇣
H
<

9 9
, 9 2 #

⌘
. Suppose HB

;
< 0 for all ;

and H<
9 9
< 0 for all 9 so that the diagonal matrices . B and .< are invertible.

1. Show that . is invertible if and only if the " ⇥" matrix

⇢̂ :=
⇣
⇡
B

H

⌘�1
+ ⇠T

⇣
⇡
<

H

⌘�1
⇠

is invertible.
2. If . is invertible then

.
�1 =

⇣
⇡
<

H

⌘�1
� (⇡<)�1

⇣
⇠

�
⇢̂

��1
⇠

T
⌘ ⇣
⇡
<

H

⌘�1

(Hint: For part 1 use the property that a matrix is nonsingular if and only if a principal
submatrix and its Schur complement are both nonsingular, according to Theorem A.4
in Appendix A.3. For part 2 use the matrix inversion lemma in Appendix A.3.2.)

Exercise 4.15 (Invertibility of complex symmetric vs psd matrices). Let � 2 C=⇥=.

1. Prove that � is invertible if E� �E < 0 for all nonzero E 2 C=.
2. Show that the converse is not true by providing a counterexample � that is Hermi-

tian (including real symmetric) and a counterexample � that is complex symmetric.
(Hint: Consider 2⇥2 diagonal matrices.)

3. Suppose � is (Hermitian and) positive semidefinite. Then the following are equiv-
alent:
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• � is invertible
• E� �E < 0 for all nonzero E 2 C=.
• � is positive definite.

4. Why Lemma 4.12 applies to real Laplacian matrices but not complex Laplacian
matrices?

Exercise 4.16 (Alternative proof of Theorem 4.5). Consider the complex symmetric
admittance matrix . 2 C(#+1)⇥(#+1) . Let _ be an eigenvalue of . and U 2 C#+1 a
corresponding eigenvector. Then UH

.U = _ | |U | |2 where | | · | | denotes the Euclidean
norm. A su�cient (but not necessary) condition for . to be invertible is that UH

.U < 0
for all nonzero vectors U 2 C#+1. Let HB

9:
=: 6B

9:
+ i1

B

9:
, H<

9 9
=: 6<

9 9
+ i1

<

9 9
.

1. Suppose condition C4.1 holds. Show that

U
H
.U = ©≠

´
’

( 9,:)2⇢
6
B

9:

��
U 9 �U:

��2 + ’
92#

6
<

9 9
|U 9 |2™Æ

¨
+ i

©≠
´

’
( 9,:)2⇢

1
B

9:

��
U 9 �U:

��2 + ’
92#

1
<

9 9
|U 9 |2™Æ

¨
2. Show that the conditions in Theorem 4.5 imply that UH

.U > 0 for all nonzero
vectors U 2 C#+1.

Exercise 4.17 (Su�ciency only). This exercise shows that condition C4.2 in Theorem
4.5 is su�cient but not necessary. An alternative approach to Example 4.3 is to
introduce an internal node 3 on the primary side of the ideal transformer, instead of
the secondary side.

1. Show that the admittance matrix is

. =
266664
H̃
; 0 �H̃;

0 H �=H
�H̃; �=H H̃

; + H̃< +=2
H

377775
(4.62)

where = is the voltage gain of the transformer, ( H̃; , H̃<) are the series and shunt
admittances of the transformer, and H is the series admittance of the line.

2. Let the admittances be:

H̃
; =: 6̃; + i1̃

; , H̃
< =: i1̃

<, H =: 6B + i1
B

and suppose 6̃; ,6B > 0, 1̃; ,1B  0, and 1̃< � 0. Show that the admittance matrix .
does not satisfy condition C4.2 in Theorem 4.5.

3. Show that . is invertible if and only if 1̃< > 0. (Hint: Use Exercises 4.15 and
4.16.)

Exercise 4.18 (Kron reduction). Suppose condition C4.1 holds so that an admittance
matrix . is complex symmetric. Consider its Kron-reduction ./.22 (assume .22 is
invertible):

. =:

.11 .12

.
T
12 .22

�
, ./.22 := .11�.12.

�1
22 .

T
12
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1. Show that .�1
22 and ./.22 are symmetric.

2. Show that if . has zero row (and hence column) sums, i.e., H<
9:

= H<
: 9

= 0 for
( 9 , :) 2 ⇢ , so does ./.22.

3. Show that the converse does not necessarily hold. (Hint: Consider Example 4.6.)

Chapter 4.6

Exercise 4.19 (Laplacian matrix !). Show that the entries of Laplacian matrix ! :=
⇠⌫⇠

T are given by:

!8 9 :=

8>><
>>:
�18 9 8 ⇠ 9 (8 < 9)Õ
:⇠8 18: 8 = 9

0 otherwise

Exercise 4.20 (Pseudo-inverse of a psd matrix). Consider an positive semidefinite
(and necessarily Hermitian) matrix � 2 C=⇥= with rank =� : . Let its eigenvalues be

0 = _1 = · · · = _: < _:+1  · · ·  _=

and a set of corresponding orthonormal eigenvectors be D1, . . . ,D=. Then � =*⇤*T

and �† =*⇤†
*

T where the columns of* are D8 . Show that

�
† =

 
�+

’
8:

D8D
T
8

!�1

�
’
8:

D8D
T
8

(4.63)

(Hint: Use (4.52) to verify the inverse of �+Õ
8: D8D

T
8
.)

Exercise 4.21 (Laplacian matrix !). Consider the Laplacian matrix

! :=


1 �1
�1 1

�

Compute its spectral decomposition, !†, !!† and !†!.

Exercise 4.22 (DC power flow model). Consider the 3-bus network shown in Figure
4.14. Assuming the (weighted) susceptance matrix ⌫ = I3 is the identity matrix.

1. Write down the incidence matrix ⇠ and reduced incidence matrix ⇠̂ using the
graph orientation shown in the figure and bus 0 as the reference bus.

2. Write down the Laplacian matrix ! and its pseudo-inverse !†, the reduced Lapla-
cian matrix !̂ and its inverse !̂�1.

3. Write down the line flows % in terms of the injections ? with
Õ
9
? 9 = 0, and

evaluate % when ? = (2,�1,�1).
4. Suppose the injection is changed from ? = (2,�1,�1) to ?̃ = (2,0,�2). Calculate

the new line flows %̃.
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0

1 2

Figure 4.14 Exercise 4.22.



5 Branch flow models: radial
networks

The bus injection models of Chapter 4 consist of only nodal variables (nodal power or
current injections and nodal voltages). In this chapter we introduce branch flow models
(BFM) for radial networks that involve also branch power flows and branch currents.
They are useful for modeling distribution systems as most distribution systems are
radial, i.e., they have a tree topology. We recall in Chapter 5.2 that a system model
consists of a device model and a network model. Both the bus injection models
and the branch flow models are network models and we prove their equivalence in
Chapter 5.3. Branch flow models are most useful for radial networks where they enjoy
two important advantages: a fast iterative algorithm studied in Chapter 5.4, called the
backward forward sweep, for power flow computation, and a linearized model studied
in Chapter 5.5 that admits an explicit solution and bounds on nonlinear branch powers
and voltage magnitudes.

Except in Chapter 5.3 or otherwise specified we will focus in this chapter on radial
networks without cycles.

5.1 System model = device model + network model

A power system consists of generators, loads, and control equipment connected by
a network of transmission lines, distribution lines and transformers. The generators,
loads and control equipment are modeled by a set of devices (voltage/current/power
sources or impedances). The network is modeled by a connected undirected graph
⌧ = (# ,⇢) of # + 1 nodes and " lines, where # := {0}[# , # := {1,2, . . . ,#} and
⇢ ✓ #⇥# . We use “bus, node, terminal” interchangeably and “line, branch, link, edge”
interchangeably.

Each bus 9 in # represents a busbar to which zero, one or more devices may be
connected. Associated with bus 9 are its nodal power, current and voltage (B 9 , � 9 ,+ 9 ) 2
C

3; see Figure 4.1. The voltage + 9 is the voltage drop between bus 9 and the common
reference point, e.g., the ground. It is also the terminal voltage of any device connected
to bus 9 . The nodal power and current (B 9 , � 9 ) are the net injections from bus 9 through
the rest of the network to the common reference point. When  devices with terminal
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power and current injections (B:
9
, �:
9
), : = 1, . . . , , out of the device terminals are

connected to the same bus 9 , the net injections are

B 9 =
 ’
:=1

B
:

9
, � 9 =

 ’
:=1

�
:

9
(5.1)

If no device is connected to bus 9 , then B 9 = � 9 = 0.

The overall system consists of a device model and a network model, as illustrated in
Figure 5.1 (reproduced from Figure 4.5). We review the device model and the branch

system model
1 or 3-phase

= +device model
voltage scr, current scr,
power scr, impedance

network model
BIM, BFM

Figure 5.1 System model. (Nov 30, 2025: file size opt.)

model of Chapter 4.1 in the reminder of this section and then explain the network
model in the next section.

5.1.1 Device model

Consider a bus 9 with  devices with terminal power and current injections (B:
9
, �:
9
),

: = 1, . . . , , connected to bus 9 . The models of four types of devices are summarized in
Chapter 4.1.1. They express the terminal power B:

9
or current �:

9
in terms of the terminal

voltage + 9 and device parameters, e.g., B:
9
= + :

9
(⇢̄ :

9
� +̄ :

9
)/Ī:

9
and �:

9
= (⇢ :

9
�+ :

9
)/I:

9

for a voltage source : . We write this as

B
:

9
= 5

:

9
(+ 9 ), �

:

9
= 6

:

9
(+ 9 )

The function 6:
9

is nonlinear; the function 5
:

9
is linear for a voltage/current source and

an impedance and nonlinear for a power source. Then (5.1) becomes (see Example 4.1
for a concrete example):

B 9 =
 ’
:=1

5
:

9
(+ 9 ), � 9 =

 ’
:=1

6
:

9
(+ 9 ), 9 2 # (5.2)

where ( 5 :
9
,6:
9
) are given in Chapter 4.1.1. We refer to (5.2) as the device model.

5.1.2 Branch model

We use the same branch model as that in Chapter 4.1.3. For each line ( 9 , :) 2 ⇢ ,
let (� 9: , �: 9 ) denote the sending-end line currents from buses 9 to : and buses : to
9 respectively. Similarly let (( 9: ,(: 9 ) denote the sending-end line power flows in
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each direction. Let + := (+ 9 , 9 2 #), B := (B 9 , 9 2 #), � := (� 9: , �: 9 , ( 9 , :) 2 ⇢), and
( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢).

Each line ( 9 , :) 2 ⇢ is characterized by two pairs of series and shunt admittances,⇣
H
B

9:
, H<
9:

⌘
2 C2 from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
2 C2 from : to 9 ; see Figure 4.1. It may

model a transmission or distribution line, a single-phase transformer, the per-phase
model of a three-phase transformer in balanced setting, and may contain admittances
of sources and loads (Example 4.3). For instance, when ( 9 , :) models a transmission
or distribution line, the line parameters (HB

9:
= HB

: 9
, H<
9:

, H<
: 9
) are the series and shunt

admittances of the transmission or distribution line. When ( 9 , :) models a transformer,
the line parameters (HB

9:
, H<
9:
) and (HB

: 9
, H<
: 9
) are given by (4.8) in terms of transformer

voltage gain and leakage and shunt admittances ( (=), H̃;
9:

, H̃<
9:
). In general, HB

: 9
and

H
B

9:
are di�erent, and (H<

9:
, H<
: 9
) are di�erent and nonzero even if the transformer shunt

admittance H̃<
9:
= 0. Let IB

9:
:=

⇣
H
B

9:

⌘�1
and IB

: 9
:=

⇣
H
B

: 9

⌘�1
.

We will often restrict ourselves to the special case where the series admittances are

equal HB
9:

= HB
: 9

, and characterize a branch by three admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. This

model can be represented as a ⇧ circuit and behaves like a transmission or distribution
line though with possibly di�erent H<

9:
and H<

: 9
; see Figure 5.2. It is not suitable as the

ymjk ymkj

y sjk= yskj
Ikj ,SkjSjk , Ijk

Vj Vk

sj sk

Figure 5.2 Line model under assumption C5.1.

per-phase model of a balanced three-phase transformer in �. or .� configuration that
has a complex voltage gain  (=), but is still widely used as an approximation.

As in Chapter 4.1.3 we label the following assumption and will explicitly state it
when it is required:

C5.1: The series admittances HB
9:

= HB
: 9

or equivalently the series impedances
I
B

9:
= IB

: 9
for every line ( 9 , :) 2 ⇢ .

5.2 BFM for radial networks

As illustrated in Figure 5.1, the device model and the network model are independent
of each other. We study two types of network models, the bus injection models in
Chapter 4 and the branch flow models (BFM) in this chapter. In this section we assume
the network graph ⌧ is a (connected) tree and present three forms of BFM.
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Transformers are important devices in a distribution system, especially three-phase
transformers in �. or .� configuration whose per-phase equivalent circuit does not
satisfy assumption C5.1. Their shunt admittances H<

9:
and H<

: 9
may not be negligible

even when the transformer shunt admittance H̃<
9:

= 0 (see (4.8)). In the next three
subsections we present branch flow models, from the most general form that allows
H
B

9:
< HB

: 9
and nonzero H<

9:
, H<
: 9

, to the simplest form where HB
9:
= HB

: 9
and H<

9:
= H<

: 9
=

0. They are suitable for modeling transmission and distribution lines and nonideal
transformers in di�erent configurations, as summarized in Table 5.1.

Assumptions Applicability line vars 1-phase 3-phase

general
⇣
H
B

9:
, H<
9:

⌘
distribution line both dirs (5.3) (17.1)

and
⇣
H
B

: 9
, H<
: 9

⌘
nonideal .. , ��, �. , .� (cycle cond)

H
B

9:
= HB

: 9
(C5.1) distribution line one dir (5.5) (17.4)

nonideal .. , ��

H
B

9:
= HB

: 9
(C5.1) distribution line one dir (5.9), (5.11) (17.7)

H
<

9:
= H<

: 9
= 0 (5.14), (5.15)

Table 5.1 Branch flow models: assumptions, applicability and models.

5.2.1 With HB
9 :
< HB

: 9

The key feature of a branch flow model for radial networks is that it does not involve
phase angles of voltage and current phasors. For each bus 9 let

• B 9 := (? 9 ,@ 9 ) and B 9 := (? 9 + i@ 9 ) represent the real and reactive power injections
at bus 9 . Let B := (B 9 , 9 2 #).1

• E 9 represent the squared voltage magnitude at bus 9 . Let E := (E 9 , 9 2 #).

For each line ( 9 , :) let

• ✓ 9: represent the squared magnitude of the sending-end current from bus 9 to
bus : , and ✓: 9 represent the squared current magnitude from : to 9 . Let ✓ :=
(✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢).

• ( 9: = (% 9: ,& 9: ) and ( 9: = % 9: + i& 9: represent the sending-end real and reactive
branch power flow from bus 9 to bus : , and (: 9 represent the sending-end power
from : to 9 . Let ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢).

1 We abuse notation and use B to denote both the complex power injection B = (? + i@) and the real pair
B = (?,@) , depending on the context. Similarly for ( = (% + i&) and ( = (%,&) , and for I = (A + iG)
and I = (A , G) .



5.2 BFM for radial networks 217

We will introduce power flow equations below in terms of the real vector G :=
(B,E,✓,() 2 R3(#+1)+6" that does not involve voltage and current phase angles as
variables. The vector E includes E0 and B includes B0. The angle information is however
embedded in, and can be recovered from, G; see (5.18) below.

Define for each ( 9 , :) 2 ⇢

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

Note that U 9: = U: 9 if and only if IB
9:
H
<

9:
= IB

: 9
H
<

: 9
and U 9: = U: 9 = 1 if and only if

H
<

9:
= H<

: 9
= 0 since |IB

9:
| < 0. A branch flow model for radial networks that allows

shunt admittances of lines is:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.3a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , ( 9 , :) 2 ⇢ (5.3b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , ( 9 , :) 2 ⇢ (5.3c)��

( 9:

��2 = E 9✓ 9: ,
��
(: 9

��2 = E:✓: 9 , ( 9 , :) 2 ⇢ (5.3d)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (5.3e)

These equations express four properties that a power flow solution G := (B,E,✓,()
satisfies:

1. Power balance: (5.3a) enforces power balance at each bus and is the consequence
of KCL.

2. Ohm’s law and KCL: (5.3b) and (5.3c) originates from the Ohm’s law and KCL
� 9: = HB

9:
(+ 9 �+: ) + H<

9:
+ 9 and similarly for �: 9 in the opposite direction; see

(5.29) in the proof of Theorem 5.2.
3. Apparent power: (5.3d) defines the apparent powers and is obtained from ( 9: =
+ 9 �

H
9:

and (: 9 =+: �H
: 9

.
4. Cycle condition: We call (5.3e) a cycle condition and it ensures that the line angles

implied by a power flow solution G can indeed be realized by nodal voltage angles;

see Chapter 5.2.4. It says + 9+H
:
=

⇣
+:+

H
9

⌘H
where (+ 9 ,+: ) are not part of the

model but can be recovered from a power flow solution (see (5.31) in the proof
of Theorem 5.2). This condition is necessary when line variables (✓ 9: ,( 9: ) and
(✓: 9 ,(: 9 ) are defined in both directions, and becomes vacuous when variables in
one direction is su�cient as in Chapters 5.2.2 and 5.2.3.

The complex notation in (5.3) is only a shorthand for a system of 2(# + 1) +
6" = 8# + 2 real equations in the vector G of 3(# + 1) + 6" = 9# + 3 real variables
(recall that " = # for a tree). For instance (5.3a) is a shorthand for ? 9 =

Õ
:: 9⇠: % 9:

and @ 9 =
Õ
:: 9⇠:& 9: and (5.3d) is a shorthand for E 9✓ 9: = %2

9:
+&2

9:
and E:✓: 9 =

%
2
: 9

+&2
: 9

. All equations are linear in G except (5.3d) which are quadratic. Given
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(2# + 1) of these variables (e.g., given E0 = 1 and non-slack bus injections (? 9 ,@ 9 ),
9 2 #), the power flow problem is to determine the remaining 7# + 2 real variables
from these equations. There can be zero, one or more than one solutions. In this
example there are more (nonlinear) equations than the number of variables, but see
Example 5.6 for a linear example where the resulting set of equations is not linearly
independent. As mentioned above, this model does not require assumption C5.1 and
allows nonzero shunt admittances (H<

9:
, H<
: 9
), and therefore is suitable for modeling

nonideal transformers as well as distribution lines.

Example 5.1 (Two buses connected by a transformer). Consider two buses 9 and :
connected by a transformer characterized by its voltage gain  (possibly complex, e.g.,
 =
p

3=4ic/6), a leakage admittance H̃; and a shunt admittance H̃<. The bus injection
model of this 2-bus network is given by (4.21a) in complex form. Derive the branch
flow model (5.3) in terms of transformer parameters ( , H̃; , H̃<). (We will show in
Chapter 5.3 that the branch flow model and the bus injection model are equivalent.)

Solution. The abstract line parameters in terms of the transformer parameters are given
by (4.8) reproduced here:

H
B

9:
:=

H̃
;

 

, H
<

9:
:=

✓
1� 1

 

◆
H̃
; ,

H
B

: 9
:=

H̃
;

 ̄

, H
<

: 9
:=

1
| |2

⇣
(1� ) H̃; + H̃<

⌘
,

Define Ĩ; := ( H̃;)�1 and Ũ := 1+ Ĩ; H̃<. Then

I
B

9:
:= (HB

9:
)�1 =  Ĩ

; , I
B

: 9
:= (HB

: 9
)�1 =  ̄ Ĩ

; , U 9: =  , U: 9 = Ũ/ 

For a single line we can substitute ( 9: = B 9 and (: 9 = B: and the branch flow model
(5.3) becomes:

E 9 � E:
.
| |2 = 2Re

✓⇣
Ĩ
;

⌘H
B 9

◆
�

��
Ĩ
;

��2
✓ 9:

|Ũ/ |2 E: � E 9 = 2Re
✓
Ũ

⇣
Ĩ
;

⌘H
B:

◆
�

��
 Ĩ

;

��2
✓: 9

��
B 9

��2 = E 9✓ 9: , |B: |2 = E:✓: 9

E 9 �
⇣
Ĩ
;

⌘H
B 9 =

⇣
Ũ/| |2

⌘
E: � Ĩ; B̄:

This is a system of 6 real (nonlinear) equations in 8 real variables
(B 9 , B: ,E 9 ,E: ,✓ 9: ,✓: 9 ). ⇤

5.2.2 With nonzero shunt admittances

Consider a radial network where assumption C5.1 holds but shunt admittances can
be nonzero. In this case we show that we can use a directed graph with an arbitrary
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orientation and define the branch current and power in the direction of each line, but
not in the reverse direction.

Specifically, we assume ⌧ = (# ,⇢) is directed. Fix a graph orientation and denote
interchangeably a line by ( 9 , :) or 9 ! : . Define new variables we call the series
branch current and power flow (✓B

9:
,(B
9:
) in terms of the sending-end current and

power (✓ 9: ,( 9: ) by the following equations:

( 9: = (
B

9:
+ H̄<

9:
E 9 , ✓ 9: = ✓

B

9:
+ |H<

9:
|2E 9 +2Re

⇣
H
<

9:
(
B

9:

⌘
(5.4)

In the following we will show that, under the assumption HB
9:
= HB

: 9
(C5.1), the branch

flow model (5.3) reduces to the following simpler model that involves series branch
variables (✓B

9:
,(B
9:
), not the sending-end variables (✓ 9: ,( 9: ), in only one direction:

’
:: 9!:

⇣
(
B

9:
+ H̄<

9:
E 9

⌘
=

’
8:8! 9

⇣
(
B

8 9
� IB

8 9
✓
B

8 9
� H̄<

98
E 9

⌘
+ B 9 , 9 2 # (5.5a)

E 9 � E: = 2Re
⇣
Ī
B

9:
(
B

9:

⌘
� |IB

9:
|2✓B

9:
, 9 ! : 2 ⇢ (5.5b)

E 9✓
B

9:
= |(B

9:
|2, 9 ! : 2 ⇢ (5.5c)

These equations express the same properties as (5.3):

1. Power balance: (5.3a) reduces to (5.5a).
2. Ohm’s law: (5.3b)(5.3c) reduce to (5.5b).
3. Apparent power: (5.3d) reduces to (5.5c).
4. Cycle condition: (5.3e) becomes vacuous when H

B

9:
= HB

: 9
(assumption C5.1).

Hence the cycle condition (5.3e) is required only when we need to keep track of
branch variables in both directions.

Since we assume HB
9:

= HB
: 9

but (H<
9:

, H<
: 9
) may be nonzero, this model is suitable for

modeling nonideal transformers in .. and �� configurations, but not in �. or .�
configurations (see Table 5.1). Let ✓B := (✓B

9:
, 9 ! : 2 ⇢) and (B := ((B

9:
, 9 ! : 2 ⇢).

Given a solution G := (B,E,✓B ,(B) in R3(#+1+" ) where " = # is the number of lines,
the sending-end current ✓ and power ( are given by (5.4) in terms of the series variables
(✓B ,(B).

We will first motivate the branch flow model (5.5) and then show that it is equivalent
to (5.3) when HB

9:
= HB

: 9
.

Suppose �B
9:

and � 9: represent respectively the series and sending-end currents
from buses 9 to : , �B

: 9
and �: 9 represent the corresponding quantities in the opposite

direction, and + 9 ,+: represent respectively the voltage phasors at buses 9 and : (these
variables are not part of the branch flow model). Then �B

9:
= HB

9:
(+ 9 �+: ), and hence the

series variables defined by (5.4) can be interpreted in terms of these phasor variables:

• ✓B
9:

= |�B
9:
|2 represents the squared magnitude of the series current through the

series admittance HB
9:

from bus 9 to bus : .
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• (B
9:
= %B

9:
+ i&

B

9:
=+B �̄B

9:
represents the series real and reactive branch power flow

through the series admittance HB
9:

from bus 9 to bus : .

Indeed these interpretations together with � 9: = �B
9:
+ H<

9:
+ 9 is equivalent to (5.4).

To show that (5.3) reduces to (5.5) when HB
9:
= HB

: 9
, note that the model (5.3) involves

sending-end branch variables (✓: 9 ,(: 9 ) in the opposite direction of 9 ! : . Define the
series branch variables (✓B

: 9
,(B
: 9
) in the opposite direction as those in (5.4):

(: 9 = (
B

: 9
+ H̄<

: 9
E: , ✓: 9 = ✓

B

: 9
+ |H<

: 9
|2E: +2Re

⇣
H
<

: 9
(
B

: 9

⌘
(5.6)

For (5.3) and (5.5) to be equivalent, we need to show that if
(E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) is a power flow solution of (5.3) with sending-
end branch variables in both directions, then (E, B,✓B

9:
,(B
9:

,8( 9 , :)) defined
by (5.4) satisfies (5.5). Conversely if (E, B,✓B

9:
,(B
9:

,8( 9 , :)) satisfies (5.5) then
(E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) is a power flow solution of (5.3) where the sending-
end branch variables in both directions are obtained from (5.4)(5.6). The key obser-
vation is that the cycle condition (5.3e) and HB

9:
= HB

: 9
imply that the series branch

variables (✓B
9:

,(B
9:
) and (✓B

: 9
,(B
: 9
) defined by (5.4)(5.6) satisfy

(
B

9:
+ (B

: 9
= I

B

9:
✓
B

9:
, ✓

B

9:
= ✓

B

: 9
(5.7)

It says that the sum of series branch flows in both directions is equal to the complex
line loss across the series impedance IB

9:
. This allows us to eliminate from (5.3) series

variables (✓B
: 9

,(B
: 9
) in the opposite direction, reducing it to (5.5). See Exercise 5.3 for

details.2

5.2.3 With zero shunt admittances (DistFlow)

Consider a radial network where assumption C5.1 holds and shunt admittances are
zero and hence U 9: = U: 9 = 1. This is a reasonable model if ( 9 , :) models a (short)
transmission line or a distribution line. It may be unsuitable if ( 9 , :) models a nonideal
transformer because the shunt admittances (H<

9:
, H<
: 9
) corresponding to a single-phase

nonideal transformer are generally nonzero (see Example 5.1).

A consequence of I
B

9:
= I

B

: 9
and H

<

9:
= H

<

: 9
= 0 is that (5.4)(5.6) reduce to

✓
B

9:
= ✓ 9: ,(B

9:
= ( 9: and the corresponding equivalence in the opposite direction, i.e.,

sending-end variables are the same as series variables. The relation (5.7) between
branch variables in opposite directions then reduces to

( 9: + (: 9 = IB
9:
✓ 9: , ✓ 9: = ✓: 9 (5.8)

It says that the sum of sending-end power flows is equal to the complex line loss across

2 The physical interpretation ✓B
9:

= |� B
9:
|2 and (B

9:
= +B �̄ B

9:
of series line variables may provide intuition

for the proof, but the proof can only rely on the relations (5.4)(5.6) between the sending-end variables
and the series variables, not on (+9 , � B

9:
) since they are not variables in either (5.3) or (5.5).
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the series impedance IB
9:

. Hence �(: 9 = ( 9: � IB
9:
✓ 9: is the receiving-end power from

9 to : .

Moreover the branch flow model (5.5) that involves only branch variables (✓ 9: ,( 9: )
in the direction 9 ! : 2 ⇢ of the line reduces to:’

:: 9!:
( 9: =

’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (5.9a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (5.9b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (5.9c)

This model, called the DistFlow equations, is first proposed in [23, 24] for radial
networks and is the most commonly used branch flow model in the literature. Let
(B,E) := (B 9 ,E 9 , 9 2 #) and (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢). Let G := (B,E,✓,() in
R

3(#+1+" ) with " = # since ⌧ is a tree.

As for (5.5), (✓: 9 ,(: 9 ) in the opposite direction of the line 9 ! : is not part of the
model. Indeed it is easy to derive (5.9) directly from (5.3) by eliminating the branch
variables (✓: 9 ,(: 9 ) using (5.8) (Exercise 5.6).

Despite the complex notation, (5.9) is a set of 2(# + 1 +") real equations in
3(# +1+") real variables G = (?8 ,@8 ,E8 ,✓ 9: ,% 9: ,& 9: ) and a shorthand for:’

:: 9!:
% 9: =

’
8:8! 9

�
%8 9 � A8 9✓8 9

�
+ ? 9 , 9 2 #

’
:: 9!:

& 9: =
’
8:8! 9

�
&8 9 � G8 9✓8 9

�
+ @ 9 , 9 2 #

E 9 � E: = 2
�
A 9:% 9: + G 9:& 9:

�
� (A2

9:
+ G2

9:
)✓ 9: , 9 ! : 2 ⇢

E 9✓ 9: = %
2
9:
+&2

9:
, 9 ! : 2 ⇢

Since " = # , there are (4# +2) equations in (6# +3) real variables. Given (2# +1)
of these variables (e.g., given E0 = 1 and non-slack bus injections (? 9 ,@ 9 ), 9 2 #),
the power flow problem is to determine the remaining 4# + 2 variables from these
equations. There can be zero, one or more than one solutions.

This model can also be written compactly in vector form in terms of the (# +1)⇥#
incidence matrix ⇠ defined as:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

(5.10)

Let ⇠+ := max{⇠,0} and ⇠� := min{⇠,0} denote the matrices containing only the



222 Branch flow models: radial networks

source nodes and destination nodes respectively of the (directed) lines. Then (5.9) is:

B = ⇠(�⇠�I✓ (5.11a)

⇠
T
E = 2Re

⇣
I

H
(

⌘
� ĪI✓ (5.11b)

|( |2 = diag
⇣
(⇠+)T

E✓
T
⌘

(5.11c)

where I := Diag(I 9: , 9 ! : 2 ⇢), Ī is the componentwise complex conjugate of the
diagonal matrix I, and |( |2 is the vector |( |2 := ( |( 9: |2, 9 ! : 2 ⇢).

Example 5.2 (Graph orientation). Intuitively nodal injections and voltages (B,E)
should not depend on the orientation of the graph while branch currents and pow-
ers (✓,() do, since branch variables are defined only in the direction of the lines, not
in the opposite direction. We can formally relate the power flow solutions defined for
opposite graph orientations. Specifically, consider the opposite orientation where the
direction of every line is reversed from that in (5.9). The resulting power flow equations
are: ’

:: 9!:
(̂ 9: =

’
8:8! 9

⇣
(̂8 9 � IB8 9 ✓̂8 9

⌘
+ B̂ 9 , 9 2 # (5.12a)

Ê: � Ê 9 = 2Re
⇣
Ī
B

9:
(̂: 9

⌘
� |IB

9:
|2✓̂: 9 , :! 9 2 ⇢ (5.12b)

Ê: ✓̂: 9 = |(̂: 9 |2, :! 9 2 ⇢ (5.12c)

An example is the down and up orientations below. Then it can be shown that (5.9) and
(5.12) are equivalent in the sense that there is a bijection 6 such that G is a power flow
solution of (5.9) if and only if Ĝ := 6(G) is a power flow solution of (5.12) (Exercise
5.5). Indeed Ĝ = 6(G) is given by:

B̂ 9 := B 9 , Ê 9 := E 9 , ✓̂: 9 := ✓ 9: , (̂: 9 := �
⇣
( 9: � IB

9:
✓ 9:

⌘
(5.13)

⇤

Without loss of generality we take bus 0 as the root of the tree. Two particularly
convenient graph orientations are where every line points away from bus 0 and where
every line points towards bus 0; see Figure 5.3. For every bus 9 there is a unique node
8 that is adjacent to 9 on the path from bus 0 to bus 9 . We present two equivalent sets
of power flow equations, one for each graph orientation.

Down orientation: lines point away from bus 0. When all lines point away from
bus 0, the DistFlow equations (5.9) reduce to:’

:: 9!:
( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (5.14a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (5.14b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (5.14c)
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i

0

j

k

(a) Down orienta-
tion

i

0

j

k

(b) Uporientation

Figure 5.3 Graph orientations for radial networks.

where, in (5.14a), (8 9 � I8 9✓8 9 is the receiving-end power at bus 9 from 8, and bus
8 := 8( 9) denotes the unique adjacent node of 9 on the path from node 0 to node 9 , with
the understanding that when 9 = 0 then (80 = 0 and ✓80 = 0. When 9 is a leaf node3 , all
( 9: = 0 in (5.14a).

Up orientation: lines point towards bus 0. When the graph orientation is opposite
to that in Case 1, BFM is specified by the following equations in G := (B,E,✓,() 2
R

3(2#+1) :

( 98 =
’
:::! 9

⇣
(: 9 � IB

: 9
✓: 9

⌘
+ B 9 , 9 2 # (5.15a)

E: � E 9 = 2Re
⇣
Ī
B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , :! 9 2 ⇢ (5.15b)

E:✓: 9 = |(: 9 |2, :! 9 2 ⇢ (5.15c)

where 8 := 8( 9) in (5.15a) denotes the node adjacent to 9 on the unique path between
node 0 and node 9 . The boundary condition is defined by ( 98 = 0 in (5.15a) when
9 = 0 and (: 9 = 0,✓: 9 = 0 in (5.15a) when 9 is a leaf node. For an advantage of this
orientation see Remark 5.3.

5.2.4 Angle recovery

We now explain how to obtain voltage and current angles (\+ 9 ,\� 9: ) from a power
flow solution G of (5.3). It applies to a solution G of the DistFlow equations (5.9), (5.14)
or (5.15) with U 9: := 1 in (5.16).

3 A node 9 is a leaf node if there exists no : such that 9! : 2 ⇢ .
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Given any G define the vector V(G) 2 R2" of line angles as a function of G by

V 9: (G) := \
⇣
Ū 9:E 9 � ĪB

9:
( 9:

⌘
, ( 9 , :) 2 ⇢ (5.16a)

V: 9 (G) := \
⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘
, ( 9 , :) 2 ⇢ (5.16b)

It can be shown that, if G is a power flow solution of (5.3), then (V 9: (G), V: 9 (G)) are
voltage angle di�erences across line ( 9 , :) (Exercise 5.1), i.e.,

V 9: (G) = \+ 9 � \+: , V: 9 (G) = \+: � \+ 9 , ( 9 , :) 2 ⇢ (5.17)

This implies in particular that V 9: (G) = �V: 9 (G), even in the absence of assumption
C5.1.

Recall the (# +1)⇥# incidence matrix⇠ defined in (5.10). It is proved in Theorem
5.2 below that the cycle condition (5.3e) is equivalent to:

9\ 2 R#+1 s.t. V(G) = ⇠
T
\ (5.18a)

where V(G) := (V 9: (G), ( 9 , :) 2 ⇢). When the network graph ⌧ is a (connected) tree,
its incidence matrix ⇠T has rank # = " . The null space of ⇠T is span(1) and its
pseudo-inverse

�
⇠

T�† = ⇠ �
⇠

T
⇠

��1 (Exercise 5.2 shows that ⇠T has full row rank and
its pseudo-inverse is therefore given by Corollary A.20.2 of Appendix A.7). Given a
power flow solution G of (5.3), a solution of (5.18a) is therefore

\ = ⇠

⇣
⇠

T
⇠

⌘�1
V(G) +q1 (5.18b)

for an arbitrary angle q 2 R. The angle q can be fixed by choosing (say) bus 0 as a
reference for voltage angles, i.e., setting \0 := 0. An equivalent way to compute \ is to
use (5.17) iteratively. Let P 9 denote the unique path from bus 0 to bus 9 in the directed
graph with orientation pointing away from bus 0. Set \\0 to an arbitrary value. For
9 = 1, . . . ,# +1,

\\ 9 := \\0�
’

(8,:)2P 9
\V8: (5.18c)

The voltage and current phasors can then be recovered from (5.17) and
(5.18a)(5.18b). Pick any solution \ (G) in (5.18b), and without loss of generality, we
can project it to \ 9 (G) 2 (�c,c]. The voltage and current phasors (+ , �) can then be
obtained in terms of G as:

+ 9 :=
p
E 94

i\ 9 (G) , � 9: :=
p
✓ 9:4

i(\ 9 (G)�\( 9:) (5.18d)

where \( 9: := tan�1 (& 9:/% 9: ) is the power factor angle.
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5.2.5 Power flow solutions

In this section we first illustrate the solution of the branch flow model (5.15) using a
simple two-bus network. The power flow solutions in the example lie on the surface of
an ellipse. We prove that this feature of hollow solution set is general.

Example 5.3 (Two buses connected by a line). Consider two buses 0 and 1 connected
by a line characterized by a series impedance I = A + iG and zero shunt admittances.
The power balance at bus 0 (noting that (0: := 0) and the other DistFlow equations
over line 1! 0 are given by:

?0� A✓ = �?1, @0� G✓ = �@1 (5.19a)

E1� E0 = 2 (A ?1 + G@1)� (A2 + G2)✓ (5.19b)

?
2
1 + @2

1 = E1✓ (5.19c)

where the voltage E0 and the injections ?1, @1 are given. Suppose A = G = 1, E0 = 1pu
and @1 = 0.

1. Show that power flow solutions (?0,@0,E1,✓) exist if and only if

1
2

⇣
1�
p

2
⌘
 ?1 

1
2

⇣
1+
p

2
⌘

2. For each injection value ?1 that satisfies the condition in part 1, find (?0,@0,E,✓)
and show in particular that there are two voltage solutions E1 given by

E1 =
1
2

⇣
1+2?1⌥

p
�
⌘

where � := 4?1 (1� ?1) +1.
3. Show that the locus (E1, ?1) that satisfies (5.19) is a (rotated) ellipse. Plot the two

solutions for E1 in Part 2 as functions of ?1. These two curves form the ellipse.
4. Show that the lowest voltage solution is E1 = 0 pu attained at ?1 = 0 pu and the

highest voltage solution is E1 = 2 pu attained at ?1 = 1 pu.

Solution.

1. Since (?1,@1,E0) are given and we are to solve for (?0,@0,E1,✓), substitute E1

from (5.19b) into (5.19c) to get (noting @1 = 0 and E0 = A = G = 1):

2✓2� (1+2?1)✓ + ?2
1 = 0 (5.20)

There is a solution for ✓ if and only if

(1+2?1)2�8?2
1 = 1+4?1�4?2

1 � 0

or if and only if

1
2

⇣
1�
p

2
⌘
 ?1 

1
2

⇣
1+
p

2
⌘
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2. Let � := 4?1 (1� ?1) +1. We have from (5.20)

✓ =
1
4

⇣
1+2?1 ±

p
�
⌘

Hence

?0 = ✓� ?1 =
1
4

⇣
1�2?1 ±

p
�
⌘

@0 = ✓ =
1
4

⇣
1+2?1 ±

p
�
⌘

E1 = 1+2?1�2✓ =
1
2

⇣
1+2?1⌥

p
�
⌘

3. The set of points G 2 R= that satisfy

(G� 2)) �(G� 2) = G
)

�G�22) G + k2k2 = 1

is an ellipse if 2 2R= and � is a real (symmetric) positive definite matrix. Substitute

E1✓ = ?2
1 + @2

1 into (5.19b) to get E1�1 = 2?1�2
?

2
1
E1

, i.e.,⇣
2?2

1�2?1E1 + E2
1

⌘
� E1 = 0

⇥
?1 E1

⇤ 
2 �1
�1 1

� 
?1

E1

�
�

⇥
0 1

⇤ 
?1

E1

�
= 0

⇥
?1 E1

⇤ 
8 �4
�4 4

�
|      {z      }

�


?1

E1

�
� 2

⇥
0 2

⇤
|  {z  }
2
)


?1

E1

�
+ 1 = 1

Since � � 0 is positive definite, (?1,E1) traces out an ellipse. It is shown in Figure
5.4 as the high voltage solution and the low voltage solution for E1 as functions of
?1.

1

A

Figure 5.4 High and low voltage solutions E1 as functions of injection ?1.
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4. The figure confirms that the lowest voltage solution is attained at E1 = 0 pu (point
A when ?1 = 0) and the highest voltage is attained at E1 = 2 pu (point B when
?1 = 1 pu). This can also be proved analytically, as follows.

Let D(?1) and D(?1) denote the low voltage solution and the high voltage
solution respectively:

D(?1) :=
1
2

⇣
1+2?1�

p
4?1 (1� ?1) +1

⌘

D(?1) :=
1
2

⇣
1+2?1 +

p
4?1 (1� ?1) +1

⌘

Their derivatives are:

D
0(?1) := 1� 1�2?1p

4?1 (1� ?1) +1
, D

0(?1) := 1+ 1�2?1p
4?1 (1� ?1) +1

Therefore D0(?1) = 0 if and only if

1�2?1 =
p

4?1 (1� ?1) +1 (5.21)

Taking square on both sides (which may introduce spurious solution for ?1),
D
0(?1) = 0 only if

?1 (?1�1) = 0

i.e., ?1 = 0 or 1. Clearly, ?1 = 1 does not satisfy (5.21) and hence is not a solution.
Moreover it can be checked that D0(0) = 0, D(?1) is decreasing for ?1  0 and
increasing for ?1 � 0. Hence ?1 = 0 is a minimum and D(0) = 0 pu.

Similarly D0(?1) = 0 if and only if

2?1�1 =
p

4?1 (1� ?1) +1 (5.22)

Taking square on both sides, D0(?1) = 0 only if

?1 (?1�1) = 0

i.e., ?1 = 0 or 1. Clearly, ?1 = 0 does not satisfy (5.22) and hence is not a solution.
Moreover it can be checked that D0(1) = 0, D(?1) is increasing for ?1  1 and
decreasing for ?1 � 1. Hence ?1 = 1 is a maximum and D(1) = 2 pu. ⇤

For the two-bus network in Example 5.3 power flow solutions, when projected onto
the (?1,E1) coordinate, form an ellipse without the interior. This feature of hollow
solution set is generally true for the DistFlow model (5.9), (5.14), or (5.15) as the
following result shows. Let

Xdf := {G := (B,E,✓,() 2 R6#+3 : G satisfies (5.9)}

Theorem 5.1 (Hollow solution set). Suppose the network graph ⌧ is connected. If
Ĝ and G̃ are distinct power flow solutions in Xdf with the same voltage Ê0 = Ẽ0 at the
root bus 0, then no convex combination of Ĝ and G̃ can be in Xdf. In particular Xdf is
nonconvex.
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Proof Suppose Ĝ < G̃ are distinct power flow solutions in Xdf. Fix any 0 2 (0,1) and
consider G := 0Ĝ + (1� 0)G̃. We now show that if G 2 Xdf then Ĝ = G̃, contradicting that
Ĝ and G̃ are distinct.

Suppose G 2 Xdf. In particular E 9✓ 9: = |( 9: |2 by (5.9c). Substituting G := (Ĝ + G̃)/2,
we have

1
4
(Ê 9 + Ẽ 9 ) (✓̂ 9: + ✓̃ 9: ) =

1
4

��
(̂ 9: + (̃ 9:

��2 , 9 ! : 2 ⇢

Substituting Ê 9 ✓̂ 9: = |(̂ 9: |2 and Ẽ 9 ✓̃ 9: = |(̃ 9: |2 yeilds

Ê 9 ✓̃ 9: + Ẽ 9 ✓̂ 9: = 2 Re
⇣
(̂

H
9:
(̃ 9:

⌘
(5.23a)

The right-hand side satisfies

2Re
⇣
(̂

H
9:
(̃ 9:

⌘
 2|(̃ 9: | |(̂ 9: | (5.23b)

with equality if and only if \(̂ 9: = \(̃ 9: (mod 2c). The left-hand side of (5.23a) is

Ê 9 ✓̃ 9: + Ẽ 9 ✓̂ 9: = [ 9 |(̃ 9: |2 +[�1
9
|(̂ 9: |2 � 2|(̃ 9: | |(̂ 9: | (5.23c)

with equality if and only if [ 9 |(̃ 9: | = |(̂ 9: |, where for 9 2 # , [ 9 := Ê 9/Ẽ 9 . But (5.23)
implies that equalities are attained in both (5.23b) and (5.23c), and hence

[ 9 (̃ 9: = (̂ 9: , [ 9 ✓̃ 9: = ✓̂ 9: , 9 2 # (5.24)

(The second equation in (5.24) follows from (5.23c): [ 9 ✓̃ 9: + ✓̂ 9: = 2|(̃ 9: | |(̂ 9: |/Ẽ 9 =
2
q
[ 9 ✓̃ 9: ✓̂ 9: and squaring both sides yields the equation.) Define [0 := Ê0/Ẽ0 = 1. Then

for each line 9 ! : 2 ⇢ we have, using (5.9b),

[: =
Ê:

Ẽ:

=
Ê 9 �2Re(IH

9:
(̂ 9: ) + |I 9: |2✓̂ 9:

Ẽ 9 �2Re(IH
9:
(̃ 9: ) + |I 9: |2✓̃ 9:

=
[ 9

⇣
Ẽ 9 �2Re(IH

9:
(̃ 9: ) + |I 9: |2✓̃ 9:

⌘
Ẽ 9 �2Re(IH

9:
(̃ 9: ) + |I 9: |2✓̃ 9:

= [ 9

where the third equality follows from (5.24). This implies, since the network graph ⌧
is connected, that [ 9 = [0 = 1 for all 9 2 # , i.e. Ê 9 = Ẽ 9 , 9 2 # .

We have thus shown that (̂ = (̃, ✓̂ = ✓̃, Ê = Ẽ, and hence, by (5.9a), B̂ = B̃, i.e., Ĝ = G̃.
This completes the proof. ⇤

This property of the power flow solution set is illustrated vividly in several numerical
examples in [25, 26, 27, 28]. It is used in Theorem 11.1 of Chapter 11.3 to prove that
if any convex relaxation of OPF on a radial network is exact in a strong sense, then the
optimal solution of the relaxation is unique.
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5.3 Equivalence

The branch flow models for radial networks are (5.3) with nonzero shunt admittances
and without assumption C5.1 and the DistFlow equations (5.9), (5.14) and (5.15), when
shunt admittances are zero and assumption C5.1 holds. They are defined by di�erent
sets of power flow equations from the bus injection model (4.21a) studied in Chapter
4.3.4, reproduced here:

B 9 =
’
:: 9⇠:

⇣
H
B

9:

⌘H ⇣
|+ 9 |2�+ 9+H

:

⌘
+

⇣
H
<

9 9

⌘H
|+ 9 |2, 9 2 # (5.25)

Yet all of them are models of Kirchho�’s and Ohm’s laws. In this section we show that
these models are equivalent in a precise sense.

To this end we first extend the branch flow model (5.3) to general networks that may
contain cycles. We then use these generalized branch flow models, (5.26) and (5.27)
below, as a bridge to relate BFM (5.3), (5.9), (5.14), (5.15) for radial networks to BIM
(5.25) for general networks.

5.3.1 Extension to general networks

Complex form. The branch flow model for a general network possibly with cycles
in the complex form is defined by the following power flow equations in the variables
(B,+ , �,() 2 C2(#+1)+4" (from (4.2)):

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.26a)

� 9: = H̃ 9:+ 9 � HB
9:
+: , �: 9 = H̃: 9+: � HB

: 9
+ 9 , ( 9 , :) 2 ⇢ (5.26b)

( 9: = + 9 �
H
9:

, (: 9 = +: �
H
: 9

, ( 9 , :) 2 ⇢ (5.26c)

where in (5.26b),

H̃ 9: := H
B

9:
+ H<

9:
, H̃: 9 := H

B

: 9
+ H<

: 9

Equation (5.26a) imposes power balance at each bus, (5.26b) describes the Ohm’s law
and KCL, and (5.26c) defines branch power in terms of the associated voltage and
current. For convenience we include+0 in the vector variable+ := (+ 9 , 9 2 #) with the
understanding that +0 := 1\0� is fixed. This model does not require assumption C5.1
and allows nonzero shunt admittances (H<

9:
, H<
: 9
). It serves as a bridge between the bus

injection model (5.25) in complex form and the branch flow models in the real domain.
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Real form. The following branch flow model relaxes the angles of voltages and
currents and are applicable to general networks:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.27a)

��
U 9:

��2
E 9 � E: = 2Re

⇣
U 9: Ī

B

9:
( 9:

⌘
�

���IB
9:

���2 ✓ 9: , ( 9 , :) 2 ⇢ (5.27b)

��
U: 9

��2
E: � E 9 = 2Re

⇣
U: 9 Ī

B

: 9
(: 9

⌘
�

���IB
: 9

���2 ✓: 9 , ( 9 , :) 2 ⇢ (5.27c)��
( 9:

��2 = E 9✓ 9: ,
��
(: 9

��2 = E:✓: 9 , ( 9 , :) 2 ⇢ (5.27d)

9\ 2 R#+1 s.t. V 9: (G) = \ 9 � \: , V: 9 (G) = \: � \ 9 , ( 9 , :) 2 ⇢ (5.27e)

where V 9: (G) and V: 9 (G) are defined in (5.16) and reproduced here:

V 9: (G) := \
⇣
Ū 9:E 9 � ĪB

9:
( 9:

⌘
, V: 9 (G) := \

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘
Compared with (5.3) for radial networks, the model (5.27) di�ers only in its cycle
condition: the linear cycle condition (5.3e) for radial networks becomes a nonlinear
cycle condition (5.27e) for general networks. It ensures that the line angles V(G) :=
(V 9: (G), ( 9 , :) 2 ⇢) implied by a power flow solution G of (5.27) is consistent with
voltage angles in model (5.26). Since (5.27e) implies that V(G) = ⇠T

\ and V 9: (G) =
�V: 9 (G), the nodal voltage angles \ are also given by (5.18).

The model (5.27) does not require assumption C5.1 and allows nonzero shunt ad-
mittances (H<

9:
, H<
: 9
). Let G := (B,E,✓,() = (? 9 ,@ 9 ,E 9 ,✓ 9: ,✓: 9 ,% 9: ,%: 9 ,& 9: ,&: 9 , 9 2

# , ( 9 , :) 2 ⇢). Then (5.27) is a set of 2(# +1) +6" real equations in the 3(# +1) +6"
real variables in G and # + 1 variables in \. The power flow problem is: given
2(# +1) of these variables (e.g., (? 9 ,@ 9 , 9 2 #) and (E0,\0)), determine the remain-
ing 2(# + 1) + 6" variables from (5.27). Equations (5.27d) are quadratic, the cycle
condition (5.27e) is nonlinear, and the rest are linear in G. The major simplification for
radial networks is the replacement of the nonlinear cycle condition (5.27e) for general
networks by the linear cycle condition (5.3e). When shunt admittances are assumed
zero and assumption C5.1 holds, then the cycle condition becomes vacuous for radial
networks as in the DistFlow equations.

5.3.2 Equivalence of BFM and BIM

Let the set of solutions (B,+) of BIM be:

V := V(\0) := {(B,+) 2 C2(#+1) : (B,+) satisfies (5.25)}
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where we have fixed a reference angle \+0 = \0. Let the sets of solutions of BFM be:

X̃ := X̃(\0) := {G̃ := (B,+ , �,() 2 C2(#+1)+4" : G̃ satisfies (5.26)}
Xmeshed := Xmeshed (\0) := {G := (B,E,✓,() 2 R3(#+1)+6" ) : G satisfies (5.27)}
Xtree := Xtree (\0) := {G := (B,E,✓,() 2 R3(#+1)+6" : G satisfies (5.3)}
Xdf := Xdf (\0) := {G := (B,E,✓,() 2 R3(#+1+" ) : G satisfies (5.9)

under C5.1 and H<
9:
= H<

: 9
= 0}

where a reference angle \+0 = \0 is fixed so that voltage phasors can be uniquely
recovered from power flow solutions in Xmeshed (\0), Xtree (\0) and Xdf (\0). We say
two sets � and ⌫ are equivalent, denoted by � ⌘ ⌫, if there is a bijection between them.
The equivalence of these power flow models is clarified in the following theorem and
illustrated in Figure 5.5. (The equivalence of (5.3) and (5.5) when HB

9:
= HB

: 9
, with

possibly nonzero shunt admittances, is shown in Chapter 5.2.2 and Exercise 5.3.)

Ijk= 

Figure 5.5 Equivalence of BFM and BIM. Proof focuses on X̃ ⌘ Xmeshed and Xmeshed ⌘ Xtree.
Nov 30, 2025: file size opt.)

Theorem 5.2 (Equivalence). Suppose the network ⌧ is connected.

1. V ⌘ X̃ ⌘ Xmeshed.
2. If ⌧ is a tree then Xmeshed ⌘ Xtree.
3. Suppose HB

9:
= HB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0 for all lines ( 9 , :). If ⌧

is a tree then Xtree ⌘ Xdf.

Proof Part 1: V ⌘ X̃ ⌘ Xmeshed. It is obvious V ⌘ X̃ since, given (B,+) 2 V, define
� by (5.26b) and ( by (5.26c) and the resulting (B,+ , �,() 2 X̃. Conversely given
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(B,+ , �,() 2 X̃, substituting (5.26b)(5.26c) into (5.26a) shows (B,+) 2 V. Clearly these
two mappings are the inverses of each other.

To show X̃ ⌘ Xmeshed, fix an G̃ := (B,+ , �,() 2 X̃. Define (E,✓) by:

E 9 := |+ 9 |2, ✓ 9: := |� 9: |2, ✓: 9 := |�: 9 |2 (5.28)

We now show that G := (B,E,✓,() 2 Xmeshed. That G satisfies (5.27a) follows from
(5.26a). Taking the squared magnitude on both sides of (5.26c) gives (5.27d). For
(5.27b) rewrite the first equation in (5.26b) as

+: = U 9:+ 9 � IB
9:

(̄ 9:

+̄ 9

(5.29)

where we have substituted � 9: := (̄ 9:/+̄ 9 from (5.26c). Taking the squared magnitude
on both sides gives

E: =
��
U 9:

��2
E 9 +

���IB
9:

���2 ✓ 9: �2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
which is (5.27b). Similarly (5.27c) can be derived from the second equation in (5.26b).
From (5.26b) and (5.26c) we have

+ 9+̄: = Ū 9: |+ 9 |2� ĪB
9:
( 9: , +:+̄ 9 = Ū: 9 |+: |2� ĪB

9:
(: 9

The definitions of V 9: (G) and V: 9 (G) in (5.16) then imply that V 9: (G) = \+ 9 � \+: =
�V: 9 (G) and hence the cycle condition (5.27e) holds with \ 9 := \+ 9 . This shows
G 2 Xmeshed.

Conversely fix an G := (B,E,✓,() 2 Xmeshed, i.e., G satisfies (5.27). Since V 9: (G)
defined in (5.16) satisfy (5.27e), i.e., V(G) = ⇠T

\ for some \, we can construct (+ , �)
from G as:

+ 9 :=
p
E 94

i\ 9 , � 9: :=
p
✓ 9:4

i(\ 9�\( 9:) (5.30)

We now verify that G̃ := (B,+ , �,() satisfies (5.26). Clearly (5.26a) is (5.27a). For
(5.26c), we have from (5.27d) and the construction (5.30) of (+ , �) that

|( 9: | =
��
+ 9 �̄ 9:

�� , \( 9: = \+ 9 � \� 9:
Hence ( 9: = + 9 �̄ 9: . Similarly (: 9 = +: �̄: 9 . We next show that (5.26b) follows from
(5.27b)(5.27c). First note that (5.26b) is equivalent to IB

9:
(̄ 9:/+̄ 9 = U 9:+ 9 � +: which

is equivalent to

+ 9+̄: = Ū 9:E 9 � ĪB
9:
( 9: (5.31)

We now show that (5.27b) implies that the quantities on both sides of (5.31) have equal
magnitudes and angles, thus establishing their equality. For their angles, the definition
of V 9: (G) in (5.16) implies

\
⇣
Ū 9:E 9 � ĪB

9:
( 9:

⌘
= V 9: (G) = \ 9 � \: = \

�
+ 9+̄:

�
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where the last two equalities follow from the construction (5.30) of+ 9 ,+: . The squared
magnitude of the right-hand side of (5.31) is

��
Ū 9:E 9 � Ī 9:( 9:

��2 =
��
U 9:

��2
E

2
9
�2E 9Re

�
U 9: Ī 9:( 9:

�
+
���IB
9:

���2 ��
( 9:

��2
= E 9

✓��
U 9:

��2
E 9 �2Re

�
U 9: Ī 9:( 9:

�
+
���IB
9:

���2 ✓ 9:
◆
= E 9E:

which is the squared magnitude of the quantity on the left-hand side of (5.31). The
second equality above follows from |( 9: |2 = E 9✓ 9: from (5.27d) and the last equality
follows from (5.27b). Similarly for �: 9 in the opposite direction and hence (5.26b)
follows from (5.27b)(5.27c). This proves G̃ 2 X̃. Finally the mappings defined by (5.28)
and (5.30) are inverses of each other, given a fixed reference angle \+0 = \0. We hence
conclude X̃ ⌘ Xmeshed.

Part 2: Xmeshed ⌘ Xtree. Suppose ⌧ is a tree. We will show that G := (B,E,✓,() satisfies
(5.27) if and only if it satisfies (5.3). It su�ces to show that G satisfies (5.27e) if and only
if it satisfies (5.3e). Suppose G satisfies (5.27e) which implies that V 9: (G) = �V: 9 (G).
Using (5.16) we have

\
�
Ū 9:E 9 � Ī 9:( 9:

�
= V 9: (G) = �V: 9 (G) = �\

�
Ū: 9E: � Ī: 9(: 9

�
i.e., the quantities on both sides of (5.3e) have equal angles. We now show that they
have equal magnitudes as well. Indeed���ŪH

9:
E 9 � Ī 9:( 9:

���2 = ��
U 9:

��2
E

2
9
+
��
I 9:

��2 |( 9: |2�2Re
�
U 9: Ī 9:E 9( 9:

�
= E 9E:

where the last equality follows from multiplying both sides of (5.3b) by E 9 and then
substituting (5.3d). Similarly��

Ū: 9E: � Ī: 9(: 9
��2 = E:E 9 =

��
Ū 9:E 9 � Ī 9:( 9:

��2
This shows that Ū 9:E 9 � Ī 9:( 9: =

�
Ū: 9E: � Ī: 9(: 9

�H. Hence G satisfies (5.3e). Con-
versely suppose G satisfies (5.3e). Adopt an arbitrary orientation of the network graph
and define V 9: (G) := \

�
Ū 9:E 9 � Ī 9:( 9:

�
for each directed line 9 ! : (only). Since ⌧

is a tree, the (# +1)⇥# incidence matrix ⇠ has a full column rank of # and therefore
\ :=⇠

�
⇠

T
⇠

��1
V(G) +q1 as given by (5.18b) exists and is unique given a reference an-

gle \0. Moreover \ is a solution to (5.27e) since (5.3e) implies that V: 9 (G) = �V 9: (G).
This shows that Xmeshed ⌘ Xtree.

Part 3: Xtree ⌘ Xdf. This can be proved by substituting (5.8) into (5.3) to eliminate
(✓: 9 ,(: 9 ) from (5.3) (see Exercise 5.6). ⇤

Given the bijection between the solution sets of BIM and BFM, any result in one
model is in principle derivable in the other. Some results however are much easier to
state or derive in one model than the other. For instance BIM, which is widely used
in transmission network problems, allows a much cleaner formulation of semidefinite
program (SDP) relaxation (see Chapter 10). BFM for radial networks has a convenient
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recursive structure that allows a more e�cient computation of power flows and leads
to a useful linear approximation; see Chapters 5.4 and 5.5. The su�cient condition
for exact relaxation in Chapter 11.3 provides intricate insights on power flows that are
hard to formulate or prove in BIM. BFM for radial networks seems to be much more
stable numerically than BIM as the network size scales up. Finally, since BFM directly
models branch flows ( 9: and currents � 9: , it is easier to use for some applications. One
should freely use either model depending on which is more convenient for the problem
at hand.

5.4 Backward forward sweep

General iterative methods for solving power flow equations are studied in Chapter
4.4. These methods can be used not only for solving bus injection models but also
branch flow models of this chapter. Tree topology however induces a spatially recursive
structure in power flow equations and this structure allows an e�cient computation
method for solving power flow equations, called a backward forward sweep (BFS), that
is unique to radial networks. The Newton-Raphson algorithm of Chapter 4.4.2 needs to
compute Jacobian or solve a linear system in each iteration, a significant computational
burden for large networks. The Fast Decoupled Algorithm of Chapter 4.4.3 reduces
the computational e�ort of the Newton-Raphson algorithm, but assumes line losses
are small, which is a good approximation for high-voltage transmission networks but
not for distribution systems. In contrast BFS is simple, accurate, and tends to converge
quickly in practice.

An outline of BFS is as follows. A power flow solution is partitioned into two
groups of variables G and H. Starting from an initial vector H, the components G8 can
be successively computed starting from leaf nodes and propagating towards the root
(backward sweep). Given the newly updated vector G, the components H8 are then
updated successively starting from the root and propagating towards the leaf nodes
(forward sweep). A BFS method iterates on a backward sweep followed by a forward
sweep, until convergence. It can be interpreted as a special Gauss-Seidel algorithm
that exploits a spatially recursive structure enabled by tree topology.

Di�erent BFS algorithms di�er in their choices of variables G and H and the associ-
ated power flow equations. In the following we first provide in Chapter 5.4.1 a general
formulation of BFS and then illustrate in Chapters 5.4.2 and 5.4.3 BFM algorithms
using the complex form BFM and the DistFlow model. The convergence of the al-
gorithm in Chapters 5.4.2 is analyzed in Chapter 8.6.2 as a Gauss-Seidel algorithm
(Example 8.18).
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5.4.1 General BFS

The method of backward forward sweep can be interpreted as a Gauss-Seidel algorithm
studied in Chapter 4.4.1 to compute a fixed point, with two special features.

Outer loop. First it partitions a power flow variable into two vectors G 2 �=1 and
H 2 �=2 where � is either C or R. BFS consists of an outer loop which updates
(G(C), H(C)) from (G(C � 1), H(C � 1)) and, for each outer iteration, two inner loops,
one updating successively each component G8 (C) using the Gauss-Seidel method with
components of H(C�1) held fixed and the other updating successively each component
H8 (C) using the Gauss-Seidel method with the newly updated G(C) held fixed. We
represent the outer iteration as a fixed-point iteration:

Outer loop: G(C) := 5 (G(C); H(C �1)), H(C) := 6(G(C); H(C)) (5.32a)

where 5 : �=1+=2! �
=1 and 6 : �=1+=2! �

=2 . By this notation we mean that each outer
iteration in (5.32a) is computed iteratively in two inner loops that update components
G 9 (C) and then H 9 (C) in turn, always using the latest available values, i.e.,

Inner loop 1: (5.32b)

G 9 (C) := 5 9 (G1 (C), . . . ,G 9�1 (C),G 9 (C �1), . . . ,G=1 (C �1); H(C �1)), 9 = 1, . . . ,=1

Inner loop 2: (5.32c)

H 9 (C) := 6 9 (G(C); H1 (C), . . . , H 9�1 (C), H 9 (C �1), . . . , H=2 (C �1)), 9 = 1, . . . ,=2

Inner loops (backward and forward sweeps). Second the inner loops make use of
a spatially recursive structure enabled by the tree topology. Specifically the partitions
G and H are chosen so that, given a vector H, the update function 5 9 in (5.32b) for each
component G 9 depends only on (G1, . . . ,G 9�1), but not other components of G. This
means that, starting from G: (C) at leaf nodes : and propagating towards the root of the
tree, G 9 (C) at nodes at successive layers are updated according to (backward sweep):

G 9 (C) := 5 9 (G1 (C), . . . ,G 9�1 (C); H(C �1)), 9 = 1, . . . ,=1

Similarly, given an G, the update function 6 9 in (5.32c) for each component H 9 depends
only on (H1, . . . , H 9�1). Starting from the root and propagating towards leaf nodes, H 9 (C)
are updated successively according to (forward sweep):

H 9 (C) := 6 9 (G(C); H1 (C), . . . , H 9�1 (C)), 9 = 1, . . . ,=2

We can visualize the two inner loops using the tree topology. Consider a tree network
⌧ := (# ,⇢) where # := {0,1, . . . ,#} with its root at bus 9 = 0 (instead of 9 = 1). Fix
any graph orientation (it is sometimes convenient to use the up orientation if E0 is
fixed and B0 is variable). Due to the tree topology we can always identify variables
associated with a line 9 ! : , such as the line current � 9: or power flow ( 9: , by either
the from node 9 or the to node : depending on the design of ( 5 ,6) (see Chapters 5.4.2
and 5.4.3).
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Typically the partitioning of variables into (G, H) and the update functions ( 5 ,6)
are designed so that G 9 depends only on G: at its child nodes : (i.e., : is adjacent to
9 and farther away from the root than 9 regardless of the graph orientation). More
generally let T�

9
denote the set of buses in the subtree rooted at bus 9 , not including

9 . Let GT�
9

:=
⇣
G: , : 2 T�

9

⌘
denote the variables G: in the subtree T�

9
. We say that the

function 5 := ( 5 9 ,8 9) is spatially recursive if, given H, 5 9 depends only on GT�
9

, but not
other components of G:

G 9 = 5 9

⇣
GT�

9

; H
⌘
, 9 2 #

This means that, at each outer iteration C, starting from the leaf nodes and propagating
towards the root (bus 0) in the reverse breadth-first search order, G 9 can be successively
updated given vector H(C �1):

Backward sweep at C: G 9 (C) := 5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 #

as illustrated in Figure 5.6(a). The recursion is initialized at leaf nodes 9 where T�
9
:= ;

so that G 9 (C) := 5 9 (;, H(C �1)) =: 5 9 (H(C�1)) with a given H(0) for outer iteration C = 0.

j

0

spatial initialization
xk(t) := fk (y(t

(a) Backward sweep

j

y0
spatial initialization
yi(t) := gi (x(t) ; y0)

yj(t) := gj(x(t) ; y   (t))Pºj

Pº
j

(b) Forward sweep

Figure 5.6 General backward forward sweep.

Similarly (G, H) and ( 5 ,6) are chosen so that, given G, the components H 9 depends
only on H8 in the path from the root to 9 , not on variables at other buses further away
from the root. Specifically let P�

9
denote the set of buses in the unique path from the

root to bus 9 , including the root bus 0 but not including 9 . Let HP�
9

:=
⇣
H8 , 8 2 P�

9

⌘
. The

function 6 := (6 9 ,8 9) is spatially recursive if, given G, 6 9 depends only on HP�
9

, but not
other components of H:

H 9 = 6 9

⇣
G; HP�

9

⌘
, 9 2 # , H0 given
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At each outer iteration C, starting from the children of the root and propagating towards
leaf nodes, H 9 can be successively updated given vector G(C):

Forward sweep at C: H 9 (C) := 6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 #

as illustrated in Figure 5.6(b). The recursion is initialized at children 8 of the root bus
0 where P�

8
:= {0} so that H8 (C) := 68 (G(C); H0 (C)) := 68 (G(C); H0) for all outer iterations

C, given H0.

Summary. Let G := (G 9 , 9 2 #) and H := (H 9 (C), 9 2 #). A pair (G, H) is a power flow
solution if it satisfies the following power flow equations that have a spatially recursive
structure:

G 9 = 5 9

⇣
GT�

9

; H
⌘
, 9 2 # , H 9 = 6 9

⇣
G; HP�

9

⌘
, 9 2 # (5.33a)

T�
8
= ; for all leaf nodes 9 H0 given (5.33b)

A BFS algorithm is a special Gauss-Seidel algorithm that computes a fixed point of
(5.33) in which each outer iteration C consists of two inner loops:

Backward sweep at C: G 9 (C) := 5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 # (5.34a)

Forward sweep at C: H 9 (C) := 6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 # (5.34b)

starting from the spatial initial conditions in (5.33b) and given temporal initial condi-
tions H(0) and H0 (C) = H0 for all C. A more detailed description is in Algorithm 1. If
the algorithm converges and the update functions ( 5 ,6) are continuous then the limit
point is a fixed point of (5.33) and therefore a power flow solution. An advantage of
BFS is that it does not need to calculate derivatives of power flow equations and tends
to converge quickly in practice.

The design of BFS boils down to the choice of ( 5 ,6) and the partitioning (G, H)
that define the power flow equations in (5.33). Given ( 5 ,6) with the spatial recursive
structure in (5.33), the iterative algorithm is defined by the inner loops (5.34). These
design choices are not unique and may have di�erent convergence properties. We will
study two examples in Chapters 5.4.2 and 5.4.3. Most BFS algorithms compute line
currents or power flows in the backward sweep and voltages in the forward sweep.
Typically the voltage at the substation (the root of the tree) is specified and that the line
current or power out of a leaf node is zero. These two boundary conditions mean that
the computation of line currents or powers must start from the leaf nodes and propagate
backward, while that of voltages must start from the root and propagate forward.

Remark 5.1. 1. We assume for notational simplicity that each G 9 or H 9 is a scalar,
but the description remains unchanged if G 9 and H 9 are vectors and the update
functions 5 9 and 6 9 are vector-valued; see Example 5.4 below.

2. If ( 5 9 ,6 9 ) in (5.33a) depend not only on (GT�
9

, HP�
9

), but also on (G 9 , H 9 ), then the
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Algorithm 1: Backward forward sweep

Input: ( 5 9 ,T�9 , 9 2 #), (6 9 ,P�9 , 9 2 #), H0 and H(0).
Output: a solution (G, H) of (5.33).
1. Initiatization:

• T�
9
:= ; for all leaf notes 9 .

• H0 (C) H0 for C = 0,1, . . . .
• C 0.

2. while stopping criterion not met do
(a) C C +1;
(b) Backward sweep: for 9 starting from leaf nodes and iterating towards bus 0 do

G 9 (C)  5 9

⇣
GT�

9

(C); H(C �1)
⌘
, 9 2 #

(c) Forward sweep: for 9 starting from children of bus 0 and iterating towards leaf
nodes do

H 9 (C)  6 9

⇣
G(C); HP�

9

(C)
⌘
, 9 2 #

3. Return: G := G(C), H := H(C).

update functions ( 5 9 ,6 9 ) in (5.34) become:

G 9 (C) := 5 9

⇣
GT�

9

(C),G 9 (C �1); H(C �1)
⌘
, 9 2 #

H 9 (C) := 6 9

⇣
G(C); HP�

9

(C), H 9 (C �1)
⌘
, 9 2 #

i.e., 5 9 only needs its own state and the state G: at its child nodes, but not at
upstream nodes and similarly for 6 9 .

3. In most applications, T�
9

contains only the children of 9 and P�
9

contains only the
parent of 9 . ⇤

In the next two subsections we illustrate this general BFS formulation using the
complex form BFM (5.26) of Chapter 5.3.1 and the DistFlow model (5.15) of Chapter
5.2.3. The convergence of these two BFS algorithms will be analyzed in Chapter
8.6 as applications of general convergence analysis of iterative algorithms for solving
systems of equations. These equations often arise as optimality conditions (e.g. the
KKT condition) and we will therefore postpone the convergence analysis of iterative
algorithms to after we have introduced a basic theory of optimization.

5.4.2 Complex form BFM

We consider the complex form BFM (5.26) of Chapter 5.3.1 but assume that the
network graph ⌧ := (# ,⇢) is radial and C5.1 holds (HB

9:
= HB

: 9
). We can then adopt
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a directed graph ⌧ and need to involve line variables such as
�
� 9: ,( 9:

�
only in the

direction of the line 9 ! : , but not variables
�
�: 9 ,(: 9

�
in the opposite direction, as

explained at the beginning of Chapter 5.2.3. Without loss of generality we assume the
down orientation where each line points away from the root (and reference) bus 0.

With these assumptions the complex form BFM (5.26) reduces to

B 9 =
’
:: 9⇠:

+ 9 �̄ 9: , � 9: = H̃ 9:+ 9 � HB
9:
+: (5.35)

Suppose+0 and injections B 9 at all non-reference buses 9 < 0 are given. To solve (5.35)
for (B0,+ 9 , � 9: , 9 2 # , 9! : 2 ⇢), instead of � 9: , we will first compute the currents �B

9:

through the series admittances HB
9:

:

�
B

9:
:= � 9: � H<9:+ 9

as well as+ 9 . All other variables in (5.26), such as the injection B0 and the sending-end
branch flows (� 9: ,( 9: ), can be computed once (+ 9 , �B

9:
) for all 9 2 # and all 9! : 2 ⇢

are determined. Instead of �B
9:

, we can also design a BFS algorithm that computes the
branch current � 9: directly (Exercise 5.7).

To this end we will choose two sets of power flow equations in (+ 9 , �B
9:
) that are

spatially recursive. For each bus 9 , let 8( 9) denote the parent of bus 9 (i.e., 8 := 8( 9)
is the bus adjacent to 9 on the unique path from bus 0 to 9). By Ohm’s law we have
+ 9 �+: = IB

9:
�
B

9:
where IB

9:
:= 1/HB

9:
is the series impedance of line ( 9 , :). Under

assumption C5.1, the receiving-end current at bus 9 from its parent 8 is �B
8 9
� H<

98
+ 9 .4

The current injection at bus 9 is (B 9/+ 9 )H. Hence KCL at each non-reference bus 9 is
(see Figure 5.7)

B̄ 9

+̄ 9

+
⇣
�
B

8 9
� H<

98
+ 9

⌘
=

’
:: 9!:

⇣
�
B

9:
+ H<

9:
+ 9

⌘
, 9 2 #

This is the basis for the BFS algorithm of [29] which adopts the power flow equations:

k

I sjk

I sij

Vi

Vj
sj

Figure 5.7 Spatially recursive structure of power flow equations (5.36).

4 Note that the received power at bus 9 from 8 is +9
⇣
�
B

8 9
� H<

98
+9

⌘H
, not +8

⇣
�
B

8 9
� H<

98
+9

⌘H
.
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�
B

8 9
=

’
:: 9!:

�
B

9:
�

✓
B̄ 9

+̄ 9

� H<
9 9
+ 9

◆
=: 5 9 , 9 2 # (5.36a)

+ 9 = +8 � IB8 9 �B8 9 =: 6 9 , 9 2 # (5.36b)

where 8 := 8( 9) denotes the unique parent of 9 and H<
9 9

:= H<
98
+Õ

:: 9!: H
<

9:
is the total

shunt admittance incident on bus 9 . The boundary conditions are

{: : 9 ! :} := ; for leaf nodes 9 , +0 is given , + 9 (0) :=+0, 9 2 # (5.36c)

This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.33) (recall that
the injections B 9 at all non-reference buses 9 are given):

• G 9 := �B
8 9

for 9 2 # are the complex line currents across the series impedance IB
8 9

from buses 8 to 9 . The backward sweep functions 5 9 are given by (5.36a). Let

G :=
⇣
�
B

8 ( 9) 9 , 9 2 #
⌘
= (�B

9:
, 9 ! : 2 ⇢) and 5 := ( 5 9 , 9 2 #).

• H 9 :=+ 9 for 9 2 # are the complex voltages at buses 9 . The forward sweep functions
6 9 are given by (5.36b). Let H :=

�
+ 9 , 9 2 #

�
and 6 := (6 9 , 9 2 #).

• The initialization is given by (5.36c).

The update function 5 is linear in G given H, but not jointly linear in (G, H). The function
6 is linear in (G, H).

The functions ( 5 ,6) are spatially recursive because 5 9 depends on G :=⇣
�
B

8 ( 9) 9 , 9 2 #
⌘

only through GT�
9

and 6 9 depends on H :=
�
+ 9 , 9 2 #

�
only through

HP�
9

. This translates automatically into a BFS algorithm defined by the inner loops
(5.34) and Algorithm 1. Given voltages H(C � 1), propagating (5.36a) backward from
the leaf nodes towards the root (bus 0) in the reverse breadth-first search order, the
current �B

8 9
(C) can be updated once all the currents �B

9:
(C) in the previous level have been

determined; see Figure 5.7. In the forward direction, given currents G(C), propagating
(5.36b) from the root towards the leaf nodes, the voltage + 9 (C) can be updated once
its parent +8 (C) has been determined. The detailed instantiation of Algorithm 1 for
(5.36) is given in Algorithm 2. A stopping criterion for Algorithm 2 can be based
on the discrepancy between the given injections B 9 and the injections B 9 (C) implied by
G(C) := (�B

9:
(C), 9! : 2 ⇢) and H(C) := (+ 9 (C), 9 2 #) at the end of each outer iteration

C. Motivated by (5.36a), let

B 9 (C) := + 9 (C) ©≠
´

’
:: 9!:

�
B

9:
(C)� �B

8 9
(C)™Æ

¨
H

+ H<H
9 9

��
+ 9 (C)

��2 , 9 2 #

Then a stopping criterion can be

kB(C)� Bk2 :=
’
92#

�
B 9 (C)� B 9

�2
< n

for a given tolerance n > 0.
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Algorithm 2: BFS for (5.36)
Input: voltage +0 and injections (B8 , 8 2 #).
Output: currents G := (�B

9:
, 9 ! : 2 ⇢) and voltages H :=

�
+ 9 , 9 2 #

�
that are a

solution of (5.36).
1. Initiatization:

• {: : 9 ! :} := ; for leaf nodes 9

• + 9 (0) :=+0 at all buses 9 2 # .
• +0 (C) :=+0 at bus 9 = 0 for all C = 0,1, . . . .

2. while stopping criterion not met (see below) do
(a) C C +1;
(b) Backward sweep: for 9 starting from leaf nodes and iterating towards bus 0 do

�
B

8 9
(C)  

’
:: 9!:

�
B

9:
(C)�

✓
B̄ 9

+̄ 9 (C �1)
� H<

9 9
+ 9 (C �1)

◆
, 8! 9 2 ⇢

where H<
9 9

:= H<
98
+Õ

:: 9⇠: H
<

9:
and 8 := 8( 9) is the unique parent of 9 .

(c) Forward sweep: for 9 starting from children of bus 0 and iterating towards leaf
nodes do

+ 9 (C) = +8 (C)� IB8 9 �B8 9 (C), 9 2 #

where IB
8 9

:=
⇣
H
B

8 9

⌘�1
and 8 := 8( 9) is the unique parent of 9 .

3. Return: G :=
⇣
�
B

9:
(C), 9 ! : 2 ⇢

⌘
, H :=

�
+ 9 (C), 9 2 #

�
.

The convergence of Algorithm 2 is analyzed in Example 8.18 of Chapter 8.6.2 as a
Gauss-Seidel algorithm.

5.4.3 DistFlow model

The BFS algorithm defined by (5.36) assumes all power injections B 9 at non-reference
buses 9 are given and computes �B

9:
in the backward sweep. If some buses have their

voltage magnitudes |+ 9 | and real power ? 9 given instead (i.e., these are PV buses),
we can develop BFS algorithms based on the DistFlow model of Chapter 5.2.3. The
advantage of the DistFlow model is that the BFS algorithms need not compute the
voltage angles \ 9 . Phase angles can be recovered using (5.18) after BFS has produced a
solution. As in Chapter 5.2.3, we assume IB

9:
= IB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0.

We will present two algorithms, one where +0 and (B 9 , 9 2 #) are given, as in
Chapter 5.4.2, and the other where (+0,E 9 , 9 2 #) and (? 9 , 9 2 #) are given. In both
cases only E0 is needed in BFS but the angle \+0 ensure a unique angle vector \ in
(5.18) from the solution of BFS. It will be convenient to adopt a graph orientation
where every line :! 9 points towards the root bus 0.
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Example 5.4 (Given (+0, B 9 )). Suppose the complex voltage +0 and (B 9 , 9 2 #) for all
non-reference buses 9 are given. We will use the DistFlow equation (5.15) for the up
orientation to compute

�
(: 9 ,✓: 9 , :! 9 2 ⇢

�
and (E 9 , 9 2 #).

The equations (5.15a) and (5.15c) lead to the following backward sweep to compute�
(: 9 ,✓: 9 , :! 9

�
:

( 98 = B 9 +
’
:::! 9

⇣
(: 9 � IB

: 9
✓: 9

⌘
, 9 2 # (5.37a)

✓ 98 =
|( 98 |2
E 9

, 9 2 # (5.37b)

where 8 := 8( 9) in (5.37a) denotes the parent node of 9 on the unique path between node
0 and node 9 . The equation (5.15b) leads to a forward sweep to compute (E 9 , 9 2 #):

E 9 = E8 +2Re
⇣
Ī
B

98
( 98

⌘
� |IB

98
|2✓ 98 , 9 2 # (5.37c)

The boundary conditions are

{: : :! 9} := ; for leaf nodes 9 , +0 given , E 9 (0) := |+0 |2, 9 2 # (5.37d)

This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.33):

• G :=
�
(
98 ( 9) ,✓ 98 ( 9) , 9 2 #

�
. The backward sweep functions 5 := ( 5 9 , 9 2 #) are

given by (5.37a)(5.37b).
• H := (E 9 , 9 2 #). The forward sweep functions 6 := (6 9 , 9 2 #) are given by (5.37c).
• The initialization is given by (5.37d).

The update function 5 is linear in G given H, but not jointly linear in (G, H). The function
6 is linear in (G, H). Since ( 5 ,6) are spatially recursive, (5.37) translates automatically
into a BFS algorithm defined by the inner loops (5.34); see Algorithm 1. ⇤

Example 5.5 (Given (E 9 , ? 9 )). Suppose the complex voltage +0, squared voltage
magnitudes (E 9 , 9 2 #) and real power injections (? 9 , 9 2 #) for all non-reference
buses 9 are given. We will compute the reactive power injections (@ 9 , 9 2 #) as well
as the line flows (( 98 , 9 ! 8 2 ⇢). All other variables can then be determined.

Eliminating ✓: 9 from (5.37a)(5.37b) we can compute ( 98 :=
�
% 98 ,& 98

�
in a backward

sweep and @ 9 in a forward sweep:

( 98 = B 9 +
’
:::! 9

 
(: 9 � IB

: 9

|(: 9 |2
E:

!
, 9 2 # (5.38a)

@ 9 = & 98 �
’
:::! 9

 
&: 9 � GB

: 9

|(: 9 |2
E:

!
, 9 2 # (5.38b)

where IB
: 9

=: AB
: 9
+ iG

B

: 9
. The boundary conditions are

{: : :! 9} := ; for leaf nodes 9 , E 9 given 9 2 # , @ 9 (0) given 9 2 # (5.38c)
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This defines the partitioning (G, H) and the update functions ( 5 ,6) in (5.33):

• G :=
�
(
98 ( 9) , 9 2 #

�
. The backward sweep functions 5 := ( 5 9 , 9 2 #) are given by

(5.38a).
• H := (@ 9 , 9 2 #). The forward sweep functions 6 := (6 9 , 9 2 #) are given by (5.38b).
• The initialization is given by (5.38c).

Both functions 5 and 6 are nonlinear in G ( 5 is linear in and 6 is independent of H).
Since the functions ( 5 ,6) are spatially recursive, (5.38) translates automatically into a
BFS algorithm defined by the inner loops (5.34); see Algorithm 1. ⇤

5.5 Linear power flow models

We now present linear approximations of BFM for radial networks when the line
losses IB

9:
✓ 9: are small compared with the line flows ( 9: . The linear models have two

advantages. Given injections B, the voltages Elin
9

and line flows (lin
9:

of the linearized

model can be solved explicitly in terms of B. Moreover the linear solution (Elin,(lin)
provides bounds on the line flow ( and voltage E of the nonlinear branch flow models
(5.14) and (5.15).

5.5.1 With HB
9 :
< HB

: 9

Recall the general branch flow model (5.3) in Chapter 5.2.1 for a radial network with
# +1 buses and " lines where shunt admittances (H<

9:
, H<
: 9
) may be nonzero and HB

9:

and HB
: 9

may be unequal (i.e., assumption C5.1 may not hold). A linear approximation
is the following model obtained from (5.3) by setting ✓ 9: = ✓: 9 = 0 in (5.3):

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (5.39a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
, ( 9 , :) 2 ⇢ (5.39b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
, ( 9 , :) 2 ⇢ (5.39c)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (5.39d)

It is a set of 2(# + 1) + 4" = 6# + 2 linear real equations in 3(# + 1) + 4" = 7# + 3
real variables G := (B 9 ,E 9 ,( 9: ,(: 9 , 9 2 # , ( 9 , :) 2 ⇢). Given 2# + 1 variables, e.g.,
(E0, ? 9 ,@ 9 , 9 2 #), the linear power flow problem solves the remaining 5# +2 variables
from the set of 6# +2 linear equations (5.39). Even though there are more equations
than variables these equations are typically linearly dependent, as the next example
shows.
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Example 5.6 (Two buses connected by a transformer). For the two-bus network in
Example 5.1, ( 9: = B 9 and (: 9 = B: . Hence the linear approximation (5.39) is a set of
4 equations in 6 variables (B,E):

E 9 � E:
.
| |2 = 2Re

⇣
( ĨB)H

B 9

⌘

|Ũ/ |2 E: � E 9 = 2Re
⇣
Ũ ( ĨB)H

B:

⌘

E 9 � ( ĨB)H
B 9 =

⇣
Ũ/| |2

⌘
E: � ĨB B̄:

where  is the voltage gain (possibly complex), Ũ := (1+ ĨB H̃<) and ĨB and H̃< are the
leakage and shunt admittance of the transformer. Let Ã + iG̃ := ĨB denote the resistance
and reactance of the leakage impedance of the transformer. Then this system of linear
equations can be written as

26666664

1 1/| |2
�1 |Ũ/ |2
1 �Re(Ũ)/| |2
0 �Im(Ũ)/| |2

37777775


E 9

E:

�
=

26666664

2Ã 2G̃ 0 0
0 0 2Re

�
Ũ

H
Ĩ
B
�

2Im
�
Ũ

H
Ĩ
B
�

Ã G̃ �Ã �G̃
�G̃ Ã �G̃ Ã

37777775

26666664

? 9

@ 9

?:

@:

37777775
We now demonstrate that the system of linear equations are typically linearly dependent.

Suppose H̃< = 0 so that Ũ = 1. Suppose further that (?: ,@: ,E 9 ) are given and we
are to solve (? 9 ,@ 9 ,E: ). Then (? 9 ,@ 9 ,E: ) satisfies four equations (only three of which
are linearly independent):

26666664

2Ã 2G̃ �1/| |2
0 0 1/| |2
Ã G̃ 1/| |2
�G̃ Ã 1/| |2

37777775|                     {z                     }
�

266664
? 9

@ 9

E:

377775|{z}
G

=

26666664

0 0 1
2Ã 2G̃ 1
Ã G̃ 1
G̃ �Ã 0

37777775

266664
?:

@:

E 9

377775
|                  {z                  }

1

Writing this equation as �G = 1, it can be checked that � is of full column rank.
Therefore it has a unique solution if and only if 1 is in range(�), in which case the
unique solution is G = (�T

�)�1
�

T
1. ⇤

5.5.2 With zero shunt admittances (DistFlow)

Suppose HB
9:

= HB
: 9

(assumption C5.1) and H
<

9:
= H<

: 9
= 0. Then we can consider a

directed graph with an arbitrary orientation. To simplify notation we sometimes omit
the superscript and write H 9: and I 9: for HB

9:
and IB

9:
respectively. Let IB

9:
=: A 9: + iG 9: .

The linear approximation from [24] is obtained by setting ✓ 9: := 0 in the DistFlow
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equation (5.9) of Chapter 5.2.3:’
:: 9!:

( 9: =
’
8:8! 9

(8 9 + B 9 , 9 2 # (5.40a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
, 9 ! : 2 ⇢ (5.40b)

The linear model (5.40) can also be derived from (5.39) by setting U 9: = U: 9 = 1 (i.e.,
H
<

9:
= H<

: 9
= 0) and H

B

9:
= HB

: 9
in (5.39) so that (: 9 = �( 9: and the cycle condition

(5.39d) becomes (5.40b). We can also write (5.40a)(5.40b) in vector form in terms
of the bus-by-line incidence matrix ⇠ defined in (5.10). Let ⇡A := diag(A; , ; 2 ⇢) � 0
and ⇡G := diag(G; , ; 2 ⇢) � 0 be the # ⇥# positive definite diagonal matrices of line
resistances and reactances. Let B := (B 9 , 9 2 #), E := (E 9 , 9 2 #) and ( := ((; , ; 2 ⇢).
Then the linear model in vector form is:

B = ⇠(, ⇠
T
E = 2 (⇡A%+⇡G&) (5.40c)

The matrix ⇠ is of rank # since the graph is connected, i.e., its columns are linearly
independent. The null space of ⇠T is span(1). Any # ⇥# submatrix of ⇠ obtained by
removing any row of ⇠ is invertible (Theorem A.36 of Appendix A.11).

5.5.3 Linear solution and its properties

Suppose the reference bus voltage E0 and the injections B̂ :=
�
B 9 , 9 2 #

�
at other buses

are given.

5.5.3.1 Linear solution

The linear model (5.40) can be solved explicitly for non-reference bus voltages
Ê :=

�
E 9 , 9 2 #

�
and line flows (, from which B0 can also be determined. Recall the

decomposition in (4.18a) of the incidence matrix ⇠ into the row 2
T
0 corresponding to

bus 0 and the remaining reduced incidence matrix ⇠̂, reproduced here:

⇠ =:

2

T
0
⇠̂

�

Then the linear model (5.40) when (E0, ? 9 ,@ 9 , 9 2 #) are given is:

B̂ = ⇠̂(, B0 = 2
T
0( (5.41a)

E020 + ⇠̂T
Ê = 2 (⇡A%+⇡G&) (5.41b)

Let P 9 denote the unique path from bus 0 to bus 9 , including both buses 0 and 9 . We
use “; 2 P 9” to refer to a directed line ; in the path P 9 that points away from bus 0
and “�; 2 P 9” to refer to a directed line ; in P 9 that points towards bus 0. Theorem 4.1
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shows that the reduced incidence matrix ⇠̂ is nonsingular and

⇥
⇠̂
�1⇤

; 9
=

8>><
>>:
�1 ; 2 P 9

1 �; 2 P 9
0 otherwise

, ⇠̂
�T
20 = �1

where ⇠̂�T :=
⇣
⇠̂

T
⌘�1

. Then (5.41) can be solved using Theorem 4.1.

Theorem 5.3 (Linear solution). Suppose the network graph ⌧ is a (connected) tree,
assumption C5.1 holds and H<

9:
= H<

: 9
= 0. Fix any E0 and B̂ = ( ?̂, @̂) 2 R2# . Then

1. The solution to (5.41) is

( = ⇠̂
�1
B̂, B0 = 2

T
0⇠̂
�1
B̂ (5.42a)

Ê = 2 ('?̂ + -@̂) + E01 (5.42b)

where ' := ⇠̂�T
⇡A ⇠̂

�1 and - := ⇠̂�T
⇡G⇠̂

�1.
2. ' � 0 and - � 0 are positive definite matrices and

' 9: =
’

;2P 9\P:

A; , - 9: =
’

;2P 9\P:

G; (5.42c)

The solution (5.42a)(5.42b) can be obtained by multiplying both sides of (5.41) by
⇠̂
�1. The positive definiteness of ' and - follows from⇡A � 0 and⇡G � 0. The explicit

expressions in (5.42c) follow from Theorem 4.1 and have a simple interpretation:
the ( 9 , :) entries of ' and - are the total resistance and reactance respectively in
the common segment of the paths from bus 0 to buses 9 and : . If we interpret
!̂ := ⇠̂ (⇡�1

A
)⇠̂T as a reduced Laplacian matrix, then ' = !̂�1 (similarly for -).

Remark 5.2. 1. An important implication of (5.42b)(5.42c) on voltage magnitudes
is that, if all line resistances A; and reactances G; are positive, then all entries
of the matrices ' and - are nonnegative and therefore an increase in real or
reactive power injections (? 9 ,@ 9 ) anywhere can only increase voltage magnitudes
E 9 everywhere in the network.

2. If we adopt without loss of generality the graph orientation where all lines point
away from the root bus 0, then (5.42a) says that the line flow ( 9: = �

Õ
:2T 9 B: is

equal to the negative sum of all nodal injections B: in the subtree rooted at bus 9 ,
including 9 . ⇤

5.5.3.2 Analytical properties

We now study some analytical properties of the linear model (5.40). These properties
hold for general graph orientations but are particularly transparent in two special
orientations.
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Down orientation: lines point away from bus 0. The linear model (5.40) reduces
to: ’

:: 9!:
(

lin
9:

= (
lin
8 9
+ B 9 , 9 2 # (5.43a)

E
lin
9
� Elin

:
= 2Re

⇣
Ī
B

9:
(

lin
9:

⌘
, 9 ! : 2 ⇢ (5.43b)

where bus 8 := 8( 9) in (5.43a) denotes the bus adjacent to 9 on the unique path from
bus 0 to bus 9 . The boundary condition is: (lin

80 := 0 in (5.43a) when 9 = 0 and (lin
9:
= 0

in (5.43a) when 9 is a leaf node.

Up orientation: lines point towards bus 0. The linear model (5.40) reduces to:

(

lin
98

=
’
:::! 9

(

lin
: 9
+ B 9 , 9 2 # (5.44a)

E
lin
:
� Elin

9
= 2Re

⇣
Ī
B

: 9
(

lin
: 9

⌘
, :! 9 2 ⇢ (5.44b)

where 8 := 8( 9) in (5.44a) denotes the node adjacent to 9 on the unique path between

node 0 and node 9 . The boundary condition is defined by (
lin
98
= 0 in (5.44a) when 9 = 0

and (
lin
: 9

= 0,✓: 9 = 0 in (5.44a) when 9 is a leaf node.

Denote by T 9 the subtree rooted at bus 9 , including 9 . We write “; 2 T 9” to mean
either a bus ; or a line ; in the subtree T 9 , depending on the context. If there is danger of
confusion we write “( 9 , :) 2 T 9” to mean line ; := ( 9 , :) in T 9 . The following corollary
is proved in Exercise 5.8.

Corollary 5.4 (Linear solutions). Under the assumptions of Theorem 5.3 let

(Elin,(lin) 2 R#+2" be the solution of (5.43) and (Elin,(
lin) 2 R#+2" the solution

of (5.44). Then

1. For (8, 9) 2 ⇢

(
lin
8 9

= �
’
:2T 9

B: , 8! 9 ; (

lin
98

=
’
:2T 9

B: , 9 ! 8

Hence (lin
8 9

= �(lin
98

.

2. For 9 2 # , Elin
9
= Elin

9
= E0 +2

Õ
:

�
' 9: ?: + - 9:@:

�
where ' 9: and - 9: are given in

(5.42c).

Corollary 5.4 says that, on each line (8, 9) 2 ⇢ , the power flow (8 9 from 8 to 9 , or
the power flow ( 98 in the opposite direction, equals the total load �Õ

:2T 9 B: in the
subtree rooted at node 9 . These linear line flows neglect line losses and underestimate

the required power to supply these loads. With zero line loss, we have (lin
8 9

= �(lin
98

.
Since all entries of ' and - are nonnegative, both real and reactive power injections
(?,@) always increase voltage magnitudes E according to the linear approximation.

This is not the case for solutions of nonlinear power flow equations (5.14) or (5.15).
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Indeed fix any E0 and injections B̂ 2 R2# at non-reference buses in # . We can recurse
on the power flow equations (5.14), starting from the leaf nodes for (8 9 and bus 0 for
E 9 , to show that any solution (E,✓,() of (5.14) must satisfy (Exercise 5.9):

(8 9 = �
’
:2T 9

B: + ©≠
´
I
B

8 9
✓8 9 +

’
;2T 9

I
B

;
✓;

™Æ
¨

(5.45a)

E 9 = E0�
’
;2P 9

⇣
2Re

�
Ī
B

;
(;

�
� |IB

;
|2✓;

⌘
(5.45b)

Similarly we can recurse on (5.15) to show that

( 98 =
’
:2T 9

B: �
’
;2T 9

I
B

;
✓; (5.45c)

E 9 = E0 +
’
;2P 9

⇣
2Re

⇣
Ī
B

;
(;

⌘
� |IB

;
|2✓;

⌘
(5.45d)

Summing (5.45a) and (5.45c) shows that

(8 9 + ( 98 = I
B

8 9
✓8 9

as we saw earlier in (5.8). Note that given E0 and B 2 R2# , Corollary 5.4 provides

the unique solution (Elin,(lin) to (5.43) (or unique solution (Elin,(
lin) to (5.44)). For

nonlinear model (5.14) or (5.15), the solutions (E,✓,() or (E, B,() may not be unique.
Any nonlinear solution however must satisfy (5.45).

It is proved in Exercise 5.8 that, for 9 2 # , the linear solutions satisfy:

E
lin
9

= E0�
’
;2P 9

2Re
⇣
Ī
B

;
(

lin
;

⌘
, E

lin
9

= E0 +
’
;2P 9

2Re
⇣
Ī
B

;
(

lin
;

⌘
(5.46)

Comparing (5.46) and (5.45) leads to bounds on the nonlinear solutions in the following
corollary (proved in Exercise 5.10). Recall that, by definition, G is a power flow solution
only if E � 0 and ✓ � 0 componentwise (assuming I; = (A; ,G;) > 0 for all lines ; 2 ⇢ .).

Corollary 5.5 (Bounds on nonlinear solutions). Suppose the network graph ⌧ is a
(connected) tree, assumption C5.1 holds and H<

9:
= H<

: 9
= 0. Fix any E0 and B̂ 2 R2# .

Let (E,✓,() and (E,✓,() in R#+3" be any (possibly nonunique) solutions of (5.14)

and (5.15) respectively. Let (Elin,(lin) and (Elin,(
lin) in '#+2" be the unique solutions

of their linearizations (5.43) and (5.44) respectively. Then

1. For 8! 9 2 ⇢ , (8 9 � (lin
8 9

with equality if only if ✓8 9 and all ✓:; in T 9 are zero.

2. For 9 ! 8 2 ⇢ , ( 98  (
lin
98

with equality if and only if all ✓:; in T 9 are zero.

3. For 9 2 # , E 9 = E 9  Elin
9
= Elin

9
.

Remark 5.3. 1. Up orientation. While it is easy to prove E 9  Elin
9

from (5.45d) and
the second equation in (5.46), it does not seem easy to prove E 9  Elin

9
directly,

except by relating the variables (E 9 ,Elin
9
) to (E 9 ,Elin

9
) in the opposite direction. This

is an advantage of the models (5.15) and (5.44) in the up orientation.
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2. Bounds for SOCP relaxation. The bounds in Corollary 5.5 do not depend on the
quadratic equalities (5.14c) and (5.15c) as long as ✓ 9: � 0. In particular the bounds
hold if the equalities are relaxed to inequalities E 9✓ 9: � |( 9: |2. These bounds are
used in Chapter 11.3 in a su�cient condition for exact SOCP relaxation of optimal
power flow problems for radial networks.

3. Linear approximation. For radial networks, the linear approximation (5.40) of
BFM has two advantages over the (linear) DC approximation of BIM studied in
Chapter 4.6.2. First the linear models (5.43) and (5.44) with special graph ori-
entations have a recursive structure that leads to simple bounds on power flow
quantities. Second DC approximation assumes A 9: = 0, fixes voltage magnitudes,
and ignores reactive power, whereas (5.40) does not. This is important for distri-
bution systems where A 9: are not negligible, voltages can fluctuate significantly
and reactive powers are used to regulate them. On the other hand (5.40), (5.43) and
(5.44) are applicable only to radial networks whereas DC approximation applies
to meshed networks as well. ⇤

5.6 Chapter summary

1. A system model consists of a device model and a network model. A network model
can take two forms: the bus injection model studied in Chapter 4 and the branch
flow model (BFM) tailored for radial networks studied in this chapter.

2. BFM can take several forms based on di�erent assumptions (whether HB
9:
= HB

: 9
and

whether H<
9:

= H<
: 9

= 0) and di�erent forms are suitable for modeling distribution
lines and transformers in di�erent configurations.

3. BFM is equivalent to BIM in the sense that there is a one-one correspondence
between their power flow solutions (Theorem 5.2).

4. The backward-forward sweep solves nonlinear power flow equations by exploiting
a spatial recursive structure over the tree topology ((5.33) and (5.34)) and is a form
of Gauss-Siedel algorithm

5. When line losses are small relative to line power flows, the various forms of BFM
have linear approximations. For LinDistFlow, given nodal power injections, the
voltages and line power flows can be solved in closed form and they bound the
voltages and line power flows of the nonlinear DistFlow model (Theorem 5.3,
Corollaries 5.4 and 5.5). Moreover the linear solution has a simple structure that
is useful for control applications (e.g., voltage control in Chapter 7.2).

5.7 Bibliographical notes

The DistFlow model is proposed in [23, 24] for radial networks. It is extended to general meshed network
in [30] by introducing a cycle condition. The general branch flow model in Chapter 5.2.1 is taken from
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[31] where line currents and power flows are defined in both directions. The equivalence of BFM and bus
injection model (BIM) is proved in [32]. The equivalence of DistFlow to BFM in complex form and hence
equivalent to BIM follows [30, Theorems 2, 4]. Theorem 5.1 on power flow solutions is from [33]. For BFM
and SOCP relaxations when a radial network contain ideal transformers and multiple lines between two
buses, see [34].

The idea of backward forward sweep (BFS) is first proposed in [35] for three-phase distribution systems.
Early examples of BFS algorithms for three-phase radial networks are designed in [36][37, Chapter 10.1.3].
The BFS method for single-phase networks described in Chapter 5.4.2 is from [29]. It is extended in [38]
from single-phase to three-phase networks. The solution approach in the original DistFlow paper [24] uses
one-time backward sweep to express all variables in terms of the power injections at the feeder head and
all branch points followed by a Newton-Raphson algorithm to solve for these injections. The existence and
uniqueness of solutions are studied in [39]. By exploiting the approximate sparsity of the Jacobian matrix,
approximate fast decoupled methods are developed and their convergence properties analyzed in [40]. These
methods are extended to three-phase radial networks in [41]. The existence and uniqueness of power flow
solutions of three-phase DistFlow model is analyzed in [42].

The linearized model (5.40) is first proposed in [24] and called the Simplified DistFlow equations. The
paper also states an explicit solution for the squared voltage magnitude E8 as an a�ne function of the
injections B 9 whose coe�cients b8 9 are the total impedances on the common paths P�

8
and P�

9
from the root

(bus 0) to buses 8 and 9 respectively. This is the same solution as that in Theorem 5.3. See also [43] for
linearized DistFlow model. The properties in Theorem 5.3 and Corollary 5.5 of the linear model seem to
have been independently observed in several papers, e.g., [44, 45, 46, 47, 48] where E8 � E9 is sometimes
approximated by 2( |+8 |� |+9 |) since |+8 | ⇡ 1 pu.

5.8 Problems

Chapter 5.2.

Exercise 5.1 (Line angles V(G)). Justify the definition of line angles in (5.16) using
(5.26b)(5.26c).

Exercise 5.2 (Incidence matrix ⇠). Consider the (# + 1) ⇥" incidence matrix ⇠ of
a (connected) radial network defined in (5.10). Show that ⇠ has rank # = " , the null
space of ⇠T is span(1) and its pseudo-inverse

�
⇠

T�† = ⇠ �
⇠

T
⇠

��1.

Exercise 5.3 (BFM with nonzero shunt admittances). This exercise shows that the
branch flow model (5.3) is equivalent to the simpler model (5.5) when HB

9:
= HB

: 9
(as-

sumption C5.1). Suppose (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) is a power flow solution
of (5.3). Define the series variables (✓B

9:
,(B
9:
) and (✓B

: 9
,(B
: 9
) by (5.4)(5.6).

1. Show that (E, B,✓B
9:

,(B
9:

,8( 9 , :)) satisfies (5.5b).
2. Show that the series branch variables satisfy (5.7).
3. Show that (E, B,✓B

9:
,(B
9:

,8( 9 , :)) satisfies (5.5a) and (5.5c).

Conversely suppose (E, B,✓B
9:

,(B
9:

,8( 9 , :)) satisfies (5.5). Define the series branch
variables (✓B

: 9
,(B
: 9
) in the opposite directions by (5.7), and the sending-end variables

in both directions by (5.4)(5.6).
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4 Show that (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) satisfies (5.3).

Exercise 5.4 (Line loss). Consider a radial network where lines have zero shunt
admittances with IB

9:
= IB

: 9
(assumption C5.1). Instead of substituting into (5.7) ✓B

9:
=

✓ 9: ,(B
9:

= ( 9: and the corresponding equivalence in the opposite direction, derive
directly from (5.3):

( 9: + (: 9 = I
B

9:
✓ 9: = I

B

9:
✓: 9

Exercise 5.5 (Graph orientation). Prove (5.13) under assumption C5.1, i.e., G satisfies
(5.9) if and only if Ĝ := 6(G) satisfies (5.12)

Chapter 5.3.

Exercise 5.6 (DistFlow equivalence). Suppose assumption C5.1 holds and H<
9:
= H<

: 9
=

0 for all lines ( 9 , :) 2 ⇢ . Show directly thatXtree ⌘Xdf (these sets are defined in Chapter
5.3.2), instead of substituting into (5.5) ✓B

9:
= ✓ 9: ,(B

9:
= ( 9: and the corresponding

equivalence in the opposite direction.

Chapter 5.4

Exercise 5.7 (Backward forward sweep). The BFS algorithm in Chapter 5.4.2, based
on the branch flow model (5.26) in complex form, computes (+ 9 , �B

9:
).

1. Show that all other variables in (5.26) can be computed once (+ 9 , �B
9:
) for all 9 2 #

and all 9 ! : 2 ⇢ are determined.
2. Design a BFS algorithm that solves the same power flow equations under the same

assumptions but computes the sending-end currents � 9: directly, instead of �B
9:

over the series admittances, as well as the voltage + 9 .

Chapter 5.5. Assumption C5.1 and H<
9:

= H<
: 9

= 0 are assumed in Chapter 5.5 for
linear DistFlow models and hence for problems in this section.

Exercise 5.8 (Linear solution). Prove Corollary 5.4. Also show that for 9 2 #

E
lin
9

= E0�
’
;2P 9

2Re
⇣
Ī;(

lin
;

⌘
, E

lin
9

= E0 +
’
;2P 9

2Re
⇣
Ī;(

lin
;

⌘
(5.47)

Hence Elin
9
= Elin

9
. (Hint: Use (5.42) or induction.)

Exercise 5.9 (Nonlinear recursion). Derive (5.45) from the DistFlow equations (5.14)
and (5.15). (Hint: Use induction.)

Exercise 5.10 (Bounds). Prove Corollary 5.5.



6 System operation: power balance

The primary function of a power system is to deliver electricity reliably and, subject
to reliable operation, economically. In this and next chapters we explain some of the
operational components using the network models developed in previous chapters.
This chapter focuses on a hierarchy of control mechanisms at di�erent timescales to
balance power supply and demand. Chapter 7 presents applications in state estimation,
voltage control on a distribution feeder, and network identification. Our focus is on
the mathematical analysis of these applications; see, e.g. [1, 2, 3], for a more detailed
description of the physical systems and operations.

After some background information in Chapter 6.1 we describe in Chapter 6.2 the
problem of unit commitment and real-time dispatch to balance power on daily and 5-15
minute basis respectively. In Chapter 6.3 we explain frequency control that balances
power on a second by second basis. In Chapters 6.4 we study how to price electricity
to incentivize optimal real-time dispatch.

6.1 Background

6.1.1 Overview

Electricity has two important di�erences from most commodities such as rice and
minerals. First there is not yet large-scale energy storage in our power system so that
inventory control as a means to match supply and demand for most commodities
is not applicable. Instead generation and load must be balanced on a second-by-
second basis at all points on the network. Second electricity cannot yet be routed from
generators to loads at will but must follow paths determined by power flow equations.
The nonlinearity of power flow equations introduces computational challenges. These
di�erences have strong implications on how the network is operated and how markets
are organized.

The central control problem is to balance supply and demand, continuously and
everywhere, without violating operational constraints such as capacity limits of gen-
erators and loads, bounds on voltage magnitudes, and thermal and stability limits of
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transmission lines and transformers. Thermal generators such as gas, coal and nuclear
generators still generate the majority of electricity today. For example, in 2023, fos-
sil fuels generated 60.0% and nuclear generated 18.5% of all electricity in the US
[49, Table 1.1]. Hydro-generation produced 5.9% of electricity and other renewable
generations 15.5%. Thermal and hydro generators are fully controllable and can pro-
duce a specified amount of electricity at a specified time and location. Traditionally
a power system operator forecasts demand, which is assumed inelastic, and schedules
bulk generators to meet the forecast demand. As we decarbonize our energy system by
replacing fossil fuel generators by wind and solar farms, our ability to control genera-
tion decreases and we must also exploit flexibility in demand to match volatile supply.
Di�culties arise from the variability and uncertainty of undispatchable demand and
supply, the need to match the speed of control and that of disturbances, as well as
random unscheduled outages of generators, loads, lines and transformers.

A transmission network is a high-voltage long-distance network that connects bulk
power producers to power consumers. These consumers are called load centers and
represent aggregate loads such as substations of a local utility company that feeds
a small city. The operation of a transmission network is typically coordinated by an
independent system operator that commits and dispatches generation units to meet
demand at timescales ranging from hours to minutes to seconds. Control and market
operations are tightly integrated in a power system in order to balance supply and
demand on a second-by-second basis everywhere in the grid.

An overview of the hierarchy of control mechanisms to balance power, as well as
the associated pricing of electricity and reserves is as follows:

1. Unit commitment and real-time dispatch (Chapter 6.2). Bulk generators such as
gas, coal, and nuclear generators need nontrivial amounts of time and cost to start
up and shut down, e.g., the startup time for a nuclear plant can be hours. This
motivates a day-ahead market which usually closes 12–36 hours in advance of
energy delivery and determines which generators will be online and their output
levels for each hour or half an hour over a 24-hour horizon. This is the problem of
unit commitment and is discussed in Chapter 6.2.1.

The commitment decisions are determined based on forecast of loads and vari-
able generations such as wind and solar power 12–36 hours in advance. A real-time
market computes, every 5–15 minutes in advance of energy delivery, adjustments
to generation and consumption levels relative to the day-ahead schedule as un-
certainty in consumption, generation, and network state is resolved. This is the
problem of real-time dispatch and is discussed in Chapter 6.2.2.

Both the unit commitment decision and the real-time dispatch decision are
made in a way that can withstand large disturbances such as the loss of a bulk
generator or a wind or solar farm, the switching on or o� of a large load such as
a datacenter, or the outage of a line or transformer in the transmission network.
This is called security constrained commitment or dispatch and is explained in
Chapter 6.2.3.



254 System operation: power balance

2. Frequency control (Chapter 6.3). Balancing on a second-by-second basis within a
real-time dispatch interval takes the form of frequency control, currently organized
at two timescales. When there is excess supply the rotating machines in bulk
generators will speed up and the system frequency will rise. When there is a
shortage the rotating machines will slow down and the system frequency will drop.
Frequency deviation is used as a control signal for generators and controllable
loads to adjust their power. A generating unit that participates in the primary
control uses a governor to automatically adjusts its power in proportion to its local
frequency deviation in a decentralized manner. Primary control rebalances power
and stabilizes the frequency to a new equilibrium value in 30 seconds or so. This
is studied in Chapter 6.3.2.

The secondary control adjusts generator setpoints around their dispatch values
in order to restore system frequency to its nominal value and restore tie-line
powers between balancing areas to their scheduled values within a few minutes
(the dispatched setpoint and scheduled tie-line flows are determined by real-time
dispatch studied in Chapter 6.2.2). These adjustments are determined centrally
within each area based on real-time measurements of tie-line flow deviations and
frequency deviations in the area. Secondary control is studied in Chapter 6.3.3.

3. Pricing electricity (Chapter 6.4). Chapters 6.2 and 6.3 focus on control mechanisms
to balance power at timescales from subseconds to a day. The day-ahead and real-
time markets determine not only generation schedules, but also electricity prices.
In Chapter 6.4.2 we formulate the real-time dispatch problem for market operation
and design electricity prices. In Chapter 6.4.3 we show that these prices incentivize
optimal dispatch and are revenue adequate for the system operator.

The system operator needs to deal with uncertainties, both discrete uncertainties
due to outages of generators, transmission lines and transformers, and continuous
uncertainties due to random fluctuations of renewable generations or loads. In
Chapter 6.4.4 we extend basic economic dispatch to security constrained economic
dispatch that jointly optimizes energy and reserves. In Chapter 6.4.5 we show how
to incorporate security constrained economic dispatch in unit commitment in day-
ahead markets.

6.1.2 Basic optimization concepts

Many power system applications can be formulated as optimization problems. In
this subsection we introduce some basic concepts of optimization. They provide the
language in the rest of this chapter to explain control mechanisms for balancing power
supply and demand

A constrained optimization problem is specified by a primal variable G 2 R=, an
objective or cost function 5 : R= ! R, and constraint functions 6 : R= ! R< and
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⌘ : R=! R; . It takes the form:

min
G2R=

5 (G) subject to 6(G) = 0, ⌘(G)  0 (6.1)

i.e., our objective is to choose a vector G⇤ in R= that minimizes the cost 5 (G) among
all G that satisfies the constraints 6(G) = 0 and ⌘(G)  0. The set

- := {G 2 R= : 6(G)  0, ⌘(G)  0}

is called a feasible set. The optimization problem (6.1) can be equivalently written as
minG2- 5 (G). An G 2 - is called a feasible solution of (6.1). A feasible solution G⇤ that
attains the minimum of 5 over - (i.e., 5 (G⇤)  5 (G) for all G 2 -) is called a (primal)
optimal solution, optimum or a minimizer. Suppose 5 ,6,⌘ are convex and continuously
di�erentiable functions. If there is no constraint (i.e., if (6.1) becomes minG2R= 5 (G)),
then G⇤ minimizes 5 (G) over R= if and only if

r 5 (G⇤) = 0

This optimality condition generalizes to constrained optimization as follows.

Associate with each constraint 68 (G) = 0 a variable _8 2 R and each constraint
⌘ 9 (G)  0 a variable ` 9 2 R. The vector (_,`) := (_8 , 8 = 1, . . . ,<; ` 9 , 9 = 1, . . . , ;) is
called a Lagrange multiplier (vector) or a dual variable. The problem (6.1) is called
a convex program/problem when 5 ,6,⌘ are convex functions. Then a primal variable
G
⇤ 2 R= is an optimal solution of (6.1) if and only if there exists a dual variable
(_⇤,`⇤) 2 R<+; such that the following conditions are satisfied:

Stationarity : r 5 (G⇤) +r6(G⇤)_⇤ +r⌘(G⇤)`⇤ = 0 (6.2a)

Primal feasibility : 6(G⇤) = 0, ⌘(G⇤)  0 (6.2b)

Dual feasibility : `
⇤ � 0 (6.2c)

Complementary slackness : `
⇤T
⌘(G⇤) = 0 (6.2d)

where r 5 is the column vector whose 8th entry is m 5

mG8

, r6 is the =⇥< matrix whose

8 9 th entry is m6 9

mG8

. and r⌘ is the = ⇥ ; matrix whose 8 9 th entry is m⌘ 9

mG8

. This is the
KKT Theorem 8.15 studied in Chapter 8.3.2. The condition (6.2) is called the KKT
condition associated with (6.1) and reduces to r 5 (G⇤) = 0 when there is no constraint.
The dual variable (_⇤,`⇤) in this case is called dual optimal. Hence the KKT condition
is necessary and su�cient for (G⇤,_⇤,`⇤) to be primal and dual optimal when (6.1) is
a convex program; it is necessary but generally not su�cient otherwise.

In this chapter we will formulate various control and pricing mechanisms as con-
strained optimization of the form

min
D,G

5 (D,G) s.t. 6(D,G) = 0, ⌘(D,G)  0

This is called an optimal power flow (OPF) problem and it is a basic building block
that underlies numerous power system applications. The optimization variable (D,G)
consists of a control D and a network state G and can span multiple time periods, e.g., in
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unit commitment problems. The optimization variable (D,G), the cost function 5 and
the constraint functions 6, ⌘ depend on the application under study, as we will see in
the rest of this chapter. There are usually two types of constraint. The first is power flow
equations in various forms studied in Chapters 4 and 5 for single-phase networks and
Chapters 16 and 17 for unbalanced multiphase networks. The second type of constraint
consists of operational limits such as voltage limits, capacity limits on generators and
loads, and thermal and stability limits on transmission lines and transformers.

Structural properties of general OPF problems and algorithms for solving them are
studied in detail in Part II.

6.2 Unit commitment and real-time dispatch

In this and the next sections we describe a hierarchy of control mechanisms for bal-
ancing power at timescales from daily to minutes to subseconds. In Chapter 6.4 we
explain how to price electricity to incentivize optimal dispatch.

6.2.1 Unit commitment

The problem of unit commitment is typically solved by the system operator in the
day-ahead market 12–36 hours in advance of energy delivery to decide which units
will be turned on for each hour or half an hour over a 24-hour period. Integral to the
commitment decision is also a dispatch decision that determines the output levels of
those units that will be online. The commitment decision is made assuming that the
dispatch decision will be optimized at delivery time. This can be formulated as a two-
stage optimization problem. For most day-ahead markets, the commitment decision
is binding but the dispatch decision can be binding or advisory, to be adjusted by
economic dispatch in the real-time market. We will discuss in detail the problem of
real-time dispatch in Chapter 6.2.2, so we will focus on formulating the commitment
decision in this section.

Consider a time horizon ) := {1,2, . . . ,)} and a power network represented as
a graph ⌧ := (# ,⇢) as before. For example, each time C represents an hour and
) = 24. For each period C 2 ) let D(C) := (D 9 (C), 9 2 #) denote controllable real and
reactive power injections at time C, + (C) := (+ 9 (C), 9 2 #) the voltage phasor, ((C) :=�
( 9: (C),(: 9 (C), ( 9 , :) 2 ⇢

�
the complex line flows. We call D(C) a dispatch and G(C) :=

(+ (C),((C)) a network state at time C. Let D := (D(C), C 2)) and G := (G(C), C 2)). They are
complex vectors of appropriate sizes. Let ^ 9 (C) 2 {0,1} be the binary variable indicating

that unit 9 will be on at time C if ^ 9 (C) = 1 and o� otherwise. Let ^(C) :=
⇣
^ 9 (C), 9 2 #

⌘
and ^ := (^(C), C 2 )).

Our OPF formulation includes only three features of the unit commitment problem.
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The first is injection bounds on a unit when it is turned on. This can be expressed as
the constraint:

D
9
(C)^ 9 (C)  D 9 (C)  D 9 (C)^ 9 (C), 9 2 # (6.3a)

where D
9
(C) and D 9 (C) are given bounds on the active and reactive injections respec-

tively at bus 9 at time C.1 The second feature is the startup and shut down costs incurred
by a bulk unit when it is turned on or o�. This can be expressed as a cost function 3C
that is positive when the on/o� status of the unit changes:

3 9C (^ 9 (C �1), ^ 9 (C)) :=

8>><
>>:

startup cost if ^ 9 (C)� ^ 9 (C �1) = 1
shutdown cost if ^ 9 (C)� ^ 9 (C �1) = �1
0 if ^ 9 (C)� ^ 9 (C �1) = 0

(6.3b)

Once turned on or o�, a bulk generator must stay in the same on/o� state for a minimum
amount of time. This can be enforced by minimum up/down time constraints, e.g.,

^ 9 (C)� ^ 9 (C �1)  ^ 9 (g), g = C +1, . . . , [C +up
9
�1]) (6.3c)

^ 9 (C �1)� ^ 9 (C)  1� ^ 9 (g), g = C +1, . . . , [C +down 9 �1]) (6.3d)

where up 9 and down 9 are the minimum up and down times respectively once turned
on or o� and [g]) := min{g,)}. If unit 9 is turned on at time C then the left-hand side
of the minimum uptime constraint (6.3c) is 1 and hence (6.3c) ensures that unit 9 will
stay on (with ^ 9 (g) = 1) for time g = C +1, . . . , C +up

9
�1 or till ) . If unit 9 is not turned

on at time C then the constraint (6.3c) is vacuous. Similarly for the minimum downtime
constraint (6.3d).

Unit commitment can then be posed as the following two-stage OPF with the three
features in (6.3):

min
^2{0,1}(#+1))

’
C

’
9

3 9C

�
^ 9 (C �1), ^ 9 (C)

�
+ 5

⇤ (^) (6.4a)

s.t. (6.3c)(6.3d) (6.4b)

where the startup/shut down costs 3 9C are given by (6.3b). Given a commitment decision
^, 5 ⇤ (^) is the optimal real-time dispatch cost over the entire optimization horizon:

5
⇤ (^) := min

(D,G)

’
C

5C (D(C),G(C); ^(C)) (6.4c)

s.t. 6C (D(C),G(C); ^(C)) = 0, ⌘C (D(C),G(C); ^(C))  0, C 2 ) (6.4d)

6̃(D,G) = 0, ⌘̃(D,G)  0 (6.4e)

Here 5C is the dispatch cost, e.g., fuel cost, at time C. The constraints (6.4d) include power
flow equations and capacity limits such as (6.3a) at each time C, and the constraints (6.4e)
are inter-temporal constraints such as ramp rate limits of the form |D 9 (C)�D 9 (C�1) | 
d 9 . Hence the commitment decision ^ is chosen in (6.4a) in anticipation that the dispatch
decisions (D(C),G(C)) will be optimized in the second-stage problem (6.4c)(6.4d)(6.4e).

1 All variables are complex and, by 0  0 where 0,0 2 C, we mean separate bounds on the real and
imaginary parts, Re 0  Re 0 and Im 0  Im 0.
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The second-stage problem (6.4c)(6.4d)(6.4e) approximates real-time dispatch prob-
lem (6.6) explained in Chapter 6.2.2, even though real-time dispatch operates in 5-15
minute intervals (instead of hourly or half-hourly) and may not include temporal
constraints (6.4e). It uses the forecast of uncontrollable injections (generations and
loads) as parameters in power flow equations in (6.4d). The revised forecast of these
parameters is typically much better when real-time dispatch is computed.

Remark 6.1 (Unit commitment in practice). The unit commitment problem (6.4) is
nonconvex and computationally challenging for large networks. Nonconvexity is due
both to the binary variable ^ and the nonlinear power flow equations. In practice these
nonlinear power flow equations are usually replaced by their linear approximations
such as the DC power flow model (see an example in Chapter 6.4.5). This reduces the
problem to a mixed integer linear program (MILP) and can often be solved within the
available time using branch and bound methods (Chapter 8.5.6) or Benders decomposi-
tion (see Example 8.17 in Chapter 8.5.7). The solution (^⇤,D⇤,G⇤) of the MILP however
may not satisfy the original nonlinear constraints. Typically the nonlinear power flow
model is then used to check if the commitment and dispatch decisions (^⇤,D⇤) will
produce a state G that satisfies operational constraints such as voltage and line limits.
This involves solving nonlinear power flow equations. If operational constraints are
violated, the MILP is modified and the procedure is repeated.

Active e�ort is underway in the R&D community and industry to scale computation
methods for mixed integer nonlinear programs to large networks, so that the OPF
problem (6.4) can be applied in day-ahead markets. See Chapter 9.5 for an example. ⇤

6.2.2 Real-time dispatch

After the on-o� status of generating units and large controllable loads have been
determined by a day-ahead market, a real-time market computes every 5-15 minutes
optimal injection levels of those units that are online. This is the problem of optimal,
or economic, dispatch. While the control, or dispatch, interval C for unit commitment
is typically an hour or half an hour, the dispatch interval C for economic dispatch
is 5-15 minutes. The most common, and simplest, form of the problem computes
an optimal dispatch in each interval without taking into account decisions in future
intervals (except for security constrained economic dispatch studied in Chapter 6.4.4).
We hence fix a control interval and drop the time index C in our notation.

In this subsection we formulate the real-time dispatch problem and discuss causes for
intra-interval imbalance. In the next section we describe frequency control mechanisms
that balance power within a dispatch interval.

OPF formulation. Consider a set of buses # and assume there is a generator or
controllable load at each bus 9 2 # . Let D := (D 9 , 9 2 #) denote the complex control-
lable injections, + := (+ 9 , 9 2 #) the voltage phasors, and ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
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the complex line flows. We call D a dispatch and G := (+ ,() a network state. They are

complex vectors of appropriate sizes. Let f :=
⇣
f9 , 9 2 #

⌘
be given complex uncon-

trollable injections. For real-time dispatch the objective function 5 (D,G) may represent
fuel cost which may be convex quadratic in real power generation:

5 (D,G) =
’

generators 9

⇣
0 9

�
Re(D 9 )

�2 + 1 9Re(D 9 )
⌘

for some 0 9 � 0, 1 9 � 0.

The relation between the line flows ( :=
�
( 9: , ( 9 , :) 2 ⇢

�
and voltages + :=⇣

+ 9 , 9 2 #
⌘

is specified by the power flow equation

( = ((+) (6.5a)

where we have abused notation to use ( 9: to denote both a line flow and a function of
voltages. For example we can write the line flow ( 9: in terms of + in complex form:

( 9: (+) = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2, ( 9 , :) 2 ⇢

(: 9 (+) = H̄
B

9:

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2, ( 9 , :) 2 ⇢

where (HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
) are series and charging admittances of line ( 9 , :), or

in polar form (see (4.22)):

% 9: (+) =
⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, ( 9 , :) 2 ⇢

& 9: (+) =
⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 � |+ 9 | |+: |

⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, ( 9 , :) 2 ⇢

where (6B
9:

,1B
9:
) and (6<

9:
,1<
9:
) are series and charging admittances of line ( 9 , :)

and \ 9: := \+ 9 � \+: . Similarly for
�
%: 9 (+),&: 9 (+)

�
in the opposite direction on line

( 9 , :). Di�erent power flow equations lead to di�erent OPF formulations with di�erent
computational properties. Then power balance is expressed as2

D 9 +f9 =
’
:: 9⇠:

( 9: , 9 2 # (6.5b)

The most common operational constraints are:

• Injection limits (e.g., generator or load capacity limits):

D
9
 D 9  D 9 , 9 2 # (6.5c)

where D
9
and D 9 are given bounds on the active and reactive injections respectively

at buses 9 .

2 If HB
9:

= HB
: 9

and H<
9:

= H<
: 9

= 0 then we can model the network by a directed graph described by a
node-by-line incidence matrix ⇠. In this case (6.5b) takes the form D + f =⇠(.
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• Voltage limits:

E
9
 |+ 9 |2  E 9 , 9 2 # (6.5d)

where E
9

and E 9 are given lower and upper bounds on the squared voltage magni-

tudes. We assume E
9
> 0 to avoid triviality (in practice |+ 9 |2 ⇡ 1 pu).

• Line limits: Thermal limits can be expressed as upper bounds on the magnitudes of
line currents, on the magnitudes of real and reactive line power, or on the apparent
line power, as:

|( 9: |  ( 9: , |(: 9 |  (: 9 , ( 9 , :) 2 ⇢ (6.5e)

The real-time dispatch problem is then the following constrained optimization:

min
D,G

5 (D,G) s.t. (6.5) (6.6)

where (D,G) := (D,+ ,() 2 C2(#+1+" ) and # +1," are the numbers of buses and lines
respectively. It is solved by the system operator for every control interval (e.g., every 5
minutes). It is what the second-stage problem (6.4c)(6.4d)(6.4e) in unit commitment
approximates, although at a coarser timescale (hourly or half-hourly) and with a less
accurate forecast of uncontrollable injections f in (6.5b). We call D a feasible dispatch
if there exists a network state G such that (D,G) := (D,+ ,() satisfies (6.5). We call Dopt

an optimal dispatch if
�
D

opt,Gopt� := (Dopt,+opt,(opt) is an optimal solution of (6.6) for
some network state Gopt. The key parameter of (6.6) is the uncontrollable injection f in
(6.5b). We often abuse notation and write Dopt (f) for an optimal dispatch as a function
of f. We also say that the optimal dispatch Dopt (f) is driven by f.

The interpretation of an optimal (Dopt,Gopt) is that the controllable generators and
loads will produce and consume according to the dispatch command Dopt from the
system operator. The injection Dopt will drive the voltage +opt and line flow (

opt on
the network to a solution of the power flow equations (6.5a)(6.5b) that satisfies the
operational constraints (6.5c)(6.5d)(6.5e). In particular this should guarantee power
balance at all points of the network given an uncontrollable injection f. The reality is
more complicated as we will see below.

Remark 6.2. We have assumed without loss of generality that there is at most one
controllable generator or load at each bus with injection D 9 . It is straightforward to
extend to the case where there are multiple generators and loads at buses 9 (see
Example 4.1 of Chapter 4.1.2 for details). If there is no controllable injection at bus 9
then we can set D

9
= D 9 = 0 or remove D 9 as an optimization variable. ⇤

Remark 6.3 (Economic dispatch in practice). The nonlinearity of power flow equa-
tions (6.5a) makes the real-time dispatch problem (6.6) nonconvex and the standard
economic theory inapplicable. Most markets today adopt a linear approximation of
(6.5a), e.g., the DC power flow model together with methods to determine reactive
injections, to compute electricity prices together with a candidate dispatch D. This
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problem is usually called DC OPF or economic dispatch.3 Given a candidate dispatch
D from an economic dispatch problem a system operator may check using AC power
flow equations (6.5a)(6.5b) whether the resulting network state G := (+ ,() satisfies the
operational constraints (6.5c)(6.5d)(6.5e), i.e., whether (D,+ ,() is feasible for (6.6). If
it is, then the system operator may price electricity according to a dual optimal solution
of the economic dispatch problem and dispatch D. Otherwise the system operator may
adjust the parameters of economic dispatch and repeat the cycle. Even though this
procedure may not produce an optimal solution of (6.6) it avoids the complication of
nonconvex pricing. (We will study electricity pricing in Chapter 6.4.) ⇤

Intra-interval imbalance. Suppose the uncontrollable injection (vector) f :=
(f(C), C 2 R+) is a continuous-time stochastic process with the mean process <(C) :=
⇢f(C). This can model wind or solar generation or inelastic demand. A realization
f(b) := (f(b, C), C 2 R+) of the process is indexed by b associated with a probability
space, though we may omit b and use f or f(C) to refer to a realization when there is
no risk for confusion. For each realization b and time C � 0 let D (f(b, C)) denote an
actual injection that can maintain power balance at all points of the network at time
C. For instance D (f(b, C)) is an optimal dispatch driven by the realization f(b, C), i.e.,
there exists a network state G (f(b, C)) such that (D (f(b, C)) ,G (f(b, C))) is an optimal
solution of the (deterministic) problem

min
(D,G):=(B,+ ,()

5 (G) s.t. (6.5a)(6.5c)(6.5d)(6.5e) (6.7a)

D 9 +f9 (b, C) =
’
:: 9⇠:

( 9: , 8 9 (6.7b)

It is of course impractical to compute such an optimal dispatch for each realization
b at each time C � 0. Moreover the power flow model in (6.7) describes the steady
state behavior and is not suitable for analyzing fast dynamics required for correcting
intra-interval imbalances. For this we study dynamic models in Chapter 6.3.

Instead, a dispatch is computed by the real-time market in each discrete time period
=X, = = 0,1, . . . , where X is the duration of each control interval, e.g., X = 5 minutes.
Suppose the system operator’s dispatch for the =th control interval is an optimal solution
D

opt (<̂(=)) of (6.6), or its linear approximation, driven by a certain forecast <̂(=) of
the uncontrollable injection f(b, C) over the interval. The imbalance at time C is then
the di�erence between the injection required for power balance and the operator’s
dispatch:

�D(b, C) := D (f(b, C))� Dopt (<̂(=)) , C 2 [=X, (=+1)X), = = 0,1, . . . (6.8)

In Exercise 6.2 we describe an error model in which this imbalance decomposes into
three types of errors:

�D(b, C) = �1 (b, C) +�2 (C) +�3 (b, C)
3 In the literature, economic dispatch usually refers to the special case of DC OPF where line limits are

ignored (i.e., formulation (6.22) without the constraint (6.22c)), but we do not make this distinction.
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where �1 (b, C) is a random error, �2 (C) a discretization error and �3 (C) a prediction
error. In this error model, the mean random error ⇢�1 (C) = 0, the time average of the
discretization error �2 (C) is zero over each control interval, and the mean prediction
error ⇢�3 (C) is small if the mean process <(C) is slowly time-varying. In particular if
f is stationary then ⇢�3 (C) = 0.

The imbalance �D(b, C) is corrected by frequency control. The operator dispatch
D

opt (<̂(=)) is not the actual power injection but provides setpoints for controllable
generators and loads for the =th control interval. While these setpoints D̂(=) are up-
dated every control interval (5-15 minutes), frequency control operates continuously
to determine the actual power injection and maintain system frequency around its
nominal value. We study frequency control in Chapter 6.3 using a dynamic model that
includes fast timescale dynamics and feedback control.

Before that, we first discuss how to handle large imbalances due to contingency
events such as generator or line outages.

6.2.3 Security constrained OPF

Power system security refers to the ability to withstand large disturbances. The small
random imbalances are handled by real-time optimal dispatch and frequency control
mechanisms discussed in Chapters 6.2.2 and 6.3 respectively. In this section we ex-
plain techniques to handle large disturbances due to contingency events such as the
unanticipated loss of a bulk generator or wind or solar farm, the switching on or o�
of a large industrial load, or the outage of a transmission line or transformer in the
transmission network.

Contingency events are rare but their potential impacts are large. North American
Electric Reliability Corporation’s (NERC) # �1 rule states that the outage of a single
piece of equipment (e.g., generator, line, transformer) should not result in flow or
voltage limit violations. As volatile generation from wind and solar farms continues to
displace thermal generators, a large deviation of such nondispatchable generation from
its predicted value may also count as a contingency event in the future. For instance
the random generation can be modeled as taking one of a finite number of values, each
triggering a contingency response if it di�ers significantly from its predicted value.

Secure operation is achieved through three main mechanisms: (i) analyze credible
contingencies that may lead to voltage or line limit violations, (ii) account for these
contingencies in optimal commitment and dispatch schedules, and (iii) monitor system
state in real time and take corrective actions when a contingency occurs. We summarize
each of these functions.

Contingency analysis. When a generator or load contingency occurs the resulting
power flows might violate line limits and lead to transmission outages where trans-
mission lines or transformers are disconnected. If reserve capacity is insu�cient to
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re-balance generation and demand, frequency excursion will continue which can dis-
connect other generators to protect them from damage, potentially leading to involun-
tary load shedding and even system collapse. When a transmission line or transformer
is disconnected power flows in the network will redistribute and line limits can be vio-
lated, potentially leading to cascading line outages. Furthermore a transmission outage
can result in reactive losses in the network which can suppress voltage magnitudes,
leading to voltage violations.

The impacts of these contingency events can be assessed by solving AC power flow
equations that describe the network state after each contingency. Currently this set of
post-contingency equations are solved in the industry mostly using Newton-Raphson
or the decoupled power flow methods because they have good speed and convergence
properties. Due to the large number of contingencies that must be assessed in order
to satisfy # � : security for : � 1, it is a common practice to first use the DC power
flow model to quickly screen contingencies and select a much smaller subset that
result in voltage or line limit violations for more detailed analysis using the AC
power flow model, especially for contingency scenarios where voltage magnitudes
and reactive flows are important. For instance the DC power flow model can quickly
estimate incremental line flow changes due to a contingency from the pre-contingency
operating point determined by the AC power flow model, through the use of pre-
computed quantities called the power transfer distribution factor and the line outage
distribution factor. Contingency scenarios in which line or voltage limits are violated are
called credible contingencies. (Chapter 9.5.3 presents some techniques for contingency
screening for industrial-scale security constrained AC OPF.)

Security constrained dispatch and commitment. The credible contingencies that
have been identified in contingency analysis are taken into account in day-ahead (e.g.,
12–36 hours) unit commitment and real-time (e.g., 5–15 minutes) dispatch as well as
automatic generation control (seconds to minutes). Capacities are reserved for normal
operation (regulation and load-following reserves) and for contingencies (contingency
reserves).

There are two approaches to account for credible contingencies in scheduling dis-
patch. The preventive approach augments the optimal dispatch problem studied in
Chapter 6.2.2 with additional constraints so that the network state under the optimal
dispatch will satisfy operational constraints even after contingency events. This allows
the dispatch to remain unchanged until the next real-time dispatch period even if a
contingency occurs in the middle of the current period. The intra-period imbalance
due to contingency will be handled by the frequency control mechanisms studied in
Chapter 6.3. The corrective approach, on the other hand, will compute in advance
optimal dispatches both for normal operation and after each contingency event. This
allows the system operator to dispatch a response immediately after a contingency is
detected without having to wait till the next dispatch period. Both approaches can be
formulated as security constrained OPF problems, as we will see below.
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System monitoring. A system operator’s energy management system collects and
processes measurements of voltages, currents, line flows, and the status of circuit
breakers and switches at all transmission substations. Other measurements such as
frequencies, generator outputs, and transformer tap positions are also measured at var-
ious locations of a transmission network, e.g., using phasor measurement units. These
measurements are used for state estimation (Chapter 7.1), real-time dispatch (Chap-
ter 6.2.2), and automatic generation control (Chapter 6.3), among other applications.
Based on these measurements the system can be classified as in a normal state, in an
emergency state, or in a restoration state after a contingency, with default actions in
each of these states.

Security constrained OPF. We contrast the preventive and the corrective approaches
to handling contingencies using the real-time dispatch problem of Chapter 6.2.2 as an
example. These approaches can also be applied to unit commitment; see Chapter 6.4.5.
Security constrained OPF are used in both control and market applications.

The real-time dispatch problem (6.6) without security constraints takes the form:

min
(D0,G0)

50 (D0,G0)

s.t. 60 (D0,G0) = 0, ⌘0 (D0,G0)  0 (6.9)

It serves as the base or pre-contingency case. Here D0 is a vector representing controls
such as real power injections of controllable generators and loads, generator voltage
magnitudes, transformer tap positions, G0 is a vector representing the network state
such as bus voltage magnitudes and angles at load buses, 60 (G0,D0) represents linear
or nonlinear power flow equations, and ⌘0 (G0,D0) represents operational constraints
such as voltage and line flow limits, all in the base case.

Let credible contingencies be indexed by : = 1, . . . , . After a contingency : , the
dispatch D0 remains unchanged in the short term (e.g., 1–5 mins). The network state
however changes immediately from G0 to a new system state G̃: determined by the post-
contingency network and frequency control actions. The choice of pre-contingency
dispatch D0 can take the new network state into account, in three ways.

Some operational constraints such as thermal limits may be temporarily relaxed
immediately after the contingency, provided corrective actions will be implemented
quickly. A preventive approach chooses D0 so that emergency operational constraints
in the short term are satisfied before corrective actions take e�ect. Let 6̃: denote the
power flow equations for the post-contingency network, and ⌘̃: models the emergency
operational constraints after contingency : . The pre-contingency control D0 and the
post-contingency network state G̃: in the short term must satisfy:

6̃: (D0, G̃: ) = 0, ⌘̃: (D0, G̃: )  0, : = 1, . . . , (6.10)

A preventive security-constrained OPF (SCOPF) problem chooses an optimal con-
trol decision D0 that will remain secure after each contingency : = 1, . . . , , before
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corrective actions are implemented, i.e., it is of the form

min
(D0,G0, G̃: ,:�1)

50 (D0,G0) s.t. (6.9)(6.10)

In the corrective approach a new dispatch D: is applied after contingency : . In
addition to changes in injections, the corrective control D: may also include changes to
network topology such as line switching or circuit breaker actions. These changes are
captured in new power flow equations 6: . While 6̃: in (6.10) is determined only by the
contingency, e.g., a line or generator outage, 6: may include topology changes as part
of the corrective control. The operational constraints, modeled by ⌘: , are generally
di�erent from the pre-contingency constraints ⌘0 and the emergency constraints ⌘̃:
immediately after contingency : . Besides constraints such as voltage and line limits
under control D: , ⌘: may also include constraints due to capacity reserves (see Chapter
6.4). The corrective control D: and the resulting network state G: therefore must satisfy

6: (D: ,G: ) = 0, ⌘: (D: ,G: )  0, : = 1, . . . , (6.11a)

Often the corrective control D: is constrained to be close to the base control D0, e.g.,
because of limited ramp rates d: of large generators or loads:

kD: �D0k  d: , : = 1, . . . , (6.11b)

Then a corrective SCOPF takes the form

min
(D: ,G: ,:�0)

’
:�0

F: 5: (D: ,G: ) s.t. (6.9)(6.11) (6.12)

where 5: are costs that can depend on the contingency and F: � 0 are nonnegative
weights, e.g., the probability of contingencies : .

This corrective approach ignores the emergency constraints (6.10) and assumes the
system will ride through the small delay between the time a contingency occurs and
when the corrective control D: takes e�ect. This allows more flexibility in the base
control D0 and lowers the cost of normal operation. A more secure and potentially more
costly approach will impose both the emergency constraints as well as constraints on
the corrective control:

min
(D: ,G: ,G̃:+1,:�0)

’
:�0

F: 5: (D: ,G: ) s.t. (6.9)(6.10)(6.11)

6.3 Frequency control

The power delivered by a thermal generator is determined by the mechanical power
output of a prime mover such as a steam turbine or water turbine. The output level is
controlled by opening or closing valves that regulate steam or water flow. For example
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if the load increases the valve of a generator must open wider to increase the generated
power. When there is excess supply the rotating machines in bulk generators will speed
up and the system frequency will rise. When there is a shortage the rotating machines
will slow down and the system frequency will drop. If power is not re-balanced by
adjusting generators or flexible loads, frequency excursion will continue which can
disconnect generators to protect them from damage, potentially leading to involuntary
load shedding and even system collapse. Frequency deviation from its nominal value
is used as a control signal for generators and controllable loads that participate in
frequency control to adjust their power.

Frequency control, also referred to as automatic generation control, consists of
three mechanisms operating at timescales from seconds to minutes. A generating unit
that participates in the primary control, also called droop control, uses a governor to
automatically adjusts the mechanical power output of a turbine in proportion to its
local frequency deviation. Primary frequency control is decentralized. It rebalances
power and stabilizes the frequency to a new equilibrium value in 30 seconds or so.
The secondary control adjusts generator setpoints around their dispatch values in order
to restore system frequency to its nominal value within a few minutes, e.g., up to 10
minutes after a contingency event. In an interconnected power system consisting of
multiple balancing areas, each managed by a single operator, the secondary control
additionally restores interchanges of tie-line power between areas to their scheduled
values. The adjustments are determined centrally within each area based on real-time
measurements of tie-line flow deviations. The dispatched setpoint and scheduled tie-
line flows are determined by the tertiary control that operates on a timescale of 5–15
minutes. They are chosen to attain economic e�ciency as well as restoring the reserve
capacities deployed in primary and secondary control so that they are available for
contingency response. This is typically determined by solving a real-time dispatch
problem as discussed in Chapter 6.2.2 and in Chapters 6.4 and 6.4.4 in the context of
electricity pricing.

We now present a linear dynamic model of the primary and secondary control
that clarifies the relation between system operator’s dispatch D

opt (<̂(=)) for each
interval and the actual (active) power generation. A description of the physical system,
including a generator, a turbine-governor system, a frequency control system, and a
voltage control system, as well as their detailed models, are beyond the scope of this
book. Our goal in this section is to use a simple model to connect real-time dispatch
studied in Chapter 6.2.2 with its realization at a fast timescale.

6.3.1 Assumptions and notations

Consider a control interval [=X, (=+1)X) for which the tertiary control has determined
an optimal dispatch Dopt (<̂(=)) with the associated network state G(=) including sched-
uled tie-line flows. We assume that the primary and secondary control converges on a
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much faster timescale than X so that the dispatch remains unchanged and serves as the
operating point for our incremental model below. We fix a random realization b of the
uncontrollable injection f(b, C). The dynamic model is deterministic with this fixed
realization. We hence omit the indices = and b in the rest of this section.

We make several simplifying assumptions:

• There is a synchronous generator at each bus that determines the frequency dynam-
ics at the bus. This assumption is only to simplify exposition and can be removed.

• Voltage regulation operates at a faster timescale so that voltage magnitudes |+ 9 |
are fixed for the analysis of frequency control. The e�ect of voltage regulation can
be incorporated into the inertia constant " and damping constant ⇡ of (the rotor
angle transfer function of) the generator; see below.

• The rotor angles, the internal and terminal (bus) voltage phase angles of generators
swing together, i.e., the deviations of these angles from their operating points are
equal at all times.

• The lines are lossless, i.e., their shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
are zero and series

admittances are inductive HB
9:
= i1 9: with 1 9: < 0.

With these assumptions our dynamic model focuses on how active power in generating
units change the voltage angles and their derivatives, i.e., frequencies. It makes similar
assumptions to those in the DC power flow model. In fact the DC power flow describes
the steady state of the dynamic model.

The tertiary control (i.e., the real-time dispatch in Chapter 6.2.2) determines active
power dispatch D0

9
for the generators and the associated voltage angles \0

9
and active

line flows %0
9:

driven by estimates f0
9

of uncontrollable real power injections. They
define the operating point around which we linearize our dynamic model. In particular
they satisfy power balance:

D
0
9
+f0

9
=

’
:: 9⇠:

%
0
9:

, 9 2 #

Define the following variables and their perturbations around the operating point:

• D 9 (C) denotes the setpoint of generator 9 at time C. Let �D 9 (C) := D 9 (C)�D0
9

denote

the adjustment to the optimal dispatch D0
9
. The adjustment will be computed by the

secondary frequency control.
• \ 9 (C) denotes the (terminal) voltage angle at bus 9 at time C, relative to a rotating

frame of the operating-point frequency l
0 (which is expected to be close but

not necessarily equal to the nominal frequency), i.e., the instantaneous voltage is
E 9 (C) =

p
2|+ 9 | cos

�
l

0
C + \ 9 (C)

�
. Define the incremental angle �\ 9 (C) := \ 9 (C)�\0

9
.

• l 9 (C) denotes the voltage frequency at bus 9 defined to be the derivative of the
phase angle l0

C + \ 9 (C), i.e., l 9 (C) = l0 + §\ 9 (C). Hence the frequency deviation
�l 9 (C) := l 9 (C)�l0

9
satisfies �l 9 (C) = � §\ 9 (C).
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dynamics of the incremental variables �\ 9 , �l 9 , etc. In the following we will describe
dynamic models for the turbine-governor and the generator in Figure 6.1, leading to
Figure 6.4.

6.3.2 Primary control

Turbine-governor model A second-order model of the turbine-governor with droop
control is:

)6 9 §0 9 = �0 9 (C) +D 9 (C)�
�l 9 (C)
A 9

, 9 2 #

)C 9 §?"9 = �?"
9
(C) + 0 9 (C), 9 2 #

where the states 0 9 (C) and %"
9
(C) are the valve position and mechanical power output of

the turbine respectively. The parameters)6 9 is the governor time constant and)C 9 is the
turbine time constant of generator 9 . The constant A 9 is called a regulation constant or
a droop constant. The term �l 9 (C)/A 9 increases the valve position when the frequency
drops below l

0 and decreases it otherwise. This is referred to as the droop control
or the primary frequency control. This model makes several simplifying assumptions,
e.g., it ignores the saturation of the valve position 0 9 (C), but is reasonable when the
frequency deviation �l 9 (C) is small.

We define
⇣
0

0
9
,%"0

9

⌘
to be the equilibrium point, defined by §0 9 = §?"

9
= 0, when

frequency deviations �l 9 (C) = 0 and setpoint D 9 (C) = D0
9

is the optimal dispatch, i.e.,

?
"0 = 0

0
9
= D

0
9
, 9 2 #

Then the incremental variable
⇣
�0 9 ,�%"

9

⌘
:=

⇣
0 9 � 00

9
, %"

9
�%"0

9

⌘
satisfies the same

equations:

)6 9� §0 9 = ��0 9 (C) +�D 9 (C)�
�l 9 (C)
A 9

, 9 2 # (6.14a)

)C 9� §?"9 = ��?"
9
(C) +�0 9 (C), 9 2 # (6.14b)

This incremental model is what we will use. The block diagram representation of
(6.14) is in Figure 6.2.

As we will see in Chapter 6.3.3 the setpoint adjustment �D 9 (C) is changed by the
secondary control at a much slower timescale (several minutes) than that of the primary
control (approximately 30 secs). Hence a quasi steady-state of (6.14) is defined by
a constant value of the setpoint adjustment �D 9 (C) = �D 9 . In this steady state, the
frequency deviation �l⇤

9
is generally nonzero and the incremental mechanical power

output �?"⇤
9

is related to the frequency deviation by

�?"⇤
9

= �0⇤
9
= �D 9 �

1
A 9

�l⇤
9
, 9 2 #
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9 and the adjustment �D 9 (C) to the dispatch setpoint. Since the secondary control that
updates the setpoint operates at a much slower timescale than the primary frequency
control timescale, we can understand the behavior of the (quasi) steady state of the
primary control by assuming a constant setpoint adjustment �D 9 (C) = �D 9 .

Consider then a step disturbance in the uncontrollable injection where �f9 (C)
changes at time C = 0 from 0 to a constant value �f9 . We say that G

⇤ :=�
�l⇤,�%⇤,�\⇤,�0⇤,�?"⇤

�
is an equilibrium point of (6.16) driven by the step change

�f and constant setpoint �D 9 if, at G⇤,

� §l 9 = � §0 9 = � §?"
9

= 0, 9 2 #

We do not require � §\ = 0 in the definition of equilibrium point. Indeed � §\ is generally
nonzero when primary control converges. Recall the bus-by-line incidence matrix ⇠
defined by:

⇠ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 # , ; 2 ⇢

The next result calculates the equilibrium frequency and line flows (its proof is left as
Exercise 6.3). It motivates secondary control discussed in Chapter 6.3.3.

Theorem 6.1 (Steady state of primary control). Suppose the network is connected. If
G
⇤ is an equilibrium point of (6.16) driven by a step changes �f and constant setpoints
�D then:

1. Local frequency deviations converge to a new value equal to the total disturbance
divided by the system damping:4

�l⇤
9
= �l⇤ :=

Õ
:
(�D: +�f: )Õ
:
(⇡: +1/A: )

, 9 2 #

2. Line flow deviations converge to

�%⇤ = )⇠
)

!
† (�D +�f��l⇤3)

where ) := diag()9: , ( 9 , :) 2 ⇢), !† is the pseudo inverse of the Laplacian matrix
! := ⇠)⇠) , and 3 := (⇡ 9 +1/A 9 , 9 2 #).

Remark 6.5. 1. Intuitively the larger the disturbance or the smaller the system damp-
ing, the larger will frequency deviation �l⇤ be. Theorem 6.1 clarifies precisely
the simple relationship among them. Droop control A 9 adds to the system damping
and reduces frequency deviation.

2. The theorem says that frequency can be restored to the operating-point value, i.e.,
�l⇤ = 0, only if we change the setpoints so that the total setpoint changes cancel

4 We abuse notation to use �l⇤ to both denote a scalar and the vector whose entries are all �l⇤. The
meaning should be clear from the context.
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out the total disturbances ’
:

(�D: +�f: ) = 0

3. To restore all line flows, i.e., �%⇤ = 0, requires canceling disturbances locally at
each bus,

�D: +�f: = 0, : 2 #

⇤

The next example illustrates a benefit of interconnecting multiple areas.

Example 6.1 (Interconnected system). Consider # +1 balancing areas each modeled
as a single bus. Suppose �D 9 = 0 for all areas 9 and that there is a step change of
the uncontrollable injection where �f9 (C) changes at time 0 from 0 to a value �f9 .
Suppose �f9 are independent random variables with mean �f̄9 and variance a2

9
. Show

that it is advantageous to operate these balancing areas as an interconnected system.

Solution. We will compare the equilibrium frequency deviations �l⇤ using Theorem
6.1 after the primary frequency control has converged when the balancing areas operate
independently and when they are interconnected.

Suppose these buses are not connected (i.e., balancing areas operate independently).
Then the equilibrium frequency deviation in each area 9 is

�l⇤
9
=
�f9
3 9

, 9 2 #

where 3 9 := ⇡ 9 +1/A 9 with mean �f̄9/3 9 and variance a2
9
/32

9
.

Suppose on the other hand that these buses are connected (i.e., balancing areas are
interconnected). Then the equilibrium frequency deviation for the entire interconnected
system is

�l⇤ =

Õ
9
�f9Õ
9
3 9

=
1

# +1

’
9

�f9
3̂

where 3̂ :=
Õ
9
3 9/(# +1) is the average system damping. Define the average mean and

variance of �f9 respectively:

�f̂ :=
1

# +1

’
9

�f̄9 , â
2 :=

1
# +1

’
9

a
2
9

Then the mean and variance of �l⇤ are respectively

mean (�l⇤) =
�f̂

3̂

, var (�l⇤) =
1

# +1
â

2

3̂
2

The simple case when the random variables �f9 are i.i.d. (independently and
identically distributed) with mean �f̄1 and variance a2

1. Suppose also 3 9 = 31 for all 9 .
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Then �f̂ = �f̄1, â2 = a2
1, and 3̂ = 31. Hence the mean of the interconnected system is

the same as that of each area in independent operation, but the variance is reduced by a
factor of # +1. The bigger the interconnection, i.e., larger # , the smaller the variance
in equilibrium frequency deviation �l⇤. ⇤

6.3.3 Secondary control

The first objective of the secondary control is to restore system frequency, i.e., to drive
�l(C) to zero. The second objective is to restore line flows to their scheduled values,
i.e., to drive �%(C) to zero. This is less important and sometimes not pursued for an
island system managed by a single operator. In an interconnected system consisting
of multiple areas managed by separate operators the interchanges of tie-line power
between areas often have financial implications. Such a system usually operates under
the principle that (i) each area absorbs its own load changes, and (ii) scheduled tie-line
flows are maintained. If each bus in (6.16) models an entire area this requires driving
�%(C) to zero.

Theorem 6.1 suggests that the objectives of the secondary control can only be
achieved by adjusting the setpoints D(C) of the generators to cancel the disturbances
(see Remark 6.5). Suppose each bus 9 in (6.16) represents an area and the setpoint
adjustment �D 9 (C) represents an aggregate adjustment that will then be shared by all
generators in area 9 that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow
deviations:

ACE 9 (C) :=
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C), 9 2 #

where V 9 > 0 is called a frequency bias setting. The setpoint adjustment �D 9 (C) inte-
grates ACE 9 in order to drive it to zero:

� §D 9 = �W 9 ©≠
´
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C)™Æ
¨

, 9 2 # (6.17)

The computation (6.17) requires real-time measurement of tie-line flow deviations
�% 9: (C) with all neighboring areas : . This information is sent to area 9’s system
operator which centrally computes the aggregate adjustment �D 9 (C) for the entire
area using (6.17). It then dispatches in real time setpoint adjustments U 98�D 9 (C) with
U 98 � 0 and

Õ
8
U 98 = 1 to participating generators 8 in area 9 . The weights U 98 are called

participation factors.

In summary the primary and secondary frequency control in area 9 is modeled by
the system (6.16)(6.17). It is driven by the uncontrollable injection �f9 (C) and consists
of two feedback control mechanisms, the droop control with regulation parameter A 9
and setpoint adjustment based on ACE 9 (C). Its block diagram is shown in Figure 6.5.
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3. Disturbances are compensated for locally at each bus �D⇤ +�f = 0.

6.4 Pricing electricity and reserves

In previous sections we focus on control mechanisms to balance power at timescales
from subseconds to a day. The day-ahead and real-time markets determine not only
generation schedules, but also electricity prices. In this section we derive properties of
electricity prices and show that they incentivize optimal dispatch, even in contingencies.

6.4.1 Review: DC power flow model

Consider a power network modeled by the DC power flow model summarized here
(see Chapter 4.6.2 for details). The network is represented by a connected graph
⌧ = (# ,⇢) of # +1 nodes and " := |⇢ | lines where # := {0}[# , # := {1,2, . . . ,#}
and ⇢ ✓ # ⇥# . We assume there are no self-loops, i.e., ( 9 , 9) 8 ⇢ for any 9 2 # . We
endow the graph with an arbitrary orientation and we refer to a line in ⇢ by ( 9 , :),
9 ⇠ : , or 9 ! : interchangeably. With respect to this graph orientation, let ⇠ denote
the (# +1)⇥" incidence matrix defined in (4.14) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Each line ; := ( 9 , :) 2 ⇢ is parametrized by its susceptance 1; > 0. Let ⌫ :=Diag(1; , ; 2
⇢) � 0 be the diagonal matrix of (weighted) line susceptances. The Laplacian matrix
! associated with ⌧ is defined to be

! := ⇠⌫⇠
T (6.19)

The (# +1)⇥ (# +1) Laplacian matrix ! is real symmetric with zero row and column
sums. Since the network is connected, rank(!) = # and its null space is span(1).
Properties of ! are studied in Chapter 4.6.1.

We assume without loss of generality that there is a single controllable unit 9 at each
bus 9 (including multiple units at the same bus is straightforward). Let ? 9 represent the
net real power injections at buses 9 . A unit can be a generator, a load, or a prosumer
that can both generate and consume. We will sometimes call 9 a generator bus if ? 9 > 0
and a load bus if ? 9 < 0, even though the unit at bus 9 can be a prosumer. The real
power flows % on the lines induced by the nodal injections ? are given by

% = ⌫⇠
T
!
†
?

where !† is the pseudo-inverse of the Laplacian matrix !. To simplify notation we
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define the (# +1)⇥" matrix ( that maps line variables to nodal variables:

( := !
†
⇠⌫ such that % = (

T
? (6.20)

The matrix ( has zero row sums, 1
T
( = 1

T
!
†
⇠⌫ = 0 (Theorem 4.13). It maps line

congestion prices to nodal congestion prices, as we will see in Chapter 6.4.3.2. The
matrix ( or its transpose (T is referred to as a shift factor, an injection shift factor, or
a power transfer distribution factor, because % = (T

? describes how nodal injections
impact line flows. We know from Chapter 4.6.2 that (6.20) is valid if and only if the
injection ? satisfies

1
T
? = 0 (6.21)

In our context this means that supply and demand must be balanced.

6.4.2 Economic dispatch and LMP

As noted in Remark 6.3 a simple OPF problem, called DC OPF or economic dispatch,
is solved every 5-15 minutes using the DC power flow model. We now formulate this
problem and design electricity prices called locational marginal prices.

Let 5 9 (? 9 ) denote the cost function of unit 9 , i.e., 5 9 (? 9 ) models the generation
cost at a generator bus with ? 9 � 0 and � 5 9 (? 9 ) models the utility of consuming
�? 9 � 0 at a load bus. We assume 5 9 are di�erentiable. For a generator 9 , 5 0

9
(? 9 )

represents the marginal cost at production level ? 9 whereas for a load bus, 5 0
9
(? 9 )

represents the marginal utility at consumption level ? 9 . To simplify exposition we
often do not di�erentiate between a generator and a load in which case we will refer
to 5

0
9
(? 9 ) as the marginal cost. Let ?min

9
< ?

max
9

be the generation/consumption limits.

Let ? := (? 9 , 9 2 #) and (?min, ?max) := (?min
9

, ?max
9

,2 #).

Welfare maximization. The problem of economic dispatch is to schedule generation
and consumption levels ? that minimize the total dispatch cost

Õ
9
5 9 (? 9 ) subject to

three constraints. The power must be balanced as required in (6.21). The generation or
consumption levels must respect their capacity limits:

?
min  ?  ?

max

Finally the power flow % 9: on each line 9 ! : 2 ⇢ is directional (i.e, % 9: < 0 means
power flows from buses : to 9). There are line capacity limits %min

9:
< 0 < %

max
9:

in each

direction and the line flows % = (T
? induced by ? must lie within line limits:

%
min  % = (

T
?  %

max



278 System operation: power balance

Economic dispatch is the following problem that chooses ? to minimize the total
dispatch cost subject to capacity limits, nodal power balance, and line limits:

min
?

min??max

’
92#

5 9 (? 9 ) (6.22a)

s.t. 1
T
? = 0 [W] (6.22b)

%
min  (T

?  %max [^�, ^+] (6.22c)

where ( is defined in (6.20). This problem is also called a social welfare optimization.
The dispatch variable ? in (6.22) is called a primal variable. Associated with the scalar
constraint (6.22b) is a scalar dual variable or Lagrange multiplier W 2 R. Similarly,
associated with the pair of vector constraints in (6.22c) is a pair of vector dual variables
or Lagrange multipliers (^�, ^+) 2 R2" . We use ^ to denote the di�erence ^ := ^�� ^+.
When there is no danger of confusion we also use ^ to denote the pair ^ := (^�, ^+)
depending on the context.

Locational marginal price _⇤. Given any dual variable (W, ^) define the (# + 1)-
vector:

_ := _(W, ^) := W1+ (^ 2 R#+1 (6.23)

where ^ := ^� � ^+ and ( := !†⇠⌫. The system operator solves (6.22) to determine an
optimal dispatch ?⇤ and an associated (dual optimal) Lagrange multiplier (W⇤, ^⇤). It
computes _⇤ := _(W⇤, ^⇤) based on the Lagrange multiplier. The vector _⇤ is called a
locational marginal price (LMP) or nodal price (vector), and used to price electricity:
a generator that provides ? 9 > 0 amount of electricity will be paid _⇤

9
? 9 by the system

operator and a load that consumes �? 9 > 0 amount of electricity will pay �_⇤
9
? 9 to

the system operator. Besides setting the energy prices _⇤, in many North American
markets, the system operator also makes binding dispatch decisions, i.e., unit 9 will be
required to generate/consume the amount ?⇤

9
obtained from the socially optimal ?⇤.

In other markets, however, units may make their own injection decisions ? and pay
the LMPs _⇤. As we will see these two approaches are equivalent in theory because
the LMP _⇤ is incentive compatible, i.e., it is in the best interest of individual units to
choose the socially optimal injections by setting ? 9 = ?⇤

9
.

KKT condition. We will study basic optimization theory in Chapter 8. As sum-
marized in Chapter 6.1.2, if the cost functions 5 9 are convex and the economic dis-
patch (6.22) has a finite optimal value, then there exist optimal Lagrange multipliers
(W⇤, ^�⇤, ^+⇤) and hence an LMP _⇤ such that a dispatch ?

⇤ is optimal for (6.22) if
and only if ?⇤ and (W⇤, ^�⇤, ^+⇤) satisfy the Karush-Kahn-Tucker (KKT) condition (the
Slater Theorem 8.17 of Chapter 8.3.4):

1. Primal feasibility: ?min  ?⇤  ?max, 1
T
?
⇤ = 0, %

min  (T
?
⇤  %max.

2. Dual feasibility: ^�⇤ � 0, ^+⇤ � 0.
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3. Stationarity:

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if ?
min
9

< ?
⇤
9
< ?

max
9

> _
⇤
9

only if ?
⇤
9
= ?min

9

< _
⇤
9

only if ?
⇤
9
= ?max

9

(6.24a)

4. Complementary slackness:

(^�⇤)T
⇣
(

T
?
⇤
⌘
= 0,

�
^
+⇤�T

⇣
(

T
?
⇤ �%max

⌘
= 0 (6.24b)

As we will see in Chapter 6.4.3 all properties of optimal dispatch ?⇤ and associated
LMP _⇤ are consequences of the DC power flow model represented by (6.19)(6.20)
and the KKT condition (6.24).

Remark 6.6 (Reference buses). The formulation here uses the pseudo-inverse !† of
the Laplacian matrix ! in the shift factor ( := !†⇠⌫, the line flow constraint (6.22c),
and the LMP _⇤ in (6.23). Alternatively one can designate a bus as a reference bus
for injections and prices (slack bus) and a potentially di�erent bus for voltage angles,
obtain a submatrix !̂ of ! that is invertible, and define a reduced shift factor (̂ := !̂�1

⇠̂⌫

in terms of !̂�1. The choice of reference buses does not change the optimal dispatch ?⇤

nor the LMP _⇤ (but can change the Lagrange multiplier W⇤), and seems unnecessary;
see Chapter 6.4.3.4. ⇤

Example 6.2 (Two-bus network). Consider two buses connected by a line with sus-
ceptance 1 so that

⇠ :=


1
�1

�
, ⌫ :=

⇥
1

⇤
(6.25)

At each bus 9 , 9 = 1,2, suppose there are:

• A generator with a strictly convex increasing cost function 5 9 (? 9 ) = 1
22 9 ?

2
9

with
21 < 22 and 0  ? 9  ?max

9
, i.e., generator 1 is cheaper than generator 2.

• A fixed and given load 3 9 > 0.

Let ? := (?1, ?2) and 3 := (31,32).

1. Compute the Laplacian ! and its pseudo-inverse !†.
2. Write down the social welfare optimization (6.22) and the KKT condition (6.24).
3. Compute optimal dispatch ?⇤, LMP _⇤, and the resulting line flow %

⇤.

Solution. The Laplacian and its pseudo-inverse are respectively (Exercise 4.21):

! := ⇠⌫⇠
T = 1


1 �1
�1 1

�
, !

† =
1

41


1 �1
�1 1

�
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The social welfare maximization (6.22) problem is:

min
0??max

2’
9=1

5 9 (? 9 ) (6.26a)

subject to 1
T (?� 3) = 0 [W] (6.26b)

�%max  ⌫⇠
T
!
†(?� 3)  %

max [^�, ^+] (6.26c)

where %max
> 0 is the line limit and the line flow % from buses 1 to 2 is

% := ⌫⇠
T
!
†(?� 3) =

1
2

⇥
1 �1

⇤
(?� 3) =

1
2
((?1� 31)� (?2� 32)) (6.27)

The optimal dispatch ?⇤ and Lagrange multipliers (W⇤, ^�⇤, ^+⇤) are given by the KKT
condition (6.24): primal feasibility, dual feasibility, and

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if 0 < ?
⇤
9
< ?

max
9

> _
⇤
9

only if ?
⇤
9
= 0

< _
⇤
9

only if ?
⇤
9
= ?max

9

(
T (?⇤ � 3⇤)

8>><
>>:

= �%max if ^
⇤
> 0

= %
max if ^

⇤
< 0

2 (�%max,%max) only if ^
⇤ = 0

where ^⇤ := ^�⇤ � ^+⇤ and ( := !†⇠⌫. For simplicity, we will suppose 0 < ?
⇤
9
< ?

max
9

so that 5 0
9
(?⇤
9
) = _⇤

9
.

Without congestion. If (T (?⇤ �3⇤) 2 (�%max,%max), then ^⇤ = ^�⇤ = ^+⇤ = 0 and hence’
9

5
0�1
9

(W⇤) =
’
9

3
⇤
9

which has a unique solution for W⇤ since 5 9 are strictly convex. When 5 9 (? 9 ) = 1
22 9 ?

2
9

the optimal dispatch and LMPs are

W
⇤ =

 ’
9

1
2 9

!�1 ’
9

3
⇤
9
, ^

⇤ = ^
�⇤ = ^

+⇤ = 0, _
⇤
9
= W

⇤

?
⇤
9
=
W
⇤

2 9

=
1/2 9

1/21 +1/22
(31 + 32) , 9 = 1,2 (6.28)

i.e., the generators 9 share the total load 31 + 32 in proportion to their 1/2 9 . Since
21 < 22 we have ?⇤1 > ?

⇤
2 and %⇤ > 0.

With congestion ˜̂⇤ < 0. Suppose ?max
1 � 31 > %

max. Then, since 21 < 22 (generator
1 is cheaper), the line congestion price (optimal Lagrange multiplier) ˜̂+⇤ must be
strictly positive and ˜̂⇤ := ˜̂�⇤ � ˜̂+⇤ < 0. Complementary slackness then implies that
%̃
⇤ = (T ( ?̃⇤ � 3⇤) = %max where %̃⇤ is given by (6.27) and ( ?̃⇤1, ?̃⇤2) is given by (6.28).

Furthermore

_̃
⇤
1 = W̃

⇤ + 1
2

˜̂⇤, _̃
⇤
2 = W̃

⇤ � 1
2

˜̂⇤ (6.29a)
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Therefore 5
0
1 ( ?̃⇤1) = _̃⇤1 < _̃⇤2 = 5

0
2 ( ?̃⇤2) even though ?̃⇤1 may be greater or smaller than

?̃
⇤
2. Since ˜̂⇤ < 0 and

Õ
9
?
⇤
9
=

Õ
9
?̃
⇤
9
=

Õ
9
3 9 , we must have ?̃⇤1 < ?

⇤
1 and ?̃

⇤
2 > ?

⇤
2.

Power balance means

5
0�1
1

�
_̃
⇤
1

�
+ 5 0�1

2

�
_̃
⇤
2

�
= 31 + 32 (6.29b)

Substituting (6.27) into %⇤ = (T ( ?̃⇤ � 3⇤) = %max we have

5
0�1
1

�
_̃
⇤
1

�
� 5 0�1

2

�
_̃
⇤
2

�
= 2%max + (31� 32) (6.29c)

When 5 9 (? 9 ) = 1
22 9 ?

2
9

we have from (6.29b)(6.29c) �_̃⇤ = 1 with

� =

1/21 1/22

1/21 �1/22

�
, 11 := 31 + 32, 12 := 2%max + (31� 32)

Therefore
_̃
⇤
1
_̃
⇤
2

�
=


21 (31 +%max)
22 (32�%max)

�
,


?̃
⇤
1
?̃
⇤
2

�
=


31 +%max

32�%max

�
, %̃

⇤ = %
max

From (6.29a), we have

W̃
⇤ =

1
2
(_̃⇤1 + _̃⇤2) =

1
2
(2131 + 2232� (22� 21)%max)

˜̂+⇤ = 2232� 2131� (21 + 22)%max, ˜̂�⇤ = 0

⇤

6.4.3 LMP properties

We now study properties of an optimal dispatch ?⇤ and the associated LMP _⇤. These
properties are derived from the optimality condition (6.24) for economic dispatch.

6.4.3.1 Competitive equilibrium

Consider the case where the system operator sets prices and allows generators and
loads to freely choose their injections in a way that optimizes their own surpluses.
An important justification for pricing electricity according to LMP is that an optimal
dispatch and LMP (?⇤,_⇤) satisfies the following properties:

1. Market clearing. The supply of equals the demand for power. This is ensured by
(6.22b).

2. Capacity limits. The line flows respect their capacity constraints. This is ensured
by (6.22c).

3. Welfare optimization. The pair (?⇤,_⇤) solves the economic dispatch problem
(6.22) that optimizes social welfare.
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4. Incentive compatibility. Suppose the generators/loads are price takers, i.e., their
bids will not alter the LMP computed by the system operator. Given any generation-
price pair (? 9 ,_ 9 ) at bus 9 , if 9 is a generator it incurs a cost 5 9 (? 9 ) and is paid
_ 9 ? 9 whereas if it is a load it attains a utility � 5 9 (? 9 ) and pays �_ 9 ? 9 . When
presented with the LMP _

⇤
9

it is rational for the unit 9 to choose its level of
production/consumption so as to maximize its surplus, i.e., it chooses ? 9 to solve

max
?

min
9
? 9 ?max

9

_
⇤
9
? 9 � 5 9 (? 9 )

The stationarity condition (6.24a) implies that the socially optimal dispatch ?⇤
9
is a

solution of individual surplus maximization given the LMP _⇤
9
. If unit 9’s injection

limits are not binding, then the LMP _⇤
9
equals its marginal cost 5 0

9
(?⇤
9
) according

to (6.24a); such a unit is called a marginal unit. If _⇤
9
> 5

0
9
(?⇤
9
), then the LMP

exceeds the marginal cost and therefore unit 9 generates at its peak ?
⇤
9
= ?max

9
.

Similarly if the LMP is not su�cient to cover the marginal cost, _⇤
9
< 5

0
9
(?⇤
9
), then

unit 9 generates at its minimum ?
⇤
9
= ?min

9
.

Therefore LMP _⇤ aligns individual optimality with social optimality in that, when
units are paid or charged according to_⇤, their individual surplus-maximizing decisions
?
⇤
9

will coincide with the optimal dispatch the system operator would have chosen to
optimize the social welfare (6.22). For this reason (?⇤,_⇤) is also called a competitive
equilibrium.

6.4.3.2 LMP _⇤ and line congestion price ^⇤

To simplify exposition we do not distinguish between generators and loads, and refer to
5 9 (? 9 ) and 5

0
9
(? 9 ) as costs and marginal costs. The LMP _⇤

9
defined in (6.23) consists

of two components:

_
⇤ := W

⇤
1+ 2⇤ := W

⇤
1+ (^⇤

where ^⇤ := ^�⇤ � ^+⇤ and ( := !†⇠⌫. We will call the first component W⇤ the energy
price (W⇤ is also called the system _), and the second component 2⇤ := (^⇤ the nodal
congestion prices, for the following reasons.

Energy price W⇤. The first component W⇤ is the same at every bus 9 and equals the
LMP if none of the line constraints are binding so that ^�⇤

;
= ^+⇤

;
= 0. In that case

_
⇤
9
= W⇤ = 5

0
9
(?⇤
9
) at all marginal units 9 where their generation capacities are not

binding. If 5 9 are nondecreasing, when the network is not congested, the LMP _⇤
9
� 0

are always nonnegative and the same at every bus. In this case all marginal units 9
produce (consume) at their common marginal costs (marginal utilities) 5 0

9
(?⇤
9
) = W⇤.

More generally, W⇤ = (# + 1)�1 Õ
9
_
⇤
9

is the average LMPs across the network since

1
T
!
† = 0 (Theorem 4.13).
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Line congestion price ^⇤ := ^�⇤ � ^+⇤. To understand the second component 2⇤ of
LMP, we first interpret ^⇤

;
:= ^�⇤

;
� ^+⇤

;
as the line congestion price or shadow price

at ; 2 ⇢ , for two reasons. First it is the marginal value of relaxing the line capaci-
ties (%min,%max): if we denote by 5

⇤ (%min,%max) the optimal value of the economic
dispatch problem (6.22) as a function of (%min,%max) then (see Chapter 8.3.5)

m 5
⇤

m%
min
;

(%min,%max) = ^
�⇤
;

,
m 5
⇤

m%
max
;

(%min,%max) = �^+⇤
;

i.e., ^�⇤
;

is approximately the increase in the optimal dispatch cost 5 ⇤ if the lower line
limit %min

;
is increased (tightened) by 1 unit; and ^+⇤

;
is the reduction in 5

⇤ if %max
;

is increased (relaxed) by 1 unit. These prices (^�⇤
;

, ^+⇤
;
) are nonnegative and at most

one of them can be strictly positive due to complementary slackness. They provide
a valuation for the line capacities (%min

;
,%max
;

) in the sense that each additional unit
of line capacities will reduce the optimal cost 5 ⇤ by (^�⇤

;
, ^+⇤
;
) � 0 respectively. We

therefore refer to both the pair (^�⇤, ^+⇤) and ^⇤ := ^�⇤ � ^+⇤ as line congestion prices.

Second, recall that the line flows are % = (T
?. Since the summands in (6.24b) are

all nonpositive we have

^
�⇤
;

⇣
%

min
;
�%⇤

;

⌘
= 0, ^

+⇤
;

�
%
⇤
;
�%max

;

�
= 0, ; 2 ⇢

Complementary slackness (6.24b) implies that ^⇤
;

is zero if line flow %
⇤
;

is strictly
within its capacity limits (%min

;
,%max
;

). If ^⇤
;
= �^+⇤

;
< 0 then %⇤

;
= %max

;
> 0 reaches the

line capacity in the direction for which %; is defined. If ^⇤
;
= ^�⇤

;
> 0 then %⇤

;
= %min

;
< 0

reaches the line capacity in the opposite direction. Therefore the product �^⇤
;
%
⇤
;

is
always nonnegative at optimality. We will therefore interpret �^⇤

;
%
⇤
;
� 0 as the cost of

carrying line flow %
⇤
;

on line ;.

Nodal congestion price 2⇤ := (^⇤. This leads to the following justification for treat-
ing 2⇤ := (^⇤ as the nodal congestion prices. Since % = (T

?, the shift factor (T = m%

m?

describes the increases in line flows for each additional units of nodal injections. Sup-
pose the injection at bus 9 is increased by �? 9 . This increases the line flow at line
; by ( 9;�? 9 , and thus increases the line congestion cost at line ; by �^⇤

;
(( 9;�? 9 ).

This means that each additional �? 9 of injection at 9 increases the congestion cost
over the network by �Õ

;
( 9;^

⇤
;
�? 9 , or equivalently, each additional �? 9 of withdrawal

(load) at 9 increases the congestion cost over the network by
�Õ

;
( 9;^

⇤
;

�
�? 9 . We can

therefore interpret 2⇤
9
:=

Õ
;
( 9;^

⇤
;

as the nodal congestion price, the price of serving an
additional unit of load from bus 9 . It is in this sense that we say the matrix ( maps the
line congestion price ^⇤ to the nodal congestion price 2⇤.

Negative LMP _⇤
9
< 0. The LMP _⇤

9
= W⇤ + 2⇤

9
is the sum of the energy price and the

nodal congestion price. Since the nodal congestion price 2⇤
9

of serving a load at bus 9
can be positive or negative, the LMP at bus 9 may be negative in which case a load is
paid to consume or a generator pays to produce at bus 9 . In addition to line congestion,
LMP _⇤

9
can also be negative due to generation limits (?min, ?max). In practice it is not
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uncommon for LMP to become negative, e.g., during the day time in California when
there is excess solar generation.

6.4.3.3 LMP _⇤ and merchandizing surplus

The system operator collects a payment _⇤
9
(�?⇤

9
) from every load 9 and pays _⇤

9
?
⇤
9

to
every generator 9 . The residue

MS := �
’
9

_
⇤
9
?
⇤
8
= � (_⇤)T

?
⇤ (6.30)

is called the merchandizing surplus. It is left-over money with the system operator.
Substitute _⇤ = W⇤1+ (^⇤ into (6.30) one obtains (Exercise 6.6):

MS =
�
^
+⇤�T

%
max + (^�⇤)T (�%min) (6.31)

Recall that %min
;

< 0 < %
max
;

on each line ; 2 ⇢ and (^�⇤, ^+⇤) � 0. This means that
every term on the right-hand side of (6.31) is nonnegative. Therefore MS� 0, i.e., the
system operator will not run cash negative. This is called revenue adequacy. Moreover
MS = 0 if and only if ^�⇤

;
= ^+⇤

;
= 0, i.e., if and only if there is no congestion in the

network.

The congestion price (^�⇤
;

, ^+⇤
;
) induces a value ^+⇤

;
%

max
;

+^�⇤
;
(�%min

;
) � 0 on the line

capacity (%min
;

,%max
;

), explained in Chapter 6.4.3.2. This value is called the congestion
rent of line ; 2 ⇢ . The relation (6.31) says that MS is equal to the congestion rent
over the entire network. The MS is therefore also called the congestion rent. Since the
system operator is non-profit the MS is distributed to market participants as financial
transmission rights.

Using ?⇤ = ⇠%⇤ we can also express the MS in terms of optimal line flows %⇤ and
the di�erence in LMP at each end of a line:

MS = � (_⇤)) ⇠%⇤ =
’

9!:2⇢

⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

One might think that % 9: on line ( 9 , :) always flows from the bus with a lower LMP
towards one with a higher LMP, but this is not always the case. Recall that line flows
are directional with a fixed but arbitrary direction and hence if % 9: is defined then %: 9
is not a variable in our model. The summand above consists of the LMP di�erence that
is opposite to the direction in which % 9: is defined. Therefore, on each line 9 ! : ,

if
⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

> 0 then power flows towards the node with a higher LMP, but if⇣
_
⇤
:
�_⇤

9

⌘
%
⇤
9:

< 0 then power flows towards the node with a lower LMP.

6.4.3.4 LMP _⇤ and price reference bus

In the literature a particular bus A is sometimes designated as the price reference bus
or a slack bus where it is assumed that injections ?�A at all other buses can be arbitrary
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and are always balanced by the injection ?A := �1
T
?�A at the price reference bus A .

This is often a bus with a large generator with many lines connecting the bus to the
rest of the grid so local congestion is rare. We still assume bus 0 is the reference bus
for voltage angles, i.e., \0 := 0. The price reference bus A may or may not be bus 0
(we assume A = 0 in Chapter 4.6.2 on the DC power flow model). The DC power flow
equations can be rewritten in terms of the injections ?�A at non-price reference buses.
It is important to keep in mind that this set of equations depends on the choice of
the price reference bus A . We show in Theorem 6.3 below, however, that the optimal
dispatch and LMP (?⇤,_⇤) do not.

To write DC power flow equations in terms of the injections ?�A at non-price
reference buses, let 2T

0 and 2T
A

denote the rows corresponding to the angle reference
bus 0 and the price reference bus A respectively, and⇠�0 and⇠�A denote the remaining
submatrices after removing 2T

0 and 2T
A

respectively form ⇠. We will refer to them as
row 0 and row A , but for convenience they may not appear as the first or Ath row of ⇠,
i.e., we may write ⇠ as (after possibly rearranging/relabeling rows):

⇠ =:

2

T
0

⇠�0

�
=:


⇠�A
2

T
A

�

(Instead of ⇠̂ as in Chapter 4.6.2, we write ⇠�0 here to emphasize the symmetry in
angle and price reference buses.) Rewrite the DC power flow equation (4.55b) as (after
possibly rearranging/relabeling rows):

?�A
?A

�
=


⇠�A
2

T
A

�
%, % = ⌫

⇥
20 ⇠

T
�0

⇤ 
\0

\�0

�
(6.32)

Since \0 := 0 by definition, we have the DC power flow model in terms of (⇠�0,⇠�A ):

?�A = ⇠�A%, % = ⌫⇠
T
�0\�0

yielding the relationship in terms of the # ⇥# matrix !A := ⇠�A⌫⇠T
�0:

?�A =
⇣
⇠�A⌫⇠

T
�0

⌘
\�0 =: !A \�0 (6.33)

The matrix !A can also be obtained from the Laplacian matrix ! :=⇠⌫⇠T by removing
the column of ! corresponding to bus 0 and its row corresponding to bus A . It is not a
principal submatrix of ! unless A = 0 and hence !0 is symmetric but !A is generally not.
While Theorem 4.13 implies that any strict principal submatrix of ! is nonsingular, it
is not applicable to !A .

Assuming !A := ⇠�A⌫⇠T
�0 in (6.33) is nonsingular. Then, given any injections ?�A

at non-reference buses, the line flows are given by

% =
⇣
⌫⇠

T
�0!

�1
A

⌘
?�A =: (T

A
?�A (6.34)

The matrix (A := !�T
A
⇠�0⌫ is also referred to as a shift factor and it depends on the

choice of the price reference bus and the nonsingularity of !A . The line flows %,
however, do not depend on the choice of A , i.e., % = (T

A
?�A = (T

? where ( := !†⇠⌫
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defined in (6.20) (see Exercise 6.7). The expression (6.34) generalizes the expression
% = ⌫⇠T

�0!
�1
0 ?�0 in Lemma 4.14 of Chapter 4.6.2 which assumes that A = 0. We now

show that the economic dispatch (6.22) can be reformulated in terms of !�1
A

instead of
!
†, but that the optimal dispatch and LMP (?⇤,_⇤) turn out to be independent of the

choice of A .

Substituting (6.34) into (6.22), economic dispatch is equivalent to:

min
?

min??max

’
92#

5 9 (? 9 ) (6.35a)

s. t. 1
T
? = 0 [W] (6.35b)

%
min  (T

A
?�A := ⌫⇠T

�0!
�1
A
?�A  %max [^�, ^+] (6.35c)

with associated Lagrange multipliers (W, ^�, ^+) 2 R1+2" with ^� � 0, ^+ � 0. The
di�erence between (6.35) with a price reference bus and (6.22) without is in the line
limit expression (6.35c). Since the line flow % is independent of A , we expect the optimal
dispatch ?⇤ to remain the same; the exact relation between these two formulations are
clarified in Theorem 6.3. Given an optimal Lagrange multiplier vector (W⇤, ^�⇤, ^+⇤),
the LMP is given by

_
⇤ :=


_
⇤
�A
_
⇤
A

�
:= W

⇤
1+


(A ^
⇤

0

�
(6.36)

where ^⇤ := ^�⇤ � ^+⇤. It can be shown that a dispatch ?⇤ and a Lagrange multiplier
(W⇤, ^�⇤, ^+⇤) are optimal for (6.35) and its dual problem if and only if (?⇤,W⇤, ^�⇤, ^+⇤)
satisfies the KKT condition (6.24), with the line flow (

T
?
⇤ in the primal feasibility

condition and the complementary slackness condition (6.24b) replaced by (T
A
?
⇤
�A (the

Slater Theorem 8.17 of Chapter 8.3.4).

The choice of the reference bus A does not a�ect the optimal dispatch or LMP
(?⇤,_⇤), though it may a�ect the values of (W⇤, ^�⇤, ^+⇤). Specifically the next result
implies that a dispatch ?⇤ is optimal for (6.35) with a price reference bus A if and only
if ?⇤ is optimal for (6.22) without designating a price reference bus. Moreover their
associated LMPs are equal. This is a consequence of the key fact that line flows are
independent of A , % = (T

A
?�A = (T

?. See Exercise 6.7 for a proof.

Theorem 6.3 (Arbitrary choice of A). Suppose the cost functions 5 9 are convex (and
hence di�erentiable) so that the KKT condition (6.24) is necessary and su�cient for
optimality for both (6.35) and (6.22). Fix a dispatch ?

⇤. Consider two sets of dual
variables (W⇤, ^�⇤, ^+⇤) and (W̃⇤, ˜̂�⇤, ˜̂+⇤) that satisfy

W̃
⇤ = W

⇤ � BT
A
^
⇤, ˜̂�⇤ = ^

�⇤, ˜̂+⇤ = ^
+⇤ (6.37)

where ^⇤ := ^�⇤ � ^+⇤ and BT
A

denotes row A of ( := !†⇠⌫.

1. Let _̃⇤ := W̃⇤1+ ( ˜̂⇤ and _⇤ be defined in (6.36). Then _̃⇤ = _⇤.
2. The dispatch ?⇤ and (W̃⇤, ˜̂�⇤, ˜̂+⇤) satisfy the KKT condition (6.24) if and only if
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?
⇤ and (W⇤, ^�⇤, ^+⇤) satisfy (6.24) with the line flow (

T
?
⇤ in the primal feasibility

condition and the complementary slackness condition (6.24b) replaced by (T
A
?
⇤
�A .

Theorem 6.3 is illustrated in Exercise 6.9. Its implications are collected in the
following remark.

Remark 6.7 (Theorem 6.3: implications). 1. The shift factor (A := !
�)
A
⇠�0⌫ in

(6.34) with a price reference bus A and ( := !†⇠⌫ in (6.20) without a price
reference bus are related as follows (Exercise 6.7):

(A

0

�
= (�1#+1B

T
A
, (A = [(]�A �1# B

T
A

where BT
A

denotes row A of (, [(]A denotes the submatrix of ( obtained by removing
row A , and 1= is the vector of all 1s of size =. Recall that each row 9 of ( is the
marginal increase in all line flows due to an additional injection �? 9 at bus 9 . By
designating a price reference (slack) bus A, we renormalize the shift factor (A so
that its row 9 is now the marginal increase due to an additional increase at 9 , in
excess of the marginal increase BT

A
due to an additional injection at A . This underlies

the relation (6.37) between the two sets of prices.
2. The LMP _⇤

A
= W⇤ in (6.36) at the reference bus A is generally not the energy price

discussed in Chapter 6.4.3.2, but the average LMP 1
T
_
⇤ (# +1)�1 is; see Exercise

6.8.
3. The main disadvantage of formulating the economic dispatch and LMP with

a designated price reference bus A is that the submatrix !A is not a principal
submatrix of the Laplacian ! and therefore may be singular (unless A = 0, i.e.,
the price reference bus is the same as the angle reference bus). The resulting DC
power flow equations and the shift factor (A will depend on the choice of A and the
nonsingularity of !A . In contrast the DC power flow model (4.55c) in terms of !†

and the shift factor ( in (6.20) do not. Furthermore the LMP _⇤ decomposes into
an energy price W̃⇤ and congestion prices 2⇤ := ( ˜̂⇤, but not in terms of (W⇤, ^⇤) in
(6.36). ⇤

6.4.4 Security constrained economic dispatch

There are two techniques to deal with uncertainties, both discrete uncertainties due
to outages of generators, transmission or distribution lines and transformers, and con-
tinuous uncertainties due to random fluctuations of renewable generations or loads.
The first is to commit and dispatch generation resources or controllable loads to bal-
ance deterministic forecasts of supply and demand and deal with uncertainty through
reserves requirements where a certain amount of generation capacity is set aside to
handle contingencies or random fluctuations of supply and demand; e.g., the total re-
serve amount is greater than the capacity of the largest generator in the system or the
maximum dispatch amount. The second technique is two-stage stochastic optimization
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with recourse where random scenarios are explicitly taken into account in dispatch
decisions, in the form of a security constrained OPF discussed in Chapter 6.2.3. In
this subsection we extend the economic dispatch problem of Chapter 6.4.2 to security
constrained economic dispatch that jointly optimizes energy and reserves for each
scenario.

6.4.4.1 Joint energy and reserve optimization

Suppose the uncontrollable generation and demand are uncertain and take one of  
values (6: ,3: ) 2 R2(#+1)

+ with probabilityF: > 0 such that
Õ
 

:=1F: = 1. Suppose each
unit 9 can decide not just a dispatch ? 9 before (6,3) is realized, but also an adjustment
A: 9 if (6: ,3: ) is later realized so that the actual injection at delivery time is ? 9 + A: 9
in scenario : . Unit 9 must reserve some down and up reserve capacities (Amin

9
,Amax
9

) in
the first stage for its adjustment A: 9 in the second stage so that

A
min
9
 A: 9  A

max
9

, ?
min
9
 ? 9 + Amin

9
 ? 9 + Amax

9
 ?

max
9

, 9 2 # (6.38a)

The first-stage decision consists of the dispatch ? and reserve capacities Amin :=⇣
A

min
9

, 9 2 #
⌘

and Amax :=
⇣
A

max
9

, 9 2 #
⌘
, but this decision must be made taking into

account of the second-stage actions A: := (A: 9 , 9 2 #) for each scenario : = 1, . . . , .
We will formulate this as a two-stage stochastic program with recourse. In a typical
application, this program is solved before (6,3) is realized for both the first-stage
decision (?,Amin,Amax) and the second-stage decisions (A: ,8:) in order to produce an
optimal schedule in advance. After (6,3) is realized, the optimal action A: can then be
applied if (6,3) = (6: ,3: ).

Besides (6.38a) suppose there is also a system-wide reliability requirement on the
reserves (Amin,Amax) imposed by the system operator. For example, a popular reserve
requirement is that the total reserve must be su�cient to cover the outage of the largest
generating unit, i.e.,

Õ
9< 9: A

min
9
� max 9 ?max

8
where 9: := argmax 9 ?max

9
. We assume

the reliability requirement in each scenario : depends only on (Amin,Amax), not on the
dispatch ?, and is separable in 9 , i.e., it is of the form:

⌘: (Amin,Amax) :=
’
9

⌘: 9 (Amin
9

,Amax
9

) � 0 (6.38b)

where ⌘: 9 : R2 ! R. 5 For the example above, ⌘: 9 (Amin
9

,Amax
9

) = Amin
9
� U 9 ?max

9:

for
9 < 9: with U 9 � 0 and

Õ
9< 9: U 9 = 1, i.e., U 9 is the fraction of the largest possible

capacity lost ?max
9:

that unit 9 can provide in scenario : . In general ⌘: 9 (Amin
9

,Amax
9

) can
be positive or negative. The capacity and reserve constraints (6.38a) are decentralized
across 9 , but the systemwide reliability requirement (6.38b) couples their reserve
decisions (Amin

9
,Amax
9

).

5 A less stringent requirement is to have enough reserve to cover the outage of the largest dispatched
generating unit, i.e.,

Õ
9< 9

:

A
min
9
� max 9 ?8 where 9: := argmax 9 ? 9 . The formulation and results here

extend to the case where the dispatch decision ? and the reserve decisions (Amin,Amax) are coupled.
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Suppose the cost for unit 9 to provide ? 9 + A: 9 amount of energy is 5: 9 (? 9 + A: 9 ) if
scenario : materializes. Then the joint energy and reserve optimization, called security
constrained economic dispatch, is the following two-stage optimization with recourse:

min
?,Amin,Amax

 ’
:=1

F:&: (?,Amin,Amax) (6.39a)

s.t. ?
min  ? + Amin, ? + Amax  ?max [U�,U+] (6.39b)

⌘:

⇣
A

min,Amax
⌘

:=
’
9

⌘: 9

⇣
A

min
9

,Amax
9

⌘
� 0 [`: ] (6.39c)

where, for each : = 1, . . . , , &: solves the economic dispatch in scenario ::

&: (?,Amin,Amax) := min
A:

5: (? + A: ) :=
’
9

5: 9 (? 9 + A: 9 ) (6.39d)

s.t. 1
T (? + A: +6: � 3: ) = 0 [W: ] (6.39e)

%
min  (T (? + A: +6: � 3: )  %max [^�

:
, ^+
:
] (6.39f)

A
min  A:  Amax [V�

:
, V+
:
] (6.39g)

The cost in (6.39a) is the expected optimal second-stage cost &: . The constraints
(6.39b)(6.39c) on the first-stage decisions (?,Amin,Amax) do not involve any uncer-
tainty. For each scenario : , the second-stage problem (6.39d)–(6.39f) optimizes the
reserve decision A: in response to the random realization of (6: ,3: ), given a first-
stage decision (?,Amin,Amax). It is the same as economic dispatch (6.22) with reserve
capacity constraints, power balance and line limits.

The second-stage problems &: (?,Amin,Amax) are separable in : . We can therefore
interchange expectation and minimization over A: and write (6.39) as a single-stage
program:

min
?,Amin,Amax

(A: ,:�1)

’
:

F: 5: (? + A: ) :=
’
:

F:

’
9

5: 9 (? 9 + A: 9 ) (6.40a)

s.t. (6.39b)(6.39c)(6.39e)� (6.39g) (6.40b)

Denote the primal and dual variables for (6.40) by

G
⇤ := (?⇤,Amin⇤,Amax⇤,A⇤

:
, : � 1)

b
⇤ := (W: , ^�⇤: , ^+⇤

:
,U�⇤,U+⇤, V�⇤

:
, V+⇤
:

,`⇤
:
, : � 1)

Let ^⇤
:

:= ^�⇤
:
� ^+⇤

:
, U⇤ := U�⇤ �U+⇤, and V⇤

:
:= V�⇤

:
� V+⇤

:
. Define the LMP _⇤

:
for each

scenario : (cf. (6.23)):

_
⇤
:

:= W
⇤
:
1 + (^⇤

:
(6.41)

We assume all functions 5: 9 ,⌘: 9 are real-valued, convex and continuously di�eren-
tiable and the parameters are appropriately chosen such that (6.40) has a finite optimal
value, and the Slater condition is satisfied, e.g., ?min

< ?
max. Then the Slater Theorem



290 System operation: power balance

8.17 of Chapter 8.3.4 implies that optimal Lagrange multipliers b⇤ and hence LMPs
(_⇤
:
,8:) always exist. Moreover a primal-dual feasible (G⇤,b⇤) is primal-dual optimal

for (6.40) if and only if (G⇤,b⇤) satisfies stationarity:

F:r 5: (?⇤ + A⇤: ) = _
⇤
:
+ V⇤

:
,

’
:

`
⇤
:
r⌘:

⇣
A

min⇤,Amax⇤
⌘
= 0, U

⇤ =
’
:

V
⇤
:

(6.42)

complementary slackness for decentralized constraints:

(U�⇤)T
⇣
?

min� ?⇤ � Amin⇤
⌘
= 0,

�
U
+⇤�T (?⇤ + Amax⇤ � ?max) = 0 (6.43a)

�
V
�⇤
:

�T
⇣
A

min⇤ � A⇤
:

⌘
= 0,

�
V
+⇤
:

�T �
A
⇤
:
� Amax⇤� = 0 (6.43b)

and that for coupling constraints (Exercise 6.10):

`
⇤
:
⌘:

⇣
A

min⇤,Amax⇤
⌘
= 0 (6.43c)

(^�⇤)T
⇣
%

min� (T (?⇤ + A⇤
:
+6: � 3: )

⌘
= 0 (6.43d)

�
^
+⇤�T

⇣
(

T (?⇤ + A⇤
:
+6: � 3: )�%max

⌘
= 0 (6.43e)

The stationarity condition (6.42) has three implications. First the probability-weighted
marginal cost F:r 5: is the sum of LMP _⇤

:
plus the “reserve capacity price” V⇤

:
in

the second stage. Moreover the “reserve capacity price” U⇤ in the first stage (which
is independent of scenarios :) is simply the sum of the reserve capacity prices V⇤

:
.

Finally the total marginal reliability cost
Õ
:
`
⇤
:
r⌘:

�
A

min⇤,Amax⇤� is zero. Interestingly
complementary slackness (6.43c) says that the total reliability cost is also zero (we
will return to this point shortly).

6.4.4.2 ICRA settlement rule

For economic dispatch (6.22) without uncertainty, it is desirable to price electricity
using the Lagrange multipliers (W⇤, ^⇤) associated with coupling constraints (power
balance and line limits) because they price the externalities caused by units 9 and
align individual optimality with social optimality (see Chapter 6.4.3). We apply the
same intuition to the two-stage problem (6.40) and design prices using the Lagrange
multipliers associated only with the coupling constraints, power balance (6.39e), line
limits (6.39f), as well as the systemwide reliability requirement (6.39c).

Let (G⇤,b⇤) be a primal-dual optimal solution of (6.40) and _⇤
:

be the LMP defined
in (6.41) for scenarios : . Consider the following settlement rule:

1. Energy prices (scenario-dependent LMP) _⇤
:
/F: : If the scenario : materializes

at delivery time then unit 9 that provides energy
�
? 9 + A: 9

�
is paid by the system

operator the amount _⇤
: 9

�
? 9 + A: 9

�
/F: .

2. Reserve payment
Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
: Regardless of scenario at delivery time,
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unit 9 that provides reserve capacities (Amin
9

,Amax
9

) is paid by the system operator

the amount
Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
.

The settlement rule enjoys three desirable properties:

• Incentive compatible. When unit 9 is faced with the scenario-dependent LMP

_
⇤
: 9
/F: in scenario : and the reserve payment

Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
, it would have

preferred to choose G⇤
9

:= (?⇤
9
,Amin⇤
9

,Amax⇤
9

,A⇤
: 9

, : � 1) that maximizes its expected
profit, i.e., it solves:

max
G 9

’
:

F:

⇣
_
⇤
: 9
(? 9 + A: 9 )/F: � 5: 9 (? 9 + A: 9 )

⌘
+
’
:

`
⇤
:
⌘: 9 (Amin

9
,Amax
9

) (6.44a)

s.t. (6.39b)(6.39g) (6.44b)

The settlement rule is called incentive compatible in expectation if a primal optimal
solution G⇤ of (6.40) also solves the expected profit maximization (6.44) for all units
under the settlement rule. Note that the individual optimization (6.44) relaxes all
coupling constraints but includes all local constraints.

• Revenue adequate. If all units provide their energy and reserves according to a
primal optimal solution G⇤, then the total payment to the system operator in each
scenario : , called the merchandizing surplus, under the settlement rule is:

MS: := �
’
9

1
F:

_
⇤
: 9
(?⇤
9
+ A⇤

: 9
+6: � 3: ) �

’
8

’
9

`
⇤
8
⌘8 9

⇣
A

min
9

,Amax
9

⌘
(6.45)

The settlement rule is called revenue adequate in each scenario : � 1 if MS: � 0.
• Reserve payment balanced. The reserve payments are said to be balanced under

the settlement rule if ’
9

’
:

`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
= 0 (6.46)

This means that those units that need more reliability exactly compensate those
that can provide more reliability.

Theorem 6.4 (ICRA). Suppose 5: 9 ,⌘: 9 are real-valued, convex, and continuously dif-
ferentiable. Let (G⇤,b⇤) be a primal-dual optimal solution of (6.40). Then the settlement
rule is:

• incentive compatible in expectation: G⇤ solves (6.44).
• revenue adequate in each scenario : � 1: MS: � 0 in (6.45).

• reserve payment balanced:
Õ
9

Õ
:
`
⇤
:
⌘: 9

⇣
A

min
9

,Amax
9

⌘
= 0 in (6.46).

The theorem is proved in Exercise 6.11. Indeed the settlement rule is also incentive
compatible in each scenarios : � 1 in the sense that, after the first-stage commitment
(?⇤,Amin,Amax) when the scenario : is realized, A⇤

: 9
from an optimal solution of (6.40)

will also maximize unit 9’s profit in scenario : . The formulation here can be extended to
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allow the network (shift factor () and nodal injection sets to depend on contingencies :
to model outages, or to include additional local constraints, ramp rates, network losses,
reserve costs, and per-area reliability requirements, or to allow reserve constraints
⌘: 9 (? 9 ,Amin

9
,Amax
9

) to depend on both the dispatch decision and reserve decisions.

6.4.5 Security constrained unit commitment

The unit commitment problem (6.4) can be extended to include corrective reserves by
replacing the real-time dispatch problem (6.4c)(6.4d)(6.4e) by a security constrained
OPF similar to (6.40).

For example let the first-stage decisions be the binary commitments D 9 (C) 2 {0,1}
for units 9 in periods C. For each C let FC : denote the probability of scenario : such
that FC : � 0 and

Õ
:
FC : = 1. Let the second-stage decisions be dispatch and reserve

amounts G(C) := (?(C),Amin (C),Amax (C),A: (C), : � 1) for all units in periods C. Security
constrained unit commitment can be formulated as the following problem (cf. (6.4)):

min
D2{0,1}(#+1))

’
C

’
9

2 9C

�
D 9 (C �1),D 9 (C)

�
+ 5

⇤ (D) (6.47a)

s.t. D 9 (C)�D 9 (C �1)  D 9 (g), g = C +1, . . . , [C +up
9
�1]) (6.47b)

D 9 (C �1)�D 9 (C)  1�D 9 (g), g = C +1, . . . , [C +down 9 �1]) (6.47c)

where 2 9C is the commitment cost such as the startup/shut down cost defined in (6.3b)
and reproduced here

2 9C (D 9 (C �1),D 9 (C)) :=

8>><
>>:

startup cost if D 9 (C)�D 9 (C �1) = 1
shutdown cost if D 9 (C)�D 9 (C �1) = �1
0 if D 9 (C)�D 9 (C �1) = 0

(6.47d)

[g]) := min{g,)}, and (6.47b)(6.47c) imposes minimum up/down time once unit 9 is
turned on/o�.

Given a commitment decision D, 5 ⇤ (D) in (6.47a) is the optimal expected security
constrained real-time dispatch cost over the entire optimization horizon (cf. (6.40)):

5
⇤ (D) := min

G (C)

’
C

’
:

FC : 5C : (?(C) + A: (C)) :=
’
C

’
:

FC :

’
9

5C : 9 (? 9 (C) + A: 9 (C))

s.t. ?
min � D(C)  ?(C) + Amin (C), ?(C) + Amax (C)  ?max � D(C) (6.47e)

⌘C :

⇣
A

min (C),Amax (C)
⌘

:=
’
9

⌘C : 9

⇣
A

min
9

(C),Amax
9

(C)
⌘
� 0 (6.47f)

1
T (?(C) + A: (C) +6: (C)� 3: (C)) = 0 (6.47g)

%
min  (

T (C) (?(C) + A: (C) +6: (C)� 3: (C))  %
max (6.47h)

A
min (C)  A: (C)  A

max (C) (6.47i)

|?(C)� ?(C �1) |  ?
ramp (6.47j)
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This problem for each C would have been the same as the security constrained economic
dispatch (6.40) if it were not for two features. First, for two vectors 0 and 1, 0 � 1 in
(6.47e) denotes componentwise product, i.e., (0 � 1) 9 := 0 91 9 . If D 9 (C) = 1 (unit 9
on) then (6.47e) is the same as (6.39b). If D 9 (C) = 0 (unit 9 o�) then (6.47e) forces
? 9 (C) = Amin

9
(C) = Amax

9
(C) = A: 9 (C) = 0. Second the new constraint (6.47j) imposes a

limit ?ramp on ramping of the dispatch ?. Without this ramping constraint, the problem
5
⇤ (D) is decoupled across C and the time-C subproblems can be solved independently

of each other.

The security constrained unit commitment problem (6.47) is a mixed integer linear
program. It can be solved to optimality using branch and bound methods (Chapter
8.5.6) or Benders decomposition (see Example 8.17 in Chapter 8.5.7).

6.5 Chapter summary

1. Many power system operations can be formulated as optimization problems. There
is a hierarchy of mechanisms to balance generation and consumption at all times
and all points in the network. Unit commitment (optimization problem (6.4))
schedules controllable generations and loads a day in advance, real-time dispatch
(optimization problem (6.6)) adjusts the schedule 5-15 minutes before delivery,
and frequency control continuously adjusts the actual generation or consumption
between successive dispatches. The primary frequency control (6.16) operates
on a seconds timescale and synchronizes and stabilizes frequencies to a new
equilibrium (Theorem 6.1). The secondary frequency control (6.18) restores the
operating frequency and tie-line flows between balancing areas (Theorem 6.2).

2. Economic dispatch (6.22) uses the DC power flow model to determine an optimal
dispatch together with electricity prices called locational marginal prices (6.23).
A LMP is the sum of an energy price that is the same at all nodes and a congestion
price that depends on the location of the node. The optimal dispatch and the LMP
form a competitive equilibrium that balances generation and load, maximizes
social welfare, and incentivize the dispatch. The LMP settlement rule is revenue
adequate, i.e., the operator will not run cash negative, and the merchandizing
surplus is positive if and only if there is congestion. Finally the optimal dispatch
and the LMP are independent of a price reference bus.

3. The security constrained economic dispatch (6.39) jointly optimizes energy and
reserves for each contingency scenario. A settlement rule is designed that consists
of scenario-dependent LMPs and reserve payments. It is incentive compatible in
expectation, revenue adequate in each scenario, and reserve payment balanced
(Theorem 6.4).
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6.6 Bibliography
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6.7 Problems

Chapter 6.2

Exercise 6.1 (Unit commitment). For each time C, the minimum up/down time con-
straints (6.3c)(6.3d) add up 9 /down 9 � 1 constraints. To reduce the number of con-
straints, define two additional variables: a 9 (C) = 1 if unit 9 is turned on (from o�) at
time C and 0 otherwise, and X 9 (C) = 1 if unit 9 is turned o� (from on) at time C and 0
otherwise. Express the minimum up/down time constraints in terms of (a 9 (C),X 9 (C))
and ^ 9 (C).

Exercise 6.2 (Imbalance and error model). The optimal dispatch (6.6) is a deterministic
problem driven by a forecast <̂(=) of the random injection f(b, C) that is solved in the
=th control interval.

1. Discuss three types of error: random error �1 (b, C) := D(f(b, C)) � Dopt (<(C)),
discretization error �2 (C) := Dopt (<(C)) � Dopt (<̄(=)) where <̄(=) is the time av-
erage of <(C) over [=X, (= + 1)X), and prediction error �3 (b, C) := Dopt (<̄(=)) �
D

opt (<̂(=)) at each time C 2 [=X, (=+1)X), where <̂(=) is an estimate of <̄(=).
2. Consider a 2-bus network described by the DC power flow model. Bus 1 has an

uncontrollable load f := (f(C), C 2 R+) with mean (<(C), C 2 R+) and bus 2 has
a controllable generator with output level D(C). Suppose the generator and line
capacities are high so that the injection and line limits are never active.
(a) Suppose we use the prediction

<̂(=) := <̂(b,=) :=
1
X

π
=X

(=�1) X
f(b, C)3C, = = 0,1, . . . (6.48)

Show that the imbalance at time C is the di�erence between the actual load at
time C and the time average load over the pervious interval.

(b) Suppose f is a white Gaussian process with mean ⇢f(C) = <(C) and correla-
tion function  (C, C 0) = a2 if C = C 0 and  (C, C 0) = 0 if C < C 0 for C, C 0 � 0. Then,
under appropriate integrability assumptions, F(g) :=

Ø
g

0 f(C)3C is a Wiener
process with the property that non-overlapping increments are independent
Gaussian random variables, i.e., for any C 0 < C  g0 < g, the random variables

F(C)�F(C 0) :=
π

C

C
0
f(B)3B, F(g)�F(g0) :=

π
g

g
0
f(B)3B
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are independent and Gaussian with means
Ø
C

C
0 <(B)3B and

Ø
g

g
0 <(B)3B respec-

tively and variance a2 (C � C 0) and a2 (g� g0) respectively. Derive the various
errors and properties in Table 6.1.

Expression Random Var Mean Variance

Random error �1 (b, C) �f(b, C) +<(C) Gaussian zero a
2

Discretiz. error �2 (C) �<(C) + <̄(=) constant �<(C) + <̄(=) 0
Prediction error �3 (b, C) �<̄(=) + <̂(b,=) Gaussian �<̄(=) + <̄(=�1) a

2/X
Imbalance �D(b, C) �1 (C) +�2 (C) +�3 (C) Gaussian �<(C) + <̄(=�1) a

2 (1+1/X)

Table 6.1 Exercise 6.2: Imbalance and underlying errors.

(c) Verify the following properties: (i) The mean random error ⇢�1 (C) = 0. (ii)
The time average of the discretization error �2 (C) is zero over each control
interval. (iii) The mean prediction error ⇢�3 (C) is small if the mean process
<(C) is slowly time-varying. In particular if f is stationary then ⇢�3 (C) = 0.

Chapter 6.3

Exercise 6.3 (Primary frequency control). Prove Theorem 6.1.

Exercise 6.4 (Secondary frequency control). Prove Theorem 6.2.

Chapter 6.4

Exercise 6.5 (3-bus network). Recall the conversion matrix �T defined in (1.12) and
reproduced here:

�T :=
266664

1 0 �1
�1 1 0
0 �1 1

377775
Treat �T as the incidence matrix of the 3-node network in Figure 1.9(b). Assume line
susceptances 1; = 1 for all ;.

1. Show that the Laplacian matrix ! := �T� and its pseudo-inverse !† are

! =
266664

2 �1 �1
�1 2 �1
�1 �1 2

377775
, !

† =
1
9
!

2. Show that the shift factor ( := !†�T
⌫ = 1

3�
T.

3. Show that line flows % = 1
3�? and LMP _ = W1+ 1

3�
T
^.

Exercise 6.6 (Merchandizing surplus). Prove (6.31).

Exercise 6.7 (Theorem 6.3: proof). This exercise proves Theorem 6.3 step by step.
Consider the DC power flow model (6.34) and the economic dispatch formulation
(6.35) in terms of (A := !�T

A
⇠�0⌫. Assume !�1

A
exists so (A is well defined.
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1. Show that % = (T
A
?�A = (T

? where ( := !†⇠⌫ is defined in (6.20), i.e., the line
flows % given in (6.34) are independent of the choice of the price reference bus A .

2. Show that (A is related to ( as:
(A

0

�
= (�1#+1B

T
A
, (A = [(]�A �1# B

T
A

where BT
A

denotes row A of (, [(]A denotes the submatrix of ( obtained by removing
row A , and 1= is the vector of all 1s of size =, i.e., (A is obtained from the submatrix
[(]�A of ( by subtracting row A from every row in [(]�A .

3. Prove Theorem 6.3 using parts 1 and 2.

Exercise 6.8 (Energy price). Use (6.36) to show that
Õ
9
_
⇤
9
= (# + 1)W̃⇤ where W̃⇤ is

the energy price defined in (6.37). (This is what should be expected given that _̃⇤ = _⇤

according to Theorem 6.3.)

Exercise 6.9 (Theorem 6.3: illustration). Consider the two-bus network and the eco-
nomic dispatch (6.26) of Example 6.2. An equivalent formulation is to replace the line
flow ⌫⇠

T
!
†(?� 3) in the line limit (6.26c) by

�%max  ?1� 31  %
max

This is equivalent to using (6.26b) to eliminate ?2 from ⌫⇠
T
!
†(? � 3). This means

that bus 2 is chosen as the price reference bus A in the economic dispatch formulation
(6.35).

1. For the formulation (6.35), calculate !2,!�1
2 ,(2 and derive expressions for LMP

_
⇤.

2. Compare with the corresponding quantities in Example 6.2 and verify that the
LMPs are the same in both formulations, as asserted by Theorem 6.3.

Exercise 6.10. Consider the two-stage economic dispatch problem (6.40) and the
LMP _⇤

:
defined in (6.41) for scenarios : . Show that a primal-dual feasible (G⇤,b⇤) is

primal-dual optimal for (6.40) if and only if (G⇤,b⇤) satisfies (6.42)(6.43).

Exercise 6.11. Prove Theorem 6.4. (Hint: Show that F: MS: =
�
^
+⇤
:

�T
%

max ��
^
�⇤
:

�T
%

min. For incentive compatibility, note that (G⇤,b⇤) satisfies the complemen-
tary slackness conditions (6.43c)(6.43e) for the coupling constraints.)



7 System operation: estimation and
control

In this chapter we illustrate the network models of Chapters 4 and 5 in several ap-
plications. The emphasis is on the use of structural properties of these models to
attain conceptual understanding of applications or design solutions with performance
guarantees, not on the scalable computation of these models. To make this chapter
self-contained we summarize the models used in each application.

7.1 State estimation

Consider a power network modeled by a connected undirected graph ⌧ = (# ,⇢) of
# +1 nodes and " lines, where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . The
state of the network is the complex voltage + 9 2 C at each bus 9 2 # . We assume
the voltage angle \0 := 0 at the reference bus 0, and hence the state is a 2# + 1
dimensional real vector G := (\, |+ |) := (\ 9 , |+0 |, |+ 9 |, 9 2 #) 2 R2#+1. The problem of
state estimation is to estimate the state G := (\, |+ |) from a set of noisy measurements
H 2 R . It is a key building block for numerous power system applications, e.g.,
in energy management systems that dispatch controllable generators and loads in
transmission systems or control voltages on distribution systems.

The measurements H may consist of voltage angles and magnitudes (\ 9 , |+ | 9 ) at a
subset #1 ⇢ # of the buses 9 2 #1. These are partial and noisy state measurements.
We assume the measurement noise is additive, i.e.,

H2 9 = \ 9 + I2 9 , H2 9+1 = |+ 9 | + I2 9+1, 9 2 #1 (7.1)

where (I2 9 , I2 9+1) are additive measurement noises at buses 9 2 #1. The measurements
H may also include real and reactive power injections (? 9 ,@ 9 ) at a subset #2 ⇢ # of
the buses 9 2 #2, i.e.,

H2 9 = ? 9 + I2 9 , H2 9+1 = @ 9 + I2 9+1, 9 2 #2

where (I2 9 , I2 9+1) are additive measurement noises at buses 9 2 #2.1 The injections

1 To simplify notation, we write H2 9 instead of the more accurate accounting H2|#1 |+2 9 . The meaning
should be clear from the context.
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satisfy power flow equations, e.g., in polar form, that relate (? 9 ,@ 9 ) to the state G, i.e,

? 9 = 5 9 (G), @ 9 = 6 9 (G)

where (from (4.22))

5 9 (G) :=
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(7.2a)

6 9 (G) := �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(7.2b)

Substituting into (H2 9 , H2 9+1) we have

H2 9 = 5 9 (G) + I2 9 , H2 9+1 = 6 9 (G) + I2 9+1, 9 2 #2 (7.2c)

The measurements H may also include real and reactive powers (% 9: ,& 9: ) on a subset
⇢1 ✓ ⇢ of the lines ( 9 , :) 2 ⇢1. Then

H2; = %; (G) + I2; , H2;+1 = &; (G) + I2;+1, ; 2 ⇢1 (7.3a)

where

% 9: (G) :=
⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2� |+ 9 | |+: |

⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(7.3b)

& 9: (G) := �
⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2� |+ 9 | |+: |

⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(7.3c)

In general we have a measurement model

H = 5 (G) + I

where G := (\, |+ |) 2 R2#+1 is the state of the network, H 2 R is the measurement
vector, I 2 R is additive noise, and 5 : R2#+1! R is a network model of the form
in (7.1)(7.2)(7.3) that maps a network state to measurement.

Unconstrained formulation. The simplest formulation of state estimation is the fol-
lowing problem to determine an estimate Ĝ of G from H:

Ĝ := arg min
G2R2#+1

(H� 5 (G))T
'
�1 (H� 5 (G)) (7.4)

where ' is a (symmetric) positive definite normalization matrix. A common normal-
ization matrix is the covariance matrix ⇢ (I�⇢I) (I�⇢I)T of the noise I, estimated
from the measurement as ' := ⇢̂ (HHT)� ⇢̂ H⇢̂ HT where ⇢̂ I := (1/:)Õ:

8=1 I8 denotes the
sample mean of : samples I1, . . . , I: of I, or its unbiased version (see discussion in
Exercise 7.2). This optimization problem is called a least square estimation or nonlin-
ear regression problem. It is a convex problem if 5 (G) = �G is a linear function. We
will study a basic theory of and algorithms for solving convex optimization problems
in Chapter 8.

A linearized version of the state estimation problem (7.4) can be obtained by
linearizing 5 (G) around an operating point G0, i.e., we assume that the measurement
model is H =: H0 +�H = 5 (G0) + m 5

mG
(G0)�G + I where the noise I incorporates all errors
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including measurement errors and linearization errors. We assume 5 (G0) is known and
H0 = 5 (G0). Hence we have

�H = ��G + I

where � := m 5

mG
(G0) is the  ⇥ (2# +1) Jacobian matrix of 5 at the operating point G0.

Then the least square estimation is the following linear regression:

�̂G := arg min
�G2R2#+1

(�H���G)T
'
�1 (�H���G) (7.5a)

where �H := H� 5 (G0) is obtained from the measurement H and the operating point G0.
Let the estimation error be the minimum weighted norm of the noise I:

n
2 := min

�G
I

T
'
�1
I = min

�G
(�H���G)T

'
�1 (�H���G) (7.5b)

To simplify notation consider quantities normalized by the positive definite matrix '

�H̄ := '
�1/2�H, �̄ := '

�1/2
� (7.6a)

For example if ' := Diag(f2
8
) is the (sample) variance of the noise I then (7.6a)

normalizes the measurements �H by its standard deviation. Then the linear regression
(7.5) becomes

min
�G

I
T
'
�1
I = min

�G

���H̄� �̄�G��2
2 (7.6b)

An optimum �̂G and the resulting minimum estimation error n2 can be solved in closed
form. The general solution is �̂G = �̄†�H̄where �̄† is the pseudo-inverse of �̄ := '�1/2

�

(see Chapter A.7, particularly Remark A.2).

There are two special cases where �̄† has simple expressions in terms of �̄ according
as �̄ has full column or row rank:

1. More measurements than state variables  � 2# + 1: Redundant measurements
allow us to estimate the network state by solving the linear regression (7.6). When
the columns of � (and hence �̄) are linearly independent, the unique optimal
solution is (Exercise 7.1):

�̂G =
⇣
�̄

T
�̄

⌘�1
�̄

T�H̄ (7.7a)

and the minimum error is

n
2 =

���H̄� �̄�̂G��2
2 = k�H̄k22 �

����
⇣
�̄

T
�̄

⌘�1/2
�̄

T�H̄
����

2

2
(7.7b)

The estimated state is

G0 + �̂G = G0 +
⇣
�

T
'
�1
�

⌘�1
�

T
'
�1�H (7.7c)

where �H := H� 5 (G0) and � := m 5

mG
(G0).
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2. Fewer measurements than state variables  < 2# + 1: When � and hence �̄ has
full row rank, then �̄ has  linearly independent columns and the estimation error
n

2 = 0. The unique optimal solution to (7.6) is the solution to �̄�G = �H̄ (see
Corollary A.20 in Chapter A.7):

�̂G = �̄
T
⇣
�̄ �̄

T
⌘�1
�H̄

Since  < 2# +1, there is a subspace of solutions to �̄�G = �H̄ and �̂G is one with
the minimum Euclidean norm. There is no reason the state of the power network is
close to such a solution and generally the lack of su�cient measurement produces
poor state estimates (even though n2 = 0).

Constrained formulation. State estimation can also include operational constraints
such as injection limits, voltage limits and line limits. The injection limits take the form
(?min
9

,@min
9

)  ( 5 9 (G),6 9 (G))  (?max
9

,@max
9

) from (7.2), the voltage limits take the form

+
min
9
 0T

9
G +max

9
, and the line limits take the form (%min

9:
,&min

9:
)  (% 9: (G),& 9: (G)) 

(%max
9:

,&max
9:

) from (7.3). The constrained version of state estimation (7.4) is then:

Ĝ := arg min
G2R2#+1

(H� 5 (G))T
'
�1 (H� 5 (G)) s.t. ⌘(G)  0 (7.8)

where ⌘(G) represents operational constraints. There is generally no analytical solution
for (7.8). We will study iterative algorithms in Chapter 8.5 for solving constrained
optimization problems.

7.2 Volt/var control on radial networks

In this section we apply the linear DistFlow model (5.40) or (5.41) of Chapter 5.5 and
Theorem 4.1 of Chapter 4.3.3 for voltage control on radial networks. The expression
(4.20) for /̂ = .̂�1 in Theorem 4.1 is useful for various power system applications on
radial networks. As explained in Remark 4.1 this structure originates from the inverse
⇠̂
�1 in (4.19) of the reduced incidence matrix ⇠̂ of a tree graph and is independent of

the “weight matrix” ⇡B
H

as long as ⇡B
H

is nonsingular. In many applications, ⇡B
H

is not
only nonsingular but also positive or negative definite. In this section we apply this
result to the linear DistFlow model of Chapter 5.5.2 for voltage control (or Theorem
5.3 that specializes Theorem 4.1 to linear DistFlow model). In Chapter 7.3 we apply
Theorem 4.1 to a linearized polar-form power flow model for topology identification.

7.2.1 Linear DistFlow model

Consider a radial network ⌧ := (# ,⇢) with # +1 buses and " lines, modeled by the
linear DistFlow equations (5.40) with a given E0, or equivalently, by (5.41) of Chapter
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5.5.3.1 reproduced here:

B̃ = ⇠̂(, E020 + ⇠̂T
E = 2 (⇡A%+⇡G&) (7.9)

where ( B̃,E) here denote the real and reactive net injections and squared voltage
magnitudes at non-reference buses, ( := (%,&) are real and reactive line flows, ⇠T :=
[20 ⇠̂

T] is the transpose of the node-by-line incidence matrix ⇠, in particular ⇠̂
is the # ⇥ # reduced incidence matrix corresponding to non-reference buses, and
⇡A := Diag(A; , ; 2 ⇢), ⇡G := Diag(G; , ; 2 ⇢) are diagonal matrices of line resistances
and reactances respectively. As in Chapter 5.5.2, we assume throughout this section
without stating it explicitly that the network graph ⌧ is a (connected) tree, HB

9:
= HB

: 9

(assumption C5.1) and H<
9:

= H<
: 9

= 0. To simplify notation, we will use (?,@) 2 R2#

and E 2 R# in this section to denote variables at non-reference buses (instead of B̂, Ê
as in Chapter 5.5).

We assume at each bus 9 there is a fixed and given active and reactive load B0
9

:=⇣
?

0
9
,@0
9

⌘
. In addition there is possibly an inverter on bus 9 with a fixed active power

injection ? 9 and an adaptable reactive power injection @ 9 . For example, ? 9 may
represent solar generation. Hence the net injections B̃ in (7.9) are B̃ = (?� ?0,@� @0).
The problem of volt/var control is to adapt the reactive outputs @ 9 in order to stabilize
voltages on the network. To this end, since the network is radial, the reduced incidence
matrix ⇠̂ is nonsingular and we can apply Theorem 5.3 of Chapter 5.5.3.1 to solve
(7.9) and express E in terms of the net injections:

E = E01+2
⇣
'(?� ?0) + - (@� @0)

⌘

where ' := ⇠̂�T
⇡A ⇠̂

�1 and - := ⇠̂�T
⇡G⇠̂

�1 are positive definite. We write E := E(@)
explicitly as a function of the control @:

E(@) = 2-@ + Ẽ (7.10)

where Ẽ := E01+2'
�
?� ?0� �2-@0 does not depend on @.

A common model of inverters constrains the reactive power @ 9 to the sector {@ 9 :
?

2
9
+@2

9
 f2} with a power factor limit �q 9  tan�1 (@ 9/? 9 )  q 9  c/2. Equivalently

the control @ 9 is constrained to the sector* 9 determined by the given active power ?̃ 9 :

* 9 :=
n
@ 9 : @

9

 @ 9  @ 9
o

, 9 = 1, . . . ,# (7.11)

where @
9

:= min
n
? 9 tanq 9 ,

q
f

2� ?2
9

o
and @

9

:= max
n
�? 9 tanq 9 ,�

q
f

2� ?2
9

o
. Let

* :=*1 ⇥ · · ·⇥*# . If the reactive power @ 9 of the inverter at bus 9 is fixed and not
controllable, this can be modeled by setting @

9

= @ 9 = @ 9 . If there is no inverter at bus

9 , then we set ? 9 = @
9

= @
9
:= 0.
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where E 9 (@) is given by (7.10). If @⇤ =
⇥
D

�
E(@⇤)� Eref� ⇤

*
then @⇤ is called a fixed

point, or an equilibrium point, of (7.12).

We now analyze the convergence and optimality of the dynamical system (7.12) for
a class of D 9 that satisfies the following assumptions:

C5.1: The control functions D 9 are di�erentiable on R and there exist U 9 such that���D0
9
(E 9 )

���  U 9 for all E 9 2 R.
C5.2: The control functions D8 are strictly decreasing on R.

The di�erentiability assumption in C5.1 can be relaxed to allow control functions
with a deadband and saturation as shown in Figure 7.1(a) (see [46]). The proof of the
convergence and optimality properties in the next two theorems uses concepts in convex
optimization theory that we will study in detail in Chapter 8. Let � := diag(U 9 , 9 2 #).

Theorem 7.1 (Convergence). Suppose assumption C5.1 holds. If the largest singular
value fmax (�-) < 1/2 then there exists a unique equilibrium point @⇤ 2 * and the
volt/var control (7.12) converges to @⇤ linearly, i.e.,

k@(C)� @⇤k  V
C k@(0)� @⇤k ! 0

for some V 2 [0,1).

Proof Applying the mean value theorem to the control function D 9 (E 9 ) we have

D 9 (E 9 )�D 9 (Ê 9 ) = D
0
9
(F) (E 9 � Ê 9 )

where F = _E 9 + (1�_)Ê 9 for some _ 2 [0,1]. Therefore

kD(E)�D(Ê)k22 =
’
9

��
D 9 (E 9 )�D 9 (Ê 9 )

��2  ’
9

��
U 9 (E 9 � Ê 9 )

��2 = k�(E� Ê)k22

where the inequality follows from the mean value theorem and assumption C5.1.
Hence kD(E) � D(Ê)k2  k�(E � Ê)k2. Applying the chain rule to �E = �E(@) as a
vector-valued function of @ we have

m�E

m@

(@) = �

mE

m@

= 2�-

Therefore���D ⇣
E(@)� Eref

⌘
�D

⇣
E(@̂)� Eref

⌘���
2
 k�E(@)� �E(@̂)k2  k2�- k2k@� @̂k2

where the first inequality follows from kD(E) � D(Ê)k2  k�(E � Ê)k2. The second
inequality follows from the mean value Theorem A.34 for vectored-valued functions
in Appendix A.10 that says that if 5 : R=! R= is continuously di�erentiable then

k 5 (H)� 5 (G)k 
����m 5
mG

(I)
���� kH� Gk
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for any induced matrix norm k · k where I := `G + (1� `)H for some ` 2 [0,1]. Since
the induced matrix norm k" k2 = fmax (") (Exercise 7.3) we have���D ⇣

E(@)� Eref
⌘
�D

⇣
E(@̂)� Eref

⌘���
2
 2fmax (�-)k@� @̂k2

Therefore the control function D
�
E(@)� Eref� as a function of @ is a contraction when

fmax (�-) < 1/2. Since projection onto* is nonexpansive by the Projection Theorem
8.9 of Chapter 8.2.3, the function on the right-hand side of (7.12), as a function of @, is
a contraction. The theorem then follows from the Contraction Mapping Theorem 8.33
of Chapter 8.6.1. ⇤

We next show that the equilibrium point @⇤ guaranteed by Theorem 7.1 under
assumption C5.1 implicitly optimizes a cost function implied by the control function
D. Under assumption C5.2, the inverse functions D�1

9
exist and are strictly decreasing

on R. We hence can define 2 9 : R! R by

2 9 (@ 9 ) := �
π

@ 9

0
D
�1
9
(@̂ 9 )3@̂ 9 , 9 2 #

Moreover 2 9 is strictly convex since 200
9
(@ 9 ) = �1/D0

9
(@ 9 ) > 0 under assumptions C5.1

and C5.2. Consider the optimization problem

min
@2*

’
9

2 9 (@ 9 ) + @T
-@ + @T�Ẽ (7.13)

where �Ẽ := Ẽ� Eref.

Theorem 7.2 (Optimality). Suppose assumptions C5.1 and C5.2 hold. Then the unique
equilibrium point @⇤ 2* of (7.12) is the unique minimizer of (7.13).

Proof Let ⇠ (@) :=
Õ
9
2 9 (@ 9 ) +@T

-@+@T�Ẽ denote the objective function of (7.13).
Since - is positive definite and 2 9 are strictly convex, ⇠ (@) is strictly convex (and
hence also continuous on R# ). This implies, in particular, that if a minimizer of (7.13)
exists (e.g., if * is bounded), then it is unique. It therefore su�ces to show that @⇤ is
an equilibrium point of (7.12) if and only if it is a minimizer of (7.13).

Since (7.13) is a convex problem, @⇤ 2* is optimal if and only if

(r⇠ (@⇤))T (@� @⇤) � 0, 8@ 2*

Since each* 9 in (7.11) is a box constraint, this means the optimal @⇤ 2* is optimal if
and only if (Exercise 7.4)

@
⇤
9
2 (@

9

,@
9
) only if [r⇠ (@⇤)]

9
= 0 (7.14a)

@
⇤
9
= @

9

if [r⇠ (@⇤)]
9
> 0 (7.14b)

@
⇤
9
= @

9
if [r⇠ (@⇤)]

9
< 0 (7.14c)
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We have from (7.10) and (7.12)

r⇠ (@⇤) = r2(@⇤) +2-@⇤ +�Ẽ = r2(@⇤) +
⇣
E(@⇤)� Eref

⌘

where r2(@⇤) = (20
9
(@⇤
9
) = �D�1

9
(@⇤
9
), 8 2 #). Therefore

[r⇠ (@⇤)]
9
= �D�1

9
(@⇤
9
) +

⇣
E 9 (@⇤9 )� Eref

9

⌘

Since D 9 (E 9 ) is strictly decreasing in E 9 we have

[r⇠ (@⇤)]
9
= 0 () D 9

⇣
E 9 (@⇤9 )Eref

9

⌘
= @

⇤
9

[r⇠ (@⇤)]
9
> 0 () D 9

⇣
E 9 (@⇤9 )� Eref

9

⌘
< @

⇤
9

[r⇠ (@⇤)]
9
< 0 () D 9

⇣
E 9 (@⇤9 )� Eref

9

⌘
> @

⇤
9

Substituting this into (7.14) shows that @⇤ =
⇥
D

�
E(@⇤)� Eref� ⇤

*
, i.e., @⇤ is the unique

equilibrium point of (7.12). This shows that @⇤ is an equilibrium point of (7.12) if and
only if it is a minimizer of (7.13). ⇤

Remark 7.1. Theorem 7.2 shows that the control function in (7.12) implies an objective
function ⇠ (@) in (7.13) that an equilibrium implicitly optimizes. This is often referred
to as reverse engineering. One can also start by designing an objective function ⇠ (@)
and deriving a control function as an iterative algorithm to solve the optimization
problem (7.13). This is referred to as forward engineering; see e.g. [45, 46]. Often
these algorithms require some communications among controllers at di�erent buses
but are guaranteed to converge under less stringent requirement than that in Theorem
7.1.

The formulation here imposes limits [@,@] on the control @. It is pointed out
in [51] that local memoryless control such as (7.12) may not be able to stabilize
the equilibrium voltages E(@⇤) to within an apriori range [E,E] (see Exercise 7.6).
Alternative formulation imposes apriori limits [E,E] on equilibrium voltages E(@⇤) but
relaxes limits on the control @ using control laws with internal state, see e.g. [51] ⇤

7.3 Tree topology identification

In this section we illustrate the use of polar form power flow equation (4.22) of Chapter
4.3.4 and Theorem 4.1 of Chapter 4.3.3 for identifying the operating topology of a
radial network from noisy measurements of nodal voltage magnitudes. A distribution
network typically consists of a meshed network with sectionalizing switches on some
of the lines. At any time the switches are configured so that the operational network is
a spanning tree with the substation at its root. We assume the system operator knows
the topology and line parameters of the meshed network, but may not know the switch
configuration and hence the operating topology. In Chapter 7.3.1 we derive a linearized
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model using the polar form power flow equation (4.22). In Chapter 7.3.2 We study
a method to identify the operational network using statistical properties of random
voltage and power injection measurements. Finally in Chapter 7.3.3 we sketch the idea
of first-order tree dependence and how it can be used for topology identification.

7.3.1 Linearized polar-form AC model

Consider a radial network represented by a (connected) tree ⌧ := (# ,⇢) with # + 1
buses and " = # lines and modeled by the polar-form power flow equations (4.22)
reproduced here: for all 9 2 # ,

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
(7.15a)

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
(7.15b)

We will linearize (7.15) under the following assumptions:

C4.3: The series admittances HB
9:

= HB
: 9

= 6B
9:
+ i1

B

9:
(Assumption C4.1) and the

shunt admittances H<
9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ .

C4.4: 6B
9:

> 0 and 1B
9:

< 0 for all ( 9 , :) 2 ⇢ .

Consider the “flat voltage profile” where +flat
9

= `4i\ for all 9 2 # , so that the result-

ing power injection is
�
?

flat,@flat� = (0,0). Abuse notation and now let the variables
(\, |+ |) denote perturbations around the flat voltage profile +flat = (`4i\ , 9 2 #) and
(?,@) denote the perturbations around

�
?

flat,@flat� = (0,0). Let |+̂ | := ( |+ 9 |, 9 2 #) and
( ?̂, @̂) := (? 9 ,@ 9 , 9 2 #) denote the (perturbations of the) nodal voltage magnitudes
and the (perturbations of the) power injections respectively at non-reference buses.
Let ⇠̂ be the # ⇥ # reduced incidence matrix obtained from the node-by-line inci-
dence matrix ⇠ by removing the first row of ⇠ corresponding to the reference bus 0.
Partition the admittance matrix . into the reference bus 0 and non-reference buses,

. =

.00 H

T
0

H0 .̂

�
where .̂ := ⇠̂⇡B

H
⇠̂

T is the reduced admittance matrix. Let 6̂0 := Re(H0)

and 1̂0 := Im(H0) be the real and imaginary parts respectively of the first non-reference
column of . .

Then it is shown in Exercise 7.8 that the linearization of the polar form power flow
equation (7.15) yields the following linear model for how |+̂ | depends on the power
injections ( ?̂, @̂) at non-reference buses:

|+̂ | = '̂ ?̂ + -̂ @̂ � Ê0 (7.16a)

where '̂ := ⇠̂�T
⇡1⇠̂

�1 � 0, -̂ := ⇠̂�T (�⇡2)⇠̂�1 � 0 are positive definite matrices, and
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Ê0 := |+0 |
⇣
'̂6̂0 + -̂ 1̂0

⌘
. Here ⇡1 and �⇡2 are # ⇥# diagonal matrices defined as:

⇡6 := Diag(6B
;
) � 0, ⇡1 := Diag(1B

;
) � 0

⇡1 :=
⇣
⇡6 +⇡1⇡�1

6
⇡1

⌘�1
� 0, �⇡2 := �

⇣
⇡1 +⇡6⇡�1

1
⇡6

⌘�1
� 0

Then Theorem 4.1 says that '̂ and -̂ are given by:

'̂ 9: =
’

;2P 9\P:

A; > 0, -̂ 9: =
’

;2P 9\P:

G; > 0 (7.16b)

where A; > 0 and G; > 0 denote the diagonal entries of ⇡1 and �⇡2 respectively (not
the real and imaginary parts of (HB

9:
)�1) and P 9 denotes the unique path from bus 0

to bus 9 . Hence '̂ 9: and -̂ 9: are the sums of A; and G; respectively on the common
segment of the unique paths from the reference bus 0 to buses 9 and : .

The linearized model (7.16) is the basis for topology identification, as we now
explain.

7.3.2 Covariance of voltage magnitudes and powers

The method of [48] for identifying the operational network exploits statistical properties
of voltage magnitudes. Define the covariance matrix ⌃E := ⇢ [|+̂ | � ⇢ ( |+̂ |)] [( |+ | �
⇢ ( |+ |)]T of voltage magnitudes +̂ at non-reference buses and similarly the covariance
matrices (⌃? ,⌃@) of power injections ( ?̂, @̂), as well as cross-covariance matrices
⌃?@ := ⇢ ( ?̂ � ⇢ ?̂) (@̂ � ⇢@̂)T and ⌃@? := ⇢ (@̂ � ⇢@̂) ( ?̂ � ⇢ ?̂)T. Suppose the power
injections at the same bus are positively correlated and those at di�erent buses are
uncorrelated, i.e. (�[8, 9] denotes the (8, 9)th entry of matrix �),

C4.5:⌃? [ 9 , 9] > 0, ⌃@ [ 9 , 9] > 0, ⌃?@ [ 9 , 9] =⌃@? [ 9 , 9] > 0 for all 9 , and⌃? [ 9 , :] =
⌃@ [ 9 , :] = ⌃?@ [ 9 , :] = ⌃@? [ 9 , :] = 0 for all 9 < : .

The key insight on which the method of [48] is based is the following relation between
the covariance ⌃E of voltage magnitudes and those of the power injections:

⌃E = '̂⌃? '̂T + -̂⌃@ -̂T + '̂⌃?@ -̂T + -̂⌃@? '̂T (7.17)

It is a consequence of (7.16a). The 9 th diagonal entry ⌃E [ 9 , 9] = ⇢
�
|+ 9 |�⇢ |+ 9 |

�2 =:
var( |+ 9 |) is the variance of voltage magnitude |+ 9 | (deviation from its nominal value).
As the next result shows, (7.17) implies that the variance of voltage magnitude strictly
increases as one moves away from the reference bus 0 where |+0 | is fixed. It also
provides a way to identify the parent of a bus.

Recall that bus : is called a descendant of 9 if 9 is on the unique path from the
reference bus 0 to bus : . Bus 9 is called a parent of : if ( 9 , :) 2 ⇢ and : is a descendant
of 9 . Let var(? 9 ) and var(@ 9 ) denote the variance of the real and reactive power
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injections respectively at bus 9 , and cov(? 9 ,@ 9 ) := ⇢
�
(? 9 �⇢? 9 ) (@ 9 �⇢@ 9 )

�
denote

the covariance of (? 9 ,@ 9 ) at bus 9 .

Theorem 7.3 (Topology identification). Suppose assumptions C4.3, C4.4 and C4.5
hold.

1. If a non-reference bus 9 2 # is a descendant of bus 8 then var( |+ 9 |) > var( |+8 |).
2. If bus 8 is a parent of bus 9 2 # then the variance of the voltage magnitude

di�erence |+8 |� |+ 9 | is given by:

⇢

�
( |+8 |� |+8 |)�⇢ ( |+ 9 |� |+ 9 |)

�2 =
’
:2T 9

⇣
A

2
8 9

var(?: ) + G2
8 9

var(@: )

+ 2A8 9G8 9cov(?: ,@: )
�

(7.18)

i.e., the voltage variance at bus 9 is a weighted sum of covariances of power
injections in the subtree T 9 rooted at 9 , including 9 .

Proof For part 1, suppose first 8 is a parent of 9 . Theorem 4.1 and (7.16b) imply

'̂ 9: = '̂8: + A8 9 , '̂8: =
’
;2%8

A; , if : 2 T 9 (7.19a)

'̂8: = '̂ 9: , if : 8 T 9 (7.19b)

Therefore the diagonal entry of the first matrix on the right-hand side of (7.17) yields⇣
'̂⌃? '̂T

⌘
[ 9 , 9] �

⇣
'̂⌃? '̂T

⌘
[8, 8] =

’
:

’
:
0
⌃? [: 0, :]

�
'̂ 9:0 '̂ 9: � '̂8:0 '̂8:

�

=
’
:

⌃? [: , :]
�
'̂ 9: + '̂8:

� �
'̂ 9: � '̂8:

�

=
’
:2T 9

⌃? [: , :]
 
2
’
;2P8

A; + A8 9
!
A8 9 > 0

where the second equality follows because ⌃? [: 0, :] = 0 if : 0 < : , the last equality
follows from (7.19), and the strict inequality follows because ⌃? [: , :] > 0 for all :
and A; > 0 for all ;. Similarly

�
-̂⌃@ -̂T� [ 9 , 9] > �

-̂⌃@ -̂T� [8, 8]. The diagonal entry of
the third matrix on the right-hand side of (7.17) yields⇣

'̂⌃?@ -̂T
⌘
[ 9 , 9] �

⇣
'̂⌃?@ -̂T

⌘
[8, 8] =

’
:

⌃?@ [: , :]
�
'̂ 9: -̂ 9: � '̂8: -̂8:

�
> 0

where the equality follows from ⌃?@ [: 0, :] = 0 if : 0 < : and the strict inequality uses
(7.16b) and ⌃?@ [: , :] > 0. Similarly

�
-̂⌃@? '̂T� [ 9 , 9] > �

-̂⌃@? '̂T� [8, 8]. This shows
that var( |+ 9 |) = ⌃E [ 9 , 9] > ⌃E [8, 8] = var( |+8 |) when 8 is a parent of 9 . When 9 is
a descendant of 8, the argument above applies pairwise on the path from 8 to 9 to
conclude that ⌃E [ 9 , 9] > ⌃E [8, 8].

For part 2, suppose bus 8 is a parent of bus 9 then

⇢

�
( |+8 |�⇢ |+8 |)� ( |+ 9 |)� |+ 9 |)

�2 = ⌃E [8, 8] +⌃E [ 9 , 9] �2⌃E [8, 9] (7.20)
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Consider ⌃E [8, 8] �⌃E [8, 9]. The first matrix on the right-hand side of (7.17) yields⇣
'̂⌃? '̂T

⌘
[8, 8] �

⇣
'̂⌃? '̂T

⌘
[8, 9] =

’
:

⌃? [: , :] '̂8:
�
'̂8: � '̂ 9:

�

=
’
:2T 9

⌃? [: , :]
’
;2P8

A; (�A8 9 )

⇣
'̂⌃? '̂T

⌘
[ 9 , 9] �

⇣
'̂⌃? '̂T

⌘
[ 9 , 8] =

’
:

⌃? [: , :] '̂ 9:
�
'̂ 9: � '̂8:

�

=
’
:2T 9

⌃? [: , :]
 ’
;2P8

A; + A8 9
!
(A8 9 )

where we have used ⌃? [: 0, :] = 0 if : 0 < : and (7.19). Summing these two expressions
gives the part f1 of (7.20) due to the first matrix in (7.17):

f1 :=
⇣
'̂⌃? '̂T

⌘
[8, 8] +

⇣
'̂⌃? '̂T

⌘
[ 9 , 9] � 2

⇣
'̂⌃? '̂T

⌘
[8, 9] = A

2
8 9

’
:2T 9

⌃? [: , :]

Similarly the part f2 of (7.20) due to the second matrix in (7.17) is

f2 :=
⇣
-̂⌃@ -̂T

⌘
[8, 8] +

⇣
-̂⌃@ -̂T

⌘
[ 9 , 9] � 2

⇣
-̂⌃@ -̂T

⌘
[8, 9] = G

2
8 9

’
:2T 9

⌃@ [: , :]

The third matrix on the right-hand side of (7.17) yields:⇣
'̂⌃?@ -̂T

⌘
[8, 8] �

⇣
'̂⌃?@ -̂T

⌘
[8, 9] =

’
:

⌃?@ [: , :] '̂8:
�
-̂8: � -̂ 9:

�

=
’
:2T 9

⌃?@ [: , :]
’
;2P8

A; (�G8 9 )

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 9] �

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 8] =

’
:

⌃?@ [: , :] '̂ 9:
�
-̂ 9: � -̂8:

�

=
’
:2T 9

⌃?@ [: , :]
 ’
;2P8

A; + A8 9
!
(G8 9 )

and hence

f3 :=
⇣
'̂⌃?@ -̂T

⌘
[8, 8] +

⇣
'̂⌃?@ -̂T

⌘
[ 9 , 9] �2

⇣
'̂⌃?@ -̂T

⌘
[8, 9] = A8 9G8 9

’
:2T 9

⌃?@ [: , :]

Similarly

f4 :=
⇣
-̂⌃@? '̂T

⌘
[8, 8] +

⇣
-̂⌃@? '̂T

⌘
[ 9 , 9] �2

⇣
-̂⌃@? '̂T

⌘
[8, 9] = A8 9G8 9

’
:2T 9

⌃@? [: , :]

Summing these expressions yields

⌃E [8, 8] �⌃E [8, 9] =
4’
:=1

f: =
’
:2T 9

⇣
A

2
8 9
⌃? [: , :] + G2

8 9
⌃@ [: , :] + 2A8 9G8 9⌃?@ [: , :]

⌘

proving (7.18). ⇤
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Identification method. The theorem suggests the following iterative method to iden-
tify the topology of the operational network from estimates of variances var( |+ 9 |),
var(? 9 ), var(@ 9 ) and the covariance cov(? 9 ,@ 9 ) of power injections at each bus 9 .

1. Initialization. Mark all nodes as unidentified.
2. Iteration. Iterate until all nodes have become identified:

(a) Use Part 1 of Theorem 7.3 to identify a node 9 as one that has the largest
var(? 9 ). Such a node is initially a leaf node.

(b) Use Part 2 of the theorem to identify 9’s parent 8( 9) as one that most closely
satisfies (7.18).

(c) Mark node 9 whose parent has been identified as identified.

This algorithm identifies nodes in a reverse breadth-first search order. The step that uses
(7.18) to identify the unique parent 8 := 8( 9) needs the knowledge of line parameters
(A8 9 ,G8 9 ) in order to compute the sum on the right-hand side. In each parent identifi-
cation step, the subtree T 9 consists of only nodes that have already been identified and
hence is known in that step, even without the knowledge of the underlying meshed net-
work topology. Knowing the underlying topology reduces the set of candidate parents
8 and improves identification accuracy.

7.3.3 Graphical-model method

We close this section by introducing the concept of first-order tree dependence, which
has many applications, and showing how it can be used for topology identification.

Consider a radial network represented by a (connected) tree ⌧ := (# ,⇢) with # +1
buses and " = # lines. Designate the reference bus 0 (substation) as the root of the
tree. Assume without loss of generality the graph orientation in which all lines point
towards bus 0. A key assumption we will make is that the injection current phasors
at di�erent buses are statistically independent. This implies that the joint distribution
?(+) := ?(+0, . . . ,+# ) of the voltage phasors on a radial network is what is called in
[52] a probability distribution of first-order tree dependence,2 i.e.,

?(+) := ?(+0, . . . ,+# ) =
÷
9

?

�
+ 9 |+8 ( 9)

�
(7.21)

where 8( 9) denotes the unique parent of 9 in the radial network (i.e., 8( 9) is on the
unique path from the root to 9). If + 9 are independent then ?(+) = Œ

9
?(+ 9 ). A first-

order tree dependence can hence be interpreted as the minimum amount of dependence
among +0, . . . ,+# . To establish (7.21), let T 9 denote the subtree of descendants of 9
rooted at bus 9 , including 9 . Since we assume shunt admittances are zero, Kirchho�’s

2 Strictly speaking, this assumes +9 takes discrete values, but the formulation can be extended to
continuous-valued random variables as well.
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current law implies

+ 9 = +
8 ( 9) + IB

98 ( 9)

’
:2T 9

�:

where IB
9:

is the series line impedance of line ( 9 , :). Therefore, given +
8 ( 9) at its

parent, + 9 depends only on the current injections �: in T 9 and not on any other + 90 .
Moreover, since current injections are independent, + 9 is independent of any + 90 that
is not a descendant in T 9 , given +

8 ( 9) . Order the nodes in the breadth-first-search order
starting from the root node 1 so that 9’s parent 8( 9) 2 {1, . . . , 9 � 1} for all nodes 9 .
Then ?(+ 9 |+ 9�1, . . . ,+1) = ?

�
+ 9 |+8 ( 9)

�
and hence

?(+) = ?(+1)?(+2 |+1) · · · ? (+= |+=�1, . . . ,+1) =
÷
9

?

�
+ 9 |+8 ( 9)

�

proving (7.21). Such a distribution is represented in [52] by a tree, called the dependence
tree of ?(+), with # + 1 nodes where two nodes 8 and 9 are adjacent if and only if
8 = 8( 9) is the unique parent of 9 , i.e., the dependence tree of the joint distribution ?(+)
is the network graph of the power network.

Conversely, suppose we are given a joint distribution ?(+) of first-order tree
dependence represented by its dependence tree. Consider the complete graph with
# + 1 nodes and label each edge ( 9 , :) by the mutual information � (+ 9 ,+: ) :=

⇢
? (+9 ,+: )

⇣
log ? (+9 ,+: )

? (+9 ) ? (+: )

⌘
. Then [52] shows that a spanning tree of the complete graph

is the dependence tree of ?(+) if and only if it is a maximum-weight spanning tree.
For topology identification, this means that the radial network is one of the maximum-
weight spanning trees. When the weights are distinct, the maximum-weight spanning
tree is unique and hence an identification algorithm based on maximum-weight span-
ning tree will produce the true network topology (assuming true mutual information is
known). Otherwise, it may identify a di�erent dependence tree than the radial power
network that has the same distribution ?(+).

These results motivate the identification algorithm of [53] for single-phase radial
networks and its extension in [54] for unbalanced three-phase radial networks. Specif-
ically, for a single-phase network, given voltage phasor measurements +̂ 9 (C) at each
node 9 at each time C, [53] computes the empirical mutual information � (+̂ 9 ,+̂: ) and
uses them as edge weights of the complete graph with # +1 nodes. Then it computes
a maximum-weight spanning true using the standard Kruskal’s algorithm.3

3 These algorithms bear similarity to the recursive grouping algorithm of [55] where the information
distance 38 9 in [55] is sometimes replaced by “e�ective impedance” between observed nodes 8 and 9.
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7.4 Chapter summary

1. State estimation computes nodal voltage phasors + from partial and noisy mea-
surements, e.g., of voltages, injections, and line flows. It can be formulated as an
optimal power flow problem ((7.4) or (7.8)).

2. Voltage control on a distribution system can be formulated as a linear feedback
system (7.12) using the linear DistFlow model (7.10). Su�cient conditions have
been established under which the feedback system converges to a unique equi-
librium that implicitly solves a certain optimization problem (Theorems 7.1 and
7.2).

3. A linear approximation (7.16) of the polar form power flow model is used for iden-
tifying the operating tree topology from a given meshed network with configurable
switches. If the real and reactive power injections at the same bus are positively
correlated and those at di�erent buses are uncorrelated, then the variance of the
voltage magnitude strictly increases as one moves away from the reference bus
0 where |+0 | is fixed. Moreover the variance of the voltage magnitude di�erence
|+
8 ( 9) | � |+ 9 | at bus 9 is a weighted sum of covariances of power injections in

the subtree T 9 rooted at 9 , including 9 (Therorem 7.3). This leads to an iterative
method to identify the operating topology. If the current injections at di�erent
buses are independent, then the joint distribution ?(+) of voltage phasors on a
radial network is of first-order tree dependence and hence its topology can be
identified as a maximum-weight spanning tree with mutual information � (+ 9 ,+: )
as the weights on edges ( 9 , :).

7.5 Bibliographical notes

Power system state estimation is studied in e.g. [3]. The local volt/var control of Chapter 7.2 follows [45, 46].

The topology identification method of Chapter 7.3.2 is from [48].

7.6 Problems

Chapter 7.1

Exercise 7.1 (State estimation). Derive the optimal state estimate �̂G in (7.7).

Exercise 7.2 (State estimation). Suppose G8 2 R, 8 = 1, . . . ,=, are = iid samples of a
scalar random variable G with mean ` and variance f2. Consider the sample mean and
sample variance:

Ḡ :=
1
=

=’
8=1

G8 , f̄
2 :=

1
=

=’
8=1

(G8 � Ḡ)2
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Show that (treating G8 as iid random variables with the same distribution as G):

1. For each 8, ⇢ (ḠG8) = ⇢Ḡ2 = `2 +f2/=.
2. ⇢ (f̄2) = =�1

=
f

2, i.e., f̄2 is a biased estimator of f2 with mean smaller than f2.
3. An unbiased estimator is the scaled sample variance (i.e., ⇢ (f̂2) = f2):

f̂
2 :=

1
=�1

=’
8=1

(G8 � Ḡ)2

Chapter 7.2

Exercise 7.3 (Induced matrix norm). For any =⇥ = matrix � show that the induced
norm

k�k2 := max
kG k2=1

k�Gk2 = fmax (�)

where fmax (�) is the largest singular value of �.

Exercise 7.4. [Local volt/var control] Let* 9 := {G 9 : G
9
 G 9  G 9 }, 9 = 1, . . . ,=, and

* :=*1⇥ · · ·⇥*=. Let 5 : R=! R=. Show that

G
⇤ 2 *, 5

T(G⇤) (G� G⇤) � 0 8G 2* (7.22)

if and only if

G
⇤
9
2 (G

9
,G 9 ) only if 5 9 (G⇤) = 0 (7.23a)

G
⇤
9
= G

9
if 5 9 (G⇤) > 0 (7.23b)

G
⇤
9
= G 9 if 5 9 (G⇤) < 0 (7.23c)

Exercise 7.5. [Local volt/var control] Let the control function in (7.12) be D 9 (E 9 ) =
�W 9 E 9 with W 9 > 0. Derive the condition for convergence and the resulting cost function
⇠ (@).

Exercise 7.6. [Local volt/var control] Suppose it is desirable to asymptotically stabilize
the voltages E to within a certain bounds [E,E] while maintaining the limits [@,@] on
the reactive power.

1. Show that there exists Ẽ such that no equilibrium point of (7.12) can lie in [E,E].
2. Fix Ẽ. For each bus 9 , find the maximum E

9
and minimum E 9 for which it is

possible to asymptotically stabilize E 9 to within [E
9
,E 9 ]. Note that it may not be

possible for E 9 to attain E
9

(or E 9 ) smultaneously for all 9 .

Exercise 7.7 (Voltage control with batteries). We are given a set of battery locations
on a distribution system and have to decide the optimal energy capacity for each battery
and its optimal charging/discharging rate during operation. This exercise formulates
the problem as a two-stage optimization with recourse.

Consider a feeder with # +1 buses indexed by 8with 8 = 0 denoting the substation bus
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where voltage is fixed and real and reactive powers are variables. Candidate battery
locations are a subset #1 of the buses. Consider a typical day divided into ) time
periods indexed by C. The parameters are:

• Eref
8

: the nominal voltages at buses 8;
• 28: the unit cost of battery capacities at buses 8; and
• (?8 (C;l),@8 (C;l)): the random real and reactive injections at non-substation buses
8 < 0 at each time C where the uncertainty is indexed by l defined over a suitable
probability space.

• D
8
 D8: the lower and upper bounds on battery charging rate D8 (C,l) at bus 8.

Our objective is to decide how much battery capacities to install at 8 2 #1 and how
to operate them so as to minimize a weighted sum of capital cost (due to 28) for
installation and voltage deviations from their nominal values during operation. The
design decisions are:

• ⌫8 � 0: battery capacity to be installed at bus 8 (battery will be installed at bus 8 if
⌫8 > 0).

• D8 (C;l): the charging (when D8 (C;l) � 0) or discharging (when D8 (C;l)  0) rate of
the battery at bus 8 at time C so that the net real injection at bus 8 is ?8 (C;l)�D8 (C;l)
at time C.

The battery capacities ⌫8 must be determined before the realization of l, but the
charging rates D8 (C;l) can be chosen in response after l is realized (and batteries
installed). Formulate this problem as a two-stage optimization where ⌫8 are the first-
stage decisions and D8 (C;l) are the second-stage decisions adapted to l. Incorporate
appropriate power flow models and voltage constraints from Chapters 4 or 5.

Chapter 7.3

Exercise 7.8 (Linearized polar form). Consider a radial network whose graph ⌧ is a
(connected) tree. Suppose assumptions C4.3 and C4.4 hold.

1. Show that linearization of the power flow equation in polar form (7.3.1) around
(+flat, ?flat,@flat) is given by (7.16) where '̂ and -̂ are positive definite matrices.
Assume without loss of generality that ` = 1. (Use properties of Schur comple-
ment.)

2. Show that if 6B
9:

= 0 for all ( 9 , :), the linearized model reduces to the DC power

flow model (4.55a) with |+ 9 | = ` for all 9 2 # .



Part II

Power flow optimization





8 Smooth convex optimization

We have seen in Chapter 6 that many power system applications can be formulated as
optimization problems. In this chapter we study the following questions:

1. How to specify an optimization problem (Ch 8.1 and 8.2)?
2. How to characterize its optimal solutions and determine if one exists (Ch 8.3 and

8.4)?
3. How to compute an optimal solution iteratively when one exists (Ch 8.5)?
4. How to ensure the correctness of the computation (Ch 8.6)?

Specifically we formulate convex optimization problems (Chapter 8.1) and intro-
duce some of the most useful tools for convex analysis (Chapter 8.2). We develop a
general theory to characterize optimal solutions and provide su�cient conditions for
their existence (Chapter 8.3). We then apply the general theory to special classes of
convex optimization problems widely used in applications (Chapter 8.4). We describe
iterative algorithms based on optimality conditions of Chapter 8.3 for solving these
problems (Chapter 8.5) and explain basic techniques for analyzing their convergence
(Chapter 8.6).

Convexity is a simplifying structure that enables a rich theory on algorithm design
and analysis. Even though optimal power flow problems are nonconvex, convex op-
timization theory is useful for two reasons. First, iterative algorithms that have been
designed and analyzed for convex problems are often used also for solving nonconvex
problems. Unlike for convex problems, there is typically no guarantee on optimality or
convergence for nonconvex problems, but they often perform well nonetheless. Second,
an important method to deal with a nonconvex problem is solving its convex relaxation
where an approximate convex problem is solved instead. This chapter introduces a
basic optimization theory and a set of solution methods. We will use them to study
optimal power flow problems in Chapter 9 and their convex relaxations in Chapters 10
and 11.
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8.1 Convex optimization

A convex program is defined by a convex set and a convex function. We start by defining
some basic concepts that are used both in this chapter on smooth convex optimization
and in Chapter 12.1 on nonsmooth convex optimization.

8.1.1 A�ne hull and relative interior

Consider a nonempty set - 2 R=. A point G 2 R= is called a closure point or a limit
point of - if there is a sequence {G: 2 -} that converges to G. The closure of - , denoted
by cl(-), is the set of all limit points of - . We say that - is closed if cl(-) = - , i.e., -
contains all its limit points. The closure of - is the smallest closed set that contains - .
The set - is called open if its complement is closed, i.e., {G 2 R= : G 8 -} is closed. It
is called bounded if there exists a finite 1 such that kGk  1 for all G 2 - .1 It is called
compact if it is closed and bounded.

An alternative approach to defining open and closed sets is to define a topological
space by specifying all subsets of an ambient set . that are open in that topological
space. A set is closed if its complement is open. In this approach the empty set ; and
the ambient set. are always defined to be open sets in any topology. When the ambient
set. :=R= := (�1,1)=,R= is both open and closed in the topological space regardless
of topology. This is consistent with the definition above in terms of limit points (under
the usual topology induced by a norm) because, e.g., the sequence G: := (: , . . . , :) does
not converge as :!1 since it tends to (1, . . . ,1) which is not a point in . := R=. If
. := R=[ {�1,1}= is an extended space under the usual topology induced by a norm,
then R= is open but not closed.

A point G is called an interior point of - if there exists an open neighborhood of G
that is contained in - , i.e., there is n > 0 such that ⌫n (G) := {H : kH�Gk < n} ✓ - . The
interior of - , denoted by int(-), is the set of all interior points of - . A point G 2 cl(-)
that is not an interior point of - is called a boundary point of - . A boundary point
may or may not be in - . The set of all boundary points is called the boundary of - .

A concept that is important in convex optimization theory is relative interior of a
set - , which we now define. A set . is called an a�ne set if . contains all the lines
that pass through pairs of distinct points G, H 2 . . The a�ne hull of - , denoted by
a�(-), is the intersection of all a�ne sets containing - . The a�ne hull a�(-) is itself
an a�ne set. A point G 2 - ✓ R= is called a relative interior point of - if there exists
a nonempty open neighborhood ⌫n (G) ✓ R= such that ⌫n (G) \ a�(-) ✓ - , i.e., G is
an interior point of - relative to a�(-). The set of all relative interior points of - is
called the relative interior of - , denoted by ri(-). The set - is called relatively open

1 The norm k · k defines the usual topology. Since all norms are equivalent in a finite dimensional space,
these concepts remain the same regardless of topology.
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if ri(-) = - . A point G 2 cl(-) that is not a relative interior point is called a relative
boundary point of - . The set of all relative boundary points of - is called the relative
boundary of - .

Example 8.1 (ri(-)). 1. Consider the singleton set - := {G 2 R3 : G1 = G2 = G3 = 1}.
Its a�ne hull a�(-) = - . It is a closed set because it contains all its limit points.
It is not an open set because any nonempty open neighborhood ⌫n (G) with n > 0
contains points not in - . It is however relatively open, i.e., ri(-) = - , because
⌫n (G)\ a�(-) ✓ - .

2. Consider the set - := {G 2 R3 : G1 = G2, G1 2 (0,1),G2 2 (0,1)}. It is not an a�ne set
since G1,G2 are bounded. Its a�ne hull is a�(-) = {G 2 R3 : G1 = G2}. The set - is
not open in R3 as it has no interior point relative to R3. It is relatively open because
every point G 2 - is an interior point relative to a�(-) and hence ri(-) = - . The
closure of - is cl(-) = {G 2 R3 : G1 = G2, G1 2 [0,1],G2 2 [0,1]}. ⇤

8.1.2 Convex set

A set is called convex if, given any two points in the set, every point in between lies in
the set.

Definition 8.1 (Convex set). A set - ✓ R= is convex if, given any G, H 2 - ,

UG + (1�U)H 2 - 8U 2 [0,1]

⇤

For instance, if - is an open set, then for any G0 2 - there exists A > 0 such that the
closed A-ball around G0,

⌫A (G0) := { G 2 ⇡ : kG� G0k2  A }

is contained in - , where kGk2 :=
q
G

2
1 + G2

2 + · · · + G2
=

is the Euclidean norm. Moreover
⌫A (G0) is convex for any A > 0, G0 2 ⇡. The definition is illustrated in Figure 8.1.

y

x

(a) Convex set.

y

x

(b) Nonconvex set.

Figure 8.1 Definition of a convex set: every point in between two points in the set lies in the set.
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Definition 8.2 (Convex hull). Let - ✓ R= be a nonempty set. The convex hull of - ,
denoted conv(-), is the intersection of all convex sets containing - . ⇤

The convex hull conv(-) of any set - ✓ R= is contained in its a�ne hull a�(-).
When - is a convex set, the dimension of - is defined to be the dimension of a�(-).

Three types of convex sets are the most useful in engineering applications (the proof
that these sets are convex is left as an exercise):

1. Polyhedral set � ✓ R=. A hyperplane is a set �1 := {G 2 R= : 2T
G = 1} specified

by an a�ne equality with 2 2 R= and 1 2 R. A polyhedral set, or a polyhedron, is a
set �2 := {G 2 R= : �G  1} specified by a finite number of a�ne inequalities. We
may call the intersection �3 := {G 2 R= : �G = 1} of hyperplanes with � 2 R<⇥=
and 1 2 R< a hyperplane or a polyhedron.

2. Second-order cone (SOC)  soc ✓ R=. A second-order cone (SOC) is defined as:

 soc :=
�
G 2 R= : kG=�1k2  G=

 
, = � 2 (8.1)

where G =: (G=�1,G=), i.e., G=�1 denotes the subvector of G consisting of its first
=�1 entries. A ball ⌫G= (0) := {G=�1 : kG=�1k2  G=} in R=�1 centered at the origin
for a fixed radius G= is a cross section of the second-order cone. SOC  soc is a
special type of convex set called a convex cone. We will study in more detail cones,
convex cones, and second-order cones in Chapter 8.2.1.

3. Semidefinite cones  psd, nsd ⇢ S=. A real matrix - 2 R=⇥= is symmetric if - = -T,
i.e., -8 9 = - 98 for all 8, 9 = 1, . . . ,=. Let S= ⇢ R=⇥= denote the set of all real
symmetric matrices. It is a vector space (or linear space) over the field R (see
Appendix A.1.1 for definitions of vector space and subspace). A real matrix - is
positive semidefinite (psd) if - is symmetric and GT

-G =
Õ
8, 9 -8 9G8G 9 � 0 for all

G 2 R=. Given a symmetric matrix - 2 R=⇥= the following are equivalent:
(a) - is positive semidefinite.
(b) All eigenvalues of - are nonnegative.
(c) - = ⌫⌫T for some matrix ⌫ 2 R=⇥< and some natural number <  =.
A real matrix - is negative semidefinite (nsd) if �- is psd. We denote the set of
all positive semidefinite matrices by  psd and the set of all negative semidefinite
matrices by  nsd. We write - 2  psd or - ⌫ 0 to denote that - is positive semidef-
inite. Similarly - 2  nsd or - � 0 denotes that - is negative semidefinite. These
sets are special convex sets called semidefinite cones in the vector space S= ⇢ R=⇥=
over the field R. In Chapter 8.2.2 we extend these notions to the complex domain
and treat the set S= ⇢ C=⇥= of complex Hermitian matrices as a vector space over
the field R (not C), define the inner product in S=, and the semidefinite cones of
complex matrices in the vector space S=.

Given these three basic convex sets we can create other convex sets through simple
convexity-preserving operations. LetX andY be linear subspaces. For exampleX :=R=

and Y := R<.
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1. Linear transformation: Let 5 :X!Y be linear, i.e., 5 satisfies 5 (_G1+ (1�_)G2) =
_ 5 (G1) + (1�_) 5 (G2) for all G8 2 - .
(a) If � ✓ X is convex then 5 (�) := { 5 (G) : G 2 �} ✓ Y is convex.
(b) If ⌫ ✓ Y is convex then 5

�1 (⌫) = {G : 5 (G) 2 ⌫} ✓ X is convex.
2. Arbitrary direct product: Let � ✓ X, ⌫ ✓ Y be convex. Then �⇥⌫ := {(G, H) : G 2
�, H 2 ⌫} is convex. In fact the direct product of an arbitrary collection of (e.g.,
uncountably many) convex sets is convex.

3. Finite sum: Let �,⌫ ✓ X be convex. Then �+⌫ := {0+1 : 0 2 �,1 2 ⌫} is convex.
Therefore the sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let �,⌫ ✓ X be convex. Then the intersection �\ ⌫ is
convex, even if the intersection is empty. In fact the intersection of an arbitrary
collection of (e.g., uncountably many) convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. If �,⌫
are convex, then �\ ⌫ is convex, but the converse may not hold; e.g., � := {G : G �
0}[ {G : G  0} ✓ R= and ⌫ := {G : G � 0} ✓ R=. In contrast to intersection the union
of two convex sets can be nonconvex.

Example 8.2. Consider the ellipsoid

⇢ := {G 2 R= : GT
�G  2}

where � 2 R=⇥= is a psd matrix. It is easy to show that ⇢ is convex by verifying
Definition 8.1. In this example we show that ⇢ is convex by deriving it from the
application of convexity-preserving operations on a convex set. Since � is psd it can
be expressed as � := ⌫⌫T for some ⌫ 2 R=⇥<. Hence GT

�G = GT
⌫⌫

T
G = k⌫T

Gk22.

Let H = ⌫T
G. Then the set⇠ := {(H, C) 2 R<+1 : kHk2  C} is a (convex) SOC. Hence

the set ⇡ := {H 2 R< : kHk2  2} is convex since it is the intersection of two convex
sets:

⇡ = c (⇠ \ (R<⇥ {C = 2}))

where c : R<+1! R< denotes the projection to R<. Then ⇢ = 5
�1 (⇡) where 5 (G) :=

⌫
T
G is a linear function from R= to R<. Hence ⇢ is convex as desired. Note that if

2 < 0 then ⇢ = ; which is convex. ⇤

8.1.3 Derivative, directional derivative and partial derivative

In this subsection we review di�erent notions of derivatives of real-valued functions 5
on R= (see Chapter A.9 for more details).

Consider a real-valued function 5 : - ! R where - ✓ R= is an open set. At each
G 2 - and for each E 2 R= the one-sided directional derivative of 5 at G in the direction
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E is defined as

35 (G;E) := lim
C 2R+
C#0

5 (G + CE)� 5 (G)
C

provided the limit exists, possibly ±1. Since - is open and 5 is real-valued, 35 (G;E)
if exists is always real valued for any E 2 R=. The function 5 is said to be di�erentiable
at G 2 - if the directional derivative 35 (G;E) exists at G for all directions E 2 R= and is
a linear function of E, i.e., if there exists a vector <G 2 R= such that, for all E 2 R=,

35 (G;E) := lim
C 2R+
C#0

5 (G + CE)� 5 (G)
C

= <
T
G
E

In this case the column vector <G 2 R= is called the gradient or derivative of 5 at
G 2 - and denoted by r 5 (G). If 5 is di�erentiable at every G 2 - then 5 is called
di�erentiable on - .

At each G 2 - and for the unit vector 4 9 2 {0,1}= that has a single 1 in its 9 th
position, if the directional derivatives 35 (G;4 9 ) and 35 (G;�4 9 ) exist in both directions
and are equal, then they are called the partial derivative of 5 at G 2 - with respect to
G 9 and denoted by m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C

In this case 5 is called partially di�erentiable at G 2 - with respect to G 9 . The row
vector of partial derivatives of 5 at G 2 - is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i

If 5 is partially di�erentiable at all G 2 - then it is called partially di�erentiable
on - . The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the

coordinate axes whereas the derivative r 5 (G) describes its behavior in all directions. If
5 is di�erentiable then it is partially di�erentiable, but the converse does not generally
hold. If 5 is not only partially di�erentiable but m 5

mG
(G) is also continuous at G, then

the converse holds at G 2 - . Such an 5 is called continuously di�erentiable at G. If 5
is continuously di�erentiable at all G 2 - then it is continuously di�erentiable on - .

Lemma 8.1 (Di�erentiability and partial di�erentiability). Consider a real-valued
function 5 : -! R where - ✓ R= is an open set.

1. If 5 is continuously di�erentiable at G 2 - then it is di�erentiable at G.
2. If 5 is di�erentiable at G 2 - then it is partially di�erentiable at G. Moreover its

gradient r 5 (G) is given by

r 5 (G) =

m 5

mG

(G)
�T
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Hence these properties are nested. The following example shows that a partially
di�erentiable function may not be di�erentiable when the partial derivative m 5

mG
(G) is

discontinuous at G. Indeed a partially di�erentiable function may not even be continuous
at all G 2 - . A continuously di�erentiable function is always continuous.

Example 8.3. 1. Consider 5 : R2! R defined by:

5 (G, H) :=
⇢

0 if GH = 0
1 if G < 0, H < 0

Its partial derivative on the axes exists only at the origin where m 5

m(G,H) (0,0) = [0 0].
The function 5 is however not di�erentiable at (0,0) as it is discontinuous at every
point on the axes. Clearly m 5

m(G,H) is discontinuous at the origin.

2. Consider 5 : R2! R defined by:

5 (G, H) :=

(
G
0
H
0

G
20+H20 if (G, H) < (0,0)

0 if (G, H) = (0,0)

It is discontinuous at the origin along the line G = H (Exercise 8.3). Therefore the
directional derivative of 5 along G = H does not exist. ⇤

Hence 5 is di�erentiable at G 2 - if and only if 35 (G;E) = ETr 5 (G) = m 5

mG
(G) E for

all E 2 R=. For convex but non-di�erentiable functions, derivatives are generalized in
Chapter 12.3.2 to subdi�erentials.

For a vector-valued function 5 : R=! R< that maps an G 2 R= to a vector 5 (G) 2
R
<, the Jacobian � (G) :=

h
m 5

mG
(G)

i
of 5 at G is the < ⇥ = matrix whose 8 9 th entry

�8 9 (G) := m 58

mG 9

(G) is the partial derivative of 58 with respect to G 9 evaluated at G. The

gradient or derivative of 5 at G is r 5 (G) := �T (G) when 5 is di�erentiable (i.e., every
58 is di�erentiable).

8.1.4 Convex function

Definition 8.3 (Convex function). A function 5 : - ! R defined over a convex set
- ✓ R= is convex if, for all G, H 2 - and all U 2 [0,1],

5 (UG + (1�U)H)  U 5 (G) + (1�U) 5 (H)

It is strictly convex if the inequality is strict for G < H and U 2 (0,1). A vector-valued
function 5 : - ! R< is convex or strictly convex if every component 58 : - ! R is
convex or strictly convex respectively. A function 5 is concave (strictly concave) if � 5
is convex (strictly convex). ⇤

The definition says that, for a scalar-valued function 5 , the straight line connecting
5 (G) and 5 (H) lies above 5 between G and H, or equivalent, the linear approximation
of 5 is always an underestimate, as illustrated in Figure 8.2(a).
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x y

f (x)

x

(a) Convex function.

x y

f (x)

x

(b) Convex function.

f (x)

x

(c) Nonconvex func-
tion.

Figure 8.2 Convex function: The straight line connection 5 (G) and 5 (H) lies above 5 . The
linear approximation of a di�erentiable convex function 5 lies below 5 .

Example 8.4. If 5 (G) = G2 then for any G, H and U 2 [0,1]

U 5 (G) + (1�U) 5 (H)� 5 (UG + (1�U)H) = U(1�U) (G� H)2
> 0

for G < H and U 2 (0,1). Hence 5 is strictly convex. ⇤

Checking if a function is convex by verifying the convexity definition is often
di�cult. The following theorem provides three di�erent ways to check the convexity
of a function. Consider 5 : - ! R over a convex domain - ✓ R=. Let r 5 (G) denote
the column vector of partial derivatives of 5 (whereas m 5

mG
denotes the row vector of

partial derivatives). Let

r2
5 (G) :=

m
2
5

mG
2

:=
h
m

2
5

mG8 mG 9

i

denote the =⇥= symmetric Hessian matrix.

Theorem 8.2 (Convex function). Consider a function 5 defined on a convex open set
- ✓ R=. The function 5 is convex if and only if any one of the following holds:

1. For G 2 - and all E 2 R= the function

6(C) := 5 (G + CE) (8.2)

is convex on {C 2 R | G + CE 2 -}.
2. For a di�erentiable function 5 ,

5 (H)� 5 (G) � r 5 (G)T (H� G), 8G, H 2 - (8.3)

3. For a twice di�erentiable function 5 ,

r2
5 (G) ⌫ 0, 8G 2 -

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).
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The condition in Theorem 8.2.1 does not require di�erentiability of 5 and says that,
if we take any cross section of the surface 5 defined by (G,E), i.e., from G in the direction
of E or �E, the corresponding scalar function 6(C) is convex. The first-order condition
in Theorem 8.2.2 says that the function 5 always lies above its linear approximation,
i.e., 5 (H) is always greater than or equal to the tangent plane to 5 at any point G. This
is illustrated in Figure 8.2(b). The second-order condition in Theorem 8.2.3 roughly
says that the gradient at any point G is increasing around G.

Proof of Theorem 8.2 1. Suppose 5 is convex. Fix any G 2 - and any E 2 R=. We
will show that 6(C) := 5 (G + CE) is convex in C, i.e., for B < D such that G + BE and
G +DE are both in - , we have, for any C := UB+ (1�U)D with U 2 [0,1],

6(C)  U6(B) + (1�U)6(D)

From Figure 8.3 we have

x

x+uv
x+sv

Figure 8.3 Proof of Theorem 8.2.1.

G + CE = U(G + BE) + (1�U) (G +DE)

Hence, since 5 is convex,

6(C) = 5 (G + CE) = 5 (U(G + BE) + (1�U) (G +DE))  U6(B) + (1�U)6(D)

i.e., 6 is convex. Conversely suppose 6 is convex but 5 is not, i.e., there exists two
points G, H 2 - and a point I := (1�U)G +UH, U 2 [0,1], in between such that

5 (I) > (1�U) 5 (G) +U 5 (H)

Define 6(C) := G + CE where E := H� G. Then I = G +UE and, since 6 is convex,

5 (I) = 6(U)  (1�U)6(0) +U6(1) = (1�U) 5 (G) +U 5 (H)

contradicting that 5 is not convex.
2. We first prove the result for a scalar di�erentiable function 6 : R! R. Then we

use the result to prove the theorem for a di�erentiable function 5 : - ! R where
- ✓ R= with = � 1.

Consider first 6 : R! R. We prove that the following are equivalent:
(a) 6 is convex.
(b) 6(C)�6(B) � 60(B) (C � B) for any B < C 2 R.
(c) 60(C) � 60(B) for any C � B in R, i.e. 6 has nondecreasing slope.
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Suppose (a): 6 is convex. Fix any B, C 2 - . For any U 2 [0,1] we have 6(B +U(C �
B))  (1�U)6(B) +U6(C) and hence

6(C)�6(B) � 6(B+U(C � B))�6(B)
U

Taking limit

lim
U#0

6(B+U(C � B))�6(B)
U(C � B) (C � B) = 6

0(B) (C � B)

we have (b). Conversely suppose (b) and we want to prove (a), i.e.

U6(C) + (1�U)6(B)�6(I) � 0 (8.4)

for any I := B+U(C � B), U 2 [0,1]. Compare the di�erence 6(C)�6(I) and 6(B)�
6(I) in terms of gradient at the common point I:

6(C)�6(I) � 6
0(I) (C � I), 6(B)�6(I) � 6

0(I) (B� I)

To obtain (8.4), multiply the first inequality by U and the second inequality by
1�U and sum, noting that C � I = (1�U) (C � B) and B� I = �U(C � B) so that the
right-hand sides of these two inequalities sum to zero. This proves (a), (b).

Now suppose (b). Fix any C � B and compare 6(C) �6(B) in terms of slope at B
and at C:

6
0(B) (C � B)  6(C)�6(B)  6

0(C) (C � B)

yielding (c). Conversely suppose (c) and fix any C � B. By the mean value theorem
we have, for some I 2 [B, C], 6(C) � 6(B) = 6

0(I) (C � B) � 6
0(B) (C � B), which is

(b). This proves (b), (c).
Now consider 5 : -! R where - ✓ R= with = � 1. We use the result above on

scalar functions to prove the theorem. Suppose 5 is convex and fix any G, H 2 - .
Define the scalar function 6 : R! R by

6(B) := 5 (G + BH) for B 2 R such that G + BH 2 - (8.5)

It is easy to show that 6(B) is convex. By the mean value theorem there exists an
B 2 [0,1] such that

5 (G + H)� 5 (G) = 6(1)�6(0) = 6
0(B)

By (c) above we have 60(B) � 60(0) = (r 5 (G))T
H and hence

5 (G + H)� 5 (G) � (r 5 (G))T
H

establishing (8.3). Moreover if 5 is strictly convex then the inequalities above are
strict.

Conversely suppose (8.3) holds. To prove the convexity of 5 , use the same proof
above for (b)) (a). Take I := G +U(H� G) for any U 2 [0,1]. We have

5 (H)� 5 (I) � (r 5 (I))T (H� I), 5 (G)� 5 (I) � (r 5 (I))T (G� I)
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Multiply the first inequality by U and the second inequality by 1�U and sum to
obtain:

U 5 (H) + (1�U) 5 (G)� 5 (I) � (r 5 (I))T (U(H� I)� (1�U) (I� G)) = 0

proving the convexity of 5 . Moreover if the inequalities above are strict then 5 is
strictly convex.

3. To prove the second-order condition, fix any G, H 2 - , and define the scalar function
6(B) := 5 (G + B(H� G)). Applying the second-order Taylor expansion to 6:

5 (H)� 5 (G) = 6(1)�6(0) = 6
0(0) + 1

2
6
00(B)

= (r 5 (G))T (H� G) + 1
2
(H� G)Tr2

5 (G + B(H� G)) (H� G)

for some B 2 [0,1]. Ifr2
5 (I) ⌫ 0 for all I 2 - , then 5 (H)� 5 (G) � (r 5 (G))T (H�G)

which is equivalent to the convexity of 5 from part 2.
Conversely, suppose 5 is convex but r2

5 (G) � 0 for some G 2 - . Then there
exists a vector E 2 R= such that ETr2

5 (G)E < 0. Since 5 is convex, part 1 shows
that the scalar function 6(C) := 5 (G + CE) is convex in C. Then the proof of part
2(c) shows that, when 6 is twice di�erentiable, 600(C) � 0 for all C 2 R such that
G+ CE 2 - . But 600(C) = ETr2

5 (G+ CE)E and hence ETr2
5 (G)E < 0 means 600(0) < 0,

contradicting that 6 is convex.

⇤

Theorem 8.2 provides an exact characterization for convexity. For strict convexity,
the second-order characterization is su�cient but not necessary: e.g., 5 (G) = G4 is
strictly convex but 5 00(G) = 0 at G = 0. The following result can be proved following
the argument for Theorem 8.2 (Exercise 8.7).

Corollary 8.3 (Strictly convex function). Consider a function 5 defined on a convex
open set - ✓ R=.

1. The function 5 is strictly convex if and only if the function 6(C) in (8.2) is strictly
convex on {C 2 R : G + CE 2 -}.

2. For a di�erentiable function 5 , 5 is strictly convex if and only if strict inequality
holds in (8.3) for G < H.

3. For a twice di�erentiable function 5 , 5 is strictly convex if r2
5 (G) � 0 for all

G 2 - .

A common mistake is to confuse the second-order condition in Theorem 8.2.3 that
r2
5 (G) is positive semidefinite with the condition that

G
Tr2

5 (G)G � 0 for all G 2 -

For any G 2 - , r2
5 (G) ⌫ 0 if and only if

H
Tr2

5 (G)H � 0 for all H 2 R=
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i.e., regardless of what - is, the test on r2
5 (G) is for all H 2 R=. This is illustrated in

the next example.

Example 8.5. Consider the function

5 (G1,G2) = G1G2

over the domain - :=
�
(G1,G2) 2 R2 : G1 > 0,G2 > 0

 
with

r2
5 (G) =


0 1
1 0

�

We have GTr2
5 (G)G = 2G1G2 > 0 for all G 2 - , but r2

5 (G) is not positive semidefinite.
Indeed its eigenvalues are 1 and �1 and hence 5 is convex along the eigenvector
corresponding to eigenvalue 1, but concave along that corresponding to eigenvalue
�1. Specifically the function value along the direction G1 = G2 corresponding to the
eigenvalue-eigenvector pair (1, (1,1)) is given by

6(C) := 5

✓ 
G1

G2

�
+ C ·


1
1

� ◆
= (G1 + C) (G2 + C), C > �min{G1,G2}

Hence 6(C) is convex in C, i.e. 5 is convex along G1 = G2. Along the direction G1 = �G2

corresponding to the eigenvalue-eigenvector pair
�
�1, [1 �1]T� the function value is

6(C) := 5

✓ 
G1

G2

�
+ C ·


1
�1

� ◆
= (G1 + C) (G2� C), �G1  C  G2

Therefore 6(C) is concave in C, i.e., 5 is concave along G1 = �G2. ⇤

Example 8.6. We illustrate Theorem 8.2 using 5 (G) = logG for G > 0.

1. We have 5 0(G) = G�1 and for G < H > 0 (such that H
G
< 1)

5 (H)� 5 (G) = log
H

G

<

H

G

�1 =
1
G

(H� G) = 5
0(G) (H� G)

where the inequality follows from log I < I � 1 for I > 0 and I < 1. Hence 5 is
strictly concave by Theorem 8.2.2.

2. To use Theorem 8.2.3 we have

5
00(G) = � 1

G
2

< 0

implying strict concavity of 5 . ⇤

The addition, multiplication by a positive constant, and supremum operations pre-
serve convexity. Specifically suppose 51 and 52 are two convex functions on the same
domain. Then (Exercise 8.8):

1. 5 := U 51 + V 52, U, V � 0, is convex.
2. 5 :=max{ 51, 52} is convex. In fact 5 (G) := sup

H2. 5 (G; H) is convex in G for arbitrary
set . , provided that, for every H 2 . fixed, 5 (G; H) is convex in G.
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3. 5 (G, H) := |G | + |H | defined on R2 is convex as it can be expressed in terms of the
supremum and addition operations ( 5 (G, H) = max{G,�G} +max{H,�H}).

4. 5 (6(G)) is convex if 6 : R=! R< is convex (componentwise) and 5 : R<! R is
convex and nondecreasing (componentwise), i.e., 5 (H1)  5 (H2) for H1, H2 2 R<
with H1  H2.

Convex functions define another important class of convex sets. Let 5 : - ! R
where - ✓ R=. If - is a convex set and 5 a convex function then for each 0 2 R the
level set -0 := {G 2 - : 5 (G)  0} is convex. For a vector-valued function 5 : -! R<
where 5 := ( 51, . . . , 5<) with 58 : -! R. Then the set specified by:

-1 := {G 2 - : 5 (G)  1}, 1 2 R<

is convex if 5 is convex, i.e, if each 58 is convex. This is because the level sets
-18

:= {G 2 - : 58 (G)  18} are convex for all 8 = 1, . . . ,<, and hence their intersection
-1 = \<

8=1-18 is convex. Note that the converse may not hold, i.e., a level set that is
convex may be specified by nonconvex functions. For example the second-order cone
 soc may be specified as  soc = {G 2 R= : 5 (G)  0,G= � 0} where 5 (G) := kG=�1k22�G2

=

is nonconvex (see the discussion after (8.16)).

An important property of a real-valued convex function is that it is continuous on
the interior of its domain, as the following lemma from [56, Proposition 1.3.11] shows.
See Lemma 12.15 for generalization to proper extended real-valued convex functions.
Lemma 12.15 also implies that a real-valued convex function over a compact set - is
Lipschitz continuous on int(-).

Lemma 8.4 (Continuity of convex functions). Let 5 : - ! R where - ✓ R=. If 5 is
convex on - then it is continuous on int(-).

Proof Fix any point H̃ 2 int(-) and consider any sequence {H: } such that H: < H̃ and
lim: H: = H̃. We will show that

limsup
:

5 (H: )  5 ( H̃)  liminf
:

5 (H: ) (8.6)

implying lim: 5 (H: ) = 5 ( H̃). Since H̃ 2 int(-) there exists X > 0 such that the compact
set ⌫X ( H̃) := {G : kG� H̃k1  X} ✓ - . We will consider su�ciently large integers : such
that H: 2 ⌫X ( H̃) for all (such) : .

For any G 2 ⌫X ( H̃) we can always find a unique I on the boundary of ⌫X ( H̃) that is
X distance from H̃ such that G is a convex combination of H̃ and I (see Figure 8.4):

G = H̃ + k�Gk1
X

(I� H̃)

where �G := G � H̃. Since ⌫X ( H̃) is a compact scaled and shifted norm-1 unit ball, I is
a convex combination of its extreme points H̃ + X0 9 where 0 9 := ±4 9 , the unit vectors
(Lemma A.3 in Appendix A.2). Write I =:

Õ2=
9=1U 9 ( H̃ + X0 9 ) for some U 9 � 0 with
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Õ
9
U 9 = 1 (U 9 depend on I and hence on G). The convexity of 5 then implies

5 (G) = 5

 ✓
1� k�Gk1

X

◆
H̃ + k�Gk1

X

’
9

U 9 ( H̃ + X0 9 )
!


✓
1� k�Gk1

X

◆
5 ( H̃) + k�Gk1

X

’
9

U 9 5 ( H̃ + X0 9 )


✓
1� k�Gk1

X

◆
5 ( H̃) + k�Gk1

X

max
9

5 ( H̃ + X0 9 ) =: � (8.7)

for any G 2 ⌫X ( H̃).

We now establish the first inequality in (8.6). For each : , since H: 2 ⌫X ( H̃), we can
find a I: on the boundary of ⌫X ( H̃) that is X distance from H̃ such that H: is a convex
combination of H̃ and I: (see Figure 8.4):

H: = H̃ + k�H: k
X

(I: � H̃)

where �H: := H: � H̃. The convexity of 5 then implies

Figure 8.4 Proof of Lemma 8.4: Construction of (G
:
, I
:
) from H̃ and H

:
.

5 (H: ) 
✓
1� k�H: k

X

◆
5 ( H̃) + k�H: k

X

5 (I: ) 
✓
1� k�H: k

X

◆
5 ( H̃) + k�H: k

X

�

where the last inequality follows from (8.7). Taking limsup
:

therefore yields the first
inequality in (8.6) since �H: ! 0.

The second inequality in (8.6) follows a similar argument. For each : , let G: 2 ⌫X ( H̃)
be the vector that is X distance from H̃ such that H̃ is a convex combination of G: and
H: (see Figure 8.4):

H̃ = G: +
X

X+ k�H: k
(H: � G: )

Hence

5 ( H̃)  k�H: k
X+ k�H: k

5 (G: ) +
X

X+ k�H: k
5 (H: ) 

k�H: k
X+ k�H: k

�+ X

X+ k�H: k
5 (H: )

Taking liminf: therefore yields the second inequality in (8.6) since �H: ! 0. ⇤



8.1 Convex optimization 331

Strong convexity. A function 5 is strictly convex if r2
5 (G) � 0 for all G 2 - (Corol-

lary 8.3). Its curvature however may be arbitrarily flat, i.e., HTr2
5 (G)H > 0 can be

arbitrarily close to zero. A stronger form of convexity bounds this away from zero
uniformly in G, i.e., for some U > 0, r2

5 (G) ⌫ U� for all G 2 R=.

Definition 8.4 (Strong convexity). Let 5 : R=! R be continuously di�erentiable on
R
=. It is called strongly convex with parameter U on a set - ✓ R= if there exists U > 0

such that

(r 5 (H)�r 5 (G))T (H� G) � UkH� Gk22 8G, H 2 - ✓ R= (8.8)

⇤

Definition 8.4 implies that kr 5 (H) �r 5 (G)k2 � U kH� Gk2 for all G, H 2 - . Strong
convexity is stronger than strict convexity.

Lemma 8.5 (Strong convexity). Let 5 : R= ! R= be continuously di�erentiable on
R
=. If 5 is strongly convex on - ✓ R= then it is strictly convex on - .

Proof As in the proof of Lemma 8.32, fix any G, H 2 - and consider the (scalar)
function along the path from G to H in a straight line:

6(B) := 5 (G + BH) for B 2 [0,1]

with 60(B) = HTr5 (G + BH) as the directional derivative of 5 at G + BH in the direction H.
Then

5 (G + H)� 5 (G) =
π 1

0
6
0(B)3B =

π 1

0
H

Tr5 (G + BH)3B

=
π 1

0

⇣
H

Tr5 (G) + HT (r5 (G + BH)�r5 (G))
⌘
3B

� H
Tr5 (G) +

π 1

0

1
B

UkBHk22 3B

= H
Tr5 (G) + U

2
kHk22 (8.9)

where the inequality follows from (8.8). Corollary 8.3 then implies the strict convexity
of 5 . ⇤

Definition 8.4 does not require 5 to be twice continuously di�erentiable. For a twice
continuously di�erentiable function 5 , if it is strongly convex and 5 is finite on - , then
the Hessian r2

5 (G) is both lower and upper bounded uniformly on - , as explained in
the next result.

Theorem 8.6 (Strong convexity). Let 5 :R=!R= be twice continuously di�erentiable
on R=.

1. (8.8) is equivalent to r2
5 (G) ⌫ UI for all G 2 - where I is the identity matrix of

size =.



332 Smooth convex optimization

2. Suppose 5 is strongly convex and sup
G2- 5 (G) <1. Then

• r2
5 (G) � VI for all G 2 - where V is a finite and uniform upper bound on the

maximum eigenvalue _max (G) on - .
• Then the gradient r 5 is Lipschitz continuous with Lipschitz constant V, i.e.,

kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.10)

Proof For part 1, suppose r2
5 (G) ⌫ UI for all G 2 - . We will show that 5 is strongly

convex, i.e., 5 satisfies (8.8). Fix any G, H 2 - and let

⌘(B) := r5 (G + B(H� G))T (H� G)

Then

⌘
0(B) = (H� G)Tr2

5 (G + B(H� G)) (H� G)

and

(r5 (H)�r 5 (G))T (H� G) = ⌘(1)� ⌘(0) =
π 1

0
⌘
0(B)3B

=
π 1

0
(H� G)Tr2

5 (G + B(H� G)) (H� G) 3B � UkH� Gk22

where the inequality follows from r2
5 (G) ⌫ UI. Hence 5 (G) is strongly convex. Con-

versely suppose 5 is strongly convex. To estimate r2
5 (G) we have for any G 2 - ,

H 2 R=,

H
Tr2

5 (G) H = lim
_!0

1
_

✓
m 5

mG

(G +_H)� m 5
mG

(G)
◆
H � lim

_!0

1
_

2

⇣
Uk_Hk22

⌘
= UkHk22

where the inequality follows from the strong convexity of 5 . Hence r2
5 (G) ⌫ U� as

desired. This shows the equivalence of (8.8) and r2
5 (G) ⌫ UI for all G 2 - .

For Part 2 we will show that if 5 is strongly convex, i.e., r2
5 (G) ⌫ U� on - , then

it is also upper bounded, i.e., r2
5 (G) � VI for a finite V, provided sup

G2- 5 (G) < 1.
Since r2

5 (G) is symmetric and positive definite, its eigenvalues are positive for all
G 2 - and

H
Tr2

5 (G)H  max
H
0 2R=

(H0)Tr2
5 (G)H0

kH0k22
kHk22 = _max (G)kHk22, G 2 - , H 2 R=

where _max (G) > 0 is a largest eigenvalue of r2
5 (G) and the last equality follows

from the variational inequalities for eigenvalues of symmetric matrices (see (A.15) in
Chapter A.6.2). This is equivalent to

r2
5 (G) � _max (G)I, G 2 -

It thus su�ces to show that _max (G) is finite over - .
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For all G, H 2 - , we have

5 (H) = 5 (G) + m 5
mG

(G) (H� G) + 1
2
(H� G)Tr2

5 (I) (H� G)

� 5 (G) + m 5
mG

(G) (H� G) + U
2
kH� Gk22 (8.11)

for some I between G and H. (That (8.9) and (8.11) are the same is why (8.8) is
equivalent to r2

5 (G) ⌫ U�.) If 5 max := sup
G2- 5 (G) < 1, then fix an G 2 - and we

have, for all H 2 - ,

5
max � 5 (H) � 5 (G) + m 5

mG

(G) (H� G) + U
2
kH� Gk22

This implies that H 2 - must be bounded. Since this holds for all H 2 - , - must
be a bounded set and therefore its closure cl(-) is a compact set. Eigenvalues are
continuous functions of their matrix entries and 5 is twice continuously di�erentiable,
and hence V := max

G2cl(- ) _max (G) is finite (Theorem 8.16).

Finally for (8.10), we have (Lemma A.34 in Chapter A.10)

kr 5 (H)�r 5 (G)k 
��r2

5 (I)
�� kH� Gk, 8G, H 2 R=

for any vector norm and any induced matrix norm, and for some I between G and H.
For the spectral norm (induced by the ;2 vector norm; see Theorem A.25 of Chapter
A.8.3), r2

5 (G)  VI implies that kr2
5 (G)k2  V because

kr2
5 (G)k2 = max

kH k2=1
kr2

5 (G)Hk2 = max
kH k2=1

q
H

T �
kr2

5 (G)
�2
H = _max (G)  V

This proves (8.10) and completes the proof of Theorem 8.6. ⇤

Theorem 8.6 is critical in the convergence analysis of gradient algorithms. We
explain its implications in the next remark.

Remark 8.1 (Strong convexity and convergence analysis). 1. The condition 5 max :=
sup

G2- 5 (G) < 1 is not restrictive even if 5 (G)!1 as G recedes in - along a
certain direction (e.g., 5 (G) = G2). For instance if a feasible point G0 2 - is known
then the feasible set - can be replaced by - 0 := {G 2 - : 5 (G)  5 (G0)} without
a�ecting minimization, and 5

max in the proof can be replaced by 5 (G0).
2. Strong convexity in terms of the gradient r 5 (G) in Definition 8.4 is equivalent to
r2
5 (G) � UI for all G 2 - . The variational inequality for eigenvalues of symmetric

matrices says that min
G:kG k2=1 G

Tr2
5 (G)G = _min (G) > 0, a minimum eigenvalue

of r2
5 (G) (see (A.15) in Chapter A.6.2). Hence the strong convexity parameter U

can be any finite lower bound, e.g., U := min
G2cl(- ) _min (G) > 0.

3. Suppose 5 max := sup
G2- 5 (G) <1. Then Theorem 8.6 implies

UI � r2
5 (G) � VI, G 2 - ⇢ R= (8.12a)

where U > 0, V <1 are lower and upper bounds on the minimum and maximum
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eigenvalues of r2
5 (G) on - respectively. This implies the following bounds on

the gradient r 5 (G)

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.12b)

4. As explained in Theorem 8.36 of Chapter 8.6.3 on the convergence of the steepest
descent algorithm, the upper bound in (8.12b) guarantees strict descent while the
lower bound in Definition 8.4 guarantees linear convergence. Hence the steepest
descent algorithm converges to a unique optimal point linearly (i.e., exponentially
fast in time). ⇤

8.1.5 Convex program

Consider an optimization problem of the form:

min
G2R=

5 (G) subject to G 2 - (8.13)

- ✓ R= is called the feasible set and 5 : R=! R the objective function. An G 2 - is
called a feasible solution of (8.13). A feasible solution G⇤ that attains the minimum of
5 over - (i.e., 5 (G⇤)  5 (G) for all G 2 -) is called a (global) optimal solution/optimum
or a (global) minimizer. A feasible solution G⇤ that attains the minimum of 5 over a
neighborhood of G⇤ (i.e., 5 (G⇤)  5 (G) for all G 2 ⌫A (G⇤)\ - for some A > 0) is called
a local optimal solution/optimum or a local minimizer.

The problem (8.13) is called a convex program/problem if 5 is a convex function
and - is a convex set. It is tractable if - can be e�ciently represented. For instance

- := {G 2 R= : 6(G)  1}

for a vector-valued convex function 6 : R= ! R< and a vector 1 2 R<. By setting
D(G) = � 5 (G), the following maximization problem is also called a convex program if
D(G) is a concave function and - is a convex set:

max
G2R=

D(G) subject to G 2 -

Importance of convexity. As we will see in Chapter 8.3 the existence of optimal
solutions and their characterization may not require the cost function 5 to be a convex
function or the feasible set - to be a convex set. Convexity of 5 and - is important
for e�cient computation of an optimal solution. This is because for a convex objective
function, local optimality implies global optimality. Moreover only the first-order
condition is required to guarantee local optimality. Specifically, for an unconstrained
minimization problem

min
G2R=

5 (G)
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a necessary condition for a point G⇤ to be a local minimizer is (assuming 5 is di�eren-
tiable)

r 5 (G⇤) = 0

If 5 is convex then this is also su�cient for G⇤ to be globally optimal, as illustrated in
Figure 8.2. For constrained minimization problem (8.13) where - is nonempty, closed
and convex, the first-order necessary condition for G⇤ 2 - to be a local minimizer
becomes: there is a neighborhood ⌫A (G⇤) for some A > 0 such that

(r 5 (G⇤))T (G� G⇤) � 0 8G 2 ⌫A (G⇤)\ - (8.14)

i.e., moving away from G
⇤ to any other feasible point G in ⌫A (G⇤) can only locally

increase the function value 5 (see Figure 8.16). If 5 is convex then this is both
necessary and su�cient for G⇤ to be globally optimal. To see this, suppose (8.14) holds
but there is another Ĝ 2 - such that 5 (Ĝ) < 5 (G⇤). Consider I(U) := UĜ + (1�U)G⇤.
Since - is convex I(U) is feasible for U 2 [0,1]. Since 5 is convex we have, for any
U 2 (0,1],

5 (I(U))  U 5 (Ĝ) + (1�U) 5 (G⇤) < 5 (G⇤)

But, for small enough U > 0 so that I(U) 2 ⌫A (G⇤), this contradicts

5 (I(U)) � 5 (G⇤) +rT
5 (G⇤) (I(U)� G⇤) � 5 (G⇤)

where the first inequality follows from Theorem 8.2.2 and the second inequality from
(8.14). Hence G⇤ is globally optimal in - .

Example 8.7 (Optimality condition for constrained optimization). Consider

min
G2R

5 (G) := G2 subject to G � 0

See Figure 8.5. It is clear from the figure that the unique minimizer is 0 where

f (x)

x

Figure 8.5 Example 8.7: minG�0 G2. If 0  0 then the unique minimizer is G⇤1 = 0 where
5
0(G⇤) = 0. If 0 > 0 then the unique minimizer is G⇤2 = 0 where 5 0(G⇤) > 0.

5
0(0) = 0 if 0  0 and 0 where 5 0(0) > 0 if 0 > 0. We will derive this conclusion from

the optimality condition (8.14) which is

5
0(G⇤) (G� G⇤) � 0, 8G � 0 (8.15)
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First suppose 0  0. If 0  G⇤ < 0 then 5
0(G⇤) < 0 and there exists a feasible G > G⇤

where (8.15) cannot be satisfied. Similarly if G⇤ > 0 � 0 then 5
0(G⇤) > 0 and there

exists a feasible 0  G < G⇤ where (8.15) cannot be satisfied. Hence the unique optimal
is G⇤ = 0 where 5 0(G⇤) = 0. Suppose next 0 > 0. Then 5

0(G) > 0 for any feasible G � 0.
Then the only way (8.15) can be satisfied is if G⇤ = 0.

Therefore the optimality condition reduces for this example (for any 0 2 R) to: G⇤ is
optimal if and only if there exists a ?⇤ such that

G
⇤ � 0, ?⇤ � 0, 5 0(G⇤) = ?⇤, ?⇤ (G⇤ � 0) = 0

This is an example of the Karush-Kuhn-Tucker (KKT) condition (see Chapter 8.3.2).
⇤

8.2 Properties of convex sets and convex cones

In this section we study some of the most useful properties of convex sets and cones.
For example the Projection Theorem 8.9 is used to prove the separating hyperplane
Theorems 8.10 and 8.11 which are used to prove the Farkas Lemma (Theorem 8.12).
We will also use the Projection Theorem 8.9 to prove in Chapter 8.6 some convergence
properties of optimization algorithms, use the Farkas Lemma (Theorem 8.12) to prove
in Chapter 8.4.2 linear program duality, and use the separating hyperplane theorems
to prove convex duality in Chapters 12.8.2 and 12.8.3.

8.2.1 Second-order cone  soc in R=

Cones in R=. A set  ✓ R= is called a cone if G 2  implies that WG 2  for all W > 0.
A cone  may not contain the origin though the closure of a nonempty cone always
contains the origin. A cone is not necessarily convex. For example  := {W101 : W1 �
0}[ {W202 : W2 � 0} for some 01,02 2 R= is a cone consisting of two rays from the
origin and is nonconvex unless 01 = W02 for some W 2 R. A cone  is called pointed
if G 2  and �G 2  implies that G = 0. Figure 8.6 shows pointed and non-pointed
cones that may be convex or not, a subspace or not. A cone  is called proper if (i)
 is closed and convex; (ii) has a nonempty interior; and (iii) is pointed.2 Common
examples are the nonnegative quadrant R=+ := {G 2 R= : G � 0}, the second-order cone

2 A proper cone  can be used to define a partial ordering on R= through a generalized inequality � :

G � H , H� G 2  

It also defines a strict partial ordering on R=:

G � H , H� G 2 int  

where int( ) is the interior of  . We also write G ⌫ H for H � G and G � H for H � G. We will
usually write directly H� G 2  instead of G � H.
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K

(a) Pointed convex
cone

K

K

(b) Non-pointed nonconvex
cone

K

(c) Non-pointed convex cone

Figure 8.6 Cones and their a�ne hulls. (a) A pointed convex cone  . It is not a subspace; its
a�ne hull a�( ) = R2. (b) A non-pointed nonconvex cone  . It is not a subspace; its a�ne
hull a�( ) = R2. (c) A non-pointed convex cone  which is a subspace. Hence a�( ) =  .

 soc := {G 2 R= : kG=�1k2  G=}, and the set  psd ⇢ S= of positive semidefinite matrices
in the linear space S= of Hermitian matrices.

Definition 8.5 (cone(-)). Let - ✓ R= be a nonempty set. The cone generated by - ,
denoted cone(-), is the set of all nonnegative combination of vectors in - , i.e.,

cone(-) :=

(
<’
8=1

U8G8 : G8 2 - ,U8 � 0, integers < > 0

)

If {01, . . . ,0=} are the column vectors of � 2 R<⇥= then cone({01, . . . ,0=}) ✓ R< is
abbreviated as cone(�). ⇤

The set cone(-) is always a convex cone that contains the origin for arbitrary
nonempty - . See Figure 8.7 for examples. It therefore contains the set {WG : W � 0,G 2

cone (X)

X

cone (X) = R2

X
cone (X)

X

Figure 8.7 Cones cone(-) generated by - ✓ R=.

-} which may not be convex, e.g., - := {01,02} with 01 < W02. It is not necessarily
closed even if - is compact (see [56, Figure 1.2.2, p.21] for an example). We will
mostly be dealing with closed convex cones in this book.

Recall from Definition 8.2 that conv(-) of an arbitrary set - is the intersection of
all convex sets containing - . A convex combination of G1, . . . ,G< in - is the vector
G :=

Õ
<

8=1U8G8 with U8 � 0 and
Õ
<

8=1U8 = 1. Any convex combination of vectors in -
is in conv(-). The next fundamental result implies the converse, e.g., [56, Proposition
1.2.1, p.20].

Theorem 8.7 (Carathéodory Theorem). Let - ✓ R= be a nonempty set.
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1. If G 2 conv(-) is nonzero, then G =
Õ
<

8=1U8G8 for some <  = + 1, U8 > 0 withÕ
<

8=1U8 = 1, and G8 2 - .
2. If G 2 cone(-) is nonzero, then G =

Õ
<

8=1U8G8 for some <  =, U8 > 0 and linearly
independent G8 2 - . ⇤

The convex hull conv(-) of an arbitrary set - is not necessarily closed, e.g.,
- = (0,1) = conv(-). A consequence of the Carathéodory theorem is that conv(-)
is compact if - is compact. Suppose G 2 conv(-) is given by G =

Õ
<

8=1 V8H8 for some
< > =, V8 > 0 with

Õ
<

8=1 V8 = 1, and H8 2 - . At most = of H8 2 - can be linearly
independent, say, H1, . . . , H: are linearly independent with :  =. Therefore other H8 for
8 > : can be written as linear combinations of H1, . . . , H: , and we can write G =

Õ
:

8=1_8H8

with :  =. The coe�cients _8 , however, may not form a convex combination of H8 ,
unlike in the Carathéodory theorem. In other words, any G 2 conv(-) can be written
as a linear combination of :  = vectors H8 2 - (these H8 depend on G) and as a convex
combination of<  =+1 vectors G8 2 - (these G8 depend on G). An example application
of the Carathéodory theorem is in Exercises 12.12, 13.12 and 13.13.

Second-order cone. A particularly useful convex cone is the second-order cone,
defined by

 soc :=
⇢
(G, C) 2 R= ⇥R :

q
G

2
1 + · · · + G2

=
 C

�
(8.16)

It is also called the Lorentz cone or ice-cream cone. It has several equivalent specifica-
tions. It is equivalent to soc = {(G, C) : kGk22  C2, C � 0} or the intersection soc =  ̃\�
where  ̃ := {(G, C) : kGk22  C2} and � := {(G, C) : C � 0} is a halfspace. While  soc is a
convex cone,  ̃ is a nonconvex cone; see Figure 8.8 and Exercise 8.12 (see Theorem
12.10 in Chapter 12.1.4 for more properties of  soc). The second-order cone  soc can

t

x2

x1

(a) Nonconvex cone -̃

t

x2

x1

(b) Convex cone  

Figure 8.8 (a) Nonconvex cone  ̃ := {(G, C) 2 R=+1 : kGk22  C
2}. (b) Second-order cone

 soc =  ̃ \�.

also be specified as a level set of a constraint function,  soc := {(G, C) : ⌘1 (G, C)  0}
where ⌘1 (G, C) := kGk2 � C is convex. Equivalently  soc := {(G, C) : ⌘2 (G, C)  0, C � 0}
where ⌘2 (G, C) := kGk22 � C2 is nonconvex (Exercise 8.12). Hence a convex set can
be specified by constraint functions that may not all be convex functions. This has



8.2 Properties of convex sets and convex cones 339

important implications on structural and computational properties of equivalent rep-
resentations of a constrained optimization; see Chapter 8.3.7.

A rotated second-order cone is the set

 rsoc := {(G, H, I) 2 R= ⇥R2 : kGk22  HI, H � 0, I � 0} (8.17)

It can be represented as a linear transformation (a rotation) of the standard second-order
cone  soc defined in (8.16) using the equivalence:

kGk22  HI, H � 0, I � 0 ()
����


2G
H� I

�����
2

 H + I

i.e., (F, C) = �(G, H, I) 2  soc ✓ R=+2 if and only if (G, H, I) 2  rsoc for a (=+2)⇥ (=+2)
nonsingular matrix �. Indeed (Exercise 8.13)

 soc = � rsoc, � =
266664
2I= 0= 0=
0T
=

1 �1
0T
=

1 1

377775
(8.18a)

 rsoc = �
�1
 soc, �

�1 =
1
2

266664
I= 0= 0=
0T
=

1 1
0T
=
�1 1

377775
(8.18b)

See Corollary 12.11 in Chapter 12.1.4 for more properties of  rsoc.

SOC constraint. A convex set specified in terms of a second-order cone  soc ✓ R=+1

in (8.16) is

⇠ := {G 2 R= : (�G + 1,2T
G + 3) 2  soc} = {G 2 R= : k�G + 1k2  2T

G + 3} (8.19)

where � 2 R<⇥=, 1 2 R<, 2 2 R=, and 3 2 R. It is a convex set because ⇠ is the
pre-image of a convex set  soc under an a�ne function (see also Exercise 8.14). The
constraint in (8.19) is called a second-order cone (SOC) constraint, even though ⇠ in
general may not be a cone itself. For example

• If � = 0 then ⇠ is a halfspace, generally not a cone.
• If 2 = 0 then ⇠ is an ellipsoid (3 > 0), generally not a cone.

The set defined in (8.16) is a special case of (8.19) with 1 = 0,3 = 0, 2 = 4= the unit
vector with a single 1 as its =th entry, and � =

⇥
I=�1 0=�1

⇤
where I=�1 and 0=�1 are

the identity matrix and 0 vector respectively of size =�1.

Example 8.8 (SOC constraint). Consider ⇠ defined in (8.19) where

� :=

1 0
0 1

�
, 2 := U


1
1

�
, 1 := 0, 3 := 0

⇠ = ⇠̃ \� where ⇠̃ := {G : k�G + 1k22  (2T
G + 3)2} and � := {G : 2T

G + 3 � 0} is a
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halfspace. Then ⇠̃ =
�
G 2 R2 : GT

�̃G  0
 

where

�̃ := �
T
�� 22T =


1�U �U
�U 1�U

�

whose eigenvalues are 1 and 1�2U. Therefore if U  1/2 then �̃ is positive semidefinite
and ⇠̃ is convex. Otherwise ⇠̃ is nonconvex. In both cases ⇠ = ⇠̃ \� is convex.

For example when U = 1/2, ⇠̃ = {G : 1
2 (G1 � G2)2  0} = {G : G1 = G2}. When U = 1,

⇠̃ = {G : G1G2 � 0} = {G : G � 0}[ {G : G  0}. These sets and their intersections with
the halfspace � := {G : G1 + G2 � 0} are shown in Figure 8.9. ⇤

C

x2

x1

C̃

H

(a) Convex ⇠̃

H

x2

x1
C̃

C

(b) Nonconvex ⇠̃

Figure 8.9 Example 8.8. (a) When U = 1/2, ⇠̃ = {G : G1 = G2} is convex. (b) When U = 1,
⇠̃ = {G : G � 0}[ {G : G  0} is nonconvex. In both cases ⇠ = ⇠̃ \� is convex.

Similarly a convex set can be specified in terms of a rotated second-order cone
 rsoc ✓ R<+2 in (8.17):

⇠A :=
�
G 2 R= : (�G + 1, 2T

1G + 31, 2T
2G + 32) 2  rsoc

 
=

�
G 2 R= : k�G + 1k22  (2T

1G + 31) (2T
2G + 32), 2T

1G + 31 � 0, 2T
2G + 32 � 0

 
where � 2 R<⇥=, 1 2 R<, 2 2 R=, and 3 2 R. It is a convex set because ⇠A is the
pre-image of a convex set  rsoc under an a�ne function. The constraints that define
⇠A are also called second-order cone constraints, even though ⇠A in general may not
be a cone itself. This form of constraint is used in Chapter 11 to relax the nonconvex
quadratic constraint E 9✓ 9: = |( 9: |2 into a second-order cone constraint E 9✓ 9: � |( 9: |2.

We study properties of SOC constraints in Chapter 12.1.4.

8.2.2 Semidefinite cone  psd in S=

Numerous power system applications can be formulated as a constrained optimization
problem often using complex variables in the phasor domain. Moreover some solution
methods for solving these problems give rise to constraints or variables involving
matrices (see e.g. Chapter 10). Even though any optimization problem in the complex
domain can be converted into one in the real domain, it is sometimes more convenient to
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use complex variables. In this subsection we define inner product on complex matrices
and dual cones in the linear space of Hermitian matrices (all these concepts apply
directly to the vector space of real symmetric matrices). We will use these concepts
in Chapter 8.4.5 to define an important class of convex optimization problems called
semidefinite program and study its duality and optimality properties.

Inner product, polar cone and dual cone. For two complex matrices G 2 C<⇥= and
H 2 C<⇥= (not necessarily square), the (Frobenius) inner product is G · H := tr

�
H

H
G

�
=Õ

9,: G 9: H̄ 9: where HH = ( H̄)T is the Hermitian transpose of matrix H, H̄ 9: is the complex
conjugate of the scalar H 9: and H̄ is the entrywise complex conjugate of matrix H. If
G, H 2 C= are complex vectors, then G · H = HH

G reduces to the normal inner product on
C
=. It can be checked that G · H satisfies the three properties that are sometimes used to

define inner product:

1. Conjugate symmetry: G · H = H · G.
2. Linearity in the first argument: For any 0,1 2 C and any fixed H 2 C<⇥=, (01G1 +
02G2) · H = 01 (G1 · H) + 02 (G2 · H).

3. Positive-definiteness: G · G � 0 with equality if and only if G = 0.

Let G 2 C=⇥= be a square matrix. It is called a Hermitian matrix if G 9: = Ḡ: 9 for
all 9 , : . If G is Hermitian its diagonal entries G 9 9 are necessarily real. Let S= ⇢ ⇠=⇥=
denote the set of all =⇥= Hermitian matrices. If G, H 2 S= then

G · H =
’
9

G 9 9 H̄ 9 9 +
’
9<:

�
G 9: H̄ 9: + G: 9 H̄: 9

�
=

’
9

G 9 9 H 9 9 +
’
9<:

�
G 9: H̄ 9: + Ḡ 9: H 9:

�

i.e., G · H is a real number. This means that if G, H 2 S= are Hermitian matrices then

G · H = H · G 2 R (8.20)

This implies that, for Hermitian matrices, the order of inner product in Definition 8.6
does not matter. We will consider S= as a vector (or linear) space over the fieldR of real
numbers, not overC (see Appendix A.1.1 for definitions of vector space and subspace).
We can then call a set  ✓ S= of Hermitian matrices a cone in the vector space S= if
G 2  implies that WG 2  for any W > 0 in the field R. As for a cone  of vectors in
R
=, a cone in S= is not necessarily convex, e.g.,  := {W1G1 : W1 � 0}[ {W2G2 : W2 � 0}

is a nonconvex set unless G1 = WG2 for some W 2 R. We define the notion of dual cone
in S=

Definition 8.6 (Cones in S=). Consider the vector space S= ⇢ C=⇥= of Hermitian
matrices. Let - ✓ S= be a nonempty set.

1. The polar cone of - is -� := {H 2 S= : H · G  0 8G 2 -}
2. The dual cone of - is -⇤ := �-� = {H 2 S= : H · G � 0 8G 2 -}.
3. A cone  is called self-dual if  ⇤ =  . ⇤

The nonnegativity cone R=+ ⇢ R=, the second-order cone  soc ⇢ R=, and the positive
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semidefinite cone  psd ⇢ S= of positive semidefinite matrices are all self-dual proper
cones (recall a proper cone is closed, convex, pointed and has nonempty interior).

Polar and dual cones in R= are defined in exactly the same way in Chapter 12.1.1.
Their properties are given in Proposition 12.1 and extend directly to cones in the
vector space S=. For example for an arbitrary nonempty set - ✓ S= of matrices, its
polar cone -� and dual cone -⇤ are closed convex cones. If - is itself a closed convex
cone then (-�)� = - . The following property of the dual cone underlies the definition
of dual problem and duality. Consider a cone  in an underlying vector space  +,
e.g.,  + := R= or  + := S=. Then the minimum value over  of the inner product
with another vector H is 0 if H 2  ⇤ and �1 if otherwise. It follows directly from the
definition of dual cone and therefore applies to cones in both vector spaces R= and S=.

Lemma 8.8 (Duality over cone). Let  + be a vector space with an inner product
G · H = H · G which is in R. Let  ✓  + be a nonempty cone. Then

min
G2 

H · G = min
G2 

G · H =
⇢

0 if H 2  ⇤
�1 if H 2  + \ ⇤

⇤

Lemma 8.8 holds whether or not the cone  is self dual or not; if  ⇤ =  then we
can replace  ⇤ by  in the lemma. The minimization over G 2  arises, e.g., in partial
dualization of a constrained optimization (see Remark 8.4).

Remark 8.2 (Semidefinite cones in S=). The vector space S= can be partitioned into the
cone  psd of positive semidefinite matrices, the cone  nsd of negative semidefinite with
 psd\ nsd = {0} the zero matrix 0, and the set of indefinite Hermitian matrices (those
with both positive and negative eigenvalues). Both  psd and  nsd are self-dual proper
cones. They are also polar cones of each other, i.e.,  psd =  �nsd and  nsd =  �psd. ⇤

8.2.3 Projection theorem

Given a set - ✓ R= the projection of G 2 R= onto - is defined to be:

[G]
-

:= argmin
H2-
kG� Hk2 (8.21)

where k · k2 is the Euclidean norm. Hence [G]- is the unique point in - that is closest
to G 2 R= in the Euclidean norm. They are illustrated in Figure 8.10.

Theorem 8.9 (Projection theorem). Suppose - ✓ R= is a nonempty, closed and convex
set.

1. For every G 2 R= there exists a unique [G]- defined by (8.21).
2. For every G 2 R=, I = [G]- if and only if I 2 - and (H� I)T (G� I)  0 for all
H 2 - .
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X

y

x

z = [x]X

Figure 8.10 The point I := [G]- is the unique closest point to G in the convex set - under the
Euclidean norm. For all other points H 2 - , the inner product of H� I and G� I is nonpositive.
(Dec 13, 2025: file size scaled.)

3. The projection mapping ) : R= ! X defined by ) (G) := [G]- is continuous and
nonexpansive under the Euclidean norm, i.e.,

k [H]- � [G]- k2  kH� Gk2 8G, H 2 R=

Note that Theorem 8.9 does not require - to be bounded (compact), only closed.
This is because since - is nonempty there is an F 2 - . Hence the minimization in the
projection (8.21) can be equivalently restricted to the compact set {H 2 - | kG � Hk2 
kG�Fk2}.

8.2.4 Separating hyperplanes

Recall that for any set - ✓ R=, cl(-) denotes the closure of - , int(-) denotes the
interior of - , ri(-) denotes the relative interior of - , and cl(-) \ int(-) is the boundary
of cl(-).
Definition 8.7 (Separating hyperplane). 1. A hyperplane is a set � := {G 2 R= :

0
T
G = 1} for some 0 2 R= and 1 2 R.

2. Two sets - ,. ✓ R= are separated by a hyperplane � = {G 2 R= : 0T
G = 1} if each

lies in a di�erent closed halfspace associated with �, i.e., if either

0
T
G  1  0T

H, G 2 - , H 2 . or 0
T
G � 1 � 0T

H, G 2 - , H 2 .

� is called a separating hyperplane.
3. If G⇤ is in the boundary cl(-) \ int(-) of - ✓ R=, the hyperplane � := {G 2 R= :
0

T
G = 0T

G
⇤} that separates cl(-) (or -) and {G⇤} is called a supporting hyperplane

of cl(-) (or -) at G⇤. ⇤

If point G⇤ is not in the interior of a set - then either G is on the boundary of -
or G⇤ is not in the closure of - . The next result says that such a point G⇤ can always
be separated from - by a hyperplane if - is convex. The hyperplane is a supporting
hyperplane of - at G⇤ if and only if G⇤ is on the boundary of - . It is a straightforward
consequence of the Projection Theorem 8.9.
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Theorem 8.10 (A point G⇤ and a convex set -). Suppose - ✓ R= is nonempty convex
and G⇤ 2 R= \ int(-).

1. There exists a hyperplane that passes through G⇤ that contains - in one of its
halfspaces, i.e., there exists a nonzero 0 2 R= such that

0
T
G  0

T
G
⇤, G 2 cl(-) (8.22a)

A separating hyperplane is � := {G 2 R= : 0T
G = 0T

G
⇤}.

2. If G⇤ 8 cl(-) then the inequality in (8.22a) is strict. Hence there exists 1 2
(0T

Ĝ
⇤,0T

G
⇤) such that the hyperplane � := {G 2 R= : 0T

G = 1} strictly separates
cl(-) and G⇤, i.e.,

0
T
G < 1 < 0

T
G
⇤, G 2 cl(-) (8.22b)

where Ĝ⇤ is the projection of G⇤ onto the convex set cl(-).

Proof We prove part 2 first and then part 1.

Part 2: G⇤ 8 cl(-). Let Ĝ⇤ < G⇤ be the projection of G⇤ onto cl(-), i.e., Ĝ⇤ :=
argmin

G2cl(- ) kG�G⇤k2. Then (G⇤ � Ĝ⇤)T (G� Ĝ⇤)  0 for all G 2 cl(-) by the Projection
Theorem 8.9. Define the normalized (error) vector

0 :=
G
⇤ � Ĝ⇤

kG⇤ � Ĝ⇤k2
< 0 (8.23a)

Therefore

0
T
G  0

T
Ĝ
⇤ = 0

T
G
⇤ � 0T (G⇤ � Ĝ⇤) < 0

T
G
⇤, G 2 cl(-) (8.23b)

where the last inequality follows because 0T (G⇤ � Ĝ⇤) = kG⇤ � Ĝ⇤k2 > 0. By definition,
(8.23) says that cl(-) is in a halfspace associated with the hyperplane � := {G 2
R
= : 0T

G = 0T
G
⇤}, as shown in Figure 8.11(a). Another separating hyperplane is the

supporting hyperplane � := {G 2 R= : 0T
G = 0T

Ĝ
⇤} of cl(-) at Ĝ⇤ (the dashed line

in 8.11(a)). Any 1 2 (0T
Ĝ
⇤,0T

G
⇤) defines a hyperplane � := {G 2 R= : 0T

G = 1} that

cl(X )

a H

x*

x̂*

(a) Case 1: G⇤ 8 cl(- )

a1
x1

a2
x2

xk

cl(X )

aH

x*
x̂2
x̂1

(b) G⇤ 2 cl(- ) \ int(- )

Figure 8.11 Proof of Theorem 8.10. The vectors 0,08 are in the normal cones of cl(-) at Ĝ⇤ and
Ĝ8 respectively and � := {G 2 R= : 0T

G = 0T
G
⇤} is a hyperplane separating cl(-) and G⇤. In

Case 1 the separating hyperplane is nonunique: even with the same 0, 1 can take any value in
(0T

Ĝ
⇤,0T

G
⇤) and {G : 0T

G = 1} will be a separating hyperplane. (Dec 13, 2025: file size scaled.)
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strictly separates cl(-) and G⇤, i.e., satisfies (8.22b).

More explicitly, we can take 1 := 0T
I for any I := VĜ⇤ + (1� V)G⇤ between Ĝ⇤ and G⇤

for some V 2 (0,1). To see this we have from (8.23b)

0
T
G  0

T
Ĝ
⇤ = 0

T
I� 0T (I� Ĝ⇤) < 0

T
I, G 2 cl(-)

satisfying the first half of (8.22b), where the last inequality follows because

0
T (I� Ĝ⇤) = (1� V)0T (G⇤ � Ĝ⇤) = (1� V)kG⇤ � Ĝ⇤k2 > 0

For the second half of (8.22b) we have

0
T (G⇤ � I) = V0

T (G⇤ � Ĝ⇤) > VkG⇤ � Ĝ⇤k2 > 0

as desired.

Part 1. In view of part 1 we only need to consider G⇤ 2 cl(-) \ int(-). In this case
Ĝ
⇤ = G⇤ and hence we cannot define 0 by (8.23). Take a sequence {G8} not in cl(-)

such that lim8 G8 = G⇤. Let Ĝ8 be the projection of G8 onto the convex set cl(-), i.e.,
Ĝ8 := argmin

G2cl(- ) kG � G8 k2. Then (G8 � Ĝ8)T (G � Ĝ8)  0 for all G 2 cl(-) by the
Projection Theorem 8.9. Define the normalized (error) vectors

08 :=
G8 � Ĝ8
kG8 � Ĝ8 k2

, 8 = 1,2, . . .

Therefore

0
T
8
G  0

T
8
Ĝ8 = 0

T
8
G8 � 0T

8
(G8 � Ĝ8)  0

T
8
G8 , G 2 cl(-) (8.24)

where the second inequality follows because 0T
8
(G8 � Ĝ8) = kG8 � Ĝ8 k2. Since k08 k = 1

the sequence {08 , 8 = 1,2, . . . } has a subsequence {08: , : = 1,2, . . . } that converges to a
nonzero vector 0. Taking limit as :!1 in (8.24) yields 0T

G  0T lim: G8:
= 0T

G
⇤ for

all G 2 cl(-) as desired. This completes the proof of (8.22a). ⇤

Theorem 8.11 (Two convex sets - and . ). Suppose two disjoint sets - ,. 2 R= are
nonempty convex.

1. There exists a nonzero 0 2 R= and 1 2 R such that

0
T
G  1  0

T
H, G 2 cl(-), H 2 cl(. )

i.e. - and . are contained in di�erent halfspaces of the hyperplane � := {G 2 R= :
0

T
G = 1}.

2. If cl(-)\cl(. ) = ;, i.e., min
G2cl(- ) min

H2cl(. ) kG� Hk2 > 0, then there exists 1 2 R
such that the hyperplane � := {G 2 R= : 0T

G = 1} strictly separates - and . :

0
T
G < 1 < 0

T
H, G 2 cl(-), H 2 cl(. )

Proof Consider the set, := {G� H : G 2 - , H 2 . }., is nonempty convex. Moreover
the origin 0 8, . Apply Theorem 8.10 to, and G⇤ = 0. Then there exists a nonzero 0
such that 0T (G� H)  0 for all G� H 2 cl(,), or 0T

G  0T
H for all G 2 cl(-), H 2 cl(. ).
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When cl(-) \ cl(. ) = ;, then G⇤ 8 cl(,) and hence Theorem 8.10 guarantees a
1 2 (0T

Ĝ
⇤,0T

G
⇤) such that the inequalities are strict, where Ĝ⇤ is the projection of G⇤

onto, . ⇤

8.2.5 Farkas Lemma

A very useful result is the following theorem. For example, it underlies the strong
duality of linear programming (Exercise 8.23) and enables Benders decomposi-
tion Theorem 8.31. It is a simple consequence of the separating hyperplane The-
orem 8.10. Recall that if {01, . . . ,0=} are the column vectors of � 2 R<⇥= then
cone(�) :=cone({01, . . . ,0=}) ✓ R<.

Theorem 8.12 (Farkas Lemma). Let � 2 R<⇥= and 1 2 R<. Then

1. Exactly one of the following holds:
(a) 1 2 cone(�): There exists an G 2 R= such that �G = 1 and G � 0.
(b) 1 8 cone(�): There exists an H 2 R< such that HT

� � 0 and HT
1 < 0.

2. Exactly one of the following holds:
(a) 1 2 range(�): There exists an G 2 R= such that �G = 1.
(b) 1 8 range(�): There exists an H 2 R< such that HT

� = 0 and HT
1 < 0.

The first condition in Theorem 8.12 can be interpreted as, if 1 is not in cone(�),
then � and 1 must be of “opposite signs.” A widely used variant is: Exactly one of the
following holds:

1. There exists an G � 0 such that �G  1.
2. There exists an H � 0 such that HT

� � 0 and HT
1 < 0.

Its proof is similar to that for Theorem 8.12 but considers . := {H 2 R< : �G  H,G �
0} = {�G + B : G � 0, B � 0} instead of cone(�). (Exercise 8.15).

Proof of Theorem 8.12 For part 1, we clearly cannot have both because otherwise,
H

T
1 = HT

�G � 0 contradicting HT
1 < 0. According to the Carathéodory Theorem 8.7,

any 1 2 cone(�) can be expressed as 1 =
Õ
:

8=1U808 for some :  <, U8 > 0, and :
linearly independent column vectors 08 of �. Therefore �G = 1 for some G � 0 if
and only if 1 2 cone(�) ✓ R<. Suppose there exists no such G. We now prove that
there must exist H 2 R< such that HT

� � 0 and HT
1 < 0, by applying Theorem 8.10

to the closed convex cone cone(�) and the point 1. Since 1 8 cone(�) there exists
H 2 R< such that HT

1 < H
T
I for all I 2 cone(�).3 Since 0 2 cone(�) we have HT

1 < 0.
Moreover HT

� � 0 because otherwise, if n := HT
08 < 0 for any column vector 08 of

�, then C08 2 cone(�) for any C � 0 and HT (C08) = Cn !�1 as C!1, contradicting
H

T
1 < H

T
I for all I 2 cone(�).

3 The argument here that concludes HT
1 < 0  HT

� is typical and is used in many proofs in this chapter
and in Chapter 12. It originates from the Projection Theorem 8.9.
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Part 2 of the theorem is a consequence the rank-nullity theorem which says that R<

can be decomposed into two orthogonal subspaces, null(�T) and range(�) (see (A.1) in
Chapter A.1.2). Decompose 1 2 R< into two orthogonal components 1 =: 11 +12 with
11 2 null(�T) and 12 2 range(�), i.e., �T

11 = 0 and 12 = �G for some G 2 R=. Either
1 is in range(�) (i.e., 11 = 0 and �G = 1) or there exists a nonzero H := 11 2 null(�T)
such that �T

H = 0 and

H
T
1 = H

T
11 + HT

12 = k11k2 > 0

where the last equality follows because 11 and 12 are orthogonal. ⇤

Part 1 of Theorem 8.12 is illustrated in Figures 8.12. Either 1 is in cone(�) or 1 is not.

cone (a1,a2)

a1

a2

b

(a) 1 2 cone(01,02)

cone (a1,a2)

a1

a2

b

y

yTA

(b) 1 8 cone(01,02)

Figure 8.12 Theorem 8.12.1: Farkas Lemma.

In the first case, 1 = �G for some G � 0 according to the Carathéodory Theorem 8.7, as
shown in Figures 8.12(a). Otherwise, let cone⇤ (�) := {H 2 R< : HT

I � 08I 2 cone(�)};
see Figures 8.12(b). This is called the dual cone of cone(�) and studied in Chapter
12.1.1. Since 1 is outside cone(�), there must exist an H in the intersection of cone⇤ (�)
and the set {1}� := {H 2 R< : HT

1  0} (called the polar cone of {1} in Chapter 12.1.1)
such that HT

� � 0 and HT
1 < 0. Part 2 of Theorem 8.12 is illustrated in Figure 8.13.

b = b2

range(A)

null(AT)

(a) 1 2 range(�)

b

y = b1

range(A)

null(AT)

b2

(b) 1 8 range(�)

Figure 8.13 Theorem 8.12.2: Decomposition of R< into range(�) and null(�T).

See Exercise 12.6 for an application of the Farkas Lemma to derive the polar cone
of a pre-image of the nonpositive quadrant under a linear transformation.
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We next study various characterizations of optimal solutions, including the KKT
condition, on which many optimization algorithms are based.

8.3 General theory: optimality conditions

Consider the optimization problem (8.13) reproduced here:

min
G2R=

5 (G) subject to G 2 -

In this section we develop a basic theory to answer the following questions:

Q1 How to characterize optimal solutions?
Q2 When will optimal solutions exist and when will it be unique?

Associated with (8.13) is a dual problem max` 3 (`). Q1 is important because many
algorithms to compute an optimal solution (studied in Chapter 8.5) are based on
necessary conditions for optimality; these conditions are typically su�cient for convex
programs. To answer Q1 we show in Chapter 8.3.1 that a saddle point (G⇤,`⇤) is optimal
for both the primal and the dual problems and closes the duality gap (Saddle-point
Theorem 8.14). This characterization does not require the cost function 5 to be smooth
(e.g. continuous or di�erentiable) or convex or the feasible set - to be convex. In
Chapter 8.3.2 we show that (G⇤,`⇤) is a saddle point if and only if it satisfies the KKT
condition (KKT Theorem 8.15). This characterization requires the cost function 5 and
constraint functions to be continuously di�erentiable and convex (with a�ne equality
constraints). These results characterize the primal and dual optimal solutions but do
not ensure their existence.

For Q2 we show in Chapter 8.3.3 that continuity of the cost function 5 and compact-
ness of the feasible set - is su�cient for the existence of primal solutions G⇤ (Theorem
8.16). Strict convexity of 5 ensures the uniqueness of G⇤. We show in Chapter 8.3.4 that
if the primal optimal value is finite and a kind of feasibility condition called constraint
qualification is satisfied then the duality gap is zero and dual optimal solutions exist
(Slater Theorem 8.17). These results are summarized in Table 8.1.

As summarized in Table 8.1 smoothness is required for the KKT Theorem (contin-
uously di�erentiable cost and constraint functions) and the existence of primal optimal
solutions (continuous cost function). Neither the Saddle-point Theorem 8.14 nor the
Slater Theorem 8.17 requires smoothness. These results are generalized to a nonsmooth
setting in Chapter 12 when the feasible set is convex.
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Primal-dual characterization Assumptions

Th 8.14 saddle point = p-d optimality + strong duality arbitrary 5 ,6,⌘
Th 8.15 KKT point = saddle point di�. conv. 5 and ⌘, a�ne 6

Existence

Th 8.16 primal optimal G⇤ cont. 5 , compact -
Th 8.17 dual optimal _⇤ & strong duality conv. 5 and ⌘, a�ne 6,

finite 5 ⇤, Slater cond.

Co 8.18 combination of Ths 8.14, 8.15, 8.16, 8.17 intersection

Table 8.1 Summary of characterization and existence of primal and dual optimal solutions.

8.3.1 Characterization: saddle point = p-d optimality + strong duality

Primal problem. We now study the case where the feasible set - ✓ R= is specified
by a set of equality and inequality constraints. Consider

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.25)

where 5 : R=! R, 6 : R=! R< and ⌘ : R=! R; are arbitrary real-valued functions.
In particular 5 ,6,⌘ are not necessarily convex or di�erentiable or even continuous. We
will call this problem the primal problem.

Associated with every constrained optimization problem (8.25) (at least partially)
specified by equality and inequality constraints is a dual problem, defined as follows.

Dual problem. Associated with the equality constraint is the dual variable _ 2 R<
and associated with the inequality cosntraint is the dual variable ` 2 R;+. Define the
Lagrangian function or the Lagrangian associated with (8.25) as the function ! :
R
=+<+;! R:

! (G,_,`) := 5 (G) + _T
6(G) + `T

⌘(G), G 2 R=, _ 2 R<, ` 2 R; (8.26a)

For any (_,`) define the dual function by the unconstrained minimization of the
Lagrangian over the primal variable G:

3 (_,`) := min
G2R=

! (G,_,`) (8.26b)

The dual problem of (8.25) is defined to be:

3
⇤ := max

_2R<,`2R;
3 (_,`) s.t ` � 0 (8.26c)

Let - := {G 2 R= : 6(G) = 0, ⌘(G)  0} denote the primal feasible set and. := {(_,`) 2
R
<+; : ` � 0} the dual feasible set. A primal feasible point G⇤ 2 - is called primal

optimal if G⇤ solves (8.25) and a dual feasible point (_⇤,`⇤) 2 . is called dual optimal
if (_⇤,`⇤) solves (8.26). We also called such an (G⇤,_⇤,`⇤) primal-dual optimal. It is
important that the minimization over G in the dual problem (8.26) is unconstrained. It
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converts the constrained minimization (8.25) into an unconstrained minimization over
G under certain conditions; see Remark 8.5.

The dual problem (8.26) always provides a lower bound on the primal problem
(8.25) for arbitrary cost and constraint functions 5 ,6,⌘ (even extended real-valued
functions studied in Chapter 12).

Lemma 8.13 (Weak duality). If (G,_,`) 2 - ⇥. is a primal-dual feasible point then
3 (_,`)  5 (G).

Proof Since (G,_,`) is primal-dual feasible we have _T
6(G) = 0 and `T

⌘(G)  0 and
hence ! (G,_,`)  5 (G) from (8.26a). Therefore

3 (_,`) := min
G
0 2R=

! (G 0,_,`)  ! (G,_,`)  5 (G)

as desired. ⇤

The weak duality Lemma 8.13 implies in particular that the dual objective value 3⇤

lower bounds the primal objective value 5 ⇤:

3
⇤ := max

_,`�0
3 (_,`)  min

G2-
5 (G) =: 5

⇤ (8.27)

This holds whether or not the primal problem is convex and whether or not these
values are bounded: if the primal optimal value is 5 ⇤ = �1 then the dual problem is
infeasible; if the dual optimal value is 3⇤ =1 then the primal problem is infeasible. The
gap 5 ⇤ �3⇤ is called the duality gap. For general nonlinear optimization the duality gap
can be strictly positive, and even unbounded. If the primal problem (8.25) is convex
and a certain constraint qualification is satisfied, then the duality gap is zero (Theorem
8.17). In this case we say strong duality holds. Before we study in Chapters 8.3.3 and
8.3.4 the existence of primal and dual optimal solutions (G⇤,_⇤,`⇤) that closes the
duality gap, we first characterize them.

Saddle point. For the duality gap to be zero and for the primal and dual problems to
both attain their optimal values, it is necessary and su�cient that a saddle point exists
for arbitrary 5 ,6,⌘. To define a saddle point we first claim that the primal problem can
be written in terms of !:

5
⇤ = min

G

max
_,`�0

! (G,_,`) (8.28)

To prove (8.28), note that given any infeasible G 8 - := {G : 6(G) = 0, ⌘(G)  0}, it
is clear that max_,`�0 ! (G,_,`) is unbounded. Therefore

min
G

max
_,`�0

! (G,_,`) = min
G2-

max
_,`�0

! (G,_,`) (8.29a)

Fix any G 2 - . On the one hand, ! (G,_,`)  5 (G) for any ` � 0, and hence

min
G2-

max
_,`�0

! (G,_,`)  min
G2-

5 (G) =: 5
⇤ (8.29b)
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On the other hand, max_,`�0 ! (G,_,`) � ! (G,_,0) = 5 (G) since G 2 - , and hence

min
G2-

max
_,`�0

! (G,_,`) � min
G2-

5 (G) =: 5
⇤ (8.29c)

Combining (8.29) gives

5
⇤ = min

G

max
_,`�0

! (G,_,`) = min
G2-

max
_,`�0

! (G,_,`) (8.30)

proving (8.28). Therefore weak duality (8.27) can also be expressed symmetrically in
terms of the Lagrangian !:

3
⇤ := max

(_,`)2.
min
G2R=

! (G,_,`)  min
G2R=

max
(_,`)2.

! (G,_,`) =: 5
⇤ (8.31)

An important feature of (8.31) is that the minimization over G is unconstrained.4

Definition 8.8 (Saddle point). A point (G⇤,_⇤,`⇤) 2 R= ⇥. is called a saddle point of
the Lagrangian ! if it satisfies

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2R=

! (G,_⇤,`⇤) (8.32)

where . := {(_,`) 2 R<+; : ` � 0}. ⇤

Remark 8.3 (Equivalent definitions of saddle point). 1. If (G⇤,_⇤,`⇤) 2 R= ⇥. is
a saddle point then necessarily G

⇤ 2 - is primal feasible because otherwise,
max(_,`)2. ! (G⇤,_,`) is unbounded but ! (G⇤,_⇤,`⇤) is finite since 5 ,6,⌘ are
real-valued. Therefore, when 5 ,6,⌘ are real-valued, we can define a saddle point
without loss of generality as a primal-dual feasible point (G⇤,_⇤,`⇤) 2 - ⇥. that
satisfies (8.32).

2. An equivalent specification of a saddle point (G⇤,_⇤,`⇤) is (Exercise 8.16):

(G⇤,_⇤,`⇤) 2 - ⇥. , ! (G⇤,_⇤,`⇤) = min
G2R=

! (G,_⇤,`⇤), `
⇤T
⌘(G⇤) = 0 (8.33)

i.e., max(_,`)2. ! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) in (8.32) can be replaced by primal
feasibility and complementary slackness. ⇤

Remark 8.4 (Partial dualization). The minimization over G in Definition 8.8 is uncon-
strained because all constraints of (8.25) have been dualized. The constraints can also
be partially dualized. Specifically suppose (8.25) takes the form

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, 6(G) = 0, ⌘(G)  0 (8.34a)

where - 0 ✓ R=. The Lagrangian ! is still defined by (8.26a), but the dual function is
now defined to be 3 (_,`) := minG2- 0 ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2.
min
G2- 0

! (G,_,`) (8.34b)

4 The weak duality (8.31) can be interpreted as a two-person zero-sum game where a player tries to
maximize ! (G,_,`) over (_,`) 2. and the other player tries to minimize ! (G,_,`) over G 2 R=.
The inequality (8.31) expresses the second-mover advantage: the player that makes the first move is
generally disadvantaged. A saddle point (G⇤,_⇤,`⇤) is a Nash equilibrium of this game.
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where . := {(_,`) 2 R<+; : ` � 0}. Instead of (8.31) and (8.32), strong duality holds
if

max
(_,`)2.

min
G2- 0

! (G,_,`) = min
G2- 0

max
(_,`)2.

! (G,_,`)

and (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point if

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤)

All saddle point results extend to the case of partial dualization with obvious modifi-
cations (see also Chapter 12.8). ⇤

The next result Theorem 8.14 states that a saddle point (G⇤,_⇤,`⇤) of ! solves both
the primal and the dual problems and closes the duality gap. It does not require any
of the functions 5 ,6,⌘ to be convex or smooth (e.g., di�erentiable or continuous) or
the feasible sets - ,. to be compact (. is obviously not compact). It is simply a re-
interpretation of a saddle point in terms of the primal problem (8.28) and dual problem
(8.26). It only characterizes a saddle point but does not ensure its existence. We will
study the existence of primal and dual optimal solutions in Chapters 8.3.3 and 8.3.4.

Theorem 8.14 (Saddle-point Theorem). Consider the primal problem (8.25) and its
dual (8.26). A point (G⇤,_⇤,`⇤) is a saddle point if and only if

1. It is primal-dual optimal, i.e., G⇤ is optimal for (8.25) and (_⇤,`⇤) is optimal for
(8.26); and

2. The duality gap is zero at (G⇤,_⇤,`⇤), i.e.,

3 (_⇤,`⇤) = 3
⇤ = 5

⇤ = 5 (G⇤) (8.35)

In particular a saddle point (G⇤,_⇤,`⇤), if it exists, attains both the primal and dual
objective values ( 5 ⇤,3⇤).

Proof Suppose (G⇤,_⇤,`⇤) is a saddle point, i.e., it satisfies (8.32). As explained in
Remark 8.3, when the functions 5 ,6,⌘ are real-valued, a saddle point is necessarily
primal-dual feasible, in particular, G⇤ 2 - . Then we have

5 (G⇤) = ! (G⇤,_,0)  max
(_,`)2.

! (G⇤,_,`) = min
G2R=

! (G,_⇤,`⇤) =: 3 (_⇤,`⇤)

where the second equality follows from (8.32) and the last equality follows from the
definition of the dual objective function 3. Since (G⇤,_⇤,`⇤) 2 - ⇥. is feasible, the
weak duality Lemma 8.13 implies that

5 (G⇤) = 3 (_⇤,`⇤)

The definition of 5 ⇤ and 3⇤ and weak duality (8.27) then imply

3 (_⇤,`⇤)  3
⇤  5

⇤  5 (G⇤) = 3 (_⇤,`⇤)

which is (8.35). This also shows that (G⇤,_⇤,`⇤) is primal-dual optimal.
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Conversely suppose (G⇤,_⇤,`⇤) 2 - ⇥. is primal-dual optimal and satisfies (8.35).
Since 6(G) = 0 and `T

⌘(G)  0 for any (G,_,`) 2 - ⇥. , we have

! (G⇤,_⇤,`⇤)  max
(_,`)2.

! (G⇤,_,`)  5 (G⇤) = 3 (_⇤,`⇤) := min
G2R=

! (G,_⇤,`⇤)  ! (G⇤,_⇤,`⇤)

where the second inequality follows because 6(G⇤) = 0 and ⌘(G⇤)  0, the first equality
follows from (8.35), and the second equality follows from the definition of 3. Hence
all inequalities above hold with equality, proving that (G⇤,_⇤,`⇤) is a saddle point. ⇤

Theorem 8.14 and (8.33) lead to a common characterization of attainment of opti-
mality and strong duality: (G⇤,_⇤,`⇤) attains primal-dual optimality and strong duality
5
⇤ = 3⇤ if and only if (G⇤,_⇤,`⇤) 2 - ⇥. is primal-dual feasible and

G
⇤ 2 arg min

G2R=
! (G,_⇤,`⇤), `

⇤T
6(G⇤) = 0

Remark 8.5 (Solving dual problem). It is important that the minimization over G 2 R=
in the primal problem (8.25) and its dual (8.26c), reproduced here:

5
⇤ := min

G2R=
max

(_,`)2.
! (G,_,`) (8.36)

3
⇤ := max

(_,`)2.
min
G2R=

! (G,_,`) (8.37)

is unconstrained. We can interpret the dual problem as converting the constrained
primal problem (8.25) into an unconstrained minimization where the primal constraints
are replaced by the penalty terms _T

6(G) + `T
⌘(G) in the Lagrangian ! (G,_,`). Given

an (_,`) 2 . , solving the inner unconstrained problem minG ! (G,_,`) can be much
easier than solving (8.25), e.g., when rG! (G,_,`) = 0 can be solved explicitly. In this
case, if strong duality holds, we can solve (8.25) by solving the dual problem (8.37).

When the primal constraints are partially dualized, as explained in Remark 8.4, the
primal and dual problems become

5
⇤ := min

G2- 0
max

(_,`)2.
! (G,_,`)

3
⇤ := max

(_,`)2.
min
G2- 0

! (G,_,`)

Solving the dual problem is advantageous if strong duality holds and, given an (_,`) 2
. , solving the inner problem minG2- 0 ! (G,_,`) is much easier than solving (8.25).

Even if strong duality does not hold, solving the dual problem yields a lower bound
on the primal objective value 5 ⇤ which can be useful in practice. ⇤

8.3.2 Characterization: KKT point = saddle point

We now consider the primal problem (8.25) and its dual problem (8.26) under the
assumption that the cost function 5 and the inequality function ⌘ are convex and
continuously di�erentiable (see Chapter 8.1.3 on continuous di�erentiability), and the
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equality function 6(G) = �G � 1 is a�ne. While the duality theory can be developed
when some or all of the constraints are dualized (see Remark 8.4), the KKT theory
needs all constraints to be specified (as equalities and inequalities) and dualized.

KKT condition. The KKT condition on (G,_,`) associated with the primal and dual
problems (8.25)(8.26) is defined by the following system of equations:

Stationarity : rG! (G,_,`) = 0 (8.38a)

Primal feasibility : 6(G) = 0, ⌘(G)  0 (8.38b)

Dual feasibility : ` � 0 (8.38c)

Complementary slackness : `
T
⌘(G) = 0 (8.38d)

where rG! is the column vector whose 8th entry is m!

mG8

. The stationarity (8.38a) is
explicitly:

Stationarity : r 5 (G) + r6(G)_ + r⌘(G)` = 0 (8.38e)

where r6(G) =
h
m6

mG

iT
2 R=⇥< and r⌘(G) =

⇥
m⌘

mG

⇤T 2 R=⇥; are the Jacobian functions
of 6 and ⌘ respectively.

Definition 8.9 (KKT point). A primal variable G⇤ is called a stationary point and a
dual variable (_⇤,`⇤) a Lagrange multiplier (vector) of (8.25) if (G⇤,_⇤,`⇤) satisfies
(8.38), i.e., if

rG! (G⇤,_⇤,`⇤) = 0, 6(G⇤) = 0, ⌘(G⇤)  0, `
⇤ � 0, `

⇤T
⌘(G⇤) = 0 (8.39)

We also call such a point (G⇤,_⇤,`⇤) 2 - ⇥. a KKT point. ⇤

Like a saddle point, a KKT point is necessarily primal-dual feasible. For general
functions 5 ,6,⌘, the KKT condition is necessary for (G⇤,_⇤,`⇤) to be primal-dual
optimal. If 5 ,⌘ are convex and continuously di�erentiable functions and 6 is a�ne,
then it is also su�cient; moreover a KKT point is a saddle point and attains strong
duality.

Theorem 8.15 (KKT Theorem). Consider the primal problem (8.25) and its dual
(8.26). Suppose 5 ,⌘ are convex and continuously di�erentiable and 6(G) = �G � 1 is
a�ne. Consider an arbitrary point (G⇤,_⇤,`⇤). The following are equivalent:

1. (G⇤,_⇤,`⇤) is a saddle point.
2. (G⇤,_⇤,`⇤) satisfies the KKT condition (8.39).
3. (G⇤,_⇤,`⇤) is primal-dual optimal and closes the duality gap, i.e., 3 (_⇤,`⇤) = 3⇤ =

5
⇤ = 5 (G⇤).

Proof As discussed above, a saddle point (Remark 8.3), a KKT point and a primal-
dual optimum are necessarily primal-dual feasible and hence we can restrict ourselves
without loss of generality to (G⇤,_⇤,`⇤) 2 - ⇥. . The equivalence of the first and the
third assertions is proved in Theorem 8.14 and holds for arbitrary functions 5 ,6,⌘,
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not necessarily convex or continuously di�erentiable. To show the equivalence of the
first two assertions, since (G⇤,_⇤,`⇤) is primal-dual feasible, we only need to show
the complementary slackness condition (8.38d) and the stationarity condition (8.38a).
As we will see complementary slackness does not require 5 ,6,⌘ to be convex or
continuously di�erentiable; stationarity being a first-order condition requires both.

Suppose (G⇤,_⇤,`⇤) is a saddle point, i.e.,

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G

! (G,_⇤,`⇤) (8.40)

The second equality in (8.40) means that G⇤ is an unconstrained minimizer of
! (G,_⇤,`⇤). It is therefore necessary that rG! (G,_⇤,`⇤) = 0 as long as 5 ,6,⌘ are
continuously di�erentiable, proving stationarity (8.38a). The first equality in (8.40)
reads, substituting 6(G⇤) = 0 (since G⇤ 2 -),

5 (G⇤) + max
(_,`)2.

`
T
⌘(G⇤) = 5 (G⇤) + `⇤T⌘(G⇤)

But max(_,`)2. `T
⌘(G⇤) = 0 since ⌘(G⇤)  0 and ` � 0, and hence `⇤T⌘(G⇤) = 0. Hence

if (G⇤,_⇤,`⇤) is a saddle point, then the KKT condition (8.39) is satisfied, for arbitrary
(continuously di�erentiable) functions 5 ,6,⌘.

Conversely suppose (G⇤,_⇤,`⇤) satisfies the KKT condition (8.39). We now
show that the saddle point condition (8.40) is satisfied. Since 5 ,⌘ are convex and
6(G) = �G� 1 is a�ne, ! (G,_⇤,`⇤) is convex in G and hence the stationarity condition
rG! (G,_⇤,`⇤) = 0 implies that ! (G⇤,_⇤,`⇤) = minG ! (G,_⇤,`⇤), proving the second
equality of (8.40). For the first equality, since 6(G⇤) = 0 and `⇤T⌘(G⇤) = 0, we have
5 (G⇤) = ! (G⇤,_⇤,`⇤). Hence

! (G⇤,_⇤,`⇤) = 5 (G⇤) � max
(_,`)2.

5 (G⇤) +_T
6(G⇤) + `T

⌘(G⇤) � ! (G⇤,_⇤,`⇤)

proving ! (G⇤,_⇤,`⇤) =max(_,`)2. ! (G⇤,_,`). This completes the proof of the theorem.
⇤

Remark 8.6 (Comparison: Saddle point and KKT theorems). 1. The saddle point
Theorem 8.14 holds without requiring 5 ,6,⌘ in the primal problem (8.25) to
be convex or di�erentiable. It says that a saddle point (G⇤,_⇤,`⇤) is primal-dual
optimal and closes the duality gap.

2. The KKT Theorem 8.15 requires that 5 ,⌘ be convex and continuously di�eren-
tiable and 6 be a�ne. It implies that, for a primal-dual feasible point (G⇤,_⇤,`⇤),
the saddle point condition (8.40) is equivalent to stationarity and complementary
slackness conditions:

rG! (G⇤,_⇤,`⇤) = 0, `
⇤T
⌘(G⇤) = 0

The consequence of rG! (G⇤,_⇤,`⇤) = 0 is that G⇤ is an unconstrained minimizer of
!, i.e., ! (G⇤,_⇤,`⇤) = minG ! (G,_⇤,`⇤). As demonstrated in the proof of Theorem
8.15, if 5 ,6,⌘ are not convex, then primal-dual optimality of (G⇤,_⇤,`⇤) and strong
duality imply the KKT condition (8.39), but the converse may not hold.
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3. Like Theorem 8.14, Theorem 8.15 only shows that a KKT point (G⇤,_⇤,`⇤) is
primal-dual optimal and closes the duality gap, but does not guarantee its existence.
We now study the existence and uniqueness of a KKT point. ⇤

8.3.3 Existence: primal optimal solutions

In general an optimal primal solution of a constrained optimization may not exist, even
when the optimal primal value is finite, dual optimal solutions exist and strong duality
holds, as the next two examples show.

Example 8.9 (Nonexistence of primal optimal). Consider

5
⇤ := inf

G2R
5 (G) := G2 s.t. G > 1

Clearly the primal optimal value is finite, 5 ⇤ = 1, but no primal optimal G⇤ exists such
that 5 (G⇤) = 5

⇤.

The Lagrangian is ! (G,`) := G2 + `(1� G) = G2� `G + `, the dual function is

3 (`) := min
G

! (G,`) = � `
2

4
+ `

and hence 3⇤ := max`�0 3 (`) = 3 (2) = 1 = 5
⇤, i.e., strong duality holds and `⇤ = 2

attains the dual optimal.

Theorem 8.15 says that for a feasible G⇤ to be optimal, (G⇤,`⇤) must satisfy the KKT
condition. In particular 2G⇤ = `⇤ and `⇤ (1� G⇤) = 0, which cannot be satisfied when
`
⇤ = 2 and G⇤ > 1. ⇤

The reason the primal optimal is not attained in Example 8.9 is that the primal
feasible set is not closed. The next example possesses a closed (but unbounded) feasible
set and has no primal optimal solution either.

Example 8.10 (Nonexistence of primal optimal). Consider

5
⇤ := inf

G2R
5 (G) := 4�G s.t. G � 0

Clearly the primal optimal value is finite, 5 ⇤ = 0, but no finite G⇤ 2 R exists such that
5 (G⇤) = 5

⇤.

The Lagrangian is ! (G,`) := 4�G � `G, the dual function is

3 (`) := min
G

4
�G � `G =

⇢
0, ` = 0
�1, ` > 0

and hence 3⇤ := max`�0 3 (`) = 3 (0) = 0 = 5
⇤, i.e., strong duality holds and `⇤ = 0

attains the dual optimal.

Theorem 8.15 says that for a feasible G⇤ to be optimal, (G⇤,`⇤) must satisfy the KKT
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condition. In particular 4�G
⇤
= �`⇤, which cannot be satisfied by any finite G⇤ when

`
⇤ = 0. ⇤

We now formalize the intuition from these two examples. Consider the general
optimization problem (8.13), reproduced here

min
G2R=

5 (G) s.t. G 2 - (8.41)

where - ✓ R= and 5 : R= ! R is an arbitrary real-valued function. The next result
provides a su�cient condition for the existence of a primal optimal solution G⇤.

Theorem 8.16 (Existence and uniqueness of G⇤). Consider the optimization problem
(8.41). Suppose - is nonempty and compact (closed and bounded) and 5 is continuous
on - . Then

1. An optimal solution G⇤ exists.
2. Moreover the optimal solution G⇤ is unique if 5 is strictly convex.

The su�cient condition in Theorem 8.16 is a consequence of the Weierstrass the-
orem (Theorem 12.22 in Chapter 12.7). For an exact condition for the set of optimal
solutions to be not only nonempty, but also convex and compact, see Theorem 12.26
in Chapter 12.7. The existence of an optimal solution G⇤ only requires 5 to be contin-
uous, not necessarily convex. Convexity is important for the e�cient computation of
an optimal solution because a local first-order condition is not only necessary but also
su�cient for optimality when the cost function is a convex function and the feasible
set is a convex set. Note that a real-valued convex function is continuous on the interior
of its domain, according to Lemma 8.4.

8.3.4 Existence: dual optimal solutions and constraint qualifications

Consider the primal and dual problems (8.25)(8.26) where the feasible set is spec-
ified by a set of equalities and inequalities. Conditions that guarantee the existence
and uniqueness of Lagrange multipliers (_⇤,`⇤) are called constraint qualification
conditions. We describe three of them.

Constraint qualifications. Suppose G⇤ is a local optimal of (8.25). Let . (G⇤) be the
set of Lagrange multipliers associated with G⇤:

. (G⇤) :=
�
(_,`) 2 R<+; : (G⇤,_⇤,`⇤) satisfies KKT condition (8.39)

 
If. (G⇤) is nonempty then it is a convex polyhedral set whether or not (8.25) is a convex
program. (Recall that a set ⌫ ✓ R= is a polyhedral set if ⌫ = {G 2 R= : �G  1} for some
matrix � and vector 1 of appropriate sizes; see Chapter 8.1.2.)

The set. (G⇤) of Lagrange multipliers associated with a local optimal G⇤ is nonempty
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if and only if the following condition holds at G⇤:

rank
m6

mG

(G⇤) = <, 9b 2 null
m6

mG

(G⇤) s.t.
m⌘

� (G⇤)
mG

(G⇤) b < 0 (8.42)

where # (�) is the null space of matrix � and � (G⇤) is the set of indices of inequality
constraints that are active at G⇤ and

m⌘
� (G⇤ )
mG

(G⇤) is the |� (G⇤) | ⇥ = matrix of partial
derivatives of ⌘8 that are active at G⇤:

�
⇤ := � (G⇤) := {8 : ⌘8 (G⇤) = 0}, m⌘� ⇤

mG

(G⇤) :=
✓
m⌘8

mG

(G⇤), 8 2 � (G⇤)
◆

The condition (8.42) is called the Mangasarian-Fromovitz constraint qualification
(MFCQ). The second condition of MFCQ says that the local optimal G⇤ can move
infinitesimally in the direction of b and become strictly feasible.

The second constraint qualification guarantees not only the existence, but also the
uniqueness, of the Lagrangian multiplier associated with a local optimal G⇤:

the rows of
m6

mG

(G⇤), m⌘� ⇤
mG

(G⇤) are linearly independent (8.43)

where �⇤ := � (G⇤) is the set of active constraints. This is called the linear independence
constraint qualification (LICQ) and it guarantees that . (G⇤) is a singleton. This is
because (_⇤,`⇤) satisfies, from (8.38e)(8.39),

r6(G⇤)_⇤ + r⌘� ⇤ (G⇤)`⇤� ⇤ = �r 5 (G⇤) (8.44)

which yields a unique (_⇤,`⇤
�
⇤ ) given any G⇤ where `⇤

�
⇤ := {`⇤

8
: 8 2 �⇤}, with `⇤

8
= 0

for 8 8 �⇤. Using the Farkas lemma (Theorem 8.12) it can be shown that LICQ implies
MFCQ (Exercise 8.18).

Both LICQ and MFCQ presume the existence of an optimal solution G⇤ for the primal
problem (8.25). When an optimal G⇤ exists and if one of the condition is satisfied then
an optimal Lagrange multiplier (_⇤,`⇤) 2 . (G⇤) exists and (G⇤,_⇤,`⇤) is a KKT point.
Theorem 8.15 then implies that (G⇤,_⇤,`⇤) is a saddle point that closes the duality
gap and solves both the primal and the dual problems, provided 5 ,⌘ are convex and
continuously di�erentiable and 6 is a�ne.

We next discuss a third constraint qualification, called the Slater condition, that does
not require the existence of a primal optimal solution G⇤. We will restrict ourselves to
the version of the primal problem (8.25) where the equality constraint function 6(G) is
a�ne. Consider the following problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.45)

where 5 : R= ! R and ⌘ : R= ! R; are real-valued functions, and � 2 R<⇥=, 1 2
R
<. Suppose ⌘1 (G), . . . ,⌘;̄ (G) are a�ne functions and ⌘

;̄+1 (G), . . . ,⌘; (G) are nonlinear
convex functions. Then the constraint qualification is:
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Slater condition: There exists Ḡ such that

�Ḡ = 1, ⌘8 (Ḡ)  0, 8 = 1, . . . , ;̄, ⌘8 (Ḡ) < 0, 8 = ;̄ +1, . . . , ; (8.46)

The Slater condition is often stated as having a strictly feasible point Ḡ because Ḡ
satisfies the nonlinear inequality constraints strictly. If all ⌘8 (G) are a�ne then the
Slater condition reduces to primal feasibility.

Strong duality and dual optimality. Let the Lagrangian function ! : R=+<+; ! R
associated with the primal problem (8.45) be

! (G,_,`) := 5 (G) +_T (�G� 1) + `T
⌘(G), G 2 R=, _ 2 R<, ` 2 R; (8.47a)

The dual function is

3 (_,`) := min
G2R=

! (G,_,`), _ 2 R<, ` 2 R; (8.47b)

and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (8.47c)

Let - := {G 2 R= : �G = 1, ⌘(G)  0} denote the primal feasible set and . := {(_,`) 2
R
<⇥R; : ` � 0} the dual feasible set.

When 5 ,⌘ are convex the Slater condition ensures that strong duality and the
existence of a dual optimal solution (_⇤,`⇤) that attains the dual optimal value,
3 (_⇤,`⇤) = 3⇤.

Theorem 8.17 (Slater Theorem). Consider the primal problem (8.45) and its dual
(8.47). Suppose the following conditions hold:

• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5
⇤
<1.

• Convexity: 5 ,⌘ are convex.
• Slater condition: (8.46) holds.

Then

1. 5
⇤ = 3⇤.

2. There exists a dual optimal solution (_⇤,`⇤) with 3 (_⇤,`⇤) = 3⇤. Moreover the set
of dual optimal solutions is nonempty, convex and closed.

3. If there exists Ḡ such that ⌘(Ḡ) < 0 (i.e., the Slater condition is strict and there is
no equality constraint), then the set of dual optimal solutions is nonempty, convex
and compact.

Note that Theorem 8.17 does not require 5 ,⌘ to be smooth but only convex, e.g., it
may not be continuously di�erentiable or even continuous. This result will be extended
and proved in a nonsmooth setting in Chapter 12.8.1 as Theorem 12.28. Part 3 of
Theorem 8.17 on the compactness and convexity of the dual optimal set is proved
in Exercise 8.20. In particular it shows that the set ⇡⇤ of dual optimal solutions is
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bounded by the weak duality gap at the strict Slater point Ḡ divided by the worst-case
“constraint gap“ [57, Lemma 1]5

max
`2⇡⇤
k`k2  max

`2⇡⇤
k`k1 

5 (Ḡ)� 3⇤
min8 (�⌘8 (Ḡ))

=
5 (Ḡ)� 5 ⇤

min8 (�⌘8 (Ḡ))

Since 5
⇤ is finite, weak duality implies that the dual problem can only be finite

feasible or infeasible. The Slater condition in Theorem 8.17 guarantees that it is
feasible and attained. It does not however guarantee that the finite primal optimal is
attained, i.e., there may not be a feasible G⇤ such that 5 (G⇤) = 5

⇤ when the feasible set
is not compact, as Examples 8.9 and 8.10 show. In these examples, both conditions
in Theorem 8.17 are satisfied and hence 5

⇤ is finite, dual optimal solutions exist and
strong duality holds. If a primal optimal solution G⇤ does exist and (_⇤,`⇤) is the
associated Lagrange multiplier, i.e., (G⇤,_⇤,`⇤) is a KKT point, then Theorem 8.15
implies that (G⇤,_⇤,`⇤) is also a saddle point that is primal-dual optimal and closes the
duality gap. Note that for both the Slater Theorem 8.17 and the KKT Theorem 8.15,
it is not enough for the feasible set to be convex. It has to be specified by a convex
constraint function ⌘(G) for these theorems to apply. We will discuss in Chapter 8.3.7
potential issues that may arise when the convex feasible set is represented by nonconvex
constraint functions.

The next example shows the importance of the Salter condition.

Example 8.11 (Nonexistence of dual optimal solution). Consider

5
⇤ := inf

G2R
5 (G) := 2G s.t. G

2  0

The feasible set is {G = 0} and the Slater condition does not hold. We now show that
the dual problem is feasible, but dual optimality is not attained even though 5 ⇤ is finite
and attained, 5 ⇤ = 5 (0) = 0, all functions are convex, and strong duality holds.

The Lagrangian is ! (G,`) := 2G + `G2 and the dual function 3 (`) := infG2R ! (G,`)
is

3 (`) =
⇢
�1/` if ` > 0
�1 if `  0

Hence

3
⇤ := sup

`>0
3 (`) = � inf

`>0

1
`

= 0

i.e., dual optimal `⇤ does not exists in R even though 3⇤ = 0 = 5
⇤ = 5 (0). ⇤

The counterexamples to primal optimality (Theorem 8.16) and dual optimality
(Slater Theorem 8.17) are summarized in Table 8.2. These examples are all primal and

5 Part 3 is also proved in Lemma 12.30 in the context of MC/MC problem where ⌘ ( Ḡ) < 0 corresponds to

the condition 0 2 int
⇣
⇡
"

⌘
(not just 0 2 ri

⇣
⇡
"

⌘
). The argument there is by contradiction and does not

provide an explicit bound on k` k as Exercise 8.20 does.
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dual feasible. They show that one of the (primal and dual) problems having an optimal
solution generally does not guarantee that the other also has an optimal solution, except
for linear programs (see Chapter 8.4.2).

Compact Primal Slater Dual Strong Example
feasible set optimality condition optimality duality

no no G⇤ yes 3
⇤ = 3 (`⇤) finite 5 ⇤ = 3⇤ 8.9, 8.10

yes 5
⇤ = 5 (G⇤) no no `⇤ finite 5 ⇤ = 3⇤ 8.11

Table 8.2 Primal-dual feasible counterexamples to Theorems 8.16 and 8.17.

In summary Theorems 8.14 and 8.15 characterize a primal-dual optimal solution
(G⇤,_⇤,`⇤) as a saddle point and a KKT point that closes the duality gap. Theorems 8.16
and 8.17 provide su�cient conditions for the existence of primal and dual solutions.
These conditions combine to give the following result.

Corollary 8.18 (Existence, uniqueness, characterizations). Consider the primal prob-
lem (8.45) and its dual (8.47). Suppose

• Convexity and smoothness: 5 ,⌘ are convex and continuously di�erentiable.
• Compact -: The primal feasible set - := {G 2 R= : �G = 1, ⌘(G)  0} is compact;
• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5

⇤
<1;

• Slater condition: (8.46) holds;

Then there exists a primal-dual optimal solution (G⇤,_⇤,`⇤) 2 - ⇥. to (8.45)(8.47),
i.e., both the primal and dual optimal values are attained, 5 ⇤ = 5 (G⇤) and 3⇤ = 3 (_⇤,`⇤).
Moreover

1. Strong duality holds 5 ⇤ = 3⇤.
2. (G⇤,_⇤,`⇤) 2 - ⇥. is a saddle point of the Lagrangian !.
3. (G⇤,_⇤,`⇤) 2 - ⇥. is a KKT point.
4. If 5 is strictly convex then the primal optimal solution G⇤ is unique.

5. If LICQ (8.43) holds, i.e., if the rows of � and
n
m⌘8

mG
(G⇤) : ⌘8 (G⇤) = 0

o
are linearly

independent, then the dual optimal solution (_⇤,`⇤) is unique.

8.3.5 Perturbed problem and local sensitivity

A dual optimal solution (_⇤,`⇤) can be interpreted as the sensitivity of the optimal
value 5

⇤ to constraint perturbations. Specifically, for any (D,E) 2 R<+; , consider the
perturbed problem with the perturbation vector (D,E):

5
⇤ (D,E) := min

G2R=
5 (G) s.t. 6(G) = D, ⌘(G)  E (8.48)
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where 5 : R= ! R, 6 : R= ! R< and ⌘ : R= ! R; are real-valued functions. We
do not assume that these functions are convex. The function 5

⇤ : R<+; ! R maps
a perturbation vector (D,E) to a (primal) optimal value. If the perturbed problem is
infeasible at (D,E), then 5

⇤ (D,E) :=1. The primal problem (8.45) is a special case of
(8.48) with (D,E) = (0,0) and 6(G) = �G�1. We discuss two properties of the function
5
⇤ (D,E): an a�ne lower bound on 5

⇤ (D,E) and the local sensitivity m 5
⇤

m(D,E) (0,0).

Suppose strong duality holds and dual optimality is attained for the unperturbed
problem (8.48) with the perturbation vector (0,0), e.g., when the conditions of the
Slater Theorem 8.17 hold. Let (_⇤,`⇤) be any dual optimal solution of the unperturbed
problem. The first property is an a�ne lower bound on the function 5

⇤ (D,E) in terms
of the optimal value 5 ⇤ (0,0) and the dual optimal solution (_⇤,`⇤) of the unperturbed
problem:

5
⇤ (D,E) � 5

⇤ (0,0)�_⇤TD� `⇤TE, 8(D,E) 2 R<+; (8.49)

The inequality (8.49) bounds the function 5
⇤ (D,E) by an a�ne function in (D,E). To

prove (8.49) let Ḡ be any feasible solution of the perturbed problem with the perturbation
vector (D,E) 2 R<+; , i.e., 6(Ḡ) = D and ⌘(Ḡ)  E. Then

5
⇤ (0,0) = 3 (_⇤,`⇤) := inf

G2R=
5 (G) +_⇤T6(G) + `⇤T⌘(G)

 5 (Ḡ) +_⇤T6(Ḡ) + `⇤T⌘(Ḡ)  5 (Ḡ) +_⇤TD + `⇤TE

where the first equality follows from strong duality for the unperturbed problem, and
the last inequality follows since Ḡ is feasible for the perturbed problem and `⇤ � 0.
Hence

5 (Ḡ) � 5
⇤ (0,0)�_⇤TD� `⇤TE for all feasible Ḡ of perturbed problem

from which (8.49) follows.

The second property is local sensitivity of the optimal value 5 ⇤ (D,E) to constraint
perturbations around (D,E) = (0,0). Suppose again strong duality holds and dual op-
timality is attained for the unperturbed problem (8.48) with the perturbation vector
(0,0). Suppose further that the function 5

⇤ (D,E) is di�erentiable at (D,E) = (0,0).
Then the lower bound (8.49) implies

5
⇤ (C48 ,0)� 5 ⇤ (0,0) � �C_⇤

8
, C 2 R

where 48 2 R< is the 8th unit vector with a single 1 in the 8th entry. Therefore, taking
the limit C! 0 from above and below, we have

lim
C!0, C>0

5
⇤ (C48 ,0)� 5 ⇤ (0,0)

C

� �_⇤
8
, lim

C!0, C<0

5
⇤ (C48 ,0)� 5 ⇤ (0,0)

C

 �_⇤
8

Similarly for `⇤, and we conclude (since 5 ⇤ (D,E) is di�erentiable at (D,E) = (0,0) by
assumption):

m 5
⇤

mD8

(0,0) = �_⇤
8
,

m 5
⇤

mE8

(0,0) = �`⇤
8

(8.50)
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8.3.6 Envelope theorems

Consider a constrained optimization. Let (G, H) denote the primal and dual variables
and ? a parameter in the cost and/or constraint functions. For example, in optimal
power flow problems, ? may be line limits or nodal powers of uncontrollable loads
or renewable generations. Let (G⇤ (?), H⇤ (?)) denote the primal-dual optimal point
given the parameter ?. Define the value function + (?) := ! (G⇤ (?), H⇤ (?); ?) to be
the Lagrangian evaluated at the optimal point (G⇤ (?), H⇤ (?)), as a function of ?.
Envelope theorems provide su�cient conditions for the di�erentiability of + (?). The
main conclusion is that the derivative of + (?) is the partial derivative r?! (G, H; ?)
of the Lagrangian with respect to ?, evaluated at the unique optimal point (G, H) =
(G⇤ (?), H⇤ (?)). When the feasible set is independent of ? or is defined by only equality
constraints then the value function+ (?) := 5 (G⇤ (?); ?) can be defined to be the optimal
cost as a function of ?. Its derivative is the sensitivity of the optimal cost to ? and
therefore of great interest in applications. This subsection collects several variants of
envelope theorems. Their implication is that the sensitivity of the value function + (?)
depends only on the direct impact of the parameter ? on ! (G, H; ?) or 5 (G; ?), not on
its indirect impact through the optimal point (G⇤ (?), H⇤ (?)).

The following saddle-point envelope theorem is from [58, Theorem 298]. It makes
mild assumptions, e.g., does not need convexity or di�erentiability (except di�erentia-
bility in parameter ?), and unifies several variants.

Theorem 8.19 (Saddle-point Envelope Theorem [58]). Let - and . be metric spaces
and % ✓ R: be an open set. Let ! : -⇥. ⇥% ! R. For each ? 2 %, let (G⇤ (?), H⇤ (?)) 2
- ⇥. be a saddle point of !, i.e., for each ? 2 %,

! (G⇤ (?), H; ?)  ! (G⇤ (?), H⇤ (?); ?)  ! (G, H⇤ (?); ?), G 2 - , H 2 . (8.51)

and define the value function as

+ (?) := ! (G⇤ (?), H⇤ (?); ?)

Suppose:

1. G⇤ (?) and H⇤ (?) are continuous functions (in particular, this assumes that there is
a unique saddle point (G⇤ (?), H⇤ (?)) for each ? 2 %).

2. r? ! (G, H; ?) exists and is jointly continuous on - ⇥. ⇥%.

Then + is continuously di�erentiable and

r+ (?) = r?! (G⇤ (?), H⇤ (?); ?)

i.e., m+
m?8

(?) = m!

m?8

(G, H; ?) evaluated at (G, H) = (G⇤ (?), H⇤ (?)).

Proof We will prove that the directional derivative of+ at each ? 2 % in each direction
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⌘ 2 R=:

3+ (?;⌘) := lim
C#0

+ (? + C⌘)�+ (?)
C

exists6 and equals m+

m?
(?) · ⌘. This is equivalent to the di�erentiability of 5 . Moreover

we will show that r+ (?) is continuous on %.

Let ⌘ 2 R= be such that [?, ? + ⌘] ⇢ % where [?, ? + ⌘] := {? + C⌘ : 0  C  1} (such
⌘ always exists since % is open). By definition we have

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘) � ! (G⇤ (?), H⇤ (?); ?)

The saddle point property (8.51) then implies the inequalities in the following:

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘)� ! (G⇤ (? + ⌘), H⇤ (?); ? + ⌘)|                                                                       {z                                                                       }
�0

+ ! (G⇤ (? + ⌘), H⇤ (?); ? + ⌘)� ! (G⇤ (? + ⌘), H⇤ (?); ?) (8.52)

+ ! (G⇤ (? + ⌘), H⇤ (?); ?)� ! (G⇤ (?), H⇤ (?); ?)|                                                   {z                                                   }
�0

Since ! (G, H; ?) is di�erentiable with respect to ? for each (G, H), we can apply the
mean value theorem to (8.52) to get

+ (? + ⌘)�+ (?) � m!

m?

(G⇤ (? + ⌘), H⇤ (?); ?1 (⌘)) · ⌘

for some ?1 (⌘) 2 [?, ? + ⌘]. Similarly we have

+ (? + ⌘)�+ (?) = ! (G⇤ (? + ⌘), H⇤ (? + ⌘); ? + ⌘)� ! (G⇤ (?), H⇤ (? + ⌘); ? + ⌘)|                                                                       {z                                                                       }
0

+ ! (G⇤ (?), H⇤ (? + ⌘); ? + ⌘)� ! (G⇤ (?), H⇤ (? + ⌘); ?)
+ ! (G⇤ (?), H⇤ (? + ⌘); ?)� ! (G⇤ (?), H⇤ (?); ?)|                                                   {z                                                   }

0

 m!

m?

(G⇤ (?), H⇤ (? + ⌘); ?2 (⌘)) · ⌘

for some ?2 (⌘) 2 [?, ? + ⌘]. Combining, and replacing ⌘ by C⌘, we have

m!

m?

(G⇤ (? + C⌘), H⇤ (?); ?1 (C⌘)) · C⌘  + (? + C⌘)�+ (?)

 m!

m?

(G⇤ (?), H⇤ (? + C⌘); ?2 (C⌘)) · C⌘

Dividing throughout by C, taking C # 0 and using the continuity of m!
m?

, G(?) and H(?)
we get

3+ (?;⌘) =
m!

m?

(G⇤ (?), H⇤ (?); ?) · ⌘

6 Since + (?) is not assumed to be convex, the limit in the definition of 3+ (?;⌘) may not exist.
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for all ? 2 % and all ⌘ 2 R=. Hence

m+

m?

(?) =
m!

m?

(G⇤ (?), H⇤ (?); ?)

exists. Moreover it is continuous since m!

m?
is continuous on - ⇥. ⇥%. ⇤

Remark 8.7 (Partial dualization). For a typical constrained optimization problem,
the ambient feasible sets (- ,. ) are determined by dualization. If all constraints are
dualized, then - := R=, . := R< ⇥R;+ and neither depends on the parameter ?. For
partial dualization, it is important that the resulting (- ,. ) are independent of ?. The
saddle point property (8.51) can still hold if the feasible sets (-? ,.?) depend on ?,
i.e., for all ? 2 %,

! (G⇤ (?), H; ?)  ! (G⇤ (?), H⇤ (?); ?)  ! (G, H⇤ (?); ?), G 2 -? , H 2 .?
Yet the conclusion of Theorem 8.19 in general does not hold. This is because the
inequalities in + (? + ⌘)�+ (?) above rely on inequalities of the form:

! (G⇤ (?), H⇤ (?); ?) � ! (G⇤ (?), H⇤ (@); ?)
! (G⇤ (@), H⇤ (?); ?) � ! (G⇤ (?), H⇤ (?); ?)

which may not hold if H⇤ (@) is in .@ \.? or G⇤ (@) is in -@ \ -? . See Exercise 8.21 for
a concrete example. ⇤

The following version is the classical envelope theorem. The key condition is that
the first-order stationarity condition holds with equality, which is the reason for - to
be open so that the optimal point G⇤ (?) is in the interior of - . Note that convexity is
not assumed since the proof only needs the necessity of the stationarity condition.

Theorem 8.20 (Saddle-point Envelope Theorem [58]). Let - ✓ R= and % ✓ R; be
open sets. Consider the constrained optimization for each ? 2 %:

min
G2-

5 (G; ?) s.t. 6(G; ?) = 0

where 5 : - ⇥%!R and 6 := (61, . . . ,6<) : - ⇥%!R<. Let G⇤ (?) denote an optimal
solution and+ (?) := 5 (G⇤ (?); ?) the optimal value. Let H 2R< denote the dual variable
and define the Lagrangian

! (G, H; ?) := 5 (G; ?) + HT
6(G; ?), G 2 - , H 2 R<

Suppose

1. 5 , 61, . . . ,6< are continuously di�erentiable on - ⇥%.
2. Stationarity in G: For each ? 2 %, there exist H⇤ (?) 2 R< such that the first-order

stationarity condition holds with equality:

rG! (G⇤ (?), H⇤ (?); ?) = rG 5 (G⇤ (?), ?) + rG6(G⇤ (?), ?)H⇤ (?) = 0

3. G⇤ (?) and H⇤ (?) are continuously di�erentiable functions (in particular, this as-
sumes that the optimal primal and dual solutions exist and are unique).
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Then + (?) is continuously di�erentiable and

r+ (?) = r?! (G⇤ (?), H⇤ (?); ?) = r? 5 (G⇤ (?); ?) +r?6(G⇤ (?); ?)H⇤ (?)

The theorem can be proved by appealing to Theorem 8.19 but a direct proof is
simpler.

Proof of Theorem 8.20. The value function+ (?) is continuously di�erentiable since
5 (G; ?) and G⇤ (?) are. Since G⇤ (?) satisfies 6(G⇤ (?); ?) = 0 we have

+ (?) = ! (G⇤ (?), H⇤ (?); ?) = 5 (G⇤ (?); ?) +
’
9

H
⇤
9
(?)6 9 (G⇤ (?); ?)

Di�erentiability assumptions yield

m+

m?;

(?) =
’
8

m 5

mG8

(G⇤ (?); ?) ·
mG
⇤
8

m?;

(G⇤ (?); ?) + m 5

m?;

(G⇤ (?); ?) +
’
9

mH
⇤
9

m?;

(?) · 6 9 (G⇤ (?); ?)

+
’
9

H
⇤
9
(?)

 ’
8

m6 9

mG8

(G⇤ (?); ?) ·
mG
⇤
8

m?;

(G⇤ (?); ?) +
m6 9

m?;

(G⇤ (?); ?)
!

Feasibility and stationarity in G imply:

6 9 (G⇤ (?); ?) = 0,
m 5

mG8

(G⇤ (?); ?) +
’
9

H
⇤
9
(?)

m6 9

mG8

(G⇤ (?); ?) = 0

Substituting into m+/m?; yields m+

m?;

= m 5

m?;

+Õ
9
H 9

m6 9

m?;

, i.e.,

r?+ (?) = r? 5 (G⇤ (?); ?) + r?6(G⇤ (?); ?)H⇤ (?)

as desired. ⇤

Remark 8.8. It is important that the set - is open so that the first-order stationarity
condition holds with equality. If the feasible set -? depends on ?, then either -? is
assumed open or G⇤ (?) is in the interior of -? . This means that if the constraint G 2 -?
is represented by ⌘(G, ?)  0, the corresponding Lagrange multipliers will be zero at
optimality so that the stationarity condition and the conclusion of the theorem will
remain unchanged. ⇤

When the feasible set does not depend on ?, only the cost function does, the saddle-
point envelope theorems reduce to Danskin’s Theorem. If the function 5 (G, ?) in The-
orem 8.21 represents the Lagrangian function of a constrained optimization and (G, ?)
represents primal and dual variables, then the theorem implies the di�erentiability of
the dual function when the optimal G(?) is unique.

Theorem 8.21 (Danskin’s Theorem). Let - ✓ R= be nonempty and 5 : - ⇥R; ! R
be a continuous function. Suppose 5 (G; ?) is convex in ? for every G 2 - . Let

+ (?) := sup
G2-

5 (G; ?)
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1. Suppose - is compact so that a maximizer G⇤ (?) always exists with + (?) =
5 (G⇤ (?); ?). Let the set of maximizers be

-
⇤ (?) := {G 2 - :+ (?) = 5 (G; ?)}

Then
(a) The function + : R;! R is convex and has directional derivative 3+ (?;⌘) at

? in the direction of ⌘ 2 R< given by:

3+ (?;⌘) := lim
C#0

+ (? + C⌘)�+ (?)
C

= max
G2-⇤ (?)

35 (G,⌘; ?)

where 35 (G,⌘; ?) := lim
C#0 ( 5 (G + C⌘; ?)� 5 (G; ?))/C is the directional deriva-

tive of the function 5 (·, ?).
(b) If -⇤ (?) = {G⇤ (?)} is a singleton and 5 (G⇤ (?); ·) is di�erentiable in its second

argument at ?, then + (?) is di�erentiable at ? and

r?+ (?) = r? 5 (G⇤ (?); ?) =
✓
m 5

m? 9

(G⇤ (?); ?), 9 = 1, . . . ,<
◆

(c) If - is compact and convex and 5 (G; ?) is convex in G for every ? 2 R<, then
-
⇤ (?) is nonempty, convex and compact (according to Theorem 12.26).

2. The conclusions of 1 hold if, instead of assuming - is compact, we assume that
• -⇤ (?) is nonempty for every ? 2 R<; and
• For every sequence {?: } converging to some ?, there exists a bounded se-

quence {G⇤
:
} of maximizers G⇤

:
2 -⇤ (?) for all : (so that {G⇤

:
} has a convergent

subsequence).

Remark 8.9. 1. As for Theorem 8.19, it is important that the ambient feasible set -
does not depend on ? if the constraints are only partially dualized, for the same
reason discussed in Remark 8.7.

2. Theorem 8.21 is generalized in Theorem 12.19 to the case where 5 may not be
continuous in G, - may not be compact, and -⇤ (?) may not be a singleton. ⇤

Theorem 8.21 guarantees the existence of directional derivative of + (?) if 5 is
jointly continuous in (G, ?) and convex in ? for every G 2 - . Di�erentiability of +
however needs uniqueness of the maximizer G⇤ (?) and di�erentiability of 5 (G⇤ (?); ·).
It 5 (G; ?) is convex in ? for every G 2 - then + (?) := sup

G2- 5 (G; ?) is convex in ?.
For* (?) := infG2- 5 (G; ?) when 5 (G; ?) is jointly convex in (G, ?) (this is not the case
with Lagrangian functions), see Remark 12.7.

8.3.7 Equivalent representations

Consider the following two convex optimization programs:

min
G2R=

5 (G) s.t. �G = 1, ⌘1 (G)  0 (8.53a)

min
G2R=

5 (G) s.t. �G = 1, ⌘2 (G)  0 (8.53b)
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where 5 is a convex function. Suppose the feasible sets {G 2 R= : �G = 1, ⌘1 (G)  0}
and {G 2 R= : �G = 1, ⌘2 (G)  0} are the same, so (8.53a) and (8.53b) are equivalent
representations of the same problem in the sense that they have the same cost function
5 and the same feasible set.

Equivalent representations of the same problem can have di�erent structural and
computational properties. Judicious choice of problem formulation is therefore impor-
tant in application. For example, the dual problem, the optimal dual value and strong
duality generally depend on the primal and dual representations and may be di�erent
for di�erent (even if equivalent) representations.

1. If both ⌘1 (G) and ⌘2 (G) are convex functions, the Slater condition is satisfied for
both representations in (8.53), and their (common) optimal primal value is finite,
then the Slater Theorem 8.17 applies to both representations and hence strong
duality holds and dual optimality is attained for both representations. The KKT
Theorem 8.15 also applies to both representations. Even though they may have
di�erent dual problems and di�erent KKT conditions, their optimal dual values
will be the same.

2. If on the other hand ⌘1 (G) is convex but ⌘2 (G) is not, then even if the Slater
condition is satisfied for both problems and their common optimal primal value is
finite and the same, neither the Slater Theorem 8.17 nor the KKT Theorem 8.15
applies to (8.53b). Indeed, for (8.53b), strong duality may not hold and its dual
problem may be infeasible, as the following example shows.

Example 8.12 (Equivalent representations). Consider what is called a second-order
cone program (studied in Chapter 8.4.4):

5
⇤
1 := min

G2R=
2

T
G s.t. kG=�1k2  G= (8.54a)

where 2 2 R=. Its constraint function ⌘1 (G) := kG=�1k2 � G= is not di�erentiable at G
where G=�1 = 0. To bypass this di�culty the following formulation is often solved
instead:

5
⇤
2 := min

G2R=
2

T
G s.t. kG=�1k22  G2

=
, G= � 0 (8.54b)

Both problems have the same convex feasible set, the standard second-order cone
 soc ✓ R= defined in (8.16), and therefore have the same optimal primal value. They
arise from two equivalent representations of  soc using di�erent constraint functions.

The constraint function ⌘1 (G) := kG=�1k2� G= in (8.54a) is a convex function while
the constraint function ⌘2 (G) := kG=�1k22�G2

=
in (8.54b) is nonconvex (Exercise 8.12).7

If the optimal primal value 5 ⇤1 = 5 ⇤2 is finite, the Slater Theorem 8.17 applies to problem
(8.54a) (the Slater condition is always satisfied) and hence strong duality holds and a
dual optimal solution exists. The KKT Theorem 8.15 also applies at at G where G=�1 < 0

7 A common way to deal with this is to replace the nonconvex constraint by a log-barrier penalty

log
⇣
G

2
=
�Õ

=�1
8=1 G

2
8

⌘
in the cost which is a convex function (Exercise 8.9).
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and ⌘1 is continuously di�erentiable. Since ⌘2 (G) is nonconvex, neither theorem applies
to problem (8.54b) even though its feasible set is convex.

Indeed Exercise 8.28 shows that, if k2=�1k2  2=, then strong duality holds and dual
optimality is attained for (8.54a) with 5

⇤
1 = 5

⇤
2 = 0, but as long as 0 < k2=�1k2  2=,

5
⇤
2 = 0 > �1 = 3⇤2, i.e., the duality gap is unbounded and the dual problem is infeasible

for (8.54b).

Hence when we formulate di�erent representations of a convex program:

1. It is important to check that the Slater Theorem 8.17 and the KKT Theorem 8.15
are applicable so that strong duality and optimality conditions hold.

2. If points of nonsmoothness are relevant for the application, nonsmooth analysis
studied in Chapter 12 should be used to derive optimality conditions at these
points. For (8.54a), G⇤ = 0, where ⌘1 (G) is nondi�erentiable, is optimal if and only
if 2 2  soc (see Figure 8.15 or (12.65c)). ⇤

8.4 Special convex programs

In this section we apply the general theory developed in Chapter 8.3 to special classes
of convex optimization problems widely used in applications.

8.4.1 Summary: general method

Consider the convex problem (8.25) reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.55)

where 5 : R= ! R and ⌘ : R= ! R; are convex functions, and � 2 R<⇥=, 1 2 R<.
The classes of problems studied in this section and in Chapter 12.9 using nonsmooth
methods are summarized in Figure 8.14 and the conclusions are summarize in Table
8.3.

The classes in Figure 8.14 di�er mainly in the convex constraint ⌘(G)  0:

1. Linear program (LP): 5 (G) = 2T
G and ⌘(G)  0 specifies ⌫G + 3 2 R;+ := {G 2 R; :

G � 0}, i.e., an a�ne transformation of G is in the nonnegative cone.
2. Quadratic program (QP): 5 (G) = GT

&G + 22G with a positive semidefinite cost
matrix & and an a�ne constraint ⌫G + 3 2 ';+.8

3. Second-order cone program (SOCP): ⌘(G)  0 specifies ⌫G + 3 2  soc := {G 2 R; :
kG;�1k2  G;}, i.e., an a�ne transformation of G is in the second-order cone.

8 Sometimes QP is used to denote problems with a convex quadratic cost 5 and a general conic constraint
⌫G +3 2  .
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convex
inequality

conic
programSDPSOCPQPLP

Figure 8.14 Special classes of convex problems studied in this section and Chapter 12.9 using
nonsmooth methods.

5 (G) ⌘(G)  0 su�cient condition 5
⇤ = 3⇤ = 3 (_⇤,`⇤)

KKT, saddle pt

LP linear a�ne: ⌫G + 3 2 R;+ finite 5 ⇤ Th 8.23

QP quadratic a�ne: ⌫G + 3 2 R;+ feasibility (if & � 0) Th 8.24, 8.25

SOCP convex ⌘(G) 2  soc finite 5 ⇤, �Ḡ = 1 Th 8.26, 8.27
⌘(G) := ⌫̃G + 3̃ ⌘(Ḡ) 2 ri( soc)

SDP convex ⌘(G) 2  psd finite 5 ⇤, �Ḡ = 1 Th 8.28
⌘(G) := ⌫0 +

Õ
=

8=1 G8⌫8 ⌘(Ḡ) 2 ri( psd)

Conic prog. convex ⌘(G) 2  finite 5 ⇤, �Ḡ = 1 Th 12.31, 12.32
⌘(G) := ⌫G + 3 ⌘(Ḡ) 2 ri( )

Convex prog. convex convex finite 5 ⇤, �Ḡ = 1 Exercise 12.24
⌘(Ḡ) < 0

Table 8.3 Summary: strong duality, dual optimality and KKT condition.

4. Semidefinite program (SDP): ⌘(G)  0 specifies ⌫G + 3 2  psd ⇢ S; , i.e., an a�ne
transformation of G is in the semidefinite cone.

5. Conic program: ⌘(G)  0 specifies ⌫G + 3 2  ✓ R; , i.e., an a�ne transformation
of G is in a closed convex cone  .

6. Convex inequality: ⌘ : R=! R; is a convex function.

The theory developed in Chapter 8.3 are used to derive three types of results for these
convex programs. The general derivation method is as follows. Some of the results in
Chapter 8.3 (Saddle-point Theorem 8.14 and primal optimality Theorem 8.16) apply
to nonconvex problems as well.

1. Dual problem. Given the primal problem (8.55), define the Lagrangian function
! (G,_,`) : R=+<+;! R:

! (G,_,`) := 5 (G)�_T (�G� 1) + `⌘(G), G 2 R=, (_,`) 2 R<+; (8.56a)
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Then the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2R<+;
3 (_,`) s.t. ` � 0 (8.56b)

2. Strong duality and dual optimality. Recall that (i) 5 and ⌘ are convex functions.
Suppose (ii) the Slater condition is satisfied, i.e., there exists Ḡ with �Ḡ = 1 and
⌘(Ḡ) < 0, and (iii) the optimal primal value 5 ⇤ is finite, i.e., �1 < 5

⇤
<1. Then

the Slater Theorem 8.17 implies strong duality and the existence of a dual optimal
solution (_⇤,`⇤) with 5

⇤ = 3⇤ = 3 (_⇤,`⇤). This does not guarantee the existence
of a primal optimal G⇤.

3. KKT condition and primal optimality. Recall that (i) 5 and ⌘ are convex functions.
Suppose (ii) the Slater condition is satisfied, i.e., there exists Ḡ with �Ḡ = 1 and
⌘(Ḡ) < 0. Then the KKT Theorem 8.15 implies that a feasible G⇤ 2 R= is optimal
if and only if there exists dual feasible (_⇤,`⇤) 2 R<+; such that

r 5 (G⇤) = �T
_
⇤ �r⌘(G⇤)`, `

⇤T
⌘(G⇤) = 0, `

⇤ � 0 (8.56c)

where (only) the first condition is rG! (G⇤,_⇤,`⇤) = 0 and requires continuous
di�erentiability of 5 and ⌘. Such a point (G⇤,_⇤,`⇤) is a saddle point that closes the
duality gap and attains primal and dual optimality, i.e., 5 ⇤ = 5 (G⇤) = 3 (_⇤,`⇤) = 3⇤.
Hence the KKT condition can be derived simply by taking the derivative of ! with
respect to G and it is su�cient for primal-dual optimality when 5 and ⌘ are convex.
This method is not applicable if 5 or ⌘ are not continuously di�erentiable.

Remark 8.10 (Nonsmooth extension). Smoothness (di�erentiability) of the cost and
constraint functions 5 ,⌘ is not important. As long as 5 ,⌘ are convex functions these
results hold verbatim at points of di�erentiability and extends naturally at nondi�er-
entiable points using set-theoretic tools. These tools, developed in Chapter 12, exploit
convexity properties, are conceptually simple and can treat a larger class of convex
problems (e.g., see Theorem 8.26 and Remark 8.11).

For example for a general conic program whose feasible set is specified, not explicitly
by a constraint function ⌘(G)  0, but abstractly by a closed convex cone  as G 2  ,
the Lagrangian dual problem is still defined by (8.56b), but the penalty term `⌘(G) in
the Lagrangian ! (G,_,`) will be replaced by `G and dual feasibility ` � 0 is replaced
by ` 2  ⇤. Here  ⇤ := {` 2 R; : `T

I � 0 8I 2  } is called the dual cone of  (ses
Chapter 8.2.2). Strong duality and dual optimality hold verbatim. The KKT condition
(8.56c) defined only at points where 5 and ⌘ are continuously di�erentiable can be
generalized to a nondi�erentiable point using the concept of subgradients b⇤ 2 m 5 (G⇤)
and normal cones (see Chapter 12.9.4). ⇤

In the rest of this section we apply this general method to LP, SOCP and SDP. Refer-
ring to Table 8.3, the results on strong duality, dual optimality and the KKT condition
for QP are derived in Exercise 8.24 and those for convex problems specified by the
convex inequality ⌘(G)  0 are derived in Exercise 12.24. General conic programs are
studied in Chapter 12.9 using nonsmooth methods.
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8.4.2 Linear program (LP)

Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. �G � 1 (8.57a)

where 2 2 R=, � 2 R<⇥= and 1 2 R<. From (8.26) the Lagrangian ! : R=+<! R of
(8.57) is

! (G,`) :=
⇣
2� �T

`

⌘T
G + 1T

` G 2 R=, ` 2 R<

the dual function is

3 (`) := min
G2R=

! (G,`) =
⇢
1

T
` if �

T
` = 2

�1 if �
T
` < 2

and the dual problem is

3
⇤ := max

`�0
3 (`) = max

`�0
1

T
` s.t. �

T
` = 2 (8.57b)

Let - := {G 2 R= : �G � 1} and . := {` 2 R< : �T
` = 2, ` � 0} be the feasible sets.

The primal and dual problems in (8.57) can each be finite feasible, feasible but
unbounded, or infeasible. By definition the primal problem is feasible if 5 ⇤ < 1 and
the dual problem is feasible if 3⇤ > �1. Strong duality of LP implies that only four,
instead of nine, scenarios are possible (see Table 8.4 and its caption). Moreover a
feasible solution (G⇤,`⇤) is optimal if and only if it satisfies complementary slackness,
as we will show. We start by stating in the next lemma that a finite 5

⇤ (feasibility is
insu�cient) implies the existence of a primal optimal solution G⇤ 2 - with 5 (G⇤) = 5

⇤;
indeed a finite 5

⇤ also implies the existence of dual optimal `⇤ and strong duality
(Theorem 8.23). Lemma 8.22 applies to the dual problem (8.57b) if 3⇤ is finite.

Lemma 8.22 (LP primal optimality). Consider the linear program (8.57a). If �1 <

5
⇤
<1 then an optimal solution G⇤ 2 - exists with 2T

G
⇤ = 5

⇤.

Proof Let - := {G 2 R= : �G � 1} be the feasible set of (8.57a). Since 5
⇤ is finite,

- is nonempty and closed. If the feasible set - is bounded or if there is a W 2 R such
that the level set +W is nonempty and bounded, then - \+W is a compact (closed and
bounded) set. The minimization (8.57a) can be taken over - \+W and a minimizer G⇤

therefore exists by Theorem 8.16.

Consider then the case where - is unbounded and every nonempty level set +W :=
{G 2 R= : 2T

G  W} is unbounded. Let {+W: } be a nested sequence of level sets with
W: # 5 ⇤. Let %: := -\+W: . Then %: are nonempty closed polyhedral sets. Since {%: } is
a nested sequence, the limit \1

:=1%: exists. Moreover the set -⇤ of solutions of (8.57a)
is -⇤ = \1

:=1%: , i.e., G⇤ 2 -⇤ if and only if G⇤ is feasible and 2T
G
⇤  lim: W: = 5

⇤. Then
-
⇤ < ; follows from the following intuitive fact which underlies the simplicity of linear

programs.
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Fact. If 5 ⇤ is finite then \1
:=1%: < ;.

This fact is proved in Example 12.13 after we have introduce the notion of direction
of recession in Chapter 12.7. ⇤

The next theorem is the main result on LP duality and optimality. Though the proof
below appeals to the Slater Theorem 8.17, it can also be proved directly using the
Farkas Lemma (Theorem 8.12); see Exercise 8.23.

Theorem 8.23 (LP duality and KKT). Consider the linear program and its dual (8.57).

1. Strong duality and primal-dual optimality. Exactly one of the following holds:
(a) If �1 < 5

⇤
<1 or �1 < 3

⇤
<1 then both primal and dual problems attain

optimality and strong duality holds, i.e., there exists (G⇤,`⇤) 2 - ⇥. such that

2
T
G
⇤ = 5

⇤ = 3
⇤ = 1

T
`
⇤

(b) If the primal problem is feasible but unbounded then 5
⇤ = �1 = 3⇤, i.e., the

dual problem is infeasible.
(c) If the dual problem is feasible but unbounded then 3⇤ =1 = 5 ⇤, i.e., the primal

problem is infeasible.
(d) Otherwise, both are infeasible, i.e., 5 ⇤ =1 and 3⇤ = �1.

2. KKT characterization. A feasible G⇤ 2 - is optimal if and only if there is a dual
feasible `⇤ 2 . that satisfies complementary slackness, i.e.,

�
T
`
⇤ = 2, `

⇤T (�G⇤ � 1) = 0, `
⇤ � 0 (8.58)

Such a point (G⇤,`⇤) is a saddle point and a KKT point and is hence primal-dual
optimal with 2T

G
⇤ = 1T

`
⇤.

Proof Suppose 5
⇤ is finite (If 3⇤ is finite, Lemma 8.22 applies to the dual problem

(8.57b) and the argument below is symmetric and omitted). Then Lemma 8.22 implies
the existence of a primal optimal solution G⇤ 2 - with 2T

G
⇤ = 5

⇤. This also implies that
the Slater condition (8.46) is satisfied. The Slater Theorem 8.17 then implies that there
exists a dual optimal solution `⇤ 2 . such that 5 ⇤ = 3⇤ = 3 (`⇤). (For linear programs,
this step can be proved using the Farkas Lemma (Theorem 8.12); see Exercise 8.23.)

If 5 ⇤ = �1 then weak duality Lemma 8.13 implies that 3⇤  5 ⇤ = �1. Similarly if
3
⇤ =1 then 5

⇤ =1 by weak duality. The only case that is not covered by the three
cases above is when both 5 ⇤ =1 and 3⇤ =�1. This is possible as Example 8.14 shows.

Finally given any primal feasible point G⇤ 2 - and any `⇤ � 0, we need to show that
(G⇤,`⇤) is primal-dual optimal if and only if (G⇤,`⇤) satisfies (8.58). Suppose (G⇤,`⇤)
satisfies (8.58). Then `⇤ 2 . and

1
T
`
⇤ = 2

T
G
⇤ � `⇤T (�G⇤ � 1)  2

T
G
⇤ (8.59)

where the first equality follows from `
⇤ 2 . and the inequality follows from (G⇤,`⇤) 2
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-⇥. . Moreover the complementary slackness in (8.58) implies that equality is attained
in (8.59), i.e., 1T

`
⇤ = ! (G⇤,`⇤) = 2T

G
⇤. The weak duality Lemma 8.13 then implies

that (G⇤,`⇤) is primal-dual optimal and closes the duality gap. Conversely suppose
(G⇤,`⇤) 2 - ⇥. is primal-dual optimal. Then both 5 ⇤ = 5 (G⇤) and 3⇤ = 3 (`⇤) are finite
and therefore by part 1, strong duality holds, i.e., 1T

`
⇤ = 2T

G
⇤. This and (8.59) then

imply `⇤T (�G⇤ �1) and therefore (G⇤,`⇤) satisfies (8.58). Such a point is a saddle-point
and a KKT point according to Theorem 8.15. ⇤

Example 8.13 (Equality and nonnegativity constraints). Adapt Theorem 8.23 to linear
program of the form:

1. 5
⇤ := minG2R= 2T

G s.t. �G = 1, G � 0 where 2 2 R=, � 2 R<⇥= and 1 2 R<.
2. 5

⇤ := minG2R= 2T
G s.t. �G = 1, ⌫G + 3 � 0 where 2 2 R=, � 2 R<⇥=, 1 2 R<,

⌫ 2 R;⇥= and 3 2 R; .

Solution. For part 1 we will show that the condition for strong duality and primal-dual
optimality remains that same as in Theorem 8.23 but the KKT condition (8.58) is
modified to

�
T
_
⇤ + `⇤ = 2, `

⇤T
G
⇤ = 0, `

⇤ � 0 (8.60)

The Lagrangian ! : R2=+<! R is

! (G,_,`) :=
⇣
2� �T

_� `
⌘T
G + 1T

_ G 2 R=, _ 2 R<, ` 2 R=

the dual function is

3 (_,`) := min
G2R=

! (G,_,`) =
⇢
1

T
_ if �

T
_+ ` = 2

�1 if �
T
_+ ` < 2

and the dual problem is

3
⇤ = max

_2R<,`�0
1

T
_ s.t. �

T
_+ ` = 2

Let - := {G 2 R= : �G = 1,G � 0} and . := {(_,`) 2 R<+= : �T
_+ ` = 2, ` � 0} be the

feasible sets. All the structural results of Theorem 8.23 holds. The only change is that
(8.59) becomes, since �G⇤ = 1,

1
T
`
⇤ = 2

T
G
⇤ � `⇤TG⇤  2

T
G
⇤

and hence a feasible G⇤ 2 - is optimal if and only if there exists a dual optimal
(_⇤,`⇤) 2 R<+= that satisfies (8.60).

Part 2 can be converted to the problem in part 1 by introducing the slack variable
B 2 R;: 5 ⇤ := min(G,B)2R=+; 2

T
G s.t. �G = 1, ⌫G+3� B = 0, B � 0. Then (8.60) becomes

�
T
_
⇤ +⌫T

`
⇤ = 2, `

⇤T
B
⇤ = 0, `

⇤ � 0

⇤
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As Theorem 8.23 shows, weak and strong duality imply that only 4 feasibility cases
are possible for the primal and dual problems, instead of 9 cases, as explained in
Table 8.4 and its caption. The only case where the optimal values are attained at finite
(G⇤,_⇤,`⇤) is when both problems are bounded feasible.

primal
bounded feasible unbounded feasible infeasible

dual
bounded feasible (G⇤,_⇤,`⇤) ⇥ (sd) ⇥ (sd)
unbounded feasible ⇥ (sd) ⇥ (wd) 5

⇤ = 3⇤ =1
infeasible ⇥ (sd) 5

⇤ = 3⇤ = �1 3
⇤ = �1 <1 = 5

⇤

Table 8.4 Four possibilities: Strong duality in Theorem 8.23 excludes 4 possibilities labeled
“⇥(sd)”. The 5th impossibility, labeled “⇥(wd)”, violates weak duality. Optimal values are attained
only in one case.

Example 8.14 (LPs with infinite values). 1. Infeasible LP pair. Consider the LP

minG G such that


1
�1

�
G �


0
1

�
. Its dual is max`�0 `2 such that �`2 = 1. Clearly

neither the primal nor the dual is feasible and hence 3⇤ = �1 <1 = 5
⇤.

2. Unbounded primal, infeasible dual. Consider

5
⇤ := min

G�0
�G1 +UG2 s.t. G1� G2 = 0

where U < 1. Then the optimal primal value is 5 ⇤ = �1 and there is no finite G
that attains it. From Example (8.13) the dual function is

3 (_,`) :=

8>><
>>:

0 if

�1
U

�
=


1
�1

�
_+ `

�1 otherwise

Multiplying both sides of the equality constraint by (1,1) yields `1 + `2 = �(1�
U) < 0. Hence there is no (_,`) that satisfies ` � 0. Therefore the dual problem is
infeasible, or 3⇤ := �1 = 5

⇤. ⇤

Optimal basic feasible solution. The first widely used algorithm for solving linear
programs is the simplex algorithm which makes use of the fact that if a LP has a finite
optimal solution G⇤ then it has an optimal solution that is an extreme point (vertex)
of the feasible set - := {G 2 R= : �G � 1} where � 2 R<⇥=. For each feasible point
G 2 - let �̂ (G) := {8 2 {1, . . . ,<} : 0T

8
G = 18} be the set of all active constraints at G,

where 0T
8

is the 8th row of �. A feasible G is an extreme point of - if and only if �̂ (G)
contains =  < linearly independent active constraints at G, i.e., {08 : 8 2 �̂ (G)} contains
= linearly independent 08 . In the simplex algorithm literature a feasible extreme point
is called a basic feasible solution and an optimal extreme point is called an optimal
basic feasible solution. The simplex algorithm starts from a basic feasible solution
and moves to another basic feasible solution with a lower cost until an optimal basic
feasible solution is found. Even though the simplex algorithm is usually replaced by
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interior point methods in modern LP solvers, it reveals the following useful structure
of an optimal basic feasible solution G⇤ of linear programs.

For each extreme point G of - let � (G) ✓ �̂ (G) denote any collection of = linearly
independent constraints, i.e., {08 : 8 2 � (G)} is a set of = linearly independent vectors.
Decompose (�,1) according to � = � (G):

� =:

�
� (G)

��� (G)

�
, 1 =:


1
� (G)

1�� (G)

�

so that �
� (G)G = 1� (G) and ��� (G)G > 1�� (G) . Then �

� (G) is a =⇥= nonsingular matrix
whose columns form a basis of R=. Hence an optimal basic feasible solution (extreme
point) G⇤ of the linear program (8.57) satisfies

G
⇤ = �

�1
� (G⇤)1� (G⇤) (8.61)

In Exercise 8.23 the set � (G) (or �̂ (G)) is used to construct an optimal dual variable `⇤.

The basic idea is to use the Farkas lemma to show that 2 2 cone
⇣
�

T
� (G⇤)

⌘
and hence

2 = �T
� (G⇤)`

⇤
� (G⇤) for some `⇤

� (G⇤) � 0.

8.4.3 Convex quadratic program (QP)

A quadratic program (QP) has a quadratic cost function and a�ne constraints and a
quadratically constrained quadratic program (QCQP) has a quadratic cost function and
quadratic constraints. In this subsection we study QPs that are convex.

Convex quadratic program (QP). Consider first an unconstrained convex quadratic
program:

5
⇤
1 := min

G2R=
5 (G) := G

T
&G + 22T

G (8.62)

where & 2 R=⇥= is positive semidefinite, i.e., & ⌫ 0, and 2 2 R=. The cost function
5 is convex if and only if & ⌫ 0. Since & is positive semidefinite it has a spectral
decomposition

& = *⇤*T =
⇥
*A *=�A

⇤ 
⇤A 0
0 0

� 
*

T
A

*
T
=�A

�
= *A⇤A*T

A
(8.63a)

where A is the rank of &, ⇤A is a diagonal (sub)matrix of the A positive eigenvalues
of & and the columns of *A 2 R=⇥A are the corresponding A  = (real) orthonormal
eigenvectors. The columns of*=�A 2R=⇥(=�A ) are =�A orthonormal (real) eigenvectors
corresponding to the 0 eigenvalue, if any. The matrix & is positive definite if A = = and
positive semidefinite but not positive definite if A < =. The range space, null space and
the pseudo-inverse &† of & are respectively:

range(&) = span(*A ), null(&) = span(*=�A ), &† :=*A⇤�1
A
*

T
A
, A  = (8.63b)
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because*T
A
*=�A = 0 (see Chapter A.7 on pseudo-inverse and Theorem A.16 on orthog-

onal diagonalization for psd matrices). If A = = then &† = &�1. Unconstrained convex
QP can be solved explicitly, as stated below and proved in Exercise 8.24.

Theorem 8.24 (Unconstrained convex QP). Consider the unconstrained QP (8.62).

1. If 2 2 range(&) then a minimizer G⇤ and the minimal value 5 ⇤1 are respectively:

G
⇤ = �&†

2, 5
⇤
1 = �2T

&
†
2

where &† is the pseudo-inverse of & defined in (8.63b). Moreover the set of
minimizer is G⇤ = �&†

2+null(&).
2. If 2 8 range(&) then 5

⇤
1 = �1.

3. If & � 0 is positive definite then the unique minimizer G⇤ and the minimum value
5
⇤
1 are respectively:

G
⇤ = �&�1

2, 5
⇤
1 = �2T

&
�1
2

In particular range(&) = R= and &† =&�1.

Consider next an a�nely constrained version of (8.62):

5
⇤
2 := min

G2R=
5 (G) := GT

&G + 22T
G s.t. �G = 1, ⌫G + 3 � 0 (8.64)

where & ⌫ 0, 2 2 R=, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥= and 3 2 R; . The quadratic program
(8.64) reduces to a linear program if & = 0. We next state strong duality and the KKT
condition for (8.64) when & � 0 is positive definite. The result is proved in Exercise
8.25 for the more general case when & ⌫ 0. When & � 0 let

&̂ :=

�

⌫

�
&
�1 ⇥

�
T

⌫
T⇤ , 2̂ :=


�1
3

�
�


�

⌫

�
&
�1
2 (8.65)

Theorem 8.25 (Constrained convex QP). Suppose the QP (8.64) is feasible and& � 0.

1. Dual problem. The dual problem is

3
⇤ := �2T

&
�1
2 � min

_2R<,`2R;+

✓ ⇥
_

T
`

T⇤
&̂


_

`

�
+ 2 2̂T


_

`

� ◆

where R;+ := {` 2 R; : ` � 0}.
2. Strong duality, dual optimality, KKT condition. Strong duality holds and dual

optimality is attained. Moreover a feasible G⇤ is optimal if and only if there exists
(_⇤,`⇤) 2 R<+; such that `⇤ � 0 and

G
⇤ = &

�1 (�T
_
⇤ +⌫T

`
⇤ � 2), `

⇤T (⌫G⇤ + 3) = 0 (8.66)

Such a point is a saddle point and a KKT point that is primal-dual optimal and
closes the duality gap, i.e., 5 ⇤2 = 5 (G⇤) = 3 (_⇤,`⇤) = 3⇤.
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Exercise 8.26 studies the following convex quadratically constrained quadratic pro-
gram (QCQP):

5
⇤ := min

G2R=
5 (G) := G

T
&0G + 22T

0G s.t. G
T
&1G + 22T

1G  3

where&0 � 0 is positive definite,&1 ⌫ 0 is positive semidefinite, 20,21 2 R= and 3 2 R.
It shows that the dual problem is:

3
⇤ := � min

`2R+
3` + (20 + `21)T (&0 + `&1)�1 (20 + `21)

strong duality holds and dual optimality is attained if 5 ⇤ is finite and there exists Ḡ
such that ḠT

&1Ḡ + 22T
1 Ḡ < 3. In that case a feasible G⇤ is optimal if and only if there

exists `⇤ 2 R such that `⇤ � 0 and

(&0 + `⇤&1)G⇤ + (20 + `⇤21) = 0, `
⇤ (G⇤T&1G

⇤ +22T
1G
⇤ � 3) = 0

8.4.4 Second-order cone program (SOCP)

A second-order cone program (SOCP) is a convex optimization problem where either
the variable G or its a�ne transformation ⌫̃G + 3̃ is in the standard second-order cone
 soc := {G 2 R= : kG=�1k2  G=} defined in (8.16),

Second-order cone. Consider the convex optimization problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  soc (8.67a)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  soc ✓ R=
is the standard second-order cone defined in (8.16), reproduced here (G: := (G1, · · · ,G: )
denotes the vector consisting of the first : entries of G),

 soc := {G 2 R= : kG=�1k2  G=} (8.67b)

This problem is called a second-order cone program (SOCP). It reduces to a linear
program (8.57a) if  soc is polyhedral (e.g.,  soc = {G 2 R= : G � 0}) and 5 is linear. In
this chapter we assume 5 is continuously di�erentiable though this is not important (see
the extension to nonsmooth convex setting in Chapter 12.9.3). Let ⌘(G) := kG=�1k2�G=.
Then ⌘(G) is convex, di�erentiable if and only if G=�1 < 0, and G 2  soc is equivalent
to ⌘(G)  0.

To derive the dual problem of (8.67) and the KKT condition, let the Lagrangian
function ! : R=+<+1! R be

! (G,_,`) := 5 (G) � _T (�G� 1) + `
⇣
kG=�1k2� G=

⌘
, G 2 R=, _ 2 R<,` 2 R

Then the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (8.67c)

Let - :=
�
G 2 R= : �G = 1, kG=�1k2  G=

 
and . :=

�
(_,`) 2 R<+1 : ` � 0

 
be the fea-

sible sets.
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Theorem 8.26 (SOCP duality and KKT). Consider the SOCP and its dual (8.67).

1. Strong duality and dual optimality. Suppose 5 ⇤ is finite, and there exists Ḡ such that
�Ḡ = 1 and kḠ=�1k2 < Ḡ=. Then there exists a dual optimal solution (_⇤,`⇤) 2 .
that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2. KKT characterization. A primal and dual feasible point (G⇤,_⇤,`⇤) 2 - ⇥. with
[G⇤]=�1 < 0 is primal-dual optimal and closes the duality gap if and only if and

r 5 (G⇤) = �
T
_
⇤ + `⇤


�[G⇤]=�1

k [G⇤]=�1k2

�
, `

⇤
⇣
k [G⇤]=�1k2� G⇤=

⌘
= 0 (8.68)

Such a point (G⇤,_⇤,`⇤) is a saddle point and a KKT point.

Proof Part 1 follows from the Slater Theorem 8.17 since the constraint function
⌘(G) := kG=�1k2�G= in (8.67b) is convex (and di�erentiable if and only if G=�1 < 0). Part
2 follows from the KKT Theorem 8.15 because (8.68) in the theorem are the stationarity
condition rG! (G⇤,_⇤,`⇤) = 0 and the complementary slackness condition. ⇤

Remark 8.11. 1. Primal optimality. Unlike for a linear program, a finite 5 ⇤ and the
Slater condition do not guarantee that the optimal value 5

⇤ is attained at a finite
G
⇤. In particular, even when a dual optimal solution exists that closes the duality

gap under the Slater condition, there may not be any feasible G⇤ that satisfies the
KKT condition; see Examples 8.9 and 8.10.

2. KKT under Slater condition. If we assume the Slater condition, i.e., there exists
Ḡ with �Ḡ = 1 and kḠ=�1k2 < Ḡ=, then the KKT characterization in Theorem 8.26
can be strengthened to: a feasible G⇤ 2 - is optimal if and only if there exist
(_⇤,`⇤) 2 . such that (8.68) holds. Without the Slater condition, the existence of a
primal optimal G⇤ (and hence finite 5 ⇤) does not guarantee the existence of a dual
optimal (_⇤,`⇤). ⇤

The condition [G⇤]=�1 < 0 in Theorem 8.26 is needed because the constraint function
⌘(G) := kG=�1k2 � G= is nondi�erentiable if G=�1 = 0. The di�erentiability of the cost
and constraint functions is however unimportant as long as these functions are convex.
When [G⇤]=�1 = 0, the KKT condition requires the Slater condition that there exists Ḡ
such that �Ḡ = 1 and kḠ=�1k2 < Ḡ=. Then

1. Case G⇤
=
> k [G⇤]=�1k2 = 0: G⇤ is optimal if and only if there exists _⇤ 2 R< such

that r 5 (G⇤) = �T
_
⇤.

2. Case G⇤ = 0: G⇤ = 0 is optimal if and only if there exist _⇤ 2 R< and [⇤ 2  soc such
that r 5 (0) = �T

_
⇤ +[⇤.

This is derived in Chapter 12.9.3 using techniques for nonsmooth analysis (see (12.65)).
Figure 8.15 illustrates why the optimality condition does not depend on di�erentiability.
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xn

(a) 2 2  soc

xn

(b) 2 8  soc

Figure 8.15 Theorem 8.26: optimality condition at G⇤ = 0 where ⌘(G) is nondi�erentiable with
5 (G) := 2T

G and without �G = 1. (a) 2 2  soc: G⇤ = 0 and 5
⇤ = 0. (b) 2 8  soc: 5 ⇤ = �1.

SOC constraint. Consider the convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, k⌫G + 3k2  VT

G + X (8.69)

where 5 : R= ! R is a real-valued convex continuously di�erentiable function, � 2
R
<⇥= and 1 2 R<, ⌫ 2 R(;�1)⇥=, 3 2 R;�1, V 2 R= and X 2 R. The constraint k⌫G+3k2 
V

T
G+X is the second-order cone constraint studied in Chapter 8.2.1. The problem (8.69)

is also called a second-order cone program (SOCP) because the quadratic constraint
says that an a�ne transformation of G lies in the second-order cone  soc. It reduces to
a linear program when ⌫ = 0 or ; = 1 and 5 (G) is linear. It subsumes (8.67) as a special
case. The assumption that 5 is continuously di�erentiable is relaxed in Chapter 12.9.3.

To derive the dual problem of (8.69) and the KKT condition, we reduce it to the case
of (8.67) with an auxiliary variable I and an additional equality constraint. Consider
the equivalent problem:

5
⇤ = min

(G,I)2R=+;
5 (G) s.t. �G = 1, I = ⌫̃G + 3̃, I 2  soc (8.70a)

where  soc is the second-order cone defined in (8.67b) and

⌫̃ :=

⌫

V
T

�
, 3̃ :=


3

X

�
(8.70b)

The Lagrangian ! : R=+; ⇥R<+;+1! R is: for G 2 R=, I 2 R; ,_ 2 R<,W 2 R; ,` 2 R,

! (G, I,_,W,`) := 5 (G) � _T (�G� 1) � WT (⌫̃G + 3̃ � I) + `
⇣
kI;�1k2� I;

⌘
The dual problem is (Exercise 8.27):

3
⇤ := max

_,W

⇣
1

T
_� 3̃T

W

⌘
+ 30 (_,W) s.t. W 2  soc (8.70c)

where

30 (_,W) := min
G2R=

⇣
5 (G)� (�T

_+ ⌫̃T
W)T

G

⌘
(8.70d)
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For example when the cost function in (8.70a) is linear 2T
G the dual problem is:

3
⇤ := max

(_,W)2R<+;
1

T
_� 3̃T

W s.t. �
T
_+ ⌫̃T

W = 2, kW;�1k2  W;

Let - :=
�
G 2 R= : �G = 1, k⌫G + 3k2  VT

G + X
 

and . :=
�
(_,`) 2 R<+1 : ` � 0

 
.

Note that - ⇥. does not contain the auxiliary variable I and the corresponding dual
variable W. Even though the dual problem does not depend on `, the complementary
slackness in the KKT condition does.

Theorem 8.27 (SOCP duality and KKT). Consider the SOCP and its dual (8.70).
Suppose there exists Ḡ such that �Ḡ = 1 and k⌫Ḡ + 3k2 < V

T
Ḡ + X so that the Slater

condition (8.46) is satisfied.

1. Strong duality and dual optimality. Suppose 5 ⇤ is finite. Then there exists a dual
optimal solution (_⇤,W⇤,`⇤) that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,W⇤,`⇤).

2. KKT characterization. A point G⇤ 2 - with ⌫G⇤ + 3 < 0 is optimal if and only if
there exist (_⇤,`⇤) 2 . such that

r 5 (G⇤) = �
T
_
⇤ + `⇤

⇣
�⌫T (⌫G⇤ + 3) + V(VT

G
⇤ + X)

⌘

0 = `
⇤
⇣
k⌫G⇤ + 3k2� (VT

G
⇤ + X)

⌘

Such a point (G⇤,_⇤,`⇤), together with I⇤ := ⌫̃G⇤ + 3̃ and W⇤ = `⇤

�[I⇤];�1

k [I⇤];�1k2

�
2

 soc, is a saddle point and a KKT point for (8.70).

Proof If there exists an Ḡ such that �Ḡ = 1 and k⌫Ḡ + 3k2 < VT
Ḡ + X then there exists

a Ī such that Ī = ⌫̃G + 3̃ and k Ī;�1k2 < Ī; . This is the Slater condition for (8.70a) and
hence part 1 follows from Theorem 8.26.

For part 2 we derive the stationarity condition rG! (G⇤, I⇤,_⇤,W⇤,`⇤) = 0 and
rI! (G⇤, I⇤,_⇤,W⇤,`⇤) = 0 as well as the complementary slackness condition in the
KKT Theorem 8.15. When I;�1 < 0 we have

rG! (G, I,_,W,`) = r 5 (G)� �T
_ � ⌫̃T

W, rI! (G, I,_,W,`) = W + `
"

I
;�1

kI;�1 k2
�1

#

Hence the KKT condition in terms of (G⇤, I⇤) and (_⇤,W⇤,`⇤) is:

r 5 (G⇤) = �
T
_
⇤ + ⌫̃T

W
⇤, W

⇤ = `
⇤
"
�[I⇤ ];�1

k [I⇤ ];�1 k2
1

#
, `

⇤
⇣
k [I⇤];�1k2� I⇤;

⌘
= 0

Eliminating I⇤ and W⇤ yields the KKT condition in the theorem. The remaining claim
follows from the KKT Theorem 8.15. ⇤

As in Theorem 8.26, the condition ⌫G⇤ + 3 < 0 is needed because the constraint
function ⌘(I) := kI;�1k2� I; is nondi�erentiable if I;�1 = ⌫G+3 = 0. When ⌫G⇤+3 = 0,
the KKT condition requires the Slater condition in the theorem that there exists Ḡ such
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that �Ḡ = 1 and k⌫Ḡ + 3k2 < VT
Ḡ + X. Then a point G⇤ 2 - with ⌫G⇤ + 3 = 0 is optimal

if and only if

1. Case VT
G
⇤ + X > 0: there exists _⇤ 2 R< such that r 5 (G⇤) = �T

_
⇤.

2. Case VT
G
⇤ + X = 0: there exists _⇤ 2 R< and [⇤ 2  soc such that r 5 (0) = �T

_
⇤ +

⌫̃
T
[
⇤.

This is derived in Chapter 12.9.3 using techniques for nonsmooth analysis (see (12.68)).

Conic program. A generalization of SOCP (8.67) and (8.69) is the following convex
optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  (8.71)

where 5 :R=!R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  ✓ R= is a
general closed convex cone. The Slater Theorem 8.17 and the KKT Theorem 8.15 are
formulated in this chapter for problems where the constraint functions are explicitly
given and continuously di�erentiable. Even though part of the constraints in (8.71)
is not explicit, since  is a convex cone, a dual problem can be formulated in terms
of what is called its dual cone. We derive in Chapter 12.9.4 a su�cient condition for
strong duality and dual optimality and the KKT condition for the general conic program
(8.71) where the constraint functions are not fully specified and the cost function 5 is
convex but not necessarily continuously di�erentiable (Theorem 12.31).

8.4.5 Semidefinite program (SDP)

Recall the vector space S= of Hermitian matrices over the field R of real numbers,
not over C, and the cone  psd of positive semidefinite matrices in the vector space S=,
studied in Chapter 8.2.2. For two Hermitian matrices G, H 2 S=, their inner product is
G · H := tr

�
H

H
G

�
=

Õ
9,: G 9: H 9: is a real number and satisfies G · H = H · G. Furthermore

 psd is a proper self-dual cone.

Consider the following convex optimization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G) 2  psd (8.72a)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<,  psd ✓ S; is
the cone of positive semidefinite matrices, and ⌘ : R=! S; is the function

⌘(G) := ⌫0 +
=’
8=1

G8⌫8 , ⌫8 2 S; , 8 � 0 (8.72b)

The constraint ⌘(G) 2  psd is called a linear matrix inequality and is sometimes denoted
as ⌘(G) ⌫ psd 0 or simply ⌘(G) ⌫ 0 if the underlying cone  psd is understood. SDP
(8.72) reduces to LP if ; = 1 (see Example 8.13 of Chapter 8.4.2). It also includes
SOCP (8.67a) as a special case because G 2  soc if and only if the “arrow matrix”
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
G= [G=�1]T

G
=�1

G=I=�1

�
2  psd. This is because, if G= > 0, then the arrow matrix is psd if and

only if its Schur complement G= � kG=�1]k22/G= � 0. (Theorem A.4 in Chapter A.3.1).

To define the dual problem let _ 2 R< and / 2  ⇤psd ✓ S; denote dual variables,

where  ⇤psd is the dual cone of  psd. The Lagrangian is9 , for G 2 R=,_ 2 R<,/ 2  ⇤psd,

! (G,_,/) := 5 (G)�_T (�G� 1)� / ·
 
⌫0 +

=’
8=1

G8⌫8

!
(8.73a)

The dual function 3 (_,/) := minG2R= ! (G,_,/) is:

3 (_,/) =
⇣
1

T
_ � / · ⌫0

⌘
+ 30 (_,/)

30 (_,/) := min
G2R=

5 (G)�_T
�G�

’
8

G8 (/ · ⌫8) (8.73b)

Hence the dual problem is

3
⇤ := max

_2R<,/ 2S;

⇣
1

T
_ � tr(⌫H

0 /)
⌘
+ 30 (_,/) s.t. / 2  ⇤psd (8.73c)

If 5 (G) = 2T
G then

3
⇤ := max

_2R<,/ 2 ⇤psd

⇣
1

T
_� tr(⌫H

0 /)
⌘

s.t. 28 =
’
9

� 98_ 9 + tr(⌫H
8
/), 8 = 1, . . . ,=

A point (G⇤,_⇤,/⇤) 2 R= ⇥R<⇥S; is a saddle point if

min
G2R=

! (G,_⇤,/⇤) = ! (G⇤,_⇤,/⇤) = max
_2R<,/ 2 ⇤psd

! (G⇤,_,/)

Strong duality, dual optimality and KKT characterization of SDP (8.72) is stated in
the following theorem. Since  psd is self-dual, i.e.,  ⇤psd =  psd,  ⇤psd above can all be
replaced by  psd. This property is not important and therefore we continue to use  ⇤psd
in the theorem.

Theorem 8.28 (SDP strong duality and KKT). Consider the SDP (8.72) and its dual
(8.73). Suppose there exists Ḡ 2 R= such that �Ḡ = 1 and ⌘(Ḡ) 2 ri( psd). Then

1. Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,/⇤) 2 R<⇥ ⇤psd that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,/⇤).

2. KKT characterization. A feasible G⇤ is optimal if and only if there exists a dual
feasible (_⇤,/⇤) 2 R<⇥ ⇤psd such that

tr(⌘(G⇤)H
/
⇤) = 0,

m 5

mG8

(G⇤) =
’
9

� 98_ 9 + tr(⌫H
8
/
⇤), 8 = 1, . . . ,=

In this case (G⇤,/⇤) is a saddle point that closes the duality gap and is primal-dual
optimal. ⇤

9 A justification for the definition of Lagrangian is weak duality: for any feasible G and any / 2  ⇤psd,
! (G,_,/ )  5 (G) since ⌘ (G) 2  psd and hence / · ⌘ (G) � 0.
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Theorem 8.28, as well as Theorem 8.29 below, are obtained by applying the Slater
Theorem 12.27 and the generalized KKT Theorem 12.21 to the vector space of S= and
SDP.

We often use the following form of the semidefinite program with inequality con-
straints:

3
⇤ := min

/ 2 psd
tr

⇣
⌫

H
0 /

⌘
s.t. tr

⇣
⌫

H
8
/

⌘
 28 , 8 = 1, . . . ,= (8.74)

where  psd ⇢ S; . For instance the semidefinite relaxation of optimal power flow prob-
lems in Chapter 10.1.1 takes this form. This is equivalent to problem (8.73) without
the a�ne constraint �G = 1, noting that  ⇤psd =  psd. We now derive its dual problem.

Let the Lagrangian be

! (/ ,G) := tr
⇣
⌫

H
0 /

⌘
+

=’
8=1

G8

⇣
tr(⌫H

8
/)� 28

⌘
, / 2  psd, G 2 R=+

and the dual function be 5 (G) := min/ 2 psd ! (/ ,G) = �2T
G+min/ 2 psd / · ⌘(G), where

⌘(G) is defined in (8.72b). Since the constraint / 2  psd is not dualized, the minimiza-
tion over / in 5 (G) is over  psd, not S; . If ⌘(G) 2  ⇤psd then / · ⌘(G) � 0 for all / 2  psd

whereas if ⌘(G) 8  ⇤psd then, by the definition of dual cone, there exists /̄ 2  psd such

that /̄ · ⌘(G) < 0. Hence

min
/ 2 psd

/ · ⌘(G) =

(
0 if ⌘(G) 2  ⇤psd

�1 otherwise

Since  ⇤psd =  psd, the dual function is then (recalling that G � 0)

5 (G) =
⇢
�2T

G if G � 0, ⌘(G) 2  psd

�1 otherwise
(8.75a)

The dual problem 5
⇤ := maxG2R= 5 (G) is

5
⇤ := � min

G2R=
2

T
G s.t. G � 0, ⌘(G) 2  psd (8.75b)

Recall that all eigenvalues of a matrix / 2  psd are nonnegative. The interior int( psd)
of  psd is the set of all positive definite matrices whose eigenvalues are strictly positive.

Theorem 8.29 (SDP strong duality and KKT). Consider the SDP (8.74) and its
dual (8.75). Suppose there exists a positive definite matrix /̄ 2 int( psd) such that
tr

�
⌫

H
8
/̄

�
 28 , for 8 = 1, . . . ,=. Then

1. Strong duality and dual optimality. If 3⇤ is finite then there exists a dual optimal
solution G 2 R= that closes the duality gap, i.e., 3⇤ = 5

⇤ = 5 (G⇤).
2. KKT characterization. A feasible /⇤ 2  psd is optimal if and only if there exists

an G⇤ 2 R= such that

⌘(G⇤) 2  psd, G
⇤ � 0, G

⇤
8
(28 � /⇤ · ⌫8) = 0, 8 = 1, . . . ,=
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In this case (G⇤,/⇤) is a saddle point that closes the duality gap and is primal-dual
optimal. ⇤

8.5 Optimization algorithms

Even though OPF can be formulated as an optimization problem in the complex domain
using the complex form of power flow equations (e.g., in (9.9) or (9.17) for single-phase
OPF in BIM), in computing a solution, it is first converted into a problem in the real
domain; see Remark 9.2. OPF can also be formulated directly in the real domain using
the polar form (4.22) or the Cartesian form (4.23) of the power flow equations. We
therefore present and analyze algorithms for solving OPF in the real domain.

Consider the problem

min
G

5 (G) s.t. G 2 - (8.76)

where 5 : R=! R is continuously di�erentiable and - ✓ R= is nonempty, closed and
convex. Let the column vector r 5 (G) denote the gradient of 5 evaluated at G, i.e.,
[r 5 (G)]8 := m 5 /mG8 , 8 = 1, . . . ,=. Recall that a point G⇤ is a local minimizer if 5 (G⇤) is
minimum on a neighborhood of G⇤, i.e., there exists A > 0 such that 5 (G⇤)  5 (G) for
all G 2 ⌫A (G⇤)\ - . It is a global minimizer if 5 (G⇤)  5 (G) for all G 2 - .

If - = R= then the minimization is unconstrained. The condition r 5 (G⇤) = 0 is
necessary for G⇤ to be a local minimizer; if 5 is convex then it is also su�cient for G⇤

to be a global minimizer. For constrained minimization where - is a strict subset of
R
=, the condition r 5 (G⇤) = 0 is generalized to: if G⇤ 2 - is a local minimizer for (8.76)

then there is a neighborhood ⌫A (G⇤) for some A > 0 such that

(r 5 (G⇤))T (G� G⇤) � 0 8G 2 ⌫A (G⇤)\ - (8.77)

i.e., moving away from G
⇤ to any other feasible point G in ⌫A (G⇤) can only increase

the function value 5 . If 5 is a convex function (- is assumed convex) then this is both
necessary and su�cient for G⇤ to be a global optimum of (8.76). This is illustrated in
Figure 8.16.

In most applications an optimum of (8.76) cannot be solved in closed form and must
be computed iteratively. Iterative algorithms generally take the form

G(C +1) = 6(G(C)) (8.78a)

i.e., the next iterate G(C +1) is determined from the current iterate G(C) according to an
algorithm represented by the function 6 :R=!R=, until a certain termination criterion
is met, e.g., when G(C +1) satisfies the optimality condition (8.77) approximately. This
is also called a fixed-point iteration that computes a fixed point G⇤ satisfying G⇤ = 6(G⇤)
(fixed-point iteration is studied in Chapter 8.6.1). For example a gradient descent
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Figure 8.16 Moving away from G
⇤ to another feasible G locally increases the cost.

algorithm can be interpreted as the following fixed-point iteration:

G(C +1) = [G(C)�W⌧ (G(C))r 5 (G(C)]
-

=: 6(G(C)) (8.78b)

where W > 0 is a stepsize, ⌧ (G) � 0 is a scaling matrix, and [·]- is the projection
to the feasible set - . A fixed point G⇤ of the gradient algorithm (8.78b) satisfies the
optimality condition (8.77).

In this section we present several algorithms for solving (8.76). The convergence of
some of these algorithms are analyzed in Chapter 8.6.

8.5.1 Steepest descent algorithm

Steepest descent is the most widely used class of iterative algorithms for solving
optimization problems. For (8.76), it is given by the following iteration: starting from
an initial point G(0) = G0,

G(C +1) := [ G(C)�Wr 5 (G(C)) ]
-

(8.79)

where W > 0 is a constant stepsize and - is a nonempty, closed and convex subset of
R
=. Here [G]

-
denotes the projection of G onto the nonempty, closed and convex set

- , i.e., for any G 2 R=,

[G]
-

:= argmin
H2-

kG� Hk2

where k · k2 is the Euclidean norm. Hence [G]- is the unique point in - that is closest
to G 2 R= in the Euclidean norm. As mentioned above, a fixed point G⇤ defined by
G
⇤ = [G⇤ �Wr 5 (G⇤)]

-
satisfies the optimality condition (8.77):

m 5

mG

(G⇤) (G� G⇤) � 0 8G 2 -

when 5 is a convex function and - a convex set. A termination criterion for (8.79) can
be kG(C +1)� G(C)k < n for a pre-determined n > 0.
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Variants of the steepest descent algorithm can be obtained by using an iteration-
dependent stepsize W(C) > 0 or a scaling matrix W(C) 2 R=⇥=. The steepest descent
algorithm is called a first-order algorithm because it uses only the first derivative
of the objective function 5 . A second-order algorithm, such as the Newton-Raphson
algorithm widely used for solving optimal power flow problems, uses the second
derivative to construct a time-dependent scaling matrix W(C) in each iteration.

A popular algorithm for regression and machine learning applications is the stochas-
tic gradient descent. In the simplest form it is an algorithm to solve

min
G2R=

<’
8=1

58 (G)

The standard gradient descent algorithm computes G(C + 1) := G(C) � WÕ
8
r 58 (G(C))

at time C. A stochastic gradient descent algorithm approximates the true gradientÕ
8
r 58 (G(C)) by the gradient at a sample 8, chosen randomly or in an online fashion:

G(C +1) := G(C)�Wr 58 (G(C))

Typically, each 8 represents a sample. For example we are given < samples (D8 , H8) 2
R
= ⇥R, 8 = 1, . . . ,<, and we are to choose weights G to minimize the mean square

error
Õ
8
(DT
8
G � H8)2 or a loss function

Õ
8
5 (G;D8 , H8). In an online setting, the Cth

sample (DC , HC ) may be revealed only at time C and the existing weights G(C) are then
updated with the approximate gradient r 5C (G(C)) = 2(DT

C
G(C) � HC )DC or r 5C (G(C)) =

rG 5 (G(C);DC , HC ) respectively. Even though solution may take more iterations with
approximate gradient, each iteration can be much easier to compute than with true
gradient. A generalization is to use a small number : ⌧ < of gradients in each
iteration, i.e., G(C +1) := G(C)�WÕ

:

8=1r 58 (G(C)).

8.5.2 Newton-Raphson algorithm

As explained in Chapter 4.4.2, Newton-Raphson is an iterative algorithm for solving
nonlinear equations � (H) = 0 where � : R=! R=. It computes iteratively

H(C +1) = H(C) + �H(C) where � (H(C))�H(C) = �� (H(C)) (8.80)

where � (H) := m�

mH
(H) is the Jacobian of � at H. In this section we apply it to optimization

problems where the equation � (H) = 0 represents the KKT condition. A solution Hopt

of � (H) = 0 then produces an optimal solution if the underlying optimization problem
is convex. For simplicity we assume solutions exist for all the optimization problems
considered unless otherwise specified.

Specifically we will present algorithms for:

1. Linear equality constrained problems. The idea is to approximate the cost function
by a quadratic function around the next iterate (to be determined). This results in
a quadratic program in each iteration whose KKT condition is a system of linear
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equations that can be solved analytically for the next iterate. We will also describe
another algorithm that generalizes to nonlinear constraints.

2. Nonlinear equality constrained problems. In contrast to the KKT condition of
an approximating quadratic program, the KKT condition of these problems is
generally nonlinear and cannot be solved analytically. The idea is to solve the
KKT condition iteratively using the Newton-Raphson method.

3. Inequality constrained problems. The KKT condition of these problems involves
inequalities and Newton-Raphson is not directly applicable. The idea is to re-
place the inequality constraint by a penalty term in the cost function to obtain an
approximate problem that has no inequality constraints.

Nonlinear program with linear equality constraint. Consider the following prob-
lem with an equality constraint:

min
G2R=

5 (G) s.t. �G = 1 (8.81)

where 5 : R=! R is twice continuously di�erentiable and � 2 R<⇥=. We will derive
two equivalent algorithms. The first algorithm relies on the linearity of the constraint
and is generally not applicable to problems with nonlinear constraints. It approximates
the cost function 5 (G) by a quadratic function in each iteration and solves the resulting
quadratic program directly. The second algorithm solves the KKT condition for (8.81)
and extends directly to problems with nonlinear equality constraints.

For the first algorithm, given the current iterate G(C), approximate the cost 5 (G(C) +
�G(C)) at the next iterate by

5̂ (G(C) +�G(C)) := 5 (G(C)) + m 5
mG

(G(C))�G(C) + 1
2
�G(C)T m

2
5

mG
2
(G(C))�G(C) (8.82a)

and consider the optimization over �G(C)

min
�G2R=

5̂ (G(C) +�G(C)) s.t. �(G(C) +�G(C)) = 1 (8.82b)

This is a quadratic program in �G(C) with a fixed G(C) and can be solved analytically.
Let _(C) 2 R< be the Lagrange multiplier of (8.82). If 5 is convex then (8.82) is a
convex program and the KKT condition is both necessary and su�cient for optimality.
The KKT condition is (Exercise 8.29)"

m
2
5

mG
2 (G(C)) �

T

� 0

#

|                {z                }
 (C)


�G(C)
_(C)

�
= �


r 5 (G(C))
�G(C)� 1

�
|        {z        }

3 (G (C))

(8.83a)

This is system of =+< linear equations in =+< unknowns (�G(C),_(C)). The matrix
 (C) on the left-hand side of (8.83a) is called a KKT matrix. If  (C) is nonsingular10

then �G(C) can be computed directly. If  (C) is singular but the given vector 3 (G(C))
on the right-hand side is orthogonal to the null space of  (C), then there is a subspace

10 See [59, Chapter 10.1, p.523] for equivalent conditions of the nonsingularity of the KKT matrix  (C) .
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of solutions (�G(C),_(C)) to (8.83a) and � †(C)3 (G(C)) is the minimum-norm solution
where  †(C) is the pseudo inverse of  (C). Neither  (C) nor 3 (G(C)) depends on _(C).
Hence in both cases �G(C) can be computed from just the current iterate G(C) and
(8.83a) always allows pure primal iterations,

G(C +1) = G(C) +�G(C) (8.83b)

for solving (8.81).

The second algorithm does not use the second-order approximation of 5 (G) and con-
siders (8.81) directly. Specifically let _ 2 R< denote the Lagrange multiplier associated
with the < constraints in (8.81). The Lagrangian is

! (G;_) := 5 (G) +_T (�G� 1)

Let H := (G,_) 2 R=+< and define � : R=+<! R=+< by

� (H) :=

rG! (G,_)
r_! (G,_)

�
=


r 5 (G) + �T

_

�G� 1

�

The KKT condition is � (H) = 0. This specifies a system of =+< nonlinear equations in
=+< unknowns (G,_), in contrast to the linear KKT condition (8.83a) for the second-
order approximation (8.82). It generally needs to be solved iteratively. The Jacobian
� (H) := m�

mH
of � is:

� (H) =

"
m

2
5

mG
2 (G) �

T

� 0

#

(which is the KKT matrix  (C) in (8.83a).) Hence the Newton-Raphson iteration is
G(C +1)
_(C +1)

�
=


G(C)
_(C)

�
+


�G(C)
�_(C)

�
(8.84a)

where the increment �H(C) is given by � (H(C))�H(C) = �� (H(C)), i.e.,"
m

2
5

mG
2 (G(C)) �

T

� 0

# 
�G(C)
�_(C)

�
= �


r 5 (G(C)) + �T

_(C)
�G(C)� 1

�
(8.84b)

We compare the two algorithms (8.83) and (8.84). Both algorithms solve a linear
equation with the KKT matrix  (C) in each iteration, one for _(C) and the other for
�_(C) (in addition to �G(C)). As mentioned above, the approach of (8.83) solves the
KKT condition for the second-order approximation (8.82) of 5 . This is possible because
the linearity of the constraint allows a second-order approximation of only the cost
function but not of the constraint, resulting in a quadratic program that can be solved
analytically. It leads to a primal algorithm that iterates only on G(C). This is generally
inapplicable if the constraint is nonlinear. The approach of (8.84), on the other hand,
solves the KKT condition � (G,_) = 0 for the original problem (8.81) iteratively using
the Newton-Raphson algorithm (8.80). It leads to a primal-dual algorithm that updates
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both the primal and the dual variables. It will be extended to problems with a nonlinear
constraint in (8.86).

These two algorithms are equivalent in that both produce the same sequence of
(G(C),_(C)) starting from the same initial point. Indeed, given the current iterate
(G(C),_(C)) of the primal and dual variables, (�G(C),�_(C)) satisfies (8.84) if and
only if (�G(C),_(C) +�_(C)) satisfies (8.83). To see this, suppose (�G(C),_(C) +�_(C))
satisfies (8.83), i.e.,"

m
2
5

mG
2 (G(C)) �

T

� 0

# ✓ 
�G(C)
�_(C)

�
+


0
_(C)

� ◆
= �


r 5 (G(C))
�G(C)� 1

�

which yields (8.84). Suppose the converse holds. Write the right-hand side of (8.84)
as 

r 5 (G(C)) + �T
_(C)

�G(C)� 1

�
=


r 5 (G(C))
�G(C)� 1

�
+

"
m

2
5

mG
2 (G(C)) �

T

� 0

# 
0
_(C)

�

which, together with (8.84), yields (8.83). The only di�erence between these algorithms
is that (8.84) computes �_(C) from (G(C),_(C)) and forms _(C + 1) whereas (8.83)
computes _(C +1) directly from G(C).

Nonlinear program with equality constraint. Consider the following problem with
a possibly nonlinear equality constraint

min
G2R=

5 (G) s.t. 6(G) = 0 (8.85)

where 5 :R=!R and 6 :R=!R< are twice continuously di�erentiable. The approach
of (8.84) generalizes directly to this problem. Let_ 2R< denote the Lagrange multiplier
associated with the < constraints. The Lagrangian is

! (G;_) := 5 (G) + _T
6(G)

Let H := (G,_) 2 R=+< and define � : R=+<! R=+< by

� (H) :=

rG! (G,_)
r_! (G,_)

�
=

"
r 5 (G) + m6

mG
(G)T

_

6(G)

#
(8.86a)

The KKT condition is � (H) = 0 which specifies a system of =+< nonlinear equations
in =+< unknowns (G,_). Hence the Jacobian � (H) := m�

mH
of � is:

� (H) :=

"
m

2
!

mG
2

m
2
!

m_mG

m
2
!

mGm_

m
2
!

m_
2

#
=

"
m

2
5

mG
2 (G) +

Õ
:

m
2
6:

mG
2 _:

m6

mG
(G)T

m6

mG
(G) 0

#
(8.86b)

which reduces to the Jacobian in (8.84b) when 6(G) = �G� 1. Here m
2
!

m_mG
=

⇣
m

2
!

m_mG

⌘T
is

=⇥<. The Newton-Raphson algorithm for solving (8.85) is the iteration (8.80) where
� (H) and its Jacobian � (H) are given by (8.86). It is a primal-dual algorithm that
iterates on both G(C) and _(C).

When the cost function 5 (G) or the feasible set {G 2 R= : 6(G) = 0} is nonconvex,
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there is generally no guarantee that the Newton-Raphson algorithm will converge and
if it does, it will produce a local or global optimum. In practice, for OPF problems, the
algorithm often converges to a local, and even global, optimum despite nonconvexity.

When 5 and 6 are homogeneous quadratic functions the nonlinear program reduces
to the following QCQP with equality constraints:

min
G2R=

1
2
G

T
⇠0G s.t.

1
2
G

T
⇠:G = 1: , : = 1, . . . ,<

where ⇠: 2 R=⇥=, : � 0, are real symmetric matrices and 1: 2 R, : � 1. Then (8.86)
reduces to:

� (H) :=

rG! (H)
r_ ! (H)

�
=

266666664

�(_)T
G

1
2G

T
⇠1G� 11

...
1
2G

T
⇠<G� 1<

377777775
where �(_) := ⇠0 +

Õ
:
_:⇠: and

� (H) :=

"
m

2
!

mG
2

m
2
!

m_mG

m
2
!

mGm_

m
2
!

m_
2

#
=

266666664

�(_)T
⇠

T
1 G · · · ⇠T

<
G

G
T
⇠1
... 0

G
T
⇠<

377777775
Nonlinear program with inequality constraint. Consider the following problem
with an inequality constraint

min
G2R=

5 (G) s.t. ⌘(G)  0 (8.87)

where 5 : R=! R and ⌘ : R=! R; are twice continuously di�erentiable. Let ` 2 R;
denote the Lagrange multiplier associated with the < constraints. The KKT condition
involves inequalities, of the form

rG! (G,`) = rG 5 (G) +
m⌘

mG

(G)T
` = 0, r`! (G,`) = ⌘(G)  0

` � 0, `
T
⌘(G) = 0

The standard Newton-Raphson method cannot be applied directly to solve this system
of equalities and inequalities. There are however many Newton-like methods that have
been developed for inequality constrained problems.

One approach is to introduce a slack variable I 2 R; and convert (8.87) into a
problem with a ‘simple’ inequality constraint:

min
(G,I)2R=+;

5 (G) s.t. ⌘(G) + I = 0, I � 0

Algorithms for solving equality constrained problems can be modified by projecting
I(C) to the nonnegative quadrant in each iteration; see e.g. [60]. Another approach is
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to replace the constraint ⌘(G)  0 in (8.87) by a penalty term (1/C)q(G) in the cost
function and solve the resulting unconstrained approximate problem

min
G2R=

5 (G) + 1
C

q(G)

where C > 0 is a parameter that controls the accuracy of the approximation. Newton-
Raphson can be applied to solve the optimality condition r 5 (G) + (1/C)rq(G) = 0.
This is the approach of the interior point methods which we describe next.

8.5.3 Interior-point algorithm

Consider the following problem with an equality and an inequality constraints:

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.88)

where 5 :R=!R, 6 :R=!R<, and ⌘ :R=!R; are twice continuously di�erentiable.
The idea is to approximate (8.88) by an equality constrained problem by replacing the
inequality constraint ⌘(G)  0 by a penalty term in the cost function, and then solving
the equality constrained problem using Newton methods.

Log barrier function. A popular barrier function is i : R� ! R defined by:

iC (D) := �1
C

log(�D), D < 0

where C > 0 is a parameter. For each C > 0, the function iC (D) is convex increasing over
its domain D < 0 and approaches 1 as D! 0. It is an approximation of the indicator
function which takes the value 0 if D  0 and 1 if D > 0. The larger the parameter
C is, the more accurate the approximation will be. While the indicator function is
discontinuous, the log barrier function iC (D) is continuously di�erentiable over its
domain D < 0 for each C > 0.

The logarithmic barrier q : R=! R is

q(G) := �
;’
8=1

log(�⌘8 (G)) (8.89a)

over the domain

dom(q) := {G 2 R= : ⌘8 (G) < 0, 8 = 1, . . . , ;}

The log barrier q(G) grows without bound as ⌘8 (G) ! 0 for any 8. Its gradient and
Hessian are:

rq(G) =
;’
8=1

1
�⌘8 (G)

r⌘8 (G) (8.89b)

m
2
q

mG
2
(G) =

’
8

1

⌘
2
8
(G)
r⌘8 (G)r⌘T

8
(G) +

’
8

1
�⌘8 (G)

m
2
⌘8

mG
2
(G) (8.89c)
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The approximate problem. Fix any C > 0. An approximate problem to (8.88) with
an equality constraint is

min
G2R=

5 (G) + 1
C

q(G) s.t. 6(G) = 0

It is more convenient to consider the following equivalent approximate problem (they
have the same minimizers):

Problem(C) : min
G2R=

C 5 (G) +q(G) s.t. 6(G) = 0 (8.90)

Unlike (8.88) Problem(C) (8.90) has only equality constraints and therefore can be
solved using the Newton-Raphson algorithm defined by (8.80)(8.86). If 5 is convex
and 6 is a�ne then Problem(C) is a convex problem. In that case, if the Newton-
Raphson algorithm converges to a solution (GC ,_C ), then the solution satisfies the KKT
condition and is therefore primal and dual optimal, i.e., GC solves (8.90) and _C solves
its dual. Otherwise, Problem(C) is nonconvex and there is generally no guarantee that
the Newton-Raphson algorithm will converge. If it does converge, it will produce a
feasible solution but there is no guarantee that it is a local or global optimum. In
practice, for OPF problems, the algorithm often converges to a local, and even global,
optimum despite nonconvexity.

Suppose the Newton-Raphson algorithm converges and produces a solution (GC , _̂C )
that satisfies the KKT condition of Problem(C) (8.90). We now show that GC , together
with an associated (_C ,`C ) to be defined, satisfy approximately the KKT condition of
the original problem (8.88). Define the Lagrangian of Problem(C):

!C (G, _̂) := C 5 (G) +q(G) + _̂T
6(G)

The KKT condition for Problem(C) consists of primal feasibility and stationarity,
�C (GC , _̂C ) = 0 where

�C (GC , _̂C ) :=

rG!C (GC , _̂C )
r
_̂
!C (GC , _̂C )

�
=


Cr 5 (GC ) +rq(GC ) +r6(GC )_̂C

6(GC )

�

Substitute rq(G) = Õ
;

8=1
1

�⌘8 (G)r⌘8 (G) from (8.89b) and define:

_C :=
_̂C

C

, `C ,8 :=
1

�C⌘8 (GC )
> 0

with `C := (`C ,8 , 8 = 1, . . . ;). Then �C (GC , _̂C ) = 0 becomes:

r 5 (GC ) +r6(GC )_C +r⌘(GC )`C = 0, 6(GC ) = 0 (8.91a)

We have also, from the strict feasibility of GC and the definition of `C ,

⌘(GC ) < 0, `C > 0, `
T
C
⌘(GC ) = �

;

C

(8.91b)

This would be the KKT condition for the original problem (8.88) were the condition
`

T
C
⌘(GC ) = �;/C in (8.91b) replaced by complementary slackness `T

C
⌘(GC ) = 0. Hence
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the KKT condition for Problem(C) is approximately the KKT condition for (8.88) for
large C.

A popular interior point method, called the barrier method, is based on solving a
sequence of the approximate problems (8.90) with increasing C until the approximation
is su�ciently accurate. To describe it we first explain how to estimate the gap between
the optimal value of the original problem (8.88) and the objective value of a solution
of its approximation (8.90).

Suboptimality gap. The theory of the barrier method is most complete for convex
problems. For simplicity, we make the following assumptions:

C8.1: The original problem (8.88) is convex, i.e., 5 ,⌘ are convex functions and
6(G) = �G� 1 for some � 2 R<⇥= and 1 2 R<.
C8.2: For every C > 0 the approximate problem (8.90) has a unique primal solution
G(C) and the Newton-Raphson algorithm converges to G(C).

We call the optimal solution G(C) of (8.90) a central point and the set {G(C) : C > 0} of
central points the central path. The assumption of unique G(C) for each C > 0 means
that there is a unique central path. In this case the barrier method will use the Newton-
Raphson algorithm to follow this unique path, as we will see.

Let 5 ⇤ denote the optimal value of the original problem (8.88). The next result
shows that a central point G(C) is a feasible solution of (8.88) with a suboptimality gap
that is strictly decreasing in C > 0. A certificate for the suboptimality gap is provided
by a dual feasible solution for (8.88) associated with a central point G(C).

Theorem 8.30 (Central point G(C)). Under assumptions C8.1 and C8.2, for each C > 0:

1. The central point G(C) is feasible for the original problem (8.88).
2. Its objective value is at most ;/C away from the optimal value 5 ⇤, i.e.,

5 (G(C))� 5 ⇤  ;

C

In particular 5 (G(C))! 5
⇤ as C!1.

Proof Since (8.90) is convex by assumption, the optimality of G(C) means that the
Slater condition is satisfied and hence strong duality holds and an optimal dual variable
_̂(C) 2 R< exists by the Slater Theorem 8.17. Moreover the KKT Theorem 8.15 implies
that

�
G(C), _̂(C)

�
satisfies the KKT condition for (8.90):

Cr 5 (G(C)) +rq (G(C)) + m6
T

mG

(G(C)) _̂(C) = 0, 6(G(C)) = �G(C)� 1 = 0 (8.92a)

Because of the log barrier q we must have ⌘8 (G(C)) < 0 for all 8 = 1, . . . , ;. This means
that G(C) is also (strictly) feasible for the original problem (8.88), i.e., G(C) satisfies

⌘(G(C)) < 0, 6(G(C)) = �G(C)� 1 = 0 (8.92b)
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We now use (8.92) to estimate the suboptimality gap of G(C). Define the Lagrangian
of the original problem (8.88)

! (G,`,_) := 5 (G) +_T
6(G) + `T

⌘(G)

where the dual variables are _ 2 R< and ` 2 R;+. Let the dual function be

3 (`,_) := min
G2R=

! (G,`,_)

Define

`8 (C) :=
1

�C⌘8 (G(C))
, _8 (C) :=

_̂8 (C)
C

and let _(C) := (_8 (C), 8 = 1, . . . ,<) and `(C) := (`8 (C), 8 = 1, . . . , ;). Since ⌘8 (G(C)) < 0,
we have `8 (C) > 0 and hence (`(C),_(C)) is dual feasible for (8.88). Dividing by C the
first condition in (8.92a) and substituting (8.89b) we have

rG! (G,`(C),_(C)) = r 5 (G(C)) +
;’
8=1

`8 (C)r⌘8 (G(C)) +
m6

T

mG

(G(C))_(C) = 0

which implies that G(C) minimizes ! (G,`(C),_(C)) over G. Hence the dual function of
the original problem (8.88) evaluated at (`(C),_(C)) is

3 (`(C),_(C)) = ! (G(C),`(C),_(C)) = 5 (G(C)) +_T (C)6(G(C)) + `T (C)⌘(G(C)) (8.93)

But 6(G(C)) = 0 from (8.92) and 3 (`(C),_(C))  5 ⇤ from weak duality for (8.88). Hence

5 (G(C)) � 5 ⇤  �
;’
8=1

`8 (C)⌘8 (G(C)) =
;

C

from the definition of `8 (C). ⇤

The central point G(C) and the dual variable (_(C),`(C)) are primal-dual feasible for
the original problem (8.88). By (8.93) their duality gap is exactly ;/C:

3 (`(C),_(C))� 5 (G(C)) = `
T (C)⌘(G(C)) =

;

C

Hence Problem(C) is an approximation of (8.88) both in the sense that, for large C,
(G(C),_(C),`(C)) is feasible and an approximate KKT point for (8.88) (see (8.91)) and
that the suboptimality gap 5 (G(C))� 5 ⇤ is small when the problem is convex.

The barrier method. Theorem 8.30 says that, when (8.88) is convex, the central point
G(C) computed by the Newton-Raphson algorithm is feasible for the original problem
(8.88) and its objective value 5 (G(C)) is at most ;/C away from the optimal value 5

⇤.
This motivates the barrier method, also known as the path-following method, that
solves Problem(C) in (8.90) to compute a central point G(C), sequentially for increasing
C > 0.

Specifically the barrier method solves a sequence of the approximate problems
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(8.90) with increasing C > 0, using the solution of the previous problem as the initial
point for the current problem, as follows. Fix a parameter W > 1 and solve Problem(C) in
(8.90) with parameter C using the Newton-Raphson algorithm. Geometrically increase
the parameter C by multiplying it by W > 1 and solve (8.90) again starting from the
solution of the previous problem. Repeat until C is su�ciently large so that the solution
produced by Newton-Raphson is an accurate enough solution to the original problem
(8.88). This method is described more precisely as Algorithm 3 when (8.88) is convex.
Under C8.1 and C8.2, Algorithm 3 returns a feasible solution G that is n-optimal, i.e.,

Algorithm 3: Barrier method
Input: strictly feasible G, initial C := C0, scaling factor W > 1, tolerance n .
Output: an n-optimal solution G when (8.88) is convex.
1. while C  ;/n do

(a) Solve Problem(C) in (8.90) to compute G(C) using the Newton-Raphson
algorithm starting from G.

(b) G G(C).
(c) C WC.

2. Return: G.

5 (G)� 5 ⇤  n by Theorem 8.30. The barrier method is also widely used for nonconvex
problems even though convergence or optimality is not guaranteed. In the nonconvex
case, a di�erent stopping criterion based on the primal or dual iterates may be used.

In principle one can solve Problem(C) in (8.90) with parameter C := ;/n instead of
solving a sequence of (8.90) with increasing C as in Algorithm 3. This method however
does not work well, unless the problem is small, the required accuracy n is moderate and
a good starting point is available. In practice the barrier method is usually preferred.

Strictly feasible initial point. Algorithm 3 requires an initial point G that is strictly
feasible for the original problem (8.88), i.e. G satisfies

6(G) = 0, ⌘(G) < 0

There are various methods to produce a strictly feasible point and we explain a simplest
one (see [59, Chapter 11.4] for others). When necessary, such a method can be used to
compute a strictly feasible G before the barrier method is executed. Starting from such
an initial point, all subsequent iterates, across Problem(C) for di�erent C, will remain
strictly feasible because of the log barrier q.

Consider the feasibility problem

inf
(G,B)2R=+1

B s.t. 6(G) = 0, ⌘8 (G)  B, 8 = 1, . . . , ; (8.94)

where B 2 R, and as before, 6 : R= ! R<, and ⌘ : R= ! R; are twice continuously
di�erentiable. Suppose we are given an initial G0 such that 6(G0) = 0 and G0 2 dom(⌘1)\
· · ·\dom(⌘;), i.e., ⌘8 (G0) < 1, 8 = 1, . . . , ;. Then (8.94) is feasible because (G0, B0) is
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a feasible point with B0 := max<
8=1 ⌘8 (G0). Note that the feasible set is closed but not

necessarily bounded and hence an optimal point of (8.94) may not exist or the infimum
may not be attained by any G.

A strictly feasible point G for (8.88) exists if and only if the optimal value Bopt

of (8.94) is strictly negative (can be �1); see Exercise 8.31. Solving (8.94) either
produces such an G or proves that none exists, according to the sign of Bopt.

8.5.4 Dual and primal-dual gradient algorithms

Consider again the problem (8.88) reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.95)

where 5 :R=!R, 6 :R=!R<, and ⌘ :R=!R; are twice continuously di�erentiable.
The Lagrangian is

! (G,_,`) := 5 (G) +_T
6(G) + `T

⌘(G)

where the dual variables are _ 2 R<, ` 2 R;+. Let the dual function be

3 (_,`) := min
G2R=

! (G,_,`) (8.96a)

and the dual problem be

max
(_,`)2R<+;

3 (_,`) s.t. ` � 0 (8.96b)

The steepest descent algorithm (8.79) solves the primal problem (8.95) by iterating
on the primal variable G and projects to the feasible set - in each iteration. This is
sometimes referred to as a primal algorithm. A dual algorithm iterates on the dual
variable (_,`) to solve the dual problem (8.96) instead, and a primal-dual algorithm
iterates on both the primal and dual variables (G,_,`) to seek a saddle point of the
Lagrangian !.

In this subsection we describe the dual algorithm and the primal-dual algorithm.
Both algorithms produce a saddle point (G⇤,_⇤,`⇤) of (8.95) when they converge,
provided that the problem is convex ( 5 ,⌘ are convex and 6(G) = �G� 1). The Saddle-
point Theorem 8.14 then implies that (G⇤,_⇤,`⇤) is primal-dual optimal and strong
duality holds.

Dual algorithm. The key di�erence between (8.95) and (8.96a) is that the mini-
mization over G is unconstrained in (8.96a). A dual algorithm can be used when the
unconstrained minimization in (8.96a) is easy to solve, e.g., a minimizer can be ob-
tained analytically. Given (_,`) let G(_,`) denote an unconstrained minimizer of !:

G(_,`) 2 arg min
G2R=

! (G,_,`) (8.97a)
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When ! is convex in G, G(_,`) is a solution of rG! (G,_,`) = 0. Then a dual algorithm
is a steepest ascent algorithm for solving the dual problem (8.96):

_(C +1) = _(C) + W_r_! (G(_(C),`(C)),_(C),`(C)) (8.97b)

`(C +1) =
⇥
`(C) + W`r`! (G(_(C),`(C)),_(C),`(C))

⇤+
(8.97c)

where (W_,W`) 2 R2 are positive constant stepsizes and [H]+ := max{0, H} componen-
twise for a vector H. For convex problems, if (8.97) converges and produces a dual
optimum (_⇤,`⇤) of (8.96) then G(_⇤,`⇤) will be optimal for (8.95) (Saddle-point The-
orem 8.14). Variants of the steepest ascent algorithm (8.97) can be obtained by using
iteration-dependent stepsizes (W_ (C),W` (C)) or scaling matrices W_ 2 R<⇥<, W` 2 R;⇥; .

An important application of the dual algorithm is in distributed computation. When
the problem (8.95) has a certain decentralized structure, e.g., if the cost function
5 (G) = Õ

8
58 (G8) is separable in 8 and the constraints are a�ne, the dual algorithm

decomposes naturally into a distributed method, as the next example shows.

Example 8.15 (Distributed dual algorithm). Consider the utility maximization:

max
G2R=

’
8

*8 (G8) s.t. 'G  2 (8.98)

where *8 : R! R for 8 = 1, . . . ,=, are continuously di�erentiable and strictly concave
increasing utility functions, ' 2 {0,1};⇥= and 2 2 R; . The Lagrangian is

! (G,`) :=
’
8

*8 (G8) � `T ('G� 2), ` 2 R;+

and the dual function is

3 (`) := max
G2R=

! (G,`) =
=’
8=1

max
G8 2R

©≠
´
*8 (G8)� G8

;’
9=1

' 98` 9

™Æ
¨
+ `T

2

i.e., the unconstrained maximization over the vector G decomposes into a distributed
maximization over individual components G8 . Given `, the distributed maximization
over G8 can be solved in closed form:

G8 (`) := *
0�1
8

©≠
´
;’
9=1

' 98` 9

™Æ
¨
=: * 0�1

8
(?8 (`)) , 8 = 1, . . . ,= (8.99a)

where ?8 (`) :=
Õ
9
' 98` 9 , * 0

8
is the derivative of *8 and * 0�1

8
is its inverse (which

exists since*8 is strictly concave). We write this in vector form as

G(`) := (rG*)�1
⇣
'

T
`

⌘

The strict concavity of *8 implies that the maximizer G8 (`) is unique and hence
Danskin’s Theorem 8.21 implies that the dual function 3 (`) is di�erentiable with

r`3 (`) = r`! (G(`),`) = �('G(`)� 2)
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Then the dual algorithm for solving the dual problem min`�0 3 (`) is

`(C +1) =
⇥
`(C)�Wr`3 (`(C))

⇤+ = [`(C) +W('G(`(C))� 2)]+

Therefore the dual update also decomposes into a distributed computation, given G:

` 9 (C +1) =
⇥
` 9 (C) +W

�
H 9 (C)� 2 9

� ⇤+
, 9 = 1, . . . , ; (8.99b)

where H 9 (C) :=
Õ
8
' 98G8 (`(C)) and G8 (`(C)) is given by (8.99a).

Hence the dual algorithm for (8.98) is the distributed algorithm given by (8.99).
This is a model of Internet congestion control algorithm. In this application, each 8
represents a sender that wishes to send its data packets at a rate G8 packets/sec that
is as high as possible and each 9 represents a link (bu�er) in the network whose
processing speed is limited to 2 9 packets/sec. The matrix ' is a routing matrix that
specifies the path in the network of each sender 8 from its source node to its destination
node, consisting of links 9 with ' 98 = 1. The optimal sending rate vector G is one
that maximizes the aggregate utility

Õ
8
*8 (G8) subject to the constraint that the input

rates H 9 :=
Õ
8
' 98G8 at optimality do not exceed link capacities 2 9 for every link 9 ..

The Lagrange multiplier ` 9 � 0 can be interpreted as a congestion price at link 9 and
?8 :=

Õ
9
' 98` 9 is the end-to-end congestion price (i.e., sum of the link congestion

prices ` 9 along 8’s path) observed by sender 8. Then the algorithm (8.99) specifies the
local decision by each sender 8 and link 9 : sender 8 sets its sending rate to G8 (C) in
(8.99a) based on the end-to-end congestion price ?8 (C) it observes locally, and link 9

updates its congestion price ` 9 (C) according to (8.99b) based on the local input flow
rate H 9 (C) at link 9 . In particular the congestion price ` 9 (C) is incremented if the input
flow rate H 9 (C) at link 9 exceeds the link capacity 2 9 and decremented otherwise. ⇤

Primal-dual algorithm. When the unconstrained minimization over G in (8.97a) is
di�cult to solve, we can replace (8.97a) by iteration on the primal variable G:

G(C +1) = G(C) � WGrG! (G(C),_(C),`(C)) (8.100a)

_(C +1) = _(C) + W_r_! (G(C),_(C),`(C)) (8.100b)

`(C +1) =
⇥
`(C) + W`r`! (G(C),_(C),`(C))

⇤+
(8.100c)

where [H]+ := max{0, H} componentwise for a vector H. This is called a primal-dual
algorithm or a saddle point algorithms. It seeks a saddle point of the Lagrangian !
through steepest descent in the primal variable G(C) and steepest ascent in the dual
variable (_(C),`(C)). For convex problems, if (8.100) converges and produces a saddle
point (G⇤,_⇤,`⇤) of ! then it is primal and dual optimal for (8.95)(8.96) and strong
duality holds (Saddle-point Theorem 8.14).

For Example 8.15 the primal-dual version of (8.99) replaces (8.99a) by

G8 (C +1) = G8 (C) + WG
�
*
0
8
(G(C))� ?8 (`(C))

�
, 8 = 1, . . . ,=

where ?8 (`(C)) :=
Õ
;

9=1 ' 98` 9 (C), i.e., a sender increments its sending rate G8 (C) if
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its marginal utility * 0
8
(G(C)) exceeds its end-to-end price ?8 (C), and decrements it

otherwise. It remains a distributed algorithm.

8.5.5 Alternating direction method of multipliers (ADMM)

Consider

min
G2R=1 , H2R=2

5 (G) +6(H) s.t. G 2 - , H 2 . (8.101a)

�G +⌫H = 2 (8.101b)

where 5 :R=1!R,6 :R=2!R, - ✓ R=1 ,. ✓ R=2 , � 2 R<⇥=1 , ⌫ 2 R<⇥=2 , and 2 2 R<.
The key feature of (8.101) is that the cost function and the possibly nonlinear constraints
in (8.101a) are separable in G, H. The coupling between G and H is only through the
linear constraint (8.101b). This is similar to the problem structure in Example 8.15
and therefore a dual algorithm can be applied to obtain a distributed solution. Dual
algorithm however often converges slowly because the Lagrangian is a�ne, as opposed
to strictly concave, in the dual variable.

The alternating direction method of multipliers (ADMM) combines the distributed
structure of dual decomposition with better convergence properties of augmented La-
grangian methods. Specifically define the augmented Lagrangian function that relaxes
the coupling constraint (8.101b): for (G, H) 2 R=1+=2 and _ 2 R<,

!d (G, H,_) := 5 (G) +6(H) +_T (�G +⌫H� 2) + d
2
k�G +⌫H� 2k22 ,

where d � 0 is a parameter that controls the degree of augmentation (ADMM reduces
to dual decomposition when d = 0). The ADMM algorithm is

G(C +1) = argmin
G2-

!d (G, H(C), _(C)) (8.102a)

H(C +1) = argmin
H2.

!d (G(C +1), H, _(C)) (8.102b)

_(C +1) = _(C) + d (�G(C +1) +⌫H(C +1)� 2) (8.102c)

The update (8.102c) is _(C +1) = _(C) + dr_!d (G(C +1), H(H+1),_). Hence, compared
with (8.97), (8.102) is a dual algorithm with stepsize d and two di�erences: it uses
an augmented Lagrangian function !d for better convergence properties, and the
subproblem (8.102b) and the dual update (8.102c) use the latest available data, G(C +1)
and (G(C +1), H(C +1)) respectively (this is called one pass of a Gauss-Seidel method).

Suppose 5 ,6 are convex and continuously di�erentiable on R=1 and R=2 respec-
tively and - ,. are convex sets. If the ADMM algorithm converges to a fixed point
(G⇤, H⇤,_⇤) 2 - ⇥. ⇥R< of (8.102), then

!d (G⇤, H⇤,_⇤)  !d (G, H⇤,_⇤) , G 2 - (8.103a)

!d (G⇤, H⇤,_⇤)  !d (G⇤, H,_⇤) , H 2 . (8.103b)

�G
⇤ +⌫H⇤ � 2 = 0 (8.103c)
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The (un-augmented) Lagrangian of (8.101) is !0 with d := 0. We now show that
(G⇤, H⇤,_⇤) is a saddle point of !0 and hence is primal-dual optimal for (8.101).

By (8.103c), (G⇤, H⇤) is feasible and this has two implications. First it
means r_!0 (G⇤, H⇤,_⇤) = 0 and hence H

⇤ maximizes !0 (G⇤, H⇤, ·) given (G⇤, H⇤),
i.e., !0 (G⇤, H⇤,_)  !0 (G⇤, H⇤,_⇤) for all _. Second it implies !d (G⇤, H⇤,_⇤) =
!0 (G⇤, H⇤,_⇤) = 5 (G⇤) +6(H⇤) and hence (8.103a)(8.103b) become:

!0 (G⇤, H⇤,_⇤)� !0 (G, H⇤,_⇤)  0, G 2 - (8.104a)

!0 (G⇤, H⇤,_⇤)� !0 (G⇤, H,_⇤)  0, H 2 . (8.104b)

This turns out to be equivalent to !0 (G⇤, H⇤,_⇤)  !0 (G, H,_⇤) that is required for
(G⇤, H⇤,_⇤) to be a saddle point. Notice

!0 (G, H⇤,_⇤)� !0 (G, H,_⇤) = !0 (G⇤, H⇤,_⇤)� !0 (G⇤, H,_⇤)  0, G 2 - , H 2 .

where the inequality follows from (8.104b), i.e., (8.104b) implies that H⇤ minimizes
!0 (G, H,_⇤) over H 2 . for any fixed G 2 - . We therefore have, for all G 2 - , H 2 . ,

!0 (G⇤, H⇤,_⇤)� !0 (G, H,_⇤)
= (!0 (G⇤, H⇤,_⇤)� !0 (G, H⇤,_⇤)) + (!0 (G, H⇤,_⇤)� !0 (G, H,_⇤))  0

We conclude

!0 (G⇤, H⇤,_)  !0 (G⇤, H⇤,_⇤)  !0 (G, H,_⇤), (G, H) 2 - ⇥. , _ 2 R<

i.e., (G⇤, H⇤,_⇤) is a saddle point of !0 and hence primal-dual optimal for (8.101)
(Saddle-point Theorem 8.14).

8.5.6 Branch and bound

Branch and bound (B&B) methods are algorithms for solving optimization problems
that involve integer variables, such as an integer linear program (ILP) where all vari-
ables are integers:

min
G2N=

2
T
G s.t. �G  1

N being the set of integers, or a mixed integer linear program (MILP) where some of
the variables are integers:

5
⇤ := min

G2R=
2

T
G s.t. �G  1, G 9 2 N 8 9 2 � (8.105)

� ✓ {1, . . . ,=} being a subset of variable indices.11 Clearly a MILP reduces to a linear
program if � = ; and an ILP if � = {1, . . . ,=}.

MILP is generally NP-hard. We present three methods for solving MILP. The
security constrained unit commitment problem (6.47) of Chapter 6.4.5 is a mixed
integer linear program and can be solved using these methods.

11 The solution methods of this subsection extends directly to mixed integer nonlinear programs.
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LP relaxation. The simplest method is to relax the integral constraint and solve the
resulting linear program instead of (8.105):

5
⇤
lp := min

G2R=
2

T
G s.t. �G  1 (8.106)

This enlarges the feasible set and therefore provides a lower bound on the original
MILP (8.105), i.e., 5 ⇤lp  5 ⇤.

Dual relaxation. Another relaxation is to solve the dual of the linear program (8.106).
The Lagrangian of (8.106) is

! (G,`) := 2
T
G + `T (�G� 1), G 2 R=, ` 2 R<

the dual function is

3 (`) := min
G2R=

! (G,`) =
⇢
�1T

` if (2+ �T
`)T = 0

�1 otherwise

and the dual problem is

3
⇤
milp := max

`�0
�1T

` s.t. (2+ �T
`)T = 0 (8.107)

If MILP (8.105) is feasible, so is LP (8.106). Theorem 8.23 on LP duality then implies
that strong duality holds, i.e., 3⇤milp = 5

⇤
lp  5 ⇤. Hence dual relaxation also provides a

lower bound on the MILP (8.105) (which can be finite or �1).

Branch and bound. While LP relaxation (8.106) and dual relaxation (8.107) are
linear programs that provide (the same) lower bound to MILP (8.105), branch and
bound methods are exponential algorithms that solve for an optimal mixed integer
solution of (8.105) if one exists. There are many variants and the main idea is as
follows.

We can treat MILP (8.105) as searching for a minimum over the feasible set -0 :=
{G : �G  1, G 9 2 N 8 9 2 �}. Branch and bound iteratively divides the feasible set -0

into subsets and search for a minimum over each of these subsets to eventually arrive
at a global optimum G

⇤ 2 -0 with 2T
G
⇤ = 5

⇤ when one exists. We can represent the
process as iteratively constructing a search tree, starting with -0 at its root and, in each
iteration, either grow the search tree by splitting a node -8 ✓ -0 into new child nodes
(i.e., partition the set -8 into subsets) or prune the node -8 (i.e., stop further partitioning
-8). To determine if -8 will create new branches or if it will be pruned, a LP relaxation
of (the subproblem defined by the feasible subset) -8 is solved (bounding), resulting
in one of three outcomes:

1. -8 contains no optimal solution of (8.105), in which case -8 will be pruned;
2. A feasible solution in -0 is found which is a candidate optimal solution of (8.105),

in which case -8 will be pruned (i.e., -8 is not further partitioned);
3. Otherwise, -8 may or may not contain an optimal solution of (8.105) amd -8 is

further partitioned (branching).
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This branch and bound procedure repeats until every leaf node of the search tree is
pruned, and the candidate solution with the minimum value is a global optimum of
MILP (8.105). In summary the key components of a branch and bound method are:

• A bounding function that computes a lower bound on a subproblem defined by -8;
and

• A branching function that determines how to split node -8 into child nodes if -8 is
not pruned.

This method is illustrated in the following example that uses LP relaxation as the
bounding function.

Example 8.16 (Branch and bound). Consider the following integer linear program:

5
⇤ := min

G2N2
G1�4G2 s.t. G 2 -0 (8.108)

where -0 := {G 2 N2 : �G1 +3G2  0,G1 +3G2  9,G � 0}. Let 5 (G) := G1�4G2.

1. Initialization.
• Let the global upper bound be 5

max := 5 (0) = 0. As the algorithm proceeds,
5

max will be updated but remain a global upper bound throughout, i.e., 5 ⇤ 
5

max.
• Let& denote a queue of leaf nodes (feasible sets of subproblems) in the search

tree and initialize it to & := {-0}.
2. Bounding and branching: -0.

• Remove -0 from &.
• Its LP relaxation is min

G2R2 5 (G) s.t. G 2 - lp
0 := {G 2 R2 : �G1 + 3G2  0,G1 +

3G2  9,G � 0} with a unique minimizer Glp
0 := (4.5,1.5).

• Let a lower bound of -0 be 5 min
-0

:= 5 (Glp
0 ) = �1.5.

• Since 5 min
-0

< 5
max and Glp

0,1 = 4.5 is fractional, we partition -0 into two subsets:

-11 := -0\ {G 2 N2 : G1  4}, -12 := -0\ {G 2 N2 : G1 � 5}

• Add -11 and -12 to &.
3. Bounding and branching: -11. Remove -11 from &. Its LP relaxation is

min
G2R2 5 (G) s.t. G 2 - lp

11 := - lp
0 \ {G 2 R2 : G1  4} with a unique minimizer

G
lp
11 := (4,4/3). Let a lower bound on -11 (not necessarily a lower bound on 5

⇤)

be 5 min
-11

:= 5 (Glp
11) = �4/3.

Since 5 min
-11

< 5
max and Glp

11,2 = 4/3 is fractional, we partition -11 into two subsets:

-21 := -11\ {G 2 N2 : G2  1}, -22 := -11\ {G 2 N2 : G2 � 2}

Add -21 and -22 to &.
4. Bounding and branching: -12. Remove -12 from &. Its LP relaxation is

min
G2R2 5 (G) s.t. G 2 - lp

12 := - lp
0 \ {G 2 R2 : G1 � 5} with a unique minimizer

G
lp
12 := (5,4/3). Let the local lower bound on -12 be 5 min

-12
:= 5 (Glp

12) = �1/3. This
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is an example of the lower bound obtained in a subproblem being local and may
not bound 5 ⇤: for -12, the lower bound is 5 min

-12
= �1/3 but, as we will show below,

5
⇤ = �1.
Since 5 min

-12
< 5

max and Glp
12,2 = 4/3 is fractional, we partition -12 into two subsets:

-23 := -12\ {G 2 N2 : G2  1}, -24 := -12\ {G 2 N2 : G2 � 2}

Add -23 and -24 to &.
5. Bounding and pruning. Similarly, for each node -21,-22,-23,-24 in &, LP relax-

ation computes a lower bound, as illustrated in Figure 8.17.
• For -21, the minimizer is an integer solution Glp

21 = (3,1) with optimal value

5
min
-21

:= 5 (Glp
21) = �1. Reduce the global upper bound to 5

max := �1. Since

5
min
-12

= 5
max, Glp

21 is currently the best candidate optimal solution of (8.108) and
-21 is pruned (i.e., not further partitioned).

• For -23, the minimizer is an integer solution Glp
23 = (5,1) with optimal value

5
min
-23

:= 5 (Glp
21) = 1. Since 5

min
-12

> 5
max, -23 contains no optimal solution of

(8.108) and it is pruned.
• The subproblems for both -22 and -24 are infeasible and pruned.

6. Since & is empty, the global optimum of (8.108) is Glp
21 = (3,1) and the optimal

value is 5 ⇤ = 5
max = �1. ⇤

X0

x l
0
p = (4.5 , 1.5)

f 0
min =

Figure 8.17 Example 8.16. Optimal value 5 ⇤ = �1 which is upper bounded by 5
max throughout

the algorithm. The shaded areas are the feasible sets of various subproblems. (Nov 30, 2025:
file size opt.)

We summarize the branch and bound process illustrated in Example 8.16.

1. Initialization.
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• Compute the currently best known upper bound 5
max on the optimal value 5 ⇤

of MILP (8.105), e.g., from a known G0 2 -0 or set 5 max :=1. It is a global
bound in the sense that 5 ⇤  5 max throughout the algorithm as 5 max is updated.

• Initialize the queue of leaf nodes (subproblem feasible sets) in the search tree
to & := {-0}.

2. Bounding.
• Remove a node - from&. This defines a MILP subproblem whose feasible set

is - .
• Compute a minimizer Glp of the LP relaxation of (the subproblem defined by)
- . Denote its optimal value by 5

min
-

. It is a local lower bound on - and may
not be a lower bound on 5

⇤.
3. Branching or pruning.

• If 5 min
-
� 5 max, then - is pruned. This includes the case where the LP relaxation

of - is infeasible ( 5 min
-

=1).
• If 5 min

-
< 5

max and Glp is a mixed integer solution in -0, then reduce the global
bound to 5

max := 5
min
-

. An optimal solution of the subproblem defined by - is
found (which is a candidate solution of (8.105)).

• If 5 min
-

< 5
max but Glp is fractional, then a branching rule partitions - into two

or more subsets -8 .
• Add each -8 to &.

4. Iterate.
• If & is empty then the optimal value of MILP (8.105) is 5

max and a global
optimum is the mixed integer solution found in Step 3 that attained 5

max.
• Otherwise, goto Step 2.

There are numerous variants of branch and bound methods. They di�er on the bounding
function in Step 2, rules for pruning and branching in Step 3, and the rule for selecting
the next node - in & to process. In addition, valid inequalities, called cuts, can be
added in the branching step to further prune the search space. See [61] for a branch-
and-bound algorithm for solving (nonconvex) optimal power flow problems to global
optimality which uses the dual problem as the bounding function.

8.5.7 Benders decomposition

Consider

min
G,H

5̃ (G, H) s.t. �̃ (G, H)  0, G 2 - , H 2 . (8.109)

where 5̃ : R= ⇥R; ! R, �̃ : R= ⇥R; ! R<, and - ✓ R= and . ✓ R; are nonempty.
Benders decomposition is motivated by problems where, given a feasible H, often
called the complicating variable, the minimization over G is a much simpler problem
than solving (8.109) directly over (G, H). Another useful application is in two-stage
optimization with recourse (studied in Chapter 13.4) where the first-stage decision H
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must be made before the values of some random parameters are realized and a second-
stage recourse decision G can be made after and in response to the realization (see
Chapter 13.6.1 for application to security constrained unit commitment).

A solution approach is to decompose (8.109) into a master problem that computes
a minimizer H:

min
H

6(H) s.t. H 2 ⌧ (8.110a)

where the feasible set ⌧ is

⌧ := {H 2 . : �̃ (G, H)  0 for some G 2 -} (8.110b)

and the cost function 6 : R;! R is the optimal value of minimization over G given H:

6(H) := min
G

5̃ (G, H) s.t. �̃ (G, H)  0, G 2 - (8.110c)

The minimization (8.110c) over G may either decompose further into independent
subproblems each involving a di�erent subvector of G, or have a simple structure, e.g.,
is a convex program. In the former case the subproblem (8.110c) is decentralized and
can be solved in parallel. In this subsection we study the latter case where (8.110c) is
a linear program over G, given H, and present Benders decomposition for its solution.
See [62] for generalized Benders decomposition when (8.110c) is a convex program,
i.e., for each H 2 . , 5̃ (G, H) and �̃ (G, H) are convex functions in G and - is a convex set.

We start with an example.

Example 8.17 (Unit commitment). The unit commitment problem (6.4) of Chapter
6.2.1 is a mixed integer nonlinear program with a binary commitment decision H(C)
and continuous dispatch decision and network state (G(C), H(C). It can be solved using
Benders decomposition. If the constraint functions 6C , 6̃ in the real-time dispatch
problem (6.4c)(6.4d)(6.4e) are a�ne and ⌘C , ⌘̃ are convex, then the subproblem (8.110c)
is a convex program. If ⌘C , ⌘̃ are also a�ne then it is a linear program.

The security constrained unit commitment problem (6.47) of Chapter 6.4.5 is a
mixed integer linear program and can be solved to optimality with finite (but potentially
exponential) number of steps using Benders algorithm, as we now describe. ⇤

In the rest of this subsection we consider a special case of (8.110) where

5̃ (G, H) := 2
T
G + 5 (H), �̃ (G, H) := �G +� (H), - := {G 2 R= : G � 0}

i.e., consider

min
(G,H)2R=⇥R;

2
T
G + 5 (H) s.t. �G +� (H)  1, G � 0, H 2 . (8.111)

where 2 2 R=, � 2 R<⇥=, 1 2 R<, . ✓ R; is nonempty, 5 : . ! R, and � : . ! R<.
The decomposition (8.110) then becomes the master problem:

min
(H0,H)2R1+;

H0 s.t. (H0, H) 2 ⌧ 0 (8.112a)
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and a linear program over G given a (H0, H) 2 R1+; with H 2 . :

min
G�0

0 s.t. �̃G  1̃(H0, H) (8.112b)

where ⌧ 0 := {(H0, H) : H 2 . , �̃G  1̃(H0, H) for some G � 0} and

�̃ :=

2

T

�

�
, 1̃(H0, H) :=


H0� 5 (H)
1�� (H)

�
(8.112c)

The important feature of the decomposition (8.112) is that the linear program (8.112b)
is a feasibility problem. Hence (8.112a) computes a minimizer (H⇤0, H⇤) such that
(8.112b) is feasible (then H⇤0 = 2

T
G
⇤ + 5 (H⇤) for some G⇤ satisfying �G⇤  1�� (H⇤)).

We first reformulate the subproblems in (8.112) into a more convenient form.

A variant of the Farkas lemma from Exercise 8.15 implies that exactly one of the
following holds:

1. (8.112b) is feasible. There exists an G � 0 such that �̃G  1̃(H0, H).
2. (8.112b) is infeasible. There exists an (`0,`) � 0 such that (`0,`)T

�̃ � 0 and
(`0,`)T

1̃(H0, H) < 0, i.e.,

`02
T + `T

� � 0 and `0 (H0� 5 (H)) + `T (1�� (H)) < 0 (8.113)

Benders decomposition exploits the fact that (8.112b) is a feasibility problem over G
and the Farkas lemma expresses this feasibility in terms of only (H0, H). To shorten
notation, define

⇠ := {(`0,`) � 0 2 R1+< : `02
T + `T

� � 0}
6(H0, H;`0,`) := D0 (H0� 5 (H)) + `T (1�� (H))

Note that ⇠ is nonempty (e.g. 0 2 ⇠); moreover the first condition in (8.113) does
not depend on (H0, H). The linear program (8.112b) defined by a (H0, H) with H 2 . is
infeasible if and only if there exists a (`0,`) 2 ⇠ such that 6(H0, H;`0,`) < 0. Instead
of ⌧ 0 in (8.112a) defined in terms of G, we can express the feasible set in terms of ⇠
that does not involve G:

⌧ (⇠) :=
Ÿ

(`0,`)2⇠
{(H0, H) 2 R1+; : 6(H0, H;`0,`) � 0, H 2 . } (8.114a)

Since ⌧ (⇠) = ⌧ 0, a linear program (8.112b) is feasible if and only if it is defined by
(H0, H) in ⌧ (⇠). We can therefore replace the cost function in (8.112b) by 2T

G and
consider instead the two subproblems:

min
(H0,H)

H0 s.t. (H0, H) 2 ⌧ (⇠) (8.114b)

min
G�0

2
T
G s.t. �G  1�� (H) (8.114c)

Compared with (8.112a), the key feature of (8.114) is that (8.114b) is independent of G.
This suggests a strategy for solving (8.111): first solve (8.114b) for an optimal (H⇤0, H⇤),
if possible. Given H⇤, we then compute an optimal G⇤ of the linear program (8.114c).
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This strategy is justified by the following result (proved in Exercise 8.32) that
establishes the equivalence of (8.114) and (8.112), and hence (8.111). If (G⇤, H⇤0, H⇤) is
optimal for (8.114), then (G⇤, H⇤) is an optimum of (8.111) with optimal value H⇤0.

Theorem 8.31 (Benders decomposition). 1. (8.114b) is infeasible if and only if
(8.111) is infeasible; (8.114b) is feasible but does not attain optimality if and
only if (8.111) is feasible but does not attain optimality.

2. Suppose (H⇤0, H⇤) is an optimal solution of (8.114b). Then
• (8.114c) with H = H⇤ has an optimum G

⇤ with optimal value 2T
G
⇤ = H⇤0� 5 (H⇤).

• (G⇤, H⇤) is optimal for (8.111) with optimal value H⇤0.
3. Conversely suppose (G⇤, H⇤) is an optimal solution of (8.111). Then

• (H⇤0, H⇤) is optimal for (8.114b) where H⇤0 := 2T
G
⇤ + 5 (H⇤).

• G⇤ is optimal for the linear program (8.114c) with H = H⇤.

This solution strategy however is impractical because (8.114b) can be nonconvex
and/or mixed-integer. Moreover it is not obvious how to compute ⌧ (⇠). Benders
decomposition provides a finite procedure to build up ⌧ (⇠) and solve (8.114b) itera-
tively. The idea is to start with a relaxation of (8.114b) with a simple superset ⌧ (&)
of ⌧ (⇠) as its feasible set, where ⌧ (&) is defined by a subset & of the index set ⇠.
The solution of the relaxation defines a linear program (8.114c). Instead of solving
(8.114c), we solve its dual. The solution of the dual identifies either an additional
constraint to add to ⌧ (&) and the cycle repeats, or an optimal solution of (8.111) and
the procedure terminates. This procedure does not avoid the di�cult step of solving a
possibly nonconvex and/or mixed-integer program (8.114b) but it solves a sequence of
this problem starting from a simple feasible set, adding a constraint in each iteration
that strictly tightens the relaxation, and terminates after finitely many iterations. When
it terminates, it either identifies a finite optimal solution of (8.111) or determines that
none exists (i.e., (8.111) is either infeasible or feasible but unbounded).

We next describe this procedure in more detail under the assumptions:

C8.3: . is nonempty and compact.
C8.4: 5 (H) and � (H) are continuous on an open set . ✓ R; containing . .

For each H 2 . , the (partial) Lagrangian of (8.114c) is

! (G,`; H) := 2T
G + `T (�G� 1 +� (H)) = (� (H)� 1)T

`+ (2+ �T
`)T

G, G � 0,` � 0

Hence the dual of (8.114c) is

max
`�0

(� (H)� 1)T
` s.t. 2+ �T

` � 0 (8.115)

Note that the feasibility of (8.115) does not depend on H, only its objective function
does, and that if ` is dual feasible, then (1,`) 2 ⇠. It can be shown that, under C8.3
and C8.4, (8.115) is infeasible if and only if H0 has no lower bound on ⌧ (⇠), i.e., if
and only if the optimal value of (8.114b) is �1 (Exericse 8.33).
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Let & be any nonempty finite subset of ⇠ and define a relaxation ⌧ (&) of ⌧ (⇠):

⌧ (&) :=
Ÿ

(`0,`)2&
{(H0, H) : 6(H0, H;`0,`) � 0, H 2 . } (8.116a)

Consider the following subproblems:

NLP(&): 5 (&) := min
(H0,H)

H0 s.t. (H0, H) 2 ⌧ (&) (8.116b)

LP(H): 2(H) := min
G�0

2
T
G s.t. �G  1�� (H) (8.116c)

DP(H): 3 (H) := max
`�0

(� (H)� 1)T
` s.t. 2+ �T

` � 0 (8.116d)

Since NLP(&) (8.116b) is a relaxation of (8.114b), if (8.116b) is infeasible then
(8.114b) is infeasible (and hence (8.111) is infeasible by Theorem 8.31). On the other
hand, suppose (H⇤0, H⇤) is a finite optimal solution of (8.116b). It is also optimal for
(8.114b) if and only if the optimal value of the dual problem DP(H⇤) (8.116d) satisfies:

3 (H⇤) = H
⇤
0� 5 (H⇤) (8.117)

This can be proved using Theorem 8.31 and strong duality between the linear programs
(8.116c) and (8.116d) since the optimal value 2T

G
⇤ = H⇤0 � 5 (H⇤) of LP(H⇤) is finite

(Exercise 8.34).

The Benders algorithm proceeds as follows. Starting from a simple index set& ✓ ⇠,
the algorithm chooses a H̄ in each iteration, solves the dual problem DP( H̄) and either
identifies an optimal solution for (8.114b), in which case it terminates, or identifies a
new constraint index ( ¯̀0, ¯̀) to add to the index set& that strictly tightens the relaxation
⌧ (&) ◆ ⌧ (⇠), in which case the cycle repeats. The choice of H̄ is determined in
each iteration by solving NLP(&). The algorithm terminates after a finite number of
iterations either with a finite optimal solution of (8.111) or determines that none exists
(i.e., (8.111) is either infeasible or feasible but unbounded).

Initialization:

1. Check if the feasible set % := {` � 0 : 2+�T
` � 0} of DP(H) (8.116d) is empty. If it

is, then (8.114b) and hence the original problem (8.111) are feasible but unbounded
under assumptions C8.3 and C8.4 (Exericse 8.33). The algorithm terminates.

2. If % is nonempty (i.e., DP( H̄) (8.116d) is feasible for all H), then choose any
nonempty finite subset & ✓ ⇠. Since |& | is finite, it is easy to check if `0 = 0 for
all `0 in &, with two possibilities:12

(2a) `0 = 0 for all (`0,`) 2 &: This is equivalent to NLP(&) being feasible but
unbounded ( 5 (&) =�1). Choose any feasible H̄ (i.e., `T (1�� ( H̄)) � 0 for all
(0,`) 2 &), and set H̄0 := �1 (i.e., an arbitrarily small number), solve DP( H̄),
and go to Step (4b).

(2b) `0 > 0 for at least one (`0,`) 2 &: Solve NLP(&).

12 Since % is nonempty, assumptions C8.3 and C8.4 ensure that there exists (1,`) 2 ⇠ and 5 (⇠) > �1,
but it is possible that 5 (&) = �1; see Exericse 8.33.
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After initialization, future iterations will not encounter 5 (&) = �1 again since an
index (1, ¯̀) will always be added to & in each iteration until the algorithm terminates,
but both 5 (&) =1 and 5 (&) <1 remain possible as the algorithm proceeds.

Iterate till termination:

3. Solving NLP(&) has two possible outcomes:
(3a) NLP(&) is infeasible ( 5 (&) =1): Then (8.111) is infeasible since 5 (&) is a

relaxation of (8.114b). The algorithm terminates.
(3b) NLP(&) is feasible and finite (�1 < 5 (&) <1): Let ( H̄0, H̄) 2 R1+; be a finite

minimizer, which always exists under assumptions C8.3 and C8.4. Solve the
dual problem DP( H̄) (8.116d).

4. Solving DP( H̄) produces three possible outcomes (recall DP( H̄) is always feasible):

(4a) 3 ( H̄) is finite and equality holds in (8.118): Let ¯̀ attain 3 ( H̄). Strong duality
implies that LP( H̄) (8.116c) has an optimal solution Ḡ (Theorem 8.23). The
minimizer ( H̄0, H̄) of NLP(&) and the primal-dual optimal solution (Ḡ, ¯̀) of
LP( H̄) and its dual DP( H̄) satisfy (Exericse 8.35):

H̄0  2
T
Ḡ + 5 ( H̄) = (� ( H̄)� 1)T ¯̀ + 5 ( H̄) (8.118)

The minimizer ( H̄0, H̄) is in ⌧ (⇠) and hence optimal for (8.114b) if and only
if equality holds in (8.118). In that case, (Ḡ, H̄) is optimal for (8.111) with
optimal value H̄0 according to Theorem 8.31, and the algorithm terminates.

(4b) 3 ( H̄) is finite but inequality in (8.118) is strict: Recall that ¯̀ being dual
feasible implies that (1, ¯̀) 2 ⇠. The strict inequality in (8.118) means that
6( H̄0, H̄;1, ¯̀) < 0, i.e., (1, ¯̀) is in ⇠ but not & and ( H̄0, H̄) 2 ⌧ (&) but not in
⌧ (⇠). Add (1, ¯̀) to & to eliminate ( H̄0, H̄) from the new feasible set ⌧ (&):

&  &[ {(1, ¯̀)}

This introduces the new constraint 6(H0, H;1, ¯̀) � 0 on (H0, H). Solve NLP(&)
with the new & and go to Step 3.

(4c) 3 ( H̄) = 1: LP duality (Theorem 8.23) implies that LP( H̄) is infeasible, i.e.,
there is no G � 0 such that �G  1 � � ( H̄). The Farkas lemma implies that
(8.113) is satisfied by some ( ¯̀0, ¯̀) 2 ⇠ for which 6( H̄0, H̄; ¯̀0, ¯̀) < 0. We will
identify two such ( ¯̀0, ¯̀) and add them to &.
Since 3 ( H̄) = 1, there must be a feasible point ā of DP( H̄) and a direction
¯̀ such that (i) the halfline ā + U ¯̀ is in the feasible set of DP( H̄) for all
U � 0 ( ¯̀ is called a direction of recession; see Definition 12.5), and (ii) the
objective (� ( H̄) � 1)T (ā +U ¯̀) increases without bound along the halfline as
U!1. The first condition implies that (0, ¯̀) 2 ⇠ because 2 + �T (ā +U ¯̀) =
(2+�T

ā) +U(�T ¯̀) � 0 which can hold for allU � 0 if and only if �T ¯̀ � 0. The
second condition has two implications. First it implies that (� ( H̄) � 1)T ¯̀ > 0
and therefore 6( H̄0, H̄;0, ¯̀) < 0 at (0, ¯̀) 2 ⇠. Second it implies that we can
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assume without loss of generality that ā is su�ciently along the halfline that

(� ( H̄)� 1)T
ā > H̄0� 5 ( H̄)

i.e., 6( H̄0, H̄;1, ā) < 0. Therefore add both (1, ā) and (0, ¯̀) to & to eliminate
( H̄0, H̄) from the new feasible set ⌧ (&):

&  &[ {(1, ā), (0, ¯̀)}

This introduces the new constraints 6(H0, H;1, ā) � 0 and 6(H0, H;0, ¯̀) � 0 on
(H0, H). Solve NLP(&) with the new & and go to Step 3.

The overall algorithm is summarized in Figure 8.18. Let 6⇤ denote the optimal value

P empty

( ȳ0 =

Figure 8.18 Benders decomposition. (Nov 30, 2025: file size opt.)

of the original problem (8.111) and assume 6⇤ > �1 so that DP(H) is feasible for all H.
Let (H0 (C), H(C)) denote the solution of NLP(&(C)) in iteration C with &(C) ◆ ⇠. Then
(Exercise 8.35)

H0 (C)  6
⇤  min

BC
3 (H(B)) + 5 (H(B)) 8C (8.119)

i.e., the optimal value 6⇤ is bounded on both sides in each step (recall that 3 (H(B))
may be1 in Step 4 above). The algorithm terminates in a finite number of steps. This
is because, since ⇠ is a polyhedral pointed cone, it is the convex hull of finitely many
extreme halflines. In each iteration until termination, the direction vector of an extreme
halfline (possibly two) that is not already in & is added to & to eliminate the NLP(&)
solution ( H̄0, H̄) that is infeasible for (8.114). The constraint 6(H0, H; ¯̀0, ¯̀) � 0 that is
added in each iteration is called a cutting plane. Since the algorithm identifies cutting
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planes by solving dual linear programs DP( H̄), it is sometimes called Benders dual
(cutting-plane) method. Benders’ original paper [63] also proposes a primal algorithm
that identifies cutting planes by solving LP( H̄).

8.6 Convergence analysis

Consider the problem (8.76), reproduced here:

5
⇤ := min

G

5 (G) s.t. G 2 - (8.120)

where 5 : R=! R and - ✓ R=. Iterative algorithms for solving (8.120) generally take
the form

G(C +1) = 6(G(C)) (8.121a)

where 6 : R=! R=. For example a gradient projection algorithm can be interpreted as
the following fixed-point iteration

G(C +1) = [G(C)�W⌧ (G(C))r 5 (G(C)]
-

=: 6(G(C)) (8.121b)

where W > 0 is a stepsize, ⌧ (G) � 0 is a scaling matrix, and [·]- is the projection to
the feasible set - . A fixed point G⇤ of the gradient algorithm (8.121b) satisfies the
optimality condition (8.77). The fixed-point iteration (8.121) can be used not only for
solving an optimization problem, but also for solving a system of nonlinear equations
⌘(G) = 0 with the corresponding fixed-point iteration G(C +1) = G(C) + ⌘(G(C)). Indeed
many of the optimization algorithms can be interpreted as solving a system of equations
representing the KKT condition.

Unless otherwise specified, we assume throughout this section that:

C8.5: The objective function 5 is lower bounded on - , continuously di�erentiable
and convex. The feasible set - is nonempty, closed and convex.

C8.5 guarantees that (8.120) is feasible and gradient algorithms (8.121b) are well
defined.

8.6.1 Convergence theorems

In this subsection we prove some basic results that are widely used for convergence
analysis of constrained optimization (8.120).

Since the feasible set - in (8.120) is not necessarily compact (bounded), the optimum
may not be attained (e.g., 5 (G) = 4�G on - = R). Moreover the sequence (G(C), C =
0,1, . . . ) generated by the gradient projection algorithm (8.79) may not stay bounded
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and hence may not have any convergent subsequence (the Bolzano-Weierstrass theorem
states that a sequence (G(C), C = 0,1, . . . ) has a convergent subsequence if it is bounded).
To guarantee that the gradient projection algorithm makes progress towards minimizing
5 , we need:

C8.6: The gradient of 5 is Lipschitz continuous with Lipschitz constant V, i.e.,

kr 5 (H)�r 5 (G)k2  VkH� Gk2 8G, H 2 R=

Note that the norm is Euclidean.13 C8.6 implies the following useful result which is
used in Theorem 8.35 to prove the optimality of gradient projection algorithm (8.79).

Lemma 8.32 (Descent Lemma.). If 5 : R= ! R is continuously di�erentiable and
satisfies C8.6 then

5 (G + H)  5 (G) + HTr 5 (G) + V
2
kHk22 8G, H 2 R=

Proof We estimate the di�erence 5 (G + H)� 5 (G) by considering the scalar function
6(B) defined by the intersection of the 5 (G) surface with the vertical plane at G in the
direction H. Fix any G, H 2 R= and define

6(B) := 5 (G + BH) for B 2 [0,1]

As B ranges from 0 to 1, G + BH moves from G to G + H in a straight line and

6
0(B) = H

Tr5 (G + BH)

is the directional derivative of 5 at G + BH in the direction H. Then

5 (G + H)� 5 (G) = 6(1)�6(0) =
π 1

0
6
0(B)3B =

π 1

0
H

Tr5 (G + BH)3B

=
π 1

0

⇣
H

Tr5 (G) + HT (r5 (G + BH)�r5 (G))
⌘
3B

 H
Tr5 (G) +

π 1

0
kHk2 kr5 (G + BH)�r5 (G)k2 3B

 H
Tr5 (G) + kHk2

π 1

0
V kBHk2 3B

= H
Tr5 (G) + V

2
kHk22

where the first inequality follows from the Cauchy-Schwarz inequality and the second
inequality follows from condition C8.6. ⇤

A sequence G(C) converging to a limit G⇤ is said to converge linearly or geometrically
if the error quotient satisfies

lim
C

kG(C +1)� G⇤k
kG(C)� G⇤k@ = U

13 In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 8.10 below).
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for @ = 1 and U 2 (0,1). It is said to converge quadratically or cubicly if @ = 2 or 3
respectively for some U > 0. The parameters @ and U are called the order and rate of
convergence respectively.

As we will see in Chapter 8.6.3, under condition C8.6, the gradient projection
algorithm generates a sequence (G(C), C = 0,1, . . . ) such that 5 (G(C)) monotonically
decreases. The sequence (G(C), C = 0,1, . . . ) may not converge, but any converging
subsequence converges to an optimal point (Theorem 8.35). When 5 is strongly convex
(Definition 8.4) then the gradient projection algorithm indeed converges and does so
linearly (Theorem 8.36). This is because strong convexity implies that the gradient
projection algorithm is a contraction mapping, as we now explain.

Definition 8.10 (Contraction). A function ) : -! - from a subset - of R= into itself
is called a contraction mapping or simply a contraction if there exists an U 2 [0,1)
such that

k) (H)�) (G)k  UkH� Gk 8G, H 2 -

for an arbitrary norm k · k. The parameter U is called )’s rate of convergence. ⇤

A function ) can be a contraction under a certain norm, but not under a di�erent
norm, so the proper choice of norm is critical.

Theorem 8.33 (Contraction mapping theorem). Suppose ) : - ! - is a contraction
mapping with rate U 2 [0,1) on a closed subset - of R=. Then

1. There exists a unique fixed point G⇤ such that G⇤ = ) (G⇤).
2. Starting from any initial point G(0) 2 - , the contraction iteration G(C+1) :=) (G(C))

converges linearly to G⇤:

kG(C)� G⇤k  U
C kG(0)� G⇤k 8C � 0

Proof Consider the contraction iteration G(C +1) := ) (G(C)). Definition 8.10 implies

kG(C +1)� G(C)k  UkG(C)� G(C �1)k  · · ·  U
C kG(1)� G(0)k

Hence, for all C � 0 and B � 1, we have

kG(C + B)� G(C)k =

�����
B�1’
<=0

(G(C +< +1)� G(C +<))
����� 

B�1’
<=0

kG(C +< +1)� G(C +<)k

 kG(1)� G(0)kUC
B�1’
<=0

U
<  U

C

1�U kG(1)� G(0)k

Since U 2 [0,1), G(C) is a Cauchy sequence (i.e., given any n > 0, there exists = such
that for all B, C > =, kG(C + B)� G(C)k < n) and hence must converge to a point G⇤ in R=.
Since - is closed, G⇤ 2 - . Since ) is continuous,

G
⇤ = lim

C

G(C +1) = lim
C

) (G(C)) = ) (lim
C

G(C)) = ) (G⇤)
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and hence G⇤ is a fixed point of ) . Moreover, the fixed point is unique for, otherwise,
if G⇤ and H⇤ are both fixed points then

kH⇤ � G⇤k = k) (H⇤)�) (G⇤)k  UkH⇤ � G⇤k

implying H⇤ = G⇤ since U 2 [0,1). This completes the proof of part 1.

For part 2, we have for all C � 1,

kG(C)� G⇤k = k) (G(C �1))�) (G⇤)k  UkG(C �1)� G⇤k

Hence kG(C)� G⇤k  UC kG(0)� G⇤k. ⇤

When a function ) : - ! - from a subset - of R= into itself has a fixed point
G
⇤ 2 - , we call ) a pseudocontraction mapping or simply a pseudocontraction if there

exists a rate U 2 [0,1) such that

k) (G)� G⇤k  UkG� G⇤k 8G 2 -

for an arbitrary norm k · k. Pseudocontraction is a weaker notion than contraction,
i.e., if ) is a contraction then it is a pseudocontraction, but the converse may not
hold. Theorem 8.33 however extends to pseudocontraction, i.e, the fixed point G⇤ in
the definition of pseudocontraction is the unique fixed point in - and the fixed-point
iteration converges linearly to G⇤. Note however that the existence of a fixed point G⇤ is
part of the definition of pseudocontraction and G⇤ is often unavailable in applications.

If a function 5 is strongly convex on - then Theorem 8.6 implies (see (8.12))

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 -

In particular it satisfies C8.6. The proof of Theorem 8.6 (see (8.11)) and the Descent
Lemma 8.32 show that

H
Tr5 (G) + U

2
kHk22  5 (G + H)� 5 (G)  H

Tr5 (G) + V
2
kHk22

As we will see in Theorem 8.36 below, a consequence is that the gradient projection
algorithm (8.79) is a contraction mapping and therefore converges linearly to the unique
optimal point.

8.6.2 Gauss-Seidel algorithm

The Gauss algorithm introduced in Chapter 4.4.1 is a fixed-point iteration of the form

G(C +1) = 6(G(C)) (8.122)

where G 2 R=, 6 : -! - and - is a nonempty subset of R=. The goal of (8.122) is to
compute a fixed point G⇤ that satisfies G⇤ = 6(G⇤). Almost all iterative algorithms for
constrained optimization can be interpreted as a fixed-point iteration (8.122), including
gradient algorithms. The advantage of the class of Gauss algorithms however is that
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gradient is not necessary, simplifying computation, e.g., the backward-forward sweep
of Chapter 5.4. We study the convergence of Gauss algorithms in this subsection and
that of gradient algorithms in Chapter 8.6.3.

If 6 is a contraction mapping on - then Theorem 8.33 implies that the fixed-point
iteration (8.122) will converge to a unique fixed point G⇤ 2 - linearly.

Suppose - =
Œ
<

8=1 -8 where each -8 ✓ R=8 is nonempty such that =1 + · · · +=< = =.
Decompose G 2 R= into G = (G1, . . . ,G<) where G8 2 -8 . We are given a norm k · k8 on
R
=8 for each 8. Define the norm k · k on R= by

kGk := max
8

kG8 k8 (8.123)

If =8 = 1 and kG8 k8 := |G8 | then kGk = max8 |G8 | is the ;1 norm. The Gauss algorithm
(8.122) updates all components G8 simultaneously. A Gauss-Seidel algorithm updates
one component at a time and the computation of component G8 (C + 1) uses the latest
values G1 (C +1), . . . ,G8�1 (C +1):

G8 (C +1) = 68 (G1 (C +1), . . . ,G8�1 (C +1),G8 (C), . . . ,G< (C)), 8 = 1, . . . ,<

We will show that, if the Gauss algorithm (8.122) is a contraction mapping, so is
Gauss-Seidel algorithm with the same (unique) fixed point. To this end we define a
mapping ⌘ : -! - that represents the Gauss-Seidel update after every < updates.

Let 68 : - ! -8 and ⌘8 : - ! -8 denote the 8th block-components of 6 and ⌘

respectively:

6(G) = (61 (G), . . . ,6< (G)), ⌘(G) = (⌘1 (G), . . . ,⌘< (G))

Given a Gauss algorithm 6 : -! - in (8.122), the corresponding Gauss-Seidel algo-
rithm ⌘ : -! - is defined recursively through its block-components:

⌘1 (G) := 61 (G1, . . . ,G<) (8.124a)

⌘8 (G) := 68 (⌘1 (G), . . . ,⌘8�1 (G),G8 , . . . ,G<), 8 = 2, . . . ,< (8.124b)

The following result says that if a Gauss algorithm is a contraction, then its Gauss-
Seidel version remains a contraction.

Theorem 8.34 (Gauss-Seidel algorithm). Suppose - ✓ R= is closed. Suppose 6 :
-! - is a contraction mapping with a unique fixed point G⇤ and rate of convergence
U 2 [0,1) under the norm (8.123), i.e.,

k6(H)�6(G)k  UkH� Gk, 8G, H 2 -

Then ⌘ in (8.124) is also a contraction with the same (unique) fixed point G⇤ and rate
U. Hence the sequence G(C) generated by ⌘ converges linearly to G⇤.

Proof The assumption of Cartesian product - =
Œ
<

8=1 -8 and the definition of the
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norm (8.123) imply that the 8th block-components of 6 satisfy

k68 (H)�68 (G)k8  max
9

k6 9 (H)�6 9 (G)k 9 = k6(H)�6(G)k

 UkH� Gk = Umax
9

kH 9 � G 9 k 9

Therefore ⌘8 in (8.124) satisfy

k⌘8 (H)� ⌘8 (G)k8  Umax
⇢
max
9<8

k⌘ 9 (H)� ⌘ 9 (G)k 9 , max
9�8
kH 9 � G 9 k 9

�
, 8 = 1, . . . ,<

Induction on 8 then shows that k⌘8 (H) � ⌘8 (G)k8  UkH � Gk for all 8, implying that
k⌘(H)� ⌘(G)k  UkH� Gk. It is easy to show that the unique fixed point of ⌘ is also G⇤

and the remaining claim follows from the Contraction Mapping Theorem 8.33. ⇤

Example 8.18 (Backward-forward sweep [64]). We analyze the convergence of the
backward-forward sweep (BFS) Algorithm 2 in Chapter 5.4.2:

�
B

8 9
(C) =

’
:: 9!:

�
B

9:
(C)�

 ✓
B 9

+ 9 (C �1)

◆H
� H<

9 9
+ 9 (C �1)

!
, 9 2 #

+ 9 (C) = +8 (C) � (HB
8 9
)�1
�
B

8 9
(C), 9 2 #

where 8 := 8( 9) denotes the unique parent of 9 and H<
9 9

:= H<
98
+Õ

:: 9!: H
<

9:
is the total

shunt admittance incident on bus 9 . This can be represented compactly using the
(# +1)⇥# incidence matrix ⇠ defined in (5.10) and reproduced here:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

The matrix⇠ is of rank # . Decompose⇠ into the #⇥# non-singular reduced incidence
matrix ⇠̂ and the first row 2

T
0 corresponding to the root bus 0:

⇠ =:

2

T
0
⇠̂

�

Define # ⇥# diagonal matrices:

B̂ := Diag
�
B 9 , 9 2 #

�
, Ĥ

< := Diag
⇣
H
<

9
, 9 2 #

⌘
, Ĥ

B := Diag
⇣
H
B

8 9
, 9 2 #

⌘
Then the BFS algorithm consists of the following nonlinear iteration:

⇠̂ �
B (C) = B̂

H
+
�H (C �1)� Ĥ<+ (C �1) (8.125a)

�
B (C) = Ĥ

B

⇣
20+0 + ⇠̂T

+ (C)
⌘

(8.125b)

where the column vector +�H := (1/+H
9
, 9 2 #) and B̂H is the componentwise complex

conjugate of the diagonal matrix B̂. Substituting (8.125b) into (8.125a) to eliminate
�
B (C) yields a Gauss algorithm in terms of + only:

+ (C) = !̂
�1

⇣
B̂

H
+
�H (C�1)� Ĥ<+ (C�1)� ⇠̂ ĤB20+0

⌘
=: 6(+ (C �1)) (8.126)
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where the reduced Laplacian matrix !̂ := ⇠̂ ĤB⇠̂T is nonsingular and encodes the net-
work topology and series admittances. (Properties of !̂ and !̂�1 for radial networks
are given in Theorem 4.1.) We next derive a su�cient condition for the fixed-point
iteration 6 in (8.126) to be a contraction.

Define column vectors of nonnegative real numbers for non-reference buses:

|B | := ( |B1 |, . . . , |B# |) , |H< | :=
�
|H<1 |, . . . , |H<

#
|
�
, |� | :=

|B |
1� n + (1+ n) |H< |

and # ⇥# real matrices:

| ĤB | := Diag
⇣
|HB
8 9
|, 9 2 #

⌘
, | !̂ | := ⇠̂ | ĤB |⇠̂T

Consider the following set of voltages with magnitudes within n of |+0 |:

V :=
�
+ 2 C# : |+0 |� n  |+ 9 |  |+0 | + n , 9 2 #

 
(8.127)

for a given n 2 (0,1). Assuming +0 ⇡ 1 pu, V is a set of voltages of practical interest,
one that is closer to 1 pu. We claim that 6 in (8.126) maps V onto V and, moreover, is
a contraction under appropriate su�cient conditions:

1. Suppose the vector | !̂ |�1 |� | satisfies

1
n

���| !̂ |�1 |� |
���
1
 1 (8.128)

where k0k1 := max8 |08 | for vector 0. Then + 2 V implies 6(+) 2 V.
2. Suppose condition (8.128) holds and

d :=
1

( |+0 |� n)2

��
!̂
�1
B̂

H��
2 +

��
!̂
�1
Ĥ
<

��
2 < 1 (8.129)

where k�k2 is the spectral norm of matrix �. Then 6 is a contraction with rate d
and therefore:
• There is a unique fixed point, i.e., power flow solution, +⇤ of (8.126) in V.
• Starting from any + (0) 2 V, the sequence (+ (C), C � 1) produced by (8.126)

converges linearly to +⇤, i.e., k+ (C)�+⇤k2  dC k+ (0)�+⇤k2.

We prove these two claims. For the first claim let 1# and 0# denote the column
vectors of # 1’s and 0’s respectively. We have

⇠
T
1#+1 = 20 + ⇠̂T

1# = 0#

and thus !̂�1
⇠̂ Ĥ

B
20+0 = (⇠̂�T

20) = �+01# . This simplifies the fixed-point iteration 6
in (8.126) to:

6(+) = !̂
�1

⇣
B̂

H
+
�H� Ĥ<+

⌘
+ +01# (8.130)

If + 2 V in (8.127), then ��
B̂

H
+
�H� Ĥ<+

��  | � | (8.131)

where the right-hand side is a nonnegative column vector and the left-hand side takes
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componentwise magnitudes. Theorem 4.1 of Chapter 4.3.3 implies that, for radial
networks, the (8, 9)th entry of !̂�1 = ⇠̂�T ( ĤB)�1

⇠̂
�1 is the sum of (HB

;
)�1 over lines

; on the common segment of paths from bus 8 to the root and from bus 9 to the
root. Hence the componentwise magnitudes of !̂�1 are upper-bounded by | !̂ |�1. Then
(8.131) implies ���!̂�1

⇣
B̂

H
+
�H� Ĥ<+

⌘���  | !̂ |�1 |� | (8.132)

where again the right-hand side is a nonnegative column vector and the left-hand side
takes componentwise magnitudes. Therefore, if condition (8.128) is satisfied, then by
(8.130)(8.132), we have |+0 |� n  |6 9 (+) |  |+0 | + n for all 9 2 # , i.e., + 2 V implies
6(+) 2 V.

For the second claim, by (8.130), for any*,+ 2 V:

k6(*)�6(+)k2 
��
!̂
�1
B̂

H��
2

��
*
�H�+�H��

2 +
��
!̂
�1
Ĥ
<

��
2 k* �+ k2


✓

1
( |+0 |� n)2

��
!̂
�1
B̂

H��
2 +

��
!̂
�1
Ĥ
<

��
2

◆
k* �+ k2

= d k* �+ k2 (8.133)

where the first inequality uses the subadditivity of vector norms and the definition of
induced matrix norms. The second inequality is because

��
*
�H�+�H��

2 =

vut’
92#

 
1

*
H
9

� 1

+
H
9

! ✓
1
* 9

� 1
+ 9

◆
=

vt’
92#

|* 9 �+ 9 |2
|* 9 |2 |+ 9 |2

 1
( |+0 |� n)2

s’
92#

|* 9 �+ 9 |2 =
1

( |+0 |� n)2
k* �+ k2

where the inequality uses *,+ 2 V defined in (8.127). Inequality (8.133), condition
(8.129), and part 1 imply that 6 is a contraction with rate d from V onto V. Since V is
a closed subset of C# , the second claim follows from Theorem 8.33. 14 ⇤

8.6.3 Steepest descent algorithm

Recall the gradient projection algorithm (8.79) of Chapter 8.5.1, reproduced here:

G(C +1) := [ G(C)�Wr 5 (G(C)) ]
-

(8.134)

where W > 0 is a constant stepsize, - ✓ R= is nonempty, closed and convex, and [G]
-

denotes the projection of G onto - .

Conditions C8.5 and C8.6 do not guarantee that the sequence (G(C), C = 0,1, . . . )
generated by the gradient projection algorithm has any convergent subsequence, but

14 Theorem 8.33 applies to real vector spaces. To apply it here, we can treat + = (Re(+ ) , Im(+ )) as a
vector in R2# . The ;2 norm in C# naturally extends to the ;2 norm in R2# and the set V defined in
(8.127) becomes a closed subset of R2# .
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if it does then the subsequence converges to an optimal point G⇤ of (8.120). Note that
(G(C), C = 0,1, . . . ) may have multiple convergent subsequences in which case all their
limits points are optimal. This implies that, when 5 is strictly convex so that the optimal
point G⇤ is unique, then (G(C), C = 0,1, . . . ) itself converges to G⇤, provided the stepsize
W is su�ciently small. This result does not require the gradient projection algorithm
(8.134) to be a contraction and is thus less conservative.

Theorem 8.35 (Optimality of gradient projection algorithm). Suppose conditions C8.5
and C8.6 hold, and suppose 0 < W < 2/V. Let (G(C), C = 0,1, . . . ) denote the sequence
produced by the gradient projection algorithm (8.134). Then the limit point G⇤ of any
convergent subsequence (G(C: ), : = 1,2, . . . ) is an optimal solution of (8.120).

Proof We prove the theorem in three steps. First we show the sequence ( 5 (G(C)), C =
0,1, . . . ) of objective values produced by the gradient projection algorithm (8.134)
converges monotonically. Moreover the di�erence sequence (G(C+1)�G(C), C = 0,1, . . . )
converges to zero. Specifically, by the Descent Lemma 8.32, we have

5 (G(C +1))  5 (G(C)) + (G(C +1)� G(C))Tr 5 (G(C)) + V
2
kG(C +1)� G(C)k22 (8.135)

Theorem 8.9.2 implies that for all C

(H� G(C +1))T (G(C)�Wr 5 (G(C))� G(C +1))  0 8H 2 - (8.136)

In particular let H = G(C) and we have, after rearranging,

(G(C +1)� G(C))Tr 5 (G(C))  � 1
W

kG(C +1)� G(C)k22

Substituting into (8.135) we have

5 (G(C +1))  5 (G(C)) �
✓
1
W

� V
2

◆
kG(C +1)� G(C)k22 (8.137)

Hence the sequence ( 5 (G(C)), C = 0,1, . . . ) is strictly decreasing as long as G(C+1) < G(C)
provided W < 2/V. Since 5 is lower bounded on - (condition C8.5), the sequence
( 5 (G(C)), C = 0,1, . . . ) is bounded and monotone and thus converges. Rearranging
(8.137), we also have

kG(C +1)� G(C)k22 
✓
1
W

� V
2

◆�1

( 5 (G(C))� 5 (G(C +1)))

Since 5 (G(C)) converges this means that the di�erences G(C +1)�G(C) converge to zero
(though this does not guarantee that G(C) itself converges).

Second suppose there is a subsequence (G(C: ), : = 1,2, . . . ) that converges to G⇤.
Consider the sequence (G(C: + 1), : = 1,2, . . . ). By Theorem 8.9.3, the iteration G(C +
1) = [G(C) � Wr 5 (G(C))]- defined by (8.134) is a projection and hence a continuous
function of G(C). Hence the sequence (G(C: + 1), : = 1,2, . . . ), being the image of a
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continuous function on G(C: ), also converges. We now show that it converges to G⇤ as
:!1. Fix any n > 0. We have to show that there exists a  such that

kG(C: +1)� G⇤k2 < n 8: >  

Since G(C: )! G
⇤ there exists an  0 such that

kG(C: )� G⇤k2 <

n

2
8: >  0 (8.138a)

Step 1 above shows that G(C: +1) � G(C: ) converges to zero and hence there exists  00

such that

kG(C: +1)� G(C: )k2 <

n

2
8: >  00 (8.138b)

Combining (8.138) we have for : >  := max{ 0, 00}

kG(C: +1)� G⇤k2  kG(C: +1)� G(C: )k2 + kG(C: )� G⇤k2 < n

as desired.

Finally note that (8.136) holds for all C. In particular consider C = C: , : = 1,2, . . . .
Taking :!1, (8.136) yields✓

H� lim
:

G(C: +1)
◆T ✓

lim
:

G(C: )�W lim
:

r 5 (G(C: )) � lim
:

G(C: +1)
◆
 0 8H 2 -

Since 5 is continuously di�erentiable and lim: G(C: ) = lim: G(C: +1) = G⇤, we have

W (H� G⇤)Tr 5 (G⇤) � 0 8H 2 -

Hence G⇤ satisfies the optimality condition (8.77) and is globally optimal since 5 is a
convex function over a convex set - . ⇤

Suppose 5 is strongly convex on - ✓ R= with parameter U > 0 (Definition 8.4):

(r 5 (H)�r 5 (G))T (H� G) � UkH� Gk22 G, H 2 - (8.139a)

If maxG2- 5 (G) <1 then Theorem 8.6 implies

kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 - (8.139b)

where V is a finite bound on the maximum eigenvalue of r2
5 (G) on - , i.e., it satisfies

C8.6. The next result says that the lower bound and the upper bound in (8.139) combine
to guarantee that the the gradient projection algorithm (8.134) is a contraction. Theorem
8.33 then implies that the algorithm converges linearly to the unique optimal solution
of (8.120). The condition sup

G2- 5 (G) <1 is not restrictive; see Remark 8.1.

Theorem 8.36 (Linear convergence of gradient projection algorithm). Suppose con-
dition C8.5 holds. Suppose 5 is twice continuously di�erentiable, is strongly convex
with parameter U > 0 and maxG2- 5 (G) <1. If 0 < W < 2U/V2 then

1. There is a unique optimal solution G⇤ for (8.120).
2. The gradient projection algorithm (8.134) converges linearly to G⇤.
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Proof The gradient project algorithm (8.134) is the iteration G(C +1) =) (G(C)) where
) : -! - is defined by ) (G) := [G�Wr 5 (G)]- . We will show that ) is a contraction
when 5 is strongly convex. Then the assertions follow from Theorem 8.33.

We have under the Euclidean norm

k) (H)�) (G)k22 = k [H�Wr 5 (H)]- � [G�Wr 5 (G)]- k22
 k (H� G)�W(r 5 (H)�r 5 (G))k22
= kH� Gk22 � 2W(r 5 (H)�r 5 (G))T (H� G) + W2kr 5 (H)�r 5 (G))k22

where the inequality above follows from the fact that the projection operation is non-
expansive (Theorem 8.9.3). Conditions in the theorem imply that (8.139) holds and
hence (r 5 (H) �r 5 (G))T (H � G) � UkH � Gk22 and kr 5 (H) �r 5 (G))k22  V2kH � Gk22.
Therefore

k) (H)�) (G)k22 
⇣
1�2UW +W2

V
2
⌘
kH� Gk22

Hence ) is a contraction if and only if d(W) := 1�W(2U�WV2) 2 [0,1).

Strong convexity of 5 implies (when sup
G2- 5 (G) <1; see Remark 8.1)

UkH� Gk2  kr 5 (H)�r 5 (G)k2  VkH� Gk2, G, H 2 -

and hence 0 < U  V. This implies that d(W) � 0 for all W. Moreover d(W) < 1 and hence
) is a contraction if 0 < W < 2U/V2. Theorem 8.33 then implies that G(C) converges
linearly to a unique fixed point G⇤ of ) and Theorem 8.35 guarantees that G⇤ is the
optimal solution of (8.120). ⇤

The condition number k (r2
5 (G))�1kkr2

5 (G)k of the Hessian matrix can a�ect
greatly the convergence of gradient algorithms. The bound on the stepsize W in The-
orem 8.35 is W < 2/V and that in Theorem 8.36 is W < (2/V) (U/V). As discussed in
Remark 8.1, U = minG2- _min (G) and V = maxG2- _max (G) (assuming - is closed). If
the minimization in U and the maximization in V are attained at the same point G̃, then,
since r2

5 (G̃) is symmetric and positive definite, its condition number is V/U under the
spectral norm. Hence the bound on the stepsize W is scaled down by the condition num-
ber of the Hessian to ensure (linear) convergence of the sequence (G(C), C = 0,1, . . . ).

8.6.4 Interior-point algorithm

Consider the convex program (8.88) with an equality and an inequality constraints,
reproduced here:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌘(G)  0 (8.140)

where � 2 R<⇥=, 1 2 R<, and 5 : R= ! R and ⌘ : R= ! R; are convex and twice
continuously di�erentiable. Recall that interior-point methods approximate (8.140) by
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an equality constrained problem with the inequality constraint ⌘(G)  0 replaced by
a penalty term, and then solve a sequence of equality constrained problems (8.90),
reproduced here:

min
G2R=

C 5 (G) +q(G) s.t. 6(G) = 0 (8.141a)

using Newton methods. Here q is the logarithmic barrier function (defined in (8.89)):

q(G) := �
;’
8=1

log(�⌘8 (G)) (8.141b)

defined over dom(q) := {G 2 R= : ⌘8 (G) < 0, 8 = 1, . . . , ;}.

The convergence of the barrier method Algorithm 3 for solving the convex program
(8.140) has three components:

1. The solution of (8.94) to compute a strictly feasible point if the barrier method
does not start at such a point. This is a one-o� computational e�ort.

2. The convergence of the Newton-Raphson algorithm for (8.141) for each C. This
determines the computational e�ort of each outer iteration in Algorithm 3.

3. How the suboptimality gap in solving (8.140) decreases as a function of the outer
iteration C. This determines how many outer iterations are needed to achieve a
desired accuracy.

For optimal power flow problems the “flat start” where +8 = 1\0� pu for all nodes 8
is often a strictly feasible point. If strictly feasible point is not available, the one-o�
computation e�ort for solving (8.94) is analyzed, e.g., in [59, Chapter 11.5.4, p,592].

The convergence analysis of the Newton-Raphson algorithm is complicated and
out of the scope of this book. The algorithm generally proceeds in two phases. In
the first phase, called the damped Newton phase, the gradient kr 5 (G: )k2 is greater
than a threshold [ > 0 and each Newton step : (in the iterative solution of (8.141)
for a fixed C) decreases the cost 5 (G: ) by at least a constant amount. If the optimal
objective value 5 ⇤ is finite then the damped Newton phase will terminate after a finite
number of steps. Then the algorithm enters the second phase, called the pure Newton
phase where kr 5 (G: )k2 < [. In this phase the algorithm converges extremely rapidly
(quadratic convergence) where the optimality gap 5 (G: ) � 5 ⇤ decreases as 2�2: , i.e.,
roughly, the number of correct digits doubles every iteration : . For details see e.g. [59,
Chapter 9.5.3, p,488] for unconstrained problems and [59, Chapter 10.2.4, p,529] for
equality constrained problems.

Finally, Theorem 8.30 shows that the suboptimality gap of the central point G(C) for
each problem (8.141) with parameter C is ;/C (under conditions C8.1 and C8.2). Hence
if the scaling factor in Algorithm 3 is W and a sequence of problems with parameters
C0,WC0,W2

C0, . . . , are solved, the suboptimality gap decreases at least geometrically as
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(;/C0) (W)�C . Hence the desired accuracy n is achieved after

Cmax :=
log(;/nC0)

logW
iterations.

8.6.5 ADMM

Consider the special case of (8.101) where - := R=1 and . := R=2 :

?
⇤ := min

G2R=1 , H2R=2
5 (G) +6(H) s.t. �G +⌫H = 2 (8.142)

where 5 : R=1 ! R and 6 : R=2 ! R are convex and continuously di�erentiable, � 2
R
<⇥=1 , ⌫ 2 R<⇥=2 , and 2 2 R<. Recall its augmented Lagrangian:

!d (G, H,_) := 5 (G) +6(H) +_T (�G +⌫H� 2) + d
2
k�G +⌫H� 2k22 ,

In this subsection we analyze the convergence and optimality properties of the ADMM
algorithm (8.102), reproduced here:

G(C +1) = arg min
G2R=1

!d (G, H(C), _(C)) (8.143a)

H(C +1) = arg min
H2R=2

!d (G(C +1), H, _(C)) (8.143b)

_(C +1) = _(C) + d (�G(C +1) +⌫H(C +1)� 2) (8.143c)

on the convex problem (8.142).

The un-agumented Lagrangian of (8.142) is !0 (G, H,_). A point (G⇤, H⇤,_⇤)
is primal-dual optimal for (8.142) if and only if it satisfies the KKT condition
rG,H,_!0 (G⇤, H⇤,_⇤) = 0 in terms of the un-augmented Lagrangian, i.e.,

r_!0 (G⇤, H⇤,_⇤) = �G
⇤ +⌫H⇤ � 2 = 0 (8.144a)

rG!0 (G⇤, H⇤,_⇤) = r 5 (G⇤) + �T
_
⇤T = 0 (8.144b)

rH!0 (G⇤, H⇤,_⇤) = r6(H⇤) +⌫T
_
⇤T = 0 (8.144c)

Such a point (G⇤, H⇤,_⇤) is also a saddle point of !0 (Theorem 8.15). Our goal is to
show that the iterates (G(C), H(C),_(C)) produced by the ADMM algorithm (8.143) will
satisfy (8.144) asymptotically. It is in this sense that we interpret the ADMM algorithm
as computing a KKT point.

Our analysis will proceed in three steps. First we will show that (H(C),_(C)) satis-
fies condition (8.144c) at every C. Then we will show that (G(C), H(C),_(C)) satisfies
(8.144a)(8.144b) asymptotically. Finally we show that, as a consequence, the cost
5 (G(C)) + 6(H(C)) converges to the optimal cost ?⇤. This does not imply that the
sequence (G(C), H(C),_(C)) converges, but we will show that the limit point of any
convergent subsequence is a saddle point of !0 and hence primal-dual optimal.
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Define the primal residual

A (G, H) := �G +⌫H� 2, A (C) := A (G(C), H(C)) := �G(C) +⌫H(C)� 2

Then the derivatives of the augmented Lagrangian !d are:

r_!d (G, H,_) = �G +⌫H� 2 = A (G, H)
rG!d (G, H,_) = r 5 (G) + �T

_+ d�T (�G +⌫H� 2) = r 5 (G) + �T
_+ d�T

A (G, H)
rH!d (G, H,_) = r6(H) +⌫T

_+ d⌫T (�G +⌫H� 2) = r6(H) +⌫T
_+ d⌫T

A (G, H)

where we have used rI k"I + 0k22 = 2"T ("I + 0). Hence the derivatives of !d equal
those of the un-augmented Lagrangian in (8.144) if A (G, H) = 0, i.e., if (G, H) is primal
feasible.

Since the minimizations in (8.143a)(8.143b) are unconstrained, the Gauss-Seidel
update means that the minimizers (G(C +1), H(C +1)) satisfy15

rG!d (G(C +1), H(C),_(C)) = 0 (8.145a)

rH!d (G(C +1), H(C +1),_(C)) = 0 (8.145b)

We examine the implication of each. First (8.145b) implies

0 = r6(H(C +1)) +⌫T
_(C) + d⌫T

A (C +1) = r6(H(C +1)) +⌫T
_(C +1) (8.146a)

where the last equality uses _(C +1) = _(C) + dA (C +1) from (8.143c). This shows that
the ADMM iterates (H(C),_(C)) satisfy the stationarity condition (8.144c) at all C.

Then (8.145a) implies

0 = r 5 (G(C +1)) + �T
_(C) + d�T

A (G(C +1), H(C))
= r 5 (G(C +1)) + �T (_(C) + dA (G(C +1), H(C +1))) + d�T

⌫(H(C)� H(C +1))

where the last equality uses A (G(C +1), H(C))�A (G(C +1), H(C +1)) = ⌫(H(C)� H(C +1)).
Hence, since _(C) + dA (C +1) = _(C +1), we have

r 5 (G(C +1)) + �T
_(C +1) = B(C +1) (8.146b)

where B(C), called the dual residual, is:

B(C) := d�
T
⌫ (H(C)� H(C �1))

Hence (G(C),_(C)) satisfies (8.144b) if the dual residual B(C) = 0.

We next show that the primal and dual residuals (A (C), B(C))! 0 as C!1, implying
that the other two KKT conditions (8.144a)(8.144b) will be satisfied asymptotically
by (G(C), H(C),_(C)). Moreover 5 (G(C)) +6(H(C))! ?

⇤.

Theorem 8.37 (ADMM convergence). Suppose C8.1 holds and a saddle point
(G⇤, H⇤,_⇤) of the un-augmented Lagrangian !0 exists. Then as C!1

15 If - ( R=1 or . ( R=2 , then the convergence analysis replaces (8.145) by the optimality condition
rT
5 (G (C +1)) (G� G (C +1)) � 0, rT

6 (H (C +1)) (H� H (C +1)) � 0 for all G 2 - , H 2. .
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1. A (C)! 0, B(C)! 0.
2. 5 (G(C)) +6(H(C))! ?

⇤.

Hence the limit point of any convergent subsequence is a saddle point of !0 and a
primal-dual optimum of (8.142).

Proof Let ?(C) := 5 (G(C)) +6(H(C)). We prove the theorem in 3 steps.

Step 1: prove (8.147). We derive upper and lower bounds on ?(C +1)� ?⇤:

�AT (C +1)_⇤  ?(C +1)� ?⇤  �AT (C +1)_(C +1) + BT (C +1) (G(C +1)� G⇤) (8.147)

We prove A (C)! 0 and B(C)! 0 below and use these bounds to conclude ?(C)! ?
⇤.

Since (G⇤, H⇤,_⇤) is a saddle point of !0, (G⇤, H⇤) is primal feasible and (Saddle-point
Theorem 8.14)

?
⇤ = !0 (G⇤, H⇤,_⇤)  !0 (G(C +1), H(C +1),_⇤) = ?(C +1) +_⇤TA (C +1)

which proves the lower bound in (8.147).

For the upper bound in (8.147) we will use (8.146). Specifically (8.146b) implies that
G(C +1) minimizes the function 5 (G) +

�
�

T
_(C +1)� B(C +1)

�T
G and (8.146a) implies

that H(C +1) minimizes the function 6(H) +
�
⌫

T
_(C +1)

�T
H. Hence

5 (G(C +1)) +
⇣
�

T
_(C +1)� B(C +1)

⌘T
G(C +1)  5 (G⇤) +

⇣
�

T
_(C +1)� B(C +1)

⌘T
G
⇤

6(H(C +1)) +_T (C +1)⌫H(C +1)  6(H⇤) +_T (C +1)⌫H⇤

Adding these inequalities and using �G⇤ +⌫H⇤ = 2, �G(C +1) +⌫H(C +1) = A (C +1) + 2,
we have

?(C +1) +_T (C +1) (A (C +1) + 2)� BT (C +1) (G(C +1)� G⇤)  ?
⇤ +_T (C +1)2

which proves the upper bound in (8.147).

Step 2: prove (8.148). We will take (H(C),_(C)) as the state of the ADMM algorithm and
treat G(C +1) as an intermediate quantity as a function of (H(C),_(C)). Then (8.143) de-
scribes the state evolution from (H(C),_(C)) to (H(C +1),_(C +1)). Define the Lyapunov
function for this dynamical system:

+ (C) := dk⌫(H(C)� H⇤)k22 +
1
d

k_(C)�_⇤k22

Therefore + (C) � 0 with equality if and only if H(C) = H⇤ and _(C) = _⇤ (It is possible
however that+ (C) converges to a constant+⇤ > 0 if (H(C),_(C)) converges to a di�erent
saddle point ( H̃, _̃).) We will lower bound the decrement in + (C) with each iteration:

+ (C +1)�+ (C)  �dk⌫(H(C +1)� H(C))k22� dkA (C +1)k22 (8.148)

This requires a tighter analysis than using triangular inequality of k · k2.
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The inequalities in (8.147) imply (substituting B(C) := d�T
⌫(H(C)� H(C �1)))

(_(C +1)�_⇤)T
A (C +1)� d (H(C +1)� H(C))T

⌫
T
� (G(C +1)� G⇤)  0

Eliminate G⇤ and G(C +1) using �G⇤ = 2� ⌫H⇤ and �G(C +1) = 2� ⌫H(C +1) + A (C +1)
to get

(_(C +1)�_⇤)T
A (C +1) + d(H(C +1)� H(C))T

⌫
T(⌫(H(C +1)� H⇤)� A (C +1))  0 (8.149)

in terms of (H(C),_(C)). We now use (8.149) to prove (8.148).

Write

+ (C +1)�+ (C) = �d�+1 (C)�
1
d

�+2 (C) (8.150a)

where

�+1 (C) := k⌫(H(C)� H⇤)k22� k⌫(H(C +1)� H⇤)k22 (8.150b)

�+2 (C) := k_(C)�_⇤k22� k_(C +1)�_⇤k22 (8.150c)

Substituting H(C) � H⇤ = (H(C) � H(C +1)) + (H(C +1) � H⇤) into (8.150b) and expanding
k⌫(H(C)� H⇤)k22 and similarly for k_(C)�_⇤k22 in (8.150c), we have

�+1 (C) = k⌫(H(C +1)� H(C))k22�2(⌫(H(C +1)� H(C)))T
⌫(H(C +1)� H⇤)

�+2 (C) = k_(C +1)�_(C)k22�2(_(C +1)�_(C))T (_(C +1)�_⇤)
= kdA (C +1)k22�2dAT (C +1) (_(C +1)�_⇤)

where the last equality follows from_(C+1) =_(C) +dA (C+1). Substituting into (8.150a)
gives:

+ (C +1)�+ (C) = �dk⌫(H(C +1)� H(C))k22� dkA (C +1)k22 +2/

where

/ := A
T (C +1) (_(C +1)�_⇤) + d(H(C +1)� H(C))T

⌫
T
⌫(H(C +1)� H⇤)

It therefore su�ces to show that /  0 to establish (8.148). From (8.149) we have

/  d(H(C +1)� H(C))T
⌫

T
A (C +1)

We now show that (H(C +1)� H(C))T
⌫

T
A (C +1)  0.

Recall that H(C + 1) minimizes !d (G(C + 1), H,_(C)) over H 2 R=2 and satisfies
(8.146a):

0 = r6(H(C +1)) +⌫T
_(C) + d⌫T

A (C +1)

Multiplying both sides by (H(C +1)� H(C))T and rearranging we have

d(H(C +1)� H(C))T
⌫

T
A (C +1) = rT

6(H(C +1)) (H(C)� H(C +1))� (H(C +1)� H(C))T
⌫

T
_(C)

 6(H(C))�6(H(C +1))� (H(C +1)� H(C))T
⌫

T
_(C)

=
⇣
6(H(C)) +_T(C)⌫H(C)

⌘
�

⇣
6(H(C +1)) +_T(C)⌫H(C +1)

⌘
 0
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where the first inequality follows from the convexity of 6 and the last inequality follows
from the observation above that (8.146a) implies that H(C) minimizes 6(H) +_T(C)⌫H
over H 2 R=2 . Hence /  0. This completes the proof of (8.148).

Step 3: prove A (C)! 0, B(C)! 0, and ?(C)! ?
⇤. Iterating on (8.148) gives

+ (C)�+ (0)  �d
C’
g=1

⇣
k⌫(H(g)� H(g�1))k22 + kA (g)k22

⌘

Hence 0  + (C)  + (0) � dÕ
C

g=1

�
k⌫(H(g)� H(g�1))k22 + kA (g)k22

�
. Taking the limit

we have
1’
g=1

⇣
k⌫(H(g)� H(g�1))k22 + kA (g)k22

⌘
 + (0)

implying that A (C)! 0 and B(C) := d�T
⌫(H(C)� H(C�1))! 0. (Note that this does not

imply + (C)! 0, nor (G(C), H(C))! (G⇤, H⇤), since the series sum may be strictly less
than + (0).)

To prove ?(C)! ?
⇤, note that + (C) remaining finite as C!1 means that _(C) and

H(C) remain finite as C !1. Since A (C) = �G(C) + ⌫H(C) � 2 is finite, �G(C) remains
finite as C!1. Then, since the second term in the upper bound in (8.147) is

B
T (C +1) (G(C +1)� G⇤) = d (⌫(H(C +1)� H(C)))T

� (G(C +1)� G⇤)

A (C)! 0 and ⌫(H(C)� H(C �1))! 0 imply that ?(C)! ?
⇤ in view of (8.147).

Finally suppose a subsequence of (G(C), H(C),_(C)) converges to (G̃, H̃, _̃). Then it is
proved in Chapter 8.5.5 that (G̃, H̃, _̃) is a saddle point of !0 and hence is primal-dual
optimal for (8.142). ⇤

8.7 Chapter summary

Consider the optimization problem

5
⇤ := min

G2R=
5 (G) s.t. 6(G) = 0, ⌘(G)  0 (8.151)

1. The problem (8.151) is a convex program if the cost function 5 is convex, the
equality constraint function 6(G) := �G � 1 is a�ne and the inequality constraint
function ⌘(G) is convex. Then the feasible set - is a convex set.

2. Three basic types of convex sets are the most useful in engineering applications:
a polyhedral set � := {G 2 R= : �G  1} specified by a finite number of a�ne
inequalities, a second-order cone  soc := {G 2 R= : kG=�1k2  G=}, and a semidef-
inite cone  psd := {- 2 S= ⇢ R=⇥= : - ⌫ 0}, the set of all symmetric positive
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semidefinite matrices. Other useful convex sets are those generated through sim-
ple convexity-preserving operations such as their a�ne images or pre-images, a
direct product, a finite sum or an arbitrary intersection of these basic sets.

3. As summarized in Table 8.1, two most useful characterizations of optimal solutions
of (8.151) are:
• Th 8.14: For arbitrary 5 ,6,⌘, a vector (G⇤,_⇤,`⇤) is a saddle point if and only

if (G⇤,_⇤,`⇤) is primal-dual optimal and it closes the duality gap;
• Th 8.15: If (8.151) is convex (i.e., 5 ,⌘ are convex, 6 is a�ne), then (G⇤,_⇤,`⇤)

is a saddle point if and only if it satisfies the KKT condition, assuming 5 ,⌘ are
di�erentiable.

For the existence of primal and dual optimal solutions of (8.151):
• Th 8.16: A primal optimum G

⇤ exists if 5 is continuous and the feasible set -
is compact; it is unique if 5 is strictly convex.

• Th 8.17: If (i) (8.151) is convex (i.e., 5 ,⌘ are convex, 6 is a�ne), (ii) the
optimal value 5 ⇤ is finite, and (iii) the Slater condition is satisfied, then a dual
optimal solution (_⇤,`⇤) exists and strong duality holds 5 ⇤ = 3⇤ (even if 5 ⇤ is
not attained).

The dual problem, the optimal dual value and strong duality generally depend
on the primal and dual representations (choice of 5 ,6,⌘ and partial dualizations)
and may be di�erent for di�erent, even if equivalent, representations of the same
problem (Example 8.12).

4. Let ? denote a parameter in the cost and/or constraint functions. Let the
value function, as a function of the parameter ?, be the Lagrangian + (?) :=
! (G⇤ (?), H⇤ (?); ?) evaluated at the primal optimum G

⇤ (?) and dual optimum
H
⇤ (?), or the optimal cost + (?) := 5 (G⇤ (?); ?) when the constraint functions are

independent of the parameter ?. Envelop theorems provide su�cient conditions
for the di�erentiability of + (?) and the main conclusion is that its derivative
r+ (?) = r?! (G, H; ?) is the partial derivative of ! or 5 with respect to ?, evalu-
ated at the unique optimal point (G, H) = (G⇤ (?), H⇤ (?)) (Theorems 8.19 and 8.21).
Their implication is that the sensitivity of the value function + (?) depends only
on the direct impact of the parameter ? on ! (G, H; ?) or 5 (G; ?), not on its indirect
impact through the optimal point (G⇤ (?), H⇤ (?)).

5. The general optimality theory has been applied to special classes of convex op-
timization problems widely used in applications, such as linear program, convex
quadratic program, second-order cone program, semidefinite program, and conic
program. Their optimality characterizations and existence properties are summa-
rized in Table 8.3.

6. We have surveyed major classes of algorithms for solving (8.151).
• Gradient projection algorithms, dual algorithms and primal-dual algorithms

are first-order algorithms. They are simple and the most widely used.
• Newton-Raphson and interior-point algorithms are second-order algorithms.

They use the Hessian r2
5 (G(C)) of the cost function to orient the descent

direction in each iteration and, if convergent, converge more rapidly than first-
order algorithms.
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• When the cost function 5 is separable in G8 , e.g., 5 (G) :=
Õ
8
58 (G8), and the con-

straints are a�ne, dual algorithms and primal-dual algorithms decompose into
a decentralized structure that can be implemented in a distributed environment.

• ADMM combines the distributed structure of dual decomposition with better
convergence properties of augmented Lagrangian methods when the cost is
51 (G) + 52 (H) and the coupling constraint is of the form �G +⌫H = 2.

• Branch and bound methods are global algorithms for solving problems that
may be nonconvex (e.g., a mixed-integer nonlinear program (MINLP)). Such
an algorithm iteratively constructs a search tree, where in each iteration, (i)
a node -8 in the tree is selected that defines a subproblem (e.g., a MINLP
subproblem), (ii) a simpler but approximate version of the subproblem is
solved (e.g., LP or convex relaxation) to lower bound the optimal value of the
subproblem defined by -8 (bounding), and (iii) node -8 is either pruned or
split into child nodes (branching) based on the solution of the approximate
subproblem, and the cycle repeats. It can compute a global optimum, after a
potentially exponential number of iterations.

• Benders decomposition is also a global algorithm for solving problems of the
form minG�0, H2. 2T

G+ 5 (H) such that �G+� (H)  1 where H is a complicating
variable, i.e., the minimization over G given H is much simpler than the mini-
mization over (G, H). For example, given a unit commitment decision, solving
for an optimal dispatch is a simple linear program. The first insight is the
reformulation of the problem, using the Farkas lemma, as solving a nonlinear
program (NLP(⇠)) min(H0,H) H0 over a feasible set⌧ (⇠) and then, given an op-
timal (H⇤0, H⇤), solving a linear program minG�0 2

T
G subject to �G  1�� (H⇤).

The di�culty is solving NLP(⇠) because ⌧ (⇠) is typically a complicated set.
Benders algorithm starts with a simple superset ⌧ (&) ◆ ⌧ (⇠) as the feasible
set and solve NLP(&). In each iteration, given a finite optimal solution ( H̄0, H̄)
of NLP(&), the algorithm solves the dual problem DP( H̄) of the linear pro-
gram for a dual optimal solution ¯̀, with three possible outcomes: (i) DP( H̄) is
bounded and 6( H̄0, H̄;1, ¯̀) = 0, in which case a global optimum is found and
the algorithm terminates; or (ii) DP( H̄) is bounded but 6( H̄0, H̄;1, ¯̀) < 0, in
which case the new constraint 6( H̄0, H̄;1, ¯̀) � 0 is added to⌧ (&) and the cycle
repeats; or (iii) DP( H̄) is unbounded and 6( H̄0, H̄;0, ¯̀) < 0, 6( H̄0, H̄;1, ā) < 0, in
which case the new constraints 6( H̄0, H̄;0, ¯̀) � 0, 6( H̄0, H̄;1, ā) � 0 are added
to ⌧ (&) and the cycle repeats. The algorithm strictly tightens the relaxation
NLP(&) in each iteration until it terminates after finitely many iterations either
with a finite optimal solution or a proof that none exists (i.e., the problem is
either infeasible or feasible but unbounded). It is summarized in Figure 8.18.

7. We have introduced some tools for convergence analysis of optimization algo-
rithms.
• If a continuously di�erentiable 5 is strongly convex with parameter U and its

gradient r 5 is Lipschitz with a Lipschitz constant V (condition C8.6) over
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- ✓ R=, then for all G,G + H 2 -

H
Tr5 (G) + U

2
kHk22  5 (G + H)� 5 (G)  H

Tr5 (G) + V
2
kHk22

UkHk2  kr 5 (G + H)�r 5 (G)k2  VkHk2
This implies, in particular, that a gradient projection algorithm is a contraction
mapping and hence converges linearly to the unique optimal solution G⇤ 2 - ,
provided the stepsize is su�ciently small.

• If a Gauss algorithm is a contraction mapping with a unique fixed point G⇤

and rate of convergence U 2 [0,1), then its Gauss-Seidel version remains a
contraction with the same fixed point G⇤ and rate U.

• The ADMM algorithm asymptotically computes a KKT point.

8.8 Bibliographical notes

There are many excellent texts on convex analysis and optimization, e.g., [65, 66, 59, 56], on which many
materials in this chapter are based. For example materials in Chapter 8.2.1 mostly follow [56], the Projection
Theorem 8.9 in Chapter 8.2.3 follows [66, Proposition 3.2], and the sensitivity property in Chapter 8.3.5
follows [59, Section 5.6]. The envelope theorems in Chapter 8.3.6 are from [58] and [66, Proposition A.43,
p.649]. See [67, Theorems 1, 2, 3] for envelope theorems that allow nonunique maximizer G⇤ (?) but requires
an upper bound on |m 5 (G, ?)/m?8 | uniformly in ?8 . Chapter 8.5.3 on interior-point methods mostly follows
the presentation in [59, Chapter 11]. The main reference for Benders decomposition in Chapter 8.5.7 is [63].
See [62] for extensions where the linear program (8.112b) is generalized to a convex program.

The convergence analysis in Chapters 8.6.1–8.6.3 mostly follow [66]. For example, the Descent
Lemma 8.32 is proved in [66, Proposition A.32] and Lemma 8.6 on strong convexity in [66, Proposi-
tion A.41]. Theorem 8.34 on the convergence the Gauss-Seidel algorithm is from [66, Proposition 1.4, Ch
3, p. 186]. The analysis of ADMM in Chapter 8.6.5 is from [68, Appendix A]. Interior-point methods were
first employed to solve power system problems in the early 1990s for the purpose of state estimation [69].
See [70] for empirical performance of interior-point methods for large-scale OPF problems.

8.9 Problems

Chapter 8.1.

Exercise 8.1 (Convex sets). Prove that the following sets are convex:

1. A�ne set: ⇠ = {G 2 R= | �G = 1} where � 2 R<⇥= and 1 2 R<, <,= � 1.
2. Second-order cone: ⇠ = {(G, C) 2 R=+1 | kGk2  C}, = � 1. Here kGk2 :=q

G
2
1 + G2

2 + · · · + G2
=

is the Euclidean norm.

3. Positive semidefinite matrices: ⇠ = {� 2 S=⇥= | � ⌫ 0}, = � 1, where S=⇥= is the set
of symmetric =⇥= real matrices and � ⌫ 0 means GT

�G � 0 for any G 2 R=.

Exercise 8.2 (Operations preserving set convexity). Let X and Y be linear subspaces.
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1. Linear transformation: Let 5 : X! Y be linear. Prove:
(a) If � ✓ X is convex then 5 (�) := { 5 (G) : G 2 �} is convex.
(b) If ⌫ ✓ Y is convex then 5

�1 (⌫) = {G 2 R= : 5 (G) 2 ⌫} is convex.
2. Arbitrary direct product: Let � ✓ X, ⌫ ✓ Y be convex.

(a) Prove that the product space X⇥Y := {(G, H) : G 2 X, H 2 Y} with + and · defined
by

(G1, H1) + (G2, H2) := (G1 + G2, H1 + H2) 8(G1, H1), (G2, H2) 2 X⇥Y;

_(G, H) := (_G,_H) 8_ 2 R, 8(G, H) 2 X⇥Y

is also a linear space.
(b) Prove that the direct product �⇥⌫ := {(G, H) : G 2 �, H 2 ⌫} is convex. In fact the

direct product of an arbitrary number of convex sets is convex.
3. Finite sum: Let �,⌫ ✓ X be convex. Prove that the set �+⌫ := {0+1 : 0 2 �,1 2 ⌫}

is convex. Therefore the sum of any finite number of convex sets is convex.
4. Arbitrary intersection: Let �,⌫ ✓ X be convex. Prove that the intersection �\⌫ is

convex. In fact the intersection of an arbitrary collection of convex sets is convex.
5. Union can be nonconvex. Let �,⌫ ✓ X be convex. Give an example where the union
�[⌫ is nonconvex. [Hint: Consider X = R].

Exercise 8.3 (Directional derivatives and di�erentiability). Show that

5 (G, H) :=

(
G
0
H
0

G
20+H20 if (G, H) < (0,0)

0 if (G, H) = (0,0)

is not continuous, and hence not di�erentiable, at the origin.

Exercise 8.4 (Convex functions). Prove that the following functions are convex:

1. Exponential: 5 (G) := 40G where 0,G 2 R.
2. Entropy: 5 (G) := G lnG defined on R++ := (0,1).
3. Log-exponential: 5 (G1,G2) := ln(4G1 + 4G2 ), G8 2 R.

Exercise 8.5 (Convex functions). [59, Exercise 3.6] For each of the following functions
determine if it is convex, concave, or neither.

• 5 (G) = 4G �1 on R.
• 5 (G) = G1G2 on

�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

• 5 (G) = 1
G1G2

on
�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

• 5 (G) = G1/G2 on
�
(G1,G2) 2 R2 | G1 > 0,G2 > 0

 
.

Exercise 8.6 (Convexity tests). Verify the convexity conditions of Theorem 8.2 on

5 (G) := 5 (G1,G2) := G
2
1 �4G1G2 +4G2

2 = (G1�2G2)2

Exercise 8.7 (Strict convexity). Prove Corollary 8.3.

Exercise 8.8 (Operations preserving function convexity). Suppose 51 and 52 are two
convex functions on the same domain. Prove that:
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1. 5 := U 51 + V 52, U, V � 0, is convex.
2. 5 := max{ 51, 52} is convex.
3. 5 (G, H) := |G | + |H | defined on R2 is convex. [Hint: use part 2.]
4. 5 (6(G)) is convex if 6 : R=! R< is convex (componentwise) and 5 : R<! R is

convex and nondecreasing (componentwise), i.e., 5 (H1)  5 (H2) for H1, H2 2 R<
with H1  H2.

Exercise 8.9 (log barrier function). A common way to deal with the nonconvex
constraint

Õ
=�1
8=1 G

2
8
 G2

=
is to replace it by the following log-barrier penalty in the cost

function:

5 (G) := � log

 
G

2
=
�
=�1’
8=1

G
2
8

!

Show that 5 is strictly convex over its e�ective domain dom( 5 ) := {G 2 R= :
Õ
=�1
8=1 G

2
8
<

G
2
=
}. (Hint: Use Cauchy-Schwarz inequality to show that r2

5 (G) � 0 for G 2 dom( 5 ).)
Exercise 8.10 (Level set and convex problem). 1. Level set. Let 5 : ⇠ ! R where

⇠ ✓ R=. Prove that the level set {G 2 ⇠ | 5 (G)  U} is convex for any U 2 R
provided that ⇠ is a convex set and 5 is a convex function.

2. Convex problem. Consider

min
G

5 (G) s.t. �G = 1, 68 (G)  0, 8 = 1, . . . , :

where � 2 R<⇥=, 1 2 R<, : � 1, and 5 , 61, . . . ,6: are scalar functions defined on
R
=. Prove that if 5 ,61,62, . . . ,6: are convex then the feasible set

- := {G 2 R= | �G = 1, 68 (G)  0, 8 = 1, . . . , :}

is convex.

Chapter 8.2.

Exercise 8.11 (Carathéodory theorem). Prove Theorem 8.7.

Exercise 8.12 (Second-order cone). 1. The second-order cone  soc =  ̃ \� where
 ̃ := {(G, C) 2 R=+1 : kGk22  C2} and � := {(G, C) : C � 0} is a halfspace. Show that
while  soc is a convex cone,  ̃ is a cone but nonconvex.

2. Show that ⌘1 (G, C) := kGk2 � C is a convex function while ⌘2 (G, C) := kGk22 � C2 is
nonconvex.

Exercise 8.13 (Rotated second-order cone). Show that the rotated second-order cone

 rsoc :=
�
(G, H, I) 2 R= ⇥R2 : kGk22  HI, H � 0, I � 0

 
is a linear transformation of the standard second-order cone

 soc :=
�
(F, C) 2 R=+1⇥R : kFk  C

 
i.e., (F, C) = �(G, H, I) 2  soc ✓ R=+2 if and only if (G, H, I) 2  rsoc for a (=+2)⇥ (=+2)
nonsingular matrix �. Derive � and its inverse.
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Exercise 8.14 (SOC constraint). Consider the second-order cone  soc in Exercise 8.12
and the set defined in terms of  soc:

⇠ := {G : (�G + 1,2T
G + 3) 2  soc} = {G : k�G + 1k2  2T

G + 3} ✓ R<

where � 2 R=⇥<, 1 2 R=, 2 2 R<, and 3 2 R. Since ⇠ is the pre-image of an a�ne
function on  soc, it is convex.

1. Verify directly the convexity of ⇠ using the definition of convex sets.
2. Write⇠ = ⇠̃\� where ⇠̃ := {G : k�G+1k22  (2T

G+3)2} and� := {G : 2T
G+3 � 0}

is a halfspace. Give an example where ⇠̃ is not convex and illustrate how the
intersection with � yields a convex set.

Exercise 8.15 (Farkas Lemma). Prove the following variant of Theorem 8.12: Exactly
one of the following holds:

1. There exists an G � 0 such that �G  1.
2. There exists an H � 0 such that HT

� � 0 and HT
1 < 0.

where � 2 R<⇥=, 1, H 2 R< and G 2 R=. (Hint: Consider . := {H 2 R< : �G  H,G �
0} = {�G + B : G � 0, B � 0}.)

Chapter 8.3

Exercise 8.16 (Equivalent property of saddle point). Consider the primal problem and
its partial dual (8.34) with the undualized constraint set - 0, the dualized constraint set
- := {G 2 R= : 6(G) = 0,⌘(G)  0} and dual feasible set . := {(_,`) 2 R<+; : ` � 0}.
Show that (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point, i.e.,

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤)

if and only if

! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤), G
⇤ 2 - , `

⇤T
⌘(G⇤) = 0

Exercise 8.17 (KKT condition). This problem derives the KKT condition for the
constrained optimization problem:

(P) : min
G2R=

5 (G) s.t. �G = 1, ⌘8 (G)  0, 8 = 1, . . . , ;

where � 2 R<⇥=, 1 2 R<, : � 1, and 5 , ⌘1, . . . ,⌘; are scalar functions defined on R=.
Let _ 2 R<,` 2 R;+ = [0,1); , and define

! (G,_,`) := 5 (G) +_T (�G� 1) + `T
⌘(G)

where ⌘(G) = (⌘1 (G),⌘2 (G), . . . ,⌘; (G))T.

1. Unconstrained optimization. Let 3 (_,`) := minG2R= ! (G,_,`) denote the uncon-
strained optimization over G for fixed (_,`). Assume that Problem (P) has an
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optimal solution and denote it by G⇤. Show that 3 (_,`)  5 (G⇤) for any _ 2 R<
and ` 2 R;+.

2. Dual problem. Consider the dual problem

(D) : max
(_,`)2R<+;

3 (_,`) s.t. ` � 0

Assume (D) has an optimal solution (_⇤,`⇤).
(a) Show that 3 (_⇤,`⇤) � 5 (G⇤)  Õ

;

8=1 `
⇤
8
⌘8 (G⇤)  0. It implies that Problem (D)

provides a lower bound for Problem (P). Note that this holds whether or not
5 ,⌘1, . . . ,⌘; are convex.

(b) Assume now 5 ,⌘1, . . . ,⌘; are convex and di�erentiable. Show that the equality
is attained, i.e., 3 (_⇤,`⇤) = 5 (G⇤) +Õ

;

8=1 `
⇤
8
⌘8 (G⇤), if and only if

rG! (G⇤,_⇤,`⇤) = 0

(c) Show that if there exists (G,_,`) such that G is feasible for (P), (_,`) is feasible
for (D), rG! (G,_,`) = 0, and `8⌘8 (G) = 0 for 8 = 1, . . . , ;, then G solves (P) and
(_,`) solves (D). These are the KKT conditions.

Exercise 8.18 (LICQ implies MFCQ). Suppose G⇤ is a local optimal of the constrained
optimization problem (8.25). Let .̄ (G⇤) be the set of Lagrange multipliers associated
with G⇤:

.̄ (G⇤) :=
⇢
(_,`) 2 R<+; :

m!

mG

(G⇤,_,`) = 0, 6(G⇤) = 0, ⌘(G⇤)  0, ` � 0, `T
⌘(G⇤) = 0

�

Prove that the linear independence constraint qualification (8.43) implies the
Mangasarian-Fromovitz constraint qualification (8.42). (Hint: Use the Farkas Lemma
8.12.)

Exercise 8.19 (Slater Theorem). For

5
⇤ := inf

G2R
5 (G) := 4�G s.t. G = 0

check that the conditions in the Slater Theorem 8.17 are satisfied and derive the
primal-dual optimal solution (G⇤,_⇤).

Exercise 8.20 (Slater Theorem: dual optimal set). [57, Lemma 1] Consider the
following primal problem with only the inequality constraint and its dual:16

5
⇤ := min

G2R=
5 (G) s.t ⌘(G)  0

3
⇤ := max

`�0
3 (`) := max

`�0

✓
inf
G2R=

5 (G) + `T
⌘(G)

◆

Suppose:

• Convexity: 5 ,⌘ are convex.
• Finite primal value: 5 ⇤ is finite, i.e., �1 < 5

⇤
<1.

16 The absence of equality constraint is only important for the upper bound on k` k below. That ⇡⇤ is
bounded can be proved without this assumption as in Lemma 12.30.
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• Strict Slater condition: there exists Ḡ such that ⌘(Ḡ) < 0.

Then Theorem 8.17 says that strong duality holds and dual optimal solutions `⇤ exist.
Fix any ¯̀ 2 R; with ¯̀ � 0 and let ⇡̄ := {` 2 R; : 3 (`) � 3 ( ¯̀)} be the level set defined
by ¯̀. Let ⇡⇤ denote the set of dual optimal solutions. Show that [57, Lemma 1]:

1. The level set ⇡̄ is compact and convex.
2. The dual optimal set ⇡⇤ is compact and convex. In particular ⇡⇤ is bounded by the

weak duality gap at the strict Slater point Ḡ divided by the worst-case “constraint
gap”:

max
`2⇡⇤
k`k2  max

`2⇡⇤
k`k1 

5 (Ḡ)� 3⇤
min8 (�⌘8 (Ḡ))

=
5 (Ḡ)� 5 ⇤

min8 (�⌘8 (Ḡ))
The boundedness of the dual optimal set ⇡⇤ is also proved in Lemma 12.30 in
the context of MC/MC problem where ⌘(Ḡ) < 0 corresponds to the condition
0 2 int

�
⇡
"

�
(not just 0 2 ri

�
⇡
"

�
). The argument there is by contradiction and

does not provide an explicit bound on k`k.

The following problem shows that Theorem 8.19 may not hold when the ambient
feasible set -? depends on ? (though the di�culty can always be avoid if one dualizes
all constraints so that -? = R= is independent of ?).

Exercise 8.21 (Saddle-point envelope theorem). Consider the master problem:

min
G

5 (G) := (G� ?)2 s. t.
?

4
 G  ?

2
(8.152)

for ? 2 % := (0,2). Clearly the unique minimizer G⇤ (?) = ?/2. We study three ways
to dualize, resulting in di�erent Lagrangian functions, the ambient set -? , and saddle
points.

1. Dualize both constraints with dual variables H := (H1, H2) � 0 and the Lagrangian

! (G, H; ?) := 5 (G) + H1

⇣
?

4
� G

⌘
+ H2

⇣
G� ?

2

⌘

so that the ambient set - := R2 is independent of the parameter ?. Exhibit that
Theorem 8.19 holds.

2. Consider the form of (8.152)

min
G2-?

5 (G) := (G� ?)2 s.t. G � ?

4
(8.153)

with -? := {G : G  ?/2}, and Lagrangian

!1 (G, H1; ?) := 5 (G) + H1

⇣
?

4
� G

⌘

Show that Theorem 8.19 does not hold because of the reason explained in Remark
8.7 (even though all other conditions in Theorem 8.19 hold).
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3. Consider the following form of (8.152)

min
G2-?

5 (G) := (G� ?)2 s.t. G  ?

2
(8.154)

with -? := {G : G � ?/4}, and Lagrangian

!2 (G, H2; ?) := 5 (G) + H2

⇣
G� ?

2

⌘

Show that Theorem 8.19 holds because G⇤ (?) 2 -@ for all ?,@ 2 %.

Chapter 8.4.

Exercise 8.22 (Convex programs). Show how the di�erent classes of convex problems
in Figure 8.14 reduce to each other.

Exercise 8.23 (LP duality). Consider the linear program (8.57a) and suppose �1 <

5
⇤
<1. Lemma 8.22 then implies the existence of an optimal primal solution G⇤ 2 - .

Use Farkas Lemma (Theorem 8.12) to show that there exists a dual optimal solution
`
⇤ 2 . that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 1T

`
⇤.

Exercise 8.24 (Unconstrained quadratic program). This exercise proves step by step
Theorem 8.24 on unconstrained convex QP:

5
⇤
1 := min

G2R=
5 (G) := G

T
&G + 22T

G

where & ⌫ 0 and 2 2 R=.

1. Suppose & � 0 is positive definite. Show that the unique minimizer G⇤ and the
minimum value 5 ⇤1 are respectively

G
⇤ = �&�1

2, 5
⇤
1 = �2T

&
�1
2

2. Suppose & ⌫ 0 but not positive definite. Let the spectral decomposition of & be

& = *⇤*T =
⇥
*A *=�A

⇤ 
⇤A 0
0 0

� 
*

T
A

*
T
=�A

�
= *A⇤A*T

A

Write & = 'T
' where ' := ⇤1/2

A
*

T
A
2 RA⇥=.

(a) Show that it is possible to complete the square, i.e., write

5 (G) = G
T
'

T
'G +22T

G = k'G + 2̃k22� k2̃k22
if and only if 2 2 range(&). Determine 2̃.

(b) Show that if 2 2 range(&) then the set of minimizers G⇤ and the minimum
value 5 ⇤1 are respectively

G
⇤ = �&†

2 + null(&), 5
⇤
1 = �2T

&
†
2

where &† :=*A⇤�1
A
*

T
A

is the pseudo-inverse of &.
(c) Show that if 2 8 range(&) then 5

⇤
1 = �1. (Hint: Transform to the coordinate

defined by the basis*.)
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Exercise 8.25 (Constrained quadratic program). This exercise proves a slightly more
general version of Theorem 8.25 step by step for the a�nely constrained convex QP:

5
⇤
2 := min

G2R=
5 (G) := GT

&G +22T
G s.t. �G = 1, ⌫G + 3 � 0

where & ⌫ 0, 2 2 R=, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥= and 3 2 R; . Here we replace the
condition & � 0 by the weaker condition 5

⇤
2 > �1.

1. Dual problem. Show that the Lagrangian dual problem is:

3
⇤ := �2T

&
†
2 � min

_2R<,`2R:+

✓ ⇥
_

T
`

T⇤
&̂


_

`

�
+ 2 2̂T


_

`

� ◆

where R;+ := {` 2 R; : ` � 0} and

&̂ :=

�

⌫

�
&

† ⇥
�

T
⌫

T⇤ , 2̂ :=

�1
+3

�
�


�

⌫

�
&

†
2 (8.155)

2. Strong duality, dual optimality, KKT condition. Show that strong duality holds and
dual optimality is attained. Moreover a feasible G⇤ is optimal if and only if there
exists (_⇤,`⇤) 2 R<+; such that `⇤ � 0 and

�
T
_
⇤ +⌫T

`
⇤ �&G⇤ = 2, `

⇤T (⌫G⇤ + 3) = 0

Exercise 8.26 (QCQP). Consider the convex quadratically constrained quadratic pro-
gram (QCQP):

5
⇤ := min

G2R=
5 (G) := G

T
&0G +22T

0G s.t. G
T
&1G +22T

1G  3

where&0 � 0 is positive definite,&1 ⌫ 0 is positive semidefinite, 20,21 2 R= and 3 2 R.

1. Dual problem. Show that the Lagrangian dual problem is:

3
⇤ := � min

`2R+
3` + (20 + `21)T (&0 + `&1)�1 (20 + `21)

2. Strong duality, dual optimality, KKT condition. Suppose 5
⇤ is finite and there

exists Ḡ such that ḠT
&1Ḡ + 22T

1 Ḡ < 3. Show that strong duality holds and dual
optimality is attained. Moreover a feasible G⇤ is optimal if and only if there exists
`
⇤ 2 R such that `⇤ � 0 and

(&0 + `⇤&1)G⇤ + (20 + `⇤21) = 0, `
⇤ (G⇤T&1G

⇤ +22T
1G
⇤ � 3) = 0

Exercise 8.27 (Dual problem of SOCP). For the second-order constraint problem
(8.70):

1. Derive the dual problem. (Hint: Use minG2R= (0kGk2� 1G) = 0 if k1k2  0 and
�1 otherwise, proved in (8.157).)

2. When the cost function is linear 5 (G) := 2T
G, show that the dual problem is

3
⇤ := max

(_,W)2R<+;
1

T
_� 3̃T

W s.t. �
T
_+ ⌫̃T

W = 2, kW;�1k2  W;
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Exercise 8.28 (Equivalent representations: SOCP). Consider SOCP (8.67) and an
alternative representation of SOCP:

5
⇤
1 := min

G2R=
2

T
G s.t. �G = 1, kG=�1k2  G= (8.156a)

5
⇤
2 := min

G2R=
2

T
G s.t. �G = 1, kG=�1k22  G2

=
, G= � 0 (8.156b)

They are equivalent representations in the sense that they have the same cost function
and feasible set. The constraint function ⌘1 (G) := kG=�1k2 � G= in (8.156a) is nondif-
ferentiable at G = 0 and the constraint function ⌘2 (G) := kG=�1k22 � G2

=
in (8.156b) is

nonconvex. In this exercise we show that they have di�erent duality and optimality
properties.

Separate the first =�1 columns of � from the last column and the first =�1 entries
of 2� �T

_ from the last:

� =:
⇥
�
=�1

0=

⇤
, d :=


d
=�1

d=

�
:=


2
=�1� (�=�1)T

_

2= � 0T
=
_

�
:= 2� �T

_

1. Consider the SOCP (8.156a).
(a) Show that, if 6(G) := 0kGk2� 1T

G, then

min
G2R=

6(G) =
⇢

0 if k1k2  0
�1 otherwise

(8.157)

(b) Use (8.157) to show that the Lagrangian dual function of (8.156a) is

31 (_,`) := min
G2R=

! (G,_,`) =
⇢
_

T
1 if kd=�1k2  d= = `
�1 otherwise

and hence the dual problem is an SOCP:

3
⇤
1 := max

_2R<
_

T
1 s.t. k2=�1� (�=�1)T

_k2  2= � 0T
=
_ (8.158)

2. Consider the SOCP (8.156b). Show that the Lagrangian dual function is:

32 (_,`) := min
G2R=

! (G,_,`) =
⇢
_

T
1 if d=�1 = 0, d= = ` � 0, `1 = 0
�1 otherwise

and hence the dual problem is a LP:

3
⇤
2 := max

_2R<
_

T
1 s.t. (�=�1)T

_ = 2=�1, 0T
=
_  2=

whose feasible set is a subset of that of (8.158).
3. Strong duality and dual optimality. Consider now the case where the constraint
�G = 1 is absent in SOCP (8.156):

5
⇤
1 := min

G2R=
2

T
G s.t. kG=�1k2  G= (8.159)

5
⇤
2 := min

G2R=
2

T
G s.t. kG=�1k22  G2

=
, G= � 0 (8.160)

Show that, if k2=�1k2  2=, then strong duality holds and dual optimality is attained
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for (8.159), but, as long as 0 < k2=�1k2  2=, 5 ⇤2 = 0 > �1 = 3⇤2, i.e., the duality
gap is unbounded and the dual problem is infeasible, for (8.160).

Chapter 8.5.

Exercise 8.29 (Linear equality constraint). For the quadratic program (8.82) over
�G(C), show that its KKT condition is (8.83a).

Exercise 8.30 (Newton-Raphson algorithm). Consider the scalar problem

min
G2R

1
2
2G

2 s.t. 0G = 1

Show that both algorithms (8.83) and (8.84) produce the same sequence of (G(C),_(C))
starting from the same initial point.

Exercise 8.31 (Interior-point method - strictly feasible point). Consider the following
problem to compute a strictly feasible point for (8.88):

min
(G,B)2R=+1

B s.t. 6(G) = 0, ⌘8 (G)  B, 8 = 1, . . . , ; (8.161)

Assume (8.161) is feasible. Show that a strictly feasible point for (8.88) exists if and
only if the optimal value Bopt of (8.161) is strictly negative (possibly �1), whether or
not the minimum of (8.161) is attained.

Exercise 8.32 (Benders decomposition). Prove Theorem 8.31. (Hint: For part 1, use
the Farkas lemma to show that ⌧ (⇠) = ⌧ 0 where ⌧ (⇠) is defined in (8.114a) and
⌧
0 := {(H0, H) : H 2 . , �̃G  1̃(H0, H) for some G � 0}.)

Exercise 8.33 (Benders decomposition). Suppose C8.3 and C8.4 hold and ⌧ (⇠) < ;.

1. Show that H0 has no lower bound on ⌧ (⇠) (i.e., 5 (⇠) = �1) if and only if the
dual problem (8.115) is infeasible.

2. Taking any & ✓ ⇠ and consider the relaxation ⌧ (&) of ⌧ (⇠) defined in (8.116a).
Show that if 5 (&) = �1 in (8.116b), then `0 = 0 for all (`0,`) 2 &. Can the
dual problem (8.115) be feasible in this case? If (8.115) is feasible, what are the
implications on the index sets &,⇠ and the solutions 5 (&) and 5 (⇠) of the NLP?

Exercise 8.34 (Benders decomposition). Suppose C8.3 and C8.4 hold and (H⇤0, H⇤) is
a finite optimal solution of (8.116b). Show that (H⇤0, H⇤) is also optimal for (8.114b) if
and only if the optimal value of the dual problem DP(H⇤) (8.116d) satisfies (8.117).

Exercise 8.35 (Benders decomposition). Assume the optimal value 6⇤ of the original
problem (8.111) satisfies 6⇤ > �1 so that DP(H) is feasible for all H.

1. Prove (8.118) and show that (8.118) holds with equality if and only if ( H̄0, H̄) 2
⌧ (⇠). In particular, if strict inequality holds in (8.118), including the case where
H̄0 = �1, then there is a (`00,`0) 2 ⇠ \&. (Hint: use LP duality Theorem 8.23 and
Theorem 8.31).

2. Prove (8.119).
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As we see in Chapter 6 optimal power flow (OPF) is a fundamental problem that un-
derlies numerous applications in power system operation and planning. In this chapter
we study computational issues of OPF as a general constrained optimization that takes
the form

min
D,G

2(D,G) subject to 5 (D,G) = 0, 6(D,G)  0

The cost function 2 may represent generation cost, voltage deviation, power loss, or
user disutility. The variable D collects control decisions such as generator commitment,
generation setpoints, transformer taps, capacitor switch status, electric vehicle charging
levels, thermostatic settings, or inverter reactive power. The variable G collects network
state such as voltage levels, line currents, or line power flows. The constraint functions
5 ,6 describe current or power balance, generation or consumption limits, voltage or
line limits, and stability and security constraints, and other operational requirements.

In Chapter 9.1 we use the single-phase models of Part I to formulate OPF in the bus
injection model. In Chapter 9.2 we formulate OPF in the branch flow model for radial
networks and show that it is equivalent to OPF in the bus injection model. In Chapter 9.3
we prove that OPF is NP-hard and in Chapter 9.4 we prove that a subclass characterized
by a Lyapunov-like condition can be solved e�ciently to global optimality. In Chapter
9.5 we describe techniques for scaling OPF solutions. Popular algorithms for solving
OPF problems are studied in Chapter 8.5 and example applications are discussed in
Chapter 6.

9.1 Bus injection model

In Chapter 9.1.1 we describe how to represent di�erent devices in terms of their nodal
power injections and voltages (B 9 ,+ 9 ). The interaction of these terminal variables over
the network is described by power flow equations. We formulate in Chapter 9.1.2
OPF in the bus injection model and then express it in Chapter 9.1.3 as a standard
quadratically constrained quadratic program.
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9.1.1 Single-phase devices

For simplicity we will assume voltages are defined with respect to the ground and
every single-phase device is connected between its terminal (bus) and the ground. We
will model the devices we encounter by one of the following:

1. Voltage source + 9 : An ideal voltage source 9 fixes its voltage + 9 2 C if it is
uncontrollable and it adjusts + 9 if it is controllable.

2. Current source � 9 : An ideal current source fixes its current � 9 2 C if it is uncon-
trollable and it adjusts � 9 if it is controllable. An example current source is a load
model for an electric vehicle charger whose charging current is controllable.

3. Power source B 9 : An ideal power source fixes its power injection B 9 2 C if it is
uncontrollable and adjusts B 9 if it is controllable.

4. Impedance I 9 : An impedance I 9 connected between the terminal and the ground
fixes the relationship between the nodal voltage and current + 9 = �I 9 � 9 where the
negative sign indicates that � 9 is defined in the direction of ground-to-terminal.

The bus injection model studied in Chapter 4 focuses on the nodal power or current
injections and voltages

�
B 9 ,+ 9 , � 9

�
of these devices. The relation among them at each

bus 9 is B 9 = + 9 �̄ 9 . The nodal variables at di�erent buses interact with each other
over the network through current balance equation � = .+ or power flow equations
B 9 = 5 9 (+). We now formulate OPF for single-phase systems.

9.1.2 Single-phase OPF

Consider a single-phase network modeled as an undirected graph ⌧ := (# ,⇢) where
there are # + 1 buses 9 2 # := {0,1, . . . ,#} and " lines in ⇢ . Each line ( 9 , :) 2 ⇢
is characterized by admittances

⇣
H
B

9:
, H<
9:

⌘
2 C2 and

⇣
H
B

: 9
, H<
: 9

⌘
2 C2. We now explain

the variables, power flow equations, cost function, and constraints that define an OPF
problem. As we will see the OPF formulation (9.5) below does not require assumption
C4.1 that HB

9:
= HB

: 9
. It can therefore accommodate single-phase transformers that have

complex turns ratios.

OPF. Without loss of generality we first make the following assumptions and present
a simple OPF formulation:

1. The OPF involves only voltage sources and power sources.
2. There is exactly one single-phase device (voltage or power source) at each bus 9 .

We therefore interchangeably refer to 9 as a bus, a node, a terminal or a device.

We will explain below how to relax these assumptions.

Under these assumptions, associated with each bus 9 is its bus (nodal) power
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injection B 9 and voltage + 9 . The vectors B := (B 9 , 9 2 #) and + := (+ 9 , 9 2 #) are the
optimization variables. The cost function ⇠ (B,+) may represent the cost of generation
(e.g. in economic dispatch), estimation error (e.g. in state estimation), line loss (e.g. in
volt/var control in distribution systems), and user disutility (e.g., in demand response).
For instance to minimize a weighted sum of real power generations we can use

⇠ (B,+) :=
’
9:gens

2 9Re(B 9 )

To minimize the total real power loss over the network we can use

⇠ (B,+) :=
’
9

Re(B 9 )

There are two types of constraints on (B,+). The first is power flow equations, the
complex form of which is derived in Chapter 4.3.4 as follows. The sending-end line
currents from buses 9 to : in terms of + and those from buses : to 9 are

� 9: (+) = H
B

9:
(+ 9 �+: ) + H<9:+ 9 , ( 9 , :) 2 ⇢ (9.1a)

�: 9 (+) = H
B

: 9
(+: �+ 9 ) + H<: 9+: , ( 9 , :) 2 ⇢ (9.1b)

The sending-end complex power flow from buses 9 to : and that from buses : to 9 are
respectively

( 9: (+) := + 9 �̄ 9: (+) = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2, ( 9 , :) 2 ⇢ (9.2a)

(: 9 (+) := +: �̄: 9 (+) = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2, ( 9 , :) 2 ⇢ (9.2b)

The bus injection model in complex form is therefore (from (4.21a)):

B 9 =
’
:: 9⇠:

( 9: (+) :=
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2, 9 2 # (9.3)

where H<
9 9

:=
Õ
:: 9⇠: H

<

9:
are the total shunt admittances incident on buses 9 . Instead of

the complex form (9.3), we can also use the polar form or the Cartesian form of power
flow equations.

The second type of constraints on (B,+) is operational constraints. We will consider
only three constraints:

1. Injection limits: These can represent generation or load capacity limits and take
the form:

B
min
9
 B 9  B

max
9

, 9 2 # (9.4a)

where Bmin
9

, Bmax
9
2 C are given bounds on the injections at buses 9 . Recall that

01 + i11  02 + i12 is a shorthand for two real inequalities 01  02 and 11  12.
2. Voltage limits: These are limits on voltage magnitudes:

E
min
9
 |+ 9 |2  E

max
9

, 9 2 # (9.4b)
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where Emin
9

, Emax
9
2 R are given lower and upper bounds on the squared voltage

magnitudes. We assume Emin
9

> 0 (the lower bound is therefore nonconvex).
3. Line limits: Thermal limits can be expressed in terms of line currents�

� 9: (+), �: 9 (+)
�

in (9.1):���HB
9:
(+ 9 �+: ) + H<9:+ 9

���2  ✓
max
9:

, ( 9 , :) 2 ⇢ (9.4c)���HB
: 9
(+: �+ 9 ) + H<: 9+:

���2  ✓
max
: 9

, ( 9 , :) 2 ⇢ (9.4d)

which are quadratic inequalities in + .
Alternatively line limits can be expressed in terms of complex line powers:

(
min
9:
 ( 9: (+)  (

max
9:

, (
min
: 9
 (: 9 (+)  (

max
: 9

, ( 9 , :) 2 ⇢

or in terms of apparent powers:

|( 9: (+) |  (
max
9:

, |(: 9 (+) |  (
max
: 9

, ( 9 , :) 2 ⇢

where
�
( 9: (+),(: 9 (+)

�
are given by (9.2). The limits on apparent powers can be

expressed in terms of degree-four polynomials in + which can be converted into
quadratic constraints with additional variables (see Exercise 9.2).

Depending on the application there can be many more constraints, e.g., stability and
security constraints, ramp limits, limits on battery state of charge and charging rates. For
illustration purpose we will mostly restrict ourselves to these three types of constraints.

A simple OPF problem in the bus injection model is then

OPF : min
(B,+ )

⇠ (B,+) s.t. (9.3)(9.4) (9.5)

Since the constraints (9.3)(9.4c)(9.4d) do not require assumption C4.1 that HB
9:

=
H
B

: 9
, the OPF formulation (9.5) can accommodate single-phase transformers that have

complex turns ratios.

Remark 9.1 (Uncontrollable parameters and reference voltage). This is a general
formulation that allows the power injection B 9 and voltages + 9 at every bus 9 to
be optimization variables. If there is practically no bound on the injection at bus 9
then B

min
9

:= �1� i1 or Bmax
9

:= 1 + i1 which removes the lower or upper bound
on the function B 9 (+) of + . On the other hand the inequality constraints also allow
the case where a quantity is not an optimization variable but a parameter, by setting
B

min
9

= Bmax
9

to the specified value. For instance B 9 (+) = Bmin
9

= Bmax
9

may represent a
given uncontrollable constant-power load or a given renewable generation. For the
slack bus 0, unless otherwise specified, we always assume +0 := 1\0� pu so that
E

min
0 = Emax

0 = 1 and Bmin
0 = �1� i1, Bmax

0 =1+ i1. Therefore we sometimes replace
9 2 # in (9.3)(9.4) by 9 2 # . ⇤
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Other devices. Single-phase devices other than voltage and power sources can also
be included in the OPF formulation. For instance an electric vehicle charger can be
modeled by a current source. If it is controllable then its current � 9 is an additional
optimization variable and it imposes a quadratic equality constraint on (B 9 ,+ 9 , � 9 ):

B 9 = + 9 �
H
9

If the current source is uncontrollable with a fixed � 9 , then the constraint above is a
linear constraint on (B 9 ,+ 9 ). A nodal impedance I 9 introduces a quadratic equality
constraint on (B 9 ,+ 9 ):

B 9 = �
��
+ 9

��2
Ī 9

where the negative sign indicates that the direction of B 9 is ground-to-terminal through
the impedance. A nodal admittance H 9 , such as a capacitor tap, can be incorporated by
including the the variable H 9 and quadratic equality constraint on (B 9 ,+ 9 , H 9 ):

B 9 = �H̄ 9
��
+ 9

��2
where the negative sign indicates that the direction of B 9 is ground-to-terminal through
the admittance.

We assume in the OPF formulation (9.5) that each bus 9 has a single device with the
nodal variable

�
B 9 ,+ 9

�
. If multiple devices are connected to bus 9 in parallel with power

injections B 9: , : = 1, . . . , 9 , they introduce additional variables
�
B 9: , : = 1, . . . , 9

�
and

impose the linear constraint

B 9 =
’
:

B 9:

Hence other devices can be incorporated and they impose local constraints at each
bus 9 . If a device at bus 9 is controllable, it introduces an additional optimization
variable D 9 (e.g., � 9 of a controllable current source) and a local constraint of the form

5 9

�
D 9 , B 9 ,+ 9

�
= 0, 9 2 # (9.6a)

Otherwise, it does not introduce additional variables at bus 9 (e.g., impedance I 9 ) and
(9.6a) reduces to a local constraint of the form 5 9 (B 9 ,+ 9 ) = 0 where the local device is
a parameter of the constraint function 5 9 . When an additional optimization variable D 9
is introduced, there may also be an operational constraint on D 9 of the form

6 9

�
D 9

�
 0, 9 2 # (9.6b)

Most applications indeed involve other variables in addition to (B 9 ,+ 9 ). For example,
the unit commitment problem in Chapter 6.2.1 includes binary variables to indicate if
a unit will be on or o�. In distributed energy resource optimization, battery charging
rates and their states of charge as well as the temperature setpoint of a thermostat may
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be additional variables. In volt/var control that optimizes over the reactive power output
of an inverter given its real power input, the reactive power needs to satisfy a sector
constraint. For single-phase networks, however, we will focus on the simple OPF (9.5)
and study its computational properties. In particular we will mostly omit variables D 9
and the associated local constraints (9.6).

OPF in terms of+ only. We can treat the power flow equation (9.3) as defining B 9 (+)
as a function of + :

B 9 (+) =
’
:: 9⇠:

( 9: (+) :=
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2, 9 2 # (9.7)

where H
<

9 9
:=

Õ
:: 9⇠: H

<

9:
are the total shunt admittances incident on buses 9 . Us-

ing (9.1)(9.2)(9.7) for single-phase networks, we can express powers and currents�
B 9 ,( 9: , � 9:

�
in terms of voltages+ and formulate OPF as an optimization over+ only.

For instance the cost function to minimize a weighted sum of real powers is:

⇠ (+) :=
’
9:gens

2 9Re(B 9 (+)) =
’
9:gens

2 9Re
©≠
´
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2™Æ

¨
which can be shown to be a quadratic form ⇠ (+) = +HRe(. )+ in terms of the admit-
tance matrix. . The total real power loss (with 2 9 := 1 for all 9) equals the total thermal
(A |� |2) loss in the network lines if line shunt admittances are reactive, i.e., if H<

9:
and

H
<

: 9
are pure imaginary:

⇠ (+) :=
’

( 9,:)2⇢
A 9: |�B

9:
(+) |2

where A 9: := Re
⇣
I
B

9:

⌘
= Re

✓⇣
H
B

9:

⌘�1
◆

is the series resistance of the line and �B
9:
(+) :=

H
B

9:
(+ 9 �+: ) is the current through the series impedance of the line. All these costs

are quadratic functions of + (Exercise 9.1).

For operational constraints, the voltage limits (9.4b) and the line limits (9.4c)(9.4d)
are already quadratic inequalities in + . We can use (9.7) to express the injection limits
B

min
9
 B 9 (+)  Bmax

9
also as quadratic inequalities in + :

B
min
9


’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2  B

max
9

, 9 2 # (9.8)

If we use the polar form (4.22) BIM then the injection limits become:

?
min
9


’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
 ?max

9

@
min
9
 �

’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2�

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
 @max

9

For notational simplicity, we will mostly use the complex form (9.8) as injection limits.
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Hence OPF (9.5) can be equivalently formulated in terms of + only:

OPF : min
+

⇠ (+) s.t. (9.8)(9.4b)(9.4c)(9.4d) (9.9)

As mentioned before, this formulation does not require assumption C4.1 that HB
9:
= HB

: 9

and hence can accommodate single-phase transformers that have complex turns ratios.
To avoid triviality we will assume unless otherwise specified that OPF (9.9) is feasible.

9.1.3 QCQP reformulation

As we have seen above the constraints in OPF (9.9) are quadratic in+ . We now explain
how to reformulate (9.9) as a quadratically constrained quadratic program (QCQP).

QCQP. A QCQP is the following problem:

min
G2C=

G
H
⇠0G s.t. G

H
⇠;G  1; , ; = 1, . . . ,! (9.10)

where G 2 C= is a vector, ⇠; 2 S= for ; = 0, . . . ,!, are Hermitian matrices so that
G

H
⇠;G are real values, and 1; 2 R are given scalars. If ⇠; , ; = 0, . . . ,!, are positive

semidefinite (psd) then (9.10) is a convex QCQP (studied in Chapter 8.4.3). Otherwise
it is nonconvex. If Gopt is optimal for (9.10), so is �Gopt.

The inequality constraints in (9.10) can include equality constraints (0 = 1, 0 
1, 1  0). Sometimes equality constraints are specified explicitly as in

min
G2C=

G
H
⇠0G s.t. G

H
⇠;G  1; , ; = 1, . . . ,!

G
H
⇠̃;G = 1̃; , ; = 1, . . . , !̃

Remark 9.2 (Equivalent real QCQP). In computing a solution of (9.10), the QCQP is
first converted into a problem in the real domain. Indeed the complex QCQP (9.10) is
equivalent to the following QCQP in the real domain of twice the dimension (Exercise
9.5):

min
H2R2=

H
T
⇡0H s.t. H

T
⇡;H  1; , ; = 1, . . . ,! (9.11a)

where

H :=

Re(G)
Im(G)

�
, ⇡; :=


Re(⇠;) �Im(⇠;)
Im(⇠;) Re(⇠;)

�
, ; = 0,1, . . . ,! (9.11b)

Note that ⇡; are symmetric matrices. ⇤

The problem (9.10) is called a homogeneous QCQP because each term, called a
monomial, in the polynomial GH

⇠;G is of degree 2. An inhomogeneous QCQP contains
monomials with degree 1 and takes the form

min
G2C=

G
H
⇠0G +

⇣
2

H
0 G + GH

20

⌘
s.t. G

H
⇠;G +

⇣
2

H
;
G + GH

2;

⌘
 1; , ; = 1, . . . ,! (9.12)
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Note that
�
2

H
;
G + GH

2;

�
are real numbers. This problem can be homogenized by intro-

ducing a scalar complex variable C 2 C because, if we set G := ĜC̄ and require |C |2 = 1
(i.e., C = 4i\ for some \), then

G
H
⇠;G + 2H

;
G + GH

2; = Ĝ
H
⇠; Ĝ + 2H

;
(ĜC̄) + (ĜC̄)H

2; =
⇥
Ĝ

H
C
H⇤ 

⇠; 2;

2
H
;

0

� 
Ĝ

C

�

Hence the inhomogeneous QCQP (9.12) is equivalent to the following homogeneous
QCQP with equality and inequality constraints:

min
Ĝ2C= , C 2C

⇥
Ĝ

H
C
H⇤ 

⇠0 20

2
H
0 0

� 
Ĝ

C

�
(9.13a)

s.t.
⇥
Ĝ

H
C
H⇤ 

⇠; 2;

2
H
;

0

� 
Ĝ

C

�
 1; , ; = 1, . . . ,! (9.13b)

⇥
Ĝ

H
C
H⇤ 

0 0
0 1

� 
Ĝ

C

�
= 1 (9.13c)

If (Ĝopt, Copt) 2 C=+1 is optimal for (9.13), then the product Gopf := Ĝopt
C̄
opt = Ĝopt

4
�i\

opt

is optimal for (9.12).

We will hence study, without loss of generality, homogeneous QCQP (9.10) with
inequality constraints.

Remark 9.3 (Real QCQP). A real inhomogeneous QCQP

min
G2R=

G
T
⇠0G +

⇣
2

T
0G + GT

20

⌘
s.t. G

T
⇠;G +

⇣
2

T
;
G + GT

2;

⌘
 1; , ; = 1, . . . ,!

is equivalent to the following real homogeneous QCQP

min
Ĝ2R= , C 2R

⇥
Ĝ

T
C
T⇤ 

⇠0 20

2
T
0 0

� 
Ĝ

C

�

s.t.
⇥
Ĝ

T
C
T⇤ 

⇠; 2;

2
T
;

0

� 
Ĝ

C

�
 1; , ; = 1, . . . ,!

⇥
Ĝ

T
C
T⇤ 

0 0
0 1

� 
Ĝ

C

�
= 1

in that, if (Ĝopt, Copt) 2 R=+1 is optimal for the homogeneous QCQP, then Gopt := Ĝopt
C
opt

is optimal for the original nonhomogeneous QCPQ (Copt 2 {�1,1}). ⇤

Remark 9.4 (Linear and bilinear cost or constraints). For any ; � 0,⇠; = 0 corresponds
to a linear cost or constraint. The homogenization above then becomes

2
H
G + GH

2 = 2H (ĜC̄) + 2(ĜC̄)H =
⇥
Ĝ

H
C
H⇤ 

0 2;

2
H
;

0

� 
Ĝ

C

�
, |C |2 = 1 (9.14a)

The two linear terms must be complex conjugates of each other so that they sum to a
real number. For a linear inequality 3H

G  1 where 1 := 1A + i18 is complex, we can
rewrite it as two real inequalities:

1
2

⇣
3

H
G + GH

3

⌘
 1A ,

1
2i

⇣
3

H
G� GH

3

⌘
 18 (9.14b)
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The first inequality takes the form of (9.14a) with 2 := 3/2. The second inequality
takes the form of (9.14a) with 2 := i3/2.

A block bilinear term of the form G
H
⇠H can be homogenized as follows. For any

variables (G, H) 2 C2= and any square matrices ⇠,⇡ 2 C=⇥=

G
H
⇠H + H

H
⇡G =

⇥
G

H
H

H⇤ 
0 ⇠

⇡ 0

� 
G

H

�
(9.15)

Note that⇠ and ⇡ may not be Hermitian of each other so that the product GH
⇠H+ HH

⇡G

may be a complex number. Its real and imaginary parts can be written as quadratic
forms of (G, H) in terms of the following Hermtian matrices respectively:

� :=
1
2


0 ⇠ +⇡H

⇠
H +⇡ 0

�
,  :=

1
2i


0 ⇠ �⇡H

�⇠H +⇡ 0

�

We emphasize that we convert QCQPs to their homogenized form mainly so that
we can focus only on homogeneous QCQP in our study of structural properties. In
computation, one may not convert an inhomogeneous constraint, especially a linear
constraint, into a homogeneous quadratic constraint. ⇤

Example 9.1 (Polynomial cost or constraints). A polynomial can be expressed as a
quadratic with auxiliary variables. Write the following as quadratic constraints:

1.
�
|+ 9 |2�1

�2  n .
2. 00G

3 + 01G
2 + 02G  U with 08 ,G,U 2 C.

Solution.

1. We have
�
|+ 9 |2�1

�2  n if and only if there exist C 9 2 C such that
�
+ 9 , C 9

�
satisfies��

C 9 �1
��2  n , C 9 = |+ 9 |2

which are quadratic equality and inequality constraints that can be homogenized
as discussed above. Note that C 9 = +2

9
is not a quadratic form when

�
+ 9 , C 9

�
are

complex.
2. Let G =: H + iI with H, I 2 R. First convert the constraint into two real polynomial

constraints in H and I, each of the form’
(8, 9):8+ 9=3

18 9 H
8

I
9 +

’
(8, 9):8+ 9=2

28 9 H
8

I
9 +

’
(8, 9):8+ 9=1

38 9 H
8

I
9  V

for some real coe�cients 18 9 ,28 9 ,38 9 and real V. To write this as a quadratic
constraint in (H, I) 2 R2, introduce auxiliary variables C = H2, D = I2. Then write
H

3 = CH, H2
I = CI, HI2 = HD, I3 = DI. These quadratic expressions can then be

homogenized as discussed above. ⇤
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OPF as QCQP. We now assume the cost function ⇠ (+) := +H
⇠0+ is a quadratic

form in + for some positive semidefinite matrix ⇠0. We can then reformulate OPF
(9.9) as a QCQP, by deriving the matrices ⇠; underlying the quadratic constraints
(9.4b)(9.4c)(9.4d)(9.8).

1. Injection limits: To express the injection B 9 in (9.8) as a quadratic form, use � =.+
to write

B 9 = + 9 �
H
9
=

⇣
4

H
9
+

⌘ ⇣
4

H
9
�

⌘H
= 4

H
9
++

H
.

H
4 9

where 4 9 is the (# +1)-dimensional vector with 1 in the 9 th entry and 0 elsewhere.
Since tr(�⌫) = tr(⌫�), we have1

B 9 = tr
⇣
4

H
9
++

H
.

H
4 9

⌘
= tr

⇣⇣
.

H
4 94

H
9

⌘
++

H
⌘
=: +H

.
H
9
+

where . 9 := 4 94H
9
. is an (# +1)⇥ (# +1) matrix with its 9 th row equal to the 9 th

row of the admittance matrix. and all other rows equal to the zero vector.. 9 is not
Hermitian so that +H

.
H
9
+ is in general a complex number. Its real and imaginary

parts can be expressed in terms of the Hermitian and skew Hermitian components
of .H

9
defined as:

� 9 :=
1
2

⇣
.

H
9
+. 9

⌘
,  9 :=

1
2i

⇣
.

H
9
�. 9

⌘
(9.16)

Then � 9 and  9 are Hermitian matrices and (Exercise 9.4)

Re(B 9 ) = +
H� 9+ , Im(B 9 ) = +

H 9+

They will be upper and lower bounded by

?
min
9

:= Re
⇣
B

min
9

⌘
, ?

max
9

:= Re
⇣
B

max
9

⌘

@
min
9

:= Im
⇣
B

min
9

⌘
, @

max
9

:= Im
⇣
B

max
9

⌘
These quantities will be used below to rewrite OPF as a standard QCQP of the
form (9.10).

2. Voltage limits: Let ⇢ 9 := 4 94H
9

denote the Hermitian matrix with a single 1 in

the ( 9 , 9)th entry and 0 everywhere else. Then squared voltage magnitude |+ 9 |2 =
+

H
⇢ 9+ is a quadratic form. It is lower and upper bounded by Emin

9
and Emax

9
in

(9.4b) respectively.
3. Line limits: For the first set of constraints in (9.4c)(9.4d), use (9.1) to write

� 9: = H
B

9:
(+ 9 �+: ) + H<9:+ 9 =

⇣
H
B

9:
(4 9 � 4: )T + H<

9:
4

T
9

⌘
+

Hence |� 9: |2 =+H
.̂ 9:+ , which will be upper bounded by ✓max

9:
, where

.̂ 9: :=
⇣
H̄
B

9:
(4 9 � 4: ) + H̄<9:4 9

⌘ ⇣
H
B

9:
(4 9 � 4: )T + H<

9:
4

T
9

⌘

1 The inner product of two complex matrices is defined to be � ·⌫ := tr(�H
⌫) = Õ

8, 9 �8 9⌫8 9 and is not
equal to tr(�⌫) = Õ

8, 9 �8 9⌫ 98 unless � is Hermitian; see Exercise 9.3.
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The matrix .̂ 9: is Hermitian and hence +H
.̂ 9:+ is indeed a real number. Similarly

for bounds on |�: 9 |2.

Putting all this together, OPF (9.9) can be written as a standard QCQP

OPF : min
+ 2C#+1

+
H
⇠0+ (9.17a)

s.t. ?
min
9
 +

H� 9+  ?
max
9

, 9 2 # (9.17b)

@
min
9
 +

H 9+  @
max
9

, 9 2 # (9.17c)

E
min
9
 +

H
⇢ 9+  E

max
9

, 9 2 # (9.17d)

+
H
.̂ 9:+  ✓

max
9:

, ( 9 , :) 2 ⇢ (9.17e)

+
H
.̂: 9+  ✓

max
: 9

, ( 9 , :) 2 ⇢ (9.17f)

This form will be used to derive a convex relaxation in Chapter 10.2. As mentioned
above the OPF formulation here does not require assumption C4.1 that HB

9:
= HB

: 9
, and

hence can accommodate single-phase transformers that have complex turns ratios. To
avoid triviality we will assume unless otherwise specified that OPF (9.17) is feasible.

Instead of (9.17e)(9.17f), line limits are sometimes expressed in terms of line power
flows. The next example shows how to express such limits on real and reactive line
flows as quadratic constraints. See Exercise 9.2 on how to express limits on apparent
powers |( 9: (+) |, |(: 9 (+) | as inhomogeneous quadratic constraints.

Example 9.2 (Quadratic line power limit). Use (9.2) to write the line limit

(
min
9:
 ( 9: (+)  (max

9:
, (

min
: 9
 (: 9 (+)  (max

: 9
, ( 9 , :) 2 ⇢ (9.18)

as quadratic forms in + .

Solution. We will rewrite the first constraint in (9.18) on ( 9: (+) as a quadratic con-
straint; the constraint on (: 9 (+) can be similarly converted. Using the expression of
� 9: , ( 9: (+) in quadratic form is:

( 9: (+) = + 9 �
H
9:

=
⇣
4

H
9
+

⌘ ⇣
H
B

9:
(4 9 � 4: )T

+ + H<
9:
4

T
9
+

⌘H

= 4
H
9

⇣
++

H
⌘ ⇣⇣

H̄
B

9:
+ H̄<

9:

⌘
4 9 � H̄B

9:
4:

⌘

= tr
⇣
.̃

H
9:

⇣
++

H
⌘⌘

=: +H
.̃

H
9:
+

where

.̃ 9: := 4 9

⇣⇣
H
B

9:
+ H<

9:

⌘
4

H
9
� HB

9:
4

H
:

⌘
(9.19a)
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or explicitly

⇥
.̃ 9:

⇤
<=

:=

8>>>><
>>>>:

⇣
H
B

9:
+ H<

9:

⌘
< = = = 9⇣

�HB
9:

⌘
< = 9 , = = :

0 otherwise

which is symmetric if and only if HB
9:

= HB
: 9

. .̃ 9: is not Hermitian and hence +H
.̃ 9:+

is a complex number. Define the Hermitian and skewed Hermitian components of .̃ 9: :

�̃ 9: :=
1
2

⇣
.̃

H
9:
+ .̃ 9:

⌘
,  ̃ 9: :=

1
2i

⇣
.̃

H
9:
� .̃ 9:

⌘
(9.19b)

so that

Re
�
( 9:

�
= +

H�̃ 9:+ , Im
�
( 9:

�
= +

H ̃ 9:+ (9.19c)

Hence the constraint (min
9:
 ( 9: (+)  (max

9:
becomes a pair of quadratic constraints:

Re
⇣
(

min
9:

⌘
 +

H�̃ 9:+  Re
⇣
(

max
9:

⌘

Im
⇣
(

min
9:

⌘
 +

H ̃ 9:+  Im
⇣
(

max
9:

⌘
⇤

9.2 Branch flow model: radial networks

DistFlow model. Since the branch flow model is most useful for radial networks, we
first formulate OPF in the DistFlow model that assumes:

• IB
9:
= IB

: 9
, or equivalently HB

9:
= HB

: 9
, for every line ( 9 , :) (assumption C5.1).

• H<
9:
= H<

: 9
= 0 for every line ( 9 , :). This is a reasonable assumption on distribution

lines where H<
9:

and H<
: 9

are typically much smaller in magnitude than the series
admittance HB

9:
.

Consider a single-phase radial network ⌧ = (# ,⇢) with # +1 buses and " = # lines.
The assumptions allow us to adopt a directed graph ⌧ = (# ,⇢) and include branch
variables in only one direction. We denote a line in ⇢ from bus 9 to bus : either by
( 9 , :) 2 ⇢ or 9 ! : . It is characterized by its series impedance IB

9:
. Without loss of

generality we take bus 0 as the root of the tree.

The device models are the same as those for the bus injection model described in
Chapter 9.1.1. OPF in the branch flow model di�ers only in the terminal variables and
power flow equations that relate them. We use the DistFlow model (5.14) with down
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orientation (all lines pointing away from bus 0), reproduced here:’
:: 9!:

( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (9.20a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (9.20b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (9.20c)

where, in (9.20a), bus 8 := 8( 9) denotes the unique adjacent node of 9 on the path from
node 0 to node 9 , with the understanding that when 9 = 0 then (80 := 0 and ✓80 := 0.
The injection, voltage and line limits are:

B
min
9
 B 9  Bmax

9
, E

min
9
 E 9  Emax

9
, ✓ 9:  ✓max

9:
, 9 2 # , ( 9 , :) 2 ⇢ (9.20d)

Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2 R3(#+1) the bus injections and squared voltage
magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢) 2 R3" the squared line current
magnitudes and line powers. The vector E includes E0 and B includes B0. Let G :=
(B,E,✓,() in R3(2#+1) since ⌧ is a tree. Let the cost function in the branch flow model
be ⇠ (G). Let the feasible set be

Xdf := {G := (B,E,✓,() 2 R6#+3 : G satisfies (9.20)} (9.21a)

Then the optimal power flow problem in the branch flow model is:

OPF : min
G

⇠ (G) s.t. G 2 Xdf (9.21b)

To avoid triviality we will assume unless otherwise specified that OPF (9.21) is feasible.
We assume the cost functions ⇠ (G) here and ⇠ (+) in the single-phase OPF problem
(9.9) or (9.17) in the bus injection model represent the same function but in terms
of di�erent variables. Since Xdf ⌘ V by Theorem 5.2, the single-phase OPF problem
(9.21) in the branch flow model is equivalent to (9.9) or (9.17) in the bus injection
model. (See the proof of Theorem 11.2 in Chapter 11.1.2 for an explicit construction
of a bijection between Xdf and a set equivalent to the feasible set V of (9.9).)

Remark 9.5 (Current sources and impedances). The model (9.20) includes only volt-
age and power sources whose controllable variables are E 9 and B 9 respectively. A
current source will introduce its current � 9 2 C as an additional variable and an equal-
ity constraint |B 9 |2 = E 9 |� 9 |2 that relate � 9 to (B 9 ,E 9 ). An impedance I 9 will introduce
an equality constraint B 9 = �E 9/IH

9
on (B 9 ,E 9 ). If I 9 is controllable, e.g., representing a

switched capacitor, then I 9 is an additional variable. For simplicity we restrict ourselves
to voltage and power sources only. (See Chapter 9.1.2 for more discussions.) ⇤

General radial network. The feasible set Xdf is based on the DistFlow equations
(9.20a)–(9.20c) that assume IB

9:
= IB

: 9
and H<

9:
= H<

: 9
= 0. OPF can also be formulated

without these assumptions, based on the branch flow model (5.3) that includes branch
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variables ✓ :=
�
✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢

�
, ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
in both directions, repro-

duced here:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (9.22a)

|U 9: |2E 9 � E: = 2Re
⇣
U 9: Ī

B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , ( 9 , :) 2 ⇢ (9.22b)

|U: 9 |2E: � E 9 = 2Re
⇣
U: 9 Ī

B

: 9
(: 9

⌘
� |IB

: 9
|2✓: 9 , ( 9 , :) 2 ⇢ (9.22c)��

( 9:

��2 = E 9✓ 9: ,
��
(: 9

��2 = E:✓: 9 , ( 9 , :) 2 ⇢ (9.22d)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (9.22e)

where

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

The operation limits are the same as (9.20d) but include line limits in both directions:

B
min
9
 B 9  Bmax

9
, E

min
9
 E 9  Emax

9
, 9 2 # (9.22f)

✓ 9:  ✓max
9:

, ✓: 9  ✓max
: 9

, ( 9 , :) 2 ⇢ (9.22g)

The feasible set is

Xtree := {G : (B,E,✓,() 2 R9#+3 : G satisfies (9.22)} (9.23a)

and the OPF problem is:

OPF : min
G

⇠ (G) s.t. G 2 Xtree (9.23b)

Since Xtree ⌘ V by Theorem 5.2, the single-phase OPF problem (9.23) for a general
radial network is equivalent to (9.9) or (9.17) in the bus injection model, provided the
cost functions ⇠ (G) here and ⇠ (+) in the bus injection model are the same.

9.3 NP-hardness

Since the feasible set of OPF is generally nonconvex (see e.g. (9.17)), OPF is a
nonconvex problem. Moreover OPF has been shown to be NP-hard in [71, 72, 73,
74, 75, 76, 77]. We present the result of [73] that shows that even determining the
feasibility of an OPF on a tree network is NP-hard. As hardness results describe
worst-case complexity this suggests that there are OPF instances that are hard to scale.
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9.3.1 OPF feasibility on a tree network

Consider a tree network represented by a graph (# ,⇢) with # + 1 buses and " = #
lines described by the polar-form power flow equations (4.22):

? 9 =
’
:::⇠ 9

⇣
6
B

9:
+6<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
cos\ 9: + 1B

9:
sin\ 9:

⌘
, 9 2 #

@ 9 = �
’
:::⇠ 9

⇣
1
B

9:
+ 1<

9:

⌘
|+ 9 |2 �

’
:::⇠ 9

|+ 9 | |+: |
⇣
6
B

9:
sin\ 9: � 1B

9:
cos\ 9:

⌘
, 9 2 #

We make the following assumptions:

• fixed voltage magnitudes |+ 9 | := 1 pu for all 9 2 #;
• HB

9:
= HB

: 9
and H<

9:
= H<

: 9
= 0;

• HB
9:
= 6 + i1 for all ( 9 , :) 2 ⇢ with 6 � 0, 1  0.

Assume also that each bus either has a fixed and given injection (? 9 ,@ 9 ) or a dis-
patchable generation (? 9 ,@ 9 ) with the requirement ? 9 � 0 (no constraint on @ 9 ). Let
#! ⇢ # denote the set of fixed injections and #⌧ ⇢ # the set of generations. We are
to determine if there are generations (? 9 ,@ 9 , 9 2 #⌧) to balance the given injections
(? 9 ,@ 9 , 9 2 #!) subject to the inequality constraints that ? 9 � 0 for 9 2 #⌧ and a
common line limit of the form:

|\ 9 � \: |  \, ( 9 , :) 2 ⇢

for a given \ 2 (0,c/2]. Exercise 9.7 shows that this constraint is equivalent to a limit
on the squared apparent line flow %

2
9:
+&2

9:
over \ 2 (0,\). Hence the OPF feasibility

problem is to find nonnegative real power injections (? 9 , 9 2 #⌧) � 0 at generation
buses, voltage angles (\ 9 , 9 2 #) at all buses, and line flows (% 9: ,& 9: , ( 9 , :) 2 ⇢) that
satisfy the following constraints

OPF feasibility: ? 9 =
’
:: 9⇠:

% 9: , @ 9 =
’
:: 9⇠:

& 9: , 9 2 #! (9.24a)

? 9 � 0, 9 2 #⌧ (9.24b)

% 9: = 6 9: (1� cos\ 9: )� 1 9: sin\ 9: , ( 9 , :) 2 ⇢ (9.24c)

& 9: = �1 9: (1� cos\ 9: )�6 9: sin\ 9: , ( 9 , :) 2 ⇢ (9.24d)

|\ 9 � \: |  \, ( 9 , :) 2 ⇢ (9.24e)

These constraints define the feasible set of an OPF on the tree network. An instance
of the OPF feasibility problem is specified by (#⌧ [ #! ,⇢), (6 9: ,1 9: , ( 9 , :) 2 ⇢),
\ 2 (0,c/2], and (? 9 ,@ 9 , 9 2 #!).
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9.3.2 OPF is NP-hard

We often say a problem is intractable or NP-hard. We will prove the NP-hardness of
the OPF feasibility problem (9.24) by polynomially reduce it to a well-known NP-
hard (indeed NP-complete) problem. In order to define NP-hardness and polynomial
reduction precisely, we first need to summarize some basic concepts of complexity
theory (see e.g. [78] for more details).

P and NP. NP-hardness is formally defined first for language problems. Let ⌃ be a
finite set of symbols called an alphabet and ⌃⇤ denote the set of all finite strings of
symbols in ⌃. A language ! over ⌃ is any subset of ⌃⇤. A deterministic Turing machine
(DTM) is a model for computation that takes an inputf from⌃⇤, performs computation
(e.g., read, write, state transition), and then either halts in one of a set of designated
states or does not halt. We will focus on classes of languages ! ✓ ⌃⇤ for which a DTM
always halts in one of two states, “yes” or “no” (these are called decidable decision
problems). Given a DTM " , the time complexity function 2" : N+! N+ of " (N+
is the set of positive integers) is:

2" (=) := max{< : 9f 2 ⌃⇤ with |f | = = s.t. " takes < steps to halt on f}

A DTM " is called a polynomial time DTM if there exists a polynomial ? such that
2" (=)  ?(=) for all = 2 N+. The set

!" := {f 2 ⌃⇤ : " halts on f in “yes” state } (9.25)

is called the language recognized by " . The class P of languages is

P := {! ✓ ⌃⇤ : 9 polynomial time DTM " for which ! = !" }

Informally the class P consists of all languages over ⌃ that are recognizable by a DTM
in time upper bounded by a polynomial in the length of the input string.

While P is meant to capture the “solvability” of a problem, NP is meant to capture
the “verifiability” of a problem, i.e., given a guess, verify if it is a solution. For many
problems, it is much easier to verify if a given candidate is a solution than computing
a solution. For instance, it is di�cult (NP-complete) to find a cycle in an arbitrary
graph that visits every node exactly once, but much easier to verify if a candidate path
is a solution. This is called the Hamiltonian circuit/cycle problem and is a special
case of traveling salesman problem where the distances between adjacent cities are 1.
Informally, given the current state and an input symbol in ⌃, a nondeterministic Turing
machine (NDTM) " can take a set of possible actions and state transitions; the set is
a singleton for a DTM. An NDTM is said to halt in a “yes” state on an input f 2 ⌃⇤
if one of the possible trajectories halts in a “yes” state. Given an NDTM " , the time
complexity function of " is then:

2" (=) := max{< : 9f 2 ⌃⇤ with |f | = = s.t. " takes < steps to halt on f in “yes” state}

If " does not halt in “yes” state for any f with |f | = =, then 2" (=) := 1. (For decidable
problems, which are what we focus on, " will halt in “no” state on f.) Then " is
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called a polynomial time NDTM if there exists a polynomial ? such that 2" (=)  ?(=)
for all = 2 N+. The language recognized by a NDTM " is !" as defined in (9.25)
except for a NDTM " . Then

NP := {! ✓ ⌃⇤ : 9 polynomial time NDTM " for which ! = !" }

Informally the class NP consists of all languages over ⌃ that are recognizable by a
NDTM (or equivalently, verifiable by a DTM) in time upper bounded by a polynomial
in the length of the input string. NP contains P as a subclass.

We now define polynomial reduction in terms of the language concept defined above.
A function 5 : ⌃⇤1! ⌃⇤2 is itself a language ! 5 := {(f, 5 (f)) : f 2 ⌃⇤1} ✓ ⌃⇤1⇥⌃⇤2. We
say a DTM " computes 5 if !" = ! 5 , i.e., " halts on (f, 5 (f)) in a “yes” state if
and only if (f, 5 (f)) 2 ! 5 . Let !1 ✓ ⌃⇤1 and !2 ✓ ⌃⇤2 be two languages. A polynomial
reduction or polynomial transformation from !1 to !2 is a function 5 : ⌃⇤1! ⌃⇤2 which
can be computed by a polynomial time DTM such that, for allf 2 ⌃⇤1,f 2 !1 if and only
if 5 (f) 2 !2. Note the asymmetry between !1 and !2. A language ! is NP-hard if for
every ! 0 2 NP there exists a polynomial reduction from !

0 to !. It is NP complete if !
is NP-hard and ! 2 NP. NP-complete languages are in a sense the “hardest” languages
in NP.

A decision problem is a problem whose solution is either “yes” or “no”. Such a
problem is defined by a (possibly countably infinite) set ⇧ of finite instances, usually
described in terms of sets, graphs, functions, real numbers, etc. These instances are
finite in the sense that each instance in ⇧ can be represented by a finite number of
symbols. Even though the specification of an instance can involve real numbers such
as

p
7/3,cos(c/3), they are typically described symbolically in terms of integers. We

consider decision problems ⇧ that can be “encoded” into language problems defined
over some alphabet ⌃. Informally, an encoding is a mapping from ⇧ to ⌃⇤. For any
instance H 2 ⇧ let f(H) 2 ⌃⇤ denote the result of the mapping, i.e., the encoding of the
instance H. We sometimes refer to H or f(H) interchangeably as a decision problem
instance when the underlying encoding is understood.

Let . ✓ ⇧ be the subset of instances of the decision problem ⇧ whose solutions
are “yes”. We will refer to . either as a set of problem instances (from ⇧) or simply
as a problem by itself. Let !. := {f(H) : H 2 . } ✓ ⌃⇤ be the language defined by the
instances in . , i.e., the solution of an instance H is “yes” if and only if its encoding
f(H) 2 !. . Hardness properties of the problem (instances) . are then defined in terms
of the hardness properties of its encoding !. . For example the problem (instances) .
is said to be in P if !. 2 P and it is said to be NP-complete if !. is NP-complete. The
OPF feasibility problem (9.24) is such a decision problem.

Computation problems such as solving a system of equations or optimization prob-
lems can likewise be encoded into a language ! for which hardness properties can
be formally defined. The hardness properties of ! then endow a computation or op-
timization problem with the corresponding hardness properties. A large number of
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prototypical problems have been proved to be NP-complete. No polynomial time algo-
rithms are known for solving these problems. Moreover a polynomial time algorithm
for solving one of these problems will lead to polynomial time algorithms for all of
them. It is in this sense that NP-complete problems are the ”hardest” problems.

Hardness result. We can now state the hardness result.

Theorem 9.1 (OPF NP-hardness [73]). The OPF feasibility problem (9.24) is NP-hard.

Remark 9.6. 1. The OPF feasibility problem is not proved to be in the class of NP
(and hence NP-complete) because solutions of (9.24) can be irrational.

2. Consider a decision problem defined by the set⇧ of all its instances. Each instance
f (or more precisely, the encoding f(H) of each H 2 ⇧) has len(f), which is a
measure of the size of the specification of f, and max(f), which is a measure of
the magnitude of numerical parameters of f ((#⌧ ,#! ,⇢ ,6,1,\, ? 9 ,@ 9 , 9 2 #!)
for (9.24)). Let ? be a polynomial over integers and .? ✓ ⇧ be the set of all
problem instances with max(f)  ?(len(f)), i.e., .? is the subset of ⇧ instances
for which all numerical parameters are bounded by the single polynomial ? in the
size of the input instance. The problem.? is called strongly NP-hard if there exists
a polynomial ? such that .? is NP-hard. It is called strongly NP-complete if .? is
strongly NP-hard and .? 2 NP [79].

We will prove Theorem 9.1 below by reducing the NP-complete subset sum
problem to our OPF feasibility problem. The theorem does not imply that (9.24) is
strongly NP-hard because the subset sum problem is NP-complete but not strongly
NP-complete. See [76] for a proof that determining OPF feasibility is strongly NP-
hard by a polynomial reduction of the strongly NP-complete one-in-three 3SAT
problem.

3. The more restrictive the class of OPF instances to which all instances of the
subset sum problem can be reduced, the stronger the hardness result because
computation complexity is about the performance on worst-case instances. For
example the constraints in (9.24) apply to networks with meshed topology, but
the NP-hardness proof reduces any instance of the subset sum problem to OPF
feasibility instances that use only star networks. Theorem 9.1 says that even the
OPF feasibility problem ⇧1 in which all instances are restricted to star networks is
NP-hard. The larger class of OPF feasibility problem ⇧2 � ⇧1 in which instances
may be meshed networks is therefore also NP-hard. It suggests that OPF as an
optimization problem is NP-hard.

4. Theorem 9.1 does not mean that all instances of OPF are hard to solve. Indeed
we study in Chapters 10 and 11 subclasses of OPF on tree networks that are
polynomial time solvable. These subclasses fall outside the subclass defined by
the OPF feasibility problem (9.24) ((9.24) does not satisfy the su�cient conditions
in Chapter 10 and 11 for exact convex relaxations). We will also study in Chapter
9.4 another class of OPF that can be solve e�ciently.

5. Besides nonconvexity another source of hardness is involvement of discrete vari-
ables in OPF such as in unit commitment. The hardness of approximation and
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approximation ratios of such problems are studied in [75, 77]. See also [80, Chap-
ter 5] for a collection of hardness and approximation results. ⇤

9.3.3 Proof of Theorem 9.1

To show that the OPF feasibility problem is NP-hard we will reduce an arbitrary
instance of the NP-complete subset sum problem to an instance of (9.24).

Subset sum problem (�,f):
Problem instance: a set � of positive integers and a positive integer f.
Decision: whether there is a subset �0 ✓ � such that

Õ
02�0

0 = f.

OPF feasibility (#⌧[#! ,⇢), (6 9: ,1 9: , ( 9 , :) 2 ⇢), \ 2 (0,c/2], and (? 9 ,@ 9 , 9 2 #!):
Problem instance: a graph (star) (#⌧[#! ,⇢), |#! | rational numbers (? 9 ,@ 9 , 9 2 #!),
|⇢ | rational numbers (6 9: ,1 9: , ( 9 , :) 2 ⇢), and rational number \ 2 (0,c/2] that define
an instance of the OPF feasibility problem (9.24).
Decision: whether there exist nonnegative real power injections (? 9 , 9 2 #⌧) � 0 at gen-
eration buses, voltage angles (\ 9 , 9 2 #) at all buses, and line flows (% 9: ,& 9: , ( 9 , :) 2
⇢) that satisfy (9.24).

An instance of the subset sum problem specified by (�,f) is said to be solvable
if a solution �0 exists. In the following we will describe a polynomial reduction of
an arbitrary instance (�,f) to an instance of the OPF feasibility problem, and show
that (�,f) is solvable if and only if the corresponding instance of the OPF feasibility
problem is feasible. Let

%̂(\) := 6(1� cos\)� 1 sin\, &̂(\) = �1(1� cos\)�6 sin\ (9.26)

for some (6,1) to be chosen later. We now prove Theorem 9.1 in three steps.

Step 1: Polynomial reduction. Fix an arbitrary subset sum instance (�,f). We specify
the parameters (#⌧ [#! ,⇢), (? 9 ,@ 9 , 9 2 #!), (6 9: ,1 9: , ( 9 , :) 2 ⇢) and \ 2 (0,c/2]
that defines an instance of the OPF feasibility problem (9.24). Choose (6,1,\) such
that 1 < 0 < 6, %̂(�\) < 0 in (9.26), and \ := (0,c/2]. Construct the following star
network (#⌧ [#! ,⇢) with |�| generator buses connected to a single load bus where

• #⌧ := �, #! := {0} with ?0 := f%̂(�\) and @0 := f&̂(�\) at the load bus 9 = 0.
• For all lines (0,0) 2 ⇢ and all 0 2 �, 600 := 06 and 100 := 01.

Denote this OPF feasibility problem instance as ) (�,f). This reduction is polynomial
in the size of (�,f) since the construction only uses rational numbers and finitely
many real numbers constructed from integers 0 2 �, basic arithmetic operations, sin
and cos. We next show that (�,f) is solvable if and only if ) (�,f) has a feasible
solution G := (? 9 , 9 2 #⌧; \ 9 , 9 2 #⌧ [#!; % 9: ,& 9: , ( 9 , :) 2 ⇢) for (9.24).

Step 2: (�,f) is solvable) ) (�,f) is feasible. Let �0 ✓ � be a solution of (�,f).
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Define G by (recall that the only load bus is 9 = 0):

\0 := 0, \0 := \, 80 2 �0

%00 := 0%̂(�\), &00 := 0&̂(�\), 80 2 �0

?0 := %00 := 0%̂(\), &00 := 0&̂(\), 80 2 �0

and for all buses outside the solution set,

?0 := \0 := %00 := &00 := %00 := &00 := 0, 80 2 � \ �0

We show that G satisfies (9.24). Clearly the line flows (9.24c)(9.24d) and the line limits
(9.24e) are satisfied by construction. The injection at each generator bus 0 2 � is

?0 := %00 = 0(6(1� cos\)� 1 sin\) � 0

where the inequality follows from 0 being a positive integer, 1 < 0 < 6 and \ 2 (0,c/2],
which is (9.24b). Finally the power balance (9.24a) at the load bus 9 = 0 is:’

02�
%00 = %̂(�\)

’
02�0

0 = f%̂(�\) = ?0

where the second equality follows because �0 is a solution of (�,f) and the other
equalities are due to construction. Similarly’

02�
&00 = &̂(�\)

’
02�0

0 = f&̂(�\) = @0

Hence G is a feasible solution of (9.24).

Step 3: ) (�,f) is feasible ) (�,f) is solvable. Let G := (? 9 , 9 2 #⌧; \ 9 , 9 2
#⌧ [ #!; % 9: ,& 9: , ( 9 , :) 2 ⇢) be a solution of (9.24). Consider the line flow
%00 = 0%̂(\00) := 0 (6(1� cos\00)� 1 sin\00) on each line (0,0) 2 ⇢ . Suppose
\00 < 0. Then it can be shown that %̂(\00) < 0 (Exercise 9.8). But this implies
?0 = %00 = 0%̂(\00) < 0, contradicting (9.24b). Therefore \00 � 0 for all 0 2 �.

Let �0 := {0 2 � : \00 > 0}. We now show that
Õ
02�0

0 = f. From (9.24a) we have
at bus 0,

f%̂(�\) =: ?0 =
’
02�

%00 =
’
02�

0%̂(\00) (9.27)

f&̂(�\) =: @0 =
’
02�

&00 =
’
02�

0&̂(\00)

Since %̂(�\) < 0 by construction, we have &̂(�\) > 0 (Exercise 9.8), and hence we
can divide both sides by %̂(�\) and &̂(�\) to obtain:

’
02�

0

✓
%̂(\00)
%̂(�\)

� &̂(\00)
&̂(�\)

◆
= 0

or ’
02�

0

⇣
&̂(�\)%̂(\00)� %̂(�\)&̂(\00)

⌘
= 0
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It can be shown that %̂(�\)&̂(\00) � &̂(�\)%̂(\00) with equality if and only if \00 2
{0,\} (Exercise 9.8). Therefore \00 = 0 or \ for all 0 2 �. Note that %̂(0) = 0 and
\00 = �\00, and hence we have from (9.27)

f%̂(�\) =
’
02�0

0%̂(�\)

i.e., �0 is a solution of (�,f). ⇤

9.4 Global optimality: Lyapunov-like condition

OPF is NP-hard in theory, but seems easy in practice in that polynomial time algorithms
often produce globally optimal solutions. In this subsection we study Lyapunov-like
conditions for global optimality. Su�cient conditions for global optimality through
semidefinite relaxation are studied in Chapters 10 and 11.

9.4.1 Convex relaxation

Consider

min
G

5 (G) s.t. G 2 - ✓ R= (9.28)

and

min
G

5 (G) s.t. G 2 -̂ ✓ R= (9.29)

where - is a nonempty compact set (not necessarily convex), -̂ is an arbitrary compact
and convex superset of - , and 5 :R=!R is a convex (and hence continuous) function.
Hence optimal solutions exist for both (9.28) and (9.29) according to Theorem 8.16.
Problem (9.28) is a nonlinear program and generally NP-hard (Exercise 9.9). Problem
(9.29) is called a convex relaxation of (9.28). Since it is a convex problem it is
polynomial time solvable (assuming -̂ is e�ciently represented). If an optimal solution
G
⇤ of (9.29) is feasible for (9.28) then G⇤ is optimal for (9.28). In Chapters 10 and 11

we study the semidefinite relaxations of OPF where -̂ is a semidefinite cone or a
second-order cone, but in this section we allow any convex relaxation.

The cost function of OPF is typically convex but its feasible set is nonconvex
due to, e.g., nonlinear power flow equations. Most algorithms used for solving OPF
are local algorithms such as Newton-Raphson or interior-point methods (studied in
Chapter 8.5). First order conditions are available to guarantee that these algorithms
converge to a global optimum for convex problems. Since OPF is nonconvex, there
is usually no guarantee that a local algorithm will converge or will produce a global
(or local) optimum when it does. Solving convex relaxations of OPF is also widely
studied, and in general, there is no guarantee that relaxations will be exact. Yet there is
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significant evidence that, in practice, local algorithms and convex relaxations tend to
produce globally optimal solutions, e.g., [81].

9.4.2 Conditions for global optimality

We now present conditions from [82, 83] for the nonlinear program (9.28) to simulta-
neously have exact convex relaxation and no spurious local optima. These conditions
help explain the empirical experience that local algorithms and convex relaxations for
OPF tend to work well in practice.

Definition 9.1 (Exact relaxation). 1. A point G⇤ 2 - is called a local optimum of
(9.28) if there exists a X > 0 such that 5 (G⇤)  5 (G) for all G 2 - with kG�G⇤k < X.
It is called a global optimum or an optimum if 5 (G⇤)  5 (G) for all G 2 - .

2. If every optimal solution G⇤ of (9.29) is feasible for, and hence a global optimum of,
(9.28) then we say the convex relaxation (9.29) is exact with respect to (9.28). ⇤

The optimality conditions rely on, for every infeasible point G 2 -̂ \ - , finding a
path that takes G back to the feasible set - along which the cost is nonincreasing.

Definition 9.2 (Path). 1. A path in . ✓ R= connecting point 0 to point 1 is a contin-
uous function ⌘ : [0,1]! . such that ⌘(0) = 0 and ⌘(1) = 1.

2. An arbitrary set {⌘8 : 8 2 �} of paths in . is called
(a) uniformly bounded if there exists a finite number � such that k⌘8 (C)k1  �

for all C 2 [0,1] and all 8 2 �;
(b) uniformly equicontinuous if for any n > 0, there exists X > 0 such that k⌘8 (C2)�

⌘8 (C1)k1 < n for all 8 2 � whenever |C2� C1 | < X. ⇤

As an example, if all paths in {⌘8 : 8 2 �} consist of at most < linear segments
for some finite <, then (the arc-length reparametrized version of) {⌘8 : 8 2 �} is both
uniformly bounded and uniformly equicontinuous; see [83].

Definition 9.3 (Lyapunov-like function). A Lyapunov-like function associated with
(9.28) and (9.29) is a continuous function + : -̂! R+ such that + (G) = 0 if G 2 - and
+ (G) > 0 if G 2 -̂ \ - . ⇤

We can now state a su�cient condition and a necessary condition for (9.28) to
simultaneously have exact convex relaxation and no spurious local optima. The first
condition C9.1 says that every infeasible point G can be brought back to the feasible
set - with a strictly lower cost along a path on which neither the cost 5 nor the
Lyapunov function + increases. Condition C9.3(b) requires that the cost decreases
su�ciently along the path, not just nonincreasing, in order to eliminate the possibility
of pseudo local optimum (see Definition 9.4 below). C9.2 is a regularity condition on
the set of paths for all infeasible points. It is needed for the Arzelà-Ascoli Theorem
that guarantees that this set of paths has a uniformly convergent subsequence in order
to prove that all local optima are global optima.
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C9.1: There is a Lyapunov-like function + associated with (9.28) and (9.29) and,
for every infeasible point G 2 -̂ \ - , there is a path ⌘G in -̂ such that
(a) ⌘G (0) = G, ⌘G (1) 2 - , and 5 (⌘G (1)) < 5 (G).
(b) Both 5 (⌘G (C)) and + (⌘G (C)) are nonincreasing for C 2 [0,1].
C9.2: The set {⌘G : G 2 -̂ \-} of paths in C9.1 is uniformly bounded and uniformly
equicontinuous.
C9.3: At least one of the following holds:
(a) All local optima of (9.28) are isolated, i.e., every local optimum has an open

neighborhood that contains no other local optimum.
(b) For the set {⌘G : G 2 -̂ \-} of paths in C9.1, there exists U > 0 such that for all

infeasible points G 2 -̂ \- and all 0  B < C  1, we have 5 (⌘G (B))� 5 (⌘G (C)) �
Uk⌘G (B)� ⌘G (C)k for some norm k · k.

Theorem 9.2 (Su�ciency). Suppose conditions C9.1, C9.2, C9.3 hold. Then

1. The convex relaxation (9.29) is exact with respect to (9.28).
2. Every local optimum of (9.28) is a global optimum.

Moreover if C9.3.1 holds then the optimal point is unique.

A set. ✓ R= is semianalytic if every G 2. has a neighborhood* such that. \* can
be represented as a finite Boolean combination of sets {G : 6(G) = 0} and {G : ⌘(G) < 0}
for some analytic functions 6,⌘ (i.e., for every G0, 6(G) = Õ1

==0 0= (G � G0)= for some
real coe�cients 0= in a neighborhood of G0, and similarly for ⌘). Engineering problems
are often specified in terms of analytic functions and semianalytic sets.

Theorem 9.3 (Necessity). Suppose the feasible set - is semianalytic and the cost
function 5 is analytic. If (9.29) is exact with respect to (9.28) and every local optimum
of (9.28) is a global optimum, then there exists Lyapunov-like function + and a family
of paths {⌘G : G 2 -̂ \ -} that satisfy C9.1, C9.2.

Remark 9.7 (Su�ciency). 1. Conditions C9.1 and C9.2 imply that the feasible set
- of (9.28) is connected. For OPF however it is possible that the feasible set is
disconnected. In that case convex relaxation may not be exact in the strong sense
of Definition 9.1 that all optimal points of (9.29) are optimal for (9.28). Theorems
9.2 and 9.3 hold however for - restricted to a connected component of the feasible
set. We can also consider a weaker notion of exactness that requires at least one
global optimum of (9.29) to be feasible and hence optimal for (9.28). See [83,
Theorem 4] for a similar su�cient condition that guarantees weak exactness of
(9.29) and no spurious local optimum for (9.28).

2. As we will show in Lemma 9.4 below the exactness of (9.29) with respect to (9.28)
is equivalent to the existence of a path ⌘G for each infeasible point G 2 -̂ \ - that
satisfies C9.1. Indeed proofs of exact relaxations in Chapters 10 and 11 can be
interpreted as constructing such a path. The existence of a Lyapunov-like function
and all other conditions in Theorem 9.2 are needed only to prove the global
optimality of every local optimum.
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3. Consider the dynamical system

§G = 5 (G(C)), C � 0, G(0) = G0 (9.30)

and suppose G⇤ is an equilibrium point where 5 (G⇤) = 0. The equilibrium point G⇤

is said to be globally asymptotically stable if the trajectory G(C) of (9.30) stays close
to G⇤ whenever the initial point G0 is close to G⇤ and G(C)! G

⇤ for any initial point
G0. The standard Lyapunov stability theory says that G⇤ is globally asymptotically
stable if there exists a continuously di�erentiable Lyapunov function + (G) such
that + (G) > + (G⇤) and §+ (G) < 0 for all G < G⇤. In this case (9.30) specifies the
trajectory (path) that G(C) takes starting from a given G0 and the Lyapunov function
+ certifies a stability property of the equilibrium point G⇤. There is no general
method to construct + except on a case-by-case basis.

In our case, the Lyapunov-like function + in Theorem 9.2 certifies that a local
optimum G

⇤ 2 - of (9.28) is a global optimum. Since there is no dynamics, there
is no requirement on the di�erentiability of + . We however have to construct a
path ⌘G for every infeasible point G 2 -̂ \ - that takes G back to a feasible point in
- with a strictly lower cost. No general methods to construct + or ⌘G are known
(see an example in Chapter 9.4.4). ⇤

Figure 9.1 illustrates the NP hardness of OPF and the set of problem instances that
both have exact convex relaxation and no spurious local optimum characterized by
Theorems 9.2 and 9.3.

NP-hard (OPF)

P (OPF)

exact
relaxation

no spurious
local optimum

theorems

Figure 9.1 Problem instances of OPF. Theorems 9.2 and 9.3 provide a su�cient condition and
a necessary condition respectively that characterize the intersection. (Dec 22, 2025: file size
scaled.)

9.4.3 Proof of Theorem 9.2

We next prove the su�ciency condition taken from [82]; see [83] for the proof of
Theorem 9.3.
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Lemma 9.4. The convex relaxation (9.29) is exact with respect to (9.28) if and only
if, for every infeasible point G 2 -̂ \ - , there exists a path ⌘G that satisfies C9.1.

Proof of Lemma 9.4. Suppose (9.29) is exact and let G⇤ 2 - be a global optimum of
(9.28), which exists due to Theorem 8.16. Given any infeasible point G 2 -̂ \ - , let ⌘G
be the line segment connecting G to G⇤. Then ⌘G is in -̂ since -̂ is convex. Moreover
5 (G) > 5 (G⇤) since (9.29) is exact, and hence C9.1 for ⌘G follows from the convexity
of 5 . Conversely suppose every G 2 -̂ \ - has a path ⌘G in -̂ that satisfies C9.1. If
a global optimum G

⇤ of (9.29) is not in - then 5 (⌘G⇤ (1)) < 5 (G⇤), contradicting the
optimality of G⇤. Hence G⇤ 2 - and is a global optimum of (9.28). ⇤

Lemma 9.4 says that, for exact relaxation, it is su�cient if every infeasible point
G 2 -̂ \- has a path ⌘G that satisfies just Condition C9.1. For global optimality of local
optima of (9.28), we need to di�erentiate between two types of local optima that are
not global optima; see Figure 9.2.

Definition 9.4 (Pseudo local optimum). A local optimum G
⇤ 2 - that is not a global

optimum is called

1. a pseudo local optimum if there is a path ⌘ : [0,1]! - that starts at ⌘(0) = G⇤ and
ends at a point ⌘(1) that is not a local optimum, such that 5 (⌘(C)) ⌘ 5 (G⇤) for all
C 2 [0,1].

2. a genuine local optimum if it is a local optimum but neither a global optimum nor
a pseudo local optimum. ⇤

X

a d

b

c = h(0)

h(1)

f (x)

x][

Figure 9.2 Three types of local optima. The cost function decreases in the direction of the
arrow. Point 1 is a global optimum, 2 a pseudo local optimum, and 0,3 are genuine local
optima. (Dec 22, 2025: file size scaled.)

A local optimum G
⇤ is a pseudo local optimum if it can be strictly improved without

incurring a higher cost in the process.

Definition 9.5 (Improvable). A point G 2 - is called improvable in - if there is a path
⌘G : [0,1]! - with ⌘G (0) = G such that

1. 5 (⌘G (C)) is nonincreasing for C 2 [0,1];
2. 5 (⌘G (1)) < 5 (G) or ⌘G (1) is not a local optimum. ⇤
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A local optimum is a pseudo local optimum if and only if it is improvable in
- . The necessity is obvious. For su�ciency, suppose G is improvable in - and let
B := sup{C 2 [0,1] : 5 (⌘G (C)) = 5 (G)}. If B = 0 then ⌘G (B) := G is not a local optimum
and hence not a pseudo local optimum. If 0 < B  1 then ⌘G (B) is not a local optimum
and we can define ⌘0 : [0,1]! - by ⌘0(C) := ⌘G (C) for C 2 [0, B] and ⌘0(C) := ⌘G (B) for
C 2 (B,1]. Then ⌘0 shows that G is a pseudo local optimum.

The next lemma, together with Lemma 9.4, says that conditions C9.1 and C9.2
almost imply Theorem 9.2, except for the possibility of pseudo local optima.

Lemma 9.5. Suppose conditions C9.1 and C9.2 hold. Then every local optimum of
(9.28) is either a global optimum or a pseudo local optimum.

Proof of Lemma 9.5. Fix an G 2 - that is a local but not global optimum of (9.28).
We will show that G is improvable in - and hence a pseudo local optimum.

Let G⇤ < G be a global optimum of (9.28) with 5 (G⇤) < 5 (G). Let ✓ : [0,1]! -̂ be
the line segment connecting G to G⇤, ✓(C) := (1� C)G + CG⇤ for C 2 [0,1]. The convexity
of 5 implies that 5 (✓(C)) is nonincreasing in C because, for any 0  g < C  1, ✓(C) =
U✓(g) + (1�U)G⇤ for some U 2 [0,1] and hence

5 (✓(C))  U 5 (✓(g)) + (1�U) 5 (G⇤)  5 (✓(g))

If ✓(C) 2 - for all C 2 [0,1], i.e., the line segment is in - , then ✓ defines the path ⌘G
in Definition 9.5 with 5 (⌘G (1)) < 5 (G). Therefore G is improvable in - and hence a
pseudo local optimum.

Suppose then part of ✓ lies in -̂ \ - and define the first time the line segment ✓
leaves - (see Figure 9.3):

C
† := sup

g2 [0,1]
C s.t. ✓(g) 2 - 8g  C

Since - is closed, ✓(C†) 2 - . We now argue that C† = 0 and G = ✓(C†) = ✓(0). First note that
5 (✓(C)) is strictly decreasing in C until 5 (✓(B)) = 5 (G⇤) for some B and 5 (✓(C)) ⌘ 5 (G⇤)
over C 2 [B,1]. To see this let B := inf{C 2 [0,1] : 5 (✓(C) = 5 (G⇤)}. Then B > 0 because
otherwise, if B = 0 then the continuity of 5 and ✓ implies 5 (✓(0)) := 5 (G) = 5 (G⇤), a
contradiction. We claim that 5 (✓(C)) is strictly decreasing in C over C 2 [0, B) because
for any 0  g1 < g2 < B, we have ✓(g2) = U✓(g1) + (1�U)✓(B) for some U 2 (0,1) and
hence

5 (✓(g2))  U 5 (✓(g1)) + (1�U) 5 (✓(B)) = U 5 (✓(g1)) + (1�U) 5 (G⇤) < 5 (g1)

where the strict inequality follows because 0 < U < 1 and 5 (G⇤) < 5 (✓(g1)) by the
definition of B. Hence 5 (✓(C)) strictly decreases in C over C 2 [0, B) and 5 (✓(C)) = 5 (G⇤),
i.e., ✓(C) is a global optimum, for all C 2 [B,1]. This implies that 5 (✓(C)) strictly
decreases until at least ✓(C) is at the boundary of - because if ✓(B) 2 - then ✓(B) is a
global optimum and it becomes the case considered above. Therefore G can only be on
the boundary of - to be a local optimum, i.e., C† = 0 and G = ✓(C†) = ✓(0).
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{⌘< (C) : < = 1,2, . . . , }. The continuity of the Lyapunov-like function + implies

+ (⌘(C)) = +

⇣
lim
<

⌘< (C)
⌘
= lim

<

+ (⌘< (C))  lim
<

+ (⌘< (0))

where the inequality follows because + (⌘< (C)) is nonincreasing in C due to C9.1.
Substituting + (⌘< (0)) =+ (✓(C<)) from the definition of ⌘< we have

+ (⌘(C))  lim
<

+ (✓(C<)) = +

⇣
lim
<

✓(C<)
⌘
= + (✓(0)) = + (G) = 0

since lim< ✓(C<) = ✓(lim< C<) = G 2 - . Hence + (⌘(C)) = 0 and ⌘(C) 2 - .
2. ⌘(0) = G: We have ⌘(0) = lim< ⌘< (0) = lim< ✓(C<) = ✓(lim< C<) = ✓(0) = G.
3. 5 (⌘(C)) nonincreasing in C: This follows from 5 (⌘(C)) = 5 (lim< ⌘< (C)) =

lim< 5 (⌘< (C)) and 5 (⌘< (C)) is nonincreasing in C by C9.1.
4. 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum: Suppose 5 (⌘(1)) = 5 (G). We will

show that ⌘(1) cannot be a local optimum. For each < we have

5 (⌘< (1)) < 5 (⌘< (0)) = 5 (✓(C<)) < 5 (✓(0)) = 5 (G) = 5 (⌘(1))

where the first inequality and the first equality follow from C9.1, and the second
inequality follows from (9.31). This means that there are infinitely many < such
that 5 (⌘< (1)) < 5 (⌘(1)) and ⌘< (1)! ⌘(1). Therefore there is no neighborhood
of ⌘(1) in which 5 attains minimum.

This shows that G, which is a local but not global optimum of (9.28), is improvable in
- and hence a pseudo local optimum. ⇤

Finally we show that C9.3 eliminates the possibility of pseudo local optimum. This,
together with Lemmas 9.4 and 9.5, proves Theorem 9.2.

Lemma 9.6. Suppose conditions C9.1, C9.2 and C9.3 hold. Then every local optimum
of (9.28) is a global optimum.

Proof of Lemma 9.6. If C9.3(a) holds, then clearly a local optimum G cannot be a
pseudo local optimum. Lemma 9.5 then implies that G is a global optimum. Moreover
if there are multiple local (and hence global) optima G and Ĝ then, since 5 is convex,
any convex combination of G and Ĝ is optimal, contradicting that G and Ĝ are isolated
optima. (For the DistFlow model, this uniqueness properties is Theorem 11.1.)

Suppose C9.3(b) holds and G is a local but not a global optimum of (9.28). Following
the proof of Lemma 9.5 we have a uniformly convergent (sub)sequence {⌘< : < =
1,2, . . . } whose limit point is the path ⌘ : [0,1]! - with ⌘(0) = G. Since 5 (⌘< (B))�
5 (⌘< (C)) � Uk⌘< (B) � ⌘< (C)k for any B < C by C9.3(b), taking limit as <!1 we
have,

5 (⌘(B))� 5 (⌘(C)) � Uk⌘(B)� ⌘(C)k > 0 whenever ⌘(B) < ⌘(C) (9.32)

Let B0 := inf{B 2 (0,1] : ⌘(B) < G}. Then ⌘(B0) = G since ⌘ is continuous. The proof of
Theorem 9.2 shows that 5 (⌘(1)) < 5 (G) or ⌘(1) is not a local optimum. This means
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that ⌘(1) < G, and hence 0  B0 < 1. We claim that ⌘(B0 + n) < G for any n 2 (0,1� B0],
because

5 (⌘(B0 + n)) < 5 (⌘(B0)) = 5 (G)

where the first inequality follows from substituting B := B0 and C := B0 + n into (9.32).
Therefore 5 (G) > 5 (⌘(C)) for all C 2 (B0,1], contradicting the local optimality of G. ⇤

9.4.4 Application to OPF on radial network

Consider the single-phase OPF (9.21) formulated in Chapter 9.2 on a radial network
⌧ = (# ,⇢) with # +1 buses and" = # lines modeled by the DistFlow equation (9.20),
reproduced here (all lines pointing away from bus 0):’

:: 9!:
( 9: = (8 9 � IB8 9✓8 9 + B 9 , 9 2 # (9.33a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (9.33b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (9.33c)

and operational constraints:

B
min
9
 B 9  Bmax

9
, E

min
9
 E 9  Emax

9
, ✓ 9:  ✓max

9:
, 9 2 # , ( 9 , :) 2 ⇢ (9.33d)

Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2 R3(#+1) the bus injections and squared voltage
magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9 ! : 2 ⇢) 2 R3" the squared line current
magnitudes and line powers. Let G := (B,E,✓,() in R3(2#+1) since ⌧ is a tree. Let

- := {G := (B,E,✓,() 2 R3(2#+1) : G satisfies (9.33)} (9.34a)

Let the cost function be a real-valued function 5 (G). Then OPF formulated in (9.21)
and reproduced here is:

min
G

5 (G) s.t. G 2 - (9.34b)

The feasible set - is nonconvex because of the nonlinear constraint (9.33c). Relax it
to a second-order constraint (studied in Chapter 8.2.1):

E 9✓ 9: � |( 9: |2, 9 ! : 2 ⇢ (9.35)

Consider the relaxed convex feasible set

-̂ := {G 2 R3(2#+1) : G satisfies (9.33a)(9.33b), (9.35), (9.33d) } (9.36a)

and the convex relaxation of (9.34)

min
G

5 (G) s.t. G 2 -̂ (9.36b)

We assume the problem parameters are such that the following condition is satisfied:
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C9.4: The feasible set - is nonempty and compact, the convex feasible set -̂ is
compact, and the real-valued cost function 5 (G) is convex and continuous.

Then (9.34) and (9.36) are an example of (9.28) and (9.29) to which Theorem 9.2
applies.

To construct a Lyapunov-like function + and paths ⌘G for every infeasible point
G 2 -̂ \ - , we need additional assumptions:

C9.5: The cost function 5 (G) = 5 (?,@,E,✓) is independent of line flows ( = (%,&)
and continuously di�erentiable in (?,@,✓) with nonnegative r? 5 (G) � 0 and
r@ 5 (G) � 0 for all G 2 -̂ . Moreover there exists 2 > 0 such that m 5

m✓;

(G) � 2 for all

; 2 ⇢ and all G 2 -̂ .
C9.6: For each 9 2 # , the injection limit Bmin

9
= �1� i1.

C9.7: For each 9 ! : 2 ⇢ , I 9: =: (A 9: ,G 9: ) > 0 and the line limit satisfies
|I 9: |2✓max  Emin

9
.

C9.5 implies that ⇠ is strictly increasing in each component of ✓ 9 . Moreover, given
any G := (?,@,E,✓,() 2 -̂ , any nonnegative (X?,X@,0,X✓) � 0, and any scalar C � 0 we
have (Exercise 9.11)

5 ((?,@,E,✓) + C (X?,X@,0,X✓))� 5 (?,@,E,✓) � 2C

’
( 9,:)2⇢

X✓ 9: = 2CkX✓k1 (9.37)

where kHk1 :=
Õ
9
|H 9 | is the ;1 norm. This property will be used in the proof below.

C9.6 means that demands are large enough not to pose a constraint. C9.7 is realistic
because typically + 9 = (1+ n 9 )4i\ 9 pu where n 9 2 [�0.1,0.1] and the angle di�erences
\ 9: := \ 9 �\: are typically small in magnitude. Then the maximum value of |+ 9 �+: |2 =��(1+ n 9 )4i\ 9: � (1+ n: )

��, which is |I 9: |2✓max, should be much smaller than Emin
9
⇡ 1 pu.

Theorem 11.3 of Chapter 11.2 shows that C9.5 and C9.6 imply that the SOCP
relaxation (9.36) is exact with respect to (9.34). We now show that conditions C9.4–
C9.7 guarantee that every local optimum of (9.34) is a global optimum.

Theorem 9.7 (Global optimality of (9.34)). Suppose C9.4–C9.7 holds for OPF (9.34)
on radial networks. Then every local optimum of (9.34) is a global optimum.

Proof We will construct a Lyapunov-like function + and a path ⌘G in -̂ for each
infeasible point Ĝ 2 -̂ \ - that, for OPF (9.34), satisfy C9.1–C9.3. The theorem then
follows from Theorem 9.2.

Let

+ (G) :=
’

9!:2⇢

⇣
E 9✓ 9: � |( 9: |2

⌘
(9.38)

Clearly + (G) � 0 for all G 2 -̂ with equality if and only if G 2 - , and hence + (G) is a
Lyapunov-like function.
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Fix an G 2 -̂ \ - . To construct a path ⌘G in -̂ , let " := {( 9 , :) 2 ⇢ : E 9✓ 9: > |( 9: |2}
be the set of lines where the quadratic equality is violated. For each ( 9 , :) 2 " , let q 9:
be the quadratic function:

q 9: (0) :=
|I 9: |2

4
0

2 +
�
E 9 �Re

�
Ī 9:( 9:

� �
0 +

⇣
|( 9: |2� E 9✓ 9:

⌘
(9.39)

Since q 9: (0) < 0, q 9: has a unique positive root. Define � 9: to be this positive root if
( 9 , :) 2 " and 0 otherwise. Furthermore for ( 9 , :) 2 " ,

E 9 �Re( Ī 9:( 9: ) � E 9 � |I 9: | |( 9: | > E 9 � |I 9: |
p
E 9✓ 9:

� E 9 �
q
E 9 · |I 9: |2✓max

9:
| � E 9 �

p
E 9 · E 9 = 0

where the second inequality follows from ( 9 , :) 2 " , and the last inequality follows
from C9.7. This implies that the quadratic function q 9: (0) is negative and strictly
increasing over [0,� 9: ]. Consider the path ⌘G (C) :=

�
B̃(C), Ẽ(C), ✓̃(C), (̃(C)

�
for C 2 [0,1]

where

B̃ 9 (C) := B 9 �
C

2

’
8:8! 9

I8 9�8 9 �
C

2

’
:: 9!:

I 9:� 9: , 9 2 # (9.40a)

Ẽ 9 (C) := E 9 , 9 2 # (9.40b)

✓̃ 9: (C) := ✓ 9: � C� 9: , 9 ! : 2 ⇢ (9.40c)

(̃ 9: (C) := ( 9: �
C

2
I 9:� 9: , 9 ! : 2 ⇢ (9.40d)

Therefore ⌘G (C) := G � C��(G) where the vector �(G) := (� 9: , ( 9 , :) 2 ⇢) depends on
G through the quadratic function q 9: (0), � is the following 3(2# +1)⇥# matrix

� :=

2666666666664

1
2 |⇠ |'
1
2 |⇠ |-

0
I#
1
2'
1
2-

3777777777775

with ' := Diag(A 9: , 9 ! : 2 ⇢), - := Diag(G 9: , 9 ! : 2 ⇢) (9.41)

and I 9: =: (A 9: ,G 9: ). Here |⇠ | is obtained from the node-by-line incidence matrix ⇠
by replacing �1 by 1, and 0 and I# denote the zero and identity matrices of appropriate
sizes. Since I 9: > 0 (C9.7) and� 9: � 0 by construction, each entry of the vector ��(G)
is nonnegative and hence, for OPF (9.34), we have

1
T
��(G) =

’
:

[��(G)]
:
= k��(G)k1, G 2 -̂ (9.42)

where kGk1 :=
Õ
:
|G: | is the ;1 norm. This is a property needed to establish C9.3 below.

We now show that + in (9.38) and {⌘G : G 2 -̂ \ -} in (9.40) satisfy C9.1–C9.3.

1. Clearly ⌘G (0) = G in -̂ \ - . It can be shown that ⌘G (C) 2 -̂ for all C 2 [0,1] and
⌘G (1) 2 - (Exercise 9.11). It su�ces to show that both 5 (⌘G (C)) and + (⌘G (C))
are strictly decreasing in C on [0,1] for C9.1 to be satisfied. Since 5 is strictly
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increasing in ✓ (C9.5) and � 9: > 0 for ( 9 , :) 2 " , ✓̃�✓ is nonnegative and nonzero
from (9.40c) for C > 0. Hence 5 (⌘G (C)) = 5 (G� C��(G)) is strictly decreasing in C
on [0,1]. For + (⌘G (C)) we have from (9.38) and (9.40)

+ (⌘G (C)) :=
’

( 9,:)2⇢

⇣
E 9 (✓ 9: � C� 9: )� |( 9: � (C/2)I 9:� 9: |2

⌘
= �

’
( 9,:)2"

q 9: (C� 9: )

because E 9✓ 9: = |( 9: |2 for ( 9 , :) 8 " . Since q 9: (0) is strictly increasing in 0 over
[0,� 9: ], + (⌘G (C)) is strictly decreasing in C over [0,1]. This proves C9.1.

2. C9.2 follows because -̂ is a compact set and ⌘G (C) = G� C��(G) is linear in C.
3. For C9.3 we will use (9.37) and (9.42) to show that there exists U > 0 such that for

all infeasible points G 2 -̂ \- and all 0  g < C  1, we have 5 (⌘G (g))� 5 (⌘G (C)) �
Uk⌘G (g) � ⌘G (C)k1. Fix 0  g < C  1. Since ⌘G (C) = G � C��(G), C9.5 and (9.41)
imply

5 (⌘G (g))� 5 (⌘G (C))
= 5 ((?,@,E,✓)� g(X?,X@,XE,X✓))� 5 ((?,@,E,✓)� C (X?,X@,XE,X✓))

where 
X?

X@

�
=

 1
2 |⇠ |'
1
2 |⇠ |-

�
�(G), XE = 0, X✓ = �(G)

Hence (9.37) implies

5 (⌘G (g))� 5 (⌘G (C)) � 2(C � g)kX✓k1 = 2(C � g)k�(G)k1 (9.43)

We will compare the right-hand side with k⌘G (g) � ⌘G (C)k1 = (C � g)k��(G)k1.
We have

k⌘G (g)� ⌘G (C)k1 = (C � g)1T
��(G)  (C � g2̃

’
( 9,:)2⇢

� 9: (G) = (C � g)2̃k�(G)k1

where the first equality follows from (9.42), the last equality follows because every
entry of �(G) is positive, and 2̃ := max: [1T

�]: > 0 (recall that every entry of � is
nonnegative). Substituting into (9.43) yields

5 (⌘G (g))� 5 (⌘G (C)) �
2

2̃

k⌘G (g)� ⌘G (C)k1

which is C9.3.

⇤

Remark 9.8 (Strong increase in Condition C9.5). 1. C9.5 assumes 5 is strongly in-
creasing in ✓ in the sense that m 5

m✓ 9

(G) � 2 > 0. Instead of ✓, we can assume that 5
is strongly increasing in ? or in @ and Theorem 9.7 continues to hold. Specifically
C9.5 can be modified to: there exists 2 > 0 such that for all G 2 -̂ , m 5

m✓;

(G) � 2 for all

; 2 ⇢ , or m 5

m? 9

(G) � 2 for all 9 2 # , or m 5

m@ 9

(G) � 2 for all 9 2 # . Moreover Theorem
11.3 of Chapter 11.2 on exact relaxation continues to hold (see condition C11.1).
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2. Continuous di�erentiability in C9.5 is not necessary because, since 5 is convex
(C9.4), it is always subdi�erentiable and we can replace m 5

m✓ 9

(G) � 2 > 0 by b 9 �
2 > 0 for all subgradient b 9 of 5 with respect to ✓ 9 , for all 9 and all G 2 -̂ . ⇤

9.5 Techniques for scalability: case study

Practical OPF problems can be di�cult to solve. This can be due to the sheer number
of variables and constraints relative to available solution time. It can also arise from the
nonsmoothness or the nonconvexity of the objective or constraint functions that often
lead to numerical issues. The nonsmoothness or nonconvexity can take di�erent forms,
e.g., nonlinear power flow equations, discrete variables, nondi�erentiability of the ob-
jective or constraint functions, complementarity or disjunctive constraints. All of these
challenges are embodied in security constrained OPF (SCOPF). Practical solutions for
a large optimization problem require not only the understanding of basic optimization
theory, but also the development of many heuristics tailored to the structure of the
specific problem and techniques for scalable software.

In this section we illustrate these computational challenges and some solution tech-
niques through an SCOPF problem proposed by the US Advanced Research Projects
Agency - Energy (ARPA-E) in a multi-year Grid Optimization (GO) Competition.
The GO Competition aims to accelerate the development of algorithms and software
for solving large OPF problems. It was staged as a series of challenges. Challenge 1,
which was conducted over the course of 2019, focused on real-time SCOPF [84]. In
Chapter 9.5.1 we formulate the SCOPF problem and discuss computational challenges
embodied in this problem. These challenges are also commonly found in other energy
applications. In Chapters 9.5.2 we describe common techniques for addressing nons-
moothness and scalability. In Chapter 9.5.3 we summarize how these techniques are
used by the top three winners of the GO Challenge 1 [85, 86, 87] for solving industrial-
scale OPF problems. The e�ective treatment of complementarity constraints, e�cient
contingency screening, and robust parallelization of computation have proved to be
essential in devising a practical solution.

9.5.1 SCOPF formulation

The detailed SCOPF formulation is described in the o�cial specification [84]. We
present a highly simplified version to illustrate the main algorithmic ideas in [85, 86, 87]
to overcome some of the computational challenges.

Constraints. We start by formulating the constraints of the GO Challenge 1 problem.
It can sometimes be di�cult to exactly satisfy equality and inequality constraints in
a realistic problem. This can be due to modeling or numerical errors, not just the



474 Optimal power flow

lack of computational resources. Energy management systems in practice however
must recommend a decision even when it is impossible to satisfy all constraints of the
model. One way to deal with this is to allow some constraint violations in order to
practically eliminate infeasibility, but penalize them in the objective.

Let : = 0 denote the base case and : = 1, . . . , denote contingencies, though we
will often refer to the base case also as contingency : = 0. Let

�
?
D

:8
,@D
:8

�
denote

uncontrollable loads (or generations) and (?:8 ,@:8) denote controllable generation
levels at buses 8 2 # in contingencies : � 0. For notational simplicity we assume
without loss of generality that there is exactly one uncontrollable injection and one
controllable generator at each bus 8. We impose the standard voltage and generation
limits:

E
:8
 |+:8 |  E:8 , ?

8

 ?:8  ?8 , @
8

 @:8  @8 , : � 0, 8 2 # (9.44)

where E
:8
 E:8 , ?

8

 ?
8
, and @

8

 @
8

are given constants.

For each line (8, 9) 2 ⇢ and each contingency : � 0, let
�
%:,8 9 ,&:,8 9

�
denote the

sending-end real and reactive power from buses 8 to 9 and
�
%:, 98 ,&:, 98

�
denote the

sending-end line power in the opposite direction. Instead of exact real and reactive
power balance at bus 8, we impose

?:8 � ?D:8 =
’
9: 9⇠8

%:,8 9 +f?+
:8
�f?�

:8
,

⇣
f
?+
:8

,f?�
:8

⌘
� 0, : � 0, 8 2 # (9.45a)

@:8 � @D:8 =
’
9: 9⇠8

&:8 +f@+
:8
�f@�

:8
,

⇣
f
@+
:8

,f@�
:8

⌘
� 0, : � 0, 8 2 # (9.45b)

where the nonnegative variables (f?+
:8

,f?�
:8

) are slack variables for real power vio-
lations and (f@+

:8
,f@�
:8

) are slack variables for reactive power violations. These slack
variables will be penalized in the objective.

With a slight abuse of notation we use (%:,8 9 (\: , |+: |),&:,8 9 (\: , |+: |)) to denote
the line power as functions of voltage magnitudes and angles in contingencies : � 0
defined by:

%:,8 9 (\: , |+: |) =
⇣
6
B

8 9
+6<

8 9

⌘
|+:8 |2� |+:8 | |+: 9 |

⇣
6
B

8 9
cos(\:8 � \: 9 ) + 1B8 9 sin(\:8 � \: 9 )

⌘
(9.46a)

&:,8 9 (\: , |+: |) = �
⇣
1
B

8 9
+ 1<

8 9

⌘
|+:8 |2 + |+:8 | |+: 9 |

⇣
1
B

8 9
cos(\:8 � \: 9 )�6B8 9 sin(\:8 � \: 9 )

⌘
(9.46b)

where
⇣
6
B

8 9
,1B
8 9

⌘
and

⇣
6
<

8 9
,1<
8 9

⌘
are series and shunt admittances of line (8, 9). Similarly

for
�
%:, 98 (\: , |+: |

�
, &:, 98 (\: , |+: |)

�
in the opposite direction on line (8, 9). Then we

impose the constraints

(%:,8 9 ,&:,8 9 ) = (%:,8 9 (\: , |+: |),&:,8 9 (\: , |+: |)), : � 0, (8, 9) 2 ⇢ (9.46c)

(%:, 98 ,&:, 98) = (%:, 98 (\: , |+: |),&:, 98 (\: , |+: |)), : � 0, (8, 9) 2 ⇢ (9.46d)
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Line limits are expressed in terms of apparent power and the sending-end voltage
magnitudes, on both ends of the lines (8, 9) 2 ⇢ :q

%
2
:,8 9 +&2

:,8 9  %
max
:,8 9 |+:8 | +f4:,8 9 , : � 0, (8, 9) 2 ⇢ (9.47a)q

%
2
:, 98 +&2

:, 98  %
max
:,8 9 |+: 9 | +f4:,8 9 , : � 0, (8, 9) 2 ⇢ (9.47b)

f
4

:,8 9 � 0, : � 0, (8, 9) 2 ⇢ (9.47c)

where %max
:,8 9 are given parameters and f4

:,8 9 are slack variables that measure line limit
violations.

When contingency : � 1 occurs the generators will adjust their real and reactive
power to rebalance. This may be necessary even if the contingency is a transmission
outage, i.e, the disconnection of a line or a transformer, instead of a generator outage,
because the redistribution of line flows may result in di�erent amounts of losses that
need to be compensated for by these generators. Moreover the outage may also lead to
deviation of tie-line flows from their scheduled values and hence nonzero area control
error that must be corrected. The rebalancing is carried out at a fast timescale by
frequency control mechanisms (see Chapter 6.3). The e�ect of the frequency control
actions is modeled as follows. The real power at the generators is adjusted proportion-
ally within their generation capacities, i.e., (?:8 , : � 1, 8 2 #) satisfy

?:8 = [?08 + U8�: ] ?8?
8

(9.48a)

where ?08 are the output levels of generators 8 in the base case : = 0, (?
8

, ?
8
) are their

lower and upper capacity limits, �: are the total real power contingency response, and
U8 � 0 are called the participation factors of generators 8 with

Õ
8
U8 = 1. (If generator

8 does not participate in contingency response then U8 = 0.) Here, for real scalars
G, 0  1, we define [G]1

0
:= max(0,min(G,1)). The reactive power of generators 8 is

adjusted within their capacity limits in an attempt to restore the voltage magnitudes
|+:8 | to their pre-contingency values, i.e., (@:8 , |+:8 |, : � 1, 8 2 #) satisfyn
@
8

 @:8  @8 , |+:8 | = |+08 |
o
[

n
@:8 = @

8

, |+:8 | � |+08 |
o
[

�
@:8 = @8 , |+:8 |  |+08 |

 
(9.48b)

Variables. To simplify notation define the following nodal vector variables for each
contingency: for : � 0,

(?: ,@: , |+: |,\: ) :=
⇣
?:8 ,@:8 , |+:8 |,\:8 , 8 2 #

⌘
, f

?+
:

:=
⇣
f
?+
:8

, 8 2 #
⌘

(9.49a)

and similarly for
⇣
f
?�
:

,f@+
:

,f@�
:

⌘
. Define the following branch variables for each

contingency: for : � 0,

(%: ,&: ) :=
�
%:,8 9 ,&:,8 9 ,%:, 98 ,&:, 98 , (8, 9) 2 ⇢

�
, f

4

:
:=

⇣
f
4

:,8 9 , (8, 9) 2 ⇢
⌘

(9.49b)
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Let

f: :=
⇣
f
?+
:

,f?�
:

,f@+
:

,f@�
:

,f4
:

⌘
, : � 0 (9.49c)

G: := (?: ,@: , |+: |,\: ,%: ,&: ,f: ) , : � 0 (9.49d)

H: := (G: ,�: ) , : � 1 (9.49e)

The vector G0 collects base-case decisions and H: responses to contingencies : � 1.

SCOPF. The SCOPF problem in the GO Challenge 1 takes the form:

min
’
8

2
6

8
(?08) + X20 (f0) + (1� X) 1

| |
’
:�1

2: (f: ) (9.50a)

over G0, (H: , : � 1) (9.50b)

s.t. (9.44)(9.45)(9.46)(9.47)(9.48) (9.50c)

where 26
8
(?08) are the generation costs at buses 8 in the base case, 20 (f0) and 2: (f: ) are

the penalty functions for constraint violations in the base case : = 0 and contingencies
: � 1 respectively, defined as: for : � 0,

2: (f: ) :=
’
82#

⇣
2
?

:8

⇣
f
?+
:8

+f?�
:8

⌘
+ 2@

:8

⇣
f
@+
:8

+f@�
:8

⌘⌘
+

’
(8, 9)2⇢

2
4

:,8 9

⇣
f
4

:,8 9

⌘
(9.50d)

and X 2 [0,1] is the weight to trade o� the penalty in the base case against the average
contingency penalty. The functions 2?

:8
, 2@
:8

, 24
:,8 9 , : � 0, are convex piecewise linear,

each with three segments of increasing slopes.

Two-stage formulation. The problem (9.50) can also be treated as a two-stage op-
timization where the first-stage optimization is over the base-case decision G0 and the
second-stage optimization is over the contingency response H: in each contingency
: � 1. It can be rewritten as

min
G0

’
8

2
6

8
(?08) + X20 (f0) + (1� X) 1

| |
’
:�1

A: (G0) (9.51a)

s.t. (9.44)(9.45)(9.46)(9.47) with : := 0 (9.51b)

where the recourse functions from the second-stage optimization are: for 9 � 1,

A 9 (G0) := min
H 9

2 9

�
f9

�
(9.52a)

s.t. (9.44)(9.45)(9.46)(9.47)(9.48) with : := 9 (9.52b)

where the penalty functions 2: (f: ) are defined in (9.50d). The second-stage problem
is used for contingency evaluation. (Two-stage optimization with recourse is studied
in Chapter 13.4.)

Remark 9.9 (Key structures of SCOPF). 1. The constraints (9.44) and (9.45) are
linear. The constraint (9.46) is smooth but nonconvex. The constraints (9.47)
(9.48) are nonsmooth and computationally di�cult especially for interior-point
methods (e.g., Ipopt [88]) used by all three teams [85, 86, 87]. All three teams
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devise methods to e�ectively handle these nonsmooth constraints, as discussed in
Chapters 9.5.2 and 9.5.3.

2. The constraints (9.44) (9.45) (9.46) (9.47) apply to both the base case : = 0 and
contingencies : � 1, but (9.48) where complementarity constraints must be dealt
with applies only to contingencies : � 1 and hence only appears in the second-stage
problem (9.52). As noted above (9.48) models the steady-state e�ect of frequency
control actions after a contengency.

3. All constraints except (9.48) are separable in : . The constraint (9.48) couples
the base case variables G0 and contingency response H: for each : . The SCOPF
problem is therefore highly parallelizable and this is exploited by all three teams.

⇤

Computational challenges The GO Challenge 1 includes a SCOPF test where a base
case decision G0 must be computed within 10 or 45 minutes depending on the category
of competition. It includes another test that computes contingency responses given the
base-case decision G0 with a time limit corresponding to 2 seconds per contingency.
The problem (9.50) does not include unit commitment decisions or switched devices
such as transformer taps, capacitor banks and switchable transmission lines. They
are included in Challenge 2 of the GO Competition that was conducted in 2021 and
introduce discrete variables that add to the computational di�culty.

There are three main computational challenges with (9.50):

1. Nonsmoothness. Interior-point solvers, which all three winning teams use, by
default require the problem to be smooth but constraints (9.47)(9.48) are both
nonsmooth. The line limit (9.47) specifies a second-order cone (studied in Chapter
8.2.1) of the form: vut

=�1’
8=1

G
2
8
 G= + 0=, G 2 R=, 0= 2 R (9.53a)

This constraint is convex but nondi�erentiable at the origin. The real power gen-
eration limit (9.48a) in each contingency is of the form

H = [G]1
0

:= max(0,min(G,1)), G, H,0,1 2 R (9.53b)

and also nondi�erentiable at G = 0 or G = 1. The reactive power generation limit
in each contingency (9.48b) is a logical constraint of the form

{0  G  1, H = I}[ {G = 0, H � I}[ {G = 1, H  I} , G, H, I,0,1 2 R (9.53c)

Logical constraints are generally di�cult to compute.
2. Large problem size. For a network with ⌧ generators and " transmission lines

or transformers2 , if we are to evaluate security against the outage of every single
generator or line/transformer, it can increase the number of constraints by a factor

2 The o�cial GO Challenge 1 models transformers with slightly di�erent capacity limits than (9.47).
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of ⌧ +" under # � 1 security. If the dispatch has to be secure against # � :
security then the number of constraints will be increased by a factor of (⌧ +
")!/(:!(⌧+"�:)!). For example the largest network used in the GO Challenge 1
has 30,000 buses, 3,526 generators, 32,020 transmission lines, 3,373 transformers
[87, Table EC.1], yielding ⌧ +" = 3,526+32,020+3,373 = 38,919. This would
have increased the number of constraints by 4 orders of magnitude under # � 1
security, or almost 9 orders of magnitude under # �2 security ((⌧ +")!/(:!(⌧ +
" � :)!) = 757,324,821). The GO Competition adopts # � 1 security but only
includes about 16,000 contingency scenarios which is still an increase of 4 orders
of magnitude. For real-time SCOPF any practical solution must include methods
to e�ciently rank contingencies and solve an approximate problem with only a
few highly ranked contingencies.

3. Nonconvexity. The power flow constraint (9.46) is nonconvex. As we have seen in
Chapter 9.3, OPF is NP-hard which means that it is hard to scale in the worst case.

Methods to deal with nonconvexity through convex relaxations are studied in Chap-
ters 10 and 11. It is however di�cult to scale these methods to large problems. All
three teams use a solver (Ipopt [88]) that applies a local interior-point algorithm to the
nonconvex problem. Though local algorithms are generally not guaranteed to produce
a global optimum, they often perform well in practice, as discussed in Chapter 9.4.

We therefore focus in the rest of this section on techniques use by the GO Compe-
tition teams to handle nonsmoothness and large problem size.

9.5.2 Handling nonsmoothness

The types of nonsmoothness in (9.53) are common in OPF problems. A basic approach
is to approximate nondi�erentiable functions by smooth functions and convert logical
constraints into equivalent complementarity constraints or mixed integer constraints.
For small problems the resulting complementarity problems or mixed integer problems
can be solved directly. For large problems the complementarity constraints or mixed
integer constraints are approximated by smooth constraints that can be solved using
standard solvers. We next describe three techniques commonly used for handling
nonsmoothness. In Chapter 9.5.3 we summarize how these techniques are used in
[85, 86, 87] for solving industrial-scale OPF problems.

9.5.2.1 Smooth approximation

A common technique to handle the nondi�erentiable second-order cone constraint

(9.53a),
qÕ

=�1
8=1 G

2
8
 G= + 0=, is to consider instead

=�1’
8=1

G
2
8
 (G= + 0=)2, G= + 0= � 0
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The first constraint
Õ
=�1
8=1 G

2
8
 (G= +0=)2 is di�erentiable but nonconvex. Even though

they are di�erent representations of the same set, the resulting optimization problem
can have di�erent duality and computational properties; see Chapter 8.3.7. Instead of
including the nonconvex constraint

Õ
=�1
8=1 G

2
8
 (G= + 0=)2, [85] replaces it by a log-

barrier function in the cost function for each contingency:

5 (G) := � log

 
(G= + 0=)2�

=�1’
8=1

G
2
8

!

which is a convex function (Exercise 8.9).

The constraint (9.53b), H = [G]1
0

:= max(0,min(G,1)), is nondi�erentiable at G = 0
or G = 1. It is approximated by a smooth constraint in [87], as follows. The function
5 (G) := max(0,G), G 2 R, can be over approximated by

5
n (G) := n ln

⇣
1+ 4G/n

⌘
, n > 0 (9.54a)

and the function 6(G) := min(0,G), G 2 R, can be under approximated by

6
n (G) := �n ln

⇣
1+ 4�G/n

⌘
, n > 0 (9.54b)

See Figure 9.4(a). The approximation errors are respectively
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Figure 9.4 (a) The nonsmooth functions 5 (G) := max(0,G) and 6(G) := min(0,G) and their
smooth approximations 5 n (G) and 6n (G) respectively (n = 0.05). (b) The smooth
approximation ⌘n (G) of the nonsmooth function ⌘(G) := [G]1

0
(n = 0.05, 0 = �0.2, 1 = 0.2).

5
n (G)� n ln2  5 (G) < 5

n (G), n > 0, G 2 R
6
n (G) + n ln2 � 6(G) > 6

n (G), n > 0, G 2 R

Hence the approximation becomes tight as n ! 0, but a small n can cause numerical
issues since the second derivatives 3

2

3G
2 5

n (0) and 3
2

3G
2 6
n (0) evaluated at G = 0 diverges

as n! 0. Hence a good heuristic must strike a balance between accuracy and numerical
stability. This method leads to a smooth approximation of ⌘(G) := max(0,min(G,1))
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given by

⌘
n (G) := 0 + n ln

✓
1+ 4

(1�0)/n

1+ 4 (1�G)/n

◆
(9.54c)

See Exercise 9.12 for approximations of max(0,G), min(G,1) and max(0,min(G,1)).
Then the constraint H = [G]1

0
can be replaced by its smooth approximation H = ⌘n (G).

9.5.2.2 Reformulation as mixed integer constraints

Both the nondi�erentiable constraint (9.53b) and the logical constraint (9.53c) can
be reformulated as equivalent mixed integer constraints using the big-" method.
Specifically, for G, H 2 R, H = [G]1

0
:= max(0,min(G,1)) if and only if there exist binary

variables I, I 2 {0,1} such that (Exercise 9.13):

0  H  1, H� 0  "I, H� G  " (1� I), 1� H  "I, G� H  " (1� I) (9.55)

where " 2 R+ is a su�ciently large constant. Similarly the logical constraint (9.53c)
can also be reformulated as an equivalent mixed integer constraint (Exercise 9.14):
(G, H, I) 2 R3 satisfies

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I}

if and only if there exist binary variables (I, I) such that

0  G  1, I, I 2 {0,1} (9.56a)

G� 0  "I, I� H  "I, H� I  " (1� I) (9.56b)

1� G  "I, H� I  "I, I� H  " (1� I) (9.56c)

After all nondi�erentiable constraints and logical constraints have been replaced
by equivalent mixed integer constraints, the resulting mixed integer problem can be
solved exactly by standard solvers if the problem is small. Otherwise one can relax the
integrality constraints, e.g., relax I, I 2 {0,1} to I, I 2 [0,1], and solve the relaxation.

9.5.2.3 Reformulation as complementarity constraints

Alternatively the nondi�erentiable constraint (9.53b) can be reformulated as an equiv-
alent complementarity constraint: for G, H 2 R, H = [G]1

0
:= max(0,min(G,1)) if and

only if there exist slack variables d�, d+ 2 R such that (Exercise 9.13)

H + d+� d� = G, 0  d
� ? H� 0 � 0, 0  d

+ ? 1� H � 0 (9.57a)

Here 0  G ? H � 0 is a shorthand for G, H � 0 and GH = 0. Similarly the logical
constraint (9.53c) can also be reformulated as an equivalent complementarity constraint
(Exercise 9.14): (G, H, I) 2 R3 satisfies

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I}
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if and only if there exist slack variables d�, d+ 2 R such that

H + d+� d� = I, 0  d
� ? G� 0 � 0, 0  d

+ ? 1� G � 0 (9.57b)

The ability to convert between these nonsmooth constraints allows algorithm designers
to choose di�erent representations and derive di�erent strategies to handle them, as
the GO Competition teams do.

Solving complementarity constraints such as those in (9.57), e.g., given G, finding
(H, d�, d+) that satisfies (9.57a) is called a linear complementarity problem. More
generally, given a matrix " 2 R<⇥= and vector 2 2 R< the linear complementarity
problem LCP(" ,2) is to find vectors (I,G) 2 R<+= such that

I � 0, "G + 2 � 0, I
T ("G + 2) = 0 (9.58a)

The shorthand for (9.58a) is

0  I ? "G + 2 � 0

Note that the set {(I,G) 2 R2 : 0  I ? G � 0} is a nonconvex set and hence LCP can be
di�cult to solve exactly. We often encounter the special case where " is square and
G := I are imposed in (9.58a), i.e., find I 2 R= such that

I � 0, "I+ 2 � 0, I
T ("I+ 2) = 0 (9.58b)

In this case a su�cient condition for the existence and uniqueness of a solution I

is that " satisfies GT
"G � 0 for all G 2 R< whether or not " is symmetric.3 In

particular " being positive definite or symmetric is not necessary (Exercise 9.17).
A nonlinear complementarity problem NCP(⌘) for a function ⌘ : R=! R< is to find
vectors (I,G) 2 R=+< such that

I � 0, ⌘(G) � 0, I
T
⌘(G) = 0 (9.59)

It reduces to LCP(" ,0) when ⌘(G) := "G + 2. Complementarity problems originally
arise as solving KKT conditions of optimization problems; in particular solving the
KKT condition of a quadratic program is a linear complementarity problem (Exercise
9.15).

After all nondi�erentiable constraints and logical constraints have been replaced by
equivalent complementarity constraints, the resulting problem can be solved exactly
by LCP solvers if the problem is small. Otherwise the complementarity constraints can
be approximated by simpler smooth constraints that can be solved for larger problems,
as we discuss next.

Consider the complementarity constraint of the form

G � 0, H � 0, GH = 0, G, H 2 R (9.60)

The bilinear constraint GH = 0 is nonconvex. The function q(G, H) := G + H�
p
G

2 + H2 is

3 For a matrix " over the field R, we define " to be positive definite only for symmetric " ; see
Definition A.2 and Remark A.1 in Chapter A.5.
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called the Fischer-Burmeister function and well studied for nonlinear complementarity
problems. It is easy to check that (9.60) holds if and only it q(G, H) = 0. A common
way to handle the complementarity constraint (9.60) is to replace it with the Fischer-
Burmeister function q(G, H) as a penalty term in the objective. The function q is convex
and Lipschitz continuous. (It is however not di�erentiable at (0,0) and [85] finds this
approach numerically unstable for the SCOPF problem.)

In many applications some bounds on G, H are known, e.g., the capacity limit of
the largest generator poses a bound on all generators’ output levels a priori. Suppose
G  G  G and H  H  H where (G,G) and (H, H) are known. Then the bilinear function
5 (G, H) := GH, G, H 2 R can be approximated by a McCormick envelop. Generally a
McCormick envelop is a convex relaxation of a nonconvex function 5 (G, H), G, H 2 R.
For the bilinear constraint:

F = GH, G  G  G, H  H  H, F,G, H 2 R

the relaxation is a set of linear inequalities in (F,G, H) 2 R3 (Exercise 9.18):

lower bounds on F: F � HG + GH� GH, F � HG + GH� GH (9.61a)

upper bounds on F: F  HG + GH� GH, F  HG + GH� GH (9.61b)

G  G  G, H  H  H (9.61c)

The quality of the approximation depends on how tight the lower and upper bounds on
G, H are.

Example 9.3 (McCormick envelops). Consider the QCQP:

min
G2R=

’
8, 9

28 9G8G 9 s.t.
’
8, 9

2
;

8 9
G8G 9  1; , ; = 1, . . . ,!

G  G  G

Derive a convex relaxation based on the McCormick envelops.

Solution. Let F8 9 := G8G 9 . Applying (9.61) leads to the convex relaxation:

min
G2R=

’
8, 9

28 9F8 9

s.t.
’
8, 9

2
;

8 9
F8 9  1; , ; = 1, . . . ,!

F8 9 � G
9
G8 + G

8
G 9 � G

8
G
9
, F8 9 � G 9G8 + G8G 9 � G8G 9 , 8, 9 = 1, . . . ,=

F8 9  G
9
G8 + G8G 9 � G8G

9
, F8 9  G 9G8 + G

8
G 9 � G

8
G 9 , 8, 9 = 1, . . . ,=

G  G  G

⇤

Suppose there are known upper bounds on G, H 2R in the complementarity constraint
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(9.60):

G � G � 0, H � H � 0, GH = 0, G, H 2 R (9.62)

(Note that this may not be the case for KKT conditions as one of the variables G, H
will be a dual variable which may not have an upper bound.) In this case, substituting
F = GH into (9.62) leads to the following linear relaxation of the nonconvex constraint
GH = 0:

0  G  G, 0  H  H, F = 0, G, H 2 R
max{0, HG + GH� GH}  0  min{GH, HG}

or equivalently

0  G  G, 0  H  H, 0  min{GH, HG}, G, H 2 R

9.5.3 Scaling computation

To scale the computation of (9.50), or its two-stage formulation (9.51)(9.52), e�cient
software implementation is critical, especially how to e�ectively use multi-core plat-
forms for parallel computation, how to detect and reduce numerical instability, and
how to handle software failures such as solver divergence or convergence to an infea-
sible point even when the problem is provably feasible. For example, the number of
nonlinear subproblems that needs to be solved in [85] can be as high as 100,000, each
with 2,000,000 variables and constraints. Software implementation issues in such a
large-scale computational regime are highly nontrivial.

In the rest of this subsection however we will focus only on algorithmic techniques
for scalability. In particular we summarize how the ideas studied in Chapter 9.5.2 are
used in [85, 86, 87] for solving industrial-scale OPF problems.

Approximate or relax nonsmooth functions. To avoid infeasibility, some hard con-
straints 6(G) = 0, ⌘(G)  0 such as power balanced have been replaced by soft con-
straints 6(G) = f1, ⌘(G)  f2 respectively and a violation cost 2(f1,f2) is added to
the cost function to penalize constraint violation. Nonsmooth cost functions 5 (G), e.g.,
piecewise linear (convex) constraint violation costs 2?

:8
(B),2@

:8
(B),24

:,8 9 (B) in (9.50d),

are approximated by quadratic functions of the form 5̂ (G) := 0G2 + 1G with parameters
(0,1) determined by linear regression. Nondi�erentiable or combinatorial constraints,
e.g., (9.47)(9.48), are approximated or relaxed by smooth constraints, as discussed in
Chapter 9.5.2. Smooth problems are generally easier to solve and what most standard
solvers can handle.

Approximate optimal recourse function A: (G0). The approach of [85] uses the
two-stage formulation (9.51)(9.52) of the SCOPF problem. A two-stage problem is
computationally di�cult because an explicit form of the second-stage recourse func-
tion A: (G0) is generally not available. Moreover the recourse function is in general
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nonsmooth (we will study nonsmooth convex optimization in Chapter 12 and two-
stage stochastic optimization in Chapter 13.4). The key idea of [85] is to approximate
A: (G0) by an explicit polynomial function Â: (G0;c: ) of the form

Â: (G0;c: ) := c: 5̂: (G0) (9.63a)

where 5̂: (G0) is a low-degree polynomial that depends on the device (a generator or
a line) that is disconnected in contingency : under # �1 security and c: is a scaling
factor in the approximation to be determined. This reduces the first-stage to a much
simpler approximate problem of the form

min
G0

5̂0 (G0) +
1

| ̂ |
’
:2 ̂

Â: (G0;c: ) (9.63b)

where the cost functions 5̂0 and Â: are either quadratic or low-degree polynomials and
 ̂ is a reduced set of credible contingencies (see discussions below). Given an optimal
solution G0 of the approximate first-stage problem (9.63), an approximate version of
the second-stage problem (9.52) is solved to determine the scaling factor c: . Since
the second-stage problem is separable in : , given G0, the approximate (9.52) is solved
in parallel across contingencies : , to obtain an (approximate) optimal A: (G0). Using
(9.63a), c: (G0) is then set to be

c: (G0) :=
A: (G0)
5̂: (G0)

(9.64)

This leads to an algorithm that solves approximate first-stage problem and approxi-
mate second-stage problem iteratively: for C = 0,1, . . . , repeat until a stopping criterion
is satisfied (c: (0) = 0, i.e., start with the base case):
1. Given Â: (G0;c: (C)), solve the approximate first-stage problem (9.63) to obtain an

optimal solution G0 (C +1).
2. Given G0 (C + 1), solve an approximate version of the second-stage problems

(9.52) in parallel to obtain optimal solutions A: (G0 (C +1)). Construct c: (C +1) :=
c: (G0 (C +1)) according to (9.64) and Â: (G0;c: (C +1)) according to (9.63a).

The two subproblems in this algorithm are made much simpler by techniques that
handle nonsmoothness (discussed in Chapter 9.5.2) and techniques that screen contin-
gencies quickly to identify and include only contingencies that are likely to have large
recourse costs A: (G0), which we discuss next.

Fast contingency selection. The approach of [86] focuses on continuously and
iteratively evaluate contingencies and include only the top three contingencies in
the solution of SCOPF (9.50) in each iteration. Three main contingency selection
techniques are used to identify top three contingencies:

1. Initial ranking using machine learning. Initial contingency ranking uses supervised
learning to predict the importance of a contingency on overall cost based on various
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features, such as di�erent expressions of generation levels and line power, generator
ratings, degrees of buses, etc. It finds that the apparent line power

max
nq
%

2
0,8 (:) 9 (:) + &2

0,8 (:) 9 (:) ,
q
%

2
0, 9 (:)8 (:) + &2

0, 9 (:)8 (:)

o
has the best predictive power. This is consistent with the intuition used to approx-
imate the recourse function A: (G0) in [85] (it is used in 5̂: (G0) in (9.63a)).

2. Contingency evaluation. Each contingency : identified by the initial ranking as
credible is then evaluated more carefully by solving the second-stage problem
(9.52), in two steps. First, given a first-stage decision G0, an upper bound on the
second-stage cost A: (G0) is computed by solving a reduced problem with only the
power flow equations and linear constraints associated with complementarity con-
straints predicted by an active set method to handle complementarity constraints.
In particular this reduced problem does not include any operational constraints.
Only if this upper bound exceeds a certain threshold will a full evaluation of the
contingency be carried out by solving the second-stage problem using the active
set method.

3. Dominated contingencies. Inclusion of the constraints due to contingency 9 may
cause the constraints due to other contingencies : to be automatically (possibly
approximately) satisfied. To identify these constraints, let fmax

:
be the largest entry

of the vectorf: defined in (9.49c), i.e.,fmax
:

is the largest slack variable measuring
the violation of power balance or a line limit in contingency : . We say that
contingency : is dominated by contingency 9 if fmax

9
> f

max
:

. Only contingencies
that are not dominated by another contingency are included in the solution of the
master problem (9.50).

The screening of contingencies and solving of SCOPF (9.50) with top three contingen-
cies in each iteration both require techniques to handle complementarity constraints,
evaluate contingencies quickly, remove dominated contingencies, and e�ective paral-
lelization of computation.

Exploit distributed problem structure by ADMM algorithm. The approach of [87]
uses smooth approximation of constraint (9.48) and develops an ADMM-based al-
gorithm to exploit the problem’s distributed structure. The base case : = 0 and the
contingencies : � 1 are coupled only through the first-stage decision G0 in the con-
straint (9.48) that appears in the set of second-stage problems (9.52), one for each
contingency : � 1. By introducing a local copy G0

:
of G0 for each contingency sub-

problem these second-stage problems are decoupled and can therefore be computed in
parallel, with a consensus constraint that all local copies G0

:
equal to G0 at optimality.
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Hence the SOCP problem (9.50) can be equivalently reformulated into the form

min 50 (G0) +
’
:�1

5:

⇣
G

0
:
, H:

⌘
(9.65a)

over G0,
⇣
G

0
:
, H: , : � 1

⌘
(9.65b)

s.t. G0 2 -0,
⇣
G

0
:
, H:

⌘
2 -: , : � 1 (9.65c)

G
0
:
= G0, : � 1 (9.65d)

where the constraint G0 2 -0 means that G0 satisfies (9.44)–(9.47), and the constraint⇣
G

0
:
, H:

⌘
2 -: means that H: satisfies (9.44)–(9.47) and

⇣
G

0
:
, H:

⌘
satisfies the smooth

approximations of (9.48). These constraints (9.65c) are decoupled across : . The cou-
pling of the  +1 variables G0 and (G0

:
, H: ), : � 1, is only through  linear (consensus)

constraint (9.65d). This is a form that is suitable for distributed solution using the
alternating direction method of multipliers (ADMM) studied in Chapter 8.5.5.

Define the augmented Lagrangian function that relaxes the coupling constraint
(9.65d):

!d

⇣
G0, (G0

:
, H: ), : � 1;_

⌘
:= 50 (G0) +

’
:�1

5:

⇣
G

0
:
, H:

⌘
+_T

⇣
1 ⌦ G0� G0

⌘

+ d

2

��1 ⌦ G0� G0
��2

2

where 1 is the vector of all 1s of size  and G0 := (G0
1, · · · ,G0

 
) is a column vector.

The ADMM algorithm is

G0 (C +1) := arg min
G02-0

!d

⇣
G0,

⇣
G

0
:
(C), H: (C)

⌘
, : � 1;_(C)

⌘
(9.66a)

⇣
G

0
:
(C +1), H: (C +1)

⌘
:= arg min

(G0,H)
!d

⇣
G0 (C +1),

⇣
G

0, H
⌘
;_(C)

⌘
, : � 1 (9.66b)

_(C +1) := _(C) + d
⇣
1 ⌦ G0 (C +1)� G0 (C +1)

⌘
(9.66c)

The expression (9.66b) is a shorthand for one pass of a Gauss-Seidel method across
the  contingencies: for : � 1,⇣

G
0
:
(C +1), H: (C +1)

⌘
:= arg min

(G0
:
,H:)2-:

!d

⇣
G0 (C +1), (G0

1 (C +1), H1 (C +1)), . . . ,
⇣
G

0
:
, H:

⌘
, . . . ,

⇣
G

0
 
(C), H (C)

⌘
;_(C)

⌘

Given the Lagrange multiplier _: (C) associated with contingency : , the  + 1
subproblems (9.66a)(9.66b) can be computed in parallel. The algorithm of [87] applies
this idea to SCOPF (9.65) with two main refinements. First it relaxes the coupling
constraint (9.65d) with a slack variable I: for each contingency : � 1 which is penalized
in the objective function with a term VkI: k22. As a result the solution returned by
the ADMM algorithm may violate by a large amount the coupling constraint and is
therefore infeasible for the original SCOPF. The second refinement is an outer loop
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where the weight V on the penalty is increased if the worst violation max:�1 kI: k across
contingencies is too large and the approximate SCOPF is solved again using ADMM.
The outer loop terminates when max:�1 kI: k is small enough (and the stationarity
condition is su�ciently satisfied). Even though the problem is nonconvex it is proved
in [87] that the two-level ADMM algorithm with both the inner and outer loops
converges under the condition that each inner-loop iteration (9.66a)(9.66b) produces
su�cient descent.

9.6 Chapter summary

In Chapter 9.5 we describe techniques for scaling OPF solutions. Popular algorithms
for solving OPF problems are studied in Chapter 8.5 and example applications are
discussed in Chapter 6.

1. OPF (9.5) in the bus injection model can be formulated as a nonconvex quadrati-
cally constrained quadratic program (QCQP) (9.17) over the nodal voltage + .

2. For radial networks, equivalent OPF formulations (9.21) or (9.23) in the branch
flow model are often more convenient because of the availability of fast backward
forward sweep methods (studied in Chapter 5.4) and analytical properties of linear
BFM (studied in Chapter 5.5).

3. OPF is not only nonconvex, but also NP hard (Theorem 9.1). This means that it is
intractable in the worst case (i.e., worst-case problem instances are not polynomial-
time solvable).

4. Yet, empirically, local algorithms (e.g. Newton-Raphson or interior-point methods)
and convex relaxations often produce global optimal solutions. We have proved a
Lyapunov-like condition under which a nonconvex problem both has exact convex
relaxation and no spurious local optimum (Theorem 9.2).

5. Practical OPF problems can be di�cult to solve due to nonsmoothness and non-
convexity of objective or constraint functions and due to the sheer number of
variables and constraints. We have studied common techniques for addressing
nonsmoothness and scalability. We have illustrated how these ideas can be com-
bined with heuristics tailored to specific problem structure and techniques for
parallel computation and robust software to solve industrial-scale OPF problems.

9.7 Bibliographical notes

There has been a great deal of research on all aspects of OPF since Carpentier’s first formulation in 1962
[89]. An early solution appears in [90] and extensive surveys can be found in e.g. [91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 47, 80, 104, 105, 106]. We collect a few of the publications that we have used in
this chapter as well as in Chapters 10 and 11 on semidefinite relaxations and in Chapter 18 on unbalanced
three-phase OPF.
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OPF (Chapter 9). There are many excellent texts on optimization theory especially for convex prob-
lems, e.g., [66, 59, 56] (see also bibliographical notes in Chapter 8.8). Optimization texts with power system
applications include [107, 108]. A popular interior-point solver for OPF problems is [109]. A classic text on
computational complexity is [78]. OPF can been formulated as a QCQP. Even for the simplest nonconvex
quadratic program minG�0 G

T
⇠G when⇠ is not positive semidefinite, [110] proves that determining whether

G = 0 is not a local minimum or whether the cost is not bounded below on the feasible set is NP-complete.
OPF has been shown to be NP-hard in [71, 72, 73, 74, 75, 76, 77]. The NP-hardness result of Chapter 9.3
is from [73]. See also [80, Chapter 5] for hardness and approximation results on combinatorial OPF that
involves discrete variables. Chapter 9.4 on global optimality is taken form [82, 83].

Semidefinite relaxations: BIM (Chapter 10). Solving OPF through semidefinite relaxation
in the bus injection model is first proposed in [111] as a second-order cone program (SOCP) for radial
(tree) networks and in [112] as a semidefinite program (SDP) for general networks. The exactness of
semidefinite relaxations is first studied in [72]. In particular [111] reformulates the bus injection model
(4.22) in polar form as a set of linear equations in new variables E9 := |+9 |2, ' 9: := |+9 | |+: | cos(\ 9 � \: ) ,
and � 9: := |+9 | |+: | sin(\ 9 � \: ) , and the quadratic equation E9 E: = '2

9:
+ � 2
9:

which is then relaxed

to a rotated second-order cone E9 E: � '2
9:

+ � 2
9:

. Partial matrices and their completions are studied in
[113, 114, 115]. Exploiting graph sparsity to simplify the SDP relaxation of OPF through chordal extension
is first proposed in [116, 117, 118] and analyzed in [119, 120, 32]. Theorem 10.1 is proved in [119, Theorem
3] [32] and Corollary 10.2 is from [119, Theorem 5]). As discussed in Chapter 10.1.6, e�cient chordal
relaxations of OPF are important but di�culty to derive. See [114, 115] and references therein for methods
to derive an e�cient chordal relaxation and [120] for techniques to reduce the number of cliques in chordal
relaxation. To further reduce the size of a chordal relaxation, [121] proposes to carefully drop some of the
decoupling constraints, though the resulting relaxation can be weaker. For a certain class of SDP, [122]
shows that the per-iteration cost of an interior-point method for solving its chordal relaxation is linear$ (=)
in time and in memory, so an n -accurate and n -feasible iterate is obtained after$ (p= log(1/n )) iterations
in$ (=1.5 log(1/n )) time, i.e., near-linear in time complexity.

The exactness condition (linear separability) of Chapter 10.3 for SOCP relaxation is first proved using a
duality argument in [123], generalizing the result of [124]. The simpler argument presented in Chapter 10.3.3
is from [125, 126]. Corollary 10.8 includes several su�cient conditions in the literature for exact relaxation
as special cases. Referring to Figure 10.3, the load over-satisfaction condition in [124, 127] corresponds to
the red line in the figure being the Im-axis that excludes all quantities on the right-half plane. The su�cient
condition in [128, Theorem 2] corresponds to the red line in the figure that allows a finite lower bound on the
real power at one end of the line, i.e., ? 9 or ?: but not both, and no finite lower bounds on reactive powers.
The exactness condition on angle di�erences for SOCP relaxation of Chapter 10.4 is from [128, 129] and
our proof mostly follows that in [129]. The result in Chapter 10.4 assumes the voltage magnitudes are fixed
and ignores reactive powers. These assumptions are relaxed in [130] although, without these assumptions,
the feasible set may no longer be a convex surface that is the Pareto front of its relaxation. These exactness
conditions are only su�cient. Even when they are not satisfied, extensive simulations in [81] show that
the SDP relaxation of OPF is often exact and adding valid inequalities and bound tightening can further
reduce the optimality gap to within 1%, though [131] also reports instances where the optimality gap of SDP
relaxation can be large. For other relaxations and global optimization methods, see bibliographical notes in
Chapter 10.1.7 and extensive literature in [103, 47, 104, 105].

Semidefinite relaxations: BFM (Chapter 11). SOCP relaxation of Chapter 11.1 for radial
networks in the DistFlow model of [23, 24] is first proposed in [132, 30]. Theorem 11.1 on the relation
between the uniqueness and exactness of optimal solution is from [133]. Theorem 11.2 on the equivalence
of SOCP in BFM and BIM is proved in [32] and the proof presented here follows that in [47, Theorem 11].
The exactness condition (Theorem 11.3) of Chapter 11.2 is from [30, Part I] which generalizes an earlier
result in [132] to allow convex objective functions, shunt elements, and line limits. The exactness condition
(Theorem 11.5) of Chapter 11.3 is from [133]. Another su�cient condition for SOCP exactness in BFM is
proved in [134] using backward-forward sweep; see also [80, Chapter 5].

Unbalanced three-phase OPF (Chapter 18). Three-phase OPF and its semidefinite relaxation
are studied in, e.g., [135, 136, 137, 138]. Exactness conditions are proved in [139] and methods to approximate
a nonconvex dispatchable region are proposed in [140]. Theorem 18.1 of Chapter 18.1.4 on the recovery of
an optimal solution is from [138].
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9.8 Problems

Chapter 9.1

Exercise 9.1 (OPF: power losses as quadratic form). We revisit Exercise 4.4 to
write power losses as quadratic forms. For each line ( 9 , :) 2 ⇢ , let its admittances
be HB

9:
= 6B

9:
+ i1

B

9:
and H

<

9:
= 6<

9:
+ i1

<

9:
. Suppose HB

9:
= HB

: 9
and 6B

9:
� 0, 6<

9:
� 0

(these conditions are satisfied if ( 9 , :) models a transmission line).

1. Define the total real power loss as:

⇠ (+) :=
’
9

Re
�
B 9 (+)

�
=

’
9

Re
©≠
´
’
:: 9⇠:

H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9 9
|+ 9 |2™Æ

¨
Show that ⇠ (+) is a quadratic form ⇠ (+) = +H

⇠0+ where the cost matrix ⇠0 :=
1
2

�
.

H +.
�
= Re(. ) is the Hermitian component of the admittance matrix . . Show

that ⇠0 is a positive semidefinite matrix.
2. Suppose H<

9:
= H<

: 9
= 0. Define the total thermal loss as:

⇠ (+) :=
’

( 9,:)2⇢
A
B

9:
|� 9: (+) |2 =

’
( 9,:)2⇢

A
B

9:

���HB
9:
(+ 9 �+: )

���2

where IB
9:
= AB

9:
+ iG

B

9:
:= 1/HB

9:
. Show that⇠ (+) is a quadratic form⇠ (+) =+H

⇠0+

where the cost matrix ⇠0 = Re(. ) when H<
9:
= H<

: 9
= 0.

3. Therefore, when H<
9:

= H<
: 9

= 0, the total real power loss in part 1 reduces to the
total thermal loss in part 2. As an alternative proof that sheds light on the physics
behind this mathematical property, show that

’
9

B 9 (+) =
’

( 9,:)2⇢
I
B

9:

�����
+ 9 �+:
I
B

9:

�����
2

+
’

( 9,:)2⇢

⇣
H̄
<

9:
|+ 9 |2 + H̄<: 9 |+: |2

⌘

where (+ 9 �+: )/IB
9:

is the current through the series impedance of line ( 9 , :).

Exercise 9.2 (OPF: quadratic line limit). Consider the line limit

|( 9: (+) |2  (

2
9:

, |(: 9 (+) |2  (

2
: 9

, ( 9 , :) 2 ⇢

where

( 9: (+) := + 9 �̄ 9: (+) = H̄
B

9:

⇣
|+ 9 |2�+ 9+̄:

⌘
+ H̄<

9:
|+ 9 |2, ( 9 , :) 2 ⇢

(: 9 (+) := +: �̄: 9 (+) = H̄
B

: 9

⇣
|+: |2�+:+̄ 9

⌘
+ H̄<

: 9
|+: |2, ( 9 , :) 2 ⇢

Show that the line limit can be written as an inhomogeneous quadratic form.

Exercise 9.3 (Inner product and trace). Let �,⌫ 2 C=⇥= be square complex matrices.
The inner product of �,⌫ is defined to be � · ⌫ := tr(�H

⌫). Show that:

1. tr(�⌫) = tr(⌫�).
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2. � · ⌫ := tr(�H
⌫) = tr(�⌫) if � is Hermitian. The converse may not hold.

3. If � and ⌫ are both Hermitian then � · ⌫ = ⌫ · �.

Exercise 9.4 (Skew-symmetric and Hermitian matrices). Show that:

1. If ⇠ 2 R=⇥= is a skew symmetric matrix (i.e., ⇠T = �⇠) then GT
⇠G = 0 for any

G 2 R=.
2. If ⇠ 2 C=⇥= is a Hermitian matrix (i.e., ⇠H = ⇠) then GH

⇠G 2 R for any G 2 C=.
3. If ⇠ 2 C=⇥= is a Hermitian matrix, then tr(⇠-) is a real number for any rank-1

matrix - 2 C=⇥= (psd or nsd).
4. Let ⇠ := ⇠A + i⇠8 where ⇠A ,⇠8 2 R=⇥=. If ⇠ is Hermitian then ⇠

T
A
= ⇠A and

⇠
T
8
= �⇠8 .

Let � 2 C=⇥= and G 2 C=. Define �’s Hermitian and skewed Hermitian components:

⌫A :=
1
2

⇣
�+ �H

⌘
, ⌫8 :=

1
2i

⇣
�� �H

⌘

Show that

5. ⌫A and ⌫8 are both Hermitian for arbitrary �, so that GH
⌫AG and GH

⌫8G are both
real numbers.

6. Moreover GH
�G = GH

⌫AG + iG
H
⌫8G.

Exercise 9.5 (Real QCQP). Show that the complex QCQP (9.10) is equivalent to the
real QCQP (9.11) of twice the dimension. Show that ⇡; are symmetric matrices.

Exercise 9.6 (Homogenization). Let G,0,1 2 C=.

1. Let 4 9 2 {0,1}= be the unit vector with a single 1 at the 9 th position. Show that
the set of inequalities 0 9  G 9  1 9 , 9 = 1, . . . ,=, is equivalent to the following set
of homogeneous quadratic inequalities in (Ĝ, C) with G := ĜC̄: for 9 = 1, . . . ,=,

Re(0 9 ) 

Ĝ

C

�H 
0 Z 9

Z
H
9

0

� 
Ĝ

C

�
 Re(1 9 ) (9.67a)

Im(0 9 ) 

Ĝ

C

�H 
0 iZ 9

�iZ
H
9

0

� 
Ĝ

C

�
 Im(1 9 ) (9.67b)

1 

Ĝ

C

�H 
0 0
0 1

� 
Ĝ

C

�
 1 (9.67c)

where Z 9 = 4 9/2.
2. Let 2 9 2 C= for 9 = 1, . . . ,=. Show that the set of inequalities 0 9  2H

9
G  1 9 ,

9 = 1, . . . ,=, is equivalent to (9.67) with Z 9 = 4 9/2 replaced by Z 9 = 2 9/2.
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Chapter 9.3.

Exercise 9.7 (Angle constraint). Show that (9.24e) is equivalent to the constraint
on apparent power %2

9:
+&2

9:
 ((\) for some real number ((\) that depends on \,

provided |\ 9: |  \ 2 (0,c/2].

Exercise 9.8 (NP-hardness [73]). Let G := (? 9 , 9 2 #⌧; \ 9 , 9 2 #⌧ [
#!; % 9: ,& 9: , ( 9 , :) 2 ⇢) be a solution of (9.24).

1. Consider the line flow %00 = 0%̂(\00) := 0 (6(1� cos\00)� 1 sin\00) on line
(0,0) 2 ⇢ . Show that, if \00 < 0, then %̂(\00) < 0.

2. Show that &̂(�\) > 0.
3. Show that %̂(�\)&̂(\00) � &̂(�\)%̂(\00) with equality if and only if \00 2 {0,\}.

(Hint: use tan(q/2) = (1� cosq)/sinq, |\00 |  \  c/2 and %̂(�\) < 0.)

Exercise 9.9 (NP-hardness of nonconvex quadratic program [110]). Show that deter-
mining the global solution of smooth nonlinear program is NP-hard by reducing the
NP-complete subset sum problem to a nonconvex quadratic program. (Hint: Write a
subset sum problem instance (�,f) in terms of determining a binary vector G of size
|�| and reduce it to a smooth nonconvex quadratic program.)

Chapter 9.4

Exercise 9.10 (Feasible region of OPF [141]). By introducing slack variables, the
constraints that define the feasible region of OPF (e.g., (9.17)) is of the form 5 (G) = 0
for some 5 :R=!R=.4 A point Ḡ 2 R= is called a feasible point of the OPF if 5 (Ḡ) = 0.

Consider � (G) := 1
2 k 5 (G)k22 and the gradient flow dynamic §G = �Wr� (G(C)) for

minimizing � (G) where W > 0 is a stepsize. A point Ḡ 2 R= is called an equilibrium
point of the gradient flow dynamic if r� (Ḡ) = 0.

1. What is the gradient flow dynamic in terms of the power flow equation 5 ?
2. Show that if Ḡ is a feasible point then Ḡ is an equilibrium point of the gradient flow

dynamic, but the converse may not hold.
3. Show that the converse holds if the Jacobian m 5

mG
(G) is nonsingular on R=.

This exercises only characterizes a feasible point Ḡ of OPF as an equilibrium point
of the gradient flow of � (G), but does not address the issue whether §G = �Wr� (G(C))
converges to an equilibrium point. In [141] the entire feasible region of OPF, possibly
disconnected, is characterized in terms of the gradient flow dynamics of an energy
function ⇢ (G) that satisfies Lyapunov-like properties to ensure convergence.

Exercise 9.11 (OPF global optimality). This exercise fills in some details in the proof
of Theorem 9.7 in Chapter 9.4.4.
4 An inequality 6 (G)  0 where 6 : R=! R can be converted into an equality 6̃ (G,B) := 6 (G) + B2 where
6̃ : R=+1! R.
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1. Show that condition C9.5 implies (9.37).
2. For {⌘G : G 2 -̂ \ -} defined in (9.40), show that ⌘G (C) 2 -̂ for all C 2 [0,1] and
⌘G (1) 2 - .

Chapter 9.5

Exercise 9.12 (Smooth approximation). This problem considers smooth approxima-
tions of max(0,G), min(0,G) and ⌘(G) := max(0,min(G,1)).

1. Let 5 (G) := max(0,G) and its over approximation 5 n (G) := n ln
�
1+ 4G/n

�
for G 2 R

and n > 0. For any n > 0 show that 5 n (G) � n ln2  5 (G) < 5
n (G) for all G 2 R,

with equality if and only if G = 0.
2. What is the corresponding approximation 5̃

n (G) for 5̃ (G) := max(0,G) for any
0 2 R?

3. Let 6(G) := min(0,G) and its under approximation 6n (G) := �n ln
�
1+ 4�G/n

�
for

G 2 R and n > 0. For any n > 0 show that 6n (G) < 6(G)  6n (G) +n ln2 for all G 2 R,
with equality if and only if G = 0.

4. What is the corresponding approximation 6̃
n (G) for 6̃(G) := min(G,1) for any

1 2 R?
5. What is the approximation for ⌘(G) := max(0,min(G,1)) for 0 < 1 if we apply the

approximations for 5̃ and 6̃?

Exercise 9.13 (Complementarity and big-" constraints). Consider the nondi�er-
entiable constraint H = [G]1

0
:= max(0,min(G,1)) where G, H 2 R are variables and

0 < 1 2 R are given constants.

1. Show that it is equivalent to the complementarity constraint (9.57a). Given G 2
R, show that finding a solution (H, d�, d+) 2 R3 to (9.57a) is a standard linear
complementarity problem LCP(" ,@) for a 2⇥2 matrix " .

2. Show that it is equivalent to a big-" mixed integer constraint (9.55). What value
of the binary variables (I, I) will result in infeasibility?

3. Show that it is also equivalent to:

G� 0  "I, 0� G  " (1� I), 1� G  "I, G� 1  " (1� I) (9.68a)

together with (the nonlinear equality)

(H� 0) (1� I) + (H� 1) (1� I) + (H� G)II = 0, I, I 2 {0,1} (9.68b)

What value of the binary variables (I, I) will result in infeasibility?

Exercise 9.14 (Complementarity and big-" constraints). Consider the logical con-
straint (9.53c) on the variables (G, H, I) 2 R3, reproduced here

{0  G  1, H = I} [ {G = 0, H � I} [ {G = 1, H  I} , (G, H, I) 2 R3 (9.69)

where 0 < 1 are given scalars. Unlike the complementarity problem in Exercise 9.13,
the equality constraint H = I here involves another variable G.
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1. Show that it is equivalent to the complementarity constraint (9.57b). Given I, show
that finding (G, H, d�, d+) that solves (9.57b) is an LCP.

2. Show that it is equivalent to the mixed integer constraint (9.56).

Exercise 9.15 (LCP for quadratic program). 1. Consider the quadratic optimization:

min
G2R=

1
2
G

T
&G + 2T

G s.t. �G  1, G � 0 (9.70a)

Show that solving the associated KKT condition is an LCP(" ,@) with

" :=

&

T
�

T

�� 0

�
, @ :=


2

1

�
(9.70b)

2. Consider the quadratic optimization without the nonnegativity constraint on G:

min
G2R=

1
2
G

T
&G + 2T

G s.t. �G  1 (9.70c)

If & is positive definite show that solving the associated KKT condition is equiv-
alent to the following LCP:

_ � 0, "_+ @ � 0, _
T ("_+ @) = 0

Determine " and @.

Exercise 9.16 (LCP). Suppose �,⌫ 2R=⇥= are square matrices and 0,1 2R=. Consider
the problem of finding I such that

0  �I+ 0 ? ⌫I+ 1 � 0

Show that this is equivalent to a LCP if � is nonsingular.

Exercise 9.17 (Linear complementarity problem). Let

" :=


1 1
�1 0

�
, @ :=


�1
1

�

Solve the LCP(" ,@): find G := (G1 G2) such that

G � 0, "G + @ � 0, G
T ("G + @) = 0

Note that there exists a unique solution even though " is neither positive definite nor
symmetric.

Exercise 9.18 (McCormick envelop of F = GH). For the bilinear constraint

F = GH, G  G  G, H  H  H, F,G, H 2 R

derive its McCormick envelops. (Hint: For (9.61a), if we let 0 := G � G and 1 := H� H
or 0 := G� G and 1 := H� H then 01 � 0. Similarly for the lower bounds.)
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Chapter 9 formulates OPF as a nonconvex quadratically constrained quadratic program
(QCQP) and shows that it is NP-hard in general. There are three common approaches to
deal with nonconvexity. First, one can solve an approximation of the original nonconvex
problem. For instance DC OPF is a linear program approximation that is widely used for
electricity market operations (see Chapter 6.4). Second, one can apply local algorithms
such as Newton-Raphson or interior-point methods to compute a local solution. Some of
these algorithms are studied in Chapter 8.5, but because the problem is nonconvex, the
optimality conditions of Chapter 8.3 for convex problems are generally not applicable.
Theorem 9.2 of Chapter 9.4 provides a Lyapunov-like condition that guarantees that if
an algorithm does produce a local optimum, it will be a global optimum. The condition
also ensures that convex relaxations of OPF will be exact and therefore a third approach
is to solve a convex relaxation for a global solution, to which the optimality conditions
of Chapter 8.3 do apply. In this and the next chapters we study a particular type of
convex relaxation, called the semidefinite relaxation, of OPF.

There is a rich theory and extensive empirical experience in applying semidefinite
relaxation to many engineering problems. A semidefinite relaxation produces either a
global solution or a lower bound. It therefore can be used for evaluating how far any
feasible solution is from optimality, e.g., that produced by a local algorithm. Unlike
approximations, if a relaxed problem is infeasible, it is a certificate that the original
OPF is infeasible.

In Chapter 10.1 we define semidefinite relaxation of QCQP in general and explain
how to use the concept of partial matrices and their psd rank-1 completion to reduce
the computational complexity of semidefinite relaxation for large sparse networks. In
Chapter 10.2 we apply these results to write the single-phase OPF in terms of partial
matrices to reveal structures that enable exact relaxations (we will use the QCQP
formulation of OPF studied in Chapter 9.1.3 for the bus injection model). In Chapters
10.3 and 10.4 we study two su�cient conditions for exact relaxations of OPF on single-
phase radial networks. We study semidefinite relaxations in the branch flow model in
Chapter 11. The su�cient conditions in this and the next chapter complement the
exactness condition of Chapter 9.4 (see Lemma 9.4).
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10.1 Semidefinite relaxations of QCQP

OPF is formulated in (9.17) as a standard homogeneous QCQP. The computational
di�culty arises from the nonconvex feasible set of OPF. Informally one can regard a
relaxation of OPF as minimizing the same cost function over a convex superset (though
in a lifted space). Di�erent choices of convex supersets lead to di�erent relaxations,
but they all provide lower bounds to OPF. If an optimal solution of a relaxation happens
to lie in the feasible set of the original OPF problem, then it is optimal for the original
OPF. In this case we say the relaxation is exact. In this section we describe three types
of semidefinite relaxation of OPF and explain equivalence relations among them.

10.1.1 SDP relaxation

Since these methods are not restricted to OPF, we will discuss them using the general
QCQP formulation (9.10), reproduced here:

⇠
opt := min

G2C=
G

H
⇠0G s.t. G

H
⇠;G  1; , ; = 1, . . . ,! (10.1)

Using GH
⇠;G = tr

�
⇠;GG

H�
we can rewrite (10.1) as

min
- 2S= ,G2C=

tr (⇠0-) s.t. tr (⇠;-)  1; , ; = 1, . . . ,!, - = GGH

Any positive semidefinite (psd) rank-1 matrix - 2 S=⇥=+ has a spectral decomposition
- = GGH for some G 2 C= that is unique up to a rotation, i.e., G satisfies - = GGH if and
only if G4 9 \ does for any \ 2 R (see Appendix A.6). Hence (10.1) is equivalent to the
following problem where the optimization is over the set S= of Hermitian matrices -:

⇠
opt := min

- 2S=
tr (⇠0-) s.t. tr (⇠;-)  1; , ; = 1, . . . ,! (10.2a)

- ⌫ 0, rank(-) = 1 (10.2b)

Recall that tr(⇠;-) =
Õ
9,: [⇠;] 9:-: 9 =

Õ
9,: [⇠;] 9:-H

9:
where the second equality fol-

lows when - is Hermitian. While the objective function and the constraints in (10.1)
are quadratic in G, they are linear in - in (10.2a). The constraint - ⌫ 0 in (10.2b)
is convex (S=+ is a convex cone; see Chapter 8.2.2). The rank constraint in (10.2b) is
the only nonconvex constraint. These two problems are equivalent in the sense that,
given a feasible (or optimal) solution G to QCQP (10.1), there is an - := GGH that is
feasible (or optimal) to the semidefinite program (10.2). Conversely, given an - that is
feasible (or optimal) to (10.2), a solution G to (10.1) can be recovered through rank-1
factorization - = GGH. It is in this sense that we also say that the feasible sets of (10.1)
and (10.2) are equivalent. This is referred to as lifting the original QCQP problem from
= dimensional space C= to the higher-dimensional space of =⇥= Hermitian matrices.
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Removing the rank constraint (10.2b) results in a semidefinite program (SDP):

⇠
opt := min

- 2S=
tr (⇠0-) s.t. tr (⇠;-)  1; , ; = 1, . . . ,! (10.3a)

- ⌫ 0 (10.3b)

which is a convex problem. (Strong duality and KKT condition of semidefinite pro-
gram is studied in Chapter 8.4.5.) We call (10.3) a semidefinite relaxation or an SDP
relaxation of QCQP (10.1) because the feasible set of the equivalent problem (10.2) is
a subset of the feasible set of SDP (10.3). A strategy for solving QCQP (10.1) is to solve
SDP (10.3) for an optimal matrix -opt and check its rank. If rank

�
-

opt� = 1 then -opt

is feasible and hence optimal for (10.2) as well and an optimal solution Gopt of QCQP
(10.1) can be recovered from -

opt through spectral decomposition -opt = Gopt (Gopt)H.
If rank -opt

> 1 then, in general, no feasible solution of QCQP can be directly obtained
from -

opt but the optimal objective value of SDP provides a lower bound on that of
QCQP.

10.1.2 Partial matrices and rank-1 completion

Even though the relaxation (10.3) is a convex problem computing its solution can still
be challenging if the problem size = is large. If the underlying network is sparse, much
more e�cient relaxations can be used. To develop these ideas precisely, the key is to
study the feasible set of QCQP and its relaxations.

We start with the concept of partial matrices and their completions. An instance
of QCQP (10.1) is specified by a set of matrices and scalars (⇠0,⇠; ,1; , ; = 1, . . . ,!).
We assume the matrices ⇠; , ; = 0,1, . . . ,!, are Hermitian so that GH

⇠;G are real. They
define an underlying undirected graph � := (# ,⇢) with = nodes and < edges where
distinct nodes 9 and : are adjacent (i.e., ( 9 , :) 2 ⇢) if and only if there exists an
; 2 {0,1, . . . ,!} such that [⇠;] 9: = [⇠;]H

: 9
< 0. Assume without loss of generality that

the graph � is connected (otherwise restrict ourselves to each connected component).
For any G 2 C= note that the quadratic form G

H
⇠;G depends on |G 9 |2 and on Ḡ 9G: if

and only if ( 9 , :) 2 ⇢ is a link in �, i.e., if and only if there exists an ; such that the
coe�cient of Ḡ 9G: is nonzero. Indeed

G
H
⇠;G =

’
9,:

[⇠;] 9: Ḡ 9G: =
’
9

[⇠;] 9 9 |G 9 |2 + 2
’
9<:

( 9,:)2⇢

Re
�
[⇠;] 9: Ḡ 9G:

�

where the last equality follows from [⇠;]: 9 Ḡ:G 9 = [⇠;]H
9:
Ḡ:G 9 =

�
[⇠;] 9: Ḡ 9G:

�H since

⇠; is Hermitian. Hence Ḡ 9G: is not constrained by GH
⇠;G  1; if ( 9 , :) 8 ⇢ for any ;,

in which case - 9: of the lifted variable - is not constrained by tr(⇠;-)  1; for any ;.
This can be used to relax the psd and rank-1 constraints on the entire matrix - using
the concept of partial matrices, greatly simplifying computation when the underlying
graph � of the QCQP is sparse.
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Given a graph � := (# ,⇢), a partial matrix -� defined on � is a set of 2< + =
complex numbers:

-� :=
�
[-� ] 9 9 , [-� ] 9: , [-� ]: 9 : nodes 9 2 # and links ( 9 , :) 2 ⇢

 
-� can be interpreted as a matrix with entries partially specified by these complex
numbers. The ( 9 , :)th entry of -� that does not correspond to an edge in � is not
specified. If � is a complete graph (in which there is an edge between every pair of
vertices) then -� is a fully specified =⇥= matrix. A completion - of -� is any fully
specified =⇥= matrix that agrees with -� on graph �, i.e.,

[-] 9 9 = [-� ] 9 9 , [-] 9: = [-� ] 9: , [-]: 9 = [-� ]: 9 , 9 2 # , ( 9 , :) 2 ⇢

Given an = ⇥ = matrix - we use -� to denote the submatrix of - on �, i.e., the
partial matrix consisting of the entries of - defined on graph �. If @ is a clique (a
fully connected subgraph) of � then let -� (@) denote the fully-specified principal
submatrix of -� defined on @, i.e., if the clique @ has : nodes then -� (@) is a : ⇥ :
matrix and, for every node 9 and link ( 9 , :) in @,

[-� (@)] 9 9 := [-� ] 9 9 , [-� (@)] 9: := [-� ] 9: , [-� (@)]: 9 := [-� ]: 9

We extend the definitions of Hermitian, psd, rank-1, and the trace operation for
matrices to partial matrices.

Definition 10.1 (Partial matrix -� ). Let -� be a partial matrix on a graph � := (# ,⇢).

1. -� is Hermitian, denoted by -� = -H
�

, if [-� ]: 9 = [-� ]H
9:

for all ( 9 , :) 2 ⇢ .
2. -� is positive semidefinite (psd), denoted by -� ⌫ 0, if -� is Hermitian and the

principal submatrices -� (@) are psd for all cliques @ of �.
3. -� is rank-1, denoted by rank(-� ) = 1, if the principal submatrices -� (@) are

rank-1 for all cliques @ of �.
4. -� is 2⇥2 psd if, for all edges ( 9 , :) 2 �, the 2⇥2 principal submatrices

-� ( 9 , :) :=

[-� ] 9 9 [-� ] 9:
[-� ]: 9 [-� ]::

�

are psd (and necessarily Hermitian).
5. -� is 2⇥ 2 rank-1 if, for all edges ( 9 , :) 2 �, the 2⇥ 2 principal submatrices
-� ( 9 , :) are rank-1.

6. The trace operation on -� is defined as

tr (⇠;-� ) :=
’
92#

[⇠;] 9 9 [-� ] 9 9 +
’
9<:

( 9,:)2⇢

�
[⇠;] 9: [-� ]: 9 + [⇠;]: 9 [-� ] 9:

�

⇤
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The condition -� ( 9 , :) ⌫ 0 is equivalent to: the matrix -� ( 9 , :) is Hermitian, i.e.,
-� ( 9 , :) = -� ( 9 , :)H, and

[-� ] 9 9 � 0, [-� ]:: � 0, [-- ] 9 9 [-- ]:: �
��[-� ] 9: ��2

This is a rotated second-order cone studied in Chapter 8.2.1 (see (8.17)). The condition
rank(-� ( 9 , :)) = 1 is equivalent to:

[-� ] 9 9 [-� ]:: =
��[-� ] 9: ��2 > 0

If both ⇠; and -� are Hermitian then [⇠;]: 9 [-� ] 9: =
�
[⇠;] 9: [-� ]: 9

�H and hence

tr (⇠;-� ) =
’
92#

[⇠;] 9 9 [-� ] 9 9 + 2
’
9<:

( 9,:)2⇢

Re
�
[⇠;] 9: [-� ]: 9

�

is a real scalar.

We call � a chordal graph if either � has no cycle or all its minimal cycles (ones
without chords) are of length three. A chordal extension 2(�) of � is a chordal graph
that contains �, i.e., 2(�) has the same vertex set as � but an edge set that is a superset
of �’s edge set. In that case we call the partial matrix -

2 (� ) a chordal extension of
the partial matrix -� . Every graph � has a chordal extension, generally nonunique.
In particular a complete supergraph of � is a trivial chordal extension of �. Chordal
graphs are important for us because of the result [113, Theorem 7] that every psd partial
matrix has a psd completion if and only if the underlying graph is chordal. When a
positive definite completion exists, there is a unique positive definite completion, in the
class of all positive definite completions, whose determinant is maximal. We extend
this result to rank-1 partial matrices after presenting an example.

Example 10.1 (Partial matrices and chordal extensions). Consider the graph � and
the partial matrix -� in Figure 10.1(a). -� is Hermitian if G 9: = Ḡ: 9 . The only cliques
in � consist of two nodes that are adjacent, and hence -� is psd if it is 2⇥2 psd and
-� is rank-1 if it is 2⇥ 2 rank-1. -� is not chordal as it contains a cycle of length
greater than 3.

Figure 10.1(b) and (c) depict two chordal extensions 2(�) of � and the partial
matrices -

2 (� ) defined on these chordal extensions. The chordal extension in Figure
10.1(b) has 2 maximal cliques, @1 := (1,2,3) and @2 := (2,3,4,5). These cliques share
two nodes, 2 and 3. The (fully specified) submatrices -

2 (� ) (@1) and -
2 (� ) (@2) defined

on the cliques @1 and @2 respectively are outlined in the figure with overlapping
entries in shade. The chordal extension in Figure 10.1(c) has 3 maximal cliques whose
(fully specified) submatrices are outlined. The clique @2 := (2,3,5) overlaps with the
other two cliques and the overlapping entries in -

2 (� ) (@2) are in shade. (The shared
nodes between maximal cliques introduce complications in formulating semidefinite
relaxation based on chordal extensions; see Chapter 10.1.6.) ⇤

Consider the following conditions on a =⇥ = matrix - and partial matrices -
2 (� )
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Figure 10.1 Example 10.1: The overlapping maximal cliques of chordal extensions -
2 (� ) are

in shades. (Dec 22, 2025: file size scaled.)

and -� associated with a given graph �:

- ⌫ 0, rank(-) = 1 (10.4a)

-
2 (� ) ⌫ 0, rank(-

2 (� ) ) = 1 (10.4b)

-� ( 9 , :) ⌫ 0, rank(-� ( 9 , :)) = 1, ( 9 , :) 2 ⇢ (10.4c)

We say that a partial matrix -� satisfies the cycle condition if for every cycle 2 in �’
( 9,:)22

\[-� ] 9: = 0 mod 2c (10.5)

where G = q mod 2c means G = q +2:c for some integer : . For instance if \[-� ] 9:
represent the voltage angle di�erences across lines ( 9 , :) then the cycle condition
imposes that they sum to zero (mod 2c) around any cycle 2. The next theorem implies
that -� has a psd rank-1 completion - if and only if -� has a chordal extension -

2 (� )
that is psd rank-1, if and only if -� is 2⇥ 2 psd rank-1 on � and satisfies the cycle
condition (10.5). 1 All proofs in this section are deferred to Chapter 10.1.8

Theorem 10.1 (Rank-1 characterization). Fix a connected graph � := (# ,⇢) with = :=
|# | nodes. Consider any chordal extension 2(�) of �. Suppose - 9 9 > 0,

⇥
-
2 (� )

⇤
9 9
> 0

and [-� ] 9 9 > 0, 9 2 # , for the matrix - and submatrices -� and -
2 (� ) below. Then

(1) Given a =⇥= matrix - that satisfies (10.4a), its submatrix -
2 (� ) satisfies (10.4b).

(2) Given a partial matrix -
2 (� ) that satisfies (10.4b), its submatrix -� satisfies

(10.4c) and the cycle condition (10.5).
(3) Given a partial matrix -� that satisfies (10.4c) and the cycle condition (10.5),

1 The theorem also holds with psd replaced by negative semidefinite.
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there is a completion - of -� that satisfies (10.4a). Moreover the completion -
is unique.

Informally Theorem 10.1 says that (10.4a) is equivalent to (10.4b) which is equiva-
lent to (10.4c)(10.5). It implies in particular that, for a chordal graph, - is psd rank-1 if
and only if the principal submatrix - (@) of - is psd rank-1 for every maximal clique @
of the graph. It characterizes a property of the full matrix - (that - is psd and rank-1) in
terms of its submatrices -

2 (� ) and -� . This is important because the submatrices are
typically much smaller than - for large sparse networks and much easier to compute.
We discuss how to construct a chordal extension 2(�) of � and formulate -

2 (� ) in
Chapter 10.1.6. Theorem 10.1 thus allows us to solve smaller problems in terms of
partial matrices as we now explain.

10.1.3 Feasible sets

To develop semidefinite relaxations of QCQP we start by studying their feasible sets.
Fix ⇠; , ; = 0,1, . . . !, and its underlying graph �. Define the feasible set of the QCQP
(10.1) as:

V := {G 2 C= : GH
⇠;G  1; , ; = 1, . . . ,!} (10.6)

Given an G 2 V, it defines a unique (up to a rotation) psd rank-1 matrix - := GGH

and therefore a unique psd rank-1 partial matrix -� that satisfies tr(⇠;-� )  1; . The
converse is not always true: given a partial matrix -� that is psd rank-1 and satisfies
tr(⇠;-� )  1; , it is not always possible to recover an G inV. This is possible if and only
if -� has a psd rank-1 completion - that satisfies tr(⇠;-)  1; . We now characterize
the set of partial matrices from which G 2 V can be recovered.

Define the set of Hermitian matrices:

X := {- 2 S= : - satisfies tr(⇠;-)  1; , ; = 1, . . . ,!, (10.4a)} (10.7a)

i.e., - 2 X satisfies tr(⇠;-)  1; for all ; and (10.4a). Fix a connected graph �. Fix any
chordal extension 2(�) of � and define the set of Hermitian partial matrices -

2 (� ) :

X
2 (� ) := {-

2 (� ) : -
2 (� ) satisfies tr

�
⇠;-2 (� )

�
 1; , ; = 1, . . . ,!, (10.4b)} (10.7b)

Finally define the set of Hermitian partial matrices -� :

X� := {-� : -� satisfies tr(⇠;-� )  1; , ; = 1, . . . ,!, (10.4c)(10.5)} (10.7c)

Note that the definition of psd for partial matrices implies that -
2 (� ) and -� are

Hermitian partial matrices (see Definition 10.1).

Theorem 10.1 implies that given a partial matrix -
2 (� ) 2 X2 (� ) or a partial matrix

-� 2X� there is a psd rank-1 completion - 2X. Moreover the completion - is unique.
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Corollary 10.2 (Uniqueness of rank-1 completion). Fix a connected graph �. Given
a partial matrix -

2 (� ) 2 X2 (� ) or -� 2 X� there is a unique psd rank-1 completion
- 2 X.

The corollary implies that, given any Hermitian partial matrix -� 2 X� , the set
of all completions of -� consists of a single psd rank-1 matrix and infinitely many
indefinite or non-rank-1 matrices.

We say two sets � and ⌫ are equivalent, denoted � ⌘ ⌫, if there is a bijection
between them. Even though X,X

2 (� ) ,X� are di�erent kinds of spaces, Theorem 10.1
and Corollary 10.2 imply that they are all equivalent to the feasible set of QCQP (10.1)
once an arbitrary reference angle is fixed, e.g., \G1 := 0.

Theorem 10.3 (Equivalence). V ⌘ X ⌘ X
2 (� ) ⌘ X� .

Since the cost function GH
⇠0G of (10.1) depends on - only through the partial

matrix -� , Theorem 10.3 suggests three problems that are equivalent to QCQP (10.1):
for X̂ 2

�
X,X

2 (� ) ,X�
 
,

min
-

⇠ (-� ) s.t. - 2 X̂ (10.8)

Specifically, given an optimal solution -opt in X, it can be decomposed into -opt =
G

opt (Gopt)H where Gopt is unique up to an arbitrary reference angle. Then Gopt is in
V and an optimal solution of QCQP (10.1). Alternatively given an optimal solution
-

opt
�
2 X� or -opt

2 (� ) 2 X2 (� ) , Corollary 10.2 guarantees that it has a unique psd rank-1
completion -opt in X from which an optimal Gopt 2 V can be recovered. This suggests
solving the QCQP (10.1) by computing -opt

�
or -opt

2 (� ) instead of -opt because both of
them are typically much smaller in size than -opt for a large sparse network. Indeed
the number of complex variables in a Hermitian - is =(=+1)/2 while the number of
complex variables in -� is only =+ |⇢ |, which is much smaller if � is large but sparse.
Given a partial matrix -� 2 X� (or -

2 (� ) 2 X2 (� ) ), however, there is a more direct
construction of a feasible solution G 2 V of QCQP than through its completion (see
Chapter 10.1.4).

Remark 10.1 (Graph �̂ underlying QCQP). Note that the feasible setsV,X,X
2 (� ) ,X�

defined in (10.6) (10.7) depend only on the constraint matrices ⇠; , ; = 1, . . . ,!, but not
on the cost matrix⇠0. Equivalence among these sets will therefore hold if we replace �
in Theorem 10.1, Corollary 10.2 and Theorem 10.3 with a subgraph �̂ that is induced
by ⇠; only for ; � 1, i.e., two nodes 9 and : in �̂ are adjacent if and only if [⇠;] 9: < 0
for some ; 2 {1, . . . ,!}.

The graph � is needed for the proper definition of cost function. For the optimization
problems in (10.8) to be equivalent, we need to compute the partial matrices -� and
-
2 (� ) . The partial matrices -

�̂
will have missing terms [-

�̂
] 9: in the cost function if

( 9 , :) is in � but not in �̂, i.e., if [⇠0] 9: < 0 but [⇠;] 9: = 0 for all ; � 1. Similarly for
-
2 (�̂ ) . ⇤
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10.1.4 Semidefinite relaxations and solution recovery

Hence solving QCQP (10.1) is equivalent to solving (10.8) over any of X,X
2 (� ) ,X�

for an appropriate matrix variable. The di�culty with solving (10.8) is that the feasible
sets X, X

2 (� ) , and X� are still nonconvex due to the rank-1 constraint and the cycle
condition (10.5). Their removal leads to three types of semidefinite relaxations of
QCQP (10.1).

Semidefinite relaxations. RelaxX,X
2 (� ) andX� to the following convex supersets:

X
+ := {- 2 S= : -� satisfies tr(⇠;-)  1; , ; = 1, . . . ,!, - ⌫ 0}

X
+
2 (� ) := {-

2 (� ) : -� satisfies tr
�
⇠;-2 (� )

�
 1; , ; = 1, . . . ,!, -

2 (� ) ⌫ 0}
X
+
�

:= {-� : -� satisfies tr (⇠;-� )  1; , ; = 1, . . . ,!, -� ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢}

These feasible sets are defined for di�erent (partial) matrices and di�er in the definition
of psd. Remark 10.1 applies to these relaxed feasible sets regarding the underlying
graph and the corresponding partial matrices. The following problems are semidefinite
relaxations of QCQP (10.1) with di�erent sizes and tightness:

⇠
sdp := min

-

⇠ (-� ) s.t. - 2 X+ (10.9a)

⇠
ch := min

-
2 (� )

⇠ (-� ) s.t. -
2 (� ) 2 X+

2 (� ) (10.9b)

⇠
socp := min

-�

⇠ (-� ) s.t. -� 2 X+
�

(10.9c)

We call (10.9a) a SDP relaxation, (10.9b) a chordal relaxation, and (10.9c) a SOCP
relaxation. In Chapter 10.1.6 we describe how to construct the set of constraints
-
2 (� ) ⌫ 0 in X+

2 (� ) and show that chordal relaxation is equivalent to a semidefinite
program (and similarly for SOCP relaxation).

Solution recovery. When the semidefinite relaxations in (10.9) are exact, i.e., if their
optimal solutions -sdp, -ch

2 (� ) , -
socp
�

happen to lie inX,X
2 (� ) ,X� respectively, then an

optimal solution Gopt 2 V of the original QCQP can be recovered from these solutions.
Indeed the recovery method works not just for an optimal solution, but any feasible
solution that lies in X, X

2 (� ) or X� . Moreover, given an - 2 X or an -
2 (� ) 2 X2 (� ) ,

the construction of G depends on - or -
2 (� ) only through their submatrix -� . We

hence describe a method for recovering an G 2 V from an -� , which may be a partial
matrix in X� or the submatrix of a (partial) matrix in X or X

2 (� ) . The solution G is
unique if � is connected and, say, \G1 is fixed.

Take an arbitrary spanning tree of � rooted at bus 1 with orientation where lines
pointing away from bus 1. Let P 9 denote the unique path from bus 1 to bus 9 in the
spanning tree. Set |G1 | :=

p
[-� ]11 and \G1 to an arbitrary value. For 9 = 2, . . . ,=,

|G 9 | :=
q
[-� ] 9 9 , \G 9 := \+1 �

’
(8,:)2P 9

\ [-� ]8: (10.10)

Then, on link ( 9 , :), \G 9 � \G: = \ [-� ] 9: and [-� ] 9: = G 9GH
:

since -� is 2⇥ 2 psd
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rank-1. It can be checked that G is in the feasible set V of QCQP, i.e., GH
⇠;G  1; , ; =

1, . . . ,! (Exercise 10.1). The cycle condition (10.5) ensures that the angle calculation
(10.10) gives the same result for any spanning tree.

This method for recovering G from -� is generally more e�cient than computing
the psd rank-1 completion - of -� and factorizing - , as suggested in Theorem 10.3,
and is used in the proof of Theorem 10.1 (see Chapter 10.1.8). It is equivalent to the
method (5.18c) of Chapter 5.2.1 for recovering voltage angles in the branch flow model
for radial networks, with V 9: = [-� ] 9: .

10.1.5 Tightness of relaxations

Recall that V ⌘ X ⌘ -
2 (� ) ⌘ -� (Theorem 10.3). Since X ✓ X+, X

2 (� ) ✓ X+
2 (� ) ,

X� ✓ X+
�

, the relaxations in (10.9) all provide lower bounds on OPF (9.9). The SOCP
relaxation (10.9c) is the simplest computationally. The chordal relaxation (10.9b)
usually requires heavier computation than (10.9c) but much lighter than the SDP
relaxation (10.9a) for large sparse networks (even though (10.9b) can be as complex as
(10.9a) in the worse case [114, 115]). The relative tightness of the relaxations depends
on the network topology. For a general network that may contain cycles, chordal
relaxation (10.9b) is as tight as SDP relaxation (10.9a) and they are strictly tighter than
SOCP relaxation (10.9c). For a tree (radial) network the hierarchy collapses and all
three are equally tight. We now make this precise.

Consider the relaxed feasible setsX+,X+
2 (� ) andX+

�
. Consider two sets � and ⌫ and

the corresponding cost functions ⇠� : �! R and ⇠⌫ : ⌫! R. For instance � := C=,
⌫ := S=, ⇠�(G) := GH

⇠G and ⇠⌫ (-) := tr (⇠-) for a given Hermitian matrix ⇠. We
say that � is an e�ective subset of ⌫ with respect to the cost functions ⇠�,⇠⌫, denoted
by � v ⌫, if, given any 0 2 �, there is a 1 2 ⌫ that has the same cost ⇠�(0) = ⇠⌫ (1).
We say � is similar to ⌫ with respect to the cost functions ⇠�,⇠⌫, denoted by � ' ⌫,
if � v ⌫ and ⌫ v �. Note that � ⌘ ⌫ implies � ' ⌫ but the converse may not hold.
Even though e�ective subset and similarity are defined with respect to some cost
functions ⇠�,⇠⌫, we often omit the cost functions when their existence is understood
and unimportant for the discussion, and simply say � is an e�ective subset of ⌫ or �
is similar to ⌫.

The feasible set of QCQP (10.1) is an e�ective subset of the feasible sets of its
relaxations; moreover these relaxations have similar feasible sets when the network is
radial.

Theorem 10.4 (Tightness of relaxations). 1. V v X+ ' X+
2 (� ) v X+

�
.

2. If � is a tree then V v X+ ' X+
2 (� ) ' X+

�
.

The reasonX+
2 (� ) is similar, but not equivalent, toX+ is that psd completions of a psd

submatrix - 2 X+
2 (� ) are generally nonunique. In contrast, the psd rank-1 completion

of a psd rank-1 submatrix - 2 X
2 (� ) is unique according to Corollary 10.2.
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Let ⇠opt,⇠sdp,⇠ch,⇠socp be the optimal values of QCQP (10.1), SDP relaxation
(10.9a), chordal relaxation (10.9b), SOCP relaxation (10.9c) respectively. Theorem
10.3 and Theorem 10.4 directly imply

Corollary 10.5. 1. ⇠opt � ⇠sdp = ⇠ch � ⇠socp.
2. If � is a tree then ⇠opt � ⇠sdp = ⇠ch = ⇠socp.

Remark 10.2 (Tightness). Theorem 10.4 and Corollary 10.5 imply that for radial
networks one should always solve SOCP relaxation (10.9c), not chordal relaxation
(10.9b) or SDP relaxation (10.9a), since it is the tightest and the simplest relaxation of
the three. For networks that contain cycles there is a tradeo� between SOCP relaxation
and chordal/SDP relaxation: the latter is tighter but requires heavier computation.
Between chordal and SDP relaxations, chordal relaxation is preferable as they are
equally tight but chordal relaxation is usually much faster to solve for large sparse
networks. See [116, 117, 32, 120, 142, 104] for numerical studies that compare these
relaxations. ⇤

10.1.6 Chordal relaxation

Theorem 10.1 through Corollary 10.5 apply to any chordal extension 2(�) of �. The
choice of 2(�) does not a�ect the optimal value of the chordal relaxation but determines
its complexity. We now explain how to construct the set of constraints -

2 (� ) ⌫ 0 in
the definition of X+

2 (� ) and show that chordal relaxation (10.9b) is equivalent to a
semidefinite program. The method is applicable to SOCP relaxation (10.9c) as well
(see Example 10.2).

The constraint -
2 (� ) ⌫ 0 consists of multiple constraints that the (fully specified)

principal submatrices -
2 (� ) (@) ⌫ 0, one for each maximal clique @ of 2(�). We will

discuss the tradeo�s in choosing a chordal extension 2(�) of � later. Once a 2(�) is
chosen the construction of -

2 (� ) ⌫ 0 involves two steps:

1. List all the maximal cliques @: of 2(�), : = 1, . . . , .
2. Use as relaxation variables appropriate Hermitian matrices -: corresponding to
@: . Then -

2 (� ) ⌫ 0 is a shorthand for: -: ⌫ 0 for : = 1, . . . , .

We elaborate on both steps. Computing all maximal cliques of a general graph is NP-
hard. It can however be done e�ciently for a chordal graph because a graph is chordal
if and only if it has a perfect elimination ordering [143] and computing this ordering
takes linear time in the number of nodes and edges [144]. Given a perfect elimination
ordering all maximal cliques @: can be enumerated and -� (@: ) constructed e�ciently
[114]. For most OPF applications the computation depends only on the topology of
the power network, not on operational data, and therefore can be done o�ine.

Suppose the set of maximal cliques {@: , : = 1, . . . , } has been identified in which
clique @: consists of =: nodes. It is tempting to simply use  matrix variables -:
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each of size =: ⇥ =: , require -: ⌫ 0 in the chordal relaxation (10.9b), and integrate
the  optimal (fully specified) matrix solutions -opt

:
of (10.9b) into a single optimal

partial matrix -opt
2 (� ) . Unfortunately this approach fails if some of the maximal cliques

@: share nodes. In that case their -: share entries and cannot be integrated as principal
submatrices of an =⇥=matrix, as explained in Example 10.1. Therefore when maximal
cliques of 2(�) share nodes, their corresponding matrices must be decoupled by
introducing auxiliary variables and equality constraints on these auxiliarty variables.
We now sketch this procedure using Example 10.1 (see [114, 115] for more details). It
also illustrates the di�culty in choosing a good chordal extension 2(�).

Suppose we have chosen the chordal extension 2(�) in Figure 10.1(b) with two
cliques @1 := (1,2,3) and @2 := (2,3,4,5) that share nodes 2 and 3. The (fully specified)
matrices -1 and -2 defined on the cliques @1 and @2 respectively are outlined in Figure
10.1(b). They overlap in 4 entries and require 4 decoupling variables D 9: . To decouple
these matrices, replace -1 by the 3⇥3 matrix

-
0
1 :=

266664
G11 G12 G13

G21 D22 D23

G31 D32 D33

377775
where the decoupling variables D 9: are constrained to be:

D 9: = G 9: , 9 , : = 2,3 (10.11a)

Then the psd constraints -
2 (� ) ⌫ 0 in chordal relaxation (10.9b) is not -1 ⌫ 0 and

-2 ⌫ 0, but

-
0
1 ⌫ 0, -2 ⌫ 0 (10.11b)

We can also write the chordal relaxation as a SDP in standard form (10.3) by defining
the 7⇥7 block-diagonal matrix

-
0 :=


-
0
1 0

0 -2

�

Then chordal relaxation (10.9b) is:

min
-
0 2S7

tr(⇠ 00- 0) s.t. tr(⇠ 0
;
-
0)  1; , ; = 1, . . . ,! (10.12a)

tr(⇠ 0
A
-
0) = 0, A = 1,2,3,4 (10.12b)

-
0 ⌫ 0 (10.12c)

for appropriate ⇠ 0
;
, ; = 0, . . . ,!. The constraint - 0 ⌫ 0 in (10.12c) is equivalent to the

psd constraints (10.11b) on -
0
1 and -2. The matrices ⇠ 0

A
in (10.12b) are chosen to

enforce the linear decoupling constraints (10.11a). See Example 10.2 for an explicit
construction of these matrices.

As the example illustrates, the choice of chordal extension 2(�) determines the
number and sizes of matrices -: associated with the maximal cliques as well as the
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number of decoupling variables and constraints. In our example, the full SDP computes
a 5⇥ 5 matrix - for 25 variables (counting G 9: and G: 9 = Ḡ 9: as two variables).
Chordal relaxation defined by (10.11) computes a 3⇥3 matrix - 01 and a 4⇥4 matrix
-2 for 25 variables, including 4 decoupling variables with four (linear) constraints.
If we have chosen the chordal extension 2(�) in Figure 10.1(c) with three cliques
@1 := (1,2,3), @2 := (3,4,5), and @3 := (2,3,5), then chordal relaxation will involve
three 3⇥3 matrices with 27 variables, including 8 decoupling variables and constraints.
(Despite these examples, chordal relaxation is typically much less computationally
intensive than a full SDP for large sparse network.)

The optimal choice of chordal extension 2(�) that minimizes the complexity of
chordal relaxation is NP-hard to compute. This di�culty is due to two conflicting
factors in choosing a 2(�). On the one hand if 2(�) contains few cliques @ then the
submatrices -

2 (� ) (@) tend to be large and expensive to compute (e.g. if 2(�) is the
complete graph then there is a single clique, but -

2 (� ) = - and the chordal relaxation
is identical to SDP relaxation). On the other hand if 2(�) contains many small cliques
@ then there tends to be more overlap and chordal relaxation tends to require more
decoupling variables and constraints. Hence choosing a good chordal extension 2(�)
of � is important but nontrivial.

Example 10.2 (SOCP relaxation). We apply the same method to construct SOCP
relaxation (10.9c) on the graph in Figure 10.1(a). It has 5 links (1,2), (1,3), (3,4),
(4,5), (2,5). (In this example each link is a maximal clique but this fact is not important
for SOCP relaxation, i.e., for a general network � we can choose an arbitrary spanning
tree )� and construct SOCP relaxation on )� .) Every link ( 9 , :) shares node 9 with a
link (8, 9) and node : with another link (: , ;). We introduce 5 decoupling variables to
decouple the five 2⇥2 variables:

-12 :=

G11 G12

G21 G22

�
, -

0
13 :=


D11 G13

G31 G33

�
, -

0
34 :=


D33 G34

G43 G44

�

-
0
45 :=


D44 G45

G54 G55

�
, -

0
25 :=


D22 G25

G52 D55

�

with 5 decoupling constraints:

D11 = G11, D33 = G33, D44 = G44, D22 = G22, D55 = G55 (10.13a)

Then the set of 2⇥2 psd constraints in X+
�

are:

-12 ⌫ 0, -
0
13 ⌫ 0, -

0
34 ⌫ 0, -

0
45 ⌫ 0, -

0
25 ⌫ 0 (10.13b)

We can convert this into a semidefinite program in standard form, i.e., we will construct
the matrices ⇠ 0

;
in (10.12).

Define the 10⇥10 matrix

-
0 := Diag

�
-12,- 013,- 034,- 045,- 025

�
Then (10.13b) is equivalent to - 0 ⌫ 0. To convert an original constraint tr(⇠;-� )  1;
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into tr(⇠ 0
;
-
0)  1; we first note that tr(⇠;-� )  1; is equivalent to (each 2 9: may be

zero or nonzero, but blank entries correspond to ( 9 , :) 8 ⇢ and are set to zero):

tr

2666666664

211 212 213

221 222 225

231 233 234

243 244 245

252 254 255

3777777775

2666666664

G11 G12 G13

G21 G22 G25

G31 G33 G34

G43 G44 G45

G52 G54 G55

3777777775
 1;

To construct ⇠ 0
;
, define

⇠12 :=

211 212

221 222

�
, ⇠

0
13 :=


0 213

231 233

�
, ⇠

0
34 :=


0 234

243 244

�

⇠
0
45 :=


0 245

254 255

�
, ⇠

0
25 :=


0 225

252 0

�

i.e.,⇠ 0
9:

has the same pattern as - 0
9:

with entries corresponding to decoupling variables
D 9 9 set to zero. Then

⇠
0
;

:= Diag
�
⇠12,⇠ 013,⇠ 034,⇠ 045,⇠ 025

�
and

tr(⇠;-� )  1; () tr(⇠ 0
;
-
0)  1;

Finally to enforce the decoupling constraints (10.13a) define (4 9 is the unit vector of
size 10 with 1 in the 9 th place and 0 elsewhere)

⇠
0
11 := 414

T
1 � 434

T
3 , ⇠

0
33 := 444

T
4 � 454

T
5 , ⇠

0
44 := 464

T
6 � 474

T
7

⇠
0
22 := 424

T
2 � 494

T
9 , ⇠

0
55 := 484

T
8 � 4104

T
10

Then (10.13a) is equivalent to

tr(⇠ 0
A
-
0) = 0, A = 1,2,3,4,5

⇤

10.1.7 Other convex relaxations

For radial networks we can always adopt SOCP relaxation according to Remark 10.2.
For meshed networks several convex relaxations not covered in this chapter have been
proposed for OPF. For instance, a convex quadratic relaxation is proposed in [145]
based on McCommick envelops [146]. Three strong SOCP relaxations are proposed
in [131] that strengthens classical SOCP relaxations by approximating the nonconvex
cycle condition (10.5) for meshed networks. When SDP relaxation fails to produce an
optimal solution of an OPF instance, [147, 148, 149] propose to tighten the relaxation
by increasing the relaxation order in the Lasserre hierarchy. This often finds a global
solution but at a significantly higher computational cost. Global optimization methods
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based on branch-and-bound have been proposed in [61, 150]. See [105] for a tutorial
and pointers to the extensive literature.

10.1.8 Proofs

Proof of Theorem 10.1: Rank-1 characterization [32]. We will prove (1)) (2))
(3)) (1). If - is psd rank-1 then all its principal submatrices are psd and of rank 1
(the submatrix cannot be of rank 0 because, by assumption, - 9 9 > 0 for all 9 2 #).
This implies that its submatrix -

2 (� ) is psd and rank-1. Hence (1)) (2).

Fix a partial matrix -
2 (� ) that is psd and rank-1 and consider its submatrix -� .

Since each link ( 9 , :) 2 ⇢ is a clique of 2(�) the 2⇥2 principal submatrix -� ( 9 , :) is
psd and rank-1. Therefore to prove that (2)) (3), it su�ces to show that -� satisfies
the cycle condition (10.5). We now prove the following statement by induction on :: for
all cycles 2 := ( 91, . . . , 9: ) of length 3  :  = in 2(�), such that the lines ( 98 , 98+1) 2 2
with 9:+1 := 91, we have

:’
8=1

\ [-� ] 98 98+1
= 0 mod 2c (10.14)

For : = 3, a cycle 2 := ( 91, 92, 93) is a clique of 2(�) and therefore the following
principal submatrix of -

2 (� ) :

-
2 (� ) ( 91, 92, 93) :=

266664
[-
2 (� ) ] 91 91 [-

2 (� ) ] 91 92 [-
2 (� ) ] 91 93

[-
2 (� ) ] 92 91 [-

2 (� ) ] 92 92 [-
2 (� ) ] 92 93

[-
2 (� ) ] 93 91 [-

2 (� ) ] 93 92 [-
2 (� ) ] 93 93

377775
defined on the cycle is psd rank-1. Hence -

2 (� ) ( 91, 92, 93) = GGH for some G :=
(G1,G2,G3) 2 C3. Then

3’
8=1

\ [-� ] 98 98+1
= \

⇣
G1G

H
2

⌘
+ \

⇣
G2G

H
3

⌘
+ \

⇣
G3G

H
1

⌘
= 0 mod 2c

Suppose (10.14) holds for all cycles in 2(�) of length up to : > 3. Consider now a
cycle ( 91, . . . , 9:+1) of length : +1 in 2(�). Since 2(�) is chordal there is a chord, say,
( 91, 9<) 2 ⇢ for some 1 << < :+1. Since both cycles ( 91, . . . , 9<) and ( 91, 9<, . . . , 9:+1)
satisfy (10.14) we have

<�1’
8=1

\ [-� ] 98 98+1
+ \ [-� ] 9< 91 = 0 mod 2c

\ [-� ] 91 9< +
:+1’
8=<

\ [-� ] 98 98+1
= 0 mod 2c

where 9:+2 := 91. Since -� is Hermitian, \ [-� ] 9< 91 = �\ [-� ] 91 9< and hence adding
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the above equations yields

:+1’
8=1

\ [-� ] 98 98+1
= 0 mod 2c

proving (10.14) for : +1. This completes the proof of (2)) (3).

For (3)) (1), fix any partial matrix -� that is 2⇥2 psd rank-1 and satisfies the cycle
condition (10.5). We can construct a psd rank-1 completion - of -� , by constructing
a vector G 2 C= such that - = GGH, using the method (10.10) of Chapter 10.1.4 for
solution discovery, applied to each connected component of � if � is not connected,
with an arbitrary spanning tree for each connected component. This defines G 9 for all
9 2 {1, . . . ,=}. Clearly - = GGH is a psd rank-1 completion of -� . For uniqueness of -
see the proof of Corollary 10.2. This completes the proof of Theorem 10.1. ⇤

Proof of Corollary 10.2: Uniqueness of rank-1 completion [119]. The proof of
Theorem 10.1 shows that given a partial matrix -

2 (� ) 2 X2 (� ) , the (unique) submatrix
-� of -

2 (� ) has a psd rank-1 completion - 2 X. Therefore to prove the corollary it
su�ces to prove that any partial matrix -� 2 X� has a unique psd rank-1 completion
- 2 X. To this end fix an -� 2 X� and suppose there are two psd rank-1 completions
- := GGH and -̂ := ĜĜH in X. Since -� = -̂� we have��

G 9

�� = q
[-� ] 9 9 =

��
Ĝ 9

�� , 9 2 #

and

\ 9 � \: = \ [-� ] 9: = \̂ 9 � \̂: , ( 9 , :) 2 ⇢

i.e., ⇠T
\ = ⇠T

\̂ where ⇠ is the |# |⇥ |⇢ | incidence matrix of the graph ⌧ := (# ,⇢):

⇠ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8

0 otherwise
, 9 2 # , ; 2 ⇢

This means that ⇠T �
\̂ � \

�
= 0. The cycle condition (10.5) in X� guarantees that there

is a solution for \̂ � \ when the graph � is not a tree. Since the graph � is connected,
the null space of⇠T is span(1), and therefore, \̂ = \ +W1 for any W 2 R. Hence Ĝ = G4iW .
This implies that

-̂ = ĜĜ
H =

⇣
G4

iW

⌘ ⇣
G4

iW

⌘H
= -

i.e., the psd rank-1 completion is unique. ⇤

Proof of Theorem 10.4: Tightness of relaxations. First V v X+ v X+
2 (� ) v X+

�

follows from Theorem 10.3 and the definitions of X+, X+
2 (� ) , X

+
�

(recall that by
assumption the cost function ⇠ depends on + ,- ,-

2 (� ) only through the submatrix
-� ). Since 2(�) is chordal, [113, Theorem 7] implies that every -

2 (� ) in X+
2 (� ) has a

psd completion - in X+, i.e., X+
2 (� ) v X+. Hence X+ ' X+

2 (� ) .

Suppose � is a tree and consider any chordal extension 2(�). We need to show that
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X
+
�
v X+

2 (� ) , i.e., given any -� 2 X+
�

there is a -
2 (� ) 2 X+

2 (� ) with the same cost.
Since � is itself chordal, [113, Theorem 7] implies that -� has a psd completion - in
X
+. The submatrix -

2 (� ) of - defined on 2(�) is the desired partial matrix in X+
2 (� )

with the same cost. This proves X+
�
v X+

2 (� ) and hence X+
�
' X+

2 (� ) . ⇤

10.2 Application to OPF

In this section we apply the results of Chapter 10.1 to single-phase OPF problems in the
bus injection model. In Chapter 10.2.1 we write OPF (9.17) as a standard QCQP but
expressed in terms of the partial matrix defined on the network graph⌧. Its semidefinite
relaxations then follow from (10.9). In Chapter 10.2.2 we define exact relaxation of
OPF. Su�cient conditions for exact relaxations of OPF for radial networks will be
studied in Chapters 10.3 and 10.4.

10.2.1 Semidefinite relaxations

Constraints. Recall the undirected connected graph⌧ = (# ,⇢) that models a power
network with # +1 buses and " lines. Given a voltage vector + 2 V define the partial
matrix,⌧ :=,⌧ (+):

[,⌧] 9 9 := |+ 9 |2, 9 2 #; [,⌧] 9: :=+ 9+H
:
=: [,⌧]H

: 9
, ( 9 , :) 2 ⇢

Then the constraints in OPF (9.17) as a QCQP can be written in terms of the partial
matrix,⌧ :=,⌧ (+) as:

?
min
9
 tr

�
� 9,⌧

�
 ?

max
9

, 9 2 # (10.16a)

@
min
9
 tr

�
 9,⌧

�
 @

max
9

, 9 2 # (10.16b)

E
min
9
 tr

�
⇢ 9,⌧

�
 E

max
9

, 9 2 # (10.16c)

tr
�
.̂ 9:,⌧

�
 ✓

max
9:

, ( 9 , :) 2 ⇢ (10.16d)

tr
�
.̂: 9,⌧

�
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (10.16e)

Cost function. Common cost functions can also be expressed in terms of the partial
matrix,⌧ . For example if the cost is a weighted sum of real generation power then

⇠ (,⌧) =
’
9:gens

2 9Re(B 9 ) =
’
9:gens

2 9 tr
�
� 9,⌧

�

In particular the real line loss in the network is ⇠ (,⌧) =
Õ
9
Re(B 9 ) =

Õ
9
tr

�
� 9,⌧

�
.

We present a less obvious example.
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Example 10.3 (Cost function). Consider the problem of minimizing the total deviation
of squared voltage magnitudes from their squared nominal values 0 9 2 R

min
+ 2C#+1

’
9

⇣��
+ 9

��2� 0 9 ⌘2
s.t. + 2 V (10.17)

where the feasible set V is defined by quadratic constraints in terms of the partial
matrix,⌧: + 2 V if and only if

+
H
⇠;+ = tr (⇠;,⌧)  1; , ; = 1, . . . ,!

with some matrices ⇠; and real numbers 1; such that [⇠;] 9: = 0 if ( 9 , :) 8 ⇢ . Even
though the cost function is not a quadratic form in terms of,⌧ , show that the problem
can be equivalently expressed as a QCQP in terms of ,⌧ with additional variables
and constraints.

Solution. The cost function is
Õ
9

⇣��
+ 9

��4�20 9
��
+ 9

��2 + 02
9

⌘
. We can omit the constants 02

9

in the cost and hence (10.17) is equivalent to the following problem:

min
+ 2C#+1

’
9

⇣��
* 9

��2�20 9* 9
⌘

s.t. + 2 V, * 9 =
��
+ 9

��2 , 9 2 # (10.18a)

Let + :=
⇣
+ 9 , 9 2 #

⌘
2 C#+1, * :=

⇣
* 9 , 9 2 #

⌘
2 C#+1, 0 :=

⇣
0 9 , 9 2 #

⌘
, and 4 9 2

{0,1}#+1 with a single 1 at the 9 th entry and 0 elsewhere. In terms of the variable
G := (+ ,*) 2 C2(#+1) , we rewrite (10.18a) as an inhomogeneous QCQP of the form:

min
G2C2(#+1)

G
H
⇠0G +

⇣
2

H
0 G + GH

20

⌘
s.t. + 2 V, GH

⇠ 9G +
⇣
2

H
9
G + GH

2 9

⌘
= 0, 9 2 #

(10.18b)

Indeed ’
9

⇣��
* 9

��2�20 9* 9
⌘
= *

�

* �
⇣
0
�

* +*� 0
⌘

��
+ 9

��2�* 9 = +
H
⇣
4 94

H
9

⌘
+ � 1

2

⇣
4

H
9
* 9 +*H

9
4 9

⌘
, 9 2 #

since 0 9 and * 9 =
��
+ 9

��2 are real numbers. Therefore (10.18a) is an inhomogeneous
QCQP of the form (10.18b) with

⇠0 :=

0 0
0 I#+1

�
, 20 :=


0
�0

�
, ⇠ 9 :=


4 94

H
9

0
0 0

�
, 2 9 :=


0
� 1

2 4 9

�
, 9 2 #

where I#+1 is the identity matrix of size # + 1. Since the cost function and the new
constraints depends on+ only through |+ 9 |2, in particular, it does not depend on+ 9+H

:
,

9 < : , the problem (10.18b) depends only on,⌧ . Indeed,⌧ appears only in the term

+
H
⇣
4 94

H
9

⌘
+ = tr

⇣⇣
4 94

H
9

⌘
++

H
⌘
= tr

⇣⇣
4 94

H
9

⌘
,⌧

⌘
.

As explained in Chapter 9.1.3, the inhomogeneous QCQP (10.18b) is equivalent to



512 Semidefinite relaxations: BIM

the following homogeneous QCQP with an auxiliary scalar variable C 2 C:

min
G2C2(#+1) , C 2C

⇥
G

H
C
H⇤ 

⇠0 20

2
H
0 0

� 
G

C

�

s.t.
⇥
G

H
C
H⇤ 

⇠ 9 2 9

2
H
9

0

� 
G

C

�
= 0, 9 2 #

⇥
G

H
C
H⇤ 

0 0
0 1

� 
G

C

�
= 1, + 2 V

in the sense that, if (Gopt, Copt) 2C2#+3 is optimal for the homogeneous QCQP, then their
product Gopt

C
opt = Gopt

4
i\

opt
is optimal for the inhomogeneous problem (10.18b). ⇤

Henceforth we will abuse notation and use ⇠ to denote the cost function both as a
function ⇠ (+) of the voltage vector + 2 C#+1 and as a function ⇠ (,⌧) of a partial
matrix,⌧ .

OPF and relaxations. Recall the OPF problem (9.17) as a QCQP, reproduced here

min
+

⇠ (+) s.t. + 2 V :=
�
+ 2 C#+1 :+H

⇠;+  1; , ; = 1, . . . ,!
 

(10.19)

where the constraint matrices⇠; are given in (10.16). To avoid triviality we will assume
unless otherwise specified that OPF (10.19) is feasible. Define the set of Hermitian
matrices:

W :=
�
, 2 S#+1 :, satisfies (10.16) with,⌧ replaced by, , (10.4a)

 
Fix any chordal extension 2(⌧) of ⌧ and define the set of Hermitian partial matrices
,
2 (⌧) :

W
2 (⌧) :=

�
,
2 (⌧) :,

2 (⌧) satisfies (10.16) with,⌧ replaced by,
2 (⌧) , (10.4b)

 
Finally define the set of Hermitian partial matrices,⌧:

W⌧ := {,⌧ :,⌧ satisfies (10.16)(10.4c)(10.5)}

Then Theorem 10.3 implies that OPF (10.19) is equivalent to

min
,

⇠ (,⌧) s.t. , 2 Ŵ

where Ŵ is any one of the equivalent feasible sets W,W
2 (⌧) ,W⌧ . Its semidefinite

relaxation relaxes Ŵ to semidefinite cones:

W
+ :=

�
, 2 S#+1 :,⌧ satisfies (10.16), , ⌫ 0

 
W

+
2 (⌧) :=

�
,
2 (⌧) :,⌧ satisfies (10.16), ,

2 (⌧) ⌫ 0
 

W
+
⌧

:= {,⌧ :,⌧ satisfies (10.16), ,⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢}

i.e., the semidefinite relaxations of OPF (10.19) is:

min
,

⇠ (,⌧) s.t. , 2 Ŵ+
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where Ŵ+ is any one of the feasible setsW+,W+
2 (⌧) ,W

+
⌧

. Explicitly, these relaxations
are (c.f. (10.9)):

min
, 2S#+1

⇠ (,⌧) s.t. tr (⇠;,)  1; , ; = 1, . . . ,!, , ⌫ 0 (10.20a)

min
,
2 (⌧)

⇠ (,⌧) s.t. tr
�
⇠;,2 (⌧)

�
 1; , ; = 1, . . . ,!, ,

2 (⌧) ⌫ 0 (10.20b)

min
,⌧

⇠ (,⌧) s.t. tr (⇠;,⌧)  1; , ; = 1, . . . ,!, ,⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢

(10.20c)

where⇠; are given in (10.16). Since OPF (9.17) as a QCQP does not require assumption
C4.1 that HB

9:
= HB

: 9
, neither does its semidefinite relaxations (10.20). They can therefore

accommodate single-phase transformers that have complex turns ratios.

As discussed in Remark 10.2, if the network graph ⌧ is a tree, then we should
solve SOCP relaxation (10.20c) to compute the partial matrix,⌧ because it will be as
tight as SDP relaxation (10.20a) that computes the entire matrix, , but much simpler
computationally. Otherwise we can solve chordal relaxation (10.20b) to compute,

2 (⌧)
which is usually much simpler than (10.20a) for large sparse network but as tight.

Example 10.4 (Two-bus network). For the two-bus network in Figure 10.2, suppose
the line is a series admittance H = 6+ i1 and the load (?2,@2) is given. Write OPF and
its relaxation as QCQPs assuming ⇠ is the cost matrix and line limits are neglected.

V2V1

y
( p1 , q1)

( p2 , q2 )

Figure 10.2 Example 10.4.

Solution. The complex form power flow solution is:

B1 = H̄

⇣
|+1 |2�+1+̄2

⌘
, B2 = H̄

⇣
|+2 |2�+2+̄1

⌘
Therefore the admittance matrix and the associated .1,.2 are:

. :=

H �H
�H H

�
, .1 := 414

T
1. =


H �H
0 0

�
, .2 := 424

T
2. =


0 0
�H H

�

The matrices in (10.16) are:

�1 :=
1
2

⇣
.

H
1 +.1

⌘
=


6 �H/2
�H̄/2 0

�
,  1 :=

1
2i

⇣
.

H
1 �.1

⌘
=


�1 H/(2i)
�H̄/(2i) 0

�

�2 :=
1
2

⇣
.

H
2 +.2

⌘
=


0 �H̄/2
�H/2 6

�
,  2 :=

1
2i

⇣
.

H
2 �.2

⌘
=


0 �H̄/(2i)

H/(2i) �1

�
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�1 = 414
T
1 and �2 = 424

T
2 . Then OPF is:

min
+ 2C2

+
H
⇠+

s.t. ?
min
1  ?1 =+H�1+  ?max

1 , @
min
1  @1 =+H 1+  @max

1

E
min
1  |+1 |2 =+H

�1+  Emax
1 , E

min
2  |+2 |2 =+H

�2+  Emax
2

+
H�2+ = ?2, +

H 2+ = @2

Its SDP relaxation is:

min
, 2S2

tr(⇠,)

s.t. ?
min
1  tr(�1,)  ?max

1 , @
min
1  tr( 1,)  @max

1

E
min
1  tr(�1,)  Emax

1 , E
min
2  tr(�2,)  Emax

2

tr(�2,) = ?2, tr( 2,) = @2, , ⌫ 0

⇤

10.2.2 Exact relaxation: definition

Consider the single-phase OPF (10.19) as a standard QCQP and its semidefinite relax-
ations (10.20).

Definition 10.2 (Strong exactness). We say that

1. SDP relaxation (10.20a) is exact if every optimal solution, sdp of (10.20a) is psd
rank-1;

2. Chordal relaxation (10.20b) is exact if every optimal solution ,ch
2 (⌧) of (10.20b)

is psd rank-1, i.e., the principal submatrices,ch
2 (⌧) (@) of,ch

2 (⌧) are psd rank-1 for
all maximal cliques @ of the chordal extension 2(⌧) of graph ⌧;

3. SOCP relaxation (10.20c) is exact if every optimal solution, socp
⌧

of (10.20c)
• is 2⇥ 2 psd rank-1, i.e., the 2⇥ 2 principal submatrices , socp

⌧
( 9 , :) are psd

rank-1 for all ( 9 , :) 2 ⇢ ; and
• satisfies the cycle condition (10.5).

⇤

Exactness does not guarantee the existence of an optimal solution. If a relaxation is
infeasible then the original OPF is also infeasible. To recover an optimal solution +opt

of OPF (10.19) from an optimal solution, sdp or,ch
2 (⌧) or, socp

⌧
of its relaxations, see

Chapter 10.1.4. The strong exactness notion in Definition 10.2 is convenient because
it ensures that any algorithm that solves an exact relaxation always produces a globally
optimal solution to the OPF problem. For a weaker notion of exactness that requires at
least one (not necessarily all) optimal solution of the relaxation, if exists, be feasible
and therefore optimal for the original nonconvex OPF problem, an algorithm may not
produce an optimal solution of OPF by solving its relaxation. This strong notion of
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exactness is however more stringent than necessary. See Remark 10.3 after Theorem
10.6 and Remark 10.4 after Theorem 10.9 (and Remarks 11.1 and 11.3 for BFM).
The exactness conditions in these theorems guarantee that, for radial networks, an
optimal solution to OPF can always be recovered from any optimal solution of its
SOCP relaxation, even when the relaxation is not exact under Definition 10.2.

In the rest of this chapter we present su�cient conditions for exact semidefinite
relaxations when the network is radial, i.e., the network graph is a tree.

10.3 Exactness condition: linear separability

Theorem 10.4 implies that, for a single-phase radial network whose graph ⌧ is a
tree, if SOCP relaxation is exact then SDP and chordal relaxations are also exact. We
hence focus on the exactness of OPF-socp (10.20c). Since the cycle condition (10.5) is
vacuous for radial networks, OPF-socp (10.20c) is exact if all of its optimal solutions
are 2⇥2 rank-1. To avoid triviality we assume OPF (10.19) is feasible.

We will first present a general result from [125, 126] on the exactness of the SOCP
relaxation of general QCQP on a tree graph ⌧ and then apply it to OPF-socp (10.20c)
for single-phase radial networks.

10.3.1 Su�cient condition for QCQP

Fix an undirected graph ⌧ = (# ,⇢) where |# | = = and ⇢ ✓ # ⇥ # . Fix Hermitian
matrices ⇠; 2 S=, ; = 0, . . . ,!, defined on ⌧, i.e., [⇠;] 9: = 0 if ( 9 , :) 8 ⇢ . Consider
QCQP:

⇠
opt := min

G2C=
G
�

⇠0G s.t. G
�

⇠;G  1; , ; = 1, . . . ,! (10.21)

where 1; 2 R, ; = 1, . . . ,!, and its SOCP relaxation where the optimization variable
ranges over Hermitian partial matrices -⌧:

⇠
socp := min

-⌧

tr (⇠0-⌧) s.t. tr (⇠;-⌧)  1; , ; = 1, . . . ,! (10.22a)

-⌧ ( 9 , :) ⌫ 0, ( 9 , :) 2 ⇢ (10.22b)

The following result can be regarded as an extension of [151] on the SOCP relaxation
of QCQP from the real domain to the complex domain. Consider: 2

C10.1: For each link ( 9 , :) 2 ⇢ there exists an U 9: such that \ [⇠;] 9: 2 [U8 9 ,U8 9 +c]
for all ; = 0, . . . ,!.
C10.2: The cost matrix ⇠0 is positive definite.

2 All angles should be interpreted as “mod 2c”, i.e., projected onto (�c, c ].
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Condition C10.1 is illustrated in Figure 10.3. Let ⇠opt and ⇠socp denote the optimal
values of QCQP (10.21) and SOCP (10.22) respectively.

Theorem 10.6 (Linear separability). Suppose ⌧ is a tree and C10.1 holds. Then
⇠

opt =⇠socp and an optimal solution Gopt 2 C= of QCQP (10.21) can be recovered from
every optimal solution -socp

⌧
of SOCP (10.22).

Remark 10.3 (Strong exactness). The SOCP relaxation may not be exact in the strong
sense of Definition 10.2, i.e., some optimal solutions of (10.22) may be 2⇥ 2 psd
but not 2⇥ 2 rank-1, but Theorem 10.6 says that C10.1 guarantees that an optimal
solution of QCQP (10.21) can always be recovered from any optimal solution Gsocp

of its SOCP relaxation (10.22) whether or not Gsocp is 2⇥ 2 rank-1. The proof of the
theorem prescribes a simple procedure to do that; see Chapter 10.3.3. ⇤

If the objective function is strictly convex however then the optimal solution is
unique and SOCP (10.22) is indeed exact in the sense of Definition 10.2.

Corollary 10.7. Suppose ⌧ is a tree and C10.1, C10.2 hold. Then SOCP (10.22) is
exact.

10.3.2 Application to OPF

We now apply Theorem 10.6 to our OPF problem (10.19) where the constraint matrices
⇠; are given in (10.16). Since the formulation does not require assumption HB

9:
= HB

: 9

(assumption C4.1) and allows nonzero shunt admittances (H<
9:

, H<
: 9
), and can therefore

accommodate single-phase transformers that have complex turns ratios.

To simplify illustration we ignore the branch constraints (10.16d)(10.16e), which
reduces (10.19) to:

min
G2C=

+
H
⇠0+ s.t. +

H� 9+  ?max
9

, +
H (�� 9 )+  �?min

9
, 9 2 # (10.23a)

+
H 9+  @max

9
, +

H (� 9 )+  �@min
9

, 9 2 # (10.23b)

+
H
⇢ 9+  Emax

9
, +

H (�⇢ 9 )+  �Emin
9

, 9 2 # (10.23c)

for some Hermitian matrices ⇠0,� 9 , 9 ,⇢ 9 where 9 2 # . Condition C10.1 depends
only on the o�-diagonal entries of ⇠0, � 9 ,  9 (⇢ 9 are diagonal matrices). It implies
a simple pattern on the power injection constraints (10.23a)(10.23b). Write the series
admittances in terms of its real and imaginary parts HB

9:
=: 6B

9:
+ i1

B

9:
with 6

B

9:
>

0,1B
9:

< 0. (Note that C10.1 does not depend on the shunt admittances (H<
9:

, H<
: 9
).)
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Then we have

[�: ]8 9 =

8>>>><
>>>>:

1
2.8 9 = � 1

2 (6B8 9 + i1
B

8 9
) if : = 8

1
2.

H
8 9

= � 1
2 (6B8 9 � i1

B

8 9
) if : = 9

0 if : 8 {8, 9}

[ : ]8 9 =

8>>>><
>>>>:

�1
2i
.8 9 = 1

2 (1B8 9 � i6
B

8 9
) if : = 8

1
2i
.

H
8 9

= 1
2 (1B8 9 + i6

B

8 9
) if : = 9

0 if : 8 {8, 9}

Hence for each line ( 9 , :) 2 ⇢ the relevant angles for C10.1 are those of [⇠0] 9: and

⇥
� 9

⇤
9:

= �1
2

⇣
6
B

9:
+ i1

B

9:

⌘
, [�: ] 9: = �1

2

⇣
6
B

9:
� i1

B

9:

⌘
⇥
 9

⇤
9:

=
1
2

⇣
1
B

9:
� i6

B

9:

⌘
, [ : ] 9: =

1
2

⇣
1
B

9:
+ i6

B

9:

⌘
as well as the angles of �[� 9 ] 9: ,�[�: ] 9: and �[ 9 ] 9: ,�[ : ] 9: . These quantities
are shown in Figure 10.3 with their magnitudes normalized to a common value and
explained in the caption of the figure.

Im
[

Figure 10.3 Condition C10.1’ for OPF on a line ( 9 , :) 2 ⇢ . The quantities
( [� 9 ] 9: , [�

:
]
9:

, [ 9 ] 9: , [ 
:
]
9:
) on the left-half plane correspond to finite upper bounds on

(? 9 , ?: ,@ 9 ,@: ) in (10.23a)(10.23b); (�[� 9 ] 9: ,�[�
:
]
9:

,�[ 9 ] 9: ,�[ 
:
]
9:
) on the

right-half plane correspond to finite lower bounds on (? 9 , ?: ,@ 9 ,@: ).

Condition C10.1 applied to OPF (10.23) takes the following form (see Figure 10.3):

C10.1’: For each link ( 9 , :) 2 ⇢ there is a line in the complex plane through the
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origin such that [⇠0] 9: as well as those ±[�8] 9: and ±[ 8] 9: corresponding to
finite lower or upper bounds on (?8 ,@8), for 8 = 9 , : , are all on one side of the line,
possibly on the line itself.

Let ⇠opt and ⇠socp denote the optimal values of OPF and OPF-socp respectively.

Corollary 10.8. Suppose ⌧ is a tree and C10.1’ holds.

1. ⇠opt = ⇠socp. Moreover an optimal solution +opt of OPF (10.23) can be recovered
from every optimal solution -socp

⌧
of OPF-socp.

2. If, in addition, C10.2 holds then OPF-socp is exact.

It is clear from Figure 10.3 that condition C10.1’ cannot be satisfied if there is a
line where both the real and reactive power injections at both ends are both lower and
upper bounded (8 combinations as shown in the figure). C10.1’ requires that some of
them be unconstrained. When the cost function is convex, this is the same as requiring
that the constraints be inactive at optimality (see Exercise 10.3).

10.3.3 Proofs

We now prove Theorem 10.6 and Corollary 10.7, following [126].

Proof of Theorem 10.6. Fix any partial matrix -⌧ that is feasible for SOCP (10.22).
We will construct an G 2 C= that satisfies

G
H
⇠;G  tr(⇠;-⌧), ; = 0,1, . . . ,!

i.e., G is feasible for QCQP (10.21) and has an equal or lower cost than -⌧ . Since the
minimum cost of QCQP is lower bounded by that of its SOCP relaxation this means
that an optimal solution G 2 C= of QCQP (10.21) can be obtained from every optimal
solution -⌧ of SOCP (10.22), whether or not (10.22) is exact under Definition 10.2.

Now -⌧ ( 9 , :) ⌫ 0 for every ( 9 , :) 2 ⇢ implies that [-⌧] 9 9 � 0 for all 9 2 # and

[-⌧] 9 9 [-⌧]:: �
��[-⌧] 9: ��2 , ( 9 , :) 2 ⇢

Case 1: -⌧ is 2⇥2 psd rank-1. Suppose [-⌧] 9 9 [-⌧]:: = | [-⌧] 9: |2 for all ( 9 , :) 2 ⇢ .
We will construct an G 2C= that is feasible for QCQP and has an equal cost. To construct
such an G let |G 9 | :=

p
[-⌧] 9 9 , 9 2 # . Recall that ⌧ is a (connected) tree with node 1

as its root. Let \G1 := 0. Traversing the tree starting from the root the angles can be
successively assigned: given \G 9 at one end of a link ( 9 , :), let \G: := \G 9 � \[-⌧] 9:
at the other end. Given any -⌧ which is 2⇥ 2 psd rank-1, angles \G 9 can always be
consistently assigned if and only if⌧ is a tree. (If⌧ contains cycles then -⌧ must also
satisfy the cycle condition according to Theorem 10.1).
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With this G constructed from -⌧ we have, for ; = 0,1, . . . ,!,

G
H
⇠;G =

’
9,:

[⇠;] 9:GH
9
G: =

’
9,:

[⇠;] 9: |G 9 | |G: |4i(\G:�\G 9)

=
’
9,:

[⇠;] 9:
��[-⌧] 9: ��4�i\ [-⌧ ] 9: = tr (⇠;-⌧)

where the last equality follows from tr(⇠;-⌧) =
Õ
9,: [⇠;] 9: [-⌧]H

9:
and that -⌧ is a

Hermitian partial matrix. Hence G is feasible for QCQP (10.21) and has the same cost
as -⌧ .

Case 2: -⌧ is 2⇥2 psd but not 2⇥2 rank-1. Suppose [-⌧] 9 9 [-⌧]:: > | [-⌧] 9: |2 for
some ( 9 , :). We will

1. Construct an -̂⌧ that is 2⇥2 psd rank-1.
2. Show that C10.1 implies

tr
�
⇠; -̂⌧

�
 tr (⇠;-⌧) , ; = 0,1, . . . ,! (10.24)

Then an G 2 C= can be constructed from -̂⌧ as in Case 1 and step 2 ensures that for
; = 0,1, . . . ,!

G
H
⇠;G = tr

�
⇠; -̂⌧

�
 tr(⇠;-⌧)

i.e., G is feasible for QCQP (10.21) and has an equal or lower cost than -⌧ .

To construct such an -̂⌧ let [-̂⌧] 9 9 = [-⌧] 9 9 , 9 2 # . For each line ( 9 , :) 2 ⇢ let

[-̂⌧] 9: � [-⌧] 9: =: A 9:4�i( c2 �U9:)

for some A 9: > 0 to be determined and U 9: in condition C10.1. For -̂⌧ to be 2⇥ 2

psd rank-1 we need to choose A 9: > 0 such that [-̂⌧] 9 9 [-̂⌧]:: =
��[-̂⌧] 9: ��2 for all

( 9 , :) 2 ⇢ , i.e.,

[-⌧] 9 9 [-⌧]:: =
���[-⌧] 9: + A 9:4�i( c2 �U9:)

���2
or

A
2
9:
+21A 9: � 2 = 0

where

1 := Re
⇣
[-⌧] 9:4i( c2 �U9:)

⌘
, 2 := [-⌧] 9 9 [-⌧]:: �

��[-⌧] 9: ��2 > 0

Therefore setting A 9: :=
p
1

2 + 2� 1 > 0 yields an -̂⌧ that is 2⇥2 psd rank-1.

To show that -̂⌧ is feasible for SOCP (10.22) and has an equal or lower cost than
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-⌧ , we have for ; = 0,1, . . . ,!,

tr
�
⇠; -̂⌧

�
� tr(⇠;-⌧) = tr

�
⇠;

�
-̂⌧ � -⌧

� �
=

’
( 9,:)2⇢

[⇠;] 9:
�
[-̂⌧] 9: � [-⌧] 9:

�H

= 2
’

9<:,( 9,:)2⇢
Re

⇣
[⇠;] 9: · A 9:4i( c2 �U9:)

⌘

= 2
’
9<:

( 9,:)2⇢

��[⇠;] 9: ��A 9: cos
⇣
\[⇠;] 9: +

c

2
�U 9:

⌘
 0

where the last inequality follows because assumption C10.1 implies

c

2
 \[⇠;] 9: +

c

2
�U 9: 

3c
2

and therefore cos
�
\[⇠;] 9: + c

2 �U 9:
�
 0. This completes the proof. ⇤

Proof of Corollary 10.7. C10.2 implies that the objective function of SOCP (10.22)
is strictly convex and hence has a unique optimal solution. Suppose -⌧ is an optimal
solution of SOCP (10.22) but [-⌧] 9 9 [-⌧]:: > | [-⌧] 9: |2 for some ( 9 , :), i.e., -⌧ is
2⇥2 psd but not 2⇥2 psd rank-1. Then the proof for Theorem 10.6 constructs another
feasible solution -̂⌧ with equal cost. This contradicts the uniqueness of the optimal
solution of SOCP (10.22), and hence -⌧ must be 2⇥2 psd rank-1. ⇤

10.4 Exactness condition: small angle di�erences

The su�cient conditions in [128, 129, 130] require that the voltage angle di�erence
across each line be small. We explain the intuition using a result in [129] for an
OPF problem under the following simplifying assumptions. We assume HB

9:
= HB

: 9

(assumption 4.1) and H<
9:

= H<
: 9

:= 0 for all lines ( 9 , :). We use the polar form power
flow equation (4.22) of Chapter 4.3.4, instead of the complex form used in previous
sections. We ignore reactive power and assume voltage magnitudes |+ 9 | are fixed. Let
+ 9 = |+ 9 | 4i\ 9 . Then the optimization over (B,+) in OPF reduces to an optimization over
(?,\) as well as real line flows % as an auxiliary variable. Under these assumptions, as
long as the voltage angle di�erence is small, the power flow solutions form a locally
convex surface that is the Pareto front of its relaxation. This implies that the relaxation
is exact. The intuition extends to cases where some of these assumptions are relaxed
though the geometric insight becomes more obscure.
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10.4.1 Su�cient condition

Let HB
9:
= HB

: 9
=: 6 9: + i1 9: with 6 9: > 0,1 9: < 0 for all lines ( 9 , :). Consider

min
?,%,\

⇠ (?) (10.25a)

s.t. ? 9 =
’
:::⇠ 9

⇣
|+ 9 |26 9: � |+ 9 | |+: |6 9: cos\ 9: � |+ 9 | |+: |1 9: sin\ 9:

⌘
, 9 2 #

(10.25b)

?
min
9
 ? 9  ?max

9
, 9 2 # (10.25c)

\
min
9:
 \ 9:  \max

9:
, ( 9 , :) 2 ⇢ (10.25d)

where \ 9: := \ 9 �\: are the voltage angle di�erences across lines ( 9 , :). The constraint
(10.25d) on \ 9: is equivalent to a limit on the line power. Indeed, when the voltage
magnitudes |+8 | are fixed, constraints on real power flows, branch currents, line losses,
as well as stability constraints can all be represented as constraints on \ 9: (Exercise
9.7).

Since |+ 9 |, 9 2 # , are fixed we assume without loss of generality that |+ 9 | = 1 pu.
Eliminate \ 9: from (10.25) and consider the injection region:

P\ :=
8><
>:? 2 R

= : ? 9 =
’
:::⇠ 9

�
6 9: �6 9: cos\ 9: � 1 9: sin\ 9:

�
, 9 2 # ,

\
min
9:
 \ 9:  \max

9:
, ( 9 , :) 2 ⇢

o

Let P? := {? 2 R= : ?min
9
 ? 9  ?max

9
, 9 2 #}. Then OPF (10.25) is:

min
?

⇠ (?) s.t. ? 2 P\ \P? (10.26)

This problem is hard because the set P\ is nonconvex. To avoid triviality we assume
OPF (10.26) is feasible. Recall that conv(�) denote the convex hull of a set �. Consider
the following problem that relaxes the nonconvex feasible set P\ \P? of (10.26) to a
convex superset:

min
?

⇠ (?) s.t. ? 2 conv(P\ )\P? (10.27)

We will show below that (10.27) is an SOCP. It is said to be exact if every optimal
solution of SOCP (10.27) lies in P\ \P? and is therefore optimal for OPF (10.26).

We say that a point G 2 � ✓ R= is a Pareto optimal point in � if there does not exist
another G 0 2 � such that G 0  G with at least one strictly smaller component G 0

9
< G 9 .

The Pareto front of �, denoted by O(�), is the set of all Pareto optimal points in �.
The significance of O(�) is that, for any increasing function, its minimizer, if exists,
is necessarily in O(�) whether � is convex or not. If � is convex then Gopt is a Pareto
optimal point inO(�) if and only if there is a nonzero vector 2 := (21, . . . ,2=) � 0 such
that Gopt is a minimizer of 2T

G over � [59, pp.179–180].
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Assume

C10.3: For all ( 9 , :) 2 ⇢ , tan�1 1 9:
6 9:

< \
min
9:
 \max

9:
< tan�1 �1 9:

6 9:

.
C10.4: ⇠ (?) is strictly increasing in each ? 9 .

The following result, proved in [128, 129, 130], says that (10.27) can be reformulated
as an SOCP and is exact provided \ 9: are suitably bounded.

Theorem 10.9. Suppose ⌧ is a tree and C10.3–C10.4 hold.

1. P\ \P? = O(conv(P\ ) \ P?).
2. The problem (10.27) is equivalent to an SOCP. Moreover it is exact.

Remark 10.4 (Strong exactness). Condition C10.4 is needed to ensure that every
optimal solution of SOCP (10.27) is optimal for OPF (10.26). If⇠ (?) is nondecreasing
but not strictly increasing in all ? 9 , then P\ \P? ✓ O(conv(P\ ) \ P?) and SOCP may
not be exact according to our definition. In that case, an optimal solution of OPF can
still be recovered from every optimal solution of SOCP (Exercise 10.9). ⇤

10.4.2 Proof: 2-bus network

We now illustrate the geometric insight by proving the theorem for the case of a single
line (see [129] for proof for a tree network).

Proof of Theorem 10.9: 2-bus network. Consider two buses 9 and : connected by
a line with admittance HB

9:
= HB

: 9
= 6 9: + i1 9: with 6 9: > 0,1 9: < 0. Recall that we

assume voltage magnitudes |+ 9 | = 1 pu for buses 9 = 1,2, zero charging admittances,
and we ignore reactive powers. Since ? 9 = % 9: and ?: = %: 9 we will work with
% := (% 9: ,%: 9 ). Then (the power flow equation (4.22a) in polar form)

% 9: := % 9: (\ 9: ) := 6 9: �6 9: cos\ 9: � 1 9: sin\ 9:

%: 9 := %: 9 (\ 9: ) := 6 9: �6 9: cos\ 9: + 1 9: sin\ 9:

where \ 9: := \ 9 � \: , or in vector form

%�6 9:1 = �


cos\ 9:
sin\ 9:

�
(10.28)

where 1 := (1,1) and � is an invertible matrix:

� :=

�6 9: �1 9:
�6 9: 1 9:

�

The proof will proceed in four steps:

1. Show that % traces out an ellipse in R2 as \ 9: ranges over [�c,c]. Since the
feasible set is a subset of ellipse, it is nonconvex.
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2. Show that condition C10.3 restricts the feasible set to the lower half of the ellipse.
3. Show that condition C10.4 implies that the Pareto front of the feasible set of

the relaxed problem (10.27) coincides with the feasible set. This implies that the
relaxation is exact.

4. Finally reformulate the relaxation (10.27) as an SOCP.

Step 1: % that satisfies (10.28) is an ellipse. The set of points G 2 R: that satisfy

(G� 2)T
" (G� 2) =

���"1/2 (G� 2)
���2

2
= 1

is an ellipse if 2 2R= and" � 0 is a real (symmetric) positive definite matrix. The center
of the ellipsoid is 2 and the : principal axes are the : eigenvectors of" (Exercise 10.4).
To see that % describes an ellipse, write E := [cos\ 9: sin\ 9: ]T = ��1 �

%�6 9:1
�
. Hence

kEk22 = 1, yielding

(%�6 9:1)T
⇣
��

T
⌘�1

(%�6 9:1) = 1 (10.29)

Since � is nonsingular, ��T is positive definite and hence % is an ellipse centered at
6 9:1. From (10.28), the ellipse % passes through the origin when \ 9: = 0, as shown in
Figures 10.4. Since the feasible set is a subset of the ellipse % (without the interior), it

Pkj

Pjk

Figure 10.4 The feasible set of OPF (10.26) for the two-bus network is a subset of an ellipse
without the interior, hence nonconvex. The SOCP relaxation (10.27) includes the interior of the
ellipse. If the cost function ⇠ is strictly increasing in (%

9:
,%
: 9
) then the Pareto front of the

SOCP feasible set lies on the lower part of the ellipse, O(P\ ) = P\ , and hence (10.27) is exact.
The points % := (%

9:
(\
9:
),%

: 9
(\
: 9
)) = 0 when \

9:
= 0, %

9:
= cmin

9:
when \

9:
= \min

9:
, and

%
: 9

= cmin
: 9

when \
9:

= \min
: 9

.

is nonconvex.

Step 2: condition C10.3 restricts the feasible set to the lower half of the ellipse. Let
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c
min
9:

denote the minimum % 9: (\ 9: ) and cmin
: 9

the minimum %: 9 (\ 9: ) on the ellipse as
shown in the figure. They are attained when \ 9: takes the values

\
min
9:

:= tan�1 1 9:

6 9:

and \
min
: 9

:= tan�1 �1 9:
6 9:

respectively (Exercise 10.7). The condition \min
9:
 \ 9:  \min

: 9
restricts %(\ 9: ) to the

darkened segment of the ellipse in Figures 10.4. Recall the sets

P\ := {? : ? = %, % satisfies (10.28) for \min
9:
 \ 9:  \max

9:
}

P? := {? : ?min  ?  ?max}

and the feasible set P\ \P? of OPF (10.26). Condition C10.3 ensures \min
9:
 \ 9:  \min

: 9

and hence restricts both P\ and the feasible set P\ \P? to the lower half of the ellipse.

The implication is that, under condition C10.4 that the cost function ⇠ is strictly
increasing in the injections (? 9 , ?: ) = (% 9: ,%: 9 ), the nonconvex feasible sets P\ and
P\ \P? coincide with the Parento fronts of their respectively convex hulls, i.e.,

P\ = O(conv P\ ), P\ \P? = O(conv(P\ \P?)) (10.30)

Step 3: condition C10.4 implies that P\ \P? = O(conv(P\ ) \P?). Unfortunately the
convex hull conv(P\ \P?) in (10.30) of the intersection of two sets generally does not
have a simple algebraic representation. The feasible set conv(P\ )\P? of the relaxation
(10.27) is the intersection of two convex hulls and is more amenable to computation.
It is however a superset of conv(P\ \P?). To illustrate their relation denote the points
%(\ 9: ) :=

�
% 9: (\ 9: ),%: 9 (\ 9: )

�
attained at \min

9:
and \max

9:
by

⇣
c

min
9:

,cmin
: 9

⌘
:= %(\min

9:
),

⇣
c

max
9:

,cmax
: 9

⌘
:= %(\max

9:
) (10.31)

The set P\ is the ellipse segment between these two points
⇣
c

min
9:

,cmin
: 9

⌘
and⇣

c
max
9:

,cmax
: 9

⌘
. As shown in Figure 10.5, these two convex sets are related as:

conv (P\ )\P? ◆ conv
�
P\ \P?

�
Even though these two sets are generally di�erent, it is clear from the figure that, if

the cost function ⇠ (?) is strictly increasing in each ? 9 (condition C10.4), then they
share the same Pareto front, i.e.,

O(conv(P\ )\P?) = O(conv(P\ \P?)) = P\ \P?
where the last equality follows from (10.30). This proves part 1 of Theorem 10.9.

Step 4: (10.27) is an SOCP and it is exact. We now reformulate the feasible set
conv(P\ ) \P? of OPF-socp as the intersection of a second-order cone with several
a�ne sets. First, from (10.29), the solid ellipse including the interior is the set of %
satisfying

1 �
�
%�6 9:1

�T (��T)�1 �
%�6 9:1

�
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Pkj

Pjk

(

(a) conv(P\ )

(pjmin,pkmin)

(

(b) conv(P\ \P?)

pareto 
optimal

(pjmin,pkmin)

(

(c) conv(P\ ) \P?

Figure 10.5 (a) The set conv(P\ ) is the intersection of the ellipse, including its interior, and a
half-space. (b)(c) conv(P\ \P?) ✓ conv(P\ )\P? . If the cost ⇠ (?) is strictly increasing in ? 9
but independent of ?

:
then the vertical darkened segment in (c) is part of the Pareto front of

the relaxation but only the point on the ellipse is feasible, i.e., in P\ \P? , and hence optimal.

This is a second-order cone C2 � (%�6 9:1)T (��T)�1 (%�6 9:1) intersecting with the
a�ne set C = 1. Second the set conv(P\ ) is the intersection of this second-order cone
with the following half space (see Figure 10.5(a)):

%: 9  cmin
: 9

+
c

max
: 9
� cmin

: 9

c
max
9:
� cmin

9:

⇣
% 9: � cmin

9:

⌘

where (cmin
9:

,cmin
: 9

) and (cmax
9:

,cmax
: 9

) are defined in (10.31). Finally intersecting this set
with the a�ne set P? produces the feasible set conv(P\ ) \P? of (10.27). Hence the
problem (10.27) is indeed an SOCP for the two-bus case.

In summary, the SOCP relaxation (10.27) of OPF (10.26) enlarges the feasible set
P\ \P? to the convex superset conv(P\ )\P? . Under condition C10.4, every minimizer
lies in its Pareto front and hence in the original nonconvex feasible set P\ \P? , as
proved in Step 3. We have hence proved Theorem 10.9 for the two-bus case. ⇤

We illustrate the purpose of condition C10.3. If there are no constraints on the
injections ?, then SOCP relaxation (10.27) is exact under condition C10.4 due to
P\ = O(conv P\ ) in (10.30). As illustrated in Figure 10.6, upper bounds ?max on
power injections ? do not a�ect exactness (as long as the problem remains feasible)
whereas lower bounds ?min do. Specifically the lower half of the ellipse corresponds
to small |\ 9: | and the upper half of the ellipse corresponds to large |\ 9: | (Exercise
10.7). If the feasible set contains the lower half of the ellipse, as the shaded region in
Figure 10.6(a) illustrates, then the Pareto front remains on the ellipse itself, P\ \P? =
O(conv(P\ ) \ P?), and the relaxation is exact. On the other hand the upper half of the
ellipse corresponds to large |\ 9: |. The feasible set of OPF may include only the upper
half of the ellipse if the lower bounds ?min are large (see Figure 10.6(b)), in which case
the Pareto front does not lie on the ellipse and the relaxation is not exact. The purpose
of condition C10.3 is to restrict the angle \ 9: in order to eliminate the upper half of
the ellipse from P\ .
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(pjmin,pkmin)

(a) Exact relaxation

(pjmin,pkmin)

(b) Inexact relaxation

Figure 10.6 Lower bounds ?min on injections a�ect exactness of relaxation.

We close this subsection with a remark on the importance of tree topology.

Remark 10.5 (Tree topology). The tree topology allows the extension of the argument
for a single line to a radial network with multiple lines, in two ways. First let F 9:

\

denotes the set of branch power flows on each line ( 9 , :) 2 ⇢ :

F
9:

\
:= { (% 9: ,%: 9 ) | (% 9: ,%: 9 ) satisfies (10.28) for \min

9:
 \ 9:  \max

9:
}

If the network is a tree, the set F\ of branch power flows on all lines is simply the
product set, F\ =

Œ
( 9,:)2⇢

F
9:

\
, because given any (\ 9: , ( 9 , :) 2 ⇢) there is always a

(unique up to a reference angle) (\ 9 , 9 2 #) that satisfies \ 9: = \ 9 � \: . If the network
has cycles then this is not possible for some vectors (\ 9: , ( 9 , :) 2 ⇢) and F\ is no
longer a product set of F 9:

\
.

Second the power injections ? are related to the branch flows % by a linear trans-
formation P\ = �F\ for some (# +1) ⇥2" dimensional matrix �. Matrix � has full
row rank and there is a bijection between %\ and �\ (after fixing the reference angle)
using the fact that the graph is a tree. We can therefore freely work with either ? 2 P\
or the corresponding % 2 F\ in the proof for a tree network (see [129]).

When the network is not radial or |+ 9 | are not constants, then the feasible set can
be much more complicated than ellipsoids and the simple geometric insight becomes
obscure [26, 27, 28, 130]. ⇤

10.5 Chapter summary

1. OPF can be formulated as a nonconvex QCQP in the bus injection model. Its
feasible set is equivalent to the set of psd rank-1 matrices that satisfy a certain
linear equations, or their psd rank-1 partial matrices defined on a chordal extension
of the network graph, or their partial matrices defined on the network graph that are
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2⇥2 psd rank-1 and satisfy a cycle condition (Theorems 10.1 and 10.3). Removing
the rank-1 constraints lead to SDP, chordal and SOCP relaxations (10.9).

2. For a general network that may contain cycles, SOCP relaxation is the coarsest
in tightness but also the simplest computationally. Chordal relaxation exploits
network sparsity and is as tight as SDP relaxation. It is typically much simpler
computationally than SDP relaxation for a large sparse network even though it can
be as computationally intensive as SDP relaxation in the worst case. For a radial
network, the hierarchy collapses and one should always solve SOCP relaxation as
it is as tight as SDP relaxation but much simpler (Theorem 10.4).

3. For radial networks, two su�cient conditions have been proved for SOCP relax-
ation to be exact (Theorems 10.6 and 10.9).

10.6 Bibliographical notes

See the bibliographical notes in Chapter 9.7.

10.7 Problems

Chapter 10.1

Exercise 10.1 (Solution recovery). Given a partial matrix -� inX� defined in (10.7c)
and a vector G 2 C= recovered from -� using (10.10), show that G satisfies [-� ] 9: =
G 9 G: and GH

⇠;G  1; , ; = 1, . . . ,!.

Chapter 10.2

Exercise 10.2 (Loss minimization). In this problem we formulate and solve a simple
nonconvex loss minimization problem. A generator supplies a load through a transmis-
sion line modeled as a series admittance H := 6 + i1 = 1/(A + iG) with 6 > 0 and 1 < 0.
The voltage at the generator (reference) bus is fixed at +0 := 1\0� p.u. The required
load power is B = ? + i@ = |B |4iq with ? > 0 specified, i.e., �B is the power injection at
the load bus. Let the load voltage be + := E4i\ .

1. Show that the active line loss A |� |2 = 6
��1� E4i\

��2.
2. Fix E and ?. Formulate OPF as minimization over (\,q) of the active line loss.
3. Reformulate OPF as an unconstrained minimization minq 5 (q) over q only.
4. Show that the unique minimizer of 5 (q) over (�c/2,c/2) is qmin := tan�1 (�1(1�
E

2)/?), even though the original OPF problem in part 2 is nonconvex.
5. Suppose E is also an optimization variable and assume ? < 6. Show that

qmin = tan�1 (�1/6) = tan�1 (G/A), Emin =
p

1� ?/6
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is an isolated local minimizer3 of 5 (q,E) over q 2 (�c/2,c/2) and E > 0, by
showing r2

5 (qmin,Emin) is positive definite.
6. Is (qmin,Emin) a global minimizer over q 2 (�c/2,c/2) and E > 0? (Hint: What is

5 (qmin,Emin) and the load voltage Emin4
i\min? Interpret.)

Chapter 10.3

Exercise 10.3 (Linear separability). The linear separability condition C10.1’ requires
that some of power injections be unconstrained even though in practice they are always
bounded. This exercise shows that, for a convex problem, C10.1’ is equivalent to
requiring that the finite bounds on these power injections be inactive at optimality (as
opposed to removing these finite bounds but optimal solutions of the unconstrained
problem turn out to satisfy these bounds).

Consider the two problems:

Ĝ 2 argmin
G2-

5 (G) (10.32a)

G
⇤ 2 argmin

G2-
5 (G) s. t. 6(G)  0 (10.32b)

where - ✓ R= is convex and 6 : R= ! R< is a convex function. We assume the
minimizers Ĝ and G⇤ exist.

1. Suppose 5 is strictly convex. Show that 6(Ĝ) < 0 if and only if 6(G⇤) < 0 in which
case 5 (Ĝ) = 5 (G⇤).

2. Show that if 5 is nonconvex, then it is possible that both 6(G⇤) < 0 and 6(Ĝ) > 0,
in which case 5 (Ĝ) < 5 (G⇤).

Chapter 10.4 The next few problems use a two-bus example to illustrate the geometry
of solutions to the polar form power flow equations, convex relaxation and its exactness
[128, 129].

Exercise 10.4 (Ellipsoid). An ellipsoid in R: (without the interior) in standard form
are the points G 2 R: that satisfy

G
T⇤G = 1 (10.33a)

for a real positive definite diagonal matrix ⇤ � 0. The center of the ellipsoid is the
origin 0 and the : principal axes are the coordinate axes. This is illustrated in Figure
10.7(a) for : = 2. In general the set of points G 2 R: that satisfy

(G� 2)T
" (G� 2) =

���"1/2 (G� 2)
���2

2
= 1 (10.33b)

is an ellipse if 2 2 R= and " � 0 is a real (symmetric) positive definite matrix. The
center of the ellipsoid is 2 and the : principal axes are the : eigenvectors of " . In
this exercise, we show that a general ellipsoid (10.33b) can be obtained through simple
transformations of the standard form ellipsoid (10.33a).

3 There is a neighborhood of (qmin, Emin) that contains no other minimizer.
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x2

x1

(a) Ellipsoid in R2

x2

x1
ø

(b) Rotation in R2

Figure 10.7 Exercises 10.4 and 10.5.

Given a standard form ellipsoid G 2 R: that satisfies (10.33a).

1. Translation: Let H := G + G0 2 R: . Show that H is a standard form ellipsoid with its
center translated to G0. Illustrate H for : = 2.

2. Scaling: Let H := 0G where 0 2 R is nonzero. Show that H is a standard form
ellipsoid with its size scaled by 0 in all the : dimensions. Illustrate H for : = 2.

3. Scaling and rotation: Let H := �G. Show that H is an ellipsoid as long as � is real
and invertible, i.e., H satisfies (10.33b) with a real (symmetric) positive definite
matrix " .

4. Inverse scaling and rotation: Show that a general ellipsoid H that satisfies (10.33b)
with the origin 2 = 0 as its center is a standard form ellipsoid G scaled and rotated
by a matrix*, i.e., H =*G. Derive*.

Exercise 10.5 (Rotation in R2). Show that H = '(\)G is a rotation of G by an angle \
in R2 where

'(\) :=

cos\ �sin\
sin\ cos\

�

as illustrated in Figure 10.7(b).

1. Show that '�1 (\) = '(�\) = 'T (\).
2. Show that '(\) is normal and find its spectral decomposition for \ < 0.
3. Suppose G is a standard form ellipse in R2 that satisfies (10.33a). Show that
H := '(\)G is an ellipse, i.e., H satisfies (10.33b) with a real (symmetric) positive
definite matrix " .

Exercise 10.6 (Geometric insight [128, 129]). Fix a line ( 9 , :) so we can omit the
subscript in 6 9: ,1 9: . Show that (10.28) can be rewritten as

% =

% 9:

%: 9

�
=
p

2


cos45� sin45�

�sin45� cos45�

�
· %̂ + 6


1
1

�
(10.34a)
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where %̂ 2 R2 satisfies

1 =
����

cos\ 9:
sin\ 9:

�����
2

= %̂T

"
1
1

2 0
0 1

6
2

#
%̂ (10.34b)

This says that %̂ defined by (10.34) is a standard form ellipse centered at the origin
with its major axis of length 21 on the G-axis and its minor axis of length 26 on the
H-axis. % is the ellipse obtained from %̂ by scaling it by

p
2, rotating it by �45�, and

shifting its center to (6,6).

Exercise 10.7 (Geometric insight [128, 129]). Show that the two-bus network given
by (10.28), reproduced here with subscript 9 : dropped:

?1 = ?1 (\) := 6 � 6 cos\ � 1 sin\ (10.35a)

?2 = ?2 (\) := 6 � 6 cos\ + 1 sin\ (10.35b)

We have shown that (?1, ?2) forms an ellipse. Draw the ellipse and indicate on the
ellipse values for \ where ?1 and ?2 attain minimum or maximum values. Conclude
that the “lower half” of the ellipse corresponds to small |\ | and the “upper half”
corresponds to large |\ |.

Exercise 10.8 (Geometric insight [128, 129]). Consider the 2-bus network in Exercise
10.7. Let G := (?1, ?2,\). Let 2(?1, ?2) be a cost function that is strictly increasing in
(?1, ?2), e.g., 2(?1, ?2) := ?1 + ?2.

1. Consider the OPF problem:

min
G

2(?1, ?2) s.t. G 2 -1 (10.36)

where the only constraint is the power flow equation:

-1 := {G := (?1, ?2,\) : G satisfies (10.35)}

The feasible set is nonconvex because it is an ellipse without its interior. Consider
the convex relaxation:

min
G

2(?1, ?2) s.t. G 2 conv(-1) (10.37)

Explain why the relaxation is exact, i.e., an optimal G⇤ for (10.37) is also optimal
for (10.36).

2. Consider the constraints on injections (?1, ?2) and constraints on \:

-2 := {G := (?1, ?2,\) 2 R3 : \min  \  \max}
-3 := {G := (?1, ?2,\) 2 R3 : ?min

9
 ? 9  ?max

9
, 9 = 1,2}

Consider the OPF:

min
G

2(?1, ?2) s.t. G 2 -1\ -2\ -3 (10.38)
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and its convex relaxation:

min
G

2(?1, ?2) s.t. G 2 conv(-1\ -2)\ -3 (10.39)

Indicate the feasible sets of (10.38) and (10.39) projected onto (?1, ?2) plane,
and explain why lower bounds (?min

1 , ?min
2 ) on the injections (?1, ?2) a�ect the

exactness of SOCP relaxation, but not the upper bounds (?max
1 , ?max

2 ).
3. Explain why limiting |\ | to [\min,\max] can ensure exact relaxation as long as

(recall that 6 > 0,1 < 0)

tan�1
✓
1

6

◆
 \

min
< \

max  tan�1
✓�1
6

◆

Exercise 10.9 (Condition C10.4 and Pareto front). In general, a point G⇤ is Pareto
optimal over a convex set � ✓ R: if and only if it G⇤ = argminG2� 2T

G for some nonzero
2 � 0.

1. Show that, for the two-bus network in Exercise 10.7, O(conv(P\ ) \ P?) ◆
O(conv(P\ \P?)) if condition C10.4 does not hold.

2. Show that if condition C10.4 holds, then we can define a Pareto optimal G⇤ as
G
⇤ = argminG2� 2T

G for some 2 > 0 and O(conv(P\ )\P?) = O(conv(P\ \P?)).

Exercise 10.10 (Convex hull and Pareto front). Let ⌫,⇠ ✓ R: be arbitrary sets, ⇡ :=
{G 2 R: |"G  2} be an a�ne set, and " a matrix and 1 a vector of appropriate
dimensions.

1. conv("⌫) =" conv(⌫) and conv(⌫⇥⇠) = conv(⌫)⇥conv(⇠) where for any sets
�1, �2 ✓ R: , (G1,G2) 2 �1⇥ �2 if and only if G1 2 �1 and G2 2 �2.

2. Suppose ⌫ and ⇠ are convex and a point is Pareto optimal over a set if and only
if it minimizes 2T

G over the set for some nonzero 2 � 0. Then O("⌫) = "O(⌫)
and O(⌫⇥⇠) = O(⌫)⇥O(⇠).

3. If ⌫ = O(conv ⌫) then ⌫\⇡ ✓ O(conv(⌫)\⇡).
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In Chapter 10 we study the semidefinite relaxation of OPF in the bus injection model.
In this chapter we continue our study in the branch flow model for radial networks. In
Chapter 11.1 we formulate SOCP relaxation and prove its equivalence to the SOCP
relaxation in BIM. In Chapters 11.2 and 11.3 we prove su�cient conditions for exact
relaxation for radial networks.

11.1 SOCP relaxation

We start with the DistFlow model studied in Chapter 5.2.3 where I
B

9:
= IB

: 9
and

I
<

9:
= I<

: 9
= 0 for each line ( 9 , :) 2 ⇢ . We formulate SOCP relaxation of OPF under these

two assumptions in Chapter 11.1.1 and prove its equivalence to the SOCP relaxation in
the bus injection model in Chapter 11.1.2. Then we extend SOCP relaxation to general
radial networks without these assumptions in Chapter 11.1.3.

11.1.1 DistFlow model

The DistFlow model of Chapter 5.2.3 assumes the series impedances IB
9:

= IB
: 9

of
each line ( 9 , :) are equal in each direction (assumption C5.1) and shunt admittances
are zero I<

9:
= I<

: 9
= 0. It is a reasonable model for distribution systems, but requires

approximations to incorporate transformer models (see Chapter 5.1.2). These two
assumptions allow us to assume the network graph⌧ = (# ,⇢) is directed and includes
branch variables in only one direction. We denote a line in ⇢ from bus 9 to bus : either
by ( 9 , :) 2 ⇢ or 9! : . It is characterized by its series impedance IB

9:
. Without loss of

generality we take bus 0 as the root of the tree.

Consider a single-phase radial network ⌧ = (# ,⇢) with # + 1 buses and " = #
lines modeled by DistFlow equation (5.15) with up orientation (all lines point towards
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bus 0), reproduced here:

( 9: =
’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (11.1a)

E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: , 9 ! : 2 ⇢ (11.1b)

E 9✓ 9: = |( 9: |2, 9 ! : 2 ⇢ (11.1c)

where : := : ( 9) in (11.1a) denotes the node adjacent to 9 on the unique path from bus
9 to bus 0, with the udnerstanding that ( 9: := 0 when 9 = 0 and (8 9 = 0, ✓8 9 = 0 when
9 is a leaf node.1 The injection, voltage and line limits are:

B
min
9
 B 9  Bmax

9
, E

min
9
 E 9  Emax

9
, ✓ 9:  ✓max

9:
, 9 2 # , ( 9 , :) 2 ⇢ (11.2)

The model (11.1) includes only voltage and power sources whose controllable variables
are E 9 and B 9 respectively. (See Remark 9.5 of Chapter 9.2 on how to incorporate
current sources and impedances.) Denote by (B,E) := (B 9 ,E 9 , 9 2 #) 2 R3(#+1) the bus
injections and squared voltage magnitudes, and by (✓,() := (✓ 9: ,( 9: , 9! : 2 ⇢) 2R3"

the squared line current magnitudes and line powers. The vector E includes E0 and B
includes B0. Let G := (B,E,✓,() in R3(2#+1) since ⌧ is a tree.

Let ⇠ (G) be a cost function. Let the feasible set be

Xdf := {G := (B,E,✓,() 2 R6#+3 : G satisfies (11.1)(11.2)} (11.3a)

The OPF (9.21) formulated in Chapter 9.2 (but with a di�erent graph orientation) is

OPF : min
G

⇠ (G) s.t. G 2 Xdf (11.3b)

To avoid triviality we will assume unless otherwise specified that OPF (11.3) is feasi-
ble. The constraints (11.1a)(11.1b) are linear in G. The constraint (11.1c) is however
quadratic in G, making the feasible set of OPF (11.3) nonconvex. Relaxing the equality
in (11.1c) into inequality

E 9✓ 9: � |( 9: |2, 9 ! : 2 ⇢ (11.4)

results in a (convex) second-order cone. Define

X
+
df := {G : (B,E,✓,() 2 R6#+3 : G satisfies (11.1a)(11.1b)(11.4)(11.2)} (11.5a)

Then an SOCP relaxation of OPF (11.3) is:

SOCP : min
G

⇠ (G) s.t. G 2 X+
df (11.5b)

We say that SOCP relaxation (11.5) is exact if every optimal solution Gsocp of (11.5)
attains equalities in (11.4) and hence is an optimal solution of OPF (11.3). This
is convenient because it ensures that any algorithm that solves an exact relaxation
always produces a globally optimal solution to the OPF problem. This notion of strong
exactness is however unnecessary under the su�cient exactness conditions of Chapters

1 For an arbitrary graph orientation, we replace ( 9: in (11.1a) by
Õ
:: 9!: ( 9: . A node 9 2 # is a leaf

node if there is no 8 such that 8! 9 2 ⇢ .
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11.2 and 11.3 for radial networks; see Remark 11.1 after Theorem 11.3 and Remark
11.3 after Theorem 11.5. These conditions guarantee that an optimal solution to OPF
can be recovered from any optimal solution Gsocp of SOCP relaxation (11.5) whether
or not Gsocp attains equalities in (11.4).

The next result from [133] shows that, when the SOCP relaxation (in fact, any
convex relaxation) of (11.3) is exact in the strong sense defined above, then the optimal
solution is unique.

Theorem 11.1 (Unique optimal of SOCP relaxation). Suppose the network graph ⌧
is a tree and the cost ⇠ is a convex function. If SOCP relaxation (11.5) is exact then its
optimal solution is unique.

Proof Suppose Ĝ and G̃ are distinct optimal solutions of the relaxation (11.5). Since
the feasible set of (11.5) is convex the point G := (Ĝ + G̃)/2 is also feasible for (11.5).
Since the cost function ⇠ is convex and both Ĝ and G̃ are optimal for (11.5), G is also
optimal for (11.5). The exactness of the SOCP relaxation then implies that G attains
equality in (11.4). This contradicts Theorem 5.1 that shows that if Ĝ and G̃ are feasible,
then no convex combination of Ĝ and G̃ can be feasible. ⇤

11.1.2 Equivalence

The single-phase OPF (11.3) is equivalent to the single-phase OPF problem (9.9) or
(9.17) in the bus injection model because their feasible sets Xdf and V respectively
are equivalent by Theorem 5.2. In this section we show that their SOCP relaxations
are equivalent as well by establishing a bijection between the feasible sets of these
relaxations.

The equivalence of the SOCP relaxations in these two models rests on the equiv-
alence of their feasible sets. Recall that any sets � and ⌫ are equivalent, denoted by
� ⌘ ⌫, if there is a bijection between them. When there is a one-one correspondence
6 : �! ⌫ between their feasible sets, a feasible point G is optimal for one problem if
and only if 6(G) is optimal for the other problem. We now make this precise.

Recall from Chapter 10.2.1 that the SOCP relaxation (10.20c) of OPF in BIM is
the minimization of ⇠ (,⌧) over Hermitian partial matrices ,⌧ 2 C2"+#+1 subject
to operational and 2⇥ 2 psd constraints. The operational constraints are the injection
limits, voltage limits, and line limits. In terms of the partial matrix ,⌧ , they are
respectively: (substituting |+ 9 |2 = [,⌧] 9 9 and+ 9+H

:
= [,⌧] 9: into (9.8) (9.4b)(9.4c)):
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B
min
9


’
:: 9⇠:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
 B

max
9

, 9 2 # (11.6a)

E
min
9
 [,⌧] 9 9  E

max
9

, 9 2 # (11.6b)���HB
9:

���2 �
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
 ✓

max
9:

, 9 ! : 2 ⇢ (11.6c)

The 2⇥2 psd constraint,⌧ ( 9 , :) ⌫ 0 for each ( 9 , :) 2 ⇢ is equivalent to

[,⌧] 9: = [,⌧]H
: 9

, [,⌧] 9 9 > 0, [,⌧]:: > 0 (11.6d)

[,⌧] 9 9 [,⌧]:: �
��[,⌧] 9: ��2 (11.6e)

Then the feasible set of the SOCP relaxation (10.20c) of OPF in BIM is

W
+
⌧

:= {,⌧ 2 C2"+#+1 :,⌧ satisfies (11.6)} (11.7a)

and the SOCP relaxation is

SOCP : min
,⌧

⇠ (,⌧) s.t. ,⌧ 2W+
⌧

(11.7b)

The feasible set of SOCP relaxation (11.5) in BFM is equivalent to that of (11.7) in
BIM.

Theorem 11.2 (Equivalence of SOCPs). X+
df ⌘W+

⌧
.

The theorem implies that there is a bijection 6 :W+
⌧
! X+

df. If the cost function
in the SOCP relaxation (11.5) in BFM and that in (11.7) in BIM are equivalent, i.e.,
⇠ (,⌧) = ⇠ (6(,⌧)), then these SOCP relaxations are equivalent problems in the
sense that,opt

⌧
is optimal for (11.7) if and only if Gopt := 6(,opt

⌧
) is optimal for (11.5).

The proof of Theorem 11.2 below constructs a linear mapping 6 : W+
⌧
! X+

df,
motivated by the factorization, =++H of the psd rank-1 completion, of the partial
matrix ,⌧ when ,⌧ is psd rank-1. Define the linear mapping 6 : W+

⌧
! X+

df by
G := (B,E,✓,() = 6(,⌧) where, for all 9 2 # and 9 ! : 2 ⇢ ,

B 9 :=
’
:: 9⇠:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�

=
’
8:8! 9

H̄
B

8 9

�
[,⌧] 9 9 � [,⌧] 98

�
+

’
:: 9!:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
(11.8a)

E 9 := [,⌧] 9 9 (11.8b)

✓ 9: := |HB
9:
|2

�
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
(11.8c)

( 9: := H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
(11.8d)

where HB
9:

:= 1/IB
9:

. Also define the mapping 6�1 :X+
df!W+

⌧
by,⌧ = 6�1 (G) where

[,⌧] 9 9 := E 9 , 9 2 # (11.9a)

[,⌧] 9: := E 9 � ĪB
9:
( 9: = [,⌧]H

: 9
, 9 ! : 2 ⇢ (11.9b)
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Note that in (11.8a) the first summation over lines 8 ! 9 is [,⌧] 9 9 � [,⌧] 98 , not�
[,⌧]88 � [,⌧]8 9

�
. The proof below establishes that 6 and 6�1 are indeed inverses

of each other. By restricting these mappings 6 and 6�1 to subsets W⌧ ✓ W+
⌧

and
Xdf ✓ X+

df, the theorem immediately implies the equivalence of Xdf ⌘W⌧ and hence
the equivalence of single-phase OPF (11.3) in BFM and the OPF (9.9) or (9.17) in
BIM (sinceW⌧ ⌘ V).

Proof of Theorem 11.2. We will prove that 6 and 6�1 are indeed inverses of each
other in three steps: (1) 6 maps every point,⌧ 2W+

⌧
to a point in X+

df; (2) 6�1 maps
every point G 2 X+

df to a point in W+
⌧

; and (3) 6(6�1 (G)) = G and 6�1 (6(,⌧)) =,⌧ .
This defines a bijection betweenW+

⌧
and X+

df and establishesW+
⌧
⌘ X+

df.

Step 1: G := 6(,⌧) 2 X+
df. Given a ,⌧ 2W+

⌧
, we have to prove G := 6(,⌧) satisfies

(11.1a) (11.1b) (11.4) (11.2). Clearly (11.2) follows from (11.8) and (11.6). To prove
(11.1a), we have for 9 2 #’

8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9

=
’
8:8! 9

⇣
H̄
B

8 9

�
[,⌧]88 � [,⌧]8 9

�
� H̄B

8 9

�
[,⌧]88 + [,⌧] 9 9 � [,⌧]8 9 � [,⌧] 98

� ⌘
+ B 9

=
’
:: 9!:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
=

’
:: 9!:

( 9:

where the first equality uses (11.8c)(11.8d) and the second equality uses (11.8a) and
H
B

8 9
= HB

98
(assumption C5.1). Similarly, to prove (11.1b), we have for 9 ! : 2 ⇢

2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9:

= 2Re
�
[,⌧] 9 9 � [,⌧] 9:

�
�

�
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�
=

�
[,⌧] 9 9 � [,⌧]::

�
� [,⌧]H

9:
+ [,⌧]: 9 = E 9 � E:

where the last equality follows because the partial matrix,⌧ is Hermitian. Finally to
prove (11.4), for each 9 !2 ⇢ , we have from (11.6e) [,⌧] 9 9 [,⌧]:: � | [,⌧] 9: |2.
Hence

E 9✓ 9: =
���HB
9:

���2 [,⌧] 9 9 �[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9
�

�
���HB
9:

���2 ⇣
[,⌧]2

9 9
+
��[,⌧] 9: ��2� [,⌧] 9 9 [,⌧] 9: � [,⌧] 9 9 [,⌧]H

9:

⌘
(11.10)

=
��
( 9:

��2
as desired. Hence 6 maps every,⌧ 2W+

⌧
to an G 2 X+

df.

Step 2: ,⌧ := 6�1 (G) 2W+
⌧

. Given an G 2 X+
df, we have to prove that ,⌧ := 6�1 (G)

satisfies (11.6). Clearly (11.9a) and the voltage limit in (11.2) implies (11.6b). To prove
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(11.6a), we have for each 9 2 #+
’

::( 9,:)2⇢
H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�

=
’
8:8! 9

H̄
B

98

�
[,⌧] 9 9 � [,⌧] 98

�
+

’
:: 9!:

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�

=
’
8:8! 9

H̄
B

8 9

✓
E 9 �

⇣
E8 � ĪB8 9(8 9

⌘H
◆
+

’
:: 9!:

H̄
B

9:

⇣
E 9 �

⇣
E 9 � ĪB

9:
( 9:

⌘⌘

=
’
:: 9!:

( 9: �
’
8:8! 9

H̄
B

8 9

⇣
E8 � E 9 � IB8 9 (̄8 9

⌘

=
’
:: 9!:

( 9: �
’
8:8! 9

H̄
B

8 9

✓
2Re( ĪB

8 9
(8 9 )�

���IB
8 9

���2 ✓8 9 � IB8 9 (̄8 9
◆

where the second equality follows from (11.9) and HB
98
= HB

8 9
by assumption C5.1, and

the last equality follows from (11.1b). But⇣
2Re( ĪB

8 9
(8 9 )� IB8 9 (̄8 9

⌘
=

⇣
Ī
B

8 9
(8 9 + IB8 9 (̄8 9

⌘
� IB

8 9
(̄8 9 = Ī

B

8 9
(8 9

and hence’
::( 9,:)2⇢

H̄
B

9:

�
[,⌧] 9 9 � [,⌧] 9:

�
=

’
:: 9!:

( 9: �
’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
= B 9

where the last equality follows from (11.1a). This and the injection limits in (11.2)
imply (11.6a). To prove (11.6c), we have for each ( 9 , :) 2 ⇢ , from (11.9),���HB

9:

���2 �
[,⌧] 9 9 + [,⌧]:: � [,⌧] 9: � [,⌧]: 9

�

=
���HB
9:

���2
✓
E 9 + E: �

⇣
E 9 � ĪB

9:
( 9:

⌘
�

⇣
E 9 � ĪB

9:
( 9:

⌘H
◆

=
���HB
9:

���2 ⇣
�E 9 + E: + ĪB

9:
( 9: + IB

9:
(̄ 9:

⌘
= ✓ 9:

where last equality follows from (11.1b). This and the line limit in (11.2) imply
(11.6c). Finally to prove (11.6d)(11.6e), note that [,⌧] 9: = [,⌧]H

: 9
, [,⌧] 9 9 > 0, and

[,⌧]:: > 0 follow directly from (11.9). Furthermore

[,⌧] 9 9 [,⌧]:: �
��[,⌧] 9: ��2 = E 9E: �

���E 9 � ĪB
9:
( 9:

���2

= E 9E: �
✓
E

2
9
+
���IB
9:

���2 ��( 9: ��2�2E 9Re
⇣
Ī
B

9:
( 9:

⌘◆

= E 9

⇣
E: � E 9 +2Re

⇣
Ī
B

9:
( 9:

⌘⌘
�

���IB
9:

���2 ��( 9: ��2
=

���IB
9:

���2 ⇣
E 9✓ 9: �

��
( 9:

��2⌘ � 0

where last equality follows from (11.1b) and the last inequality follows from (11.4).
Therefore,⌧ ( 9 , :) ⌫ 0 for all ( 9 , :) 2 ⇢ , as desired. This shows that 6�1 maps every
G 2 X+

df to a,⌧ 2W+
⌧

.
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Step 3: 6(6�1 (G)) = G and 6
�1 (6(,⌧)) = ,⌧ . The proof uses

(11.8)(11.9)(11.1a)(11.1b). It follows a similar argument used in Steps 1 and
2, and is omitted. This completes the proof that 6 and 6�1 are indeed inverses of each
other and establishesW+

⌧
⌘ X+

df.

This completes the proof of Theorem 11.2. ⇤

11.1.3 General radial network

The OPF (11.3) and its SOCP relaxation (11.5) are based on the DistFlow model that
assumes HB

9:
= HB

: 9
(assumption C5.1) and H<

9:
= H<

: 9
= 0. OPF is also formulated in

(9.23) of Chapter 9.2 without these assumptions, based on the branch flow model (5.3)
that includes branch variables ✓ :=

�
✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢

�
, ( :=

�
( 9: ,(: 9 , ( 9 , :) 2 ⇢

�
in

both directions, reproduced here:

B 9 =
’
:: 9⇠:

( 9: , 9 2 # (11.11a)

��
U 9:

��2
E 9 � E: = 2Re

⇣
U 9: Ī

B

9:
( 9:

⌘
�

���IB
9:

���2 ✓ 9: , ( 9 , :) 2 ⇢ (11.11b)

��
U: 9

��2
E: � E 9 = 2Re

⇣
U: 9 Ī

B

: 9
(: 9

⌘
�

���IB
: 9

���2 ✓: 9 , ( 9 , :) 2 ⇢ (11.11c)

Ū 9:E 9 � ĪB
9:
( 9: =

⇣
Ū: 9E: � ĪB

: 9
(: 9

⌘H
, ( 9 , :) 2 ⇢ (11.11d)��

( 9:

��2 = E 9✓ 9: ,
��
(: 9

��2 = E:✓: 9 , ( 9 , :) 2 ⇢ (11.11e)

where

U 9: := 1+ IB
9:
H
<

9:
, U: 9 := 1+ IB

: 9
H
<

: 9

The feasible set is

Xtree := {G : (B,E,✓,() 2 R9#+3 : G satisfies (11.11), (11.2)} (11.12a)

and the OPF problem is:

OPF : min
G

⇠ (G) s.t. G 2 Xtree (11.12b)

Its SOCP relaxation replaces the quadratic equality constraint (11.11e) by second-order
cones:

E 9✓ 9: � |( 9: |2, E:✓: 9 � |(: 9 |2, 9 ! : 2 ⇢ (11.13)

Then the feasible set is

X
+
df := {G : (B,E,✓,() 2 R6#+3 : G satisfies (11.11a)� (11.11d), (11.13), (11.2)}

(11.14a)

and

SOCP : min
G

⇠ (G) s.t G 2 X+
df (11.14b)
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We say that SOCP relaxation (11.14) is exact if every optimal solution Gsocp of (11.14)
attains equalities in (11.13) and hence is an optimal solution of OPF (11.12).

11.2 Exactness condition: inactive injection lower bounds

We first prove in Chapter 11.2.1 a su�cient condition for the exactness of SOCP
relaxation (11.5) in the DistFlow model. We then study in Chapter 11.2.2 an exactness
condition for SOCP relaxation (11.14) in the general branch flow model.

11.2.1 DistFlow model

Consider first OPF (11.3) and its SOCP relaxation (11.5) in the DistFlow model.
Assume

C11.1: The cost function ⇠ (G) = ⇠ (?,@,E,✓) is independent of branch flows ( =
(%,&) and nondecreasing in (?,@,✓). Moreover it is strictly increasing in every
component of (✓ 9: , ( 9 , :) 2 ⇢) or in every component of (? 9 , 9 2 #) or in every
component of (@ 9 , 9 2 #).
C11.2: For 9 2 # , Bmin

9
= �1� i1. For 9 ! : 2 ⇢ , IB

9:
> 0 (i.e., AB

9:
,GB
9:

> 0).

Popular cost functions in the literature include active power loss over the network or
active power generations, both of which satisfy C11.1. The next result is proved in
[132, 30].

Theorem 11.3 (Inactive injection lower bounds). Suppose the network graph ⌧ is a
tree and C11.1, C11.2 hold. Then SOCP relaxation (11.5) is exact, i.e., every optimal
solution Gsocp of (11.5) is optimal for OPF (11.3).

Remark 11.1 (Strong exactness and global optimality). 1. If the cost function ⇠ (G)
in C11.1 is only nondecreasing, rather than strictly increasing, in ✓, then C11.1,
C11.2 still guarantee that all optimal solutions of OPF (11.3) are optimal solutions
of its SOCP relaxation (11.5), but (11.5) may have an optimal solution Gsocp that
maintains a strict inequality in (11.4) and hence is infeasible for OPF. Even though
the SOCP relaxation is not exact in the strong sense of Definition 10.2, an optimal
solution of OPF (11.3) can still be constructed from such a solution Gsocp; see
explanation immediately after the proof of Theorem 11.3 below.

2. Theorem 9.7 of Chapter 9.4.4 shows that C11.2 and a strengthened version of
C11.1 (and other mild conditions) also guarantee that every local optimum of OPF
(11.3) is a global optimum. ⇤

Remark 11.2 (Convexity). For exact relaxation, we do not require the cost function
⇠ (G) to be convex in G.; We can also allow more general constraints on power injections
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B 9 than B 9  Bmax
9

assumed in Theorem 11.3. The injection B 9 can be in an arbitrary
set ⌫ 9 that satisfies C11.2. In particular ⌫ 9 need not be convex nor even connected
for the SOCP relaxation to be exact. Such a general constraint on B is useful in many
applications. For instance it allows constraints of the form |B 9 |2  0, |\B 9 |  q 9 that is
useful for inverter control or @ 9 2 {0,0} for capacitor configuration. The cost function
and constraints need to be convex for optimality conditions such as KKT and Slater
theorems to hold and for the problem to be e�ciently computable. ⇤

Proof of Theorem 11.3. Fix any optimal solution G := (B,E,✓,() 2 R3(2#+1) of SOCP
relaxation (11.5). Since ⌧ is a tree, the cycle condition is vacuous and we only need
to show that G attains equality in (11.4). For the sake of contradiction assume this is
violated on line 9 !k, i.e.,

E 9✓ 9: > |( 9: |2 (11.15)

We will construct an G̃ that is feasible for the SOCP relaxation and attains a strictly
lower cost, contradicting the optimality of G.

For an n > 0 to be determined below, consider the following G̃ obtained by modifying
only the current ✓ 9: and power flow ( 9: on line 9 ! : and the injections B 9 , B: at two
ends of line 9 ! ::

✓̃ 9: := ✓ 9: � n , (̃ 9: := ( 9: � IB
9:
n/2 (11.16a)

B̃ 9 := B 9 � IB
9:
n/2, B̃: := B: � IB

: 9
n/2 (11.16b)

and Ẽ := E, ✓̃8; := ✓8; and (̃8; := (8; for (8, ;) < ( 9 , :), B̃8 := B8 for 8 < 9 , : . In particular,
no other variables than (B 9 , B: ,✓ 9: ,( 9: ) associated with the single line 9 ! : are
modified.2 By assumption C11.1 the cost function ⇠ (G) is strictly increasing in every
component of (✓ 9: , ( 9 , :) 2 ⇢) or in every component of (? 9 , 9 2 #) or in every
component of (@ 9 , 9 2 #). Hence G̃ has a strictly lower cost than G. It su�ces to
show that there exists an n > 0 such that G̃ is feasible for SOCP (11.5), i.e., G̃ satisfies
(11.1a)(11.1b)(11.4)(11.2). Moreover we can choose n > 0 so that G̃ attains equalities
in (11.4) and is therefore feasible for OPF.

Assumption C11.2 ensures that G̃ satisfies (11.2) since n > 0 and I
B

9:
> 0 (i.e.,

A
B

9:
,GB
9:

> 0). Further G̃ satisfies (11.1a) at buses 8 < 9 , : , and satisfies (11.1b)(11.4)
over lines (8, ;) < ( 9 , :). We now show that G̃ also satisfies (11.1a)(11.1b)(11.4) at buses
9 , : and over the line ( 9 , :).

For (11.1a) at bus 9 , we have from (11.16a)(11.16b)

(̃ 9: = ( 9: � IB
9:

n

2
=

’
8:8! 9

⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 � IB

9:

n

2
=

’
8:8! 9

⇣
(̃8 9 � IB8 9 ✓̃8 9

⌘
+ B̃ 9

2 In the proof of Theorem 9.7 of Chapter 9.4.4 on global optimality of OPF, the adjustment (9.40) to G is
the same as that in (11.16) but on all lines 8! ; 2 ⇢ and all buses 8 2 # , not just on 9! :, with
individual n8 = n8; = C�8; .
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as desired (recall that no variables except those associated with line ( 9 , :) are modified).
For (11.1a) at bus : , on line :! ; from : towards bus 0, we have from (11.16a)(11.16b)

(̃:; = (:; =
⇣
( 9: � IB

9:
✓ 9:

⌘
+

’
8< 9:8!:

�
(8: � IB

8:
✓8:

�
+ B:

=
⇣
(̃ 9: � IB

9:
✓̃ 9: � IB

9:

n

2

⌘
+

’
8< 9:8!:

�
(̃8: � IB

8:
✓̃8:

�
+ B:

=
’
8:8!:

�
(̃8: � IB

8:
✓̃8:

�
+ B̃:

as desired. This shows that G̃ satisfies (11.1a) at both buses 9 , : . For (11.1b) over line
( 9 , :), we have from (11.16a)

Ẽ 9 � Ẽ: = E 9 � E: = 2Re
⇣
Ī
B

9:
( 9:

⌘
� |IB

9:
|2✓ 9: = 2Re

⇣
Ī
B

9:
(̃ 9:

⌘
� |IB

9:
|2✓̃ 9:

as desired. For (11.4) over line ( 9 , :), we have from (11.16a)

Ẽ 9 ✓̃ 9: �
��
(̃ 9:

��2 = �

���IB
9:

���2
4

n
2�

⇣
E 9 �Re

⇣
Ī
B

9:
( 9:

⌘⌘
n +

⇣
E 9✓ 9: �

��
( 9:

��2⌘

Hence (11.15) implies that we can always choose an n > 0 such that Ẽ 9 ✓̃ 9: =
��
(̃ 9:

��2.

This completes the proof of Theorem 11.3. ⇤

The construction of G̃ ensures that equalities are attained in (11.4) and therefore G̃
is feasible for OPF (11.3), not just for its SOCP relaxation. If the cost function ⇠ (G) in
C11.1 is only nondecreasing, rather than strictly increasing, in ✓ (or in ? or @), then it
is possible that ⇠ (G̃) =⇠ (G) and SOCP (11.5) has an optimal solution G that maintains
a strict inequality in (11.4). Even in this case, the proof shows how to construct from
such an G an optimal solution G̃ for OPF (11.3) under C11.1 and C11.2.

11.2.2 General radial network

Theorem 11.3 can be extended to radial networks where I<
9:

, I<
: 9

may not be zero. The
OPF and its SOCP relaxation for the general model are given in (11.12) and (11.14)
respectively. Assume

C11.3: For all ( 9 , :) 2 ⇢ , both Re(U 9: ) and Re(U: 9 ) are positive; furthermore
I
B

9:
= IB

: 9
.

For C11.3, Re(U 9: ) = 1 +Re(IB
9:
H
<

9:
) � 1� |H<

9:
/IB
9:
|. Since H<

9:
is typically much

smaller in magnitude than HB
9:

, Re(U 9: ) is usually strictly positive. The next theorem
is proved in Exercise 11.1.

Theorem 11.4 (Inactive injection lower bounds). Suppose the network graph ⌧ is a
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tree and C11.1, C11.2, C11.3 hold. Then the SOCP relaxation (11.14) is exact, i.e.,
every optimal solution Gsocp of (11.14) is optimal for OPF (11.12).

11.3 Exactness condition: inactive voltage upper bounds

In this section we present a su�cient condition for exact SOCP relaxation of single-
phase OPF in the DistFlow model of Chapter 11.1.1, when the operational constraint
(11.2) is replaced by the following set of constraints:

E
min
9
 E 9  E

max
9

, 9 2 # (11.17a)

B 9 2 ⌫ 9 ✓ {B 9 2 C : B 9  Bmax
9

}, 9 2 # (11.17b)

for some given finite Bmax
9

, 9 2 # . In particular we ignore line limits, but allow the
injections (B 9 , 9 2 #) at non-root buses to be in an arbitrary set ⌫ 9 that is bounded
above (see Remark 11.2). We also assume E0 is given and satisfies (11.17a) and B0 is
unconstrained.

Then OPF and its feasible set are:

OPF : min
G

⇠ (G) s.t. G 2 Xdf (11.18a)

where

Xdf := {G : (B,E,✓,() 2 R6#+3 : G satisfies (11.1)(11.17)} (11.18b)

Their SOCP relaxations are:

SOCP : min
G

⇠ (G) s.t. G 2 X+
df (11.19a)

where

X
+
df := {G : (B,E,✓,() 2 R6#+3 : G satisfies (11.1a)(11.1b)(11.4)(11.17)} (11.19b)

SOCP relaxation (11.19) is exact if every optimal solution Gsocp of (11.19) attains
equality in (11.4) and is hence optimal for OPF (11.18).

11.3.1 Su�cient condition

We now state the su�cient condition for exact SOCP relaxation for radial networks and
show that exactness implies uniqueness of the optimal solution. The main su�cient
condition is that the voltage upper bounds are inactive at optimality. 3 Before presenting
it we first explain a simple intuition using a two-bus network that motivates this
condition.

3 Exercise 10.3 shows that, since SOCP is a convex problem, condition C11.5 that requires an upper bound
of E9 be less than Emax

9
is equivalent to requiring E9  Emax

9
but the bound is inactive at optimality.
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Example 11.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with
impedance I := A + iG with A ,G > 0. Without loss of generality, let the direction of the
line be from bus 1 to bus 0. Let ✓ be the sending-end squared current magnitude from
buses 1 to 0 (recall that (01 := 0 in (11.1a)). Suppose also without loss of generality
that E0 = 1 pu. The model in (11.1) reduces to (Exercise 11.2):

?0� A✓ = �?1, @0� G✓ = �@1, ?
2
0 + @2

0 = ✓ (11.20a)

E1� E0 = 2 (A ?1 + G@1) � (A2 + G2)✓ (11.20b)

Suppose B1 is given (e.g., a constant power load). Then the variables are G :=
(?0,@0,E1,✓) and the feasible set consists of solutions of (11.20), subject to opera-
tional constraints on G. The case without any constraint is instructive and shown in

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 11.1 Feasible set of OPF for a two-bus network without any constraint. It consists of the
(two) points of intersection of the line with the convex surface (without the interior), and hence
is nonconvex. SOCP relaxation includes the interior of the convex surface and enlarges the
feasible set to the line segment joining these two points. If the cost function ⇠ is increasing in ✓
or (?0,@0) then the optimal point over the SOCP feasible set (line segment) is the lower
feasible point 2, and hence the relaxation is exact.

Figure 11.1 (see explanation in the caption). The point 2 in the figure corresponds to a
power flow solution with a large E1 (normal operation) whereas the other intersection
corresponds to a 3 solution with a small E1 (fault condition). (See Example 5.3 of
Chapter 5.2.5 for detailed calculations.) As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (?0,@0,✓) do
not remove the high-voltage solution 2. Only when the system is stressed to a point
where the high-voltage solution becomes infeasible will relaxation lose exactness. This
agrees with conventional wisdom that power systems under normal operations are well
behaved.

Consider the constraint Emin
1  E1  Emax

1 . We have from (11.20b) and E0 = 1

E1 = (1+2A ?1 +2G@1)� |I |2✓

translating the constraint on E1 into a box constraint on ✓:

1
|I |2

�
2A ?1 +2G@1 +1� Emax

1

�
 ✓  1

|I |2
⇣
2A ?1 +2G@1 +1� Emin

1

⌘
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Figure 11.1 shows that the lower bound Emin
1 (corresponding to an upper bound on

✓) does not a�ect the exactness of SOCP relaxation. The e�ect of upper bound Emax
1

(corresponding to a lower bound on ✓) is illustrated in Figure 11.2. As explained in
the caption of the figure SOCP relaxation is exact if the upper bound Emax

1 does not
exclude the high-voltage solution 2 and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 11.2 Impact of voltage upper bound Emax
1 on exactness. (a) When Emax

1 (corresponding
to a lower bound on ✓) is not binding, the power flow solution 2 is in the feasible set of SOCP
and hence the relaxation is exact. (b) When Emax

1 excludes 2 from the feasible set of SOCP, the
optimal solution is infeasible for OPF and the relaxation is not exact.

See Example 5.3 and Exercise 11.3 for details of feasibility and exactness of the
SOCP relaxation. ⇤

To state the exactness condition for a general radial network, recall the linear
approximation of BFM studied in Chapter 5.5.3.2, obtained by setting ✓ 9: = 0 in
(11.1). Given E0 and the injections B̂ := ( ?̂, @̂) := (? 9 ,@ 9 , 9 2 #) at non-root buses, the

line flow vector (lin (B) :=
⇣
(

lin
9:

, ( 9 , :) 2 ⇢
⌘

and the voltage vector Êlin (B) := (Elin
9

, 9 2 #)
at non-root buses in the linearized model are explicitly given by (from Theorem 5.3):

(
lin (B) = ⇠̂

�1
B̂, Ê

lin (B) = E01 + 2 ('?̂ + -@̂) (11.21)

for some given invertible matrices ⇠̂, ' and - . The key property we will use is, from
Corollary 5.5:

( 9:  (
lin
9:
(B), E 9  E

lin
9
(B), 9 ! : 2 ⇢ , 9 2 # (11.22)

These are linear constraints on ( 9: and E 9 . Define the 2⇥2 matrix function

� 9: (( 9: ,E 9 ) := I2�
2
E 9

I
B

9:

�
( 9:

�T (11.23)

where I2 is the identity matrix of size 2, IB
9:

:= (AB
9:

,GB
9:
) is the column vector of line

impedance and ( 9: := (% 9: ,& 9: ) is the column vector of branch power flows, so that
I
B

9:

�
( 9:

�T is a 2⇥ 2 matrix with rank less or equal to 1. As we will see below, the
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matrices � 9: (( 9: ,E 9 ) describe how changes in branch power flows propagate towards
the root node 0. Evaluate the Jacobian matrix � 9: (( 9: ,E 9 ) at the boundary values:

�
9:

:= � 9:

⇣ h
(

lin
9:
(Bmax)

i+
, Emin

9

⌘
= I2�

2

E
min
9

I
B

9:

⇣ h
(

lin
9:
(Bmax)

i+⌘T
(11.24)

Here
�
[0]+

�T is the row vector [[01]+ [02]+] with [0 9 ]+ := max{0 9 ,0}.

For a radial network, for 9 < 0, every line 9 ! : identifies a unique node : and
therefore, to simplify notation, we refer to a line interchangeably by ( 9 , :) or 9 and use
� 9 , �

9
, IB
9

etc. in place of � 9: , �
9:

, IB
9:

etc. respectively. Assume

C11.4: The cost function is ⇠ (G) :=
Õ
#

9=0⇠ 9
�
? 9

�
with ⇠0 (?0) strictly increasing

in ?0. There is no constraint on B0.
C11.5: The set ⌫ 9 of injections satisfies Êlin

9
(B)  Emax

9
, 9 2 # , where Êlin

9
(B) is

given by (11.21).
C11.6: For each leaf node 9 2 # let the unique path from 9 to 0 have : lines
and be denoted by P 9 := ((8: , 8:�1), . . . , (81, 80)) with 8: = 9 and 80 = 0. Then
�
8C

· · · �
8
C
0 I
B

8
C
0+1

> 0 for all 1  C  C 0 < : , where �
9

are defined in (11.24). For
9 ! : 2 ⇢ , IB

9:
> 0 (i.e., AB

9:
,GB
9:

> 0).

The following result is proved in [133].

Theorem 11.5. Suppose the network graph ⌧ is a tree and C11.4–C11.6 hold. Then
SOCP relaxation (11.19) is exact.

The proof of Theorem 11.5 is long and relegated to Appendix 11.3.2. It can be
shown that Theorem 11.5 have the following simple and practical interpretation: SOCP
relaxation (11.19) is exact provided at least one of the following is satisfied:

• There are no reverse power flows in the network.
• The A/G ratios on all lines are equal.
• If the A/G ratios increase in the downstream direction from the substation (node 0)

to the leaves then there are no reverse real power flows.
• If the A/G ratios decrease in the downstream direction then there are no reverse

reactive power flows.

These properties are derived in [152, 153, 154] and are special cases of Theorem 11.5.

We now comment on the conditions C11.4–C11.6. The constraint Êlin
9
(B)  Emax

9
in

C11.5 is an a�ne constraint in the injections B := (?,@). It enforces the upper bounds
on voltage magnitudes because of (11.22). C11.6 is a technical assumption and has a
simple interpretation: the branch power flow ( 9: on all branches should move in the
same direction. Specifically, given a marginal change in the complex power on line
9! : , the 2⇥2 matrix �

9:
is (a lower bound on) the Jacobian and describes the e�ect

of this marginal change on the complex power on the line immediately upstream from
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line 9 ! : . The product of �
8

in C11.6 propagates this e�ect upstream towards the
root. C11.6 requires that a small change, positive or negative, in the power flow on a
line a�ects all upstream branch powers in the same direction. This seems to hold with
a significant margin in practice.

Remark 11.3 (Strong exactness). Condition C11.4 requires that the cost functions ⇠ 9
depend only on the injections ? 9 . For instance, if ⇠ 9

�
? 9

�
= ? 9 , then the cost is total

active power loss over the network. It also requires that ⇠0 be strictly increasing but
makes no assumption on ⇠ 9 , 9 > 0, e.g., the total cost ⇠ (G) can be ⇠0 (?0). Common
cost functions such as line loss or generation cost usually satisfy C11.4. If ⇠0 is only
nondecreasing, rather than strictly increasing, in ?0 then C11.4–C11.6 still guarantee
that all optimal solutions of OPF (11.18) are (e�ectively) optimal for SOCP relaxation
(11.19), but (11.19) may not be exact in our definition, i.e., it may also have an optimal
solution that maintains a strict inequality in (11.4). In this case the proof of Theorem
11.5 can still construct from it another optimal solution that attains equalities in (11.4)
and is hence optimal for OPF. ⇤

11.3.2 Appendix: Proof of Theorem 11.5

Given an optimal solution G := (B,E,✓,() that maintains a strict inequality in (11.4),
E 9✓ 9: > |( 9: |2, at a line 9! : 2 ⇢ , the proof of Theorem 11.3 in Section 11.2 constructs
another feasible solution Ĝ from G that incurs a strictly smaller cost, contradicting the
optimality of G. The modification is over the single line ( 9 , :) at which E 9✓ 9: > |( 9: |2.
The proof of Theorem 11.5 is also by contradiction but, unlike that of Theorem 11.3,
the construction of Ĝ from G involves modifications on multiple lines, propagating from
the line that is closest to bus 0 where strictly inequality holds all the way to bus 0. The
proof relies crucially on the recursive structure of the branch flow model (11.1).

Proof of Theorem 11.5 To simplify notation we only prove the theorem for the case
of a linear network representing a primary feeder without laterals. The proof for a
general tree network follows the same idea but with more cumbersome notations; see
[133] for details. We adopt the graph orientation where every line points towards the
root node 0. The notation for the linear network is explained in Figure 11.3 (we refer
to a line 9 ! : by 9 and index the associated variables IB

9:
,( 9: ,✓ 9: with 9). With this

notation the branch flow model (11.1) is the following recursion:

( 9�1 = ( 9 � IB9✓ 9 + B 9�1, 9 = 1, . . . ,# (11.25a)

E 9�1 = E 9 �2Re
⇣
Ī
B

9
( 9

⌘
+ |IB

9
|2✓ 9 , 9 = 1, . . . ,# (11.25b)

E 9✓ 9 = |( 9 |2, 9 = 1, . . . ,# (11.25c)

(= = B=, (0 := 0 (11.25d)

where E0 is given. The SOCP relaxation of (11.25c) is:

E 9✓ 9 � |( 9 |2, 9 = 1, . . . ,# (11.26)
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• For 9 = <�1, . . . ,1:

(̂ 9 := (̂ 9+1� I 9+1✓̂ 9+1 + B̂ 9 , ✓̂ 9 :=
|(̂ 9 |2
E 9

• B̂0 := �(̂1 + I1✓̂1.
3. Ê0 := E0. For 9 = 1, . . . ,# ,

Ê 9 := Ê 9�1 +2Re
⇣
Ī
B

9
(̂ 9

⌘
� |IB

9
|2✓̂ 9

Notice that the denomintor in ✓̂ 9 is defined to be E 9 , not Ê 9 . This decouples the recursive
construction of ((̂ 9 , ✓̂ 9 ) and Ê 9 so that the former propagates from bus # towards bus
1 while the latter propagates in the opposite direction, as in backward forward sweep
studied in Chapter 5.4.

By construction Ĝ satisfies (11.25a), (11.25b), (11.25d), and (11.17b). We only have
to prove that Ĝ satisfies (11.17a) and (11.26). Hence the proof of Theorem 11.5 is
complete after Lemma 11.6 is established, which asserts that Ĝ is feasible and has a
strictly lower cost under assumptions C11.4, C11.5, C11.6’.

Lemma 11.6. Under the conditions of Theorem 11.5 Ĝ satisfies

1. ⇠ (Ĝ) < ⇠ (G).
2. Ê 9 ✓̂ 9 �

��
(̂ 9

��2, 9 2 # .
3. E 9min  Ê 9  E

max
9

, 9 2 # .

To simplify notation redefine (0 := �B0 and (̂0 := �B̂0. Then for 9 2 # define
�( 9 := (̂ 9 � ( 9 and �E 9 := Ê 9 � E 9 . The key result that leads to Lemma 11.6 is:

�( 9 � 0, �E 9 � 0, 9 2 #

The first inequality is stated more precisely in Lemma 11.7 and proved after the proof
of Lemma 11.6.

Lemma 11.7. Suppose < > 1 and C11.6’ holds. Then �( 9 � 0 for 9 2 # with (̂ 9 > ( 9
for 9 = 0, . . . ,<�1. In particular B̂0 < B0.

We now prove the second inequality together with Lemma 11.6 assuming Lemma
11.7 holds.

Proof of Lemma 11.6 1) If < = 1 then, by construction, B̂0 = B0 � I1n1 < B0 since
I1 > 0. If < > 1 then B̂0 < B0 by Lemma 11.7. Since B̂ = B and B̂0 < B0 we have

⇠ (Ĝ)�⇠ (G) =
#’
9=0

�
⇠ 9

�
?̂ 9

�
�⇠ 9

�
? 9

� �
= ⇠0 ( ?̂0)�⇠0 (?0) < 0

as desired, since ⇠0 is strictly increasing.
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2) To avoid circular argument we will first prove using Lemma 11.7

Ê 9 � E 9 , 9 2 # (11.29)

We will then use this and Lemma 11.7 to prove Ê 9 ✓̂ 9 � |(̂ 9 |2 for all 9 2 # . We then use
assumption C11.5 to prove Emin

9
 Ê 9  Emax

9
, 9 2 # . This shows that Ĝ satisfies (11.26)

and (11.17a) (in addition to (11.25a)(11.25b)(11.25d) and (11.17b)).

To prove (11.29), note that both Ê and E satisfy (11.25b) and hence we have, for
9 = 1, . . . ,# ,

�E 9�1 = �E 9 �2Re
⇣
Ī
B

9
�( 9

⌘
+ |IB

9
|2�✓ 9 (11.30)

where �✓ 9 := ✓̂ 9 � ✓ 9 . From (11.25a) we have

I
B

9
�✓ 9 = �( 9 ��( 9�1 +�B 9�1

where �B0 := B̂0 � B0 < 0 and �B 9�1 = 0 for 9 > 1. Multiplying both sides by ĪB
9

and
noticing that both sides must be real, we conclude

|IB
9
|2�✓ 9 = Re

⇣
Ī
B

9
�( 9 � ĪB9�( 9�1 + ĪB9�B 9�1

⌘
Substituting into (11.30) we have for 9 = 1, . . . ,#

�E 9 ��E 9�1 = Re ( ĪB
9
�( 9 ) +Re ( ĪB

9
�( 9�1)�Re ( ĪB

9
�B 9�1)

But Lemma 11.7 implies that Re ( ĪB
9
�( 9 ) = AB

9
�% 9 + GB

9
�& 9 � 0. Similarly every term

on the right-hand side is nonnegative and hence

�E 9 � �E 9�1, 9 = 1, . . . ,#

implying that �E 9 � �E0 = 0, proving (11.29).

We now use (11.29) to prove the second assertion of the lemma. By construction,
for 9 = < +1, . . . ,# ,

✓̂ 9 = ✓ 9 �
|( 9 |2
E 9

�
|(̂ 9 |2
Ê 9

as desired, since (̂ 9 = ( 9 and Ê 9 � E 9 . Similarly (11.26) holds for Ĝ for 9 = < because
of the choice of n<. For 9 = 1, . . . ,<�1, Ê 9 � E 9 again implies

✓̂ 9 =
|(̂ 9 |2
E 9

�
|(̂ 9 |2
Ê 9

3) The relation (11.29) means

Ê 9 � E 9 � E
min
9

, 9 2 #

Assumption C11.5 and (11.22) imply that

Ê 9  E
lin
9
(B)  E

max
9

, 9 2 #

This proves Ĝ satisfies (11.17a) and completes the proof of Lemma 11.6. ⇤
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The remainder of this subsection is devoted to proving Lemma 11.7.

Proof of Lemma 11.7 By construction �( 9 = 0 for 9 =<, . . . ,=. To prove �( 9 > 0 for
9 = 0, . . . ,<�1, the key idea is to derive a recursion on �( 9 in terms of the Jacobian
matrix � 9 (( 9 ,E 9 ). The intuition is that, when the branch current ✓< is reduced by n<
to ✓̂<, loss on line < is reduced and all upstream branch powers ( 9 will be increased
to (̂ 9 as a consequence.

This is proved in three steps, of which we now give an informal overview. First
we derive a recursion (11.32) on �( 9 . This motivates a collection of linear dynamical
systems F in (11.34) that contains the process (�( 9 , 9 = 0, . . . ,< � 1) as a specific
trajectory. Second we construct another collection of linear dynamical systems F in
(11.35) such that assumption C11.6’ implies F > 0. Finally we prove an expression for
the process F�F that shows F � F (in Lemmas 11.8, 11.9, 11.10). This then implies
�( = F � F > 0 as desired. We now make these steps precise.

Since both G and Ĝ satisfy (11.25a) and B̂ 9 = B 9 for all 9 2 # we have (with the
redefined �(0 := �( B̂0� B0))

�( 9�1 = �( 9 � IB9�✓ 9 , 9 = 1,2, . . . ,# (11.31)

where �✓ 9 := ✓̂ 9 �✓ 9 . For 9 = 1, . . . ,<�1 both G and Ĝ satisfy (11.25c). For these 9 , fix
any E 9 � Emin

9
and consider ✓ 9 := ✓ 9 (( 9 ) as functions of the real pair ( 9 := (% 9 ,& 9 ):

✓ 9 (( 9 ) :=
%

2
9
+&2

9

E 9

, 9 = 1, . . . ,<�1

whose Jacobian are the row vectors:

m✓ 9

m( 9

(( 9 ) =
2
E 9

[% 9 & 9 ] =
2
E 9

(
T
9

The mean value theorem implies for 9 = 1, . . . ,<�1

�✓ 9 = ✓ 9 ((̂ 9 )� ✓ 9 (( 9 ) =
m✓ 9

m( 9

((̃ 9 )�( 9

where (̃ 9 := U 9( 9 + (1�U 9 )(̂ 9 for some U 9 2 [0,1]. Substituting it into (11.31) we
obtain the recursion, for 9 = 1, . . . ,<�1,

�( 9�1 = �̃ 9�( 9 , �(<�1 = n<I< > 0 (11.32)

where the 2⇥2 matrix �̃ 9 is the matrix function � 9 (( 9 ,E 9 ) defined in (11.23) evaluated
at ((̃ 9 ,E 9 ):

�̃ 9 := � 9 ((̃ 9 ,E 9 ) := I2�
2
E 9

I
B

9
(̃

T
9

(11.33)

which depends on (( 9 , (̂ 9 ) through (̃ 9 .

Note that �̃ 9 and �( 9 are not independent since both are defined in terms of
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(( 9 , (̂ 9 ), and therefore strictly speaking (11.32) does not specify a linear system.
Given an optimal solution G of the relaxation SOCP (11.28) and our modified solution
Ĝ, however, the sequence of matrices �̃ 9 , 9 = 1, . . . ,<�1, are fixed. We can therefore
consider the following collection of discrete-time linear time-varying systems (one for
each g), whose state at time C (going backward in time) is F(C;g), when it starts at time
g � C in the initial state IB

g+1: for each g with 0 < g < <,

F(C �1;g) = �̃CF(C;g), C = g,g�1, . . . ,1, F(g;g) = I
B

g+1 (11.34)

Clearly�( 9 = n<F( 9 ;<�1). Hence, to prove�( 9 > 0, it su�ces to proveF( 9 ;<�1) >
0 for all 9 with 0  9  <�1.

To this end we compare the system F(C;g) with the following collection of linear
time-variant systems: for each g with 0 < g < <,

F(C �1;g) = �
C
F(C;g), C = g,g�1, . . . ,1, F(g;g) = I

B

g+1 (11.35)

where �
C

is defined in (11.24) and reproduced here:

�
C

:= �C

⇣ ⇥
(

lin
C
(Bmax)

⇤+
, E

C

⌘
= I2�

2

E
min
C

I
B

C

⇣ ⇥
(

lin
C
(Bmax)

⇤+⌘T
(11.36)

Note that �
C

are independent of the SOCP solution G and our modified solution Ĝ.
Then assumption C11.6’ is equivalent to

F(C;g) > 0 for all 0  C  g < < (11.37)

We now prove, in Lemmas 11.8, 11.9, 11.10, thatF(C;g) � F(C;g) and hence C11.6’
implies �( 9 = n<F( 9 ;<�1) � n<F( 9 ;<�1) > 0, establishing Lemma 11.7.

Lemma 11.8. For each C =<�1, . . . ,1, �̃C ��
C
= 2IB

C
X

T
C

for some 2-dimensional vector
XC � 0.

Proof of Lemma 11.8 Fix any C = < � 1, . . . ,1. We have (C  (lin
C
(B) from (11.22).

Even though we have not yet proved (̂C is feasible for SOCP we know (̂C satisfies
(11.25a) by construction of Ĝ. The same argument as in Corollary 5.5 then shows
(̂C  (lin

C
(B). Hence (̃C := UC(C + (1�UC )(̂C , UC 2 [0,1], satisfies (̃C  (lin

C
(B). Hence

(̃C  (
lin
C
(B)  (

lin
C
(Bmax) 

⇥
(

lin
C
(Bmax)

⇤+
(11.38)

Using the definitions of �̃C in (11.33) and �
C
in (11.36) we have �̃C � �

C
= 2IB

C
X

T
C

where

X
T
C

:=

" ⇥
%

lin
C
(Bmax)

⇤+
E

min
C

� %̃C
EC

⇥
&

lin
C
(Bmax)

⇤+
E

min
C

� &̃C
EC

#

Then (11.38) and EC � Emin
C

impy that XC � 0. ⇤

For each g with 0 < g < < define the scalars 0(C;g) in terms of the solution F(C;g)
of (11.35) and XC in Lemma 11.8:

0(C;g) := 2XT
C
F(C;g) > 0 (11.39)
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Lemma 11.9. Fix any g with 0 < g < <. For each C = g,g�1, . . . ,0 we have

F(C;g)�F(C;g) =
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1)

Proof of Lemma 11.9 Fix a g with 0 < g < <. We now prove the lemma by induction
on C = g,g�1, . . . ,0. The assertion holds for C = g since F(g;g)�F(g;g) = 0. Suppose
it holds for C. Then for C �1 we have from (11.34) and (11.35)

F(C �1;g)�F(C �1;g) = �̃CF(C;g)� �
C
F(C;g)

=
�
�̃C � �

C

�
F(C;g) + �̃C

�
F(C;g)�F(C;g)

�
= 0(C;g)IC +

g’
C
0=C+1

0(C 0;g) �̃CF(C; C 0 �1)

= 0(C;g)IC +
g’

C
0=C+1

0(C 0;g)F(C �1; C 0 �1)

=
g’
C
0=C

0(C 0;g)F(C �1; C 0 �1)

where the first term on the right-hand side of the third equality follows from Lemma
11.8 and the definition of 0(C;g) in (11.39), and the second term from the induction
hypothesis. The last two equalities follow from (11.34). ⇤

Lemma 11.10. Suppose C11.6’ holds. Then for each g with 0 < g < < and each
C = g,g�1, . . . ,0,

F(C;g) � F(C;g) > 0 (11.40)

Proof of Lemma 11.10 We prove the lemma by induction on (C,g).

1. Base case: For each g with 0 < g < <, (11.40) holds for C = g, i.e., for C such that
g� C = 0.

2. Induction hypothesis: For each g with 0 < g < <, suppose (11.40) holds for C  g
such that 0  g� C  : �1.

3. Induction: We will prove that, for each g with 0 < g < <, (11.40) holds for C  g
such that 0  g� C  : . For C = g� : we have from Lemma 11.9

F(C;g)�F(C;g) =
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1)

But each F(C; C 0 � 1) in the summands satisfies F(C; C 0 � 1) � F(C; C 0 � 1) by the
induction hypothesis. Hence, since 0(C 0;g) > 0,

F(C;g)�F(C;g) �
g’

C
0=C+1

0(C 0;g)F(C; C 0 �1) > 0

where the last inequality follows from (11.37) and (11.39).
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This completes our induction proof. ⇤

Lemma 11.10 implies, for 9 = 0, . . . ,<�1,�( 9 = n<F( 9 ;<�1) > 0. This completes
the proof of Lemma 11.7. ⇤

This completes the proof of Theorem 11.5 for the linear network. For a general
tree network the proof is almost identical, except with more cumbersome notations, by
focusing on a path from the root to a first line< over which E 9✓ 9 > |( 9 |2; see [133]. ⇤

11.4 Bibliographical notes

See the bibliographical notes in Chapter 9.7.

11.5 Problems

Chapter 11.2.

Exercise 11.1 (Exactness: general tree [31]). Let G := (B,E,✓,() 2R9#+3 be any optimal
solution of SOCP (11.14).

1. Show that E 9✓ 9: > |( 9: |2 if and only if E:✓: 9 > |(: 9 |2.
2. Prove Theorem 11.4.

(Hint: Modify proof of Theorem 11.3.)

Chapter 11.3.

Exercise 11.2 (Geometric insight). For the 2-bus network in Example 11.1 of Chapter
11.3, derive the model (11.20) from the DistFlow equation (11.1) in the up orientation.

Exercise 11.3 (Feasible set and relaxation). This problem illustrates SOCP relaxation
of OPF and its exactness. Consider the 2-bus network in Example 11.1 of Chapter 11.3.
Suppose @1 = 0 and E0 = A = G = 1 pu, and suppose the injection ?1 is controllable. Let
F := (?0,@0, ?1,E1,✓). Consider the OPF problem:

min
F

⇠ (F) s.t. ?0� ✓ = �?1, @0� ✓ = 0, E1�1 = 2?1�2✓, ?
2
0 + @2

0 = ✓

0.9pu  E1  1.1pu, ?
min
1  ?1  ?max

1

where the cost function ⇠ (F) is strictly increasing in ✓. Its SOCP relaxation replaces
the quadratic equality constraint with the convex constraint ?2

0 + @2
0  ✓.
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1. Determine the largest interval '1 := [?min
1 , ?max

1 ] over which the SOCP relaxation
is exact.

2. Determine the largest interval '2 := [?min
1 , ?max

1 ] over which the SOCP relaxation
is inexact. Note that in this regime, bus 1 is generating power and causing a large
amount of reverse power flow.

3. What happens if the range [?min
1 , ?max

1 ] for injection ?1 overlaps with neither '1

nor '2?

Draw a diagram to illustrate your answers. (Hint: The power flow solution as a function
of ?1 is computed in Example 5.3 of Chapter 5.2.5.)



12 Nonsmooth convex optimization

Consider an optimization problem

min
G2R=

5 (G) s.t. G 2 -

where 5 is a convex function and - ✓ R= is a convex set. We will develop a basic
theory to answer the following questions:

Q1 How to characterize optimal solutions?
Q2 When will optimal solutions exist?

We study these two questions in Chapter 8.3 when the cost and constraint functions are
continuously di�erentiable. In many applications, however, these functions are convex
but not di�erentiable everywhere and may take infinite values. We will show in this
chapter that the optimality results summarized in Table 8.1 hold in a nonsmooth setting.
We will develop set theoretic tools that handles nonsmooth but convex functions. This
basic machinery enables a more fundamental, and simpler, approach and reveals that
smoothness is unimportant for the theory of convex optimization (though smoothness
can be important for computation).

Optimality conditions and algorithms for convex optimizations are often based on
the linear approximations of the cost and constraint functions, e.g., the KKT condition
(8.38) or the Newton-Raphson algorithm (8.82)(8.83). In particular the stationarity
condition in (8.38) says

�r 5 (G⇤) = r6(G⇤)_⇤ + r⌘(G⇤)`⇤, (12.1)

i.e., a feasible point G⇤ is a minimizer if the negative gradient�r 5 (G⇤) points away from
a linear approximation of the feasible set at G⇤ defined by the gradients r6(G⇤),r⌘(G⇤)
of the constraint functions at G⇤. In the nonsmooth setting a linear approximation of
the feasible set is called a tangent cone and a feasible point G⇤ is a minimizer if there is
a negative cost subgradient that points away from the tangent cone of the feasible set
at G⇤, i.e., the subgradient is contained in the normal cone #- (G⇤) of the feasible set at
G
⇤. To describe optimality conditions precisely we need the following generalizations:

• Generalize linear approximation of feasible set to a tangent cone )- (G⇤), or equiv-
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alently, a normal cone #- (G⇤) corresponding to the right-hand side of (12.1). This
is studied in Chapter 12.1.

• Generalize smooth functions to extended real-valued convex functions. We can
then treat a constrained minimization of a real-valued function as an unconstrained
minimization of an extended real-valued function. This is studied in Chapter 12.2.

• Generalize gradients r 5 (G),r6(G),r⌘(G) to subgradients m 5 (G),m6(G),m⌘(G). A
convex function is always continuous and subdi�erentiable in the relative interior
of its e�ective domain. This is studied in Chapter 12.3.

After these basic convex analysis tools are established, we use them to generalize the
optimality conditions of Chapter 8.3 to a nonsmooth setting by replacing gradients
with subdi�erentials. Specifically we answer Q1 in Chapters 12.5 (the Saddle Point
Theorem) and 12.6 (the KKT Theorem), and Q2 in Chapters 12.7 (primal optimality)
and 12.8 (strong duality and dual optimality). Finally in Chapter 12.9 we apply the
general theory developed in Chapters 12.5–12.8 to special classes convex optimization
problems widely used in applications.

The topic of nonsmooth convex optimization is extensive. We only summarize
key concepts and techniques, mostly from [56, 155], and use them to answer the
questions above. We include some (but not all) of the proofs to illustrate common
techniques useful for nonsmooth convex optimization. Nonsmooth problems arise in
many contexts. For example the dual function of a constrained convex optimization
may take infinite values and may not be di�erentiable (but always concave) even if
the cost and constraint functions are real-valued and continuously di�erentiable. This
is because the primal minimizer of the Lagrangian may not be unique. In Chapter 13
we study stochastic optimization where some parameters of an optimization problem
may be uncertain or random. These problems are generally intractable, but some
have convex reformulation. Many of these reformulated problems however may not
be di�erentiable. For example the two-stage optimization with recourse studied in
Chapter 13.4 takes the following form: infG 5 1 (G) +&(G) s.t. ⌘1 (G)  0 where&(G) :=
⇢l

�
inf

H (l)
�
5

2 (G, H(l)) : ⌘2 (G, H(l))  0
 �

and ⇢l denotes expectation with respect
to a random variablel. The function&(G) is generally nondi�erentiable even if ( 5 1,⌘1)
and ( 5 2,⌘2) are continuously di�erentiable; moreover&(G) may be±1 even if ( 5 1,⌘1)
and ( 5 2,⌘2) are real-valued. When these functions are convex, however, so is &(G).

12.1 Normal cones of feasible sets

In this section we develop concepts that linearly approximate a set - as the smallest
convex cone (tangent cone) that contains - and, equivalently, the convex set (normal
cone) that is “most opposite” to this linear approximation. The normal cone is central
in optimality conditions of convex optimization as we will see. In Chapter 12.1.1 we
define polar cone that formalizes the notion of the “most opposite” directions to a set
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- . We use it in Chapter 12.1.2 to define the tangent cone and normal cone of - . In
Chapter 12.1.3 we study how normal cones are transformed as - undergoes a�ne
transformation. This is used to derive the normal cones of second-order constraints in
Chapter 12.1.4.

12.1.1 Polar cone

Recall the definition of relative interior, convex sets, closed convex cones, and second-
order cones studied in Chapters 8.1.1, 8.1.2 and 8.2.1.

Definition 12.1 (Polar cone and dual cone). Let - ✓ R= be a nonempty set.

1. The polar cone of - is -� := {H 2 R= : HT
G  0 8G 2 -}.

2. The dual cone of - is -⇤ := �-� = {H 2 R= : HT
G � 0 8G 2 -}.

3. A cone  is called self-dual if  ⇤ =  . ⇤

It is clear that -� and -
⇤ are indeed cones for arbitrary - , i.e., if H is in -

� or
-
⇤, so is WG for any W > 0. Informally, the polar cone of - is the set of points that is

“most opposite to the entire set -” or “most away from the entire set -”. The dual
cone of - is the set that is “most aligned with the entire set -” or “closest to the entire
set -”. The dual cone is used to define the dual problem of a conic program where a
nonlinear constraint is specified abstractly by G 2  for a general closed convex cone
 ; see Chapter 12.9.4. These cones are illustrated in Figure 12.1. The examples in the
figure show that -⇤ can be a subset or a superset of - or equal to - . Some properties

X °

X °

X X X

X ° X °

X

(a) Polar cones -� of -

X*

X*X
X

X*=X
X

X*

(b) Dual cones -⇤ = �-� of -

Figure 12.1 Polar cones and dual cones of - ✓ R=. For the leftmost set - which is nonconvex,
both its polar cone and dual cone contain only the origin. The other three sets - are closed
convex cones and therefore (-�)� = - . Note that (-�)� < �-� = -⇤ unless - is self-dual.

of polar cones are given in the following result (see e.g. [56, Proposition 2.2.1, p.100]).
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Proposition 12.1. Let - ✓ R= be a nonempty set.

1. Its polar cone -� is a closed convex cone.
2. -� = (cl(-))� = (conv(-))� = (cone(-))�.
3. If - ✓ . then .� ✓ -�.
4. If - is a cone then (-�)� = cl(conv(-)). If - is a closed convex cone then

(-�)� = - . ⇤

The last property in Proposition 12.1 says that, if - is a cone, then the polar cone
of its polar cone is the smallest closed convex set containing - . Figure 12.1 shows the
polar cones of sets - that contain the origin. For a set - whose closure cl(-) does not
contain the origin, its polar cone -� is the same as the polar cone of cone(-) according
to Proposition 12.1, as illustrated in Figure 12.2.

X °

cone (X)

X

Figure 12.2 Polar cone -� = cone� (-) according to Proposition 12.1.

Example 12.1. Fix an Ḡ 2 -�. By definition ḠT
G  0 for all G 2 - . Can there be an

G 2 -� such that ḠT
G  0?

Solution. Yes if -� * - . Consider - := {G 2 R2 : G1 > 0,G2 = 0}. Then -� = {G 2 R2 :
G1  0}. An example is Ḡ := (0,�1) 2 -� and G := (0,1) 2 -�. ⇤

12.1.2 Normal cone and tangent cone

Let Ḡ 2 - ✓ R=. The cone of feasible directions of - at Ḡ (or the radial cone) is, from
Definition 8.5,

cone(- � Ḡ) :=

(
<’
8=1

U8 (G8 � Ḡ) : G8 2 - ,U8 � 0, integers < > 0

)

It is the set of directions G� Ḡ and their convex combinations along which an infinites-
imal step from Ḡ will stay in - . It is closed if and only if - is closed. The closure of
cone(-� Ḡ) can be interpreted as a “linear approximation” of the set - at the point Ḡ 2 -
in that it is the smallest convex cone that contains all the feasible directions G� Ḡ at Ḡ.
For a smooth function 5 , the first-order Taylor expansion 5̂ (G) := 5 (Ḡ) + m 5

mG
(Ḡ) (G� Ḡ)

approximates 5 locally at Ḡ by a supporting hyperplane. For a “smooth” set - , the
closed convex cone cl(cone(- � Ḡ)), called a tangent cone, approximates the set -
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locally at Ḡ by a halfspace associated with the supporting hyperplane at Ḡ (see Figure
12.5 below).

The notion of normal cone and tangent cone is fundamental to nonsmooth opti-
mization. It su�ces for our purposes to adopt the following definition.

Definition 12.2. Let - ✓ R= be a nonempty set and Ḡ 2 - .

1. The tangent cone of - at Ḡ is the closure of the feasible direction cone of - at Ḡ:

)- (Ḡ) := cl (cone(- � Ḡ))

2. The normal cone of - at Ḡ is the polar cone of the feasible direction cone of - at
Ḡ:

#- (Ḡ) := (cone(- � Ḡ))� = (- � Ḡ)� = {H 2 R= : HT (G� Ḡ)  0 8G 2 -}

⇤

Proposition 12.1 implies that the normal cone and the tangent cone are the polar
cones of each other. The second equality in Definition 12.2 of normal cone also follows
from Proposition 12.1. An equivalent definition for tangent cone of - at Ḡ is

)- (Ḡ) := {0}[
⇢
H < 0 : 9G: 2 - s.t. G: < Ḡ,G: ! Ḡ,

G: � Ḡ
kG: � Ḡk

! H

kHk

�

This definition is often used from which )- (Ḡ) = cl (cone(- � Ḡ)) can be derived.

Proposition 12.2. Let - ✓ R= be a nonempty set and Ḡ 2 - .

1. The polar cone, dual cone, tangent cone, and normal cone are closed convex cones,
even if - is neither closed nor convex.

2. ()- (Ḡ))� = #- (Ḡ) and )- (Ḡ) = (#- (Ḡ))�.
3. If Ḡ 2 int(-) then #- (Ḡ) = {0} and )- (Ḡ) = R=. ⇤

Proposition 12.2 is proved in Exercise 12.2. While a polar cone -� and a dual
cone -⇤ = �-� are sets with respect to the entire set - , a normal cone #- (Ḡ) and a
tangent cone )- (Ḡ) are set-valued functions whose values generally depend on their
argument Ḡ 2 - . If 0 2 - then -� = #- (0). Note that )- (Ḡ) is generally di�erent from
the dual cone (- � Ḡ)⇤ = {H 2 R= : HT (G� Ḡ) � 0, 8G 2 -} (Exercise 12.2). If Ḡ 2 ri(-),
instead of G 2 int(-) as in Proposition 12.2, then #- (Ḡ) may not be {0}. For example,
 := {(G1,0) 2 R2 : G1 � 0} and Ḡ := (1,0) 2 ri( ) at which # (Ḡ) = {(0,G2) : G2 2 R}.
The normal cones and tangent cones of three closed cones  at di�erent boundary
points Ḡ are illustrated in Figure 12.3.

Remark 12.1 (Linear approximation and optimality). 1. A tangent cone )- (Ḡ) =
cl(cone(- � Ḡ)) locally approximates the set - at Ḡ 2 - by the smallest closed
convex cone containing all the feasible directions G� Ḡ. Its polar cone, the normal
cone #- (Ḡ) = ()- (Ḡ))�, specifies the directions G � Ḡ that are “most opposite to”
or “most away from” the linear approximation )- (Ḡ).
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K °

x̄

NK(x̄)

TK(x̄)=half-space

K

(a) Pointed cone

K °

K

NK(0)=K °

TK(0)=K

(b) Pointed cone: Ḡ := 0

NK(x̄) K

TK(x̄)=R2K °

x̄

(c) Non-pointed nonconvex cone

NK(x̄)=K °
K °

TK(x̄)=K
K

x̄

(d) Non-pointed convex cone

Figure 12.3 Normal and tangent cones of closed cones  ✓ R2 at a boundary point Ḡ (see
Exercise 12.2 for derivation). (Nov 28, 2025: Fig (c): (i)  � area should be part of  in blue
(see Fig 12.4); (ii) Change # (Ḡ)! # (Ḡ) = {0}.)












































































































Figure 12.4 archieved figure. (Nov 28, 2025: To delete after fixing.)

2. If - is “smooth” at Ḡ then )- (Ḡ) is a halfspace associated with the supporting
hyperplane at Ḡ and #- (Ḡ) is a singleton; see Figure 12.5.

3. For convex constrained optimization, the first order optimality condition says that
G
⇤ is a minimizer if and only if the direction of cost reduction aligns with #- (G⇤),

i.e., �r 5 (G⇤) 2 #- (G⇤). In a smooth setting, this takes the form �r 5 (G⇤) =
r6(G⇤)_⇤ +r⌘(G⇤)`⇤, with the right-hand side being the singleton #- (G⇤). We
generalize this to the nonsmooth setting in Theorem 12.21 of Chapter 12.6. ⇤

Hyperplane, polyhedron, convex cone and convex set. Recall from Chapter 8.1.2
that a hyperplane (or an intersection of hyperplanes) is a set �1 := {G 2 R= : �G = 1}
specified by a finite number of a�ne equalities with � 2R<⇥= and 1 2R<. A polyhedral
set, or a polyhedron, is a set �2 := {G 2 R= : �G  1} specified by a finite number of
a�ne inequalities. A hyperplane �1 is not a cone unless 1 = 0. Its normal cone #�1 (Ḡ)
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TX(x̄)

NX(x̄)

TX(x̄)

X
Xx̄

NX(x̄)

x̄

Figure 12.5 The tangent cones )- (Ḡ) = cl (cone(- � Ḡ)) and the normal cones
#- (Ḡ) = cone� (- � Ḡ) of - at Ḡ. At Ḡ where the boundary of - is “smooth”, the left panel
illustrates the importance of “cl” in the definition of )- (Ḡ) and why #- (Ḡ) is a singleton.

is independent of Ḡ, unlike the normal cone of a polyhedron �2 or a general convex
cone. To avoid triviality we often assume implicitly these sets are nonempty.

The normal cones of hyperplanes, polyhedrons, general convex cones or convex sets
specified by convex functions are particularly useful, so we derive them here. They give
rise to optimal Lagrange multipliers in constrained convex optimization problems, as
well as complementary slackness for inequality constraints at optimality. For specific
convex programs in Chapter 12.9, substituting the expressions of the normal cones
in Theorems 12.3 and 12.4 into the optimality condition in Theorem 12.21 leads to
the KKT conditions for these convex programs. Recall that, for a matrix � 2 R<⇥=,
cone(�) := {�_ : _ 2 R=+} ✓ R< is the set of nonnegative linear combinations of the
columns of �.

Theorem 12.3 (Normal cones of convex sets). Given � 2 R<⇥=, 1 2 R<, and a real-
valued continuously di�erentiable convex function ⌘ : R=! R<, define

hyperplane: �1 := {G 2 R= : �G = 1}
polyhedron: �2 := {G 2 R= : �G  1}
nonnegative real: R

=

+ := {G 2 R= : G � 0}
convex cone:  ✓ R=

convex set: ⇠ := {G 2 R= : ⌘(G)  0}

Let 0T
8

denote rows 8 of �. Then

1. #�1 (Ḡ) = range(�T) = {�T
_ 2 R= : _ 2 R<} for any Ḡ 2 �1.

2. #�2 (Ḡ) = cone
⇣
�

T
� ( Ḡ)

⌘
= {�T

_ 2 R= : _ 2 R<+ , _T (�Ḡ � 1) = 0} for any Ḡ 2 �2

where � := � (Ḡ) := {8 : 0T
8
Ḡ = 18} is the set of active constraints. In particular

#�2 (Ḡ) = {0} if �Ḡ < 1.
3. #R=+ (Ḡ) = {H 2 R= : H  0, HT

Ḡ = 0} for any Ḡ 2 R=+. In particular #R=+ (Ḡ) = {0} if
Ḡ > 0 and #R=+ (0) = R=� := {H 2 R= : H  0}.

4. # (Ḡ) = {H 2  � : HT
Ḡ = 0} for any Ḡ 2  , where  � := {H 2 R= : HT

G  0 8G 2  }
is the polar cone of  . If Ḡ 2 int( ), then # (Ḡ) = {0}. If 0 2  then # (0) =  �.

If ⇠ satisfies the Slater condition, i.e., there exists G 0 2 ⇠ with ⌘(G 0) < 0, then



562 Nonsmooth convex optimization

5. #⇠ (Ḡ) = cone (r⌘� (Ḡ)) = {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} for any Ḡ 2 ⇠

where � := � (Ḡ) := {8 : ⌘8 (Ḡ) = 0} is the set of active constraints. In particular
#⇠ (Ḡ) = {0} if ⌘(Ḡ) < 0. ⇤

The proof of the theorem illustrates standard tools in convex analysis, such as the
Projection Theorem 8.9, the Separating Hyperplane Theorem 8.10, the KKT Theo-
rem 8.15 and the Slater Theorem 8.17.

Proof The sets �1,R=+ are special cases of �2. Even though it su�ces to derive
just #�2 (Ḡ), to build intuition, we derive directly #�1 (Ḡ),#R=+ (Ḡ) as well as # (Ḡ)
first using elementary set-theoretic argument common in this kind of analysis, before
deriving #�2 (Ḡ) using the Separation Hyperplane Theorem. Finally, we derive #⇠ (Ḡ)
for a convex set under a constraint qualification.

1. By definition

#�1 (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G s.t. �G = 1}

Since G, Ḡ 2 �1, �(G� Ḡ) = 0. Hence we can replace G� Ḡ for all G 2 �1 by all G in
null(�) to get

#�1 (Ḡ) = {H 2 R= : HT
G  0 8G s.t. �G = 0}

Since if G 2 null(�) then �G 2 null(�), we must have HT
G = 0 for all G 2 null(�).1

Hence H 2 range(�T), i.e., #�1 (Ḡ) = {�T
_ 2 R= : _ 2 R<}.

3. We prove parts 3 and 4 first. For R=+ := {G 2 R= : G � 0} we have

#R
=

+ (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G � 0}

If Ḡ > 0 (i.e., Ḡ is an interior point), then G := Ḡ + C4 9 for C 2 R with small enough
|C | (where 4 9 is the unit vector with 1 in the 9 th entry and 0 elsewhere) ensures
H

T (G � Ḡ) = CH 9  0. As C can be negative or positive, we must have H 9 = 0.
Hence #R=+ (Ḡ) = {0} if Ḡ > 0. If Ḡ is a boundary point of R=+ with Ḡ 9 = 0 for
9 2 � ✓ {1, . . . ,=} and Ḡ 9 > 0 for 9 8 �, then the same reason implies H 2 #R=+ (Ḡ) will
have H 9 = 0 for 9 8 �. For 9 2 �, using G := C4 9 for any C > 0 gives HT (G� Ḡ) = CH 9  0,
i.e., H 9  0. Putting all this together we have #R=+ (Ḡ) := {H 2 R= : H  0, HT

Ḡ = 0}.
4. For a general convex cone  ✓ R= (which includes R=+ as a special case if  is

closed), we have

# (Ḡ) := {H 2 R= : HT (G� Ḡ)  0 8G 2  }

Since  is a cone and Ḡ 2  , G := WḠ 2  for any W > 0. Hence any H 2 # (Ḡ)
must satisfy HT (G � Ḡ) = (W � 1)HT

Ḡ  0. Since W can be chosen to be greater or
smaller than 1 (as long as Ḡ < 0) we must have HT

Ḡ = 0 (even if Ḡ = 0). Then
H satisfies HT

G  0 8G 2  , i.e., H is in the polar cone  � of  . This shows that
# (Ḡ) ✓ {H 2  � : HT

Ḡ = 0}. For the converse let H 2  � with HT
Ḡ = 0. Then clearly

1 More explicitly, for any G 2 �1 so that �(G� Ḡ) = 0, the vector G0 := 2Ḡ� G is also in �1 since
�G
0 = 1; moreover �(G0 � Ḡ) = �( Ḡ� G) .
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H
T (G � Ḡ)  0 for all G 2  , i.e., H 2 # (Ḡ). If Ḡ 2 int( ), then # (Ḡ) = {0} for

the same reason as that in the proof for #R=+ (Ḡ).
2. By definition

#�2 (Ḡ) := {H 2 R= : HT (G� Ḡ)  0 8G s.t. �G  1}

where �Ḡ  1. Let

. (Ḡ) := {�T
_ 2 R= : _ 2 R<+ , _T (�Ḡ� 1) = 0} (12.2)

We will prove #�2 (Ḡ) = . (Ḡ).
Suppose H := �T

_ 2 . (Ḡ). Decompose �,1,_ according to active and inactive
constraint sets:

� =:

��

���

�
, 1 =:


1�

1��

�
, _ =:


_

_��

�

where � := � (Ḡ) := {8 : 0T
8
Ḡ = 18} is the set of active constraints and �� consists

of rows of � in �, so that �� Ḡ = 1� and ��� Ḡ < 1�� . Since _ � 0, �Ḡ � 1  0 but
_

T (�Ḡ� 1) = 0, we must have _�� = 0. Then, for any G with �G  1,

H
T (G� Ḡ) = _

T
�(G� Ḡ) = _

T
�G�

⇣
_

T
�
�� Ḡ +_T

�� ��� Ḡ
⌘

= _
T
�G�_T

�
1� = _

T (�G� 1)  0

where the third equality follows from _�� = 0 and �� Ḡ = 1� and the last equality
follows again from _�� = 0. Therefore H 2 #�2 (Ḡ).

Conversely suppose H 2 #�2 (Ḡ). If ⌘(Ḡ) < 0 then the same argument as that for
#R

=

+ (Ḡ) shows that #�2 = {0} and hence H 2 . (Ḡ). If � := � (Ḡ) < ;, we will prove
H 2 . (Ḡ) by contradiction. Suppose H 8. (Ḡ). We will construct a point G := Ḡ +�G
such that �G  1 but HT (G � Ḡ) = HT�G > 0, contradicting that H 2 #�2 (Ḡ) and
proving H 2 . (Ḡ). We will construct such a point in two steps.
Step 1: There exists nonzero 2 with 2T

08  0 < 2
T
H. Since . (Ḡ) is a closed convex

set, the Separating Hyperplane Theorem 8.10 says that there exists a nonzero
2 2 R= such that (from (8.22b)):

2
T
�

T
_ < 2

T
H, 8_ � 0 s.t. _T (�Ḡ� 1) = 0

Note that the unit vector 48 2 {0,1}< satisfies 4T
8
(�Ḡ�1) = 0 for 8 2 �. Substituting

into the equation above yields

C82
T
08 = 2

T
�

T (C848) < 2
T
H, 8C8 � 0, 8 2 �

where 0T
8

are the 8th row of �. Since this holds for all C8 � 0, we have

2
T
08  0 < 2

T
H, 88 2 � (12.3)

(Also see Remark 12.2 for a more direct derivation of (12.3).)
Step 2: There exists G(C) := Ḡ+ C2 2 �2 with HT (G(C)� Ḡ) > 0. Consider then G(C) :=
Ḡ + C2. We have

�G(C) = �Ḡ + C (�2) =

�� Ḡ + C (�� 2)
��� Ḡ + C (��� 2)

�
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For 8 2 �, (12.3) implies that �� Ḡ+ C (�� 2)  �� Ḡ = 1� . For 8 8 �, since ��� Ḡ < 1�� ,
there exists small enough C > 0 such that ��� Ḡ + C (��� 2)  1�� . Hence �G(C)  1
for a small enough C > 0. Yet, HT (G(C) � Ḡ) = CHT

2 > 0 from (12.3), contradicting
that H 2 #�2 (Ḡ). This completes the derivation of #�2 (Ḡ).

5. Fix a Ḡ 2 ⇠. If ⌘(Ḡ) < 0 then the same argument as that for R=+ shows that #⇠ (Ḡ) =
{0}. Suppose then ⌘8 (Ḡ) = 0 for 8 2 � (Ḡ) and ⌘8 (Ḡ) < 0 for 8 8 � (Ḡ). By definition

#⇠ (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G s.t. ⌘(G)  0}

Define the closed convex cone

. (Ḡ) := {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} =

(’
82�
_8r⌘8 (Ḡ) : _8 � 0

)

where the last equality follows from ⌘(Ḡ)  0 and _ � 0. We now show that
#⇠ (Ḡ) = . (Ḡ).

Suppose H := r⌘(Ḡ)_ 2 . (Ḡ). Since ⌘ is convex on R= we have

⌘(G)�
⇣
⌘(Ḡ) +rT

⌘(Ḡ) (G� Ḡ)
⌘
� 0 8G s.t. ⌘(G)  0

Multiplying both sides by _T � 0 and using _T
⌘(Ḡ) = 0, ⌘(G)  0 and _ � 0, we

have2

(r⌘(Ḡ)_)T (G� Ḡ)  _
T
⌘(G)  0 8G s.t. ⌘(G)  0

Hence H 2 #⇠ (Ḡ).
Conversely suppose H 2 #⇠ (Ḡ). Consider the point Ḡ + H and project it onto the

convex set ⇠ at the point Ī := [Ḡ + H]⇠ , i.e., Ī is the unique optimal solution of the
smooth convex optimization:

Ī := argmin
I

1
2
kI� (Ḡ + H)k22 s.t. ⌘(I)  0 (12.4)

Then the Projection Theorem 8.9 implies that

(Ḡ + H� Ī)T (G� Ī)  0 8G 2 ⇠

Taking G = Ḡ gives

kḠ� Īk22  H
T ( Ī� Ḡ)  0

where the last inequality follows from H 2 #⇠ (Ḡ) and Ī 2 ⇠. Therefore Ī = Ḡ, i.e.,
the projection of Ḡ + H onto ⇠ is Ḡ. Since ⇠ satisfies the Slater condition, the Slater
Theorem 8.17 provides an optimal dual variable _̄ 2 R<, _̄ � 0 for (12.4) and the
KKT Theorem 8.15 implies that ( Ī, _̄) satisfy

Ī� (Ḡ + H) + r⌘( Ī)_̄ = 0, ⌘( Ī)  0, _̄
T
⌘( Ī) = 0

Since Ī = Ḡ we have H = r⌘(Ḡ)_̄ and _̄T
⌘(Ḡ) = 0, i.e., H 2 . (Ḡ).

2 Setting ⌘ (G) = �G�1, this argument simplifies that for �2 above to: since
�G�1 = (�Ḡ�1) + �(G� Ḡ) , we have _T (�G�1) = _T

�(G� Ḡ) = H (G� Ḡ) and hence H (G� Ḡ)  0
for all G such that �G  1.
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This completes the proof of Theorem 12.3. ⇤

Remark 12.2 (Proofs). 1. The sets �1,�2 are polyhedral,  is a convex cone, and
R
=

+ is both. Their normal cones exist without qualification. For a general convex
set defined by ⌘, a constraint qualification such as the Slater condition is imposed.

2. The polyhedral sets �1,�2,R=+ in Theorem 12.3 are all special cases of the convex
set ⇠. Their normal cones can be derived by specializing #⇠ (Ḡ) = cone (r⌘� (Ḡ))
to a�ne ⌘, provided these sets satisfy the Slater condition. The normal cone of �1

can also be derived from that of �2 by writing �G = 1 as �G  1 and ��G  �1.
3. Farkas Lemma (Theorem 8.12). In the proof of part 2 for polyhedron �2, . (Ḡ) in

(12.2) is a convex cone because it is equivalent to

. (Ḡ) := {�T
�
_� 2 R= : _� 2 R |� |

+ }

where � := � (Ḡ) is the active constraint set. If H 8. (Ḡ), then (12.3) follows directly
from the Farkas Lemma (Theorem 8.12). We derive (12.3) from the Separating
Hyperplane Theorem (which underlies the Farkas Lemma) because, while Farkas
Lemma applies to a convex cone, the Separating Hyperplane Theorem applies
more broadly to a convex set (see Remark 12.5).

4. Inadequacy of G(C) := Ḡ + C2 2 �2. The condition (12.3) allows us to construct a
feasible point G(C) := Ḡ + C2 2 �2 with HT (G(C)� Ḡ) > 0. This proves H 2 #�2 (Ḡ))
H 2. (Ḡ). When⇠ := {G 2 R= : ⌘(G)  0} is defined by a nonlinear convex function
⌘(G), this argument can break down because, for 8 2 � (Ḡ), (r⌘8 (Ḡ))T

2 may be zero
(corresponding to 0T

8
2 = 0 in (12.3) for �2) and ⌘(G(C))  0 (corresponding to

�G(C) � 1  0) may not hold for any C > 0 due to the second-order term in the
Taylor expansion of ⌘, as Exercise 12.4 illustrates. ⇤

Example 12.2 (#�1 (Ḡ) and #�2 (Ḡ)). Let

� :=

1 1 0
0 0 1

�
, 1 :=


1
2

�

Then �G = 1 defines the hyperplane �1 := {G 2 R3 : G1 + G2 = 1, G3 = 2}. Its normal
cone is the span of the columns of �T independent of Ḡ 2 �1:

#�1 (Ḡ) = {H 2 R3 : H = �T
_ for some _ 2 R2} =

8>><
>>:
266664
_1

_1

_2

377775
: _8 2 R

9>>=
>>;

Consider the polyhedron �2 := {G 2 R3 : G1 +G2  1, G3  2} and Ḡ := (0.5,0.5,0) 2
�2. Then � := � (Ḡ) = {1}. According to Theorem 12.3 its normal cone is in the cone
of the columns of �T with complementary slackness:

#�2 (Ḡ) = {H 2 R3 : H = �T
_ for some _1 � 0,_2 = 0} =

8>><
>>:
266664
_1

_1

0

377775
: _1 � 0

9>>=
>>;

⇤
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Instead of the Slater condition in Theorem 12.3, suppose the linear independence
constraint qualification (LICQ) discussed in Chapter 8.3.4:

columns of r⌘� (Ḡ) 2 R=⇥ |� | are linearly independent (12.5)

holds at Ḡ, where � := � (Ḡ) := {8 : ⌘8 (Ḡ) = 0} is the set of active constraints and r⌘� :=
(r⌘8 : 8 2 �). Then every vector in the normal cone #⇠ (Ḡ) has a unique representation
in terms of r⌘(Ḡ) (the normal cone #⇠ (Ḡ) generally contains multiple vectors). This
implies the uniqueness of a dual optimal solution in a convex optimization (see (8.44)).

Theorem 12.4 (Normal cone of ⇠). Let ⇠ := {G 2 R= : ⌘(G)  0} be the convex set
defined by a real-valued twice continuously di�erentiable convex function ⌘ : R=!
R
<. If Ḡ 2 ⇠ satisfies (12.5) then (denoting � := � (Ḡ) := {8 : ⌘8 (Ḡ) = 0})

1. #⇠ (Ḡ) = cone (r⌘� (Ḡ)) = {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} for any Ḡ 2 ⇠.

2. Every H 2 #⇠ (Ḡ) has a unique representation in terms of r⌘� (Ḡ), i.e., for every
H 2 #⇠ (Ḡ), there exists a unique _� 2 R |� |

+ such that H = r⌘� (Ḡ)_� . ⇤

The normal cone #⇠ (Ḡ) in part 1 is the same as that in Theorem 12.3. Since we have
only proved the existence of dual variables under the Slater condition, but not under
LICQ, we provide a direct proof for part 1 (part 2 is a simple consequence of LICQ).
The proof illustrates several convex analysis techniques useful in many applications.
The key is showing H 2 #⇠ (Ḡ)) H 2 . (Ḡ) (argument for other aspects of part 1 is the
same as that in Theorem 12.3). For this step, the argument in Theorem 12.3 for �2

using Ḡ+�G := Ḡ+ C2 is inadequate for nonlinear ⌘ (see Remark 12.2) and the argument
there for ⇠ cannot be applied because the lack of the Slater condition. Instead, the
proof for Theorem 12.4 uses linear program (LP) duality to find a direction �G for the
contradiction argument. It also illustrates the role of LICQ in the LP duality argument.

Proof of Theorem 12.4 If ⌘(Ḡ) < 0 then the same argument as that for R=+ in Theo-
rem 12.4 shows that #⇠ (Ḡ) = {0}. Suppose then ⌘8 (Ḡ) = 0 for 8 2 � := � (Ḡ) < ; and
⌘8 (Ḡ) < 0 for 8 8 �. By definition

#⇠ (Ḡ) = {H 2 R= : HT (G� Ḡ)  0 8G s.t. ⌘(G)  0}

where ⌘(Ḡ)  0. Define the closed convex cone

. (Ḡ) := {r⌘(Ḡ)_ 2 R= : _ 2 R<+ , _T
⌘(Ḡ) = 0} =

(’
82�
_8r⌘8 (Ḡ) : _8 � 0

)

We will show that #⇠ (Ḡ) = . (Ḡ).

Suppose H := r⌘(Ḡ)_ 2 . (Ḡ). Then the same argument as that in Theorem 12.3
using the convexity of ⌘ implies H 2 #⇠ (Ḡ).

Conversely suppose H 2 #⇠ (Ḡ). Suppose � := � (Ḡ) < ; and H 8 . (Ḡ). We will show
that there exists an G(C) := Ḡ + C�G such that ⌘(G(C))  0 but HT (G(C)� Ḡ) = CHT�G > 0,
contradicting H 2 #⇠ (Ḡ) and proving that H 2 . (Ḡ), in three steps.
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Step 1: There exists 2 with 2T
H > 0. The same argument in Theorem 12.3 that derives

(12.3) for the polyhedron �2 shows that there exists a nonzero 2 2 R= with

2
Tr⌘8 (Ḡ)  0 < 2

T
H, 88 2 � (12.6)

This is a consequence of the Farkas Lemma (Theorem 8.12) since . (Ḡ) is a convex
cone (see Remark 12.2).

Step 2: Bound second-order term. For the polyhedron�2 in Theorem 12.3, the required
�G := 2. For nonlinear ⌘(G), however, G(C) := Ḡ+ C2 is inadequate because of the second-
order term in the Taylor expansion of ⌘(G(C)), as explained in Exercise 12.4. A more
sophisticated argument is needed that uses linear programming duality in Theorem 8.23
of Chapter 8.4.2.

For each 8 = 1, . . . ,<, we have

⌘8 (G(C)) = ⌘8 (Ḡ + C�G) = ⌘8 (Ḡ) + C
m⌘8

mG

(Ḡ)�G + C
2

2
�GT m

2
⌘8

mG
2
(G(B8))�G (12.7)

for some B8 2 [0, C]. The last term depends on C through G(B8), but can be upper bounded
by:

U8 (Ḡ,�G) := max
B8 2 [0,1]

�GT m
2
⌘8

mG
2
(G(B8))�G

which is finite and independent of C, given (Ḡ,�G), since ⌘8 is twice continuously
di�erentiable and B8 is in a compact set [0,1]. Then (12.7) implies, for 8 = 1, . . . ,<,

⌘8 (G(C))  ⌘8 (Ḡ) + C
✓
m⌘8

mG

(Ḡ)�G + C
2
U8 (Ḡ,�G)

◆
for C 2 [0,1]

Hence if we can find a direction �G such that

m⌘8

mG

(Ḡ)�G < 0 for 8 2 � := � (Ḡ) (12.8a)

then, since ⌘8 (Ḡ) = 0 for 8 2 � and ⌘8 (Ḡ) < 0 for 8 8 �, there exists a su�ciently small
C > 0 such that ⌘8 (G(C))  0 for all 8 = 1, . . . ,<. If �G also satisfies

H
T (G(C)� Ḡ) = CH

T�G > 0 (12.8b)

then G(C) contradicts H 2 #⇠ (Ḡ) and thus proves H 2 . (Ḡ).

Step 3: There exists�G that satisfies (12.8). To find such a�G, denote by ⌘� := (⌘8 : 8 2 �)
the vector of constraint functions ⌘8 with ⌘8 (Ḡ) = 0. Consider the linear program

I
⇤ (n) := min

(�G,I)2R=+1
I s.t.

m⌘�

mG

(Ḡ)�G  I1, HT�G � n (12.9)

where the parameter n > 0 is to be determined, m⌘�
mG

(Ḡ) and H are fixed, and 1 denotes
the vector of all 1s of size |� |. An optimal solution (�G⇤, I⇤ (n)) with I⇤ (n) < 0 exists
for some n > 0 if and only if G⇤ (C) := Ḡ + C�G⇤ satisfies (12.8). We claim that the linear
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program (12.9) is feasible for a su�ciently small n > 0, because

�G := 2, I := max
82�

m⌘8

mG

(Ḡ)2

satisfies the constraints in (12.9), where 2 is the vector in (12.6). Fix an n > 0 such that
(12.9) is feasible.

We now show that the LICQ (12.5) implies that the dual of (12.9) is infeasible. Let
_ 2 R |� |

+ and ` 2 R+ denote the dual variables associated with the constraints in (12.9).
The dual problem of (12.9) is (see Chapter 8.4.2 for details):

3
⇤ (n) := max

(_,`)2R|� |+1
n ` s.t. 1

T
_ = 1, r⌘� (Ḡ)_ = `H, (_,`) � 0 (12.10)

where r⌘� (Ḡ) =
⇣
m⌘�

mG
(Ḡ)

⌘T
. Suppose (_,`) � 0 is feasible for (12.10). Since r⌘� (Ḡ)

has linearly independent columns (constraint qualification), r⌘� (Ḡ)_ < 0 and hence
` > 0. Therefore we can write

H =
’
82�

_8

`

r⌘8 (Ḡ)

i.e., H 2 . (Ḡ), contradicting the assumption that H 8 . (Ḡ). Hence the dual problem
(12.10) is infeasible.

Since the primal problem is feasible but the dual problem is infeasible, linear
programming duality implies that I⇤ (n) = 3⇤ (n) = �1 (see Theorem 8.23 of Chapter
8.4.2). This means there exists a (finite) �G that is feasible for (12.9) and that satisfies
(12.8). This establishes the existence of an G(C) := Ḡ + C�G such that ⌘(G(C))  0 but
H

T (G(C)� Ḡ) = CHT�G > 0, contradicting H 2 #⇠ (Ḡ) and proving that H 2 . (Ḡ).

Finally, for any H 2 #⇠ (Ḡ), H = r⌘� (Ḡ)_� for some _� 2 R |� |
+ . If there is another

distinct _̂� with H = r⌘� (Ḡ)_̂� then r⌘� (Ḡ) (_̂� �_� ) = 0, contradicting LICQ (12.5).
Hence H has a unique representation. ⇤

Theorems 12.3 and 12.4 derive the normal cones of common convex sets. The next
result says that the normal cone of the intersection of convex sets is the sum of their
individual normal cones. It is useful in deriving the normal cone of multiple constraints
in an optimization problem from the normal cones of individual constraints. It is proved
in Exercise 12.16 using Theorem 12.18 below (whose proof does not rely on Lemma
12.5 so there is no circular argument).

Lemma 12.5 (Normal cone of set intersection). Consider polyhedral sets ⇠8 ✓ R=,
8 = 1, . . . , <̄, and convex sets ⇠8 ✓ R=, 8 = <̄ +1, . . . ,<, and let ⇠ :=

—
<

8=1⇠8 . If
�
\<̄
8=1⇠8

� Ÿ �
\<
8=<̄+1 ri(⇠8))

�
< ;

then

#⇠ (Ḡ) =
’
8

#⇠8
(Ḡ), 8Ḡ 2 ⇠
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Summary. Theorems 12.3 and 12.4 are summarized in Table 12.1 (see Exercise 12.5
for derivation of the tangent cones). We will use these results together with Lemma 12.5

Set - ✓ R= Normal cone #- (Ḡ) ✓ R= Tangent cone )- (Ḡ) ✓ R=

{G : �G = 1} range(�T) = {�T
_ : _ 2 R<} null(�) := {H : �H = 0}

{G : �G  1} cone
⇣
�

T
�

⌘
= {�T

_ 2 R= : _ 2 R<+ ,_T (�Ḡ� 1)} {H : �� H  0}
{G : ⌘(G)  0} cone(r⌘� (Ḡ)) = {r⌘(Ḡ)_ :_ 2 R<+ ,_T

⌘(Ḡ) = 0} {H : rT
⌘� (Ḡ)H  0}

cone{G : G � 0} {H  0 : HT
Ḡ = 0} {H : Ḡ8 = 0) H8 � 0}

cone( ) {H 2  � : HT
Ḡ = 0} cl{Õ

8
U8 (G8 � Ḡ) :G8 2  ,U8 � 0}

Table 12.1 The tangent cones and normal cones of convex sets. The function ⌘ is assumed to
be continuously di�erentiable, convex and satisfies the Slater condition.

to derive KKT conditions in Chapter 12.9 for convex optimization problems widely
used in applications. The intuition is explained in Remark 12.1: G⇤ is a minimizer if the
negative cost gradient �r 5 (G⇤) is in the normal cone #- (G⇤) of the feasible set - at
G
⇤. If the feasible set - := \8⇠8 is specified by multiple constraints ⇠8 , the optimality

condition takes the form�r 5 (G⇤) 2Õ
8
#⇠8

(G⇤), e.g.,�r 5 (G⇤) =r6(G⇤)_⇤+r⌘(G⇤)`⇤
as in (12.1). The condition HT

Ḡ = 0 in Table 12.1 give rise to complementary slackness
in KKT conditions, as we will see in Chapter 12.9. Theorems 12.3 and 12.4 also need
constraint qualifications for nonpolyhedral convex sets.

12.1.3 A�ne transformation

We have derived in the previous subsection the normal cones of common sets. In this
subsection we study how the normal cones are transformed when these sets undergo
a�ne transformations. They will be applied in Chapter 12.1.4 to derive the normal
cones of SOC constraints.

Fix a matrix � 2 R<⇥=. Consider the image. ✓ R< and the pre-image - ✓ R= under
the a�ne mapping taking G 2 - to �G + 1 2 . . We will study the relation between the
normal cones #- (Ḡ) and #. (�Ḡ + 1). The main conclusion will be that if - is the
pre-image of an arbitrary set . then #- (Ḡ) = �T

#. (�Ḡ + 1). If . := �- + 1 is the
image of - , however, then #- (Ḡ) ◆ #. (�Ḡ + 1) with equality if rank(�) = =.

Pre-image of . . Fix a linear mapping � 2 R<⇥=. Given a nonempty set . ✓ R<, its
pre-image under � 2 R<⇥= is the set

- := {G 2 R= : �G 2 . }

The mapping � : - ! . is not necessarily surjective, i.e., �- ✓ . and �- can be a
strict subset of . . Recall that /� and #/ ( Ī) denote the polar cone and the normal cone
of a set / at Ī 2 / respectively. The next result says that the polar cone -� and the
normal cone #- (Ḡ) of - at Ḡ are the images of .� and #. (�Ḡ) respectively under �T.
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Theorem 12.6 (Pre-image of linear transformation). Let . ✓ R< be a nonempty set
and - := {G 2 R= : �G 2. } be its pre-image under � 2 R<⇥=. Let Ḡ 2 - and H̄ = �Ḡ 2. .
Then #- (Ḡ) = �T

#. ( H̄) and -� = �T
.
�. ⇤

The theorem is proved using the following useful property of the pseudo-inverse �†.
Consider the singular value decomposition � = +⌃,T = +A⌃A,T

A
where rank(�) = A ,

+ 2 R<⇥< and , 2 R=⇥= are unitary matrices partitioned so that their first A columns
correspond to the A positive singular values of � (see Theorem A.19 of Appendix A.7
for details):

+ =
⇥
+A +<�A

⇤
, ⌃ =


⌃A 0
0 0

�
, , =

⇥
,A ,=�A

⇤

Its pseudo-inverse is the real matrix �
† := ,⌃†+T = ,A⌃�1

A
+

T
A

. The linear space
R
= = range(�T) � null(�) can be decomposed into orthogonal subspaces with bases

given by the columns of , , i.e., range(�T) = range(,A ) and null(�) = range(,=�A )
(Theorem A.19). Therefore every G 2 R= can be uniquely decomposed into

G = ,A

⇣
,

T
A
G

⌘
+,=�A

⇣
,

T
=�AG

⌘

Since,A,T
A
= �†

�, every G 2 R= has a unique orthogonal decomposition:

G = �
† (�G)|{z}
H (G)

+,=�A
⇣
,

T
=�AG

⌘
|    {z    }
V (G)

= �
†
H(G) +,=�A V(G) (12.11)

where H(G) := �G and ,=�A V(G) in null(�) = range(,=�A ) are unique vectors deter-
mined by G. This is illustrated in Figures 12.6. The first term �

†
H(G) =,A

�
,

T
A
G

�
2

xA†Ax

range(AT) = range(Wr)

null(A) = range(Wn

Figure 12.6 Orthogonal decomposition of R= using singular value decomposition of matrix �.

range(,A ) is the projection of G onto range(�T) and is orthogonal to the second term
(Theorem A.19).

Given an arbitrary. ✓ R< let - := {G 2 R= : �G 2. } be its pre-image. Then (12.11)
implies that the pre-image of each H 2 . consists of �†

H plus the whole subspace
null(�) = range(,=�A ). Hence - can be decomposed into equivalent classes, with
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each class represented by a unique �†
H and members of the same class di�er only by

their components in null(�), i.e.,

- = �
†
. +,=�AR=�A (12.12)

Proof of Theorem 12.6 Given any H̃ 2 #. ( H̄), H̃T (H� H̄)  0 for all H 2. . In particular
H̃

T (H � H̄)  0 for all H = �G 2 �- ✓ . . Therefore H̃T
�(G � Ḡ)  0 for all G 2 - , i.e.,

�
T
H̃ 2 #- (Ḡ). This shows that �T

#. ( H̄) ✓ #- (Ḡ).

Conversely suppose G̃ 2 #- (Ḡ), i.e. G̃T (G� Ḡ)  0 for all G 2 - . Use (12.11) to write
G� Ḡ = �†(H� H̄) +,=�A (V� V̄) where H = �G, H̄ = �Ḡ, and V, V̄ are determined by G, Ḡ
respectively. Then

G̃
T
�
†(H� H̄) + G̃T

,=�A (V� V̄)  0

As G ranges over - , (12.12) implies that this must hold for all H 2 . and all V 2 R=�A .
Therefore we have (setting H = H̄ and then V = V̄)

G̃
T
�
†(H� H̄)  0 8H 2 . (12.13a)

G̃
T
,=�A (V� V̄)  0 8V 2 R=�A (12.13b)

The second inequality (12.13b) implies G̃T
,=�A = 0 (take V = V̄± 4 9 ) and hence G̃ 2

range(,A ) (see Figures 12.6). The first inequality (12.13a) implies (�†)T
G̃ 2 #. ( H̄),

i.e., there exists H̃ 2 #. ( H̄) such that

(�†)T
G̃ = H̃

Multiplying both sides by �T and using the symmetry of �†
� =,A,T

A
, we have

(�†
�)T

G̃ = (�†
�)G̃ = G̃ = �

T
H̃

where the second equality follows because �†
� =,A,T

A
projects G̃ onto range(,A )

but G̃ is already in range(,A ). This shows that #- (Ḡ) ✓ �T
#. ( H̄). This completes the

proof of #- (Ḡ) = �T
#. ( H̄).

The same argument shows -� = �T
.
� whether or not 0 2 - (if 0 2 - then -� =

[cl(cone(-))]� = #- (0) by Proposition 12.1, and similarly .� = #. (0)). ⇤

We now generalize Theorem 12.6 to an a�ne transformation 5 (G) = �G + 1 where
� 2 R<⇥= and 1 2 R<. Given a nonempty set . ✓ R< let its pre-image under the a�ne
mapping be

-1 := {G 2 R= : �G + 1 2 . }

We will use this a�ne transformation in Chapter 12.1.4 to derive the normal cone of
a SOC constraint (12.19) from the normal cone of a standard second-order cone. The
next result shows that the relation between the normal cone of -1 and that of . is
independent of the translation by 1 (except for H̄ = �Ḡ + 1).
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Corollary 12.7 (Pre-image of a�ne transformation). Let . ✓ R< be a nonempty set
and -1 := {G 2 R= : �G + 1 2 . } be its pre-image under an a�ne transformation. Let
Ḡ 2 -1 and H̄1 = �Ḡ + 1 2 . . Then #-1 (Ḡ) = �T

#. ( H̄1) and -�
1
= �T (. � 1)�.

Proof Since G 2 -1 if and only if �G 2 . � 1, - is the pre-image of . � 1 under �.
Hence Theorem 12.6 implies that -� = �T (.1 � 1)�.

For part 2, H̃ 2 #. ( H̄1) if and only if H̃T (H� H̄1)  0 for all H 2 #. ( H̄1), in particular,
for all H = �G+1 with G 2 - . Therefore H̃T

�(G� Ḡ)  0 for all G 2 - , i.e., �T
H̃ 2 #- (Ḡ).

This shows �T
#. ( H̄1) ✓ #- (Ḡ). Conversely suppose G̃ 2 #- (Ḡ), i.e., G̃T (G � Ḡ)  0

for all G 2 - . Again, Use (12.11) to write G � Ḡ = �†((H� 1) � ( H̄� 1)) +,=�A (V� V̄)
where H � 1 := �G, H̄ � 1 := �Ḡ, and V, V̄ are determined by G, Ḡ respectively. Then
G̃

T
�
†(H � H̄) + G̃T

,=�A (V� V̄) for all H 2 . and all V 2 R=�A . The rest of the proof of
Theorem 12.6 remains unchanged and shows that �T

#. ( H̄1) ◆ #- (Ḡ). ⇤

Corollary 12.7 reduces Theorem 12.6 when 1 = 0. It is verified in the next example.

Example 12.3 (Pre-image of a�ne transformation). Consider the convex cone . and
its pre-image -1 under an a�ne transformation (see Figure 12.7):

. := {H 2 R2 : H1 � 0, H2  0}, � :=

1 0
0 �1

�
, 1 :=


1
1

�

-1 := {G 2 R2 : �G + 1 2 . } = {G 2 R2 : G1 � �1, G2 � 1}

By definition, H 2 (. � 1)� if and only if HT
H̃ = H̃1H1 + H̃2H2  0 for all H̃ 2 . � 1,

Y °
Xb :={Ax+b

(a) Pre-image of a�ne transformation

y2

y1

Y−b

(Y−b)°

(b) . �1

Figure 12.7 Example 12.3: while . is a cone, -
1

is not. -�
1
= �T (. � 1)� and

#-1
(Ḡ) = �T

#. ( H̄1) (Corollary 12.7). (Dec 17, 2025: (a) The label -�
1
= �T (. � 1)� is too

obscure.)

i.e., for all H̃ with H̃1 � �1, H̃2  �1. It can then be checked that (. � 1)� is (consider
H̃ := (�1,�1) 2 . � 1, H̃1!1 and H̃2!�1)

(. � 1)� = {H 2 R2 : H1 + H2 � 0, H1  0, H2 � 0}

which is a closed convex cone even though . � 1 is not a cone (Proposition 12.2).
Corollary 12.7 implies that -�

1
= �T (. � 1)�, which we verify directly as follows. For

H 2 (. � 1)�, G := �T
H = (H1,�H2) and hence

�
T (. � 1)� = {G 2 R2 : G1� G2 � 0, G1  0, G2  0}
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On the other hand, G 2 -�
1

if and only if GT
G̃ = G̃1G1 + G̃2G2  0 for all G̃ 2 -1 , i.e., for all

G̃ with G̃1 � �1, G̃2 � 1. It can then be checked that -�
1

is (consider G̃ := (�1,1) 2 -1 ,
G̃1!1 and G̃2!1)

-
�
1
= {G 2 R2 : G1� G2 � 0, G1  0, G2  0}

which equals �T (. � 1)�; see Figure 12.7.

At H̄1 = (1,0) and Ḡ = �
�1 ( H̄1 � 1) = (0,1). Corollary 12.7 implies #-1 (Ḡ) =

�
T
#. ( H̄1), which can be verified as follows. Since . is a convex cone we can ap-

ply Theorem 12.3 to obtain #. ( H̄1) = {H 2 .� : HT
H1 = 0} = {H 2 R2 : H1 = 0, H2 � 0}.

Hence �T
#. ( H̄1) = {G 2 R2 : G1 = 0, G2  0}. Since -1 is not a cone we cannot apply

Theorem 12.3 to obtain #-1 (Ḡ). By definition G 2 #-1 (Ḡ) if and only if GT (G̃� Ḡ)  0
for all G̃ 2 -1 , i.e.,

G̃1G1 + (G̃2�1)G2  0 for all G̃ with G̃1 � �1, G̃2 � 1

Taking G̃ = (�1,1) and G̃ = (1,1) yields G1 = 0. Hence G2  0. This shows that #-1 (Ḡ) =
�

T
#. ( H̄1), verifying Corollary 12.7. ⇤

Image of - . Given a nonempty set - ✓ R=, its image under � 2 R<⇥= is the set

. := �- := {�G 2 R< : G 2 -}

By definition of . , the mapping � : - ! . is surjective, i.e., every H 2 . satisfies
H = �G for some G 2 - . It is injective if � is of full column rank. The next result is used
in Corollary 12.11 to derive the normal cone of a rotated second-order cone from that
of a standard second-order cone. It says that the polar cone .� and the normal cone
#. ( H̄) of . at H̄ are the pre-images of -� and #- (Ḡ) respectively under �T.

Theorem 12.8 (Image of linear transformation). Let - ✓ R= be a nonempty set and
. := �- where � 2 R<⇥=. Let Ḡ 2 - and H̄ = �Ḡ 2 . . Then

1. �T
#. ( H̄) ✓ #- (Ḡ) and �T

.
� ✓ -�.

2. If rank(�) = = (full column rank) then �T
#. ( H̄) = #- (Ḡ) and �T

.
� = -�. ⇤

When. := �- is the image of - under �, every G 2 R= still has a unique orthogonal
decomposition in (12.11), but instead of (12.12), we only have

- = �
†
. +,=�A⌫(-) with ⌫(-) :=

�
,

T
=�AG : G 2 -

 
✓ R=�A (12.14)

i.e., - may not contain the entire null space of � and (12.13b) may no longer hold. This
is why equality may not hold in �T

#. ( H̄) ✓ #- (Ḡ). If rank(�) = = = A then ,=�A is
null (i.e., null(�) = {0}) and - = �†

. , in which case �T
#. ( H̄) = #- (Ḡ). The detailed

proof of Theorem 12.8 is left as Exercise 12.8.

Theorem 12.8 is illustrated in Figure 12.8 for the case when rank(�) = = so that
-
� = �T

.
�. The next Example 12.4 illustrates the di�erence between Theorems 12.6

and 12.8 when � is singular.
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X °

AT

X A
Y

Y °

Figure 12.8 Theorem 12.8 when rank(�) = = : linear transformation . of a convex cone - and
their polar cones .� = #. (0) and -� = #- (0) respectively.

Example 12.4 (Image vs pre-image). Let � :=

1 1
1 1

�
be a singular matrix. We give

a set - whose image . = �- satisfies �T
#. ( H̄) ( #- (Ḡ) at Ḡ = 0, and another set .

whose pre-image - satisfies �T
#. ( H̄) = #- (Ḡ) at all Ḡ 2 - and H̄ = �Ḡ 2 . .

1. Consider the set - and its image . under �:

- := {G 2 R2 : G � 0}, . := �- = {�G : G � 0} =
⇢
U


1
1

�
: U � 0

�

The polar cone of - is -� = {G 2 R2 : G  0}. From Theorem 12.8 the polar cone
.
� is the pre-image of -� under �T:

.
� = {H 2 R2 : �T

H 2 -�} = {H 2 R2 : H1 + H2  0}

We hence have

�
T
#. (0) = �

T
.
� = {�T

H : H 2 .�} =
⇢
U


1
1

�
: U  0

�
( -

� = #- (0)

as proved in Theorem 12.8. These sets are illustrated in Figure 12.9(a).
2. Consider the set . and its pre-image - under �:

. := {H 2 R2 : H � 0}, - := {G 2 R2 : �G � 0} = {G : G1 + G2 � 0}

Note that �- = {�G : G1 + G2 � 0} = {U(1,1) : U � 0} ( . . Then .� = {H : H  0}
and

-
� := {G : G̃1 + G̃2 � 0) G1G̃1 + G2G̃2  0} = {G : G1 = G2, G  0}

Hence, even though � is singular, �T
.
� = {�T

H : H  0} = {U(1,1) : U  0} = -�
as proved in Theorem 12.6; see Figure 12.9(b). All boundary points Ḡ of - , defined
by G1 +G2 = 0, are mapped to H̄ = �Ḡ = 0 which is the unique boundary point of . .
For this pair of (Ḡ, H̄), �T

#. ( H̄) = �T
.
� = -� = #- (Ḡ) from Theorem 12.3. ⇤
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Y °

Y

X

X °

Y = AX

x2

x1

y2

y1

ATY °⊊X °

x2+x1= 0

(a) Image of -

X °=ATY °

X :={x:Ax

(b) Pre-image of .

Figure 12.9 Example 12.4. Since � is singular, (a) �T
.
�
( -
�; (b) �T

.
� = -�; moreover

�
T
#. ( H̄) = #- (Ḡ).

We now generalize Theorem 12.8 to an a�ne transformation. Fix � 2 R<⇥= and
1 2R<. Given a nonempty set - ✓ R= let the image of - under the a�ne transformation
defined by (�,1) be

.1 := �- + 1 ✓ R<

i.e., H 2 .1 if and only if H = �G + 1 for some G 2 - . The next result (proved in
Exercise 12.8) reduces to Theorem 12.8 when 1 = 0.

Corollary 12.9 (Image of a�ne transformation). Let - ✓ R= be a nonempty set and
.1 := �- + 1 where � 2 R<⇥= and 1 2 R<. Let Ḡ 2 - and H̄1 = �Ḡ + 1 2 . . Then

1. �T
#.1

( H̄1) ✓ #- (Ḡ) and �T (.1 � 1)� ✓ -�.
2. If rank(�) = = then �T

#.1
( H̄1) = #- (Ḡ) and �T (.1 � 1)� = -�. ⇤

Corollary 12.9 is illustrated in the next example (compared with Example 12.3).

Example 12.5 (Image of a�ne transformation). Consider the convex cone - and its
a�ne transformation .1:

- := {G 2 R2 : G � 0}, .1 := �- + 1 = {H 2 R2 : H1 � 1, H2  1}

where �,1 are defined in Example 12.3.

The polar cone -� = {G 2 R2 : G  0}. Since 0 2 - , Exercise 12.10 implies that the
polar cone of .1 is

.
�
1

= {H 2 R2 : �T
H 2 -�, HT

1  0} = {H 2 R2 : H1  0, H2 � 0, H1 + H2  0}

This is illustrated in Figure 12.10. It can be seen that .1 is not a cone (since 1 < 0)
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Yb = Ax+b
X

x2

x1

y1+y2= 0 y2

y1

X ° Yb

x̄

X °=AT(Yb

(a) Image of a�ne transformation

y2

y1

(Yb

(b) .1 �1

Figure 12.10 Example 12.5: while - is a cone, .
1

is not. -� = �T (.
1
� 1)� and

#- (Ḡ) = �T
#.1

( H̄
1
) because � is nonsingular (Corollary 12.9).

but .�
1

is a closed convex cone. Moreover .1 � 1 shifts the origin to 1 and is a convex
cone with (.1 � 1)� = {H 2 R2 : �T

H 2 -�} = {H 2 R2 : H1  0, H2 � 0}. Since � is
nonsingular, it can be verified that �T (.1 � 1)� = -�.

At Ḡ = (1,0) and H̄1 = �Ḡ+1 = (2,1), the normal cone of the convex cone - is, from
Theorem 12.3,

#- (Ḡ) = {G 2 -� : GT
Ḡ = 0} = {G 2 R2 : G1 = 0, G2  0}

The normal cone of .1 is its pre-image, from Theorem 12.9,

#.1
( H̄1) = {H : �T

H 2 #- (Ḡ)} = {H : H1 = 0, H2 � 0}

At Ḡ = 0 and H̄1 = �Ḡ + 1 = (1,1), #- (Ḡ) = -� and #.1 ( H̄1) = {H : H1  0, H2 � 0}.
Since � is nonsingular, it can be verified that �T

#.1
( H̄1) = #- (Ḡ) in both cases. ⇤

12.1.4 Second-order cones and SOC constraints

Second-order cones. The normal cone # (Ḡ, B̄) of the second-order cone  soc

defined in (8.16) can be derived explicitly. It is the polar cone  �soc at the origin, the
origin at an interior point, and, at a boundary point, the line segment in the intersection
of the “lower cone”  �soc and the hyperplane with normal (Ḡ/kḠk2,1).

Theorem 12.10 (Second-order cone). Let  soc := {(G, B) 2 R=+1 : kGk2  B} be the
standard second-order cone. Then

1.  soc is a closed convex cone.
2. Its polar cone is  �soc = {(H, C) 2 R=+1 : kHk2  �C}.
3. Its normal cone # (Ḡ, B̄) at an (Ḡ, B̄) 2  soc is

# (Ḡ, B̄) =

8>><
>>:
 
�
soc if (Ḡ, B̄) = (0,0)

{(0,0) 2 R=+1} if kḠk2 < B̄�
`(Ḡ,�B̄) 2 R=+1 : ` � 0

 
if kḠk2 = B̄ > 0
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Proof Part 1 is left as Exercise 8.12. To verify that  �soc = {(H, C) 2 R=+1 : kHk2  �C},
take any (G, B) 2  soc and (H, C) such that kHk2  �C. Then

G
T
H + BC  kGk2kHk2 + BC  B(�C) + BC = 0 (12.15)

where the first inequality follows from the Cauchy-Schwarz inequality and the second
inequality follows from definition of  soc. Hence (H, C) 2  �soc. This shows that  �soc ◆
{(H, C) 2R=+1 : kHk2  �C}. Conversely let (H, C) 2  �soc, i.e., GT

H+ BC  0 for all kGk2  B.
Clearly (0,0) 2  �soc since  �soc is a closed convex cone, so let B � kGk2 > 0. Then
G

T
H + kGk2C  0 and hence

G
T

kGk2
H + C  0

Since this holds for all G (because there always exists some B > 0 such that (G, B) 2  soc),
we can take G = H to conclude kHk2+ C  0. This proves part 2. Indeed soc is the “upper”
cone in Figure 8.8(b) and  �soc is the “lower” cone.

For part 3, application of Theorem 12.3 to part 2 yields

# ((Ḡ, B̄)) = {(H, C) 2 R=+1 : kHk2  �C, ḠT
H + B̄C = 0} (12.16)

Hence if (Ḡ, B̄) = (0,0) then # ((Ḡ, B̄)) =  �soc. If kḠk2 < B̄ then (Ḡ, B̄) is in the interior of
 soc and hence# (Ḡ, B̄) = {(0,0) 2R=+1}. Consider then kḠk2 = B̄ < 0. The requirement
that ḠT

H + B̄C = 0 means that the two inequalities in (12.15) must hold with equality
which is possible if and only if

H = `Ḡ for any ` 2 R+, kGk2 = B̄, kHk2 = �C

Hence �C = kHk2 = `kḠk2 = `B̄. This proves (H, C) = `(Ḡ,�B̄). This is illustrated in
Figure 12.11. ⇤

K °

K
t

y

(x̄ , s̄)

NK(x̄ , s̄)

Figure 12.11 Theorem 12.10: The normal cone # ((Ḡ, B̄)) is the line segment on the boundary
of the lower cone  �soc in the direction of Ḡ. (April 19, 2025: Change  !  soc and
 
� !  

�
soc.)

We know from Theorem 12.3 that the normal cone # (Ḡ, B̄) of a convex cone  
are vectors in its polar cone  � where complementary slackness holds. Theorem 12.10
describes these vectors in more detail when is explicitly specified as the second-order
cone (note that the vector `(Ḡ,�B̄) 2  �).
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Recall the relation  soc = � rsoc between a rotated second-order cone  rsoc defined
in (8.17) and a standard second-order cone  soc, where � is a nonsingular matrix
defined in (8.18), reproduced here:

� =
266664
2I= 0= 0=
0T
=

1 �1
0T
=

1 1

377775
(12.17)

For an G 2 R=, we use G<, <  =, to denote the subvector G< := (G1, . . . ,G<) of the first
< entries of G. Since � is nonsingular, the application of Theorem 12.8 to Theorem
12.10 leads to the following result on rotated second-order cone.

Corollary 12.11 (Rotated second-order cone). Let  rsoc := {G 2 R=+2 : kG=k22 
G=+1G=+2, G=+1 � 0, G=+2 � 0} be a rotated second-order cone. Let  soc := � rsoc where
� is defined in (12.17) and  �soc denote its polar cone.

1.  rsoc is a closed convex cone.
2. Its polar cone is

 
�
rsoc = �

T
 
�
soc = {�T

G 2 R=+2 : kG=+1k2  �G=+2}

3. Its normal cone # A (Ḡ) = �T
# (�Ḡ) at an Ḡ 2  rsoc is

# A
(Ḡ) =

8>><
>>:
�

T
 
�
soc if �Ḡ = 0

{(0,0) 2 R=+2} if k [�Ḡ]=+1k2 < [�Ḡ]=+2�
`( [�Ḡ]=+1,�[�Ḡ]=+2) 2 R=+2 : ` � 0

 
if k [�Ḡ]=+1k2 = [�Ḡ]=+2 > 0

SOC constraint. Consider the convex set ⇠ defined by second-order cone constraint
in (8.19), reproduced here:

⇠ := {G 2 R= : (�G + 1,2T
G + 3) 2  soc} = {G 2 R= : k�G + 1k2  2T

G + 3} (12.18)

where � 2 R<⇥=, 1 2 R<, 2 2 R=, 3 2 R, and  soc is the standard second-order cone
defined in (8.16). Then ⇠ is the pre-image of  soc under the a�ne transformation

⇠ =
�
G 2 R= : �̃G + 1̃ 2  soc

 
where �̃ :=


�

2
T

�
, 1̃ :=


1

3

�

The convex set ⇠ reduces to the standard second-order cone  soc if � =

I=�1 0

0 0

�
,

2 = 4=, 1 = 0, 3 = 0. It may not be a cone, e.g., ⇠ = {G : k1k2  2T
G + 3)} is a halfspace

if � = 0. The mapping 5 : ⇠ !  soc defined by 5 (G) = �̃G + 1̃ is generally neither
surjective nor injective. For instance if �̃ is singular then 5 is not injective; if 1 < 0
then 5 (G) = �̃G + 1̃ < 0 for any G and hence 5 is not surjective. Corollary 12.7 allows
us to derive the normal cone of ⇠ from that of the standard second-order cone  soc:
for any Ḡ 2 ⇠ and H̄ = �̃Ḡ + 1̃,

#⇠ (Ḡ) = �̃
T
# ( H̄) (12.19)

where # ( H̄) is given by Theorem 12.10.
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Example 12.6. Consider the case where � = 0 2 R<⇥= and ⇠ := {G 2 R= : k1k2 
2

T
G + 3} is a halfspace. We know from Theorem 12.3 that its normal cone is, for any Ḡ

with �2T
Ḡ  3 � k1k2,

#⇠ (Ḡ) =
�
�_2 : _ 2 R s.t. _ � 0 with _ = 0 if � 2T

Ḡ < 3 � k1k2
 

(12.20)

Corollary 12.7 shows that #⇠ (Ḡ) = �̃T
# ( �̃Ḡ + 1̃) where

�̃ :=


0
2

T

�
, 1̃ :=


1

3

�

and # ( H̄) ✓ R<+1 is given by Theorem 12.10 as, writing H 2 R<+1 as H =: (H<, H<+1)
with H< 2 R<,

# ( �̃Ḡ + 1̃) =

8>><
>>:
 
�
soc if (1,2T

Ḡ + 3) = (0,0)
{(0,0)} if k1k2 < 2T

Ḡ + 3�
`

�
1,�(2T

Ḡ + 3)
�
2 R<+1 : ` � 0

 
if k1k2 = 2T

Ḡ + 3 > 0

and  �soc = {H 2 R<+1 : kH<k2  �H<+1}. (If 1 < 0 then # ( �̃Ḡ + 1̃) <  �soc for any Ḡ.)

We now verify that #⇠ (Ḡ) = �̃T
# ( �̃Ḡ + 1̃). Indeed �̃T

# ( �̃Ḡ + 1̃) is, noting that
H<+1  0,

�̃
T
# ( �̃Ḡ + 1̃) =

8>><
>>:

{H<+12 : H<+1 2 R�} if (1,2T
Ḡ + 3) = (0,0)

{�`k1k22 : ` 2 R+} if k1k2 = 2T
Ḡ + 3 > 0

{0 2 R=+1} if k1k2 < 2T
Ḡ + 3

which is equal to #⇠ (Ḡ) in (12.20), as desired. ⇤

12.2 CPC functions

When we allow extended real-valued and discontinuous functions we can treat con-
strained optimization as unconstrained optimization and develop a unified theory that
covers both. In this section we define an important class of such functions, the set
of closed proper convex (CPC) functions, that we will use extensively in deriving
optimality conditions in later sections.

12.2.1 Extended real-valued function

A real-valued function 5 :R=!Rmaps a finite vector G 2R= to a finite value 5 (G) 2R.
An extended real-valued function 5 : R=! [�1,1] can take values �1 and 1. For
a function 5 : - ! [�1,1] defined on - ✓ R=, - is called the domain of 5 . The
e�ective domain of 5 is the set dom( 5 ) := {G 2 - : 5 (G) <1}. The epigraph of 5 is the
set epi( 5 ) := {(G, H) 2 - ⇥R : H � 5 (G)} ✓ R=+1. In particular if (G, H) 2 eip( 5 ) then
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H 8 {�1,1} by definition. Therefore G 2 dom( 5 ) if and only if there exists H = H(G) 2 R
such that (G, H) 2 epi( 5 ), i.e., dom( 5 ) is the projection of epi( 5 ) onto R=.

For the purpose of minimization, a function 5 : - ! [�1,1] defined on - ✓ R=
can always be extended to R= by defining

5- (G) :=
⇢
5 (G) if G 2 -
1 if G 2 R= \ - (12.21)

The epigraph of 5- is then the set epi( 5- ) := {(G, H) 2 R=⇥R : H � 5- (G)} ✓ R=+1 (we
reiterate that H is finite in epi( 5- ) by definition). Therefore we often treat real-valued
functions 5 on - as extended real-valued functions 5- on R= whose e�ective domain
dom( 5- ) may be a subset of R=.

Consider an extended real-valued function 5 : - ! [�1,1] where its domain
- ✓ R=. We say that 5 is lower semicontinuous (lsc) at G 2 - if

5 (G)  liminf
:

5 (G: ) (12.22)

for every sequence {G: } ✓ - with G: ! G, and that 5 is lower semicontinuous (on -)
if it is lsc at every G 2 - . A function 5 is called upper semicontinuous (usc) if � 5 is
lsc. A function 5 is continuous at G if and only if 5 (G) is finite and 5 is both lsc and
usc at G.3

Definition 12.3 (Closed proper convex (CPC) 5 ). Consider 5 : - ! [�1,1] with
- ✓ R=.

1. The function 5 is closed if epi( 5 ) is a closed set in R=+1.
2. The function 5 is proper if there exists Ḡ 2 - such that 5 (Ḡ) <1 (so that epi( 5 )

is nonempty) and 5 (G) > �1 for all G 2 - . In particular a real-valued function
5 : -! R is proper.

3. Suppose - is convex. Then 5 is convex if epi( 5 ) is a convex subset of R=+1. ⇤

The convexity definition in terms of epi( 5 ) implies that dom( 5 ) is a convex set
in R=. It reduces to the usual definition of convexity for real-valued functions. If a
closed convex function 5 is not proper then 5 cannot take any finite value: 5 (G) = �1
if G 2 dom( 5 ) and 5 (G) =1 otherwise. We therefore consider only proper functions
5 : - ! (�1,1]. A proper and convex function is continuous, except possibly on
its relative boundary. Moreover it is Lipschitz continuous over a compact set with the
norm of a maximum subgradient as its Lipschitz constant; see Lemma 12.15.

A common mistake in the literature is to claim that if 5 is lsc, then dom( 5 ) is a

3 In general when we say a sequence {G: } ⇢ R= converges to an G, we mean that the limit point G is in
R
=, i.e., G is finite. If kG: k ! ±1, the sequence is said to be unbounded.
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closed set or that 5 is a closed function.4 The subtle relation between lsc, closed 5

(closed epi( 5 )) and closed dom( 5 ) is explained in the next remark.

Remark 12.3 (lsc, closed 5 , closed epi(f), closed dom( 5 )). Consider an extended
real-valued function 5 : -! [�1,1] where - ✓ R= is the domain of 5 .

1. lsc and - . Whether 5 is lsc (or continuous) depends on its domain - . Take the
indicator function X⇠ (G) := 0 if G 2 ⇠ ✓ R= and1 if G 8 ⇠. Suppose ⇠ is open in
R
=. If the domain - of the extended real-valued function is taken to be the closure

cl(⇠) of ⇠ (or R=), then X⇠ (G) is not lsc on cl(⇠) (or R=) because (12.22) is not
satisfied at G 2 - on the boundary of ⇠. If - = ⇠, however, X⇠ (G) is lsc on -

because in the test (12.22) for lsc, G must be in the open set - .
2. Continuity and - . Consider the extended real-valued function 5 (G) := 1/G de-

fined on - := [0,1]; in particular 5 (0) :=1. Then 5 is lsc at G = 0 2 - because
liminf: 5 (G: ) (and limsup

:
5 (G: )) can take±1 value by definition if the sequence

{G: } ✓ - is unbounded. In contrast, 5 is not continuous at G = 0 because continuity
means that 5 (G: ) converges to a finite value H 2 R for every sequence {G: } ✓ -
with lim: G: = G 2 - (G is also finite). If the domain of 5 is taken to be - 0 := (0,1]
instead, 5 is continuous on - 0 because the test sequence {G: } cannot converge to
a boundary point not in - 0.

3. lsc and closedness of 5 : - = R=. If - = R=, then 5 is lsc on R= if and only if
epi( 5 ) is a closed set in R=+1 ( 5 is closed). See [56, Propositions 1.1.2 and 1.1.3,
p.10] (Exercise 12.11).

4. lsc and closedness of 5 : - ( R=. If - ( R=, however, lsc and closedness of 5 are
not equivalent. If the e�ective domain dom( 5 ) := {G 2 - : 5 (G) <1} is closed in
- and 5 is lsc on dom( 5 ), then epi( 5 ) is a closed set in - ⇥R ( 5 is closed).

The converse may not hold. It is possible that 5 is lsc on dom( 5 ) but dom( 5 )
is not closed in - , and yet, 5 is closed. An example is the function 5 (G) := 1/G on
- := [0,1] defined above where 5 is lsc (in fact continuous) on dom( 5 ) = (0,1],
but dom( 5 ) is not closed in - (or in R). To see that 5 is a closed function, consider
any sequence {(G: , H: )} 2 epi( 5 ) ✓ - ⇥R such that (G: , H: )! (Ḡ, H̄) 2 - ⇥R. By
definition H̄ is finite and therefore Ḡ cannot be 0 (i.e., (Ḡ, H̄) < (0,1)). Moreover
(Ḡ, H̄) 2 epi( 5 ) because

5 (Ḡ)  liminf
:

5 (G: )  liminf
:

H: = H̄

where the first inequality follows from lsc of 5 on dom( 5 ), the second inequality
follows because (G: , H: ) 2 epi( 5 ), and the equality follows because H: ! H̄. In
general, the closedness of dom( 5 ) ensures that for any sequence {(G: , H: )} 2
epi( 5 ) with (G: , H: )! (Ḡ, H̄) 2 - ⇥R, H̄ is finite. Then the inequalities above hold
generally to show the closedness of 5 .

4 Such a claim has been made on the recourse function & (G) in two-stage optimization with recourse
where dom(&) is claimed to be a closed (convex) set in [156, Proposition 2.7, p.35] and [157,
Corollary 37; p.158]. See Lemma 13.29 for a correct statement.
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Hence for an extended real-valued function 5 defined on - ✓ R=, 5 can be a closed
function, or equivalently epi( 5 ) can be a closed set in - ⇥R, while dom( 5 ) is not
closed in - (even when 5 is lsc on -). Often it is the closedness of 5 that is needed, not
the closedness of dom( 5 ), e.g., in the Weierstrass Theorem 12.22 and its application
in Theorem 13.30 to derive conditions for primal optimality of two-stage nonlinear
optimization with recourse. ⇤

12.2.2 Indicator function, support function and polyhedral functions

Indicator function and support function. Given a set - ✓ R= the indicator function
of - is the extended real-valued function X- : R=! (�1,1] defined by:

X- (G) :=

(
0 if G 2 -
1 if G 8 -

(12.23a)

It is proper if and only if the set - is nonempty. It is a convex function if and only if -
is a convex set.

The support function of - is f- : R=! (�1,1] defined by:

f- (G) := sup
H2-

H
T
G (12.23b)

It is proper if and only if - is nonempty and sup
H2- H

T
G < 1 for at least one G. The

sets - , cl(-), conv(-), cl(conv(-)), conv(cl(-)) all have the same support function
(Exercise 12.12): for all G 2 R=,

f- (G) = fcl(- ) (G) = fconv(- ) (G) = fcl(conv(- )) (G) = fconv(cl(- )) (G) (12.24)

See Exercise 12.15 for relation between X- and f- (as well as their subdi�erentials).

Theory of convexity, optimality and duality can be developed based either on real-
valued functions or on extended real-valued functions. An advantage of extended
real-valued functions is that they allow us to represent the minimization of a real-
valued function 5 : R=! R over - as an unconstrained optimization of the extended
real-valued function (12.21):

min
G2R=

5- (G) = 5 (G) + X- (G) (12.25)

A unified theory can then be developed for unconstrained optimization as we will see
in the following sections.

Example 12.7. Derive X- (G) and f- (G) for:

1. - := (0,1) ✓ R.
2. - := (�1,1) ✓ R.
3. - := {G 2 R= : G8 2 (�1,1)}.



12.2 CPC functions 583

Solution. For - := (0,1) and - := (�1,1)

X (0,1) (G) :=

(
0 if G 2 (0,1)
1 if G 8 (0,1)

, f(0,1) (G) := sup
H2 (0,1)

HG =

(
G if G � 0

0 if G < 0

X (�1,1) (G) :=

(
0 if G 2 (�1,1)
1 if G 8 (�1,1)

, f(�1,1) (G) := sup
H2 (�1,1)

HG = |G |

For - := {G 2 R= : G8 2 (�1,1)}

X- (G) :=

(
0 if G8 2 (�1,1) for all 8

1 if G8 8 (�1,1) for some 8

f- (G) :=
’
8

sup
H8 2 (�1,1)

H8G8 =
’
8

|G8 | = kGk1

They are illustrated in Figure 12.12. ⇤

0

(a) - := (�1,1) ✓ R (b) - := {G 2 R2 : G8 2 (�1,1) }

Figure 12.12 Example 12.7. (Dec 3, 2025: Fig (a): Solid/black dots (circles) for X- (G) =1 at
G = �1 and G = 1.)

Polyhedral set and polyhedral function. Recall that a polyhedral set, or a polyhe-
dron, is a set - := {G 2 R= : �G  1} specified by a finite number of a�ne inequalities.
We often assume, sometimes implicitly, that - is nonempty to avoid triviality. Such
a set is then nonempty closed and convex by definition. (See Appendix A.2 for more
discussions on polyhedral sets and extreme points.)

We say that a proper function 5 : R= ! (�1,1] is a polyhedral function if its
epi( 5 ) is a polyhedral set in R=+1. Since a polyhedral set is closed nonempty convex,
a polyhedral function is closed proper convex. It can be represented as the pointwise
maximum of a�ne functions e.g. [56, Proposition 2.3.5, p.109].

Lemma 12.12. Let 5 : R=! (�1,1] be a convex function. Then 5 is a polyhedral
function if and only if dom( 5 ) is a polyhedral set and

5 (G) = max
82{1,...,<}

⇣
0

T
8
G + 18

⌘
8G 2 dom( 5 )

for some 08 2 R=, 18 2 R, and integer < > 0. ⇤

In particular an a�ne function is polyhedral.
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12.3 Gradient and subgradient

For smooth convex optimization the first-order stationarity condition takes the form
�r 5 (G⇤) = r6(G⇤)_⇤ +r⌘(G⇤)`⇤ in terms of the gradients r 5 ,r6,r⌘ of the cost and
constraint functions. In this section we generalize gradients of di�erentiable functions
to subgradients of convex but possibly non-di�erentiable functions and develop con-
ditions for subdi�erential calculus. We use these tools in Chapter 12.6 to generalize
the KKT Theorem 8.15 of Chapter 8.3.2 to the convex nonsmooth setting.

12.3.1 Derivative, directional derivative and partial derivative

The notion of derivative, directional derivative and partial derivative defined in Chapter
8.1.3 for real-valued functions extend directly to extended real-valued functions. Con-
sider a proper function 5 : - ! (�1,1] where - ✓ R= is an open set. The function
5 is said to be di�erentiable at G 2 - if there exists a vector < 2 R= such that

lim
⌘2R=
⌘!0

5 (G + ⌘)� 5 (G)�<T
⌘

k⌘k = 0

When this holds, the column vector < is called the gradient or derivative of 5 at
G 2 - and denoted by r 5 (G). If 5 is di�erentiable at every G 2 - then 5 is called
di�erentiable on - .

At each G 2 - and for each E 2 R= the one-sided directional derivative of 5 at G in
the direction E is defined as

35 (G;E) := lim
C 2R
C#0

5 (G + CE)� 5 (G)
C

provided the limit exists, possibly ±1. For G 2 dom( 5 ), 35 (G;E) can take finite values
or ±1, but for G 2 ri(dom( 5 )), 35 (G;E) if exists is always finite for any E 2 R=. It can
be shown that 5 is di�erentiable at G 2 - if (i) directional derivatives 35 (G;E) exist at
G in all directions E 2 R=, and (ii) 35 (G;E) is a linear function of E.

At each G 2 - and for the unit vector 4 9 2 {0,1}=, if the directional derivatives
35 (G;4 9 ) and 35 (G;�4 9 ) exist in both directions and are equal, then they are called the
partial derivative of 5 at G 2 - with respect to G 9 and denoted by m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C

In this case 5 is called partially di�erentiable at G 2 - with respect to G 9 . The row
vector of partial derivatives of 5 at G 2 - is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i
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If 5 is partially di�erentiable at all G 2 - then it is called partially di�erentiable
on - . The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the

coordinate axes whereas the derivative r 5 (G) describes its behavior in all directions. If
5 is di�erentiable then it is partially di�erentiable, but the converse does not generally
hold. If 5 is not only partially di�erentiable but m 5

mG
(G) is also continuous at G, then

the converse holds at G 2 - . Such an 5 is called continuously di�erentiable at G. If 5
is continuously di�erentiable at all G 2 - then it is continuously di�erentiable on - .

As Example 8.3 in Chapter 8.1.3 shows that a partially di�erentiable function
may not be di�erentiable when the partial derivative m 5

mG
(G) is discontinuous at G.

Indeed a partially di�erentiable function may not even be continuous at all G 2 - .
A continuously di�erentiable function is always continuous. Moreover Lemma 8.1
extends directly to a proper extended real-valued function 5 : -! (�1,1], i.e., if 5

is di�erentiable then it is partially di�erentiable and r 5 (G) =
h
m 5

mG
(G)

iT
. Conversely,

5 is di�erentiable if it is continuously di�erentiable. Hence 5 is di�erentiable at G 2 -
if and only if 35 (G;E) = ETr 5 (G) = m 5

mG
(G) E for all E 2 R=. This is generalized in

(12.28) below to proper convex functions that may not be di�erentiable (but are always
subdi�erentiable). Moreover the directional derivative of a proper convex function
5 : -! (�1,1] always exists because ( 5 (G + CE)� 5 (G)) /C is increasing in C > 0 and
hence the limit always exists, possibly ±1. The limit 35 (G;E) may be �1 or1 at the
relative boundary of dom( 5 ) but is always a finite value at an G 2 ri(dom( 5 )).

12.3.2 Subgradient

Recall that, for the purpose of minimization, a function 5 : -! (�1,1] with - ✓ R=
can always be represented as an extended real-valued function 5 : R=! (�1,1] by
defining 5 (G) :=1 for G 8 - so that its e�ective domain dom( 5 ) ✓ - .

Subgradient. Consider a proper convex function 5 :R=! (�1,1]. A vector H 2 R=
is a subgradient of 5 at Ḡ 2 dom( 5 ) if

5 (G) � 5 (Ḡ) + HT (G� Ḡ) 8G 2 R= (12.26a)

The inequality must hold for all real G, not just for G 2 dom( 5 ), i.e., the a�ne function
on the right-hand side is a lower approximation of 5 over R= and coincides with 5

at G = Ḡ. The set of all subgradients of a convex function 5 at Ḡ is the subdi�erential
m 5 (Ḡ) of 5 at Ḡ. By convention m 5 (Ḡ) = ; if Ḡ 8 dom( 5 ). An equivalent definition to
(12.26a) is: H 2 R= is a subgradient of 5 at Ḡ 2 dom( 5 ) if

5 (Ḡ)� HT
Ḡ = min

G2R=

⇣
5 (G)� HT

G

⌘
(12.26b)

i.e., Ḡ 2 dom( 5 ) attains the minimum on the right-hand side. Clearly m 5 (Ḡ) is a convex
set.

The definition (12.26) of subgradient immediately implies the following first-order
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optimality condition for nonsmooth convex optimization. It is used in Chapter 12.6
to derive a general optimality condition which leads to various KKT conditions in
subsequent subsections.

Lemma 12.13 (Optimality condition). Consider the unconstrained convex optimiza-
tion infG2R= 5 (G) where 5 : R=! (�1,1] is a proper convex function. Then G⇤ 2 R=
is optimal if and only if

0 2 m 5 (G⇤)

If 5 is di�erentiable this reduces to r 5 (G⇤) = 0.

Proof It is obvious that 5 (G⇤) = minG2R= 5 (G) if and only if H = 0 in (12.26b), i.e., if
and only if 0 2 m 5 (G⇤). ⇤

Remark 12.4 (Subgradient as certificate of optimality). 1. For unconstrained con-
vex optimization, 0 2 m 5 (G⇤) is necessary and su�cient for G⇤ to be an optimal.
The fact that there may be nonzero subgradient H 2 m 5 (G⇤) with HT (G � G⇤) < 0
has no bearing on the optimality of G⇤. The zero vector 0 2 m 5 (G⇤) is a certificate
for the optimality of G⇤.

2. For constrained convex optimization, G⇤ 2 - is optimal if there exists a subgradient
H
⇤ 2 m 5 (G⇤) such that H

⇤T (G � G⇤) � 0 for all G 2 - (i.e., �H 2 #- (G⇤)) because
(12.26a) then implies 5 (G) � 5 (G⇤) for all G 2 - with equality at G = G⇤. Such
a subgradient H⇤ is a certificate for the optimality of G⇤. A precise statement is
Theorem 12.21 below. Again the fact that there may be subgradients H 2 m 5 (G⇤)
with HT (G� G⇤) < 0 has no bearing on the optimality of G⇤. ⇤

A proper convex function is subdi�erentiable at any interior point Ḡ of its e�ective
domain. The supporting hyperplane of epi( 5 ) at such a point (Ḡ, 5 (Ḡ)) is not vertical
and this is the origin of the Slater condition in convex optimality (e.g. see Theorem
12.27 on strong duality and dual optimality).

Lemma 12.14 (Subdi�erentiability of convex function at G 2 int(dom( 5 ))). A
proper convex function 5 : R= ! (�1,1] always has a subgradient at any interior
G 2 int(dom( 5 )).

Proof The proof uses the Separating Hyperplane Theorem 8.10. Convexity of 5

means its epigraph epi( 5 ) := {(G, H) : H � 5 (G), G 2 R=, H 2 R} is a convex set in R=+1

(Definition 12.3). It is nonempty because 5 is proper. Fix an Ḡ 2 int(dom( 5 )). The
point (Ḡ, 5 (Ḡ)) is in epi( 5 ) \ int(epi( 5 )). Theorem 8.10 then implies that there exists
nonzero (0,1) 2 R= ⇥R such that

0
T (G� Ḡ) + 1(H� 5 (Ḡ))  0, 8(G, H) 2 epi( 5 ) (12.27a)

This implies 1  0 (substitute (Ḡ, H) 2 epi( 5 ) with H > 5 (Ḡ) into (12.27a)). If 1 = 0
then 0T (G� Ḡ)  0 for all G 2 dom( 5 ). Since Ḡ 2 int(dom( 5 )), we can take G := Ḡ±4 9 to
show that 0 = 0, contradicting (0,1) < 0. Hence 1 < 0, i.e., the supporting hyperplane
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of epi( 5 ) at (Ḡ, 5 (Ḡ)) is not vertical if Ḡ 2 int(dom( 5 )) is an interior point. We can
therefore divide by 1 on both sides of (12.27a) to obtain (setting H := 5 (G))

5 (G) � 5 (Ḡ)� 0
T

1

(G� Ḡ) (12.27b)

Since this holds for all G 2 R=, �(0/1) is a subgradient of 5 at Ḡ.5 ⇤

Remark 12.5 (Separating hyperplane argument). The separating hyperplane argument
that derives (12.3) relies on the fact that . (Ḡ) is a cone and hence H 2 . (Ḡ)) CH 2
. (Ḡ) for all C > 0 (see Remark 12.2). The same separating hyperplane argument that
proves Lemma 12.14 relies on the fact that (Ḡ, 5 (Ḡ)) 2 epi( 5 )) (Ḡ, H) 2 epi( 5 ) for all
H � 5 (Ḡ). ⇤

Lemma 12.14 establishes the existence of subgradient at an interior point. The
next result, taken from [56, Propositions 5.4.1 and 5.4.2, pp. 184], presents additional
properties. It generalizes Lemma 8.4 for real-valued convex functions to extended
real-valued convex functions.

Lemma 12.15 (Subgradient and Lipschitz continuity). Let 5 : R= ! (�1,1] be a
proper convex function.

1. For G 2 ri(dom( 5 )), 5 (G) is continuous at G.
2. For G 2 int(dom( 5 )), m 5 (G) is a nonempty convex compact set.
3. If - ✓ int(dom( 5 )) is nonempty and compact, then m- 5 := [G2-m 5 (G) is

nonempty and bounded. Moreover 5 is Lipschitz continuous over - with Lip-
schitz constant ! := sup

b 2m- 5 kbk2.

If 5 is proper convex, even though it is continuous on ri(dom( 5 )), it is not necessarily
lsc over R= because 5 (G) can be1 on the boundary of dom( 5 ). Hence convexity of 5
does not imply closedness. If 5 is a real-valued convex function, then m 5 (G) is always
a nonempty convex compact set. If 5 is extended real-valued convex, then m 5 (G) can
be unbounded or empty on the boundary of or outside dom( 5 ).

By the definition of subgradient we have, for all C 2 R, 5 (G + CE) � 5 (G) � C HT
E for

all subgradients H 2 m 5 (G). Hence

35 (G;E) � H
T
E, 8H 2 m 5 (G), G 2 dom( 5 ), E 2 R=

For any G 2 ri(dom( 5 )) the function 35 (G; ·) is closed and is the support function of
m 5 (G), i.e.,

35 (G;E) = sup
H2m 5 (G)

H
T
E, 8G 2 ri(dom( 5 )), E 2 R= (12.28)

Hence 35 (G;E) > sup
H2m 5 (G) H

T
E can only hold at a boundary point G of dom( 5 ) where

5 The assumption that Ḡ 2 int(dom( 5 )) is needed to show that 1 < 0. If Ḡ 2 ri(dom( 5 )) , then the
contradiction argument breaks down, but subgradient may still exist at such a Ḡ. See Exercise 12.13.
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35 (G; ·) is not a closed function. In particular, if 5 : R=! R is a real-valued function
then dom( 5 ) = R= and 35 (G;E) = sup

H2m 5 (G) H
T
E for all G,E 2 R=.6

Conjugate function. Consider a convex function 5 : R= ! (�1,1]. Fix an Ḡ 2
dom( 5 ). By definition (12.26), H̄ 2 m 5 (Ḡ) if and only if 5 (G) � 5 (Ḡ) + H̄T (G� Ḡ) for all
G 2 R= with equality at G = Ḡ. Hence

H̄ 2 m 5 (Ḡ) () H̄
T
Ḡ� 5 (Ḡ) = sup

G2R=

⇣
H̄

T
G� 5 (G)

⌘
(12.29a)

This motivates the definition of the conjugate function 5 ⇤ :R=! [�1,1] of 5 defined
by:

5
⇤ (H) := sup

G2R=

⇣
G

T
H� 5 (G)

⌘
, H 2 R=

Conjugate function is defined for any function 5 , not only convex functions. Since 5 ⇤

is the pointwise supremum of a�ne functions of H it is closed and convex for any 5 .
Then (12.29a) says:

H̄ 2 m 5 (Ḡ) () H̄
T
Ḡ = 5 (Ḡ) + 5 ⇤ ( H̄) (12.29b)

i.e., H̄ is a subgradient of 5 at Ḡ if and only if Ḡ attains the maximization in 5 ⇤ ( H̄). When
5 is CPC, 5 ⇤⇤ = 5 and the property becomes symmetric. We summarize important
properties of conjugate functions and subgradients in the following result taken from
[56, Propositions 1.6.1, 5.4.3 and 5.4.4].

Lemma 12.16 (Conjugate function and subgradient). Let 5 : R=! (�1,1].

1. Its conjugate 5 ⇤ is closed and convex.
2. If 5 is convex then the properness of any one of 5 , 5 ⇤, 5 ⇤⇤ implies the properness

of the other two. In particular if 5 is proper convex then 5
⇤ is CPC (closed proper

convex).
3. If 5 is CPC then 5 (G) = 5

⇤⇤ (G) for G 2 R=.
4. Envelop theorem: If 5 is CPC then, for any Ḡ 2 dom( 5 ), H̄ 2 dom( 5 ⇤),

Ḡ
T
H̄ = 5 (Ḡ) + 5 ⇤ ( H̄) () H̄ 2 m 5 (Ḡ) () Ḡ 2 m 5 ⇤ ( H̄)

5. Dual di�erentiability and optimality: If 5 is CPC then
(a) 5

⇤ (H) is di�erentiable at H̄ 2 int(dom( 5 ⇤)) if and only if 5
⇤ ( H̄) :=

sup
G2R=

�
G

T
H̄� 5 (G)

�
is attained at a unique Ḡ 2 R=.

(b) The set argminG2R= 5 (G) of unconstrained minima of 5 is equal to m 5 ⇤ (0).
(c) Hence G⇤ is an unconstrained minimizer if and only if G⇤ 2 m 5 ⇤ (0) if and only

if 0 2 m 5 (G⇤).

Lemma 12.16.4 is a form of envelop theorem for CPC functions: it says that, if

6 The right-hand side of (12.28) is attained (i.e., 9H̄ with H̄T
E = sup

H2m 5 (G) H
T
E) if G 2 int(dom( 5 )) ,

not just G 2 ri(dom( 5 )) , according to Lemma 12.15.
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5
⇤ ( H̄) = sup

G
(GT

H̄� 5 (G)) = ḠT
H̄� 5 (Ḡ), then Ḡ is a subgradient of 5 ⇤ at H̄. An implica-

tion of Lemma 12.16.5 is that the dual function of a convex program is di�erentiable
if the minimum of the Lagrangian over the primal variable is uniquely attained.

Example 12.8 (Di�erentiable functions). Consider the real-valued convex and di�er-
entiable function 5 :R=! (�1,1). The subdi�erential of 5 at Ḡ is m 5 (Ḡ) = {r 5 (Ḡ)}.
Then (12.29b) reduces to

rT
5 (Ḡ)Ḡ = 5 (Ḡ) + 5 ⇤ (r 5 (Ḡ)) = 5 (Ḡ) + sup

G2R=

⇣
rT
5 (Ḡ)G� 5 (G)

⌘

which says that the supremum on the right-hand side is attained at Ḡ when 5 is convex,
or re-arranging,

5 (G) � 5 (Ḡ) +rT
5 (Ḡ) (G� Ḡ), G 2 R=

which is a property of convexity (or definition of subgradient).

Suppose further that, for all H̄ 2 R=, the supremum in 5 ⇤ ( H̄) := sup
G2R= ( H̄T

G� 5 (G))
is attained at a unique Ḡ so that 5 ⇤ is di�erentiable on R=. Then the envelop theorem
in Lemma 12.16 reduces to H̄ = r 5 (Ḡ) if and only if Ḡ = r 5 ⇤ ( H̄). This says that the
derivative of the conjugate function at H̄,

5
⇤ ( H̄) := sup

G2R=

⇣
G

T
H̄� 5 (G)

⌘
= Ḡ

T
H̄� 5 (Ḡ)

is the unique maximizer Ḡ. Moreover the unconstrained supremum of the concave
function H̄T

G� 5 (G) of G is attained at Ḡ that satisfies r 5 (Ḡ) = H̄. ⇤

Indicator X- and support functions f- . It is shown in Exercise 12.15 that for any
nonempty set - ✓ R=, the conjugate of the indicator function X- is the support function
f- . Since X- is proper, Lemma 12.16 implies that f- is CPC (closed proper convex)
as long as - is nonempty. This however does not in itself imply that X- is itself CPC
nor X- = f⇤

-
. Indeed X- is CPC if and only if - is a closed nonempty convex set,

in which case the conjugate f⇤
-

of the support function is indeed X- . The results in
Exercise 12.15 are summarized in Table 12.2.

function 5 conjugate 5 ⇤ subdi�erential m 5 (G) condition

X- (G) f- (G) #- (G) if - is nonempty convex
X- (G) X-

� (H) #- (G) if - is a nonempty convex cone
f- (G) X- (G) {H 2 R= : GT

H = f- (G)} if - is closed nonempty convex

Table 12.2 Indicator function X- (G) := 0 if G 2 - and1 otherwise, support function
f- (G) := sup

H2- H
T
G, their conjugates and subdi�erentials (#- (G) is normal cone of - at G).

For a closed nonempty convex set - we can interpret mf- (G) = {H 2 R= : GT
H =

f- (G)} as a form of envelop theorem for the function f- (G) := sup
H2- H

T
G. We can

also interpret it as a supporting hyperplane. Indeed fix any Ḡ 2 - . Then b := f- (Ḡ) is a



590 Nonsmooth convex optimization

constant and hence mf- (Ḡ) = {H 2 R= : ḠT
H = b} is a hyperplane in R=. Since ḠT

H  b
for all H 2 - , the hyperplane mf- (Ḡ) contains - in its “lower” halfspace. If there is
a finite H̄ 2 - that attains the supremum in f- (Ḡ) := sup

H2- Ḡ
T
H, then mf- (Ḡ) is a

supporting hyperplane of - at H̄. See Figure 12.13.

Figure 12.13 For a nonempty closed convex - , mf- (Ḡ) is a supporting hyperplane of - at H̄.
(Dec 13, 2025: (i) Stretch circle diagonally in north-east direction into oval; add label - for set.
(ii) Add blue color to oval.)

12.3.3 Subdi�erential calculus

The subdi�erential of functions is fundamental. In particularly the result on the sum
of functions in Theorem 12.18 is used to derive an exact optimality condition for
nonsmooth convex optimization in Chapter 12.6 that underlies the KKT condition.
The proof of Theorem 12.18 makes use of the following result on the existence of a
dual optimal solution that attains strong duality (even if the primal optimal value is not
attained).

Consider the convex optimization

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, �G = 1 (12.30a)

where the nonempty convex set - 0 ✓ R= is the intersection of a polyhedral set % and a
convex set ⇠:

-
0 := % \ ⇠

� 2 R<⇥=, 1 2 R<, and 5 : R=! (�1,1] is an extended real-valued proper convex
function. Let the Lagrangian function be

! (G,_) := 5 (G) + _T (�G� 1), G 2 R=, _ 2 R<

the dual function be 3 (_) := infG2- 0 ! (G,_) and the dual problem be

3
⇤ := sup

_2R<
3 (_) = sup

_2R<
inf
G2- 0

! (G,_) (12.30b)

The problem (12.30) is a special case of (12.45) studied in detail in Chapter 12.8.1
when there is no explicit inequality constraint ⌘(G)  0. The following result is a special
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case of Theorem 12.27 there (whose proof does not require Theorem 12.18 so there
is no circular argument). It is presented here because it is needed to prove Theorem
12.18 on subdi�erential calculus.

Theorem 12.17 (Slater Theorem). Consider the optimization problem (12.30) with a
mixture of polyhedral constraints. Suppose the following conditions hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 is proper convex; % is a nonempty polyhedral set and⇠ is a nonempty
convex set.

• Slater condition: There exists Ḡ 2 ri(dom( 5 ))\%\ ri(⇠) such that �Ḡ = 1.

Then

1. 5
⇤ = 3⇤.

2. The set of dual optimal solutions _⇤ with 3 (_⇤) = 3⇤ is nonempty and convex.

Theorem 12.18 is taken from [56, Propositions 5.4.5–5.4.6, p.192]. Its proof makes
use of Theorem 12.17 and leads to the requirement of constraint qualifications. They
take the form that the intersection of the e�ective domains of various polyhedral
functions is nonempty (if some of the functions are not polyhedral, their e�ective
domains are replaced by their relative interiors).

Theorem 12.18 ([56]). 1. Sum of functions. Let 58 : R= ! (�1,1], 8 = 1, . . . ,<,
be convex functions. Suppose � (G) :=

Õ
8
58 (G) is proper. If, for some <̄ with

1  <̄  <, the functions 58 , 8 = 1, . . . , <̄, are polyhedral and�
\<̄
8=1 dom( 58)

� Ÿ �
\<
8=<̄+1 ri(dom( 58))

�
< ;

then � is convex and

m� (G) =
’
8

m 58 (G), 8G 2
<Ÿ
8=1

dom( 58)

When 58 are di�erentiable this reduces to r� (G) = Õ
8
r 58 (G).

2. Chain rule. Let 5 : R<! (�1,1] be a convex function and � 2 R<⇥=. Suppose
� (G) := 5 (�G) is proper. If
• either 5 is polyhedral, or
• there exists an G̃ 2 R= such that �G̃ 2 ri(dom( 5 ))

then � is convex and m� (G) = �T
m 5 (�G) for all G 2 R=. When 5 is di�erentiable

this reduces to r� (G) = �Tr 5 (�G).

Proof Sum of functions. Fix an Ḡ 2 —
<

8=1 dom( 58). Then Ḡ 2 dom(�). By Lemma
12.15, m 58 (Ḡ) and m� (Ḡ) are nonempty convex and compact. The proof of m� (Ḡ) ◆Õ
8
m 58 (Ḡ) needs no assumption; its converse does. For any H̄8 2 m 58 (Ḡ) we have

58 (G) � 58 (Ḡ) + H̄T
8
(G� Ḡ), G 2 R=, 8 = 1, . . . ,<



592 Nonsmooth convex optimization

Hence

� (G) :=
’
8

58 (G) � � (Ḡ) +
 ’
8

H̄8

!T

(G� Ḡ), G 2 R=

i.e.,
Õ
8
H̄8 2 m� (Ḡ).

For the converse, suppose H̄ 2 m� (Ḡ). Then

min
G2R=

� (G)� H̄T
G � � (Ḡ)� H̄T

Ḡ 2 R (12.31)

i.e., the finite minimum on the left-hand side is attained at Ḡ. To apply Theorem 12.17,
we write � (G) =Õ

8
5 (G8) with the constraints G8 = G 2 R=. Then (Ḡ,G8 = Ḡ, 8 = 1, . . . ,<)

is a minimizer of the following convex optimization:

5
⇤ = min

G,G8 2R=

’
8

58 (G8)� H̄T
G s.t. G8 2 dom( 58), G8 = G, 8 = 1, . . . ,< (12.32a)

Its dual objective function is

3 (_) := min
G2R= , G8 2dom( 58)

’
8

58 (G8) � H̄T
G �

’
8

_
T
8
(G8 � G) (12.32b)

where _ := (_1, . . . ,_<) 2 R<=. The application of Theorem 12.17 to (12.32) implies
that strong duality holds and that any optimal dual variable _̄8 yields a subgradient in
m 58 (Ḡ) at Ḡ.

Specifically - 0 in (12.30) corresponds to the convex constraint

-
0 := %\⇠ :=

�
\<̄
8=1 dom( 58)

� Ÿ �
\<
8=<̄+1 dom( 58)

�
Clearly a (finite) primal optimal is attained at G8 = G = Ḡ due to (12.31). The condition
in the theorem guarantees a point G8 := G̃ 2 %\ ri(⇠) such that G8 = G := G̃. Theorem
12.17, then implies that strong duality holds for (12.32) and there is a dual optimal
solution _̄ := (_̄1, . . . , _̄<) 2 R<=. Therefore, from (12.32), we have

3 (_̄) := min
G2R= , G8 2dom( 58)

’
8

⇣
58 (G8)� _̄T

8
G8

⌘
�

 
H̄�

’
8

_̄8

!T

G

For the dual problem max_ 3 (_), we must have H̄ =
Õ
8
_̄8 since the minimization in

3 (_) over G is unconstrained. Strong duality then implies

3 (_̄) = 5
⇤ =

’
8

⇣
58 (Ḡ) � _̄T

8
Ḡ

⌘

where the last equality follows because H̄ =
Õ
8
_̄8 and (Ḡ,G8 = Ḡ, 8 = 1, . . . ,<) is a

minimizer of (12.32a). Since we can extend the minimization in 3 (_) over G8 to R=,
this implies (substituting again H̄ =

Õ
8
_̄8)

3 (_̄) = min
G8 2R=

’
8

⇣
58 (G8)� _̄T

8
G8

⌘
=

’
8

min
G8 2R=

⇣
58 (G8)� _̄T

8
G8

⌘
=

’
8

⇣
58 (Ḡ) � _̄T

8
Ḡ

⌘
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The last equality means that, for every 8, 58 (Ḡ) � _̄T
8
Ḡ = minG8 2R=

�
58 (G8)� _̄T

8
G8

�
, i.e.,

_̄8 2 m 58 (Ḡ) according to (12.26b). This complete the proof of part 1.

Chain rule. The proof follows a similar argument as that for part 1. Clearly � is convex
since 5 is. Fix an Ḡ 2R=. If �Ḡ 8 dom( 5 ) then Ḡ 8 dom(�) and hence m� (Ḡ) = m 5 (�Ḡ) =
; by definition. Suppose then �Ḡ 2 dom( 5 ). The proof of m� (G) ◆ �T

m 5 (�G) needs
no assumptions; its converse does.

Let b̄ 2 m 5 (�Ḡ) ✓ R< be any subgradient of 5 at �Ḡ. Then

� (G)�� (Ḡ) = 5 (�G)� 5 (�Ḡ) � b̄T (�G� �Ḡ) =
⇣
b̄

T
�

⌘
(G� Ḡ), G 2 R= (12.33)

i.e., H̄ := �T
b̄ 2 R= is in m� (Ḡ). This shows �T

m5 (�Ḡ) ✓ m� (Ḡ).

For the converse (under the assumption in the theorem), suppose H̄ 2 m� (Ḡ). We
will show that there exists an _̄ 2 R< such that _̄ 2 m 5 (�Ḡ) and H̄ = �T

_̄. From the
definition (12.26b) of subgradient we have

� (Ḡ)� H̄T
Ḡ = min

G2R=
� (G)� H̄T

G 2 R

i.e., the finite minimum of the right-hand side is attained at Ḡ. Hence (Ḡ, �Ḡ) is a
minimizer of the following constrained convex optimization:

min
(G,I)2R=+<

5 (I)� H̄T
G s.t. I 2 - 0 := dom( 5 ), I = �G (12.34)

If 5 is polyhedral, then - 0 := dom( 5 ) =: % is a polyhedral set. Otherwise - 0 =: ⇠ is
a convex set since 5 is a convex function. In the former case the assumption that �
is proper means that there exists G̃ 2 R= such that Ĩ := �G̃ 2 - 0. In the latter case the
assumption in the theorem means that there exists G̃ 2 R= such that Ĩ := �G̃ 2 ri(- 0). In
both cases Theorem 12.17 implies that strong duality holds and there exists an optimal
dual variable _̄ 2 R< that attains the dual optimal value:

min
G2R= , I2dom( 5 )

⇣
5 (I)� _̄T

I� ( H̄� �T
_̄)T

G

⌘
= 5 (�Ḡ)� H̄T

Ḡ

where the left-hand side is the dual function of (12.34) evaluated at the dual optimal
point _̄ and the right-hand side is the primal optimal value attained at (Ḡ, �Ḡ). Since
the minimization over G is unconstrained we must have H̄ = �T

_̄. Clearly we can extend
the minimization over I to R< and hence we have

min
I2R<

5 (I)� _̄T
I = 5 (�Ḡ)� H̄T

Ḡ = 5 (�Ḡ)� _̄T (�Ḡ)

i.e., _̄ 2 m 5 (�Ḡ) by definition (12.26b). This completes the proof that m� (G) =
�

T
m 5 (�G). ⇤

Example 12.9 (#�\ (G) = #� (G) +# (G)). Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. G 2 �\ 

where � := {G : �G = 1} is a polyhedron and  := {G : G � 0} is a convex cone. If 5 ⇤
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(or the dual objective value) is finite, then the e�ective domain dom(2T
G) = � \ is

nonempty. Theorem 12.18 then implies that, for any G 2 �\ ,

m (X� (G) + X (G)) = mX� (G) + mX (G)

i.e., from Table 12.2,

#�\ (G) = #� (G) +# (G)

This is illustrated in Figure 12.14. ⇤

x̄

NH(x̄)

H

x2

x1

x̄

NH

(a) At a relative interior point Ḡ of � \ .

NH

(b) At a relative boundary point Ḡ of � \ .

Figure 12.14 Example 12.9: Normal cone of set intersection. (Dec 13, 2025: middle panels for
both (a) and (b): �!  .)

Theorem 12.19. 1. Finite max. Let � (G) :=max { 51 (G), . . . , 5< (G)} where 58 :R=!
R are real-valued (and hence proper) convex functions. For any G 2 R= let

� (G) := {8 : 58 (G) = � (G)}

Then

3� (G;E) = max
82� (G)

358 (G;E), 8G,E 2 R=

m� (G) = conv (m 58 (G) : 8 2 � (G)) , 8G 2 R=

2. Arbitrary max. Let � (G) := maxH2. 5 (G, H) where 5 : R= ⇥. ! R is a real-
valued function and . ✓ '<. Suppose for each H 2 . , 5 (·, H) is convex and
hence continuous on R=. Fix an Ḡ and suppose there exists a neighborhood
* (Ḡ) of Ḡ such that for each G 2 * (Ḡ), 5 (G, ·) is upper semicontinuous on . .
Let . (G) := {H : 5 (G, H) = � (G)}. Then

3� (Ḡ;E) = sup
H2. ( Ḡ)

3G 5 (Ḡ, H;E), 8E 2 R=

m� (Ḡ) = cl (conv (mG 5 (Ḡ, H) : H 2 . (Ḡ)))

where 3G 5 (G, H;E) and mG 5 (G, H) are respectively the directional derivative and
subdi�erential of 5 with respect to G.
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Remark 12.6. Theorem 12.19 is used in Exercise 13.12 to derive the subdi�erentials
of dual functions defined through minimization over primal variables.

1. Theorem 12.19.1 generalizes Theorem 8.21 from the case where 5 is real-valued
and jointly continuous in (G, H) and . is compact to the case where 5 may not
be continuous in G and . may not be compact. It is proved in e.g. [56, Example
5.4.5, p.199]. Since 58 are real-valued convex and hence proper and continuous on
dom( 58) = R=, � is also a real-valued convex continuous function. Since m 58 (G) is
nonempty convex compact by Lemma 12.15, so is m� (G).

2. Theorem 12.19.2 is taken from [155, Proposition 4.5.2, p.76]. ⇤

Remark 12.7. Consider a real-valued function 5 : R= ⇥. ! R and

� (G) := sup
H2.

5 (G, H), ⌧ (G) := inf
H2.

5 (G, H)

where . is an arbitrary subset of R<.

1. Taking supremum. Suppose 5 is convex in G for every H 2 . (this is the case e.g.
when 5 is the Lagrangian function of a constrained optimization). Then � (G) is
convex in G as Theorem 8.21 shows. Moreover if 5 (·, H) is closed for each H 2 .
then � (·) is closed as well ([56, Proposition 1.1.6, p.13]).

2. Taking infimum. Suppose 5 (G, H) is jointly convex in (G, H) (this is not the case
with Lagrangian functions). Then ⌧ (G) is convex ([56, Proposition 3.3.1, p.122]).
Moreover the epigraph epi(⌧ (G)) := {(G, I) : I � ⌧ (G),G 2 R=} is essentially the
projection of epi( 5 ) := {(G, H, I) : I � 5 (G, H),G 2 R=, H 2 . } on the space of (G, I),
except possibly for some boundary points G when the infimum over H 2 . is not
attained in which case (G,⌧ (G)) are missing. Precisely

%(epi( 5 )) ✓ epi(⌧) ✓ cl (%(epi( 5 )))

where the projection % is defined by %(() := {(G, I) : (G, H, I) 2 (} for any subset
( ✓ R= ⇥. ⇥R. ⇤

12.4 Optimality conditions: summary

In the following sections we use the tools developed in Chapters 12.3.1, 12.3.2 and
12.3.3 to derive optimality conditions for convex optimization. These conditions ex-
tends those of Chapter 8.3 to the nonsmooth setting where functions can be extended
real-valued and nondi�erentiable. They are summarized in Table 12.3 (cf. Table 8.1).
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Primal-dual characterization Assumptions

Th 12.20 saddle pt. = p-d opt. + strong duality arbitrary 5 ,6,⌘
Th 12.21 0 2 m 5 (G⇤) +#% (G⇤) +#⇠ (G⇤) prop. conv. 5 , poly. %, conv. ⇠

ri(dom( 5 ))\%\ ri(⇠) < ;

Existence

Co 12.23 pri. opt. set: nonempty compact lsc 5 on - , cl. - , - \dom( 5 ) < ;
bnd. - or bnd. +W < ; or rad. unbnd. 5

Th 12.26 pri. opt. set: nonempty compact convex CPC 5 , cl. conv. - , - \dom( 5 ) < ;
rc( 5 )\ rc(-) = {0}

Th 12.27 dual opt. set: nonempty, closed, convex prop. conv. 5 and ⌘, a�ne 6
strong duality: ?⇤ = 3⇤ = 3 (_⇤,`⇤) poly. %, conv. ⇠, finite 5 ⇤, Slater cond.

Table 12.3 Summary of characterization and existence of primal and dual optimal solutions.

12.5 Characterization: saddle point = p-d optimality + strong duality

In this section we present a primal-dual characterization of an optimal solution when
some or all of the constraints are specified explicitly and can be dualized. In smooth
optimization the Saddle Point Theorem 8.14 states that a saddle point attains primal-
dual optimality and strong duality. We show that this characterization extends directly
to the nonsmooth setting, without the need for the machinery in Chapters 12.3.1, 12.3.2
and 12.3.3 for nonsmooth analysis.

Consider the optimization problem where the feasible set is partially specified by
constraint functions:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, 6(G) = 0, ⌘(G)  0 (12.35)

where - 0 ✓ R= is a nonempty set and 5 : R= ! (�1,1], 6 : R= ! (�1,1]< and
⌘ : R= ! (�1,1]; are extended real-valued functions. As for the smooth case in
Chapter 8.3.1, we do not assume - 0 to be a convex set or 5 ,6,⌘ be convex functions.
Therefore (12.35) is generally a nonconvex problem.

Let the Lagrangian function be

! (G,_,`) := 5 (G) +_T
6(G) + `T

⌘(G), G 2 R=, _ 2 R<, ` 2 R; (12.36a)

the dual function be

3 (_,`) := inf
G2- 0

! (G,_,`) (12.36b)

and the dual problem be

3
⇤ := sup

_,`�0
3 (_,`) (12.36c)

Let - := {G 2 R= : G 2 - 0,6(G) = 0,⌘(G)  0} denote the primal feasible set and
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. := {(_,`) 2 R<+; : ` � 0} the dual feasible set. The primal problem (12.35) is the
same as (8.25) in Chapter 8.3.1 except the cost and constraint functions are allowed
to be nonsmooth and extended real-valued (see Remark 8.4 for partial dualization).
The Saddle Point Theorem 8.14 applies directly in the nonsmooth setting here. For
simplicity, we require a saddle point to attain a finite value of the Lagrangian ! by
definition.

Definition 12.4 (Saddle point for extended real-value functions). A point (G⇤,_⇤,`⇤) 2
-
0 ⇥. is called a saddle point of the Lagrangian ! if it satisfies

max
(_,`)2.

! (G⇤,_,`) = ! (G⇤,_⇤,`⇤) = min
G2- 0

! (G,_⇤,`⇤) 2 R (12.37)

In particular this common value ! (G⇤,_⇤,`⇤) is finite. ⇤

With this finiteness requirement, Definition 12.4 is equivalent to Definition 8.8
for real-valued functions 5 ,6,⌘, and Theorem 8.14 on primal-duality optimality and
strong duality extends directly to the nonsmooth setting.

Theorem 12.20 (Saddle-point Theorem 8.14). Consider the primal problem (12.35)
and its dual (12.36). A point (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point that satisfies (12.37)
if and only if

1. It is optimal-dual optimal, i.e., G⇤ is optimal for (12.35) and (_⇤,`⇤) is optimal for
(12.36).

2. The duality gap is zero at (G⇤,_⇤,`⇤), i.e.,

3 (_⇤,`⇤) = 3
⇤ = 5

⇤ = 5 (G⇤) (12.38)

In particular a saddle point (G⇤,_⇤,`⇤), if it exists, attains both the primal and dual
objective values ( 5 ⇤,3⇤).

Proof The proof of Theorem 8.14 does not use any smoothness properties of the
cost and constraint functions 5 ,6,⌘, except that they are real-valued. In particular,
when (G⇤,_⇤,`⇤) 2 - 0 ⇥. is a saddle point, the proof there uses Remark 8.3 to deduce
that G⇤ 2 - is primal feasible. This conclusion still holds here due to the finiteness
requirement in Definition 12.4. Since the weak duality lemma 8.13 applies to extended
real-valued functions, it can be checked that the argument in the proof of Theorem
8.14 goes through in the nonsmooth setting. ⇤

12.6 Characterization: generalized KKT condition

Consider the convex optimization

min
G2R=

5 (G) s.t. G 2 %\⇠ (12.39)
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where % ✓ R= is a nonempty polyhedral set, ⇠ ✓ R= is a nonempty convex set, and
5 : R=! (�1,1] is a proper convex extended real-valued function. In particular 5
may not be di�erentiable, though subgradients always exist since 5 is convex. We now
derive an exact characterization of primal optimal solutions when they exist. When
the feasible set %\⇠ is specified explicitly by equality and inequality constraints, the
characterization reduces to the KKT condition for nonsmooth convex problems. This
is studied in Chapter 12.9.

Lemma 12.13 in Chapter 12.3.2 says that a vector G⇤ is an unconstrained minimizer
of an extended real-valued convex function 5 if and only if 0 2 m 5 (G⇤). For constrained
minimization (12.39) this condition is generalized to the existence of a subgradient
H
⇤ 2 m 5 (G⇤) such that �H⇤ is in the normal cone #- (G⇤) of the feasible set %\⇠ at
G
⇤. Constrained optimization also requires a constraint qualification which is a kind of

feasibility condition, e.g., dom( 5 ) \%\ ri(⇠) is nonempty if 5 is polyhedral. If 5 is
not polyhedral then dom( 5 ) is replaced by ri(dom( 5 )).

Theorem 12.21 (Generalized KKT condition). Consider the convex optimization
(12.39) with a nonempty polyhedral set %, a nonempty convex set ⇠, and a proper
convex function 5 . Suppose one of the following constraint qualifications holds, de-
pending on whether 5 is polyhedral:

1. ri(dom( 5 ))\%\ ri(⇠) < ;;
2. 5 is polyhedral and dom( 5 )\%\ ri(⇠) < ;;

Then G⇤ 2 %\⇠ is optimal for (12.39) if and only if

0 2 m 5 (G⇤) + #% (G⇤) + #⇠ (G⇤) (12.40a)

i.e., there exists a subgradient H⇤ 2 m 5 (G⇤) such that �H⇤ 2 #% (G⇤) +#⇠ (G⇤), or equiv-
alently

H
⇤T (G� G⇤) � 0, 8G 2 %\⇠ (12.40b)

Proof The proof is from [56, Proposition 5.4.7, p.195]. The problem (12.39) is
equivalent to the unconstrained minimization:

min
G2R=

5 (G) + X% (G) + X⇠ (G)

where the indicator function X- 0 (G) = 0 if G 2 - 0 and1 if G 8 - 0. Lemma 12.13 in Chap-
ter 12.3.2 says that G⇤ 2 %\⇠ is optimal if and only if 0 2 m ( 5 (G⇤) + X% (G⇤) + X⇠ (G⇤)).
The stated constraint qualifications allow us to apply the result on the sum of functions
in Theorem 12.18 to conclude that G⇤ 2 %\⇠ is optimal if and only if

0 2 m 5 (G⇤) + mX% (G⇤) + mX⇠ (G⇤) = m 5 (G⇤) + #% (G⇤) + #⇠ (G⇤)

where the second equality follows from Table 12.2. ⇤
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Theorem 12.21 characterizes an optimal solution G⇤ but does not guarantee its exis-
tence. See Examples 8.9 and 8.10 in Chapter 8 for cases where primal optimal solutions
do not exist even though the constraint qualifications in Theorem 12.21 are satisfied.
In both examples the feasible set is not compact, but the primal optimal objective
values are finite, strong duality holds, and dual optimal solutions exist. As discussed in
Remark 12.4 we only need one subgradient H⇤ 2 m 5 (G⇤) to certify the optimality of G⇤

and does not require HT (G � G⇤) � 0 to hold for all H 2 m 5 (G⇤). The theorem is proved
by reducing the constrained minimization (12.39) to an unconstrained minimization
using the indicator function X- . It illustrates the simplicity of argument based on the
set theoretic concepts of nonsmooth optimization introduced in Chapter 12.1 and the
concept of subdi�erentials introduced in Chapters 12.3.2 and 12.3.3.

Remark 12.8 (Real-valued 5 ). 1. When 5 : R= ! R is real-valued then
ri(dom( 5 )) = dom( 5 ) = R= and the constraint qualifications in Theorem 12.21
reduce to

%\ ri(⇠) < ;

whether or not 5 is polyhedral.
2. If the cost function 5 is di�erentiable then H⇤ and m 5 (G⇤) in the optimality condition

in (12.40) can be replaced by r 5 (G⇤).

Similarly for other duality and optimality conditions. ⇤

When the feasible set - := % \⇠ is a general convex set - , Theorem 12.21 on
the characterization of (primal) optimal solutions and Theorem 12.26 on its existence
are almost all that we can say without more knowledge about - . When - is at least
partially specified by a�ne equalities and convex inequalities, we characterize saddle
points and strong duality in Theorem 12.20 of Chapter 12.5 and the existence of dual
optimal solutions in the Slater Theorem 12.27 of Chapter 12.8.1. When the feasible set
- is fully specified, all constraints can be dualized. When the normal cones #% (G⇤)
and #⇠ (G⇤) can be explicitly derived, such as those in Theorems 12.3, 12.4, 12.10 and
Corollary 12.11, the exact optimality condition (12.40) reduces to KKT conditions;
see Chapter 12.9.

12.7 Existence: primal optimal solutions

Theorem 12.21 of Chapter 12.6 provides an exact characterization of primal optimal
solutions and the Saddle Point Theorem 12.20 of Chapter 12.5 characterizes saddle
points as primal-dual optimal solutions that close the duality gap. They do not ensure
that primal or dual optimal solutions exist. For smooth optimization Theorem 8.16
states that the primal optimal value is attained if the cost function is continuous and the
feasible set is compact. It is a consequence of the Weierstrass theorem. In this section
we extend this result to a nonsmooth setting where the continuity of the cost function
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is replaced by the closedness of 5 (recall that a function 5 : R=! [�1,1] is closed
if and only if 5 is lsc on R=; see Remark 12.3).

A function 5 : R=! (�1,1] is called radially unbounded if lim: 5 (G: ) =1 for
every sequence {G: } with kG: k !1. All nonempty level sets of a radially unbounded
function are bounded. The next result from [56, Proposition 3.2.1, p.119] provides
su�cient conditions for the existence of optimal solutions G⇤ 2 R= for unconstrained
optimization.

Theorem 12.22 (Weierstrass Theorem). Consider

min
G2R=

5 (G)

where 5 :R=! (�1,1] is closed and proper. If any of the following conditions holds:

1. dom( 5 ) is bounded; or
2. There exists W 2 R such that the level set +W := {G : 5 (G)  W} is nonempty and

bounded; or
3. 5 is radially unbounded;

then the set -⇤ ✓ R= of unconstrained minima of 5 is nonempty and compact. ⇤

A constrained optimization of 5 over a nonempty closed subset - ✓ R= can be
turned into an unconstrained optimization of the extended real-valued function 5- (G) :
R
=! [�1,1] defined in (12.25). An optimality condition then follows immediately

from Theorem 12.22 and the fact that 5- is closed if dom( 5 ) is closed and 5 is lower
semicontinuous on dom( 5 ) (Exercise 12.18). The next result generalizes the condition
in Theorem 8.16 (continuous 5 over closed and bounded -) to the nonsmooth setting.

Corollary 12.23 (Su�cient optimality condition). Consider

min
G2R=

5 (G) s.t. G 2 -

where - ✓ R=, 5 : - ! (�1,1] and - \ dom( 5 ) < ;. If - is closed, 5 is lower
semicontinuous at every G 2 - , and one of the following holds:

1. - is bounded; or
2. There exists W 2 R such that the level set +W := {G : 5 (G)  W} is nonempty and

bounded; or
3. 5 is radially unbounded;

then the set -⇤ ✓ - of minima of 5 over - is nonempty and compact. ⇤
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CPC function 5 . Theorem 12.22 and Corollary 12.23 guarantee that the minimum
of a closed 5 is attained (at a finite point in R=) when there is a nonempty level set that
is bounded. (This corresponds to the compactness of the feasible set - in Theorem
8.16.) When level sets are not bounded, the set -⇤ of constrained minima can be exactly
characterized if 5 is not only closed and proper but also convex and - is closed and
convex. The key idea is that G cannot wander to infinity within a level set +W while
staying within its feasible set - . We next make this intuition precise.

Definition 12.5 (Recession cone). Let - ✓ R= be a nonempty convex set.

1. A vector 3 2 R= is a direction of recession of - if G +U3 2 - for all G 2 - and all
U � 0.

2. The recession cone of - , denoted by rc(-), is the set of all directions of recession
of - . ⇤

Example 12.10 (Recession cone and linearity space). 1. Consider the polyhedral
set - := {G 2 R= : �G  1}. A vector 3 is a direction of recession of - if
�(G + U3) = �G + U(�3)  1 for all G 2 - and U � 0. This is the case if and
only if �3  0. Therefore rc(-) = {3 2 R= : �3  0}.

2. The set ls(-) := rc(-)\ (�rc(-)) is called the linearity space of - . While rc(-)
consists of directions 3 of recession such that, for every G 2 - , the halfline G +U3
for all U � 0 is in - , ls(-) consists of those directions 3 such that the entire
line G +U3 for all U 2 R is in - . For the polyhedral set - := {G 2 R= : �G  1},
ls(-) = {3 2 R= : �3 = 0}. ⇤

Lemma 12.24. [56, Proposition 1.4.1; p.43] Let - ✓ R= be a nonempty closed convex
set. Then

1. rc(-) is closed and convex.
2. 3 2 rc(-) as long as there exists one G 2 - such that G +U3 2 - for all U � 0.
3. rc(-) contains a nonzero direction if and only if - is unbounded. ⇤

Example 12.11 (Level set, epi( 5 ), and their recession cones). Consider the real-
valued (CPC) function 5 : R2 ! R defined by 5 (G1,G2) = G2

1 + 1 and its level set
+W := {G 2 R2 : G2

1  W�1} for W 2 R. Then

+W :=

(
; if W < 1�
(G1,G2) : G2

1  W�1, G2 2 R
 

if W � 1

For W � 1, +W is nonempty and its recession cone is

rc(+W) :=
�
3 2 R2 : (G1 +U31)2  W�1 8U � 0, G 2 R2 s.t. G2

1  W�1
 

By choosing G2
1 = W�1, 3 2 rc(+W) implies

2UG131 +U2
3

2
1  0, 8U � 0, G1 = ±

p
W�1

i.e., 31 = 0. The converse obviously holds and hence

rc(+W) :=
�
3 2 R2 : 31 = 0

 
(12.41)
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In particular rc(+W) is independent of W as long as W � 1.

The epigraph of 5 and its recession cone are

epi( 5 ) :=
�
(G, H) 2 R3 : H � 5 (G) = G2

1 +1
 

rc(epi( 5 )) :=
�
(3,W) 2 R3 : (G, H) +U(3,W) 2 epi( 5 ) 8U � 0, (G, H) 2 epi( 5 )

 
Therefore (3,W) 2 rc(epi( 5 )) if and only if

U
2
3

2
1 +2UG131�UW  H� (G2

1 +1), 8U � 0, (G, H) 2 R3 s.t. H � (G2
1 +1)

By choosing H := G2
1 +1 this holds only if

U
2
3

2
1 +2UG131�UW  0, 8U � 0, G1 2 R

Hence (3,W) 2 rc(epi( 5 )) if and only if 31 = 0 and W � 0, i.e.

rc(epi( 5 )) =
�
(3,W) 2 R3 : 31 = 0, W � 0

 
From (12.41) we have rc(+W) = {3 2 R2 : (3,0) 2 rc(epi( 5 ))}. ⇤

Example 12.11 motivates the next result that suggests defining the direction of
recession of a closed proper convex (CPC) function 5 in terms of its level set.

Lemma 12.25. [56, Proposition 1.4.5; p.51] Consider a closed proper convex function
5 : R=! (�1,1] and its level sets

+W := {G 2 R= : 5 (G)  W} , W 2 R

Then:

1. All nonempty level sets +W have the same recession cone rc(+W) = {3 : (3,0) 2
rc(epi( 5 ))}.

2. If one nonempty level set +W is compact, then all level sets are compact. ⇤

In view of the lemma we can define, for a CPC function 5 : R= ! (�1,1],
the recession cone of 5 as rc( 5 ) := rc(+W) for any nonempty level set +W . A vector
3 2 rc( 5 ) is called a direction of recession of 5 . Intuitively it is the direction in which
5 is monotonically nonincreasing and+W is unbounded. A vector 3 is called a common
direction of recession of 5 and - if 3 2 rc( 5 ) \ rc(-). The next result from [56,
Proposition 3.2.2; p.120] characterizes exactly the set -⇤ of minima of a constrained
optimization.

Theorem 12.26. [56, Proposition 3.2.2; p.120] Consider

min
G2R=

5 (G) s.t. G 2 - (12.42)

where - ✓ R= is nonempty closed and convex, 5 : R= ! (�1,1] is closed proper
convex, and - \ dom( 5 ) < ;. The set -⇤ ✓ - of minima of 5 over - is nonempty,
convex and compact if and only if - and 5 have no common nonzero direction of
recession. ⇤
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Theorem 12.26 is used in Exercise 13.12 to derive the subdi�erentials of dual
functions defined through minimization over primal variables. The essential di�erence
between Theorem 12.26 and Corollary 12.23 is that Theorem 12.26 replaces the
boundedness of the feasible set by the absence of nonzero direction of recession in
rc(-) \ rc( 5 ). If - and 5 do have a common nonzero direction 3 of recession, then
either the optimal solution set is empty (optimal value may be finite or infinite and is
not attained) or it is nonempty, convex but unbounded (optimal value attained). This
is because for any nonzero 3 2 rc(-)\ rc( 5 ), then there is a feasible point G 2 - such
that G +U3 remains in - and in the level set +W as U!1. Moreover this holds for all
nonempty level sets+W by Lemma 12.25. Therefore either+⇤ := limW!�1+W < ; (limit
exists because +W are nested) or +W = ; for small enough W. In the former case there
is a 3 2 rc(-) \ rc (+⇤) and the primal solution is not attained, e.g., - = R, 5 (G) = G
and 3 = �1. In the latter case there is a smallest W0 for which +W0 < ; and the primal
optimal solution set is nonempty and unbounded since the intersection of rc(-) and
rc(+W0 ) is nonempty (Exercise 12.19), e.g., - = R, 5 (G) = max{0,G} and 3 = �1.

Example 12.12 (-⇤ of linear program). Consider the pair of linear programs:

5
⇤ := min

G2R2
G1 + G2 s.t. G1 + G2 � 1, G1 � 0, G2 � 0 (12.43a)

5
⇤ := min

G2R2
G1 + G2 s.t. G1 + G2 � 1 (12.43b)

They have the same optimal value 5
⇤ = 1. The recession cone of their cost function

5 (G) := G1 + G2 is the halfspace rc( 5 ) := {3 2 R2 : 31 + 32  0}. Their feasible sets and
recession cones are:

-1 := {G : G1 + G2 � 1,G1 � 0,G2 � 0}, rc(-1) = {3 2 RB : 31 � 0,32 � 0}
-2 := {G : G1 + G2 � 1}, rc(-2) = {3 2 RB : 31 + 32 � 0}

Therefore for the first problem (12.43a), rc(-1) \ rc( 5 ) = {0} and the set -⇤1 = {G :
G1 + G2 = 1,G1 � 0,G2 � 0} of optimal solutions is nonempty, convex and compact. For
the second problem (12.43b), rc(-2) \ rc( 5 ) = {3 : 31 + 32 = 0} ) {0} and -⇤2 = {G :
G1 + G2 = 1} is nonempty, convex, closed but unbounded. ⇤

The structure of Example 12.12 holds for general linear programs, as proved in the
next example.

Example 12.13 (Optimal solution of linear program). Consider the linear program
(8.57a) reproduced here:

5
⇤ := min

G2R=
2

T
G s.t. �G � 1

where 2 2 R=, � 2 R<⇥= and 1 2 R<. If the feasible set - := {G 2 R= : �G � 1} is
bounded or if there is a W 2 R such that the level set+W is nonempty and bounded, then
Corollary 12.23 implies that the set -⇤ ✓ - of optimal solutions is nonempty, convex
and compact. Consider then the case where - is unbounded and every nonempty level
set +W := {G 2 R= : 2T

G  W} is unbounded. This means that both rc(-) and rc( 5 )
contain nonzero directions of recession (Lemma 12.24).
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Then there are two mutually exclusive cases:

1. rc(-) \ rc( 5 ) = {0}: In this case Theorem 12.26 implies that -⇤ is nonempty,
convex and compact. Moreover if 3 2 rc(-) and 3 < 0 then 2T

3 > 0, i.e., the cost
strictly increases along any direction of recession of the feasible set - .

2. 93 2 rc(-) \ rc( 5 ) with 3 < 0: In this case, if 5 ⇤ is finite, then 2T
3 = 0 and an

optimal solution G⇤ exists, but -⇤ is convex, closed but may be unbounded.

The first claim follows because, if 2T
3  0, then for any G 2 +W , 2T (G +U3)  2T

G  W,
i.e., 3 2 rc(+W) = rc( 5 ) by Lemma 12.25, a contradiction.

For the second claim let {+W: } be a nested sequence of level sets with W: # 5 ⇤ and let
%: := - \+W: . Then %: are nonempty closed polyhedral sets. Since {%: } is a nested
sequence, the limit \1

:=1%: exists. Moreover -⇤ = \1
:=1%: , i.e., G⇤ 2 -⇤ if and only if

G
⇤ is feasible and 2T

G
⇤  lim: W: = 5

⇤. It is clear that -⇤ is convex and closed. We now
prove the following fact that is used in Lemma 8.22: if �1 < 5

⇤
<1 then \1

:=1%: < ;,
i.e., an optimal solution exists.

The sets %: are closed and convex. Let G: be the unique vector in %: with the
minimum norm, i.e., the projection of the origin onto %: . Suppose the sequence {G: }
is bounded, i.e., there exists A such that kG: k2  A for all : . Then it has at least one
limit point G⇤ (Bolzano-Weierstrass Theorem), i.e., there is a convergent subsequence

{G: } such that G: ! G
⇤ as :

:2 �! 1. Since %: are closed for all : , G⇤ 2 %: for all : ,
i.e., G⇤ 2 \1

:=1%: . Hence it su�ces to show that {G: } is bounded.

Suppose the sequence {G: } is not bounded. We derive a contradiction, in three steps.

1. Construction of {H: } with lim: H:/kH: k2 = 3 2 \:rc(%: ). Since {G: } is un-
bounded there is a subsequence {G: } that diverges monotonically, i.e., kG: k2!
1 as :

:2 �!1. The sequence {G:/kG: k2} however is bounded and therefore has
at least one limit point 3 (Bolzano-Weierstrass Theorem), i.e., there is a subset

" ✓  such that G:/kG: k2 ! 3 as :
:2"�! 1. For each : = 1,2, . . . , define the

sequence H: := G< where < is the smallest integer in " with :  <. Then, since
%: is nested, H: 2 %: for every : . Moreover the sequence {H:/kH: k2 : : = 1,2, . . . }
is bounded and converges to 3, i.e., lim: H:/kH: k2 = 3. Since H: 2 %: for all : ,
kH: k2 !1, and the sets %: are nested, the limit point 3 must be a common
direction of recession of %: for all : , i.e., 3 2 \: rc(%: ) := \: rc(- \+W: ) (see
[56, Prop. 1.4.1(b), p.43]). This means that for any feasible point G 2 - \+W: ,
G +U3 2 - \+W: for all U � 0. (Clearly 3 < 0 and is in \: rc(%: ) = rc(-)\ rc( 5 )
due to Lemma 12.25.)

2. For all su�ciently large : , kH: � 3k22 < kH: k22. We now show that, for su�ciently
large integers<, H< := G< are not the vectors in %< with minimum norms whenever
< 2 " , contradicting the definition of G< and hence proving that the sequence
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{G: } is bounded. For all : = 1,2, . . . , since

3
T
H:

kH: k2
! k3k22 = 1, kH: k2 ! 1

we must have 3T
H: !1 and hence 23T

H: � 1 > 0 for all su�ciently large : .
Therefore for all su�ciently large :

kH: � 3k22 = kH: k22� (23T
H: �1) < kH: k22

i.e., the vector H: � 3 has a smaller norm than H: .
3. For all su�ciently large : , H: � 3 2 %: . It hence su�ces to show that H: � 3 2 %:

for all su�ciently large : . For all : , since 3 2 rc(%: ) := rc(- \+W: ), we have for
any G 2 - \+W: , �G +U(�3) � 1 and 2T

G +U(2T
3)  W: for all U � 0. This holds

if and only if

�3 � 0, 2
T
3  0 (12.44)

If 2T
3 < 0, then letting U!1 the cost 2T (G+U3)!�1, contradicting 5 ⇤ > �1.

Hence 2T
3 = 0. But this implies that G� 3 and hence H: � 3 is in +W: for all : .

We now prove that H: � 3 2 - , i.e., �(H: � 3) � 1, as well for all su�ciently
large : , using the fact that - is polyhedral. To show that for each row 0

T
8

of �,
0

T
8
(H: � 3) � 18 , note that 0T

8
3 � 0 from (12.44). If 0T

8
3 = 0 then 0T

8
(H: � 3) =

0
T
8
H: � 18 since H: 2 %: := - \+W: . On the other hand suppose 0T

8
3 > 0. Since

lim: H:/kH: k2 = 3 we have

lim
:

0
T
8
(H: � 3) = lim

:

✓
kH: k2 0T

8

H:

kH: k2
� 0T

8
3

◆
=

✓
lim
:

kH: k2�1
◆
0

T
8
3

Recall that lim: kH: k2 =1, and hence 0T
8
(H: � 3) � 18 for all su�ciently large : .

Therefore H: �3 2 %: for all su�ciently large : . We have thus shown that H< := G<
are not vectors in %< with minimum norms whenever < 2 " , a contradiction.

This shows that {G: } is bounded and completes the proof that if �1 < 5
⇤
< 1 then

\1
:=1%: < ;. ⇤

12.8 Existence: dual optimal solutions and strong duality

In Chapter 12.7 we study the existence of primal optimal solutions (Corollary 12.23
and Theorem 12.26). In this section we study dual optimality. In smooth optimization
the Slater Theorem 8.17 states that a dual optimal solution exists and strong duality
holds if the optimal primal value is finite (even if it is not attained) and the Slater
condition is satisfied. We extend this assertion to the nonsmooth setting in Chapter
12.8.1 and provide a detailed proof in 12.8.2 and 12.8.3 (which also proves Theorem
8.17). These results are mostly adapted from [56, Chapters 4 and 5].
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12.8.1 Slater Theorem

Consider the convex optimization (12.35) where the feasible set is specialized to be the
intersection of a polyhedral set and a convex set and the equality constraint 6(G) = 0 is
polyhedral:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, �G = 1, ⌘(G)  0 (12.45a)

Here the nonempty convex set - 0 ✓ R= is the intersection of a polyhedral set % and a
convex set ⇠:

-
0 := % \ ⇠

� 2 R<⇥=, 1 2 R<, and 5 : R=! (�1,1] and ⌘ : R=! (�1,1]; are extended real-
valued proper convex functions. 7 Suppose, for some ; with 0  ;̄  ;, ⌘8 , 8 = 1, . . . , ;̄, are
polyhedral functions. In contrast to (12.35) the polyhedral equality constraint �G = 1
ensures that the feasible set of (12.45a) is convex.

Let the Lagrangian function be

! (G,_,`) := 5 (G) + _T (�G� 1) + `T
⌘(G), G 2 R=, _ 2 R<, ` 2 R;

the dual function be

3 (_,`) := inf
G2- 0

! (G,_,`), _ 2 R<, ` 2 R;

and the dual problem be

3
⇤ := sup

_,`�0
3 (_,`) (12.45b)

The following result from [56, Proposition 5.3.6, p.175] extends the Slater Theorem
8.17 to the nonsmooth setting.

Theorem 12.27 (Slater Theorem). Consider the optimization problem (12.45) with a
mixture of polyhedral and nonpolyhedral constraints. Suppose the following conditions
hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 ,⌘ are proper convex functions over ⇠; % is a nonempty polyhedral
set and ⇠ is a nonempty convex set.

• Slater condition: There exists Ḡ 2 ri(dom( 5 ))\%\ri(⇠) such that �Ḡ = 1, ⌘8 (Ḡ) 
0, 8 = 1, . . . , ;̄, and ⌘8 (Ḡ) < 0 for 8 = ;̄ +1, . . . , ;.

Then

1. 5
⇤ = 3⇤.

2. The set of dual optimal solutions (_⇤,`⇤) with 3 (_⇤,`⇤) = 3⇤ is nonempty, convex
and closed. ⇤

7
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Remark 12.9 (Real-valued functions). When 5 and ⌘ are real-valued the constraint
qualification for strong duality in Theorem 12.27 can be slightly weakened to [56,
Proposition 5.3.6, p.175]:

1. There exists G̃ 2 %\ ri(⇠) such that �G̃ = 1 and ⌘8 (G̃)  0, 8 = 1, . . . , ;̄; and
2. There exists Ḡ 2 %\⇠ such that �Ḡ = 1, ⌘8 (Ḡ)  0, 8 = 1, . . . , ;̄, and ⌘8 (Ḡ) < 0 for
8 = ;̄ +1, . . . , ;. ⇤

Instead of the problem (12.45) where the constraints are explicitly decomposed
into polyhedral constraints G 2 % and �G = 1 and (possibly nonpolyhedral) convex
constraints G 2⇠ and ⌘(G)  0, we will prove Theorem 12.27 in the following equivalent
but simpler form:

5
⇤ := min

G2R=
5 (G) s.t. G 2 - 0, ⌘(G)  0 (12.46a)

where - 0 ✓R= is a nonempty convex set, and 5 :R=! (�1,1] and ⌘ :R=! (�1,1];
are proper convex extended real-valued functions. Let the Lagrangian function be

! (G,`) := 5 (G) + `T
⌘(G), G 2 R=, ` 2 R;

the dual function be

3 (`) := inf
G2- 0

! (G,`), ` 2 R;

and the dual problem be

3
⇤ := sup

`�0
3 (`) (12.46b)

This problem is equivalent to (12.45) since - 0 can take the form -
0 = %\⇠ and �G = 1

is equivalent to �G  0, �G � 0. For simplicity, however, we will prove the following
version where the Slater condition is less refined than that in Theorem 12.27. Define
the set of all dual optimal solutions `⇤ that attain strong duality:

&
⇤ :=

⇢
`
⇤ � 0 : 3 (`⇤) = inf

G2- 0
5 (G) + `⇤T⌘(G) = 5

⇤
�
✓ R; (12.47)

Due to weak duality,&⇤ can be equivalently defined to be&⇤ := {`⇤ � 0 : 3 (`⇤) � 5 ⇤}.

Theorem 12.28 (Slater Theorem). Consider the convex optimization problem and its
dual (12.46). Suppose the following conditions hold:

• Finite primal value: 5 ⇤ > �1.
• Convexity: 5 ,⌘ are proper convex functions; - 0 is a nonempty convex set.
• Slater condition: one of the following constraint qualifications holds:
CQ1 : There exists Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0;8 or
CQ2 : The functions ⌘8 , 8 = 1, . . . , ;, are polyhedral, i.e., ⌘(G) = �G + 1 for some � 2

R
;⇥= and 1 2 R; , and there exists Ḡ 2 ri(dom( 5 ))\ ri(- 0) such that �Ḡ + 1  0.

8 CQ1 is customarily called the Slater condition.
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Then

1. 5
⇤ = 3⇤.

2. If CQ1 holds then &⇤ in (12.47) is nonempty, convex and compact.
3. If CQ2 holds then &⇤ is nonempty, convex and closed. ⇤

Due to weak duality 3⇤  5 ⇤, finite 5 ⇤ means that the dual problem is either finite
feasible or infeasible. The constraint qualification CQ1 or CQ2 in the theorem ensures
strong duality and the existence of dual optimal solutions. The proof of Theorem
12.28 illustrates the typical argument in this type of results. In particular it shows
how constraint qualifications ensures that a nonvertical separating hyperplane exists
between two disjoint convex sets. The normal vector of the hyperplane defines a dual
optimal solution. The closedness of the dual optimal set &⇤ is due to the property that
the dual function 3 (`) is concave, closed (i.e., epi(3) is a closed set in R;+1) and upper
semicontinuous (see Lemma 12.29). If a strictly feasible Ḡ exists (CQ1), then &⇤ is
compact, not just closed (this corresponds to 0 2 int

�
⇡
"

�
in Lemma 12.30, not just

0 2 ri
�
⇡
"

�
).

We next develop over Chapters 12.8.2 and 12.8.3 the proof of Theorem 12.28,
adapted from [56, Chapters 4 and 5].

12.8.2 MC/MC problems

The proof of strong duality relies on the following geometric idea. Let " ✓ R;+1 be a
nonempty set and let (D,F) with D 2 R; and F 2 R denote a variable in R;+1. Define
the primal problem:

Primal (minimum common) : F
⇤ := inf

(0,F)2"
F (12.48a)

where F⇤ :=1 if (0,F) 8 " for any F 2 R. As we will see below duality expresses
the situation where there exists a nonvertical hyperplane that contains the set " in
its “upper” closed halfspace; see Figure 12.15. The normal to the hyperplane defines
a dual optimal solution. To describe this, recall that a nonvertical hyperplane in the
(D,F)-space specified by a normal (`,1) 2 R;+1 and an F-intercept b 2 R is given by

{(D,F) 2 R;+1 : `T
D +F = b}

We desire `T
D+F � b for all (D,F) 2 " , corresponding to containing" in the “upper”

halfspace. Hence define

3 (`) := inf
(D,F)2"

`
T
D + F

and the dual problem:

Dual (maximum crossing) : 3
⇤ := sup

`2R;
3 (`) (12.48b)



12.8 Existence: dual optimal solutions and strong duality 609

M

M̄

w*

(µ*,

(a) Nonconvex "

M

M̄

(µ*,

(b) Convex "

Figure 12.15 The primal and dual problems (12.48) defined by the nonempty set " . Their
optimal values are (F⇤,3⇤) respectively. The normal (`⇤, V⇤ := 1) of the nonvertical
hyperplane attains the dual optimal solution `⇤, i.e., 3 (`⇤) = 3⇤. (a) Nonzero duality gap
3
⇤
< F
⇤ when " is not convex. (b) Zero duality gap 3⇤ = F⇤ when " is convex (even though

" is nonconvex). In both cases, 0 2 ri(⇡
"
) which ensures that V⇤ > 0 (nonvertical

hyperplane). (Dec 15, 2025: (a)(b) (i) Change " to black. (ii) Blue boundaries of " can be
black and normal (or thicker) black lines.)

Given `, 3 (`) is the smallest F-intercept of the hyperplane with normal (`,1) that
touches (supports) the set " . The dual problem is to find a normal (`⇤,1) such that
this smallest F-intercept 3 (`⇤) is the maximum over ` 2 R; . If the normal to the
hyperplane is (`,0), i.e., V⇤ = 0 in Figure 12.15, then the hyperplane is vertical and
there is no finite maximum crossing 3⇤.

It is straightforward to show weak duality: 3⇤  F⇤ (Exercise 12.20). The following
useful property of the dual function 3 (`) is derived in the proof of Lemma 12.30.

Lemma 12.29 (Dual function). Consider the function 3 (`) := inf (D,F)2" `
T
D +F

where " ✓ R;+1 is nonempty. Then 3 (`) is a concave, closed (i.e., epi(3) is a closed
set in R;+1) and upper semicontinuous function.

It is easier to work with the positive extension " of " defined by:

" := " + {(0,F) : F � 0} =
�
(D,F) 2 R;+1 : F � F̄ for some (D, F̄) 2 "

 
(12.49)

because " ignores nonconvexity in the “upper” part of " which does not a�ect the
minimization in (12.48a). We can define (12.48) equivalently by replacing " with ":

Primal (minimum common) : F
⇤ := inf

(0,F)2"
F (12.50a)

Dual (maximum crossing) : 3
⇤ := sup

`2R;
3 (`) (12.50b)

where 3 (`) := inf (D,F)2" `
T
D +F.

The starting point for our proof is the following condition from [56, Propositions
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4.4.1 and 4.4.2, p.150] for 3⇤ = F⇤ and the existence of a dual optimal solution `⇤. Let
the set of all dual optimal solutions `⇤ that attain strong duality be

&
⇤ =

(
`
⇤ 2 R; : 3 (`⇤) := inf

(D,F)2"
`
⇤T
D +F = F⇤

)
(12.51)

Every dual optimal `⇤ 2 &⇤ defines a supporting hyperplane � := {(D,F) 2 R;+1 :
`
⇤T
D +F = F⇤} at (0,F⇤) 2 cl("), with cl(") in the “upper” halfspace of �. See

Figure 12.16.

(µ1* , 1)(µ2* , 1)

M

H

M̄

w

Figure 12.16 Every dual optimal `⇤ 2 &⇤ defines a hyperplane � that passes through (0,F⇤)
and separates (0,F⇤) from cl("). The shaded region labeled � in the figure shows all the
hyperplanes defined by &⇤. (Nov 30, 2025: Check if color! greyscale will be OK?)

Define ⇡
"

to be the projection of " onto the D-space:

⇡
"

:=
n
D 2 R; : (D,F) 2 " for some F 2 R

o
(12.52)

We may write ⇡ for ⇡
"

if " is understood from the context. Then the relative interior
of " and that of ⇡

"
are related as:

ri(") =
n
(D,F) 2 R;+1 : D 2 ri

�
⇡
"

�
, F > F̄ for some (D, F̄) 2 "

o
Lemma 12.30 (MC/MC strong duality). Suppose

• Finite primal value: F⇤ > �1.
• Convexity: " is convex.
• Constraint qualification: 0 2 ri

�
⇡
"

�
.

Then

1. 3⇤ = F⇤ in (12.50).
2. the set &⇤ in (12.51) of dual optimal solutions is nonempty, convex and closed. In

particular dual optimality is attained, i.e., 3⇤ = 3 (`⇤), `⇤ 2 &⇤.
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3. If 0 2 int
�
⇡
"

�
then &⇤ is nonempty, convex and compact. ⇤

Note that the lemma only requires " to be convex, even if " is not. It guarantees
that the dual optimal value 3⇤ is attained at some `⇤ 2 R; , but does not guarantee
that the primal optimal value F⇤ is attained even though F⇤ is finite, i.e., (0,F⇤) may
be in cl(") but not in " . The lemma is proved by constructing a nonvertical proper
separating hyperplane defined by its normal (`⇤,1) that establishes the existence of an
optimal dual vector `⇤ (the hyperplane is called proper if it does not fully contain the
convex set "). The requirement 0 2 ri(⇡

"
) ensures that the hyperplane is nonvertical

so that the maximum crossing point is finite. The proof below that &⇤ is closed also
proves Lemma 12.29 on dual function 3 (`). If 0 2 int

�
⇡
"

�
(not just 0 2 ri

�
⇡
"

�
) then

&
⇤ is compact (not just closed).

Proof We first prove parts 1 and 2 of the lemma, in five steps.

Step 1: (0,F⇤) 8 ri("). We claim that F⇤ is finite, i.e., �1 < F
⇤
< 1, and

(0,F⇤) 8 ri("). The first inequality follows from the first assumption of the lemma.
The constraint qualification says that there exists F̄ such that (0, F̄) 2 " , and
hence F⇤ := inf (0,F)2" F  F̄ < 1. This confirms that F⇤ is finite. We claim that

(0,F⇤) 8 ri(") because otherwise, (12.52) implies that F⇤ > F̄ for some (0, F̄) 2 " ,
a contradiction.

Step 2: � separating (0,F⇤) from and not containing " . The Separating Hyperplane
Theorem 8.10 then implies that there exists a hyperplane that passes through (0,F⇤)
and separates (0,F⇤) from " (Theorem 8.10 extends easily to the case where int(-)
is replaced by ri(-)). Specifically there exists (`, V) 2 R;+1 such that

VF
⇤  `

T
D + VF, 8(D,F) 2 "

Moreover, (0,F⇤) 8 ri(") implies that the separating hyperplane � := {(D,F) 2 R;+1 :
`

T
D + VF = VF⇤} does not fully contain the convex set " (see [56, Proposition 1.5.5,

p.74]). This means that

VF
⇤  inf

(D,F)2"
`

T
D + VF < sup

(D,F)2"
`

T
D + VF (12.53)

Step 3: V > 0. We claim that V > 0. Clearly V cannot be negative because otherwise,
since there exists (0, F̄) 2 " (constraint qualification in the lemma), the definition
(12.49) of " implies that (0, F̄+F0) 2 " as F0 !1. Hence inf (D,F)2"

�
`

T
D + VF

�


V(F̄ +F0) ! �1, contradicting (12.53). Suppose for the sake of contradiction that
V = 0. Then (12.53) implies

0  inf
(D,F)2"

`
T
D = inf

D2⇡
"

`
T
D

Since 0 2 ⇡
"

from the constraint qualification, this infimum is attained at the origin
D = 0 over the convex set ⇡

"
(⇡

"
is convex since it is a projection of the convex

set "). But 0 2 ri(⇡
"
), which is possible only if `T

D is constant (and equal to 0)
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over ⇡
"

, for otherwise the minimum will be attained at a relative boundary point of
the convex set ⇡

"
. This contradicts the strict inequality in (12.53) with V = 0, i.e., it

contradicts the fact that the separating hyperplane � does not fully contain the convex
set " . Hence V > 0.

Step 4: strong duality and dual optimality. Since V > 0, we can renormalize to define
the hyperplane by `⇤ := `/V and V⇤ = 1. Substitute V⇤ = 1 into (12.53) to get

F
⇤  inf

(D,F)2"
`
⇤T
D +F =: 3 (`⇤)  3

⇤

where the last inequality follows from the definition (12.50b) of 3⇤. Weak duality
F
⇤ � 3⇤ then implies that F⇤ = 3⇤. This also shows 3 (`⇤) = 3⇤, i.e., the dual optimal

is attained at `⇤.

Step 5: 3 (`) is concave, closed and upper semicontinuous, and &⇤ is closed. For each
(D,F), define the a�ne function 6D,F (`) := �(`T

D +F). Then

�3 (`) = sup
(D,F)2"

6D,F (`)

Hence �3 is convex, i.e., epi(�3) is a convex set inR;+1. Since epi(6D,F ) is a closed set
for each (D,F), epi(�3) = \(D,F)2" epi(6D,F ) is closed in R;+1. On R; , �3 is closed if
and only if �3 is lower semicontinuous; see Remark 12.3. Hence 3 is concave, closed
and upper semicontinuous.

Finally &⇤ is a convex set because 3 is a concave function and " is a convex set.
Since 3 is upper semicontinuous on R; , &⇤ is a closed set because, if {`: } ✓ &⇤ with
`: ! `

⇤ 2 R; , then 3 (`⇤) � lim: 3 (`: ) = 3⇤, i.e., `⇤ 2 &⇤. This completes the proof
of parts 1 and 2 of the lemma.

For part 3, we only have to show that&⇤ is bounded when 0 2 int(⇡
"
). Suppose&⇤

is unbounded, i.e., there exists a sequence {`: } ✓&⇤ such that k`: k1 :=
Õ
8
| [`: ]8 | � :

for each integer : > 0. Consider the finite set * := {D 2 R; : D8 = ±1}, i.e., * consists
of 2; vectors D whose entries D8 are 1 or �1. Since 0 2 int(⇡

"
), we can find a small

enough A > 0 and, for each integer : > 0, vectors D: 2 * (with [D: ]8 = sign( [`: ]8))
and scalars F: 2 R such that (AD: ,F: ) 2 " and `T

:
(AD: ) = �A k`: k1. Since `: 2 &⇤

we have

F
⇤ = 3 (`: )  `

T
:
(AD: ) +F: = �A k`: k1 +F: , : = 1,2, . . . ,

Since {D: }: take values in the finite set *, there must exist an infinite subsequence
{(AD:8 ,F:8 )}8 such that (AD:8 ,F:8 ) = (AD̂, F̂) for all 8. We therefore have

F
⇤  �A k`:8 k1 + F̂ with k`:8 k1 � :8 , 8 = 1,2, . . . ,

Taking 8!1 gives F⇤ = �1, contradicting the assumption that F⇤ > �1. This shows
that &⇤ is bounded and hence compact. ⇤

Lemma 12.30 applies to an arbitrary nonempty set " ✓ R; . The formulation of
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the primal and dual problems (12.50) is very general. We now use the lemma to
prove Theorem 12.28 under CQ1, by specifying " in terms of the cost and constraint
functions 5 ,⌘. The theorem under CQ2 may not satisfy the condition 0 2 ri(⇡

"
) in

the lemma, but we will modify the proof of Lemma 12.30 to prove CQ2 directly.

12.8.3 Slater Theorem 12.28: proof

Let - 0 ✓ R= be a nonempty convex set and 5 : R=! (�1,1] and ⌘ : R=! (�1,1];
be proper convex extended real-valued functions. Consider the convex optimization
problem (12.46), reproduced here:

Primal: 5
⇤ := inf

G2R=
5 (G) s.t. G 2 - 0, ⌘(G)  0 (12.54a)

Dual: 3
⇤ := sup

`�0
3 (`) (12.54b)

where 3 (`) := infG2- 0 ! (G,`) for ` 2 R;+ and ! (G,`) := 5 (G) + `T
⌘(G), G 2 R=, ` 2 R; ,

is the Lagrangian. We can treat the dual function 3 : R; ! [�1,1] as an extended
real-valued function defined as

3 (`) :=

(
infG2- 0 5 (G) + `T

⌘(G) if ` � 0

�1 otherwise
(12.54c)

The feasible set is - := {G 2 - 0 : ⌘(G)  0} ✓ R=.

To apply Lemma 12.30 let " := {(⌘(G), 5 (G)) 2 R;+1 : G 2 dom( 5 ) \ - 0}. Let its
positive extension be

" := {(D,F) 2 R;+1 : D � ⌘(G), F � 5 (G) for some G 2 dom( 5 )\ - 0} (12.55a)

and the projection onto the D-space be

⇡
"

= {D 2 R; : D � ⌘(G) for some G 2 dom( 5 )\ - 0} (12.55b)

Note that since G that underlies ⇡
"

lies in dom( 5 ), there always exists F > 5 (G) so
that D 2 ri(⇡

"
) if and only if (D,F) 2 ri(") for some F > 5 (G). The extended set

" defined by -
0 di�ers slightly from " in Figure 12.15 in that D 2 R; extends to

the “right” indefinitely; see Figure 12.17. In the result below constraint qualifications
imply that the primal problem (12.54a) is feasible so that " is nonempty. Indeed if Ḡ
is a feasible point for (12.54a) then (0, 5 (Ḡ)) 2 " . Moreover " is convex since - 0 is
a convex set and 5 ,⌘ are convex functions.

The primal and dual problems (12.50) in terms of " are then

Primal: 5
⇤ := inf

(0,F)2"
F (12.56a)

Dual: 3
⇤ := sup

`2R;
3 (`) (12.56b)

where the dual function 3 (`) := inf (D,F)2" `
T
D +F. The dual problem (12.56b) with
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f *
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(a) Nonconvex "
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Figure 12.17 The (D,F) space: " := (⌘(- 0), 5 (- 0)) := {(⌘(G), 5 (G) : G 2 dom( 5 )\ - 0} and its
positive extension " . (Nov 15, 2025: Follow same convention as for Figure 12.15.)

the dual function 3 (`) in terms of " is equivalent to the dual problem (12.54) with
the dual function 3 (`) := infG2- 0 `T

⌘(G) + 5 (G), in the sense that `⇤ is optimal for
one dual problem if and only if it is optimal for the other dual problem with the same
optimal value, as long as the problem is feasible (Exercise 12.21). This implies that&⇤

in (12.47) is the same as &⇤ in (12.51). Both are the set of all dual optimal solutions
`
⇤ � 0 that attain strong duality.

We first use Lemma 12.30 to prove Theorem 12.28 under CQ1, by verifying the three
conditions in the lemma. Under CQ2 for an polyhedral function ⌘, the requirement
0 2 ri(⇡

"
) in Lemma 12.30 may not hold and we will modify the proof of the lemma

to prove CQ2 directly.

Proof of CQ1: 9Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0. We verify the three conditions
in Lemma 12.30, in particular 0 2 int(⇡

"
):

1. 5
⇤
> �1: This holds by assumption. Indeed CQ1 implies that 5 ⇤ is finite (�1 <

5
⇤
<1).

2. Convex ": Let (D1,F1), (D2,F2) 2 " . Then there exist G1,G2 2 dom( 5 )\- 0 such
that

D8 � ⌘(G8), F8 � 5 (G8), 8 = 1,2

The convexity of ⌘ implies that for any U 2 [0,1]

UD1 + (1�U)D2 � U⌘(G1) + (1�U)⌘(G2) � ⌘(UG1 + (1�U)G2)

Similarly the convexity of 5 implies UF1 + (1�U)F2 � 5 (UG1 + (1�U)G2). This
means U(D1,F1) + (1�U) (D2,F2) is in " , proving the convexity of " .

3. 0 2 int(⇡
"
): CQ1 gives Ḡ 2 dom( 5 ) \ - 0 with ⌘(Ḡ) < 0. Therefore 0 2 ⇡

"
,

where ⇡
"

is defined in (12.55b). Moreover there is an n > 0 such that D 2 ⇡
"

for any D with kDk  n and a F > 5 (Ḡ) such that (D,F) 2 ri
⇣
"

⌘
. This implies that

0 2 int
�
⇡
"

�
.
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Lemma 12.30 then implies that

3
⇤ = 5

⇤, 9`⇤ 2 R< s.t. 3⇤ = 3 (`⇤) = inf
(D,F)2"

`
⇤T
D +F (12.57)

Moreover the set &⇤ of dual optimal solutions is convex and compact. This completes
the proof of Theorem 12.28 under CQ1. ⇤

Proof of CQ2: 9Ḡ 2 ri(dom( 5 ))\ ri(- 0) such that ⌘(Ḡ) := �Ḡ + 1  0. In this case,
the condition 0 2 ri

�
⇡
"

�
:= ri ({D : D � �G + 1 for some G 2 dom( 5 )\ - 0}) in Lemma

12.30 may not hold, but we will modify the 5 steps in the proof of Lemma 12.30 to
establish (12.57) and properties of &⇤ directly (the key di�erence being Step 2).

Step 1: 5 ⇤ > �1. This holds by assumption. Indeed CQ2 implies that 5 ⇤ is finite
(�1 < 5

⇤
<1).

Step 2: Separating hyperplane. Substitute ⌘(G) = �G�1 into the definition (12.55a) of
":

" := {(D,F) 2 R;+1 : D � �G� 1, F � 5 (G) for some G 2 dom( 5 )\ - 0}

The key to the proof is a clever decomposition of" as a Minkowski sum of a convex set
⇠ ✓ R;+1 defined by the convex function 5 and a polyhedral set % ✓ R;+1 defined by the
a�ne functions ⌘, as follows. With the view of a slack variable E := D� (�G� 1) � 0,
we can write " = ⇠ +% where

⇠ := {(�G� 1,F) : F � 5 (G) for some G 2 dom( 5 )\ - 0}, % := {(E,0) : E � 0}

" =⇠+% because (D,F) 2 " if and only if D = �G�1+E for some E � 0 andF � 5 (G).

Guided by the sets ⇠ and % (see Step 4 below), we define the convex set ⇠̃ ✓ R;+1

and the polyhedral set %̃ ✓ R;+1 (since 5 ⇤ is finite):

⇠̃ := {(�G� 1,F) : F > 5 (G) for some G 2 dom( 5 )\ - 0}, %̃ := {(E, 5 ⇤) : E  0}

(When -
0 is open, ⇠̃ = ri(⇠). More generally, when restricted to G 2 ri(- 0), ⇠̂ :=

{(�G�1,F) :F > 5 (G) for some G 2 ri(- 0)} is ri(⇠).) We claim that ⇠̃\ %̃ = ; because
otherwise if (Ẽ, 5 ⇤) 2 ⇠̃ \ %̃ then there exists an G̃ 2 - 0 such that

Ẽ = �G̃� 1  0, 5
⇤
> 5 (G̃)

contradicting that 5 is uniformly lower bounded by 5
⇤ on its feasible set.

The separating hyperplane Theorem 8.11 then implies that there exists a hyperplane
that separates ⇠̃ and %̃, i.e., 9(`, V) 2 R;+1 such that

sup
(E , 5 ⇤)2%̃

`
T
E + V 5 ⇤  inf

(D,F)2⇠̃
`

T
D + VF

Moreover the separating hyperplane does not fully contain the convex set ⇠̃ (follows
from [56, Proposition 1.5.7, p.77] since ri(⇠̃)\ %̃ = ;). This means that

sup
(E , 5 ⇤)2%̃

`
T
E + V 5 ⇤  inf

(D,F)2⇠̃
`

T
D + VF < sup

(D,F)2⇠̃
`

T
D + VF (12.58)
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This corresponds to (12.53) in the proof of Lemma 12.30. The remaining Steps 3 and
4 follow the same idea there, working with ⇠̃, %̃ and the decomposition of " = ⇠ +%
here instead of " directly in Lemma 12.30.

Step 3: V > 0. We claim that V > 0. Clearly V cannot be negative because otherwise,
since (0, 5 (Ḡ)) 2 " (where Ḡ is the point in CQ2), the definition (12.55a) of " implies
that (0, 5 (Ḡ) +F0) 2 " as F0 ! 1. Hence inf (D,F)2"

�
`

T
D + VF

�
 V( 5 (Ḡ) +F0)!

�1, contradicting (12.58). Suppose for the sake of contradiction that V = 0. Then
(12.58) implies

sup
(E , 5 ⇤)2%̃

`
T
E  inf

(D,F)2⇠̃
`

T
D  `

T
Ē

where Ē := �Ḡ � 1 with Ḡ being the point in CQ2. Here the last inequality follows
because the point (Ē, 5 (Ḡ)) is in ⇠̃. But Ē  0 and hence (Ē, 5 ⇤) 2 %̃. Therefore

`
T
Ē  sup

(E , 5 ⇤)2%̃
`

T
E  inf

(D,F)2⇠̃
`

T
D  `

T
Ē

i.e., all inequalities above must hold with equality. Therefore Ē := �Ḡ � 1 attains the
minimization of `T

D over the projection ⇡̃ := {D = �G � 1 : (D,F) 2 ⇠̃} of ⇠̃ onto the
D-space. Since CQ2 says that Ḡ 2 ri(dom( 5 ))\ ri(- 0), Ē := �Ḡ� 1 is in ri(⇡̃). This is
possible only if `T

D is constant (and equal to `T
Ē) over ⇡̃, for otherwise the infimum

will be attained at a relative boundary point of the convex set ⇡̃. This contradicts the
strict inequality in (12.58), i.e., it contradicts the fact that the separating hyperplane
does not fully contain the convex set ⇠̃.

Step 4: strong duality and dual optimality. Since V > 0, we can renormalize to define
the hyperplane by `⇤ := `/V and V⇤ = 1. Substitute V⇤ = 1 into (12.58) to get

sup
E0

`
⇤T
E + 5 ⇤  inf

(D,F)2⇠̃
`
⇤T
D +F

5
⇤  inf

(D,F)2⇠̃
inf
E0

`
⇤T (D� E) +F

= inf
(D,F)2⇠

inf
(E ,0)2%

`
⇤T (D + E) +F

= inf
(D,F)"

`
⇤T
D +F =: 3 (`⇤)  3

⇤

where the first equality uses the fact that the infimum of `⇤TD +F over ⇠̃ or ⇠ is the
same. Weak duality 5

⇤ � 3⇤ then implies that 5 ⇤ = 3⇤. This also shows 3 (`⇤) = 3⇤,
i.e., the dual optimal is attained at `⇤. This establishes (12.57), i.e., the set &⇤ of dual
optimal solutions is nonempty.

Step 5: &⇤ is convex and closed. This step is the same as Step 5 in the proof of
Lemma 12.30. As shown there, the dual function 3 (`) is concave, closed and upper
semicontinuous. Therefore the set &⇤ of dual optimal solutions is a convex set (" is
convex as shown above for the case CQ1). Since 3 is upper semicontinuous onR=,&⇤ is
a closed set because, if {`: } ✓ &⇤ with `: ! `

⇤ 2 R=, then 3 (`⇤) � lim: 3 (`: ) = 3⇤,
i.e., `⇤ 2 &⇤. ⇤
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12.9 Special convex programs

In this section we apply the general theory developed in Chapters 12.5–12.8 (summa-
rized in Table 12.3) to special classes convex optimization problems widely used in
applications. In particular we apply the Slater Theorem 12.27 and the generalized KKT
Theorem 12.21 to derive conditions for strong duality, dual optimality and the KKT
conditions for some of the problem classes in Figure 8.14 of Chapter 8.4.1 (specifi-
cally linear program, second-order cone program, conic program, and convex program
specified by a general convex inequality). It extends some of the results of Chapter 8.4
for di�erentiable problems to the nonsmooth setting.

12.9.1 Summary: general method

Consider the convex problem:

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2 - ✓ R= (12.59)

where 5 : R= ! R is a convex function, � 2 R<⇥=, 1 2 R< and - is a nonempty
closed convex set that may be specified explicitly as ⌘(G)  0 for a convex function
⌘ : R=! R; . The problems studied in this section is summarized in Figure 8.14 and
the conclusions are summarize in Table 8.3 of Chapter 8.4.1. A general method to
derive these conclusions is also described in Chapter 8.4.1 for smooth problems. Here
we summarize how to adapt that method to the nonsmooth setting using concepts
of subgradients, normal cones and dual cones. The key di�erence is the approach to
derive the KKT condition without di�erentiability and for abstract specifications of
the feasible set - .

1. Dual problem. Given the primal problem (12.59), if - is explicitly specified, e.g.,
by a convex inequality ⌘(G)  0, then the Lagrangian function ! and the dual
problem are defined by (8.56a) (8.56b) in Chapter 8.4.1. Otherwise if - ✓ R= is
specified by ⌫G + 3 2  for a closed convex cone  ✓ R; then the Lagrangian can
be defined in terms of its dual cone  ⇤:

! (G,_,`) := 5 (G)�_T (�G� 1) + `(⌫G + 3), G 2 R=, _ 2 R<, ` 2  ⇤ ✓ R;

The dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

(_,`)2R<+;
3 (_,`) s.t. ` 2  ⇤

This is studied in Chapter 12.9.4.
2. Strong duality and dual optimality. This does not require di�erentiability and

the results hold almost verbatim in the nonsmooth setting using Theorem 12.27
(except substituting subgradients for gradients).
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3. KKT condition and primal optimality. Suppose - ✓ R= is specified by ⌫G + 3 2  
for a closed convex cone  ✓ R; . Without di�erentiability the KKT condition
cannot be derived simply from rG! (G⇤,_⇤,`⇤) = 0 as done in (8.56c) of Chapter
8.4.1. Instead we convert (12.59) into an unconstraint problem

5
⇤ := min

G2R=
5 (G) + X� (G) + X (⌫G + 3)

where � := {G 2 R= : �G = 1}. Recall that (i) 5 is a convex function. Suppose
(ii) the Slater condition is satisfied, i.e., there exists Ḡ 2 ri(dom( 5 )) \ ri( ) with
�Ḡ = 1 (dom( 5 ) = R= if we assume 5 is real-valued). Then the generalized KKT
Theorem 12.21 implies that G⇤ is optimal if and only if there exists a subgradient
b
⇤ 2 m 5 (G⇤), _⇤ 2 R< and `⇤ 2 R; such that (from Corollary 12.7):

�b⇤ 2 #� (G⇤) +⌫T
# (⌫G⇤ + 3)

Using Theorem 12.3 on normal cones the KKT condition is equivalent to

b
⇤ = �

T
_
⇤ +⌫T

`
⇤, `

⇤T (⌫G⇤ + 3) = 0, `
⇤ 2  ⇤

Indeed the conditions `
⇤ 2  ⇤ and `

⇤T (⌫G⇤ + 3) = 0 define a vector `⇤ in
�# (⌫G⇤ + 3) according to Theorem 12.3 for a general convex cone  . When
 is specified explicitly, e.g.,  is the second-order cone, these conditions define
the vector `⇤ more specifically based on the primal optimal G⇤.

In the rest of this section we apply this general method to common convex programs.
The results are summarized in Table 8.3.

12.9.2 Linear program (LP)

Consider the linear program:

5
⇤ := min

G2R=
2

T
G s.t. �G = 1, G � 0 (12.60a)

where � 2 R<⇥=, 1 2 R< and 2 2 R=. Let � := {G 2 R= : �G = 1} and  := {G 2
R
= : G � 0}. Theorem 8.23 and Example 8.13 in Chapter 8.4.2 show that if either

the optimal primal or the optimal dual value is finite then both primal optimality and
dual optimality are attained, strong duality holds, and a primal-dual feasible solution
is optimal if and only if it satisfies complementary slackness. In this subsection we
re-derive the KKT characterization (part 2 of Theorem 8.23) using Theorem 12.21 to
illustrate the simplicity of the set-theoretic approach in the nonsmooth setting.

Rewrite (12.60a) as an unconstrained optimization of an extended real-valued func-
tion:

min
G2R=

2
T
G + X� (G) + X (G) (12.60b)



12.9 Special convex programs 619

Since the objective function 5 (G) := 2T
G is real-valued and polyhedral, dom( 5 ) = R=.

Application of Theorem 12.21 then says that G⇤ 2 R= is optimal if and only if

�2 2 m (X� (G⇤) + X (G⇤)) = mX� (G⇤) + mX (G⇤)

where the equality follows from Theorem 12.18, provided (12.60) is feasible (�\ <
;). Since mX- (G) = #- (G) from Table 12.2, G⇤ is optimal if and only if

�2 2 #� (G⇤) +# (G⇤)

From Theorem 12.3 in Chapter 12.1.3,

#� (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (G⇤) = {` 2 R= : `  0, `T
G
⇤ = 0}

Substituting these normal cones into the condition 2 2 �#� (G⇤) � # (G⇤) leads to
KKT condition for linear program: a feasible G⇤ is optimal if and only if there exists a
(_⇤,`⇤) 2 R<+= such that

�
T
_
⇤ + `⇤ = 2, `

⇤T
G
⇤ = 0, `

⇤ � 0 (12.61)

Such a point (G⇤,_⇤,`⇤) is a saddle point and a KKT point and is hence primal-dual
optimal with 2T

G
⇤ = 1T

_
⇤. Since the constraint qualification in Theorem 12.21 reduces

to feasibility for a linear program, the KKT characterization (12.61) requires only
feasibility of the linear program (12.60). Strong duality and the existence of primal
and dual optimal solutions requires, in addition, 5 ⇤ > �1 (or �1 < 3

⇤
<1).

12.9.3 Second-order cone program (SOCP)

Second-order cone. Recall the second-order cone program (SOCP):

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  soc (12.62a)

where 5 : R= ! R is a real-valued convex function (not necessarily di�erentiable),
� 2 R<⇥=, 1 2 R<, and  soc ✓ R= is the standard second-order cone defined in (8.16),
reproduced here (G: := (G1, · · · ,G: ) denotes the vector consisting of the first : entries
of G):

 soc := {G 2 R= : kG=�1k2  G=} (12.62b)

and studied in Theorem 12.10. The Lagrangian ! : R=+<+1! R is

! (G,_,`) := 5 (G)�_T (�G� 1) + `
⇣
kG=�1k2� G=

⌘
, G 2 R=,_ 2 R<,` 2 R

the dual function is 3 (_,`) := minG2R= ! (G,_,`) and the dual problem is

3
⇤ := max

_,`�0
3 (_,`) (12.62c)

We now show that Theorem 8.26 on strong duality, dual optimality and the KKT
condition for SOCP in Chapter 8.4.4 for smooth convex optimization holds almost
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verbatim in the nonsmoonth setting, except that Theorem 8.26 only covers the case
where [G⇤]=�1 < 0 so that the constraint function ⌘(G) := kG=�1k2�G= is di�erentiable
whereas the derivation below covers the case where [G⇤]=�1 = 0 as well.

Indeed, strong duality and dual optimality follow from the Slater Theorem 12.27.
To derive the KKT condition, we rewrite the primal problem of SOCP (12.62) as an
unconstrained optimization of an extended real-valued function. It illustrates both how
nonsmooth analysis handles points of nondi�erentiability and the simplicity of the
set-theoretic approach here. Rewrite (12.62a)(12.62b) as:

min
G2R=

5 (G) + X� (G) + X (G)

where � := {G 2 R= : �G = 1} where  :=  soc is the second-order cone. Since 5 is
real-valued, ri(dom( 5 )) =R= and hence the constraint qualifications in Theorem 12.21
reduces to the Slater condition � \ ri( ) < ;. Under this condition Theorem 12.21
says that G⇤ 2 �\ is optimal if and only if there exists a b⇤ 2 m 5 (G⇤) such that

�b⇤ 2 m (X� (G⇤) + X (G⇤)) = mX� (G⇤) + mX (G⇤) = #� (G⇤) +# (G⇤) (12.63)

(The first equality follows from Theorem 12.18 under the Slater condition�\ri( ) < ;
and the second equality follows from mX- (G) = #- (G) in Table 12.2.) Theorems 12.3
and 12.10 in Chapter 12.1 then give

#� (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (G⇤) =

8>><
>>:
{b 2 R= : kb=�1k2  �b=} if G⇤ = 0
{0 2 R=} if k [G⇤]=�1k2 < G⇤=�
`( [G⇤]=�1,�G⇤

=
) 2 R= : ` � 0

 
if k [G⇤]=�1k2 = G⇤= > 0

(12.64a)

Substituting these normal cones into (12.63) leads to the following KKT condition
under the Slater condition � \ ri( ) < ;. We separate three cases according to # 
in (12.64a): A feasible G⇤ 2 � \ is optimal if and only if there exist b⇤ 2 m 5 (G⇤),
_
⇤ 2 R< and

Case 1 G⇤
=
> k [G⇤]=�1k2 � 0: such that

b
⇤ = �

T
_
⇤ (12.65a)

This agrees with the KKT condition in Theorem 8.26, but includes the case not
covered in Theorem 8.26 where [G⇤]=�1 = 0 and the constraint function ⌘(G) :=
kG=�1k2� G= is nondi�erentiable.
Case 2 G⇤

=
= k [G⇤]=�1k2 > 0: there exists `⇤ 2 R+ such that

b
⇤ = �

T
_
⇤ + `⇤


�[G⇤]=�1

G
⇤
=

�
(12.65b)

which is the same as the KKT condition in Theorem 8.26. Note that
`
⇤ (�[G⇤]=�1,G⇤

=
) is a vector in  soc as in the next case.



12.9 Special convex programs 621

Case 3 G⇤
=
= k [G⇤]=�1k2 = 0: there exists [̃ 2  �soc := {[ 2 R= : k[=�1k2  �[=}

such that �b⇤ = �T (�_⇤) + [̃. This is equivalent to: G⇤ = 0 is optimal if and only if
there exist b⇤ 2 m 5 (0), _⇤ 2 R< and [⇤ 2  soc such that

b
⇤ = �

T
_
⇤ +[⇤ (12.65c)

Note that 1 = �G⇤ = 0. As in case 1, the constraint function ⌘(G) := kG=�1k2 � G=
is nondi�erentiable at G⇤ = 0, the case not covered in Theorem 8.26.

Remark 12.10 ([⇤ 2  soc for SOCP). Note that all the KKT conditions in (12.65)
are of the form b

⇤ = �T
_ + [⇤ for some [⇤ 2  soc. This is due to (12.63) that requires

b
⇤ 2 �#� (G⇤) � # (G⇤) and Theorem 12.3 that says that # (G⇤) ✓  �soc, the polar

cone of  soc. Hence [⇤ is in the dual cone  ⇤soc = � �soc =  soc since the second-order
cone is self-dual. Indeed the conditions in (12.65) specialize the description [⇤ 2  ⇤
and [⇤TG⇤ = 0 in Theorem 12.3 for a general convex cone  to the case of second-order
cone based on G⇤. ⇤

SOC constraint. Recall the second-order cone program (SOCP):

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, k⌫G + 3k2  VT

G + X (12.66)

where 5 : R= ! R is a real-valued convex function (not necessarily di�erentiable),
� 2 R<⇥= and 1 2 R<, ⌫ 2 R(;�1)⇥=, 3 2 R;�1, V 2 R= and X 2 R. The constraint
k⌫G+3k2  VT

G+X is the second-order cone constraint studied in Chapter 8.2.1. It is a
convex constraint but does not necessarily define a cone. We now show that Theorem
8.27 in Chapter 8.4.4 on strong duality, dual optimality and the KKT condition holds
almost verbatim in the nonsmoonth setting, except that Theorem 8.27 only covers the
case where ⌫G⇤ + 3 < 0 so that the constraint function ⌘(G) := k⌫G + 3k2� (VT

G + X) is
di�erentiable whereas the derivation below allows ⌫G⇤ + 3 = 0.

As for the SOCP (12.62), strong duality and dual optimality follow from the Slater
Theorem 12.27. To derive the KKT condition in Theorem 8.27, we will use Theorem
12.21 to handle points of nondi�erentiability. First we reduce the SOC constraint in
(12.66) to the conic constraint in (12.62) with an auxiliary variables I and an additional
linear equality constraint:

I
;�1 = ⌫G + 3, I; = V

T
G + X, kI;�1k2  I;

Then we rewrite SOCP (12.66) as an unconstrained optimization: let

⌫̃ :=

⌫

V
T

�
, 3̃ :=


3

X

�

and

�̃1 := {(G, I) 2 R=+; : �G = 1} =: �1⇥R; , �1 := {G 2 R= : �G = 1}
 ̃ := {(G, I) 2 R=+; : kI;�1k2  I;} =: R= ⇥ ,  := {I 2 R; : kI;�1k2  I;}
�2 := {(G, I) 2 R=+; : I = ⌫̃G + 3̃}
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with normal cones #
�̃1
(G, I) = #�1 (G) ⇥ {0 2 R;} and #

 ̃
(G, I) = {0 2 R=}⇥# (I).

Rewrite SOCP (12.66) as:

min
(G,I)2R=+;

5 (G) + X
�̃1
(G, I) + X

 ̃
(G, I) + X�2 (G, I)

The constraint qualification in Theorem 12.21 reduces to the Slater condition �̃1 \
ri( ̃) \�2 < ;. Under this condition Theorem 12.21 says that (G⇤, I⇤) 2 �̃1 \  ̃ \�2

is optimal if and only if there exists a b⇤ 2 m 5 (G⇤) such that

�

b
⇤

0

�
2 #

�̃1
(G⇤, I⇤) +#

 ̃
(G⇤, I⇤) +#�2 (G⇤, I⇤)

=

#�1 (G⇤)

0

�
+


0

# (I⇤)

�
+#�2 (G⇤, I⇤) (12.67)

Theorems 12.3 and 12.10 in Chapter 12.1 give

#�1 (G⇤) = {�T
_ 2 R= : _ 2 R<}

# (I⇤) =

8>><
>>:

{[ 2 R; : k[;�1k2  �[;} if I⇤ = 0
{0 2 R;} if k [I⇤];�1k2 < I⇤

;�
`( [I⇤];�1,�I⇤

;
) 2 R; : ` � 0

 
if k [I⇤];�1k2 = I⇤

;
> 0

Now #�2 (G⇤, I⇤) =
�
(b,[) 2 R=+; : b = ⌫̃T

W, [ = �W, W 2 R;
 

and hence

#�2 (G⇤, I⇤) =
�
(⌫̃T

W,�W) 2 R=+; : W 2 R;
 

Substituting these normal cones into (12.67) leads to the following KKT condition,
under the Slater condition that there exists Ḡ such that �Ḡ = 1 and k⌫Ḡ +3k2 < VT

Ḡ +X.
We separate three cases according to # : A feasible G⇤ is optimal if and only if there
exists b⇤ 2 m 5 (G⇤), _⇤ 2 R<, and

Case 1 VT
G
⇤ + X > k⌫G⇤ + 3k2 � 0: such that (W⇤ = 0 in this case)

b
⇤ = �

T
_
⇤ (12.68a)

This agrees with Theorem 8.27, but includes the case not covered there where ⌫G⇤+
3 = 0 and the constraint function ⌘(G) := k⌫G+3k2� (VT

G+X) is nondi�erentiable.
Case 2 V

T
G
⇤ + X = k⌫G⇤ + 3k2 > 0: there exist W⇤ 2 R; and `

⇤ 2 R+ such that
�b⇤ = �T

_
⇤ + ⌫̃T

W
⇤ and W⇤ = `⇤ ( [I⇤]:�1,�I⇤

:
) where I⇤ = ⌫̃G⇤ + 3̃. Eliminating W⇤

and I⇤ yields: A feasible G⇤ is optimal if and only if there exists b⇤ 2 m 5 (G⇤),
_
⇤ 2 R< and `⇤ 2 R+ such that

b
⇤ = �

T
_
⇤ + `⇤

⇣
�⌫T (⌫G⇤ + 3) + V(VT

G
⇤ + X)

⌘
(12.68b)

This is the same as the KKT condition in Theorem 8.27.
Case 3 V

T
G
⇤ + X = k⌫G⇤ + 3k2 = 0: there exist W⇤ 2 R; and [̃ 2  � := {[̃ 2 R; :

k[̃;�1k2  �[̃;} such that �b⇤ = �T (�_⇤) + ⌫̃T
W
⇤ and W⇤ = [̃. Eliminating W⇤ yields:

G
⇤ with 0 = k⌫G⇤ + 3k2 = VT

G
⇤ + X is optimal if and only there exist b⇤ 2 m 5 (G⇤),

_
⇤ 2 R< and [⇤ 2  such that

b
⇤ = �

T
_
⇤ + ⌫̃T

[
⇤ (12.68c)
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As in case 1, the constraint function ⌘(G) := k⌫G + 3k2� (VT
G + X) is nondi�eren-

tiable at G⇤ where ⌫G⇤ + 3 = 0, the case not covered in Theorem 8.27.

12.9.4 Conic program and convex inequality

In this subsection we derive conditions for strong duality and dual optimality and the
KKT condition for conic programs and for convex programs specified by a general
convex inequality.

Conic feasible set. A generalization of SOCP (12.62) is the following convex opti-
mization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, G 2  (12.69)

where 5 : R=! R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, and  ✓ R=
is a closed convex cone. Even though  ✓ R= in (12.69) is not explicitly specified
by convex inequalities, we can formulate the Lagrangian dual problem using the dual
cone of the convex cone  . Recall the polar cone  � and the dual cone  ⇤ of  in
Definition 12.1:

 
� := {b 2 R= : bT

G  0 8G 2  } (12.70a)

 
⇤ := � � := {b 2 R= : bT

G � 0 8G 2  } (12.70b)

Let the dual variables be _ 2 R< and ` 2  ⇤. Define the Lagrangian function:

! (G,_,`) := 5 (G)�_T (�G� 1)� `T
G, G 2 R=, _ 2 R<, ` 2  ⇤ ✓ R=

The dual function is

3 (_,`) := min
G2R=

! (G,_,`) = _
T
1 + 30 (_,`), _ 2 R<, ` 2  ⇤ ✓ R= (12.71a)

where

30 (_,`) := min
G2R=

⇣
5 (G)� (�T

_+ `)T
G

⌘
(12.71b)

The dual problem is:

3
⇤ := max

_2R<,`2 ⇤
_

T
1 + 30 (_,`) (12.71c)

For a linear program where 5 (G) = 2T
G, 30 (_,`) = 0 if 2 = �T

_+ ` and �1 otherwise
in which case the dual problem becomes:

3
⇤ := max

_2R<,`2 ⇤
_

T
1 s.t. 2 = �T

_+ `

For strong duality and dual optimality, we can extend the Slater Theorem 12.27 to the
more general formulation of dual problem (12.71).
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For KKT characterization, we again let � := {G 2 R= : �G = 1} and rewrite the
primal problem (12.69) as an unconstrained convex optimization:

min
G2R=

5 (G) + X� (G) + X (G)

The constraint qualification in Theorem 12.21 reduces to the Slater condition � \
ri( ) < ;. Under this condition Theorem 12.21 says that G⇤ 2 R= is optimal if and only
if there exists b⇤ 2 m 5 (G⇤) such that

�b⇤ 2 m (X� (G⇤) + X (G⇤)) = #� (G⇤) +# (G⇤) (12.72a)

where we have used Theorem 12.18 and Table 12.2. From Theorem 12.3,

#� (G⇤) = {�T
_ 2 R= : _ 2 R<} (12.72b)

# (G⇤) = { ˜̀ 2  � ✓ R= : ˜̀T
G
⇤ = 0} (12.72c)

where  � is the polar cone of  in (12.70a). Substituting these normal cones into
(12.72a) leads to the KKT condition for conic program (12.69) in terms of the dual
cone  ⇤ of  in (12.70b).9

Theorem 12.31 (Strong duality and KKT for conic program). Consider the conic
program (12.69) and its dual (12.71). Suppose there exists Ḡ 2 ri( ) such that �Ḡ = 1.
Then

1. Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,`⇤) 2 R<⇥ ⇤ that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2. KKT characterization. A feasible G⇤ is optimal if and only if there exist a subgra-
dient b⇤ 2 m 5 (G⇤), a dual feasible (_⇤,`⇤) 2 R<⇥ ⇤ such that

b
⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Conic constraint. A generalization of SOCP (12.66) is the following convex opti-
mization

5
⇤ := min

G2R=
5 (G) s.t. �G = 1, ⌫G + 3 2  (12.73a)

where 5 :R=!R is a real-valued convex function, � 2 R<⇥=, 1 2 R<, ⌫ 2 R;⇥=, 3 2 R;
and  ✓ R; is a closed convex cone. The feasible set may not be a cone but (12.73) is
still called a conic program because an a�ne transformation of G is in a closed convex
cone. The dual problem can be shown to be (Exercise 12.23):

3
⇤ := max

(_,`)2R<+;
3 (_,`) :=

⇣
1

T
_� 3T

`

⌘
+ 30 (_,`) s.t. ` 2  ⇤ ✓ R; (12.73b)

9 The definition of the dual problem (12.71) does not require  to be a convex cone, but the normal cone
expression (12.72c) holds only if  is a convex cone.
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where 30 (_,`) :=minG2R= 5 (G)� (�T
_+⌫T

`)T
G. It reduces to (12.71b)(12.71c) when

⌫ = I= the identity matrix of size = and 3 = 0. When 5 (G) = 2T
G, 30 (_,`) = 0 if

2 = �T
_+⌫T

` and �1 otherwise in which case the dual problem becomes:

3
⇤ := max

_2R<, `2 ⇤
1

T
_� 3T

` s.t. 2 = �T
_+⌫T

`

Theorem 12.31 on strong duality, dual optimality and the KKT characterization extends
to problem (12.73) (Exercise 12.23). The KKT condition in the next theorem reduces
to that in Theorem 12.31 when ⌫ = I= and 3 = 0.

Theorem 12.32 (Strong duality and KKT for conic program). Consider the conic
program and its dual (12.73). Suppose the Slater condition is satisfies, i.e., there exists
Ḡ such that �Ḡ = 1 and ⌫Ḡ + 3 2 ri( ). Then

1. Strong duality and dual optimality. If 5 ⇤ is finite then there exists a dual optimal
solution (_⇤,`⇤) 2 R<⇥ ⇤ that closes the duality gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2. KKT characterization. A feasible G⇤ is optimal if and only if there exist a subgra-
dient b⇤ 2 m 5 (G⇤), a dual feasible (_⇤,`⇤) 2 R<⇥ ⇤ such that

b
⇤ = �

T
_
⇤ +⌫T

`
⇤, `

⇤T (⌫G⇤ + 3) = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Convex inequality constraint. A generalization of the conic programs (12.69) and
(12.73) is the general convex program whose feasible set is convex but not necessarily
of the form ⌫G + 3 2  :

min
G2R=

5 (G) s.t. �G = 1, ⌘(G)  0 (12.74a)

where 5 : R= ! R and ⌘ : R= ! R; are convex functions, and � 2 R<⇥=, 1 2 R<.
Suppose ⌘ is continuously di�erentiable and the Slater condition is satisfied, i.e., there
exists Ḡ with �Ḡ = 1 and ⌘(Ḡ) < 0, and that the primal optimal value is finite. Then a
feasible G⇤ is optimal if and only if there exist a subgradient b⇤ 2 m 5 (G⇤), _⇤ 2 R< and
`
⇤ 2 R;+ such that (Exercise 12.24)

b
⇤ + �T

_
⇤ +r⌘(G⇤)`⇤ = 0, `

⇤T
⌘(G⇤) = 0 (12.74b)

12.10 Chapter summary

1. The stationarity condition (12.1) for smooth optimization characterizes a mini-
mizer G⇤ as a feasible point where the negative cost gradient �r 5 (G⇤) points away
from the a linear approximation of the feasible set defined by the constraint gra-
dients r6(G⇤),r⌘(G⇤). In a nonsmooth setting, the cost gradient is replaced by a
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subgradient and the linear approximation of the feasible set - becomes its tangent
cone )- (G⇤), or equivalently, its normal cone #- (G⇤) (they are the polar cone of
each other according to Proposition 12.1). The normal cones of convex sets most
useful in applications are derived in Theorems 12.3 and 12.4 and summarized in
Table 12.1. These theorems also illustrate the role of constraint qualifications for
feasible sets specified by a convex inequality ⌘(G)  0.

2. Given the normal cone of an arbitrary set . , the normal cone of its pre-image -
under an a�ne transformation H = �G + 1 is #- (Ḡ) = �T

#. ( H̄) (Corollary 12.7).
Conversely, given the normal cone of an arbitrary set - and its image . under
the a�ne transformation, their normal cones satisfy the same relation if � has
full column rank (Corollary 12.9). These relation allows us to derive the normal
cone of rotated second-order cones SOC constraints from that of the standard
second-order cone (Theorem 12.10, Corollary 12.11 and (12.19)).

3. A proper convex function 5 is (i) continuous at G 2 ri(dom( 5 )); (ii) subdi�er-
entiable at G 2 int(dom( 5 )) and the subdi�erential m 5 (G) is nonempty convex
compact; and (iii) Lipschitz continuous over any nonempty compact subset of
int(dom( 5 )) (Lemma 12.15).

4. A constrained optimization minG2- 5 (G) can be converted into the unconstrained
optimization minG 5 (G) + X- (G) through the extended real-valued indicator func-
tion X- (G), which is CPC if and only if the feasible set - is closed, nonempty and
convex. It is subdi�erentiable with mX- (G) = #- (G) if - is nonempty and convex
(Table 12.2). If 5 is convex, - is nonempty and convex, and ri(dom( 5 ))\ri(-) < ;,
then G⇤ is optimal for minG 5 (G) + X- (G) if and only if 0 2 m 5 (G⇤) +#- (G⇤), i.e.,
if and only if there exists H⇤ 2 m 5 (G⇤) with �H⇤ 2 #- (G⇤).

5. As summarized in Table 12.3
(a) The Saddle point Theorem 12.20 is identical to that for smooth convex op-

timization: For arbitrary 5 ,6,⌘, a vector (G⇤,_⇤,`⇤) is a saddle point if and
only if (G⇤,_⇤,`⇤) is primal-dual optimal and it closes the duality gap.

(b) The generalized KKT Theorem 12.21 states that, for a proper convex cost
5 , polyhedral set % and convex set ⇠, if ri(dom( 5 )) \ % \ ri(⇠) < ;, then
a feasible G⇤ is optimal if and only if 0 2 m 5 (G⇤) + #% (G⇤) + #⇠ (G⇤). This
reduces to KKT conditions in terms of subdi�erentials m6(G⇤),m⌘(G⇤) of
constraint functions when % and ⇠ are specified explicitly in terms of 6,⌘,
e.g., for special convex programs studied in Chapter 12.9.

(c) For a CPC cost 5 and closed convex feasible set - with - \dom( 5 ) < ;, the
primal optimal set is nonempty compact and convex if and only if there is no
(nonzero) direction of recession that is common to the cost function 5 and the
feasible set - , i.e., one cannot wander o� to infinity without strictly increasing
cost (Theorem 12.26).

(d) The Slater Theorem 12.27 is similar to that for smooth convex optimization
with slight generalization to proper convex functions 5 ,⌘ and allowing poly-
hedral % and convex ⇠: if there exists Ḡ 2 ri(dom( 5 )) \ %\ ri(⇠) such that
�Ḡ = 1, ⌘8 (Ḡ)  0 with strict inequality for non-polyhedral functions ⌘8 , then
the dual optimal set is nonempty convex and closed and strong duality holds.
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6. The general theory is applied to special nonsmooth convex programs to derive their
KKT conditions when the constraint function ⌘ is nondi�erentiable at an optimal
point G⇤ and for a general conic program where the nonlinear convex constraint
is specified by a closed convex cone  (Theorems 12.31 and 12.32, and Exercise
12.24). This is summarized in Table 8.3.

12.11 Bibliographical notes

There are many classic texts on nonsmooth analysis, e.g., [158, 155, 159], and we have used materials from

[56, 155, 59]. In particular, many materials in Chapters 12.1–12.8 follow [56]. For example, Theorem 12.28 is

adapted from [56, Propositions 5.3.1, 5.3.2, p.168] Its proof for the case of CQ1 is based on [56, Proposition

5.1.1, p.160] and that for CQ2 is based on [56, Proposition 4.5.1, p.154]. For the classic texts, [158] focuses

on control theory for applications of nonsmooth analysis and [155, 159] focuses on nonsmooth convex

optimization with the former in R= and the latter in infinite dimensional vector spaces.

12.12 Problems

Chapter 12.1.

Exercise 12.1 (Feasible direction cones). Let � := {G 2 R= : �G = 1} where � 2 R<⇥=
and⇠ ✓ R= be a convex cone. Show that the feasible direction cone ⇡- (Ḡ) := cone(-�
Ḡ) at an Ḡ 2 - are respectively:

1. ⇡� (Ḡ) = {H 2 R= : �H = 0}.
2. ⇡⇠ (Ḡ) = {H = G�WḠ : G 2 ⇠, W � 0}.

Exercise 12.2 (Normal cone and tangent cone). Let - ✓ R= be a nonempty set and
Ḡ 2 - .

1. Prove Proposition 12.2.
2. Show that )- (Ḡ) is generally di�erent from the dual cone (- � Ḡ)⇤ = {H 2 R= :
H

T (G� Ḡ) � 0, 8G 2 -}.
3. Derive the normal cone # (Ḡ) and the tangent cone ) (Ḡ) in Figure 12.3. In

particular
• For Figure 12.3(a), show that # (Ḡ) is of the form # (Ḡ) = {H = _0 : _ � 0}

for some vector 0 2 R2 and ) (Ḡ) = {G 2 R2 : GT
0  0} is a half-space.

• For Figure 12.3(d), show that # (Ḡ) is of the form # (Ḡ) = {H = _0 : _ 2 R}
and ) (Ḡ) =  .

(Hint: Use Theorem 12.3 for # (Ḡ) and then Propositions 12.2 and 12.1 for
) (Ḡ).) ⇤
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Exercise 12.3 (Normal cone #⇠ (Ḡ)). Let ⇠ := {G 2 R= : ⌘(G)  0} where ⌘ : R2! R2

are given by ⌘8 (G1,G2) := 1
2

�
G

2
1 + 08G2

2

�
� 18 , 8 = 1,2 with 08 > 0,18 > 0 and 11/01 <

12/02; see Figure 12.18. Let Ḡ :=
⇣
0,

p
211/01

⌘
.

x2

x1

Figure 12.18 Exercise 12.3.

1. What are ⌘1 (Ḡ), ⌘2 (Ḡ), � := � (Ḡ), and r⌘1 (Ḡ)?
2. Show directly that the normal cone #⇠ (Ḡ) = {(0, H2) 2 R2 : H2 � 0} without invok-

ing Theorem 12.3.
3. Show that #⇠ (Ḡ) = {r⌘(Ḡ)_ 2 R2 : _ 2 R2

+, _T
⌘(Ḡ) = 0} = {_1r⌘1 (Ḡ) 2 R2 : _1 �

0}, as Theorem 12.3 indicates (note that the Slater condition ⌘(G 0) < 0 is satisfied
e.g. at G 0 := Ḡ� (0,n) for small enough n > 0).

Exercise 12.4 (Inadequacy of Ḡ+ C2). Consider the convex set⇠ := {G 2 R= : ⌘(G)  0}
defined by a twice continuously di�erentiable convex function ⌘ :R=!R<. Let #⇠ (Ḡ)
denote the normal cone of ⇠ at Ḡ 2 ⇠ and let

. (Ḡ) :=

8>><
>>:

’
82� ( Ḡ)

_8r⌘8 (Ḡ) : _8 � 0, 8 2 � (Ḡ)
9>>=
>>;

It is easy to show that H 2 #⇠ (Ḡ)( H 2 . (Ḡ), but more di�cult to show the converse.

If⇠ were a polyhedron�2, the converse is proved in Theorem 12.3 by contradiction:
if H 2 #�2 (Ḡ) but H 8 . (Ḡ), then one can construct an G(C) := Ḡ + C2 for some 2 and a
su�ciently small C > 0 such that G(C) 2 �2 but HT (G(C)� Ḡ) > 0, a contradiction. Show
where this argument can break down when⇠ is defined by a nonlinear convex function
⌘(G). (Hint: The issue is, unlike �2,⇠ has a second-order term in its Taylor expansion.
Consider the convex set ⇠ and Ḡ in Exercise 12.3 and use Theorem 8.10.)

Exercise 12.5 (Tangent cones). Derive the tangent cones in Table 12.1 of Chapter
12.1.2. Assume ⌘ is continuously di�erentiable, convex and satisfies the Slater condi-
tion. (Hint: Proposition 12.2 and Theorem 12.3.)

Exercise 12.6 (Pre-image of linear transformation of convex cone). Let. := {H 2 R< :
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H  0} and - := {G 2 R= : �G 2 . } be its pre-image under � 2 R<⇥=. Use the Farkas
Lemma (Theorem 8.12) to show directly that -� = �T

.
�, as asserted by Theorem 12.6.

Exercise 12.7 (Pre-image of linear transformation of convex cone). Consider the
convex cone . and its pre-image - under a singular matrix �:

. := {H 2 R2 : H1 � H2 � 0}, � :=

1 1
1 1

�
, - := {G 2 R2 : �G 2 . }

1. Derive -�, .� and compare �T
.
� and -�.

2. Derive #. ( H̄) and #- (Ḡ) where H̄ = �Ḡ 2 . for Ḡ = (0,0), (1,�1), (1,1).

Exercise 12.8 (Image of linear transformation). Prove Theorem 12.8 and Corollary
12.9.

Exercise 12.9 (Image of linear transformation of convex cone). Given a nonempty set
- ✓ R= let . := �- for some matrix � 2 R<⇥=. From Theorem 12.8, the normal cone
of . at a H̄ = �Ḡ 2 . with Ḡ 2 - is the pre-image of #- (Ḡ): #. ( H̄) = {H 2 R< : �T

H 2
#- (Ḡ)}. Show that when - is a convex cone then

#. ( H̄) = {H 2 R< : �T
H 2 -�, HT

H̄ = 0}

Exercise 12.10 (Image of a�ne transformation). Let - be a convex cone and .1 :=
�- + 1 be its image under an a�ne transformation. If 0 2 - , show that the polar cone
.
�
1

is the intersection of the pre-image of -� under �T and a halfspace:

.
�
1

= {H 2 R< : �T
H 2 -�, HT

1  0}

(Hint: Use Corollary 12.9.)

Chapter 12.2.
Exercise 12.11 (Closedness and lsc of 5 ; [56].). 1. For a function 5 : R= !

[�1,1], show that it is closed if and only if it is lsc on R= if and only if its
level set +W := {G | 5 (G)  W} is closed for every W 2 R.

2. For 5 : -! [�1,1] where - ✓ R=, show that it is closed if its e�ective domain
dom( 5 ) is closed and 5 is lsc on dom( 5 ).

3. Consider a real-valued function 5 : - ! R= where - ✓ R= is nonempty. Extend
5 to the extended real-valued function 5- (G) : R=! [�1,1] defined by

5- (G) :=

(
5 (G) if G 2 -
1 if G 8 -

Show that 5- is closed (on R=) if the e�ective domain dom( 5 ) is closed and 5 is
lower semicontinuous on dom( 5 ).

Exercise 12.12 (Support function f- (G)). Prove (12.24).
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Chapter 12.3. The proof of the existence of subgradient for a proper convex function
at Ḡ, using (12.27), requires Ḡ 2 int(dom( 5 )). The next exercise shows that, even though
the contradiction argument there may break down if Ḡ 2 ri(dom( 5 )), a subgradient may
still exist at such a Ḡ.

Exercise 12.13 (Existence of subgradient.). Consider the proper extended real-valued
function 5 : R2! (�1,1] defined by

5 (G1,G2) =
⇢
G

2
1 if G2 = 0
1 if G2 < 0

The e�ective domain dom( 5 ) = {G 2 R2 : G2 = 0} = ri(dom( 5 )), epi( 5 ) is in a vertical
plane, and hence int(dom( 5 )) = ;. Show that subgradient exists at every point Ḡ 2
dom( 5 ), even though m 5

mG2
(G) is not well defined.

Exercise 12.14 (Jensen’s inequality). Suppose - is a random variable taking value
in R= with finite expectation ⇢- . Show that if 5 : R= ! R is convex on R= then
⇢ ( 5 (-)) � 5 (⇢-). (Hint: Use subgradient of 5 .)

Exercise 12.15 (X- , f- and their subdi�erentials). Fix any nonempty subset - ✓ R=.
Consider the extended real-valued indicator function and support function defined
respectively by:

X- (G) :=

(
0 if G 2 -
1 if G 8 -

, f- (G) := sup
H2-

H
)

G

Let 5 ⇤ and m 5 denote respectively the conjugate and subdi�erential of 5 . Show that:

1. X⇤
-
(H) = f- (H).

2. If - is a cone then X⇤
-
(H) = X-� (H), i.e., the support function of a cone is an

indicator function of its polar cone.
3. Suppose - is a convex set. Then mX- (G) = #- (G).
4. Suppose - is a nonempty closed convex set.

(a) f⇤
-
(G) = X- (G).

(b) mf- (G) = {H 2 R= : H) G = f- (G)}. (Hint: Apply Lemma 12.16 to earlier
results.)

Exercise 12.16 (Normal cone of set intersection.). 1. Prove Lemma 12.5. (Hint: Use
Theorem 12.18 whose proof does not rely on Lemma 12.5 so there is no circular
argument.)

2. As an application of Lemma 12.5 consider ⇠ := {G 2 R= : �G = 1,G 2  } where
� 2 R<⇥= and  ✓ R= is a convex cone. Suppose there is Ḡ 2 ri( ) with �Ḡ = 1.
Show that #⇠ (Ḡ) = {�T

_ + H : _ 2 R<, H 2  �, HT
Ḡ = 0} for any Ḡ 2 ⇠, where  �

denotes the polar cone of  .
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Chapter 12.6.

Exercise 12.17 (Generalized KKT). Consider the second-order cone program:

5
⇤ := min

G2R=
5 (G) s.t. G 2  := {G 2 R= : kG=�1k2  G=}

where 5 : R=! R is a real-valued convex function (not necessarily di�erentiable) and
 is the standard second-order cone. Suppose ri(dom( 5 )) \ int( ) < ;. Show that
G
⇤ := 0 is optimal if and only if there exists H⇤ 2 m 5 (0) such that kH⇤=�1k2  H⇤=.

Chapter 12.7.

Exercise 12.18 (Primal optimality.). Prove Corollary 12.23. (Hint: Use Remark 12.3
and the Weierstrass Theorem 12.22.)

Exercise 12.19 (Primal optimal solutions.). Consider - and 5 in Theorem 12.26
where - ✓ R= is closed and convex, 5 : R=! (�1,1] is closed proper convex, and
- \dom( 5 ) < ;. Suppose - and 5 have a common nonzero direction of recession. Let
the level sets be +W := {G 2 R= : 5 (G)  W} and - 0(W) := - \+W .

1. Show that - 0(W) is unbounded for any W 2 R=.
2. If +W = ; for small enough W, show that there is a smallest W0 for which +W0 < ;.

Moreover the primal solution set is unbounded.

Chapter 12.8.

Exercise 12.20 (Weak duality). Let " ✓ R;+1 be a nonempty set, not necessarily
convex, and define the following pair of problems:

F
⇤ := inf

(0,F)2"
F, 3

⇤ := sup
`2R;

3 (`)

where 3 (`) := inf (D,F)2" `
)
D +F and F⇤ := 1 if (0,F) 8 " for any F. Show that

3
⇤  F⇤.

Exercise 12.21 (Equivalent dual problem). Show that the problems in (12.56) are
equivalent to those in (12.54), assuming there is a feasible point Ḡ 2 dom( 5 )\- 0 \ {G :
⌘(G)  0}.

Exercise 12.22 (Dual function and level set). Consider Theorem 12.28 under CQ1
(there exists Ḡ 2 dom( 5 )\ - 0 such that ⌘(Ḡ) < 0). Recall the dual function defined in
(12.54c):

3 (`) :=

(
infG2- 5 (G) + `T

⌘(G) if ` � 0

�1, otherwise

and define the level set of the dual function 3:

& := &0 := {` 2 R; : ` � 0, 5 (G) + `T
⌘(G) � 0,8G 2 -}

(Since 5 ⇤ � 0, &⇤ :=& 5
⇤ ✓ &0 =:&.) Show that
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1. �3 (`) is a closed proper convex (CPC) function over R; .
2. & is nonempty, convex and compact.

Chapter 12.9.

Exercise 12.23 (Conic program: KKT). Consider the conic program (12.73).

1. Derive its dual problem (12.73b).
2. Prove Theorem 12.32.

Exercise 12.24 (Convex inequality constraints: KKT). For the convex optimization
problem (12.74a), derive the optimality condition (12.74b).
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This chapter presents basic methods for stochastic optimization and their application
to optimal power flow problems. Optimal power flow problems we have studied in
previous chapters take the form

min
G2R=

5 (G) s.t. ⌘(G, Z)  0 (13.1)

where G is a decision variable, 5 :R=!R is a cost function, and ⌘(G, Z) :R=⇥R:!R<
is a constraint function as a function of both the decision variable G and a parameter
Z 2 R: . For instance the problem computes an optimal generation schedule G⇤ to meet a
demand Z subject to power flow equations and operational constraints. Or it computes
an optimal setpoint G⇤ for smart inverters to help stabilize voltages in a distribution
system in response to photovoltaic generation Z . In general the parameter Z is uncertain.
So far we have implicitly assumed that the decision G⇤ is made either based on a forecast
Ẑ of the random parameter Z or after Z has been realized, and therefore the problem
is deterministic. In this chapter we study the case where at least some of the decisions
must be made before the random Z is realized and simply substituting the forecast Ẑ
for Z is inadequate. We study four approaches to making decisions under uncertain Z .

In the first approach an uncertainty set / is assumed known in which the uncertain
parameter Z takes value. An optimal G⇤ is chosen with respect to a worst-case Z 2 / ,
i.e., the constraint ⌘(G⇤, Z)  0 must be satisfied for all Z 2 / . This leads to robust
optimization (Chapter 13.1) where the single constraint in (13.1) is replaced by a
possibly infinite set of constraints (⌘(G⇤, Z)  0,8Z 2 /). Robust optimization can be
too conservative as it demands constraint satisfaction in the worst-case realization of
the uncertain parameter Z 2 / . This motivates the second approach where the uncertain
parameter Z := Z (l) 2 / is a random vector on a given probability space with a known
probability measure P. An optimal G⇤ is chosen so that the constraint ⌘(G⇤, Z)  0
is satisfied with high probability, not necessarily for all Z 2 / . This leads to chance
constrained optimization (Chapter 13.2) where the constraint ⌘(G⇤, Z)  0 in (13.1) is
replaced by P (⌘(G⇤, Z)  0) � 1� n with a given tolerance n for constraint violation.
Chance constrained optimization can be intractable for common P; moreover Pmay not
be known in many applications even when random samples of Z under P are available,
e.g., measurements of Z from a real power system. This motivates the third approach,
called scenario optimization (Chapter 13.3), where the single constraint ⌘(G⇤, Z)  0
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in (13.1) is replaced by # randomized constraints
�
⌘(G⇤, Z 8)  0, 8 = 1, . . . ,#

�
defined

by # independent random samples of Z1, . . . , Z# under P. Unlike the other three
approaches where the optimization problem is deterministic, a scenario program is a
randomized problem. If # is su�ciently large then the resulting randomized optimal
solution G⇤will likely satisfy the chance constraint, in expectation or probability. Finally
we study two-stage stochastic optimization with recourse (Chapter 13.4) where some
decisions must be made before the random Z is realized and other decisions can be
made afterwards in response to the observed realization of Z .

In this chapter we introduce the basic theory for each of these four approaches and
illustrate their application to power systems. Most stochastic optimization problems are
nonconvex and computationally hard. Our emphasis is on conditions under which these
problems have equivalent finite convex reformulations. Even though these reformu-
lated problems often introduce extended real-valued and nondi�erentiable functions,
especially in two-stage optimization problems, optimality conditions can be derived
using nonsmooth techniques studied in Chapter 12. Moreover computation algorithms
studied in Chapter 8 can be adapted to solve these convex but nonsmooth problems
with gradients replaced by subgradients.

13.1 Robust optimization

13.1.1 General formulation

A robust optimization problem is of the form:

min
G2R=

5 (G) s.t. ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 1, . . . ,< (13.2)

where 5 : R=! R is a cost function. For 8 = 1, . . . ,<, Z8 2 R:8 are given parameters,
and ⌘8 : R= ⇥R:8 ! R are constraint functions. Here Z8 are uncertain parameters that
take values in uncertainty sets /8 (G) ✓ R:8 . It is convenient in applications to allow the
uncertainty sets /8 (G) to depend on G (see Example 13.1) and hence we can regard each
/8 : R=! 2R

:
8 as a set-valued map on R=. The problem seeks an optimal solution G⇤

that minimizes the cost function 5 (G) and remains feasible for all possible realizations
of the uncertain parameters Z8 2 /8 (G⇤), 88. It is called a robust program. If some of
the /8 (G) are continuous sets, then (13.2) is called a semi-infinite problem because
it contains a finite number of variables but an infinite number of constraints. As a
consequence the robust counterpart of a nominal problem (when /8 (G) are singletons)
is generally computationally intractable even if the nominal problem is simple such as a
linear program. In Chapters 13.1.2, 13.1.3 and 13.1.4 we present three classes of robust
programs that are tractable. Specifically we will derive finite convex reformulation for
these problems to which techniques in Chapters 12 and 8 can be applied.

Remark 13.1. The formulation (13.2) makes certain assumptions without loss of
generality:
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1. Certain and linear cost function. It assumes that the cost function 5 is certain.
Otherwise, we can introduce an additional variable C and an additional constraint to
obtain the following equivalent problem that has uncertainty only in the constraints:

min
G2R= , C 2R

C s.t. 5 (G, Z0)� C  0, ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 0, . . . ,<

where Z0 2 /0 (G) is the uncertain parameter of the cost function 5 . This also shows
that we can assume without loss of generality that the cost is linear.

2. Direct product of uncertainties. It assumes that the uncertainty set is a direct
product / (G) := /1 (G) ⇥ · · ·⇥ /< (G) of individual uncertainty sets /8 (G). If the
uncertainty set / (G) ✓ R

Õ
<

8=1 :8 is not a direct product, the robust optimization
problem

min
G2R=

5 (G) s.t. sup
Z 2/ (G)

⌘8 (G, Z8)  0, 8 = 1, . . . ,<

can be specified with an equivalent uncertainty set /̂ (G) := /1 (G) ⇥ · · ·⇥ /< (G)
that is a direct product:

min
G2R=

5 (G) s.t. sup
Z8 2/8 (G)

⌘8 (G, Z8)  0, 8 = 1, . . . ,<

where /8 (G) := {Z8 : Z := (Z1, . . . , Z<) 2 / (G)} is the projection of / (G) onto the
8th coordinate. This is because ⌘8 depends on Z8 , not on Z 9 , 9 < 8, and therefore
given G, sup

Z 2/ (G) ⌘8 (G, Z8) = sup
Z8 2/8 (G) ⌘8 (G, Z8).

3. Equality constraints without recourse. The nominal problem for many applications
contain equality constraints, resulting in a robust counterpart involving uncertain
equality constraints of the form:

min
G,H

5 (G) s.t. 68 (G, H8 , Z8) = 0, ⌘8 (G, H8 , Z8)  0, 8Z8 2 /8 (G) 88 (13.3)

An equality constraint such as H8 = Z8 where Z8 2 {0,1} is generally infeasible for
robust optimization if H8 is also an optimization variable that must be chosen and
fixed before the uncertain Z8 is realized. There are three common approaches to
avoid infeasibility by eliminating equality constraints. The first is to allow slack
by replacing equality constraints by inequality constraints on the size of the slack;
see (13.133) in Chapter 13.5.2 on robust economic dispatch for an example. The
second is to replace the inequality constraints on the slack by penalty terms in
the cost function that allow but penalize violation of the equality constraints. The
third is to eliminate the equality constraints by substituting dependent variables
into the cost function and inequality constraints, as we now explain. We assume
the equality constraint 68 (G, H8 , Z8) = 0 means that given (the control) G, (the system
state) H8 will be determined by G and the realization of the uncertain parameter
Z8 . Given an G let .8 (G) := {H8 : 68 (G, H8 , Z8) = 0, Z8 2 /8 (G)} denote the set of H8
implicitly defined by 68 as Z8 varies over /8 (G). Then the constraints in (13.3) are
interpreted as

⌘8 (G, H8 , Z8)  0, 8(H8 , Z8) 2 .8 (G)⇥ /8 (G), 8 = 1, . . . ,<
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which is of the form in (13.2), i.e., (the system state) H8 becomes an uncertain
parameter determined by the equality constraint 68 and Z8 . Note that H8 depends
only on Z8 , but not Z 9 , 9 < 8, so that the uncertainty set .8 (G) is separable in 8.
Hence the equality constrained problem (13.3) should be interpreted as

min
G

5 (G) s.t. sup
Z8 2/8 (G)

sup
H8 2.8 (G)

⌘8 (G, H8 , Z8)  0, 8 = 1, . . . ,<

See Example 13.1 and Exercise 13.3.
This is di�erent from stochastic optimization with recourse studied in Chapter

13.4 where a first-stage decision is made before the uncertain parameter Z is real-
ized and a second-stage decision is made after Z is realized. With recourse, it is
possible to satisfy uncertain equality constraints and, indeed, the feasibility con-
dition plays an important role in optimality conditions for two-stage optimization
studied in Chapter 13.4.

4. Closed and convex / . We will assume without loss of generality that the uncertainty
set / is closed and convex (Exercise 13.2).

⇤

Example 13.1 (Robust optimization: voltage control). Consider a solar panel with
uncertain real power generation ZC at time C that takes value in a set /C ✓ R+. Suppose
its reactive power @C is controllable within the range @C 2 [@min,@max] for all C. The
solar panel is connected to a battery through a line with a given series admittance
H := 6 + i1 2 C. The DC discharging power 3C of the battery is controllable within the
range 3C 2 [3min,3max] as long as its state of charge 1C satisfies the energy capacity
1C 2 [0,⌫]. Let E1C := |E1C |4i\1C and E2C := |E2C |4iq2C denote the voltage phasors at
the solar panel and the battery respectively at time C. Our goal is to schedule the
reactive power @ := (@1, . . . ,@) ) 2 R) and discharging power 3 := (31, . . . ,3) ) 2 R) to
minimize a certain cost 5 subject to the constraint that the voltages EC := (E1C ,E2C ) 2 C2

satisfy voltage limits |E8C | 2 [Emin,Emax] for 8 = 1,2, for all realizations of the solar
generation ZC 2 /C , for C = 1, . . . ,) .

This can be formulated as a robust optimal power flow (OPF) problem.1 Let G :=
(@,3) 2 R2) where @,3 are defined above. Let 5 (G) denote the cost function. Let 1 :=
(11, . . . ,1) ) 2 R) and E := (E1, . . . ,E) ) 2 C) . Suppose the uncertain solar generation
Z := (Z1, . . . , Z) ) 2 R) takes value in / ✓ R) , independent of G. As explained in
Remark 13.1 we can assume without loss of generality that / = /1 ⇥ · · ·⇥ /) with
/C := (ZC : Z 2 /). The robust scheduling problem is

min
G

5 (G) s.t. 6(G,E,1, Z) = 0, ⌘(G,E,1, Z)  0, 8Z 2 / (13.4a)

where the equality constraint 6(G,E,1, Z) = 0 is power flow equations and battery state

1 We formulate the OPF problem in the complex domain for notational simplicity; it is straightforward to
convert it into OPF in the real domain.
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transition: for C = 1, . . . ,) ,

ZC + i@C = H
H
⇣
|E1C |2� E1CE

H
2C

⌘
, 3C + i0 = H

H
⇣
|E2C |2� E2CE

H
1C

⌘
(13.4b)

1C+1 = 1C � 3C (13.4c)

and the inequality constraint ⌘(G,E,1, Z)  0 is voltage and battery limits: for C =
1, . . . ,) ,

E
min  |E8C |  Emax, 8 = 1,2, 0  1C  ⌫ (13.4d)

The equality constraint (13.4c) has no uncertainty. The uncertain equality con-
straint (13.4b) should be interpreted appropriately. Both can be eliminated, as fol-
lows. In reality we set the values of the reactive power @C and discharging power 3C ,
which then, together with the uncertain solar generation ZC , determine the voltages
EC := (E1C ,E2C ) according to the power flow equation (13.4b). Let +C (G) := {EC 2 C2 :
EC satisfies (13.4b), ZC 2 /C } denote the set of power flow solutions as Z8 varies in /C .
We can eliminate the uncertain equality constraint (13.4b) using the new uncertainty
set +C (G), and eliminate the (fixed) equality constraint on the battery’s state of charge
1C by expanding on the battery state (given initial state 10):

1C = 10 �
’
B<C

3B , C = 1, . . . ,)

to obtain the reformulation:

min
G

5 (G) s.t. E
min  |E8C |  Emax, 8 = 1,2, 8EC 2 +C (G), C = 1, . . . ,)

0  10�
’
B<C

3B  ⌫, C = 1, . . . ,)

which is in the form (13.2). Note that the uncertainty sets /C , which are independent of
G, have been incorporated into the new uncertainty sets +C (G) which depend on G. (For
another example, see Chapter 18.3.2 for the problem of robust hosting capacity.) ⇤

The tractability of the robust optimization problem (13.2) depends on the structure
of the nominal problem and that of the uncertainty set / (G) := /1 (G) ⇥ · · ·⇥ /< (G) ✓
R
:1 ⇥ · · ·⇥R:< for each G. If we let the robust feasible set be:

- := - (/) := {G : ⌘8 (G, Z8)  0, 8Z8 2 /8 (G), 8 = 1, . . . ,<}

then the tractability of the robust problem often boils down to whether there is a
finite convex representation of - (/). Since the direct product of /8 (G) preserves
convexity we can assume without loss of generality that < = 1 in (13.2) and consider
the tractability of

min
G2R=

5 (G) s.t. ⌘(G, Z)  0, 8Z 2 / (G) (13.5)

where 5 :R=!R and ⌘ :R=⇥R:!R are convex functions and / (G) ✓ R: is a convex
set for every G 2 R=.
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The derivation of a tractable reformulation of (13.5) often uses the following con-
cept.

Definition 13.1. A set -+ ✓ R=⇥R< is said to represent a set - ✓ R= if the projection
of -+ onto the space of G-variable is exactly - , i.e., - = {G : (G, H) 2 -+, H 2 R<}. ⇤

This simple technique can sometimes be used to greatly reduce the number of
constraints. For instance the ;1-norm ball

- :=

(
G 2 R= : kGk1 :=

’
8

|G8 |  1

)

is defined by 2= linear inequalities, but can be represented by a much simpler set -+

defined by 2=+1 linear inequalities in 2= variables (Exercise 13.1):

-
+ :=

(
(G, H) 2 R2= : �H8  G8  H8 , 8 = 1, . . . ,=,

’
8

H8  1

)

Note that H in -+ satisfies H8 � 0 for all 8. Indeed H8 plays the role of |G8 |.

More importantly we will use this concept to derive, for a possibly semi-infinite
robust feasible set - (/), a finite convex representation -+ that does not depend on the
uncertainty set / . Then (13.5) can be reformulated as

min
G,H

5 (G) s.t. (G, H) 2 -+ ✓ R=+< (13.6)

which is tractable when 5 is a convex cost function and -+ is a convex feasible set.
We first summarize the general strategy.

Derivation strategy. The key observation is that (13.5) is equivalent to

min
G2R=

5 (G) s.t. sup
Z 2/ (G)

⌘(G, Z)  0 (13.7)

This is called a bi-level problem and generally intractable. It often has a tractable
reformulation when, for each fixed G 2 R=, the subproblem

⌘̄(G) := sup
Z 2/ (G)

⌘(G, Z) (13.8)

is a convex problem and the constraint ⌘̄(G)  0 has a finite convex representation. By
assumption 5 : R=! R and ⌘ : R=⇥R: ! R are convex functions and / (G) ✓ R: is a
convex set for every G 2 R=.

There are three general strategies to eliminate the uncertain parameter Z from (13.7)
and derive a tractable reformulation:

1. Solve ⌘̄(G) in closed form. When the subproblem (13.8) for each G 2 R= can be
solved to obtain ⌘̄(G) in closed form then the semi-infinite problem (13.7) is
equivalent to the finite problem

min
G2R=

5 (G) s.t. ⌘̄(G)  0
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If / (G) = / is independent of G then, since ⌘(G, Z) is convex in G for each Z , ⌘̄(G) is
convex in G. In this case the robust program has a tractable convex representation
studied in Chapters 8 and 12. This strategy is used to prove Theorem 13.1 on
tractable linear program (with linear and SOC uncertainty).

2. Replace ⌘̄(G)  0 by strong duality and KKT condition. Suppose the subproblem
(13.8) is convex for each G 2 R= but cannot be explicitly solved. Then

(a) Using strong duality we replace ⌘̄(G)  0 in (13.7) by 3 (H;G)  0 where, for
each G, 3 (·;G) is the Lagrangian dual function of (13.8) and H is a dual optimal
solution.

(b) The dual optimality of H is enforced by dual feasibility and stationarity
rZ ! (Z , H;G) = 0 of the KKT condition for (13.8). These conditions do not
contain Z , but only (G, H), when (i) ⌘(G, Z) is a�ne in Z and hence the station-
arity condition rZ ! (Z , H;G) = 0 is independent of Z ; and (ii) strong duality
and stationarity imply complementary slackness and hence the complemen-
tary slackness condition can be omitted. Feasibility is reformulated as: G is
feasible for (13.7) if and only if there exists H such that (G, H) satisfies

3 (H,G)  0, KKT(G, H)  0 (13.9)

where KKT(G, H)  0 is dual feasibility and stationarity. If 3 (G, H) and the
KKT function KKT(G, H) are convex then the semi-infinite problem (13.7) is
equivalent to the convex problem minG,H 5 (G) s.t. (13.9) which is of the form
(13.6).

This strategy needs the Slater Theorem 8.17 to ensure strong duality and dual
optimality. It is used to prove Theorem 13.1 on tractable linear program (with
conic uncertainty) and Theorem 13.2 on tractable SOCP.

3. Replace ⌘̄(G)  0 by linear matrix inequalities. Sometimes the semi-infinite con-
straint in (13.7) takes the form ⌘0 (G) + ⌘(G, Z) 2  for all Z 2 / (G) where, for
each Z , ⌘0 (·) and ⌘(·, Z) are a�ne functions of G, for each G, ⌘(G, ·) is an a�ne
function of the uncertain parameter Z , and  is a closed convex cone such as the
second-order cone  soc ✓ R= or the semidefinite cone  sdp ✓ S=. This is the case
in Theorem 13.3 on robust SOCP and Theorem 13.4 on robust SDP where / (G)
is a set of matrices with bounded spectral norms. For both theorems the constraint
can be reformulated as a finite set of linear matrix inequalities using the (-lemma
and the resulting problem is a semidefinite program.

As we will see below tractability often requires the uncertainty set / (G) = / to be
independent of G. For instance a robust linear program with the uncertainty set / :=
{Z 2 R! : kZ k1  1} remains a linear program, but may become intractable if / (G) :=
{Z 2 R! : kZ k1  ⌘(G)}; see Exercise 13.4. (Also see the robust hosting capacity
problem of Chapter 18.3.2 where / (G) depends on G but the robust linear program
remains tractable.)

In the rest of this section we use the general strategy above to derive the convex
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reformulations of three classes of (⌘,/) for which (13.5) is tractable, corresponding
to robust counterparts of uncertain linear program, second-order cone program, and
semidefinite program. The results are summarized in Table 13.1.

robust program uncertainty set / convex reformulation main results

LP interval LP Th 13.1
SOC SOCP Th 13.1
conic conic program Th 13.1

SOCP interval, conic conic program Th 13.2
bounded ✓2 norm, conic SDP Th 13.3

SDP bounded spectral norm, conic SDP Th 13.4

Table 13.1 Tractable robust programs.

13.1.2 Robust linear program

Consider (13.5) where 5 is linear and ⌘ is a�ne in G and Z separately, giving rise to
the following robust counterpart of an uncertain linear program:

min
G2R=

2
T
G s.t. 0

T
G  1, 8[0T

1] 2
(⇥
0

T
0 10

⇤
+

:’
;=1

Z;

⇥
0

T
;
1;

⇤
: Z 2 / ✓ R:

)
(13.10)

where 0 2 R= and 1 2 R are uncertain parameters. The row vector
⇥
0

T
0 10

⇤
are nominal

parameters and
⇥
0

T
;
1;

⇤
are basic perturbations modulated by the uncertain Z in the

uncertainty set / . It does not lose generality to assume that the uncertain vector [0T
1]

takes this form because taking : = = + 1 will allow each entry of 0 and 1 to vary
independently. We assume without loss of generality that / is such that the feasible set
is nonempty, closed and convex. The uncertainty set / is independent of G; otherwise
(13.10) may or may not be tractable (see Chapter 18.3.2 and Exercise 13.4 for respective
examples).

Write (13.10) as a bi-level problem:

min
G2R=

2
T
G s.t. max

Z 2/

:’
;=1

Z; (0T
;
G� 1;)  �(0T

0G� 10) (13.11)

The corresponding constraint function ⌘(G, Z) is a�ne in G for each Z and a�ne in Z for
each G. Our goal is to derive a finite convex representation of the semi-infinite feasible
set in (13.10), and thus convert the semi-infinite linear program into an explicit convex
program. This amounts to replacing the subproblem

⌘̄(G) := max
Z 2/

:’
;=1

Z; (0T
;
G� 1;)  �(0T

0G� 10) (13.12)
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in (13.11) by a finite set of convex constraints involving G and possibly the dual variable
H of the subproblem but not the uncertain parameter Z . The next theorem presents three
uncertainty sets / that lead to tractable reformulations of the problem (13.11).

Theorem 13.1 (Tractable robust LP). Consider the robust linear program (13.11).

1. Linear uncertainty. Suppose / := { Z 2R: : kZ k1  1 }. Then (13.11) is equivalent
to the LP:

min
(G,H)2R=+:

2
T
G s.t.

’
;

H;  �(0T
0G� 10), �H;  0T

;
G� 1;  H; , ; = 1, . . . , :

2. SOC uncertainty. Suppose / := { Z 2 R: : kZ k2  A }. Then (13.11) is equivalent
to the SOCP:

min
G2R=

2
T
G s.t. A

s’
;

⇣
0

T
;
G� 1;

⌘2
 �(0T

0G� 10)

3. Conic uncertainty. Suppose

/ :=
�
Z 2 R: : 9D 2 R? s.t. %Z +&D + 3 2  

 
where is a closed convex pointed cone inR< with a nonempty interior, % 2 R<⇥:
and & 2 R<⇥? are given matrices, and 3 2 R< is a given vector. Suppose / is
nonempty and
• Either  is a polyhedral cone or

9( Z̄ , D̄) 2 R:+? s.t. %Z̄ +&D̄ + 3 2 ri( )

• For each G 2 R=, the subproblem maxZ 2/
Õ
;
Z;

�
0

T
;
G� 1;

�
in (13.11) is finite.

Then - is represented by the set -+ of (G, H) 2 R=+< defined by the following
system of conic inequalities:

0
T
0G + 3T

H  10 (13.13a)

H 2  ⇤, &
T
H = 0, 0

T
;
G +

⇣
%

T
H

⌘
;

= 1; , ; = 1, . . . , : (13.13b)

where  ⇤ := {H 2 R< : HT
I � 0 8I 2  } is the dual cone of  . The robust linear

program (13.11) is equivalent to the conic program

min
(G,H)2R=+<

2
T
G s.t. (13.13)

The form / for the conic uncertainty is common in applications and says that
even though the full uncertain parameter is (Z ,D) (whose a�ne transformation is in
 ), only the subvector Z directly a�ects the optimization (13.11). As we will see
in the proof, (13.13b) is the feasibility condition for the dual of the subproblem
maxZ 2/

Õ
;
Z;

�
0

T
;
G� 1;

�
in (13.11).
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Proof For parts 1 and 2, see Exercise 13.4. For part 3 fix any G 2 R=. Let B 2 R: be
defined by B; := B; (G) := 0T

;
G� 1; . Then the subproblem (13.12) is the following conic

program (12.73) studied in Chapter 12.9.4:

?
⇤ (G) := max

(Z ,D)2R:+?
B

T (G)Z s.t.
⇥
% &

⇤ 
Z

D

�
+ 3 2  (13.14a)

i.e., G is feasible for (13.11) if ?⇤ (G)  10 � 0T
0G. We will show that this holds if and

only if there exists (G, H) 2 R=+< that satisfies (13.13).

The Lagrangian of (13.14a) is

! (Z ,D, H) := B
T
Z + HT

✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
, (Z ,D) 2 R:+? , H 2  ⇤

where  ⇤ is the dual cone of  (see Chapter 12.9.4 for details). Since

! (Z ,D, H) := H
T
3 +

⇣
B

T + HT
%

⌘
Z + HT

&D

the dual function is

3 (H) := max
(Z ,D)2R:+?

! (Z ,D, H) =

(
3

T
H if %T

H = �B, &T
H = 0

1 otherwise

and the dual problem is:

3
⇤ (G) := min

H2 ⇤
3

T
H s.t. %

T
H = �B(G), &T

H = 0 (13.14b)

where the constraints above correspond to the stationarity condition r(Z ,D)! = 0. For
every G 2 R=, since the Slater condition is satisfied and the optimal value ?⇤ (G) of
(13.14a) is finite, Theorem 12.32 implies that strong duality holds and there exists
H(G) 2  ⇤ that attains dual optimality, i.e., ?⇤ (G) = 3⇤ (G) = 3T

H(G), whether or not
primal optimality is attained (i.e., whether optimal (Z⇤,D⇤) exists).

Fix an G 2 R=. Since strong duality holds, ?⇤ (G)  10 � 0T
0G will be equivalent to

(13.13a) if and only if H = H(G) in (13.13a) is dual optimal. We now show that a H
is dual optimal if and only if (G, H) satisfies (13.13b). Since the Slater condition is
satisfied, Theorem 12.32 implies that a feasible (Z ,D) is optimal for (13.14a) if and
only if there exists H 2  ⇤ ✓ R< such that (noting that our primal problem (13.14a) is
maximization corresponding to minimizing �BT

Z)
�B
0

�
=


%

T

&
T

�
H, H

T
✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
= 0 (13.15)

The first condition in (13.15) is stationarity rZ ,D! (Z ,D, H) = 0 and the second com-
plementary slackness. Moreover such an H is optimal for (13.14b). It hence su�ces to
show that (13.15) is equivalent to (13.13b). The complementary slackness condition
in (13.15) involves the primal variables (Z ,D), but we claim that it is implied by the
stationarity condition in (13.15) and strong duality (HT

3 = BT
Z) and therefore can be
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omitted:

H
T
✓ ⇥
% &

⇤ 
Z

D

�
+ 3

◆
= H

T
%Z + HT

&D + HT
3 = �BT

Z + 0 + HT
3 = 0

Next recall that B; := B; (G) := 0T
;
G � 1; and hence B + %T

H = 0 is equivalent to 0T
;
G +

(%T
H); = 1; , ; = 1, . . . , : . We have thus shown that H is dual optimal if and only if (G, H)

satisfies (13.13). This completes the proof. ⇤

Remark 13.2 (Derivation strategy). The proof of Theorem 13.1 illustrates the strategy
outlined in Chapter 13.1.1. For parts 1 and 2, the subproblem (13.8) is solved explicitly.
The equivalent feasibility condition ⌘̄(G)  0 takes the convex form given in the
theorem. For part 3 the subproblem (13.8) is convex but cannot be solved explicitly. ⇤

Example 13.2 (Conic uncertainty set). The conic uncertainty set in Theorem 13.1

/ :=
�
Z 2 R: : 9D 2 R? s.t. %Z +&D + 3 2  

 
is very general and includes the linear uncertainty in part 1 and conic uncertainty
in part 2 as special cases. Specifically part 3 reduces to part 1 when  := R<+ is the
nonnegative quadrant,& = 0, 3 = 1 of size 2: and % is 2: ⇥ : with %;; = �1, %(:+;); = 1
and %8; = 0 if 8 < ;, : + ;, such that (%Z + 3); = 1� Z; and (%Z + 3):+; = Z; + 1. The
uncertainty set of part 2 can be expressed as the intersection of that of part 3 and an
a�ne set (see Exercise 13.5).

A particularly simple case is / := {Z 2 R: : Z 2  } in which case the robust linear
program (13.11) is equivalent to the following conic program:

min
(G,H)2R=+<

2
T
G s.t. 0

T
0G  10, 0T

;
G + H; = 1; , H 2  ⇤, ; = 1, . . . , :

where the first inequality corresponds to the nominal system and the other inequalities
correspond to uncertain perturbations. ⇤

13.1.3 Robust second-order cone program

We study the robust counterpart of an uncertain second-order cone program of Chap-
ters 8.4.4 and 12.9.3. It takes the form

min
G2R=

2
T
G s.t. k�(Z)G + 1(Z)k2  U

T (Z)G + V(Z), 8Z 2 / ✓ R: (13.16a)

where (�(Z),1(Z)) and (U(Z), V(Z)) are a�ne functions of Z :

�(Z) := �0 +
:’
;=1

Z;�; 2 R<⇥=, 1(Z) := 10 +
:’
;=1

Z;1; 2 R< (13.16b)

U(Z) = U0 +
:’
;=1

Z;U; 2 R=, V(Z) := V0 +
:’
;=1

Z;V; 2 R (13.16c)
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Hence G is feasible if the a�ne transformation of G defined by (�(Z),1(Z),U(Z), V(Z))
is in the second-order cone in R<+1 for all Z in an uncertainty set / . The form of uncer-
tainty in (13.16b)(13.16c) does not lose generality because with : =<= and appropriate
choices of (�; ,1; ,U; , V;) we can perturb each entry of (�; (Z),1; (Z),U; (Z), V; (Z)) in-
dependently around its nominal value.

If / = conv(Z1, . . . , Z ?) ✓ R: then these constraints are equivalent to a set of ?
second-order cone constraints

k�(Z 8)G + 1(Z 8)k2  U
T (Z 8)G + V(Z 8), 8 = 1, . . . , ?

Otherwise, (13.16) is generally a semi-infinite set of constraints. Writing (13.16) as a
bi-level problem:

min
G2R=

2
T
G s.t. max

Z 2/
⌘(G, Z)  0

It can be easily shown that, for any fixed G 2 R=, the constraint ⌘(G, Z)  0 can be
written as a SOC constraint, and hence convex, in Z (Exercise 13.7):��

�̂(G)Z + 1̂(G)
��

2  Û
T (G)Z + V̂(G), 8Z 2 / (13.17)

for some �̂(G) 2 R<⇥: , 1̂(G) 2 R<, Û(G) 2 R: , V̂(G) 2 R. In particular V̂(G) := UT
0G + V0

which will be used in Theorem 13.2. This means that the maximization of the convex
⌘(G, ·) over / , and hence robust SOCP (13.16), is generally computationally hard
except for special / , e.g., / = conv(Z1, . . . , Z ?). We now present two other classes of
/ with decoupled uncertainties for which (13.16) is a tractable problem.

Suppose the dependence on the uncertain parameter Z := (Z l, Z r) 2 / l⇥/ r in (13.16)
is decoupled in that the left-hand side depends only on Z

l and the right-hand side
depends only on Z r. Specifically consider the robust SOCP:

min
G2R=

2
T
G s.t.

��
�(Z l)G + 1(Z l)

��
2  U

T (Z r)G + V(Z r), 8Z l 2 / l, Z r 2 / r (13.18)

where �(Z l) 2 R<⇥=, 1(Z l) 2 R<, U(Z r) 2 R= and V(Z r) 2 R. An G 2 R= is feasible for
(13.18) if and only if there exists a variable g such that

max
Z

l2/ l
k�(Z l)G + 1(Z l)k2  g  min

Z
r2/ r

U
T (Z r)G + V(Z r) (13.19)

Fix any G 2 R=. The semi-infinite constraint on G is tractable if both subproblems in
(13.19):

max
Z

l2/ l
k�(Z l)G + 1(Z l)k2  g (13.20a)

min
Z

r2/ r
U

T (Z r)G + V(Z r) � g (13.20b)

have finite convex representations. We discuss two classes of (/ l,/ r) for which this
is the case. In both cases, to maintain convexity of both subproblems, their objec-
tive functions are a�ne in Z

l and Z r respectively. The feasible set / l for the max-
imization is a�ne in Z

l and the feasible set / r for the minimization is defined by
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conic constraints. Even though the form (13.16b)(13.16c) of the uncertain parameters
(�(Z l),1(Z l),U(Z r), V(Z r)) is general, it is sometimes convenient to allow them to take
other forms.

Interval + conic uncertainty. Consider the robust SOCP (13.18). Suppose that:

1. Left-side uncertainty: �(Z l) = �0 +�� 2 R<⇥= and 1(Z l) = 10 +�1 2 R< with the
uncertainty set

/
l :=

�
Z

l := [�� �1] : |��8 9 |  X8 9 , |�18 |  X8 , 88, 9
 

(13.21a)

i.e., each parameter [�(Z l)]8 9 , [1(Z l)]8 is perturbed independently of other pa-
rameters around its nominal value.2 The first subproblem (13.20a) then becomes:

max
[�� �1]2/ l

k (�0G + 10) + (��G +�1)k2  g

2. Right-side uncertainty: U(Z r) := U0+
Õ
:r
;=1 Z;U; 2 R= and V(Z r) := V0+

Õ
:r
;=1 Z;V; 2

R with the uncertain parameter Z r in the conic uncertainty set in Theorem 13.1:

/
r :=

�
Z

r 2 R:r : 9D s.t. %Z r +&D + 3 2  
 

(13.21b)

where  ✓ R? is a closed convex pointed cone for some %,&,3,D of appropriate
dimensions. Suppose / r satisfies the Slater condition, i.e., / r is nonempty and
either  is polyhedral or there is ( Z̄ r, D̄) such that %Z̄ r+&D̄+3 2 ri( ). The second
subproblem (13.20b) then becomes:

min
Z

r2/ r, C 2R

(
C : (UT

0G + V0) +
:r’
;=1

(UT
;
G + V;)Z;  C

)
� g

Fix an G 2 R=. The first subproblem is of the form

max
�F : |�F8 |n8

kF +�Fk22 =
’
8

max
�F8 : |�F8 |n8

(F8 +�F8)2  g
2

which can be solved in closed form. Since / l is a simple box constraint, the maximum
value of each term is ( |F8 | +n8)2 and is attained at�F8 =±n8 . Hence the first subproblem
(13.20a) is equivalent to: 9I 2 R< such that

kIk2  g, I8 =

�����
’
9

[�0]8 9G 9 + [10]8

����� +
’
9

|X8 9G 9 | + X8 , 8 = 1, . . . ,<,

which is a convex quadratic constraint and a linear constraint in I 2 R<. This leads to
the constraint (13.23a) in Theorem 13.2 below. Rewrite the minimization in the second
subproblem for the right-side uncertainty as:

min
Z

r,C ,D
C s.t. Û

T (G)Z r + V̂(G)� C  0, %Z r +&D + 3 2  ✓ R? (13.22)

2 If uncertainty is expressed in the form of (13.16b)(13.16c), this corresponds to
��Õ
;
Z; [�; ]8 9

��  X8 9 ,
|Õ
;
Z; [1; ]8 |  X8 .
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where Û; (G) := UT
;
G + V; and V̂(G) := UT

0G + V0. This is a convex problem similar to the
problem (13.14a) in the proof of Theorem 13.1, with an additional a�ne constraint. The
condition (13.20b) can therefore be characterized in the same way as in Theorem 13.1,
leading to the constraint (13.23b) in the next theorem. The theorem shows that the
robust SOCP (13.18) where (/ l,/ r) are given by (13.21) is a conic program and hence
tractable. Like Theorem 13.1, it can be proved using Theorem 12.32 (Exercise 13.8).

Theorem 13.2 (Tractable SOCP). Consider the robust SOCP (13.18) where (/ l,/ r)
are given by (13.21) where / r satisfies the Slater condition. Suppose the minimum
value in (13.20b) is finite. Then G 2 R= is feasible for (13.18) if and only if there exist
(H, I) 2 R?+< such that (G, H, I) satisfies

I8 =

�����
’
9

[�0]8 9G 9 + [10]8

����� +
’
9

X8 9 |G 9 | + X8 , 8 = 1, . . . ,< (13.23a)

kIk2  V̂(G)� HT
3, H 2  ⇤, %

T
H = Û(G), &

T
H = 0 (13.23b)

where  ⇤ ✓ R? is the dual cone of  , Û; (G) := UT
;
G + V; and V̂(G) := UT

0G + V0. Hence
(13.18) is equivalent to the conic program:

min
(G,H,I)2R=+?+<

2
T
G s.t. (13.23)

Bounded ✓2 norm + conic uncertainty. Consider the robust SOCP (13.18). Suppose
that:

1. Left-side uncertainty: �(Z l)G + 1(Z l) takes the form

�(Z l)G + 1(Z l) = (�0G + 10) + !T (G)Z l
A (G) (13.24)

where �(Z l) 2 R<⇥=, 1(Z l) 2 R<, ! (G) 2 R:1⇥<, Z l 2 R:1⇥:2 , A (G) 2 R:2 . The
first term �0G + 10 is the nominal value and the second term !

T (G)Z l
A (G) is the

perturbation due to the uncertain matrix Z l. We impose the restriction that at most
one of ! (G) and A (G) depends on G and the other is a constant (see (13.27) below).
Moreover the dependence of ! (G) or A (G) is a�ne in G so that the constraints
in (13.28b) and (13.28c) below are linear matrix inequalities in G. The uncertain
parameter Z l is a matrix of bounded induced norm (maximum singular value) in
the uncertainty set

/
l :=

⇢
Z

l 2 R:1⇥:2 :
��
Z

l
��

2 := max
D:kD k21

��
Z

l
D

��
2  1

�
(13.25)

The first subproblem (13.20a) then becomes:

max
Z

l2/ l
k (�0G + 10) + !T (G)Z l

A (G)k2  g (13.26)

2. Right-side uncertainty: / r is given by (13.21b) and satisfies the Slater condition.

Since / r is the same as that in Theorem 13.2, the second subproblem (13.20b) can be
characterized in the same way, leading to the constraint (13.28a) in Theorem 13.3. We
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will show that the first subproblem (13.26) is equivalent to an explicit system of linear
matrix inequalities (LMIs) (13.28b)(13.28c) in Theorem 13.3. They imply that robust
SOCP (13.18) with bounded-norm and conic uncertainty is equivalen to a semidefinite
program. We separate explicitly (13.24) into two cases:

�(Z l)G + 1(Z l) = (�0G + 10) + !T (G)Z l
A (13.27a)

where ! (G) a matrix a�ne in G and A < 0 is a constant vector and

�(Z l)G + 1(Z l) = (�0G + 10) + !T
Z

l
A (G) (13.27b)

where ! < 0 is a constant matrix and A (G) is a vector a�ne in G.

Theorem 13.3. Consider the robust SOCP (13.18) where / l is given by (13.25)(13.27)
and / r is given by (13.21b). Suppose the minimum value in (13.26) is finite and / r

satisfies the Slater condition. An G 2 R= is feasible for (13.18) if and only if there exist
H 2 R? and (g,_) 2 R2 such that (G, H,g,_) satisfies

H 2  ⇤, g  V̂(G)� HT
3, %

T
H = Û(G), &

T
H = 0 (13.28a)

with Û; (G) :=UT
;
G+V; and V̂(G) :=UT

0G+V0, and the following linear matrix inequalities:

• when �(Z l)G + 1(Z l) is given by (13.27a):

_ � 0,

266664
g�_kA k22 (�0G + 10)T 0
�0G + 10 gI< !

T (G)
0 ! (G) _I:1

377775
⌫ 0 (13.28b)

• when �(Z l)G + 1(Z l) is given by (13.27b):

_ � 0,

266664
g (�0G + 10)T

A
T (G)

�0G + 10 gI<�_!T
! 0

A (G) 0 _I:2

377775
⌫ 0 (13.28c)

Hence (13.18) is equivalent to the semidefinite program:

min
(G,H,g,_)2R=+?+2

2
T
G s.t. (13.28)

⇤

The subproblem (13.26) is the constraint (�(Z l)G + 1(Z l),g) 2  soc for all Z 2 / l.
The proof that this is equivalent to (13.28b)(13.28c) uses the following three ideas:

1. Second-order cone in terms of  sdp. A vector (H, C) 2  soc ✓ R;+1, i.e., kHk2  C, if
and only if 

C H
T

H CI✓

�
⌫ 0 (13.29)

where I✓ is the identity matrix of size ✓. This follows from the following property
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of the Schur complement of the “arrow matrix” in (13.29): a matrix is (necessarily
symmetric and) positive definite if both a principal submatrix and the Schur
complement of the principal submatrix are positive definite (see Theorem A.4 in
Chapter A.3.1).

2. ;2-norm matrix minimization. It can be proved using singular-value decomposition
that (Exercise 13.9)

min
- :k- k2d

0
T
1-02 = �dk01k2k02k2 (13.30)

3. (-lemma. Let �, ⌫ be symmetric matrices of the same size and ḠT
�Ḡ > 0 for some

Ḡ. Then the implication GT
�G � 0) G

T
⌫G � 0 holds if and only if 9_ � 0 such that

⌫ ⌫ _�. Note that neither ⌫ nor � needs to be positive semidefinite, but ⌫�_�
is. This lemma is proved in Chapter 13.1.5. (The result originates from stability
analysis of nonlinear systems and hence ( in (-lemma.)

Proof of Theorem 13.3 Fix an G 2 R=. It is feasible for (13.18) if and only if there
exists a variable g 2 R such that both subproblems in (13.20) have finite convex
representations. Since / r is the same as that in Theorem 13.2 the second subproblem
(13.20b) is equivalent to (13.28a). We now show that the first subproblem (13.20a), or
(13.26), is equivalent to (13.28b)(13.28c), using the three ideas above.

Consider the case (13.27a) and let 6(G) := �0G + 10 2 R<. First, apply (13.29) to
write (13.26) as"

g

�
6(G) + !T (G)Z l

A

�T

6(G) + !T (G)Z l
A gI<

#
⌫ 0, Z

l 2 / l

Therefore

(I1)2
g + 2IT

2

⇣
6(G) + !T (G)Z l

A

⌘
I1 + (IT

2 I2)g � 0, 8 I1 2 R, I2 2 R<, Z l 2 / l

Or, for all I1 2 R and I2 2 R<,

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g + min

Z
l:kZ l k21

(2! (G)I2)T
Z

l (I1A) � 0 (13.31)

Second, use (13.30) twice to eliminate Z l:

min
Z

l:kZ l k21
(2! (G)I2)T

Z
l (I1A) = �2k! (G)I2k2kI1A k2 = min

- :k- k2kI1A k2
(2! (G)I2)T

- (1)

where the second equality uses (13.30) with - 2 R:1⇥1. Substituting into (13.31) we
have, for all I1 2 R, I2 2 R< and - 2 R:1 , if I21kA k22� -T

- � 0 then

(I1)2
g + 2IT

26(G)I1 + (IT
2 I2)g + 2-T

! (G)I2 � 0

This is equivalent to: for (I1, I2,-) 2 R1+<+:1

266664
I1

I2

-

377775

T266664
kA k22 0 0

0 0 0
0 0 �I:1

377775
266664
I1

I2

-

377775
� 0 )

266664
I1

I2

-

377775

T266664
g 6

T (G) 0
6(G) gI< !

T (G)
0 ! (G) 0

377775
266664
I1

I2

-

377775
� 0
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Third, there clearly exists I1 > 0 such that I21kA k22 > 0 since A < 0. Hence we can apply
the (-lemma to the two (1+< + :1) ⇥ (1+< + :1) matrices above to conclude that
(13.20a) is equivalent to (13.28b).

The case of (13.27b) is similar. Applying (13.29) to write (13.26) as for all Z l 2 / l,"
g

�
6(G) + !T

Z
l
A (G)

�T

6(G) + !T
Z

l
A (G) gI<

#
⌫ 0

Therefore, for all I1 2 R and I2 2 R<,

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g + min

Z
l:kZ l k21

(2!I2)T
Z

l (I1A (G)) � 0 (13.32)

Use (13.30) twice to eliminate Z l ((13.27a) and (13.27b) di�er mainly in the second
equality below):

min
Z

l:kZ l k21
(2!I2)T

Z
l (I1A (G)) = �2k!I2k2kI1A (G)k2 = min

- :k- k2k!I2 k2
(2I1A (G))T

- (1)

where - 2 R:2⇥1. Substituting into (13.32) we have, for all I1 2 R, I2 2 R< and - 2 R:2 ,
if IT

2 (!T
!)I2� -T

- � 0 then

(I1)2
g +2IT

26(G)I1 + (IT
2 I2)g +2-T

A (G)I1 � 0

This is equivalent to: for (I1, I2,-) 2 R1+<+:2

266664
I1

I2

-

377775

T266664
0 0 0
0 !

T
! 0

0 0 �I:2

377775
266664
I1

I2

-

377775
� 0 )

266664
I1

I2

-

377775

T266664
g 6

T (G) A
T (G)

6(G) gI< 0
A (G) 0 0

377775
266664
I1

I2

-

377775
� 0

Hence we can apply the (-lemma to the two (1+< + :2)⇥ (1+< + :2) matrices above
to conclude that (13.20a) is equivalent to (13.28c). ⇤

13.1.4 Robust semidefinite program

We study the robust counterpart of an uncertain semidefinite program (SDP) of Chapter
8.4.5. Consider a standard SDP

min
G2R=

5 (G) s.t. ⌘0 (G) 2  psd (13.33a)

where 5 : R= ! R is a real-valued convex function,  psd ⇢ S< is the closed convex
pointed cone of positive semidefinite matrices in the vector space S< ⇢ R<⇥< of
symmetric matrices, and the matrix-valued function ⌘0 : R=! S< is given by:

⌘0 (G) := ⌫0 +
=’
8=1

G8�
8

0 2 S< (13.33b)

where �80,⌫0 2 S< are given symmetric matrices for 8 = 0,1, . . . ,=. This is the nominal
problem where the parameters (�80,⌫0, 8 � 0) that define ⌘0 are certain and given.
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The robust counterpart of (13.33) is

min
G2R=

5 (G) s.t. ⌘0 (G) + ⌘(G, Z) 2  psd, 8Z 2 / (13.34a)

where ⌘0 (G) is given by (13.33b), ⌘(G, Z) is a symmetric matrix in S< as a function of
G indexed by Z , and Z is the uncertain parameter that takes value in an uncertainty set
/ . We assume that the matrix-valued function ⌘(G, Z) is an a�ne function of G for each
fixed Z 2 / so that the constraints in (13.34a) are linear matrix inequalities (LMIs) in
G. For example ⌘(G, Z) may take the form:

⌘(G, Z) :=
:’
;=1

Z;

 
⌫; +

=’
8=1

G8�
8

;

!
2 S<, 8Z 2 / ✓ R:

for a given set of symmetric matrices (�8
;
,⌫; , 8 = 1, . . . ,=, ; = 1, . . . , :) in S<. For a

general uncertainty set / , it is a semi-infinite set of LMIs and hence the robust SDP
(13.34a) is generally computationally intractable. There are two exceptions. The first
is when / := conv(Z1, . . . , Z ?) is the convex hull of ? given vectors Z1, . . . , Z ? 2 R: . In
this case the semi-infinite set of LMIs reduces to a set of ? LMIs and the robust SDP
(13.34a) reduces to the following convex problem

min
G2R=

5 (G) s.t. ⌘0 (G) + ⌘(G, Z 8) 2  psd, 8 = 1, . . . , ?

for any a�ne functions ⌘
Z
8 (G) of G, indexed by Z1, . . . , Z ? 2 / .

The second exception is when the a�ne function ⌘(G, Z) is given by

⌘(G, Z) := !
T (G)Z'(G) +'T (G)ZT

! (G) 2 S< (13.34b)

where Z is a :1⇥ :2 matrix with bounded spectral norm in the uncertainty set

/ :=
⇢
Z 2 R:1⇥:2 : kZ k2 := max

D:kD k2=1
kZDk2  d

�
(13.34c)

and both ! (G) 2 R:1⇥< and '(G) 2 R:2⇥< are a�ne functions of G with at least one of
them being independent of G so that (13.34b) is an LMI (cf. the left-side uncertainty
set in (13.25)(13.27) for robust SOCP). The semi-infinite contraint in (13.34a) is then:

⌘0 (G) + !T (G)Z' +'T
Z

T
! (G) 2  psd, 8Z 2 /

Example 13.3 (SDP relaxation of OPF). For notational simplicity we will formulate
our problem in the complex domain, i.e., S< is the set of Hermitian matrices and  psd

is the closed convex pointed cone of semidefinite matrices in the vector space S< over
the field R (not C). It can be converted to the real domain (see Remark 9.2).

The semidefinite relaxation (10.20a) in Chapter 10.1 of optimal power flow (OPF)
(9.17) is given by (omitting line flow constraints for simplicity):

min
, 2 psd

tr (⇠0,) s.t. tr
�
� 9,

�
 ?max

9
, �tr

�
� 9,

�
 �?min

9
, 9 2 # (13.35a)

tr
�
 9,

�
 @max

9
, �tr

�
 9,

�
 �@min

9
, 9 2 # (13.35b)

tr
�
� 9,

�
 Emax

9
, �tr

�
� 9,

�
 �Emin

9
, 9 2 # (13.35c)
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where  psd ⇢ S#+1,

� 9 :=
1
2

⇣
.

H
0 4 94

T
9
+ 4 94T

9
.0

⌘
,  9 :=

1
2i

⇣
.

H
0 4 94

T
9
� 4 94T

9
.0

⌘
, � 9 := 4 94T

9
(13.35d)

and 4 9 2 {0,1}#+1 is the unit vector with a single 1 in its 9 th entry. Here .0 2
C
(#+1)⇥(#+1) is a given nominal admittance matrix. This problem is of the form

(8.74), reproduced here:

min
/ 2 psd

tr
⇣
⌫

H
0 /

⌘
s.t. tr

⇣
�
8H
0 /

⌘
 28 , 8 = 1, . . . ,= := 6(# +1)

for some ⌫0, �80 2 S#+1, 8 � 1. The dual problem of (13.35) is therefore of the form
(from (8.75b)):

� min
G2R=

2
T
G s.t. G � 0, ⌘0 (G) 2  psd (13.36a)

where ⌘0 (G) 2 C(#+1)⇥(#+1) for each G 2 R6(#+1) , defined as:

⌘0 (G) := ⇠0 +
#+1’
8=1

�
(G28�1� G28)�8 +

�
G2(#+1)+28�1� G2(#+1)+28

�
 8

�
(13.36b)

+
#+1’
8=1

�
G4(#+1)+28�1� G4(#+1)+28

�
�8 (13.36c)

which takes the form of the nominal SDP problem (13.33).

Suppose the admittance matrix. in (13.35d) is uncertain with. =.0+�. where�.
is the uncertain parameter that takes value in an uncertainty set / ✓ C(#+1)⇥(#+1) . Let
��8 :=

�
�.H

484
T
8
+ 484T

8
�.

�
/2 and � 8 :=

�
�.H

484
T
8
� 484T

8
�.

�
/2i. Then the robust

counterpart of (13.36) is

� min
G2R=

2
T
G s.t. G � 0, ⌘0 (G) + ⌘(G,�. ) 2  psd (13.37a)

where ⌘(G,�. ) := !H (G)�. +�.H
! (G) is a linear function in G and

! (G) :=
#+1’
8=1

✓
1
2
(G28�1� G28) +

1
2i

�
G2(#+1)+28�1� G2(#+1)+28

� ◆
484

T
8

(13.37b)

If the perturbation �. has bounded spectral norm then this is the uncertainty model in
(13.34) with '(G) := I#+1. ⇤

The next result says that the robust semidefinite program (13.34) whose uncertain
parameter Z has a bounded spectral norm is computationally tractable.

Theorem 13.4. Consider the robust SDP (13.34).

1. If ⌘(G, Z) := !T (G)Z' +'T
Z

T
! (G) with ' < 0, then G is feasible for (13.34) if and

only if there exists _ such that (G,_) 2 R=+1 satisfies

_ � 0,

⌘0 (G)�_'T

' d!
T (G)

d! (G) _I:1

�
⌫ 0 (13.38a)
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2. If ⌘(G, Z) := !T
Z'(G) +'T (G)ZT

! with ! < 0, then G is feasible for (13.34) if and
only if there exists _ such that (G,_) 2 R=+1 satisfies

_ � 0,

⌘0 (G)�_!T

! d'
T (G)

d'(G) _I:2

�
⌫ 0 (13.38b)

Hence the robust SDP (13.34) is equivalent to the semidefinite program:

min
(G,_)2R=+1

5 (G) s.t. (13.38)

Proof Suppose ⌘(G, Z) := !T (G)Z' + 'T
Z

T
! (G) with nonzero '. Fix an G 2 R=. It is

feasible for (13.34) if and only

H
T
⇣
⌘0 (G) + !T (G)Z' +'T

Z
T
! (G)

⌘
H � 0, 8H 2 R<, 8

⇣
Z 2 R:1⇥:2 : kZ k2  d

⌘
Hence

H
T
⌘0 (G)H + 2 min

Z :kZ k2d
(! (G)H)T

Z ('H) � 0, 8H 2 R< (13.39)

As in the proof of Theorem 13.3, apply (13.30) twice to eliminate Z from (13.39):

min
Z :kZ k2d

(! (G)H)T
Z ('H) = �dk! (G)Hk2k'Hk2 = min

- 2R:1 :k- k2k'H k2
(d! (G)H)T

- (1)

(13.40)

Substituting into (13.39) we have

H
T ('T

')H� -T
- � 0 =) H

T
⌘0 (G)H +2HT (d! (G))T

- � 0, 8(H,-) 2 R<+:1

This is equivalent to
'

T
' 0

0 �I:1

�
⌫ 0 =)


⌘0 (G) d!

T (G)
d! (G) 0

�

Clearly there exists H such that HT
'

T
'H > 0 since ' is nonzero. Hence we can apply

the (-lemma to conclude (13.38a).

The case of ⌘(G, Z) := !T
Z'(G) + 'T (G)ZT

! with nonzero ! is similar. The main
di�erence is that (13.40) becomes

min
Z :kZ k2d

(!H)T
Z ('(G)H) = �dk!Hk2k'(G)Hk2 = min

- 2R:2 :k- k2k!H k2
(1)-T (d'(G)H)

Hence

H
T (!T

!)H� -T
- � 0 =) H

T
⌘0 (G)H +2-T (d'(G))H � 0, 8(H,-) 2 R<+:2

This is equivalent to
!

T
! 0

0 �I:2

�
⌫ 0 =)


⌘0 (G) d'

T (G)
d'(G) 0

�

Then (-lemma implies (13.38b). ⇤
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13.1.5 Appendix: proof of (-lemma

Lemma 13.5 ((-lemma). Let �, ⌫ be =⇥= symmetric matrices and ḠT
�Ḡ > 0 for some

Ḡ 2 R=. Then the following are equivalent:

(i) GT
�G � 0) G

T
⌫G � 0.

(ii) 9_ � 0 such that ⌫ ⌫ _�.

Proof Suppose (ii) holds. Then GT
⌫G� GT

_�G = GT (⌫�_�)G � 0, implying (i).

To prove (i)) (ii), consider the following subsets of R2:

( :=
⇢
G

T
�G

G
T
⌫G

�
2 R2 : G 2 R=

�
, ) :=

⇢
D

E

�
2 R2 : D � 0, E < 0

�

Suppose (i) holds. We will establish (ii) in 4 steps:

1. Show that (\) = ;.
2. Show that ( is a cone.
3. Show that ( is convex.
4. Use the Separating Hyperplane Theorem 8.11 of Chapter 8.2.4 to prove (ii).

The Slater condition ḠT
�Ḡ > 0 in the lemma serves the same purpose as in the Slater the-

orem of ensuring that the separating hyperplane is not vertical. The result is illustrated
in Figure 13.1. Let D(G) := GT

�G and E(G) := GT
⌫G for G 2 R=. Then (D(G),E(G)) 2 (

S

T

(

Figure 13.1 (-lemma: (, ) and their separation.

by definition for all G 2 R=.

1. (\) = ;. Since (i) says D(G) � 0) E(G) � 0, (D(G),E(G)) 8 ) . On the other hand
let (0,1) 2 ) , i.e., 0 � 0 and 1 < 0. If (0,1) 2 (, then 0 = D(G) and 1 = E(G) for
some G, and hence 0 � 0 and 1 < 0 contradicts (i). This shows that (\) = ;.

2. ( is a cone. Suppose (D(G),E(G)) = (GT
�G,GT

⌫G) 2 (. For any _2
> 0 we have

_
2

D(G)
E(G)

�
=


(_G)T

�(_G)
(_G)T

⌫(_G)

�
=


D(_G)
E(_G)

�

i.e., _2 (D(G),E(G)) 2 ( and hence ( is a cone.
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3. ( is convex. Let H1 := (D(G1),E(G1)) and H2 := (D(G2),E(G2)) be in (. Fix any
U 2 (0,1). We separate two cases.

• Case 1: H1, H2 are linearly dependent. Suppose H1 = 2H2 for some 2 < 0. Then

UH1 + (1�U)H2 = (2U+ (1�U))H2 =
✓
2U+ (1�U)

2

◆
H1

i.e., UH1 + (1�U)H2 is on the ray of H1 and H2 (which are on the same ray). It
therefore must be in (, because if 2U + (1�U) > 0 then (2U + (1�U))H2 2 (
since ( is a cone. If 2U + (1�U) < 0 then both 2 and 2U + (1�U) must be
negative and hence ((2U+ (1�U))/2)H1 2 ( since ( is a cone.

• Case 2: H1, H2 are linearly independent. We have to show that there exist Ḡ 2 R=
such that 

D(Ḡ)
E(Ḡ)

�
= UH1 + (1�U)H2 = U


G

T
1 �G1

G
T
1⌫G1

�
+ (1�U)


G

T
2 �G2

G
T
2⌫G2

�

which implies that UH1+ (1�U)H2 2 (. Since ( is a cone it su�ces to construct
Ḡ such that, for some _ > 0,

D(Ḡ)
E(Ḡ)

�
= _(UH1 + (1�U)H2) (13.41)

We will seek Ḡ of the form Ḡ = UG1 + VG2, i.e., we will derive V 2 R such that
(13.41) is satisfied for some _ > 0, given U,G1,G2. By definition
D(Ḡ)
E(Ḡ)

�
=


(UG1 + VG2)T

�(UG1 + VG2)
(UG1 + VG2)T

⌫(UG1 + VG2)

�
=


U

2
D(G1) + V2

D(G2) +2UVGT
1 �G2

U
2
E(G1) + V2

E(G2) +2UVGT
1⌫G2

�

= U
2
H1 + V2

H2 +2UV

G

T
1 �G2

G
T
1⌫G2

�

where the second equality uses the fact that �T = � and ⌫T = ⌫. Since H1, H2

form a basis of R2 we can express
G

T
1 �G2

G
T
1⌫G2

�
=: 0H1 + 1H2

for some 0,1 2 R. Therefore
D(Ḡ)
E(Ḡ)

�
= (U2 +2UV0)H1 + (V2 +2UV1)H2 = (U+20V)

✓
UH1 +

V
2 +2U1V
U+20V

H2

◆

Substituting into (13.41) with _ := U+20V, we therefore seek V 2 R such that

U+20V > 0, V
2 +2U1V = (1�U) (U+20V) (13.42)

The quadratic equation in (13.42) is

V
2 +2(U1� (1�U)0)V�U(1�U) = 0

with roots

V = �(U1� (1�U)0) ±
p
(U1� (1�U)0)2 +U(1�U)
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one of which is positive and the other negative since U 2 (0,1). Choose the
root V such that 0V � 0. Then U+20V > 0 and (13.42) is satisfied.

This completes the proof that ( is convex.
4. Since ( and ) are convex and disjoint the Separating Hyperplane Theorem 8.11

of Chapter 8.2.4 implies there exists a nonzero (�_,`) 2 R2 such that

�_D + `E � �_0 + `1, 8(D,E) 2 (, (0,1) 2 )

Since 0 2 ( we have �_0 + `1  0 for all (0,1) 2 ) . Taking (0,1)! 0 we have
�_D + `E � 0 for all (D,E) 2 (. Hence substituting (D,E) = (GT

�G,GT
⌫G) we have

�_GT
�G + `GT

⌫G � 0 � �_0 + `1, 8G 2 R=, (0,1) 2 ) (13.43)

Taking 0 = 1 and 1 ! 0 yields _ � 0. Taking 0 = 0 yields ` � 0 since 1 < 0.
If ` = 0 then _ > 0 since (�_,`) < 0. By assumption ḠT

�Ḡ > 0, implying that
�_ḠT

�Ḡ < 0, contradicting (13.43). Hence ` > 0 and we can normalize (�_,`) to
become (�_,1) to obtain from (13.43)

G
T (⌫�_�)G � 0, 8G 2 R=

i.e., ⌫�_� ⌫ 0 for some _ � 0.

⇤

13.2 Chance constrained optimization

Consider the optimization problem:

min
G2- ✓R=

2(G) s.t. P (⌘8 (G, Z)  0, 8 = 1, . . . ,<) � ? (13.44)

where 2 : R= ! R is a cost function, ⌘8 : R= ⇥R: ! R, 8 = 1, . . . ,<, are constraint
functions, Z 2 R: is a random vector and P is a probability measure defined on some
probability space3 , ? 2 [0,1], and - ✓ R= is nonempty. The constraint in (13.44)
is called a chance constraint or a probabilistic constraint. The problem (13.44)
is a deterministic optimization problem called a chance constrained program. It is
generally intractable because the chance constraint in (13.44) is often nonconvex.

Compared with the robust program (13.2), the chance constrained program (13.44)
allows the dependence on the uncertain parameter Z of di�erent constraints ⌘8 (G, Z)  0
to be coupled across 8 and is more general than ⌘8 (G, Z8)  0. More importantly (13.44)
is less conservative in the sense that the constraints ⌘8 (G, Z)  0 for all 8 need not hold
for almost all uncertain parameter values Z , but only with a probability greater than or
equal to ?.

In this section we introduce two techniques to deal with the chance constrained

3 For notations and a formal definition of probability space, see Chapter 0.3.
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program (13.44). When the constraint functions ⌘8 and the probability measure P have
certain concavity properties then the chance constraint in (13.44) is convex and (13.44)
is tractable. This is studied in Chapter 13.2.1. When these concavity conditions may not
hold, we derive bounds on the tail probability of a random variable, called concentration
inequalities, and show how these ideas can provide inner approximations of the feasible
set defined by the chance constraint in (13.44). These inner approximations may be
tractable or easier to solve. This is studied in Chapter 13.2.2. In Chapter 13.3 we
approximate the chance constraint by a finite set of random constraints.

13.2.1 Tractable instances: convexity, strong duality and optimality

In this subsection we studied conditions under which the chance constrained program
is tractable. Unless otherwise specified (see Remark 13.3), we assume that the chance
constraint is separable in the decision variable G and the random vector Z , i.e., we
consider the following special case of (13.44) where the constraint function takes the
form Z  ⌘(G):

min
G2-

2(G) s.t. P (Z  ⌘(G)) � ?

where ⌘ : R= ! R<, Z 2 R< and - ✓ R= is a nonempty convex set. In this case the
chance constraint can be expressed in terms of the (probability) distribution function
�Z : R<! [0,1] of Z and the chance constrained program becomes:

min
G2-

2(G) s.t. �Z (⌘(G)) � ? (13.45)

The function �Z (I) is also called a cumulative distribution function. A (probability)
density function, if exists, is denoted by 5Z (I). A distribution function �Z is nonde-
creasing, i.e., �Z (I1)  �Z (I2) if I1  I2, and upper semicontinuous, i.e., if I: ! I

then

�Z (I) � limsup
:

�Z (I: ) (13.46)

We next study two equivalent formulations of (13.45) for convexity analysis that
mainly di�er in their specification of the feasible set. The first formulation hides both
the constraint function ⌘ and the distribution function �Z in the feasible set -? for G:

min
G2-

2(G) s.t. G 2 -? :=
�
G 2 R= : �Z (⌘(G)) � ?

 
(13.47a)

where - ✓ R= is a nonempty convex set. The second formulation allows the structure
of ⌘ to play a more explicit role in the optimality condition and uses the ?-level set /?
of the distribution function �Z (I), defined by:

/? :=
�
I 2 R< : �Z (I) � ?

 
(13.47b)

The chance constrained problem (13.45) is then a minimization over both G and I:

min
(G,I)2-⇥/?

2(G) s.t. ⌘(G) � I (13.47c)
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with the explicit constraint ⌘(G) � I that can be used for optimality analysis. The main
issue for the first formulation is the convexity of -? and that for the second formulation
is conditions for strong duality and saddle point optimality We study them in turn.

Convexity of -? . Suppose components ⌘8 , 88, of ⌘ : R=! R< and the distribution
function �Z : R<! [0,1] are real-valued and concave functions. Then the feasible set
-? in (13.47a) is convex (Exercise 13.10). Important distribution functions however
may not be concave, as the next example shows.

Example 13.4 (Gaussian distribution). The multivariate Gaussian random vector / 2
R
< has a density function

5Z (I) :=
1p

(2c)< det(⌃)
exp

✓
�1

2
(I� `)T⌃�1 (I� `)

◆

with a mean ` 2 R< and a positive definite covariance matrix ⌃ 2 R<⇥<. Then

ln 5Z (I) = �1
2
(I� `)T⌃�1 (I� `)� 1

2
ln ((2c)<det(⌃))

and hence 5Z is log-concave, i.e., ln 5Z is concave. It can be shown that its distribution
function �Z (I) is also log-concave (see (13.48) below). ⇤

Example 13.4 motivates a more general notion of concavity under which the feasible
set -? remains convex.

Definition 13.2 (U-concavity). Let ⌦ ✓ R< be a convex set. A nonnegative function
5 :⌦! R+ is called U-concave with U 2 [�1,1] if for all G, H 2 ⌦ such that 5 (G) > 0
and 5 (H) > 0 and all _ 2 [0,1], we have

5 (_G + (1�_)H) �

8>>>>>><
>>>>>>:

(_ 5 U (G) + (1�_) 5 U (H))1/U if U 8 {0,�1,1}
5
_ (G) 5 1�_ (H) if U = 0

min{ 5 (G), 5 (H)} if U = �1
max{ 5 (G), 5 (H)} if U =1

⇤

The class of U-concave functions includes several commonly used function classes
as special cases. A function 5 : R= ! R is called concave if for all G, H 2 R= and
all _ 2 [0,1] we have 5 (_G + (1� _)H) � _ 5 (G) + (1� _) 5 (H); this corresponds to
1-concavity. More generally, for U 8 {0,�1,1}, 5 is U-concave if and only if 5 U

is concave. The function 5 is called log-concave if log 5 is concave with respect to
any base; this corresponds to 0-concavity. The function 5 is called quasi-concave if
5 (_G + (1�_)H) � min{ 5 (G), 5 (H)}; this corresponds to �1-concavity. The function
5 is1-concave if and only if it is a constant function.

One can also define U-concavity for a probability measure P which is a stronger
property in the sense that an U-concave probability measure implies an U-concave
distribution function �Z , but the converse may not hold. Unless otherwise specified we
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assume the chance constraint is separable in G and Z in which case theU-concavity of �Z
is su�cient for our purposes (cf. Remark 13.3). TheU-concavity of a probability density
function 5Z (I) induces a probability measure, and hence its distribution function
�Z (I), that is V-concave for some V. Specifically it can be shown (see [156, Corollary
4.16, p.106]) that if the probability density function 5Z (I) defined on ⌦ ✓ R<, withØ
⌦ 5Z (I)3I = 1, is U-concave with U 2 [�1/<,1] and if 5Z (I) > 0 in the interior of
⌦, then the probability measured P defined by

P (�) :=
π
�

5Z (I)3I, � ✓ ⌦ (13.48a)

is V-concave with

V :=

8>>><
>>>:

U

1+<U if U 2 (�1/<,1)
�1 if U = �1/<
1/< if U =1

(13.48b)

This implies that, since the Gaussian density function 5Z of Example 13.4 is log-
concave (U = 0), so is its distribution function �Z .

The following properties of U-concavity are important in determining the convexity
of the feasible set -? in (13.47a) (Exercise 13.11).

Lemma 13.6 (U-concavity). Let ⌦ ✓ R< be a convex set and consider nonnegative
function 5 :⌦! R+.

1. For U 2 [�1,1], (0,1) 2 R2
+ with 0 > 0, 1 > 0, and _ 2 [0,1], define

<U (0,1,_) :=

8>>>>>><
>>>>>>:

(_0U + (1�_)1U)1/U if U 8 {0,�1,1}
0
_
1

1�_ if U = 0

min{0,1} if U = �1
max{0,1} if U =1

Therefore 5 being U-concave is equivalent to

5 (_G + (1�_)H) � <U ( 5 (G), 5 (H),_)

For each (0,1,_), the mapping U!<U (0,1,_) is nondecreasing and continuous.
2. If 5 is U-concave then it is V-concave for all V  U; in particular concavity implies

log-concavity which implies quasi-concavity.
3. If 5 is U-concave for some U > �1 then 5 is continuous on ri(⌦).
4. Let ⌘8 : R=! R, 8 = 1, . . . ,<. If all ⌘8 are concave and 5 : R<! R is nonnegative,

nondecreasing (i.e., G  H 2 R< ) 5 (G)  5 (H)), and U-concave for some U 2
[�1,1], then 5 � ⌘ : R=! R+ is U-concave.

5. Let 5 :R=1+=2!R+. Suppose there exists an U 2 [�1,1] such that, for all H 2. ✓
R
=2 , 5 (G, H) is U-concave in G on a convex set - ✓ R=1 . Then 6(G) := infH2. 5 (G, H)

is U-concave on - .
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Consider a concave function 5 : R<! R (and is therefore proper as an extended
real-valued function). We say H 2 R< is a subgradient of 5 at Ḡ 2 R< if �H is a
subgradient of the convex function � 5 , i.e., if

5 (G)  5 (Ḡ) + HT (G� Ḡ), G 2 R<

The set of all subgradients of the concave function 5 at Ḡ is the subdi�erential m 5 (Ḡ) of
5 at Ḡ. Then G⇤ 2 R< is an optimal solution of sup

G2R< 5 (G) if and only if 0 2 m 5 (G⇤).
Moreover Lemma 12.15 applies directly to the real-valued concave function 5 . In
particular 5 (G) is continuous on ri(dom( 5 )) = R<. For each G 2 R<, m 5 (G) ✓ R< is
a nonempty convex compact set. If - ⇢ R< is nonempty and compact, then m- 5 :=
[G2-m 5 (G) is nonempty and bounded; moreover 5 is Lipschitz continuous over -
with Lipschitz constant ! := sup

b 2m- 5 kbk2, i.e., k 5 (G) � 5 (H)k2  !kG � Hk2 for all
G, H 2 R<. More generally if 5 is U-concave with U > �1 then it is continuous on the
relative interior of its domain according to Lemma 13.6. A quasi-concave function
(U = �1) need not be continuous.

In general the feasible set -? in (13.47a) is not convex or even connected. The
following result provides a su�cient condition for the feasible set to be convex and
closed.

Theorem 13.7 (Convexity of -?). Suppose all components ⌘8 of ⌘ : R= ! R< are
concave and the distribution function �Z : R< ! [0,1] is U-concave for some U 2
[�1,1], then the feasible set -? :=

�
G 2 R= : �Z (⌘(G)) � ?

 
in (13.47a) is convex

and closed.

Proof Lemma 13.6 implies that the function � : R= ! [0,1] defined by � (G) :=
�Z (⌘(G)) is a nonnegative U-concave function. To show that the set -? for a fixed
? 2 [0,1] is convex consider G1,G2 2 -? with � (G1) � ? and � (G2) � ? and G :=
_G1 + (1�_)G2 for any _ 2 [0,1]. We have

� (G) � <U (� (G1),� (G2),_)

If U = �1, i.e., � (G) is quasi-concave, then � (G) � min{� (G1),� (G2)} � ?, i.e.,
G 2 -? . Since the mapping U! <U (0,1,_) for each (0,1,_) is nondeacreasing in U
by Lemma 13.6, if � (G) is U-concave for any U 2 [�1,1], it is quasi-concave and
hence G 2 -? . This proves that -? is convex.

To show that -? is closed, consider any sequence G: 2 -? with G: ! G. We have

� (G) := �Z (⌘(G)) = �Z

✓
lim
:

⌘(G: )
◆
� limsup

:

�Z (⌘(G: )) � ?

where the second equality follows from the continuity of ⌘ since ⌘ is concave on R<

(Lemma 13.6), the first inequality follows from the uppersemicontinuity of distribution
functions from (13.46), and the last inequality follows from G: 2 -? . ⇤

Remark 13.3 (Inseparable chance constraint). Theorem 13.7 generalizes to the case
where the chance constraint in (13.45) is not separable in the decision variable G and
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the random vector Z and takes the form � (G) := P (⌘8 (G, Z) � 0, 8 = 1, . . . ,<) � ?. It
can be shown ([156, Theorem 4.39, p.115]) that if ⌘8 (G, Z), 8 = 1, . . . ,<, are jointly
quasi-concave in (G, Z) 2 R=+: and if Z has a probability measure that is U-concave,
then � (G) is U-concave on {G 2 R= : 9Z 2 R: s.t. ⌘8 (G, Z) � 0, 88}. This implies that
the feasible set - := {G 2 R= : � (G) � ?} is convex and closed, because for all G, H 2 -
and _ 2 [0,1],

� (_G + (1�_)H) � <U (� (G),� (H),_) � min{� (G),� (H)} � ?

where the first inequality follows from the U-concavity of �, the second inequality
follows from the monotonicity of the mapping U!<U (0,1,_), and the last inequality
follows from G, H 2 - . Compared with Theorem 13.7, the functions ⌘8 (G, Z) are required
only to be quasi-concave (U = �1) which is weaker than concavity, but the probability
measure of Z is required to be U-concave which is stronger than requiring only its
distribution function �Z to be U-concave. ⇤

Duality and optimality. Fix ? 2 (0,1). We now study the second formulation in
(13.47b)(13.47c) where ⌘ plays a more explicit role in the optimality condition. Recall
the ?-level set /? of the distribution function �Z (I):

/? :=
�
I 2 R< : �Z (I) � ?

 
and the chance constrained formulation:

2
⇤ := min

(G,I)2-⇥/?
2(G) s.t. ⌘(G) � I (13.49a)

where 2 : R=! R and ⌘ : R=! R< are real-valued, and - ✓ R= is nonempty convex.
The Lagrangian is

! (G, I,`) = 2(G) + `T (I� ⌘(G))

the dual function is

3 (`) := inf
(G,I)2-⇥/?

! (G, I,`) = inf
G2-

⇣
2(G)� `T

⌘(G)
⌘

|                    {z                    }
3- (`)

+ inf
I2/?

`
T
I

|    {z    }
3/ (`)

, ` 2 R<

and the dual problem is

3
⇤ := sup

`�0
3 (`) := sup

`�0
(3- (`) + 3/ (`)) (13.49b)

where

3- (`) := inf
G2-

⇣
2(G)� `T

⌘(G)
⌘
, 3/ (`) := inf

I2/?
`

T
I (13.49c)

Since we only partially dualize the primal problem (13.49a) we cannot characterize a
primal-dual optimal point (G⇤, I⇤,`⇤) by the KKT condition, but we can characterize it
as a saddle point. Recall that (G⇤, I⇤,`⇤) 2 - ⇥ /? ⇥R<+ is a saddle point if and only if

sup
`�0

! (G⇤, I⇤,`) = ! (G⇤, I⇤,`⇤) = inf
(G,I)2-⇥/?

! (G, I,`⇤) (13.50)
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By the definition of !,3- ,3/ , the minimization in (13.50) is equivalent to

3- (`⇤) = 2(G⇤)� `⇤T⌘(G⇤), 3/ (`⇤) = `
⇤T
I
⇤

It is shown in Theorem 13.8 that the maximization in (13.50) is equivalent to comple-
mentary slackness, given ⌘(G⇤) � I⇤ (or see Exercise 8.16).

Even though 2 and ⌘ are real-valued the dual function 3 (`) can be extended real-
valued. Moreover 3 (`) may not be di�erentiable even if 2 and ⌘ are because the
minimizer (G, I) of the Lagrangian function may not be unique. It is however always
concave hence always subdi�erentiable for any 2 and ⌘. This is a nonsmooth convex
optimization problem studied in Chapter 12. In particular the problem (13.49) takes the
same form as the nonsmooth convex problem (12.46). We next use the Slater Theorem
12.28 to provide su�cient conditions for strong duality and dual optimality and the
Saddle-point Theorem 12.20 to characterize a primal-dual optimal point. We make the
following assumptions:

C13.1 Convexity:

– 2 is convex; ⌘ is concave (i.e., each component ⌘8 is concave);
– - is nonempty convex;
– The distribution function �Z (I) is U-concave for an U 2 [�1,1].

C13.2 Slater condition: one of the following holds:

– CQ1: There exists (Ḡ, Ī) 2 - ⇥ /? such that ⌘(Ḡ) > Ī; or
– CQ2: ⌘ is a�ne and there exists (Ḡ, Ī) 2 ri(- ⇥ /?) such that ⌘(Ḡ) � Ī.

The U-concavity of �Z implies that �Z is quasi-concave (Lemma 13.6) and hence /?
is a nonempty convex set (since ? 2 (0,1)).

Theorem 13.8 (Strong duality and optimality). Suppose the chance constrained pro-
gram and its dual (13.49) satisfy conditions C13.1 and C13.2. Then

1. Strong duality and dual optimality. If 2⇤ > �1 then there exists a dual optimal
solution `⇤ � 0 that closes the duality gap, i.e., 2⇤ = 3⇤ = 3 (`⇤). The set of dual
optimal solutions `⇤ is convex and closed; it is also compact under CQ1.

2. Saddle point characterization. A point (G⇤, I⇤,`⇤) 2 - ⇥ /? ⇥R<+ is primalp-dual
optimal and closes the duality gap, i.e., 2(G⇤) = 2⇤ = 3⇤ = 3 (`⇤) if and only if

3- (`⇤) = 2(G⇤)� `⇤T⌘(G⇤), 3/ (`⇤) = `
⇤T
I
⇤, `

⇤T (I⇤ � ⌘(G⇤)) = 0
(13.51)

Such a point is a saddle point.

Proof Since 2 is real-valued, dom(2) = R=. The Slater Theorem 12.28 in Chapter
12.8 then implies that strong duality holds and there is a dual optimal `⇤ that attains
dual optimality. Moreover the set of dual optimal solutions is convex and closed, and
also bounded (and hence compact) under CQ1.
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To characterize a primal-dual optimal we apply the Saddle-point Theorem 12.20
which states that (G⇤, I⇤,`⇤) 2 -⇥/?⇥R<+ is primal-dual optimal and closes the duality
gap if and only if it is a saddle point, i.e., if and only if it satisfies (13.50). As discussed
above, the second equality in (13.50) is equivalent to the first two conditions in (13.51).
We next show that the first equality in (13.50) is equivalent to the complementary
slackness condition in (13.51).

First we claim that, if (G⇤, I⇤,`⇤) 2 - ⇥/? ⇥R<+ is a primal-dual optimal or a saddle
point, then ⌘(G⇤) � I⇤. If (G⇤, I⇤,`⇤) is primal-dual optimal then (G⇤, I⇤) is primal
feasible and hence ⌘(G⇤) � I⇤. If (G⇤, I⇤,`⇤) is a saddle point then, if ⌘8 (G⇤) < I⇤

8
for any

8, then sup
`�0 ! (G⇤, I⇤,`) = 1 contradicting that sup

`�0 ! (G⇤, I⇤,`) = ! (G⇤, I⇤,`⇤).
Then the first equality in (13.50) yields

! (G⇤, I⇤`⇤) = sup
`�0

! (G⇤, I⇤,`) = sup
`�0

⇣
2(G⇤) + `T (I⇤ � ⌘(G⇤))

⌘
 2(G⇤)

with equality if and only if sup
`�0 `

T (I⇤ � ⌘(G⇤)) = 0. Since `⇤ � 0 attains the max-
imum of ! (G⇤, I⇤,`), the complementary slackness condition in (13.51) is estab-
lished. ⇤

Remark 13.4 (Primal optimality and dual di�erentiability). 1. Denote the sets of
minimizers in (13.49c) by

- (`) := {G 2 - : 3- (`) = 2(G)� `T
⌘(G)}, / (`) := {I 2 /? : 3/ (`) = `T

I}

Theorem 13.8 holds even if - (`) and / (`) are empty, i.e., primal optimality may
not be attained. If - and /? are nonempty, convex and compact, then the sets
- (`) and / (`) of primal optimal solutions are nonempty, convex and compact
and hence the dual function 3 (`) is a real-valued concave function. Moreover the
subdi�erentials of 3- ,3/ are

m3- (`) = conv(�⌘(G) : G 2 - (`)), m3/ (`) = / (`)

and hence m3 (`) = conv(�⌘(G) : G 2 - (`)) + / (`). These results are derived in
Exercise 13.12 using Theorem 12.19 and Theorem 12.26.

2. See Exercise 13.13 for an alternative proof of the saddle-point characterization
(13.51). It applies Theorem 12.21 to the dual (13.49b) and illustrates basic tech-
niques in nonsmooth analysis that are used to reduce optimality conditions to a
saddle-point characterization. ⇤

13.2.2 Concentration inequalities and safe approximation

In Chapter 13.2.1 we study conditions, e.g.,U-concavity of the distribution function �/ ,
under which the chance constrained program (13.45) is convex. In this subsection we
introduce the idea of solving a safe approximation of (13.45) that is more conservative
but easier to solve. We illustrate this idea with the chance constrained linear program



13.2 Chance constrained optimization 663

(cf. the robust linear program (13.11)):

min
G2R=

2
T
G s.t. P

 
:’
;=1

⇣
0

T
;
G� 1;

⌘
Z;  �(0T

0G� 10)
!
� 1� n (13.52a)

where the uncertain parameter is the random vector Z := (Z; , ; = 1, . . . , :). We will
show that, if the moment generating functions of Z; are upper bounded by those of
Gaussian random variables, then the following second-order cone program is a safe
approximation of (13.52a):

min
G2R=

2
T
G s.t. A k �̂G� 1̂k2  �(0̂T

0G� 1̂0) (13.52b)

where �̂, 1̂, 0̂0, 1̂0 depend on (0; ,1; , ; � 0) and A depends on n . The second-order
cone program (13.52b) is generally much simpler to solve than the chance constrained
problem (13.52a). It is a safe approximation in the sense that an G that is feasible, or
optimal, for (13.52b) will always satisfy the chance constraint in (13.52a).

The derivation of a safe approximation generally boils down to deriving an explicit
convex feasible set of the approximation that is a subset (inner approximation) of the
feasible set of the chance constrained problem. It relies on two techniques. First we
upper bound the violation probability of the chance constraint in terms of distribution
properties of the uncertain parameter Z; such as its variance or its moment generating
function kZ; (e.g. Cherno� bound). Then we upper bound these distribution properties
by known properties (e.g., the moment generating function of the Gaussian distribu-
tion). In the rest of this subsection we derive some basic bounds on the tail probability
of a random variable, study properties of sub-Gaussian random variables, and then use
these techniques to derive the safe approximation (13.52b) of the chance constrained
linear program (13.52a). These bounds are the most basic inequalities in probability
and widely applicable, e.g., used in Chapter 13.3.6 to derive sample complexity of
scenario programs.

In this subsection we follow the usual notation in the probability literature where
capital letters typically denote random variables, e.g., . , and small letters their values,
e.g., H.

Markov’s inequality. Let . be any nonnegative random variable with finite mean
⇢. < 1. Let X(G) denote the indicator function where X(G) = 1 if G is true and 0
otherwise (di�erent definition from X(G) in Chapter 12). Observe that, for all C > 0,
./C � X(. � C). Taking expectation on both sides we obtain the Markov’s inequality:
for all C > 0,

P (. � C)  ⇢.

C

(13.53a)

Let ' ✓ R be any interval and let q : '! R+ be a nonnegative nondecreasing function
on '. Since X(. � C) = X(q(. ) � q(C)), (13.53a) implies, for any C with q(C) > 0,

P (. � C) = P(q(. ) � q(C))  ⇢ (q(. ))
q(C) (13.53b)
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Chebyshev’s inequality. Let . := |- �⇢- | be nonnegative where - is an arbitrary
random variable with a finite variance var(-) <1. Let ' := (0,1) and q(C) = C2. Then
the Markov’s inequality (13.53b) implies the Chebyshev’s inequality: for any C > 0,

P ( |- �⇢- | � C)  var(-)
C
2

(13.54a)

For the sample mean =
�1 Õ

8
-8 of a sequence of independent random variables

-1, . . . ,-=, since var(Õ
8
-8) =

Õ
8
var(-8), (13.54a) implies

P

 �����
1
=

’
8

(-8 �⇢-8)
����� � C

!


Õ
8
var(-8)
=

2
C
2

=
E=

=C
2

(13.54b)

where E= := =�1 Õ
8
var(-8) is the average variance. In particular if -8 are iid (indepen-

dent and identically distributed) then f2
=
= var(-1) and the tail probability decreases

in = at the rate of =�1.

Cherno� bound. For a random variable. with a finite expectation ⇢. <1, ⇢ (4_. )
is called a moment-generating function of . , as a function of _ 2 R. Let

k. (_) := ln⇢ (4_. ), _ 2 R (13.55a)

be the log moment-generating function of . . Here ln := log
4

denotes the natural log
and we sometimes use log if the base is clear from the context. The function k. (_) is
convex in _ (Exercise 13.14). Recall the conjugate function (defined in Chapter 12.3.2):

k
⇤
.
(C) := sup

_2R
(C_�k. (_)) , C 2 R (13.55b)

Jensen’s inequality says that, if 5 is a convex function, then ⇢ ( 5 (G)) � 5 (⇢-) (see
Exercise 12.14). Hence the log moment-generating function k. (_) satisfies

k. (0) = 0, k. (_) � _⇢. (13.56)

We now bound the tail probability P(. � C), in two equivalent forms (for C � ⇢. and
C 2 R). For _ � 0, the function q(C) := 4_C is a nonnegative nondecreasing function of
C over R and hence the Markov’s inequality (13.53b) implies P(. � C)  ⇢ (4_. )/4_C
for all _ � 0. Therefore, for C � ⇢. ,

lnP(. � C)  �sup
_�0

(C_�k. (_)) = �sup
_2R

(C_�k. (_)) = �k⇤
.
(C) (13.57a)

where the first equality follows because, for _  0 and C � ⇢. , C_�k. (_)  _(C�⇢. ) 
0 = �k. (0) by (13.56). Hence the Cherno� bound on the tail probability is:

P(. � C)  4
�k⇤

.
(C) , C � ⇢. (13.57b)

where the conjugate function k⇤
.
(C) is defined in (13.55). Note that (13.57) holds for

C � ⇢. . For C  ⇢. , (13.56) implies that k. (_) � C_ � _(⇢. � C) � 0 if (and only
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if) _ � 0 and hence �sup
_�0 (C_�k. (_)) � 0 in (13.57a) is a trivial upper bound.

Therefore the Cherno� bound that holds for all C 2 R takes the following forms:

lnP(. � C)  inf
_�0

ln
⇣
4
�_C
⇢4

_.

⌘
, C 2 R (13.58a)

P(. � C)  exp
✓
�sup
_�0

(C_�k. (_))
◆

, C 2 R (13.58b)

where the infimum and supremum are taken over _ � 0 as opposed to _ 2 R in (13.55b).

If . := =�1 Õ
8
-8 is the sample mean of = independent random variables -8 with

⇢-8 <1, 8 = 1, . . . ,=, then

k. (_) =
’
8

k-8
(_/=) (13.59a)

k
⇤
.
(C) = sup

_2R

’
8

�
C_�k-8 (_)

�


’
8

k
⇤
-8
(C) (13.59b)

with equality if -8 are iid. The sample mean of = independent random variables -8
satisfies the Chernoof bound:

P

 
1
=

’
8

-8 � C
!
 4

�k⇤
.
(C) = 4

�=�= (C) , C � 1
=

’
8

⇢-8 (13.60a)

where �= (C) is called a rate function defined as:

�= (C) := sup
_2R

 
C_� 1

=

’
8

k-8
(_)

!
, C � 1

=

’
8

⇢-8 (13.60b)

The rate function �= (C)  (1/=)Õ
8
k
⇤
-8

(C) with equality if -8 are iid. For arbitrary C 2 R,
the rate function is (from (13.58)):

�= (C) := sup
_�0

 
C_� 1

=

’
8

k-8
(_)

!
, C 2 R (13.60c)

Therefore the tail probability decays exponentially in = when -8 are independent and
�= (C) is independent of =. Indeed if -8 are iid then �= (C) = � (C) = sup

_2R
�
C_�k-1 (_)

�
and

P

 
1
=

’
8

-8 � C
!
 4

�=k⇤
-1

(C) , C � ⇢-1

The Cherno� bound is extremely useful. We will use it for safe approximation of
chance constrained linear program below and sample complexity in Chapter 13.3.6.

Sub-Gaussian random variable. Gaussian random variable is useful for bounding
other random variables because its log moment-generating function q. (_) is partic-
ularly simple (quadratic). Therefore the supremum in the Cherno� bounds (13.57)
(13.58) (13.60) can be computed in closed form.
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Example 13.5 (Gaussian random variable). Consider the Gaussian random variable.
with mean ` := ⇢. and standard deviation f :=

p
var(. ). Its log moment-generating

function is

kG (_) := ln⇢ (4_. ) = ln
✓π 1

�1

1p
2cf

4
_H

4
�(H�`)2/2f2

3H

◆
= `_+ 1

2
f

2
_

2 (13.61a)

Its conjugate function is

k
⇤
G (C) := sup

_2R

✓
C_� `_� 1

2
f

2
_

2
◆
=

(C � `)2

2f2
(13.61b)

where the maximizer _⇤ = (C � `)/f2. For C := `+ Af with A � 0, the Cherno� bound
is (from (13.57b))

P(. > `+ Af)  4
�A2/2, A � 0 (13.61c)

i.e., the tail probability that the Gaussian random variable . is A standard deviations
above its mean decays exponentially in A2.

Consider a weighted sum . :=
Õ
8
08-8 of independent Gaussian random vari-

ables -1, . . . ,-= with parameter (`8 ,f2
8
). Then . is Gaussian with parameter�Õ

8
08`8 ,

Õ
8
0

2
8
f

2
8

�
. Hence (13.61) implies

k. (_) = ln⇢4_. = _

’
8

08`8 +
_

2

2

’
8

0
2
8
f

2
8
, _ 2 R

k
⇤
.
(C) = sup

_2R
(C_�q. (_)) =

(C �Õ
8
08`8)2

2
Õ
8
0

2
8
f

2
8

, C 2 R

and the Cherno� bound

P
©≠
´
’
8

08 (-8 � `8) > A
s’

8

0
2
8
f

2
8

™Æ
¨
 4

�A2/2, A � 0 (13.62)

A special case is the sample mean. := =�1 Õ
8
-8 of = independent Gaussian random

variables -8 , 8 = 1, . . . ,=, with finite parameters (`8 ,f2
8
). The tail probability satisfies

the Cherno� bound (from (13.62)):

P

 
1
=

’
8

(-8 � `8) > C
!
 4

�=C2/2E= , C � 0

where E= := (1/=)Õ
8
f

2
8

is the average variance. Compared with (13.54), the Cherno�

bound (24�=C2/2E= ) generally decays more rapidly than Chevyshev’s bound (E=/=C2).
If -8 are iid with parameter (`,f2), this reduces to

P

 
1
=

’
8

-8 � ` > C

!
 4

�=C2/2f2
, C � 0

⇤
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A random variable . is called sub-Gaussian with parameter (`,f2) if

k. (_) := ln⇢ (4_. )  `_ + f
2

2
_

2 =: kG (_), _ 2 R (13.63a)

i.e., if the log moment-generating function is upper bounded by that of a Gaussian
random variable with mean ` and variance f

2. This is equivalent to ⇢ (4_. ) 
exp

⇣
`_+ f

2

2 _
2
⌘

for all _ 2 R. If. has zero mean ⇢. = 0 then. is called sub-Gaussian

with variance factor f2 if

k. (_) := ln⇢ (4_. )  f
2

2
_

2 =: kG (_), _ 2 R (13.63b)

where kG (_) denotes the log moment-generating function of a zero-mean Gaussian
random variable. Since k⇤

.
(C) � k⇤G (C) for C 2 R where k⇤G (C) is defined in (13.61b),

(13.57) implies

P(. � C)  4
�k⇤

.
(C)  4

�(C�`)2/2f2
, C � ⇢. (13.64)

Hence the tail probability P(. � C) for C � ⇢. of a sub-Gaussian random variable .
decays more rapidly than that of the bounding Gaussian random variable.

Given a sequence -1, . . . ,-= of sub-Gaussian random variables, we can bound the
tail probability of its weighted sum

Õ
8
08-8 and its maximum max8 -8 .

1. Let . :=
Õ
8
08-8 , 08 2 R. Suppose -1, . . . ,-= are independent sub-Gaussian ran-

dom variables with parameter (`8 ,f2
8
), i.e.,

q-8
(_)  qG (_) = `8_+

f
2
8

2
_

2, _ 2 R

Then its weighted sum . is sub-Gaussian whose parameter (`,f2) :=�Õ
8
08`8 ,

Õ
8
0

2
8
f

2
8

�
is the weighted sum of individual parameters:

k. (_) = ln⇢

 ÷
8

4
08_-8

!
=

’
8

ln⇢408_-8 =
’
8

k-8
(08_)  `_+ f

2

2
_

2

where the second equality follows since -8 are independent. Hence (13.64) implies
that . satisfies the Cherno� bound:

P

 ’
8

08-8 � C
!
 exp

 
� (C �

Õ
8
08`8)2

2
Õ
8
0

2
8
f

2
8

!
, C � ⇢. (13.65)

Comparing with (13.62) we see that the tail probability of a sub-Gaussian weighted
sum is bounded by the Cherno� bound for the bounding Gaussian weighted sum.
The corresponding bound for C 2 R (as opposed to C � ⇢. ) will be established in
the derivation of a safe approximation of the chance constrained linear program
(Theorem 13.9). Therefore as far as Chernoof bound is concerned, a sub-Gaussian
random variable behaves like its bounding Gaussian random variable.
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2. Let. :=max8 -8 . Suppose. � 0 and -1, . . . ,-= are sub-Gaussian random variables
with a common variance factor f2, i.e., for all 8, k-8 (_)  f2

_
2/2, _ 2 R. Note

that -8 are not necessarily independent. It can be shown that (Exercise 13.16)

⇢

✓
max
8=1,...,=

-8

◆
 f

p
2ln= (13.66)

The Markov’s inequality (13.53a) then implies a concentration inequality for the
maximum of finitely many sub-Gaussian random variables:

P

✓
max
8=1,...,=

-8 � C
◆
 f

p
2ln=
C

, C > 0

provided . := max8 -8 � 0.

Safe approximation. We now use the Cherno� bound to derive a tractable safe
approximation of a chance constrained linear program when the uncertain parameters
are independent sub-Gaussian random variables.

Consider the chance constrained linear program (cf. the robust LP (13.11)):

min
G2R=

2
T
G s.t. P

 
:’
;=1

⇣
0

T
;
G� 1;

⌘
Z;  �(0T

0G� 10)
!
� 1� n (13.67a)

where n 2 (0,1), 2, (0; ,1;) 2 R=⇥R, ; = 0, . . . , : , are given, and the probability measure
P is on the random vector Z := (Z; , ; = 1, . . . , :). We say that an optimization problem
is a safe approximation of the chance constrained program (13.67a) if the feasible set
of the optimization problem is contained in the feasible set of (13.67a). This implies
that any optimal solution of the safe approximation will satisfy the chance constraint
in (13.67a).

Let � := [01 · · · 0: ]T 2 R:⇥= and 1 := (11, . . . ,1: ) 2 R: . Then (13.67a) becomes:

min
G2R=

2
T
G s.t. P

⇣
Z

T (�G� 1)  �(0T
0G� 10)

⌘
� 1� n (13.67b)

Theorem 13.9 (Safe approximation: LP). Suppose the random variables Z; , ; = 1, . . . , : ,
in the chance constrained program (13.67b) are independent and sub-Gaussian with
parameters (`; ,f2

;
), f; > 0, i.e.,

kZ;
(_) := ln⇢Z;

⇣
4
_Z;

⌘
 `;_+

f
2
;

2
_

2, _ 2 R (13.68)

Then the following second-order cone program is a safe approximation of (13.67b):

min
G2R=

2
T
G s.t. A k

p
⌃(�G� 1)k2  �(0̂T

0G� 1̂0) (13.69)

where A :=
p

2ln(1/n), 0̂0 := 00 + �T
` 2 R=, 1̂0 := 10 + 1T

` 2 R, ` := (`1, . . . ,`: ) and
⌃ := Diag

�
f

2
1 , . . . ,f2

:

�
.
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Proof Fix an G 2 R=. Let 2; (G) := 0T
;
G�1; , ; = 0, . . . , : , and let. (G) :=

Õ
:

;=1 2; (G)Z; be
the weighted sum of the independent sub-Gaussian random variables Z; . The violation
probability is then P (. (G) > �20 (G)). The derivation of the Cherno� bound (13.65)
shows that . (G) is sub-Gaussian with parameter

⇣
`(G),f2 (G)

⌘
:=

 ’
;

2; (G)`; ,
’
;

2
2
;
(G)f2

;

!

that is the weighted sum of the individual parameters, i.e.,

k
. (G) (_)  `(G)_+ f

2 (G)
2

_
2 (13.70)

Even though we do not know whether �20 (G) � ⇢. (G), we will show directly that the
Cherno� bound (13.65) still bounds the violation probability. Substituting (13.70) into
(13.58a) we have

lnP (. (G) > �20 (G))  inf
_�0

k
. (G) (_) + 20 (G)_  inf

_�0
(20 (G) + `(G))_+

f
2 (G)
2

_
2

If 20 (G) + `(G) � 0 then the minimum on the right-hand side is 0 (a trivial bound
on the tail probability), attained at the minimizer _(G) := 0. If 20 (G) + `(G) < 0 and
f

2 (G) > 0, then the minimum is �(20 (G) + `(G))2/(2f2 (G)), attained at the minimizer
_(G) :=�(20 (G) +`(G))/f2 (G). Finally if 20 (G) +`(G) < 0 butf2 (G) = 0, then 2; (G) = 0
for all ; (since f; > 0). Hence . (G) = 0 and 20 (G) + `(G) = 20 (G) < 0, and therefore
the violation probability P (. (G) > �20 (G)) = P (20 (G) > 0) = 0. This means that if
20 (G) + `(G) < 0 but f2 (G) = 0, then G is feasible for (13.67b). In all cases we therefore
have

lnP (. (G) > �20 (G))  �
(20 (G) + `(G))2

2f2 (G) (13.71)

but the bound is useful only when 20 (G) + `(G) < 0.

Since n 2 (0,1), lnn < 0. A su�cient condition for the chance constraint in (13.67b)
to hold is therefore 20 (G) + `(G) < 0 and (13.71) holds, i.e.,

� (20 (G) + `(G))2

2f2 (G)  lnn

(If f2 (G) = 0, then G is feasible as discussed above and this inequality holds trivially.)
Hence G is feasible for (13.67b) if

p
2ln(1/n)f(G)  �(20 (G) + `(G)), or

p
2ln(1/n)

s’
;

f
2
;
2

2
;
(G)  �

 
20 (G) +

’
;

`;2; (G)
!

Substituting 2; (G) := 0T
;
G � 1; , ; = 0, . . . , : , yields the constraint in the second-order

cone program (13.69). ⇤

We compare three formulations of an uncertain linear program in the next example.
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Example 13.6 (LPs with bounded uncertainty). Consider the uncertain linear program

min
G2R=

2
T
G s.t. (00 + 01Z1 + 02Z2)T

G  0 (13.72)

where 2,0; 2 R= and Z := (Z1, Z2) is an uncertain parameter taking value in /1 := {Z 2
R

2 : |Z; |  1, ; = 1,2}. We consider three formulations of the uncertain linear program.

1. The robust counterpart of (13.72) is:

min
G2R=

2
T
G s.t. 0

T
0G + max

Z 2/1
(01Z1 + 02Z2)T

G  0 (13.73)

Theorem 13.1 says that the robust counterpart is equivalent to the linear program:
minG2R= 2T

G s.t. G 2 -1 where

-1 :=
�
G 2 R= : 0T

0G + �̂G  0
 

with �̂ :=

26666664

(+01 + 02)T

(+01� 02)T

(�01 + 02)T

(�01� 02)T

37777775
2. The chance constrained formulation of (13.72) is:

min
G2R=

2
T
G s.t. P ((00 + 01Z1 + 02Z2)T

G  0) � 1� n (13.74)

where n 2 (0,1) and P defines a probability distribution on /1. Denote the chance
constrained feasible set by -2.

3. Suppose Z; are independent zero-mean random variables. Since each Z; takes value
in a bounded interval [�1,1], Hoe�ding’s Lemma 13.10 below implies that Z; are
(independent) sub-Gaussian with variance factor (1� 0)2/4 := 1, i.e., they satisfy
(13.68) with `; := 0 and f2

;
:= 1, so that 0̂0 = 00 and ⌃ is the identity matrix in

(13.69). Theorem 13.9 then implies that a safe approximation of (13.74) is the
following second-order cone program:

min
G2R=

2
T
G s.t. 0

T
0G + A k�Gk2  0 (13.75)

where A :=
p

2ln(1/n) and � := [01 02]T. The feasible set -3 is the pre-image of
the standard second order cone  soc under an a�ne transformation:

-3 :=
⇢
G 2 R= :


�

�(1/A)0T
0

�
G 2  soc

�

and is itself a convex cone.

Both -1 and -3 are convex and contained in the feasible set -2 of (13.74) which
may be nonconvex. It does not however necessarily hold that -1 ✓ -3, i.e., the robust
formulation may not be more conservative than the safe approximation. To see this,
Theorem 13.1 says that the second-order cone program (13.75) is equivalent to a robust
linear program with the SOC uncertainty set /2 := {Z 2 R2 : kZ k2 

p
2ln(1/n)}:

min
G2R=

2
T
G s.t. 0

T
0G +max

Z 2/2
(01Z1 + 02Z2)T

G  0
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Compared with (13.73), neither /1 nor /2 may contain the other, depending on the
value of n , and hence neither -1 nor -3 may contain the other. This is illustrated in
Figure 13.2 for = = 2 and 4�1

< n < 4
�1/2. ⇤

x2

x1

Z2

Z

Figure 13.2 Example 13.6: neither /1 nor /2 may contain the other, depending on n .

Hoe�ding’s lemma for bounded. . We have seen above sub-Gaussian random vari-
ables have convenient Cherno� bounds. Hoe�ding’s lemma shows that a zero-mean
random variable with bounded support [0,1] is always sub-Gaussian with variance
factor (1�0)2/4. It is used in Example 13.6 and will be used to prove Theorem 13.12
that bounds the tail probability of a martingale with bounded increments. The proof of
the Hoe�ding’s lemma relies on a useful technique called change of measure, which
we now explain.

Given a probability measure represented by the distribution function �/ , let a func-
tion ! (G) and another probability measure on the same probability space, represented
by the distribution function �. , satisfy

3�/ (G) = ! (G)3�. (G) (13.76a)

which means that
Ø
�

3�/ (G) =
Ø
�

! (G)3�. (G) for any (measurable) set �. If they have
probability density functions 5/ and 5. respectively then (13.76) means

5/ (G) = ! (G) 5. (G)

The function ! (G) is called the likelihood ratio of the distribution functions �/ and
�. . A consequence of (13.76a) is that for any (measurable) function 6, the expectation
⇢/ (6(/)) under distribution �/ can be computed under �. instead according to

⇢/ (6(/)) :=
π
6(I)3�/ (I) =

π
6(H)! (H)3�. (H) =: ⇢. (6(. )! (. )) (13.76b)

This is used e.g. in importance sampling to speed up simulations where a rare event
under distribution �/ can be much more e�ciently sampled under a modified dis-
tribution �. , i.e., instead of generating # samples {I8} under �/ (a rare event) to
estimate ⇢/ (6(/)) by (1/#)Õ

8
6(I8) we generate = samples {H8} under �. (not a

rare event) to estimate ⇢. (6(. )! (. )) by (1/=)Õ
8
6(H8)! (H8) (Exercise 13.17). The

required number = of samples can be much smaller than # for the same variance. Due
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to (13.76b) we refer to (13.76) as a change of measure from �/ to �. through the
likelihood ratio ! (G). For the change of measure to be well defined, the probability
measures and the likelihood ratio must satisfy two conditions:

• It is necessary that any event that is impossible under the probability measure
(represented by) �. is also impossible under �/ , i.e., for any �,π

�

3�. (H) = 0 )
π
�

3�/ (H) = 0 (13.77a)

In this case the probability measure �/ is said to be absolutely continuous with
respect to �. . The Radon Nikodym theorem says that absolutely continuity is also
su�cient, i.e., if �/ is absolutely continuous with respective to �. then there exists
a likelihood ratio ! (G) such that they satisfy (13.76). The likelihood ratio is also
called the Radon Nikodym derivative of probability measure �/ with respect to �.
and denoted by 3�/ (G)

3�. (G) = ! (G). This condition implies that, e.g., we can change a

Gaussian distribution �/ := # (`,f2) to a standard Gaussian �. := # (0,1), but not
to an exponential distribution �. (H) = 1� 4�_H which is nonzero only for H > 0.
(An exponential distribution is absolutely continuous with respect to an Gaussian
distribution, but not vice versa.)

• The likelihood ratio ! (G) must satisfy ! (G) � 0 (almost surely with respect to �. )
and be normalized: π

! (G)3�. (G) = ⇢. (! (. )) = 1 (13.77b)

Lemma 13.10 (Hoe�ding’s lemma). Let . be a zero-mean random variable taking
values in a bounded interval [0,1]. Then

k. (_) := ln⇢ (4_. )  (1� 0)2

8
_

2, _ 2 R

i.e., . is sub-Gaussian with variance factor (1� 0)2/4.

Proof First observe that any random variable / with bounded support on [0,1],
whether or not ⇢/ = 0, satisfies var(/)  (1� 0)2/4 because����/ � 0 + 12

����  1� 0
2

and hence var(/) = var(/ � (0 + 1)/2)  (1� 0)2/4 because for any random variable
- , |- |  2 implies that ⇢ (- �⇢-)2  22.

Second, since . takes value in a bounded set, the bounded convergence theorem

implies that 3

3_
⇢ (6(. )) = ⇢

⇣
3

3_
6(. )

⌘
for any (measurable) function 6 on R. Hence

k
00
.
(_) = ⇢.

✓
.

2 · 4
_.

⇢. 4
_.

◆
�

✓
⇢.

✓
. · 4

_.

⇢. 4
_.

◆◆2

, _ 2 R (13.78)

where we have written ⇢. to emphasize that the expectation is taken with respect to
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the probability distribution �. of the random variable . . Consider a random variable
/ that takes value in the same bounded interval [0,1] whose distribution function �/
is obtained from �. according to the following change of measure:

3�/ (G) =
4
_G

⇢. (4_. )
3�. (G) =: ! (G)3�. (G)

In particular �/ is absolutely continuous with respect to �. . The likelihood ratio
! (G) := 4_G/⇢. (4_. ) � 0 for all G and satisfies ⇢. (! (. )) = 1. Hence (13.77) is
satisfied. Therefore (13.76b) implies

⇢.

✓
6(. ) · 4

_.

⇢. (4_. )

◆
= ⇢. (6(. )! (. )) = ⇢/ (6(/))

for any function 6. Substituting into (13.78) we have

k
00
.
(_) = ⇢/

⇣
/

2
⌘
� (⇢/ /)2 = var(/)  (1� 0)2

4
, _ 2 R (13.79)

where the inequality follows since / takes value in the bounded interval [0,1].

Finally notice that ⇢. = 0 implies that k. (0) = 0 and k 0
.
(0) = 0. Hence Taylor

expansion implies that, for some ` 2 [0,_],

k. (_) = k. (0) +k 0. (0)_+
1
2
k
00
.
(`)_2  (1� 0)2

8
_

2, _ 2 R

where the inequality follows from (13.79). ⇤

Azuma-Hoe�ding inequality. The Azuma-Hoe�ding inequality is useful in bound-
ing the sum of bounded random variables

Õ
8
-8 . We will first derive a bound for when

-8 are independent zero-mean random variables and then extend it to the case where -8
need not be independent but forms a martingale with bounded increment |-8 � -8�1 |.

Let .= := (1/=)Õ
8
(-8 � ⇢-8) be the sample mean of independent and centered

random variables -8 �⇢-8 with ⇢-8 <1. The conjugate of its log-moment generating
function is, from (13.59b),

k
⇤
.
(C) = sup

_2R

’
8

(C_�k8 (_)) (13.80)

where k8 are the log moment-generating functions of the centered random variables
-8 � ⇢-8 . The application of Hoe�ding’s Lemma 13.10 leads to a concentration in-
equality for the sample mean .=.

Theorem 13.11 (Azuma-Hoe�ding inequality). Let -1, . . . ,-=, be independent with
-8 2 [08 ,18], then

P

 
1
=

=’
8=1

(-8 �⇢-8) � C
!
 exp

✓
� 2=2

C
2Õ

=

8=1 (18 � 08)2

◆
, C � 0
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Proof Let .= := (1/=)Õ=

8=1 (-8 � ⇢-8) be the sample mean of the independent and
centered random variables -8 �⇢-8 . Cherno� bound gives, for C � 0,

P (.= � C)  4
�k⇤

.=

(C) = exp

 
inf
_2R

’
8

(k8 (_)� C_)
!

 exp

 
inf
_2R

 
_

2
’
8

(18 � 08)2

8
�=C_

!!
= exp

✓
� 2=2

C
2Õ

8
(18 � 08)2

◆

where the first equality follows from (13.80) and the second inequality follows from
Hoe�ding’s Lemma 13.10 since -8 �⇢-8 2 [08 �⇢-8 ,18 �⇢-8]. ⇤

The bound in Theorem 13.11 can be generalized to the case where -8 are not
necessarily independent, but form a martingale. A discrete-time stochastic process
-0,-1, . . . , is a martingale if

• ⇢ |-= | <1.
• ⇢ (-= |-0, . . . ,-=�1) = -=�1.

This implies that the total change -= � -0 by any time = has zero mean:

⇢ (-= � -0) = ⇢ (⇢ (-= � -0) |-0, . . . ,-=�1) = ⇢ (-=�1� -0) = · · · = 0

The application of Hoe�ding’s Lemma 13.10 leads to a concentration inequality for a
martingale with bounded increments.

Theorem 13.12 (Azuma-Hoe�ding inequality). Let -0,-1, . . . , be a martingale with
bounded increments |-= � -=�1 |  f=. Then for any = � 1,

P (-= � -0 � C)  exp

 
� C

2

2
Õ
=

8=1f
2
8

!
, C � 0

Proof Without loss of generality we can assume -0 = 0; otherwise we can consider
the martingale .0,.1, . . . , with .0 := 0 and .= := -= � -0. Cherno� bound gives

P (-= � C)  min
_2R

⇢

exp(_-=)
exp(_C) = min

_2R
4
�_C
⇢ exp

 
_

=’
8=1

(-8 � -8�1)
!

= min
_2R

4
�_C
⇢

 
exp

 
_

=�1’
8=1

(-8 � -8�1)
!
⇢ (exp(_(-= � -=�1)) |-0, . . . ,-=�1)

!

(13.81)

where the second equality uses ⇢ (6(-). ) = ⇢ (6(-)⇢ (. |-)). Since -0,-1, . . . , is
a martingale with bounded increment, ⇢ (-= |-0, . . . ,-=�1) = -=�1. Hence, given
-0, . . . ,-=�1, -=� -=�1 is a zero-mean random variable that takes value in [�f=,f=].
Hoe�ndg’s Lemma 13.10 implies that

⇢ (exp(_(-= � -=�1)) |-0, . . . ,-=�1)  exp
✓
f

2
=

2
_

2
◆
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Substitute into (13.81) to get

P (-= � C)  min
_2R

4
�_C
⇢

 
exp

 
_

=�1’
8=1

(-8 � -8�1)
!!

exp
✓
f

2
=

2
_

2
◆

Repeating this calculation for -=�1� -=�2, . . . , -1� -0, we arrive at

P (-= � C)  min
_2R

4
�_C exp

 
_

2

2

=’
8=1

f
2
8

!
=: min

_2R
exp

✓
B

2
=

2
_

2� C_
◆

where B2
=

:=
Õ
=

8=1f
2
8
. The minimizer is _= := C/B2

=
and P (-= � C)  exp

⇣
� C

2

2B2
=

⌘
. ⇤

The two-sided tail probabilities in Theorems 13.11 and 13.12 are bounded by twice
the bounds in these theorems:

P

 
1
=

=’
8=1

|-8 �⇢-8 | � C
!
 2exp

✓
� 2=2

C
2Õ

=

8=1 (18 � 08)2

◆

P ( |-= � -0 | � C)  2exp

 
� C

2

2
Õ
=

8=1f
2
8

!

Summary. The inequalities introduced in this subsection are some of the most basic
inequalities in probability and are summarized in Table 13.2.

inequality assumptions

Markov’s P (. � C)  ⇢ (q (. ))
q (C) q(. ) � 0, q(C) > 0, ⇢. <1

Chebyshev’s P ( |- �⇢- | � C)  var(-)/C2 var(-) <1, C > 0

P

⇣��� 1
=

Õ
8
(-8 �⇢-8)

��� � C⌘  (1/=)Õ
8
var(-8)

=C
2 var(-8) <1, independent -8 , C > 0

Cherno� P(. � C)  4�k⇤. (C)
⇢. <1, C � ⇢.

P(. � C)  exp
�
�sup

_�0 (C_�k. (_))
�

⇢. <1, C 2 R
P

⇣
1
=

Õ
8
-8 � C

⌘
 4�=k

⇤
-1

(C)
iid -8 , ⇢-8 <1, C � ⇢ (-1)

sub-Gaussian P(. � C)  4�(C�`)2/2f2
sub-Gaussian . , ⇢. <1, C � ⇢.

P (Õ
8
08-8 � C)  exp

✓
� (C�Õ

8
08`8)2

2
Õ
8
0

2
8
f

2
8

◆
indep. sub-Gaussian -8 , ⇢-8 <1, C � ⇢.

P

⇣
max=

8=1 -8 � C
⌘
 f
p

2ln=/C sub-Gaussian -8 , C > 0

Hoe�ding’s lemma k. (_)  (1/8) (1� 0)2_2
⇢. = 0, . 2 [0,1] a.s.

Azuma-Hoe�ding P

⇣
1
=

Õ
=

8=1 -8 � C
⌘
 exp

⇣
� 2=2

C
2Õ

=

8=1 (18�08)2

⌘
independent zero-mean -8 2 [08 ,18], C � 0

P(-= � -0 � C)  exp
⇣
�C2/2Õ

=

8=1f
2
8

⌘
martingale -8 , |-8 � -8�1 |  f8 , C � 0

Table 13.2 Summary of concentration inequalities. k. (_) := ln⇢4_. and
k
⇤
.
(C) := sup

_2R (C_�q. (_)). . is sub-Gaussian if k. (_)  `_+ (f2/2)_2.
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13.3 Convex scenario optimization

Consider the robust program (13.5) studied in Chapter 13.1 with a linear cost: 4

RCP : 2
⇤
RCP := min

G2- ✓R=
2

T
G s.t. ⌘(G, Z)  0, Z 2 / ✓ R: (13.82)

where 2 2 R=, Z 2 R: is an uncertain parameter taking value in the uncertainty set / , ⌘ :
R
=⇥R:!R< is a convex (and hence continuous) function in G for every Z 2 / , and -

is a nonempty closed convex set.5 Even though (13.82) is convex, it is semi-infinite and
hence generally intractable. Moreover requiring constraint satisfaction for all possible
uncertain parameters in / can be too conservative. The chance constrained formulation
studied in Chapter 13.2 is less conservative as it requires constraint satisfaction only
with high probability rather than with probability 1. Consider the chance constrained
program with a linear cost:

CCP(n) : 2
⇤
CCP (n) := min

G2- ✓R=
2

T
G s.t. P (⌘(G, Z)  0) � 1� n (13.83)

where - ,2,⌘ are the same as those in (13.82), Z 2 / ✓ R: is a random vector and P is a
probability measure defined on some probability space, and n 2 (0,1). Solving problem
(13.83) however can be challenging as it requires the knowledge of the probability
measure P which may not be available. Moreover it requires an e�cient method to
evaluate the probability in order to assess the feasibility of G.

This motivates the scenario approach to uncertain optimization where # indepen-
dent samples Z1, . . . , Z# of the uncertain parameter Z are drawn according to the
probability measure P, leading to the following problem, called a convex scenario
program:

CSP(#) : 2
⇤
CSP (#) := min

G2- ✓R=
2

T
G s.t. ⌘(G, Z 8)  0, 8 = 1, . . . ,# (13.84)

Since Z 8 are random samples, the scenario program (13.84) is a randomized problem
in the sense that its solution is a random variable whose value depends on the values
of Z 8 . It does not require the knowledge of P, but only a way to obtain independent
samples according to P. For instance, the uncertain parameter Z may represent power
demand and its realizations Z 8 may be measured from a real power system without
knowing the underlying distribution.

Unlike RCP (13.82) and CCP(n) (13.83) which are often intractable, the scenario
program (13.84) is a finite convex program for each realization of the random samples
(Z1, . . . , Z# ) and therefore can be e�ciently solved if # is not too large. There is
therefore a tradeo� between small computational burden (when # is small) and high

4 The linear cost function does not lose generality; see Remark 13.1.
5 We can also assume without loss of generality that ⌘ : R= ⇥R: ! R is a scalar-valued function because

otherwise, ⌘ (G, Z )  0 can be replaced by the single constraint max8 ⌘8 (G, Z )  0. Note however that if
⌘ is scalar-valued then G is infeasible if ⌘ (G, Z ) > 0, but if ⌘ is vector-valued then G is infeasible if
⌘8 (G, Z ) > 0 for at least one 8, not ⌘ (G, Z ) > 0.
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likelihood of constraint satisfaction (when # is large). In this section we will study
three issues:

1. Violation probability (Chapter 13.3.1). Given a fixed vector G 2 - ✓ R= the vi-
olation probability + (G) is the probability of ⌘8 (G, Z) > 0 for at least one 8, a
deterministic value. A solution G⇤

#
of the convex scenario program CSP(#) is

random, depending on the random samples (Z1, . . . , Z# ). The violation probabil-
ity + (G⇤

#
) of the random solution G⇤

#
is therefore not a deterministic value, but a

random variable itself. We will bound the expected value and the tail probability
of + (G⇤

#
).

2. Sample complexity (Chapter 13.3.6). The more sampled constraints are included in
CSP(#), the more likely its optimal solution G⇤

#
will satisfy the chance constraint

of CCP(n). We will use the bounds on the expected value and the probability of
+ (G⇤

#
) to derive a threshold # (n , V) to guarantee that the (random) solution G⇤

#

will be feasible for CCP(n) with probability at least 1� V for arbitrary V 2 (0,1).
3. Optimality guarantee (Chapter 13.3.7). We will show that the same threshold
# (n , V) that guarantees, with probability at least 1� V, the feasibility of G⇤

#
for

CCP(n) also guarantees that the optimal value 2T
G
⇤
#

is close to the optimal values
of RCP and CCP(n).

13.3.1 Violation probability + (G⇤
#
)

Let -Z := {G 2 - ✓ R= : ⌘(G, Z)  0}. We will refer to a constraint by ⌘(G, Z)  0
or -Z or Z interchangeably. The assumption that - is a closed convex set and each
component ⌘ 9 of ⌘ is convex (and hence continuous) in G for any Z 2 / implies that -Z
is a closed convex set for every Z 2 / . We may interpret -Z either as a deterministic
set determined by a realization of Z in / , or a random set whose value depends on
the random variable Z ; the meaning should be clear from the context. For each G 2 - ,
define the violation probability of G as

+ (G) := P
��
Z 2 / : G 8 -Z

 �
(13.85a)

For a fixed G 2 - , + (G) is a deterministic value in [0,1]. As we will see the feasibility
and sample complexity results are independent of the fine structure of the constraint
function ⌘ or the probability measure P, except through the random constraint set
-Z . The CCP(n) (13.83) with the deterministic constraint P

�
G 2 -Z

�
� 1� n can be

equivalently stated as:

CCP(n) : 2
⇤
ccp (n) := min

G2- ✓R=
2

T
G s.t. + (G)  n

For each integer # � =, we interpret (Z1, . . . , Z# ) 2 Z# either as deterministic
vectors realized by independent samples of Z 2 / ✓ R: under the probability measure
P, or as iid random vectors with the product measure P# , depending on the context.
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The randomized problem CSP(#) (13.84) can be equivalently stated as:

CSP(#) : 2
⇤
CSP (#) := min

G2- ✓R=
2

T
G s.t. G 2 -

Z
1 \ · · ·\ -

Z
#

An optimal solution G⇤
#

of CSP(#), if exists, is feasible for the chance constrained
program (13.83) when + (G⇤

#
)  n . Note however that G⇤

#
is a random variable under

probability measure P# , depending on (Z1, . . . , Z# ), i.e., +
�
G
⇤
#

�
is the conditional

violation probability:

+

�
G
⇤
#

�
:= P

⇣�
Z 2 / : G⇤

#
8 -Z

 ���⇣Z1, . . . , Z#
⌘ ⌘

(13.85b)

Hence the violation probability + (G⇤
#
) is itself a random variable under P# . It may

be greater or smaller than n , i.e., G⇤
#

may or may not be feasible for CCP(n) (13.83).

We emphasize that + (G⇤
#
) is not the unconditional probability P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
.

While the former is a random variable with probability measure P# , the latter is a
deterministic value. Their relation is

P
#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
=

π
/
#

+

�
G
⇤
#

�
P
#

⇣
3Z

1, . . . ,3Z#
⌘
= ⇢

#
�
+

�
G
⇤
#

� �
(13.86)

i.e., the expected value of the violation probability + (G⇤
#
) turns out to be the uncondi-

tional probability P#+1
⇣
G
⇤
#
8 -

Z
#+1

⌘
.

Main result. Intuitively a larger # will produce an optimal solution G⇤
#

that is more
likely to satisfy the chance constraint + (G⇤

#
)  n . A reasonable approach is then to

choose # large enough to ensure that the expected value ⇢#
�
+ (G⇤

#
)
�
 V under

P
# for a su�ciently small V. Another approach is to ensure that the probability
P
#

�
+ (G⇤

#
) > n

�
 V. In this subsection we show in Theorems 13.14 and 13.15 that

⇢
#

�
+ (G⇤

#
)
�
 =

# +1
, P

# (+ (G⇤
#
) > n) 

=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

and that both bounds are tight for a class of problems called fully supported problems
defined in Definition 13.3. The bound on ⇢#

�
+ (G⇤

#
)
�

decreases at a rate ⇠ 1/# . The
bound on P# (+ (G⇤

#
) > n) is a Binomial tail. Hence it is in (0,1) as long as # � =

(equal to 1 if # = =� 1) and decreases more rapidly as # increases. These bounds
mean that if we solve CSP(#) (13.84) with a su�ciently large # , then we will obtain
a random optimal solution G⇤

#
whose conditional violation probability + (G⇤

#
) is small

either in expectation or probability. We explain in Chapter 13.3.6 how these bounds
translate into sample complexities.

We make the following assumption

C13.3: Consider CSP(#) (13.84).

• - is a closed convex set and, for each Z 2 / , components ⌘8 of the constraint
function ⌘(G, Z) are continuous and convex in G. Then -Z is a closed convex
set.
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• For each integer # � = and each realization of (Z1, . . . , Z# ), the feasible set of
CSP(#) (13.84) (is nonempty and) has a nonempty interior. Moreover CSP(#)
has a unique optimal solution denoted by G⇤

#
.

See Remark 13.6 when G⇤
#

may be non-unique.

Definition 13.3 (Uniformly supported problem). Fix any # � = and consider CSP(#)
(13.84).

1. Consider a realization of (Z1, . . . , Z# ) 2 /# . A constraint Z 8 is called a support
constraint for CSP(#) (with respect to the realization) if its removal changes the
optimal solution, i.e., G⇤

# \8 < G
⇤
#

where G⇤
# \8 is the optimal solution of the scenario

program CSP(# � 1) with the constraint -
Z
8 removed. A constraint that is not a

support constraint is called a non-support constraint for CSP(#).
2. CSP(#) is called uniformly supported with B support constraints if every realiza-

tion of (Z1, . . . , Z# ) 2 /# contains exactly B � 0 support constraints for CSP(#)
with probability 1. It is called fully supported if it is uniformly supported with
B = = support constraints. It is said to have no support constraint if it is uniformly
supported with B = 0 support constraint. ⇤

A support constraint must be an active constraint at the optimal point G⇤
#

but the con-
verse may not hold, e.g., if Z 8 = Z 9 (redundant constraints) then neither can be a support
constraint. For a uniformly supported problem with B � 1 support constraints, the prob-
ability of Z 8 = Z 9 must be zero. Since optimal solutions are unique (assumption C13.3),
G
⇤
# \8 < G

⇤
#

is equivalent to 2T
G
⇤
# \8 < 2

T
G
⇤
#

because otherwise, if 2T
G
⇤
# \8 = 2

T
G
⇤
#

then
both G⇤

# \8 and G⇤
#

are optimal solutions of CSP(#), contradicting the uniqueness of
optimal solutions. If CSP(#) is uniformly supported with B = 0 support constraint, it
means that, with probability 1, no realization of (Z1, . . . , Z# ) has a single constraint
that is a support constraint (e.g. all constraints are inactive at G⇤

#
or all active con-

straints are redundant). For a general problem that is not uniformly supported, di�erent
realizations of (Z1, . . . , Z# ) may have di�erent number of support constraints. Given a
realization (Z1, . . . , Z# ), by “the set of support constraints for CSP(#)” we mean the
unique set of all support constraints for CSP(#). This set is unique because otherwise,
if there are two sets �1 and �2 of support constraints, removing a constraint in their set
di�erence results in CSP(# �1) that yields di�erent optimal solutions, contradicting
assumption C13.3.

An important observation is the following result of [160]. Its proof makes use of
the linearity of the cost function 2T

G and convexity of -Z .

Lemma 13.13. [160] For each # � =, consider CSP(#) (13.84) with a linear cost
function and closed convex sets -Z for all Z 2 / . Then the number of support constraints
is at most = for any realization of (Z1, . . . , Z# ) 2 /# as long as (13.84) is feasible.

If (13.84) is infeasible the number of support constraints is at most =+1 [161].
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Example 13.7 (Uniformly supported problems [162]). We consider three problems, a
uniformly supported problem, a fully supported problem and a general problem; see
Figure 13.3. We will derive their support constraints in Example 13.8.

1. Uniformly supported problem. Given # iid random squared radius Z 8 each taking
value in / := R+ according to an exponential distribution, we solve the scenario
program CSP(#):

min
G2R=

’
8

G8 s.t. kGk22  Z 8 , 8 = 1, . . . ,#

For almost all (Z 8 , 8 = 1, . . .#) 2 R#+ , there is exactly B = 1 support constraint and a

unique optimal solution G⇤
#

:=
⇣
�
p
Z

min/=, . . . ,�
p
Z

min/=
⌘

where Zmin := min8 Z 8 .

x2

x1

(a) Uniformly supported

x3*

(b) Fully supported

(x1* , x2* )

x3*

(c) General problem

Figure 13.3 Example 13.7. (Dec 23, 2025: (a) G⇤
#

should touch smallest circle instead of
largest.)

2. Fully supported problem. We are given # � 3 points in R2 specified by their
coordinates Z 8 := (08 ,18) 2 / := R2, 8 = 1, . . . ,# , where (08 ,18) are iid samples
under the Gaussian distribution over R2. To construct a strip of smallest vertical
width that contains all the # points, we solve the CSP(#):

min
(G1,G2,G3)2R3

G3 s.t.
��
1
8 � (08G1 + G2)

��  G3, 8 = 1, . . . ,#

See Figure 13.3. This problem is fully supported as CSP(#) has exactly = = 3
support constraints for almost every realization of (08 ,18 , 8 = 1, . . . ,#) 2 R2⇥# .

3. General problem. Instead of the strip of smallest vertical width, suppose we wish
to construct a circle of smallest radius that contains all the # points. Then we solve
the CSP(#):

min
(G1,G2,G3)2R3

G3 s.t.
p
(08 � G1)2 + (18 � G2)2  G3, 8 = 1, . . . ,#

with SOC constraints. This problem has 3 support constraints if the optimal circle
is defined by three distinct points on the circle or 2 support constraints if it is
defined by two distinct points on a diameter. ⇤

The main characterization of the conditional violation probability + (G⇤
#
) is given

in the next two theorems. Recall that ⇢# (·) denotes expectation under P# .
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Theorem 13.14 (Expectation of + (G⇤
#
) [160, 163]). Fix any # � = and suppose

assumption C13.3 holds. Then

⇢
#

�
+

�
G
⇤
#

� �
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
 =

# +1
(13.87)

If CSP(# +1) is uniformly supported with 0  B  = support constraints then

⇢
#

�
+

�
G
⇤
#

� �
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘
=

B

# +1

In particular if CSP(# +1) has no support constraint then ⇢#
�
+

�
G
⇤
#

� �
= 0.

Theorem 13.15 (Tail probability of + (G⇤
#
) [162]). Fix any # � = and suppose as-

sumption C13.3 holds. Then

P
#

�
+

�
G
⇤
#

�
> n

�


=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.88)

If CSP(#) is uniformly supported with 1  B  = support constraints then

P
#

�
+

�
G
⇤
#

�
> n

�
=

B�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

In particular if CSP(#) has no support constraint then P#
�
+

�
G
⇤
#

�
= 0

�
= 1.

Remark 13.5 (Improved bounds). 1. If an a.s. upper bound Bmax  = on the number
of support constraints for CSP(# +1) is known, then the bound in (13.87) can be
improved to (from (13.94)):

⇢
#

�
+

�
G
⇤
#

� �
 B

max

# +1

2. If an a.s. upper bound Cmax  = on the number of “generalized support constraints”
(see Definition 13.5) for CSP(#) is known, then the bound in (13.88) can be
improved to (from (13.108)):

P
#

�
+

�
G
⇤
#

�
> n

�


C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

These improved bounds can be useful for power system applications because large
OPF problems often have a large = but very small Bmax and Cmax, e.g., only a few lines
are congested at only a few times a year in a multi-stage OPF problem. ⇤

Remark 13.6 (Generality of bounds). 1. It is remarkable that the bounds in Theo-
rems 13.14 and 13.15 depend only on (=,#) and n , and not on the probability
measure P, the cost function, or the structure of the constraint sets -Z . The cost
function and the structure of the constraints only a�ect whether the problem is
uniformly supported and hence the tightness of the bound. (The linearity of the
cost function 2T

G and convexity of -Z are used in the proof of Lemma 13.13 [160].
The linear cost does not lose generality as we can always replace a nonlinear cost
minG 5 (G) by the linear cost minG,C C with the additional constraint 5 (G)  C.)
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2. The assumption in C13.3 on the existence and uniqueness of the optimal so-
lution G⇤

#
is not important. It is shown in [160, 162] that if optimal solutions

are nonunique, a tie-breaking rule can be used to produce a unique solution,
e.g., choose the optimal solution with minimum Euclidean norm, and Theo-
rems 13.14 and 13.15 hold unchanged. If optimal solutions may not exist then
the expectation in Theorem 13.14 should be replaced by conditional expecta-
tion, conditioned on the subset of /# on which an optimal solution G⇤

#
exists,

and the probability P# (+ (G⇤
#
) > n) in Theorem 13.15 should be replaced by

P
#

�
G
⇤
#

exists and + (G⇤
#
) > n

�
. (See also [161] for discussions on infeasible prob-

lems.) ⇤

We prove Theorems 13.14 and 13.15 in the next two subsection.

13.3.2 Partitioning of /#

The violation probability+ (G⇤
#
) is related to support constraints through the following

useful characterization.

Lemma 13.16 (+ (G⇤
#
)). Consider CSP(#) and CSP(# +1).

1. G⇤
#
8 -

Z
#+1 , -

Z
#+1 is support constraint for CSP(# +1).

2. +
�
G
⇤
#

�
:= P

⇣
G
⇤
#
8 -

Z
#+1

�� �
Z

1, . . . , Z#
� ⌘

satisfies:

+

�
G
⇤
#

�
= P

⇣
-
Z
#+1 is support constraint for CSP(# +1)

���⇣Z1, . . . , Z#
⌘ ⌘

Proof Suppose G⇤
#
8 -

Z
#+1 . Then -

Z
#+1 must be a support constraint of CSP(# +

1) with # + 1 constraints because otherwise, G⇤
#

= G⇤
#+1 where G⇤

#
is the optimal

solution of CSP(#) after the constraint -
Z
#+1 is removed. This contradicts G⇤

#
8 -

Z
#+1 .

Conversely, suppose -
Z
#+1 is a support constraint for CSP(# +1). If G⇤

#
2 -

Z
#+1 then

G
⇤
#

is feasible, and hence optimal, for CSP(# + 1). Hence G⇤
#
= G⇤

#+1 since optimal
solutions are unique (assumption C13.3). This contradicts -

Z
#+1 being a support

constraint for CSP(# +1), and hence G⇤
#
8 -

Z
#+1 .

Part 2 then follows from (13.85b). ⇤

A key to the proof of both Theorems 13.14 and 13.15 is the partitioning of /#

according to support constraints. Fix any # � = and consider CSP(#). The independent
samples (Z1, . . . , Z# ) take values in /# . To simplify notation we will use Z̃ 2 / to
denote a single vector and Z := (Z1, . . . , Z# ) 2 /# to denote a collection of vectors.
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For B = 1, . . . ,=, let �B ✓ {1, . . . ,#} be an index set with |�B | = B indices and let

/
# (�B) :=

�
Z 2 /# :

�
-
Z
8 , 8 2 �B

�
are all the support constraints in Z

 
(13.89a)

/
# (B) :=

ÿ
�
B

/
# (�B) (13.89b)

i.e., /# (B) is the set of vectors Z 2 /# that contain exactly 1  B  = support constraints
(Lemma 13.13 implies B  =), and /

# (�B) is the subset of /# (B) whose support
constraints are indexed by �B . For B = 0, we define �0 := ; and

/
# (0) := /

# (�0) :=
�
Z 2 /# : CSP(#) has no supp. const.

 
(13.89c)

Clearly /# (�B) and /# (�B) are disjoint if �B and �B are distinct index sets each with

B indices and there are
✓
#

B

◆
distinct index sets. Moreover /# (�B) partition /# , first

according to /# (B) with B = 0, . . . ,= support constraints and then according to di�erent
index sets �B in /# (B) (see Figure 13.4(a)):

/
# =

=ÿ
B=0

/
# (B) =

=ÿ
B=0

ÿ
�
B

/
# (�B) (13.90)

This partitioning is useful in proving the bound on ⇢# (+ (G⇤
#
)) in Theorem 13.14.

The problem CSP(#) is uniformly supported with 0  B  = support constraints if and

ZN(0/ )

s

s=n

s=0

ZN(I1s) ZN(I2s)

(a) Theorem 13.14

ZN(0/ )

t

t= n

t= 0

ZN(J1t) ZN(J2t)

(b) Theorem 13.15

Figure 13.4 Partitioning of /# according to (a) support constraints in �B and (b) generalized
support constraints in �C for CSP(#) that is not uniformly supported (see Chapter 13.3.5).

only if /# = /# (B) and /# (B0) = ; for all B0 < B.6 These concepts are illustrated in
the next example.

Example 13.8 (Uniformly supported problems [162]). We partition the uncertainty
sets /# for the three problems in Example 13.7.

1. The support constraint is (defined by) Zmin :=min8 Z 8 . The index sets �1 for support

6 This should be interpreted as P(/# (B0)) = 0 even when /# (B0) < ; for B0 < B. We often simplify
exposition by omitting the qualification of “almost surely (a.s.)."



684 Stochastic OPF

constraints take the form �
1 := {8} if Z 8 = Zmin, 8 = 1, . . . ,# , and

/
# ({8}) =

�
Z := (Z1, . . . , Z# ) 2 R#+ : Z 8 is the support constraint

 
Recall that the unique solution G⇤

#
depends on Zmin. For the same G⇤

#
, any one of

Z
1, . . . , Z# can be the support constraint and therefore P(/# ({8})) = 1/# since Z 8

are iid. If more than one Z 8 attains the minimum in Zmin, then none of Z1, . . . , Z#

is a support constraint, but this is a zero-probability event under the exponential
distribution (otherwise both /# (1) and /# (0) have nonzero probabilities and the
problem is not uniformly supported). Therefore, for B < 1, �B = ; and /# (B) = ;
with probability 1, and

/
# = /

# (1) =
#ÿ
8=1

/
# ({8}) (with probability 1)

2. The second problem in Example 13.7 is fully supported, i.e., it has B =
3 support constraints for almost every Z :=

�
Z

1, . . . , Z#
�

and hence /
# =

/
# (3). Suppose �3 := {1,2,3} are 3 support constraints, i.e., the three points

(01,11), (02,12), (03,13) define the optimal strip ( ✓ R2 with minimum vertical
width containing all the # points Z :=

�
Z

1, . . . , Z#
�
. Then

/
# ({1,2,3}) =

n⇣
Z

1, Z2, Z3, Z4, . . . , Z#
⌘
2 /# : Z 8 2 (, 8 = 4, . . . ,#

o

and P(/# ({1,2,3})) is the probability that Z 8 2 (, 8 � 4. Even though some of Z 8 ,
8 � 4, may lie on the boundary of ( in which case Z1, Z2, Z3 may not be support con-
straints, these are zero-probability events under the Gaussian distribution, condi-
tioned on �3. Therefore for B < 3, /# (B) = ; for almost every Z 2 /# . For the same
G
⇤
#

, the three support constraints (points on the boundary) that define the (same)

optimal strip ( can be any three of Z1, . . . , Z# . Hence P(/# ({1,2,3})) =
✓
#

3

◆�1

.

3. For the third problem, the optimal circle ⇠ ⇢ R2 with minimum radius that con-
tains all # points is defined either by three distinct points on the circle or two

points on a diameter. For B = 2,3, P(/# (�B) |/# (B)) is
✓
#

B

◆�1

. If the distribu-

tion is not Gaussian, but nonzero only at a given set of finitely many grid points
(8, 9) 2 R2, then CSP(#) can also have 0 support constraints when non-distinct
points (corresponding to duplicate constraints in Z) lie on the solution circle; see
Example 13.9. ⇤

The next result formalizes the intuition in Example 13.8 that the conditional prob-
ability P#

�
/
# (�B)

��
/
# (B)

�
is the same for all index sets �B , provided /

# (B) < ;.
This reflects the fact that the order of the constraints in CSP(#) defined by
Z :=

�
Z

1, . . . , Z#
�
2 /# (B) does not matter. Furthermore the probability does not de-

pend on the details of the distribution function or the constraint functions, but only #

and B because there are
✓
#

B

◆
index sets on /# (B).
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Lemma 13.17 (Partitions /# (�B) of /# (B)). Fix any # � = and suppose assumption
C13.3 holds. For any 0  B  =, if /# (B) < ; then

P
#

⇣
/
# (�B)

��
/
# (B)

⌘
=

✓
#

B

◆�1

, 8�B with |�B | = B (13.91)

where /# (�B) and /# (B) are defined in (13.89).

Proof The problem may not be uniformly supported, but we will condition on /# (B),
i.e., consider only Z := (Z1, . . . , Z# ) 2 /# that contains B support constraints.7 The
lemma holds for B = 0 by definition in (13.89c). Fix an arbitrary 1  B  = with
/
# (B) < ;. To avoid triviality we assume # > B.

For any �B ✓ {1, . . . ,#} with B indices

/
# (�B) :=

�
Z 2 /# (B) :

�
-
Z
8 , 8 2 �B

�
are the B support constraints in Z

 
The key observation is that, conditioned on /# (B), every /# (�B) has the same prob-
ability since Z 8 are iid. To formalize this, we will establish a one-one correspondence
between /# (�B) and

/
# ( [B]) :=

�
Z 2 /# (B) :

�
-
Z
8 , 8 2 [B]

�
are the B support constraints in Z

 
where [B] := {1,2, . . . , B}. Since Z 8 are iid this implies that

P
#

⇣
/
# (�B)

��
/
# (B)

⌘
= P#

⇣
/
# ( [B])

��
/
# (B)

⌘
, 8�B with |�B | = B

The lemma then follows since there are
✓
#

B

◆
index sets �B with B support constraints.

Order the indices in �B as 81 < 82 < · · · < 8B . Let U := (1,2, . . . ,#) and let % 2 {0,1}#⇥#
be any permutation matrix such that [%U]8: = : , i.e., % maps 1, . . . , B to 81, . . . , 8B
respectively and the complement of [B] to the complement of �B . We also write
this mapping defined by % as c(1) = 81, . . . ,c(B) = 8B , . . . ,c(#) = 8# and the inverse
mapping defined by %�1 as c�1 (1), . . . ,c�1 (#). Then given any Z := (Z1, . . . , Z# ) 2
/
# ( [B]),

⇣
Z
c
�1 (1) , . . . , Z c

�1 (# )
⌘
2 /# (�B); given any Z := (Z1, . . . , Z# ) 2 /# (�B),�

Z
c (1) , . . . , Z c (# ) � 2 /# ( [B]). Therefore the permutation matrix % defines a bijec-

tion between /# (�B) and /# ( [B]) and completes the proof of the lemma. ⇤

We start by proving Theorems 13.14 and 13.15 for the simple case where CSP(#)
is uniformly supported with B = 0 support constraints, i.e., it has no support constraint
for all Z 2 /# . In this case the violation probability is 0 with probability 1.

Lemma 13.18 (No support constraint). Suppose CSP(#) has no support constraint
for any realization of Z 2 /# .

7 The lemma is used to bound ⇢# (+ (G⇤
#
)) for general problems and P# (+ (G⇤

#
) > n ) for uniformly

supported problems. Example 13.10 in Chapter 13.3.5 shows that (13.91) holds for support constraints,
but not for generalized support constraints in problems that are not uniformly supported.
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1. CSP(:) has no support constraint for : � # � = (with probability 1).
2. +

�
G
⇤
#

�
= 0 with probability 1. Hence ⇢#

�
+

�
G
⇤
#

� �
= 0 and P#

�
+

�
G
⇤
#

�
> n

�
= 0

for any n > 0.

Proof Consider CSP(# +1) and suppose for the sake of contradiction that there are�
Z

1, . . . , Z#+1� with nonzero probability that have B support constraints, i.e., /#+1 (B) <
; for some 1  B  = < # +1 (this is weaker than CSP(# +1) being uniformly supported
with B support constraints). Then every realization (Z1, . . . , Z#+1) 2 /#+1 (B) ✓ /#+1

has exactly B support constraints and # +1� B non-support constraints. Hence CSP(#)
with one of the non-support constraints removed will still have the same B constraints
as support constraints. Since the samples Z 8 are iid, this contradicts that CSP(#) has
no support constraint. Hence CSP(# +1) has no support constraint and part 1 is proved
by induction.

Part 2 then follows from Lemma 13.16. ⇤

13.3.3 Proof: bound on ⇢#
�
+ (G⇤

#
)
�

We next bound the expectation ⇢#
�
+ (G⇤

#
)
�

of the violation probability when CSP(#)
may not be uniformly supported or is uniformly supported with B � 1 support con-
straints.

Proof of Theorem 13.14 We have from (13.90)

/
#+1 =

=ÿ
B
0=0

/
#+1 (B0) =

=ÿ
B
0=0

ÿ
�
B
0
/
#+1 (�B0)

where �B
0 ✓ {1, . . . ,# +1} specifies |�B0 | = B0 support constraints for CSP(# +1). Hence,

conditioning on Z 2 /#+1 having B0 support constraints, we have

⇢
#

�
+ (G⇤

#
)
�
= P#+1

⇣
G
⇤
#
8 -

Z
#+1

⌘

= P#+1
⇣
-
Z
#+1 is support constraint for CSP(# +1)

⌘

=
=’
B
0=0

P
#+1

⇣
/
#+1 (B0)

⌘ ’
�
B
0:#+12� B0

P
#+1

⇣
/
#+1 (�B0)

��
/
#+1 (B0)

⌘
(13.92)

where the first equality follows from (13.86), the second equality follows from Lemma
13.16, and the last equality follows because /#+1 (�B0) are disjoint across �B

0
.

Suppose CSP(# +1) is uniformly bounded with B support constraints. The case of
B = 0 (i.e., CSP(# + 1) has no support constraint) is proved in Lemma 13.18. Hence
fix any 1  B  =. Then /

#+1 = /#+1 (B) = –
�
B /

#+1 (�B) and /
#+1 (B0) = ; (with
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probability 1) for B0 < B. Applying Lemma 13.17 to (13.92) we have

⇢
#

�
+ (G⇤

#
)
�
=

’
�
B:#+12� B

P
#+1

⇣
/
#+1 (�B)

��
/
#+1 (B)

⌘

=
✓
#

B�1

◆
·
✓
# +1
B

◆�1

=
B

# +1
(13.93)

where the second equality follows because, of all the
✓
# +1
B

◆
index sets �B ,

✓
#

B�1

◆
of

them contain # +1.

For the general case where CSP(# + 1) may not be uniformly supported for any
integer B, application of Lemma 13.17 and (13.93) to (13.92) gives

⇢
#

�
+ (G⇤

#
)
�
=

=’
B=1

P
#+1

⇣
/
#+1 (B)

⌘ ’
�
B:#+12� B

P
#+1

⇣
/
#+1 (�B)

��
/
#+1 (B)

⌘

=
=’
B=1

B

# +1
P
#+1

⇣
/
#+1 (B)

⌘

=
1

# +1
⇢
#+1 (number of support constraints for CSP(# +1))

 B
max

# +1
(13.94)

where Bmax is an upper bound on the number of support constraints for CSP(# + 1).
Theorem 13.14 follows since Bmax  = by Lemma 13.13. ⇤

13.3.4 Proof: bound on P# (+ (G⇤
#
) > n) for uniformly supported problem

We first prove Theorem 13.15 when CSP(#) is uniformly supported and then extends
the argument to the general case in the next subsection. The key ideas are summarized
in Table 13.3.

uniformly supp. problems: /# = /# (B) general problems: /# =
–
C
/
# (C)

support constraints �B gen. supp. const. �C (Definition 13.5)
/
# (�B): supp. const. in �B /

# (�C ): gen. supp. const. in �C

.
# (�B) := {(Z (�B), Z (�B2) 2 /B (B)⇥ /#�B} .

# (�C ) := {(Z (�C ), Z (�C2) 2 / C (C)⇥ /#�C }
�
B (E) := PB

�
+ (G̃⇤

B
)  E

�
= EB (Lemma 13.20) �

C (E) := PC
�
+ (G̃⇤

C
)  E |/ C (C)

�
= EC

/
# (�B) = .# (�B) (Lemma 13.19) /

# (�C ) ✓ .# (�C ) (Lemma 13.21)

P
#

⇣
+ (G⇤

#
) > n

⌘
=

✓
#

B

◆ Ø 1
n
(1� E)#�B3 (EB) P

#

⇣
+ (G⇤

#
) > n

⌘


✓
#

C

◆ Ø 1
n
(1� E)#�C3 (EC )

Table 13.3 Key concepts in the proofs on tail probability bounds.

Suppose CSP(#) is uniformly supported with 1  B  = support constraints (B = 0
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is proved in Lemma 13.18). Assume # > B to avoid triviality. From (13.90) we have

/
# = /

# (B) =
ÿ
�
B

/
# (�B)

where /# (�B) contains vectors Z 2 /# such that Z (�B) := (Z 8 , 8 2 �B) are B support
constraints for CSP(#). Since the sets �B partition /# (B) we can intersect the event�
+ (G⇤

#
) > n

�
with the events /# (�B) to get:

P
#

�
+ (G⇤

#
) > n

�
=

’
�
B

P
#

⇣
Z :+ (G⇤

#
) > n , Z 2 /# (�B)

⌘
(13.95)

We will derive each summand P#
�
Z :+ (G⇤

#
) > n , Z 2 /# (�B)

�
.

Suppose CSP(#) is uniformly supported with B � 1 constraints (/# = /# (B)). Fix
any �B ✓ {1, . . . ,#} with B indices. Consider three scenario programs, the first program
with # constraints and the other two with B constraints:

1. Every (realization of) Z := (Z1, . . . , Z# ) 2 /# defines a CSP(#) that has # con-
straints and has a unique set of B support constraints. These support constraints may
not be in �B unless Z 2 /# (�B), and we will derive the probability that Z 2 /# (�B)
conditioned on /# (B) (which is vacuous since /# (B) = /# .

2. For an arbitrary Z 2 /# , let Z (�B) := (Z 8 , 8 2 �B) 2 / B denote the subset of B
constraints in Z indexed by �

B . The scenario program with Z (�B) as its only
constraints is denoted by CSP(Z (�B)). It has B constraints some of which may not
be support constraints for CSP(Z (�B)). Denote its (unique) optimal solution by
G
⇤
�
B
. We sometimes write CSP(B) and G⇤

B
if the underlying Z (�B) is understood.

Define the subset of Z that produces G⇤
�
B

that satisfy all constraints in Z \ Z (�B):

.
# (�B) :=

�
Z 2 /# (B) : G⇤

�
B of CSP(Z (�B)) 2 -

Z
8 , 8 8 �B

 
(13.96)

This suggests that (Z 8 , 8 8 �B) are not support constraints of CSP(#), and since
Z 2 /# (B), Z (�B) must be the set of support constraints of CSP(#), i.e., /# (�B) =
.
# (�B). We will prove that this is indeed the case.8

3. Let / B (B) ✓ / B denote the set of constraints Z̃ := ( Z̃1, . . . , Z̃ B) 2 / B that are all
support constraints for CSP( Z̃). It is equipped with the conditional distribution
P(·|/ B (B)). We also write CSP( B̃) to denote scenario programs defined by some
Z̃ 2 / B (B) and denote its unique optimal solution by G̃⇤

B
.

The violation probability of G̃⇤
B

is the conditional probability (from (13.85b))

+

�
G̃
⇤
B

�
:= P

⇣
Z̃
B+1 2 / : G̃⇤

B
8 -

Z̃
B+1

��� Z̃ := ( Z̃1, . . . , Z̃ B) 2 / B (B)
⌘

(13.97a)

conditioned on a Z̃ 2 / B (B). This is a random variable with the product measure
P
B (·|/ B (B)). Let

�
B (E |/ B (B)) := PB

�
+

�
G̃
⇤
B

�
 E |/ B (B)

�
, E 2 [0,1] (13.97b)

8 This does not hold if CSP(# ) is not uniformly supported because of latent support constraints; see
Lemma 13.21.
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denote the distribution function of + (G̃⇤
B
) condition on /

B (B) (not a single Z̃ 2
/
B (B)).

We will prove Theorem 13.15 in three steps:

1. Show that G⇤
#
= G⇤

�
B

if �B is the set of support constraints in Z 2 /# . Relate the
violation probability of G⇤

�
B

to that of G̃⇤
B

and hence to �B (Lemma 13.19).
2. Derive the distribution function �B (E |/ B (B)) = EB for E 2 [0,1] (Lemma 13.20).
3. Apply Lemmas 13.19 and 13.20 to (13.95) to derive P#

�
+ (G⇤

#
) > n

�
.

Step 1 makes crucial use of the fact that CSP(#) is uniformly supported and needs
modification in the general case. Steps 2 and 3 extend to the general case directly.

Recall /
# (�B) :=

�
Z 2 /# (B) : (Z 8 , 8 2 �B) are support constraints for CSP(#)

 
.

The next lemma says that /# (�B) = .# (�B), i.e., the constraints Z whose support
constraints for CSP(#) are in �B are precisely those for which the optimal solution
G� B defined by Z (�⇤

B
) 2 / B satisfies all constraints not in �B . Hence, instead of solving

CSP(#), it su�ces to solve CSP(Z (�B)), usually a much smaller problem.

Lemma 13.19. Fix any # � = and suppose assumption C13.3 holds. If CSP(#) is
uniformly supported with B � 1 support constraints then for any �B ✓ {1, . . . ,#}

1. G⇤
B
= G⇤

B+1 = · · · = G⇤
#

for all Z 2 /# where G⇤
:

is the optimal solution of the resulting
CSP(:) after # � : non-support constraints are removed.

2. /# (�B) = .# (�B) with probability 1 under P# .

3. P#
�
.
# (�B)

�
= P#

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 = B+1, . . . ,#

���/ B (B)⌘ .
4. We have

P
#

⇣
/
# (�B)

⌘
= P#

⇣
.
# (�B)

⌘
=

π 1

0
(1� E)#�B3�B (E |/ B (B)) (13.98)

Proof We first prove parts 1 and 2 together. Suppose Z 2 /# (�B). Then �
B are

support constraints and its complement �B2 := {8 8 �B} are not support constraints for
CSP(#). If we remove a constraint from �

B2 , since it is not a support constraint, G⇤
#

remains the optimal solution for CSP(# �1) with the remaining # �1 constraints. If
# � 1 = B then G⇤

B
= G⇤

#
since optimal solutions are unique (assumption C13.3), and

hence G⇤
B
2 -

Z
8 , 8 8 �B . If # � 1 > B then the B � 1 constraints in �

B remain support
constraints for CSP(# � 1). Moreover the # � B � 1 constraints in its complement
�
B2 remain non-support constraints for CSP(# � 1), i.e., no Z 8 , 8 2 �B2 can become a

support constraint for CSP(# � 1) when CSP(#) is uniformly supported (Exercise
13.19). Repeating this process and we conclude that G⇤

#
remains the optimal solution

for each CSP(:) after # � : non-support constraints are removed from �
B2 . Since the

optimal solutions are unique for each Z 2 /# by assumption C13.3, G⇤
B
= G⇤

B+1 = · · · = G⇤
#

.
In particular G⇤

B
2 -

Z
8 , 8 8 �B . Hence Z 2 .# (�B).

Conversely suppose Z 2 .# (�B). Since �B specifies the B constraints for CSP(B),



690 Stochastic OPF

G
⇤
B
2 -

Z
8 , 8 2 �B . Moreover G⇤

B
2 -

Z
8 , 8 8 �B , since Z 2 .# (�B). Therefore G⇤

B
is feasible,

and hence optimal, for CSP(:), : = B, . . . ,# . By uniqueness of optimal solutions, we
have G⇤

B
= G⇤

B+1 = · · · = G⇤
#

. If any constraint in �B2 is a support constraint for CSP(#),
then removing it will change the optimal solution, i.e., G⇤

#�1 < G
⇤
#

, a contradiction.
Hence none of the constraints in �B2 can be support constraints for CSP(#). Therefore
all constraints in �B must be support constraints for CSP(#) since CSP(#) is uniformly
supported with B � 1 support constraints. This proves Z 2 /# (�B). Hence /# (�B) =
.
# (�B) a.s.

For part 3, we have shown above that, if Z 2.# (�B), then none of the#�B constraints
in Z (�B2) can be a support constraint for CSP(#). Since CSP(#) is uniformly supported
with B constraints, Z (�B) must be the (unique) set of support constraints for CSP(#).
This means that Z 2 .# (�B) if and only if Z (�B) 2 / B (B) and the optimal solution G⇤

�
B

of CSP(Z (�B)) satisfies all constraints in Z (�B2) := (Z 8 , 8 8 �B), i.e.,

.
# (�B) =

�
Z 2 /# (B) : Z (�B) 2 / B (B), G⇤

�
B 2 -Z 8 , 8 8 �B

 
=

�
(Z (�B), Z (�B2) 2 / B (B)⇥ /#�B : G⇤

�
B 2 -Z 8 , 8 8 �B

 
where the second equality follows because the order of the constraints does not matter.
This says that the condition Z (�B) 2 / B (B) in .# (�B) is equivalent to conditioning
Z (�B) on / B (B) and allowing Z (�B2) to take any value in /#�B . There is a one-one
correspondence between any fixed �B and [B] := {1, . . . , B}, amounting to relabeling
constraints (see proof of Lemma 13.17 for a formal argument). Hence

P
#

⇣
.
# (�B)

⌘
= P#

⇣
( Z̃ , Z̃ B+1, . . . , Z̃# ) 2 / B (B)⇥ /#�B : G̃⇤

B
2 -

Z̃
8 , 8 � B+1

���/ B (B)⌘
(13.99)

which is part 3.

Finally, conditioned on a Z̃ 2 / B (B), the probability that G̃⇤
B

does not violate the
constraints ( Z̃ 8 , 8 = B+1, . . . ,#) is

�
1�+

�
G̃
⇤
B

� �
#�B since Z̃ 8 are iid, i.e.,

P
#�B

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 � B+1

��� Z̃ 2 / B (B)⌘ =
�
1�+

�
G̃
⇤
B

� �
#�B

where +
�
G̃
⇤
B

�
is defined in (13.97). This is itself a random variable with probability

measure PB since G̃⇤
B

depends on Z̃ 2 / B (B). The probability that G̃⇤
B

does not violate
these constraints, conditioned on / B (B) (i.e., weighted by the conditional probability
of all Z̃ over / B (B)) is

P
#

⇣
G̃
⇤
B
2 -

Z̃
8 , 8 � B+1

���/ B (B)⌘ =
π
/
B

�
1�+

�
G̃
⇤
B

� �
#�B
P
B

⇣
3Z̃

1, . . . ,3Z̃ B
��
/
B (B)

⌘

=
π 1

0
(1� E)#�B3�B (E |/ B (B)) (13.100)

where the second equality follows from (13.97). Combining this with (13.99) and
/
# (�B) = .# (B) proves part 4 of the lemma. ⇤

Consider the scenario program CSP( B̃) defined by B iid samples Z̃ := ( Z̃1, . . . , Z̃ B)
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that are support constraints of CSP( B̃). The conditional distribution function �B of the
violation probability + (G̃⇤

B
), conditioned on / B (B), is defined in (13.97).

Lemma 13.20. �
B (E |/ B (B)) = EB over E 2 [0,1], depending on B but not / B (B).

Proof We have from Lemma 13.19

P
#

⇣
/
# (�B)

⌘
=

π 1

0
(1� E)#�B3�B (E |/ B (B))

Substituting P#
�
/
# (�B) |/# (B)

�
=

✓
#

B

◆�1

from Lemma 13.17 we have, since /# =

/
# (B), ✓

#

B

◆ π 1

0
(1� E)#�B3�B (E |/ B (B)) = 1

This is an integral equation in �B . We show that �B (E |/ B (B)) = EB is the unique solution
by substituting it into the left-hand side and integrating by part:✓
#

B

◆ π 1

0
(1� E)#�B3 (EB) =

✓
#

B

◆ ✓
(1� E)#�BEB

��1
0 + (# � B)

π 1

0
(1� E)#�B�1

E
B

3E

◆

=
✓
#

B

◆
# � B
B+1

π 1

0
(1� E)#�B�1

3 (EB+1)

=
✓
#

B

◆ (# � B) · · ·1
(B+1) · · ·#

π 1

0
3 (E# ) = 1

which is equal to the right-hand side. ⇤

We now use Lemmas 13.19 and 13.20 to bound the tail probability of + (G⇤
#
) when

CSP(#) is uniformly supported with B support constraints.

Proof of Theorem 13.15: uniformly supported case Suppose CSP(#) is uniformly
supported with 1  B  = support constraints. (The case of B = 0 follows from Lemma
13.18). Assume # > B to avoid triviality.

The summands on the right-hand side of (13.95) are:

P
#

⇣
+ (G⇤

#
) > n , /# (�B)

⌘
= P#

⇣
+ (G⇤

�
B ) > n , .# (�B)

⌘

= P#
⇣
+ (G̃⇤

B
) > n , G̃⇤

B
2 -

Z̃
8 , 8 = B+1, . . . ,#

���/ B (B)⌘

=
π
{+ ( G̃⇤

B
)>n }

�
1�+

�
G̃
⇤
B

� �
#�B
P
B

⇣
3Z̃

1, . . . ,3Z̃ B
��
/
B (B)

⌘

=
π 1

n

(1� E)#�B3�B ( E | / B (B))

where the first equality follows because G⇤
#
= G⇤

B
= G⇤

�
B

and /
# (�B) = .# (�B) from

Lemma 13.19, the second equality follows from (13.99), and the last equality follows
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from (13.97). Substituting this and Lemma 13.20 into (13.95) and integrating by part,

we have (since there are
✓
#

B

◆
index sets �B):

P
#

�
+ (G⇤

#
) > n

�
=

✓
#

B

◆ π 1

n

(1� E)#�B3 (EB)

= �
✓
#

B

◆
(1� n)#�Bn B +

✓
#

B+1

◆ π 1

n

(1� E)#�B�1
3 (EB+1)

...

= �
#�1’
8=B

✓
#

8

◆
(1� n)#�8n 8 +

✓
#

#

◆ π 1

n

3 (E# )

= �
#�1’
8=B

✓
#

8

◆
(1� n)#�8n 8 +

⇣
1� n#

⌘

=
B�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.101)

This completes the proof of Theorem 13.15 when CSP(#) is uniformly supported with
1  B  = support constraints. ⇤

13.3.5 Proof: bound on P# (+ (G⇤
#
) > n) for general problem

To prove the general case where the problem is not uniformly supported we need
to study the partitioning of /# more carefully. The main di�culty is that, given a
Z 2 /# (�B) with B support constraints, when we remove a non-support constraint Z 9

from the complement �B2 of �B , a constraint Z : remaining in �B2 may become a support
constraint for CSP(# �1) if CSP(#) is not uniformly supported, i.e., CSP(# �1) may
have more than B support constraints. This can happen because, e.g., Z 9 and Z : are
duplicate constraints in CSP(#), and therefore, CSP(#) depends, not just on support
constraints in �B , but also on Z : .

Lemma 13.19 implies that, instead of CSP(#), we can equivalently solve
CSP(Z (�B)) if CSP(#) is uniformly supported. For a general CSP(#), we need to
enlarge the set �B of support constraints to include latent support constraints whose
critical role in determining G⇤

#
is obscured by the presence of other constraints. This

motivates the definition of the set �C of generalized support constraints. In contrast to
/
# (�B) = .# (�B) in Lemma 13.19 for the uniformly supported case, we only have

/
# (�C ) ✓ .# (�C ) for generalized support constraints, leading to an upper bound in

Theorem 13.15. See Table 13.3 for comparison.

Generalized support constraint. A constraint that is not a support constraint for
CSP(#) but becomes a support constraint for some CSP(# � :) when some of the :



13.3 Convex scenario optimization 693

constraints are removed is called a latent support constraint for CSP(#). Recall that,
given any Z 2 /# and any index set � ✓ {1, . . . ,#}, Z (�) := (Z 8 , 8 2 �) denotes the
subset of constraints indexed by �, CSP(Z (�)) the scenario program defined by these
constraints, and G⇤

�
C

its unique optimal solution. We also write CSP(Z (�)) as CSP(�)
when the underlying Z is understood.

Definition 13.4 (Latent support constraint). Fix a Z 2 /# and let �B = �B (Z) denote
its (unique) set of B support constraints. A set !✓ ✓ {8, 8 8 �B} with ✓ indices is called
a set of latent support constraints with respect to Z if Z (�B [ !✓) is the set of support
constraints for CSP(Z (�B [ !✓)). Each Z 8 (or -

Z
8 ), 8 2 !✓ , is called a latent support

constraint for CSP(#). ⇤

By definition !0 = ; is a set of latent support constraints because Z (�B) are support
constraints for CSP(Z (�B)). A set !✓ with ✓ indices is a maximal set of latent support
constraints with respect to Z if !✓ is a set of latent support constraints with the largest
number of indices. Instead of partitioning /# according to �B of support constraints
in the uniformly supported case, we will partition /# according to �B [ !✓ where, for
each Z 2 /# , �B is the (unique) set of support constraints and !✓ is a maximal set of
latent support constraints. A Z however can have multiple maximal sets !✓ of latent
support constraints. Even though they all have the same number ✓ of indices, the sets
/
# (�B [ !✓), which is the set of all Z whose support constraints are in �B and latent

support constraints in !✓ , do not form a partition of /# because maximal sets !✓ are
non-unique. For instance, for Z := 011 2 /3, i.e., Z1 = 0, Z2 = Z3 = 1, �1 := {1} is the set
of support constraints, both !1 := {2} and !2 := {3} are maximal sets of latent support
constraints, and I is in both /3 (�1 [ !1) and /3 (�1 [ !2). This can be resolved by
choosing a unique representative among all maximal sets of latent support constraints
for each Z , e.g., according to the lexicographical order of these maximal sets. For this
example, the representative is !1.

Definition 13.5 (Generalized support constraint). Fix a Z 2 /# and let �B = �B (Z)
denote its (unique) set of B support constraints.

1. A set !✓ ✓ {8 : 8 8 �B} with ✓ indices is called the (unique) maximum set of latent
support constraints with respect to Z if !✓ is a set of latent support constraints with
the largest number of indices and it is the smallest of such sets in the lexicographical
order. In this case ✓ is called the maximum number of latent support constraints
with respect to Z .

2. Let �C ✓ {1, . . . ,#} be an index set with B  C  = indices. We call Z (�C ) or simply
�
C the set of generalized support constraints for CSP(#) with respect to Z if
�
C = �B [ !C�B where !C�B := !C�B (Z) is the unique maximum set of C � B latent

support constraints with respect to Z . In particular, Z (�C ) is the set of support
constraints for CSP(Z (�C )).

3. We say Z 2 /# has C generalized support constraints if there exists an index set
�
C with C indices such that Z (�C ) is the set of generalized support constraints for

CSP(#). ⇤
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If CSP(#) is uniformly supported with 1  C = B  = support constraints, then
there are no latent support constraints, i.e., !0 = ; for all Z 2 /# and G⇤

B
= G⇤

B+1 =
· · · = G⇤

#
(Exercise 13.19). Hence, instead of CSP(#) with # constrains, we can solve

CSP(Z (�B)) with just the support constraints, a potentially much smaller problem.
For a general problem CSP(#) that may not be uniformly supported, if Z 2 /# has
B support constraints and C � B > 0 latent support constraints in �C = �B [ !C�B , then
G
⇤
C
= G⇤

C+1 = · · · = G⇤
#

but G⇤
B
< G⇤

#
(Exercise 13.19). This means that we have to solve

CSP(Z (�C )) instead of CSP(Z (�B)) because the scenario program depends on not just
the support constraints in �B , but also the latent support constraints in !C�B even though
their role is obscured by other constraints (e.g., duplicate active constraints).

Every Z 2 /# has a unique set �B of support constraints and a unique maximum set
!
✓ of latent support constraints for CSP(#), and hence belongs to exactly one /# (�C )

with �C := �B [ !✓ . This means that the sets /# (�C ) form a partition of /# , the same
way the set /# (�B) partition /# for the proof of Theorem 13.14 (see Figure 13.4).
For C = 0,1, . . . ,=, let �C ✓ {1, . . . ,#} be an index set with C indices. We partition /#

according to the number and identity of generalized support constraints:

/
# (�C ) :=

�
Z 2 /# : Z (�C ) are all the gen. supp. const. for CSP(#)

 
(13.102a)

/
# (C) :=

ÿ
�
C

/
# (�C ) (13.102b)

where the union ranges over all index sets �C of C generalized support constraints, with
�

0 := ; by definition. Then (Figure 13.4(b))

/
# =

=ÿ
C=0

/
# (C) =

=ÿ
C=0

ÿ
�
C

/
# (�C ) (13.102c)

Therefore, as in (13.95) for the uniformly supported case, we can intersect the event�
+ (G⇤

#
) > n

�
with the disjoint sets /# (�C ):

P
#

�
+ (G⇤

#
) > n

�
=

=’
C=0

P
# (/# (C))

’
�
C

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘
(13.103)

We illustrate these concepts in Example 13.9 and Exercise 13.20.

Example 13.9 (Generalized support constraints and P(+ (G⇤
#
) > n)). We are given two

points 0,1 2 R2 on a plane. The random variable Z is equal to 0 or 1 with nonzero
probabilities ?0 or ?1 := 1� ?0 respectively. Given # iid samples (Z1, . . . , Z# ), # � 4,
CSP(#) determines the smallest circle, specified by G := (G1,G2,G3) 2R3, going through
all # points (Z1, . . . , Z# ).

1. Partition /# according to (13.102) and calculate the probabilities of the partitions.
2. Derive P# (+ (G⇤

#
) > n) assuming min{?0, ?1}/#  n  min{?0, ?1}. What if

n > max{?0, ?1}?
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Solution. The optimal circle is either ⇠0 centered at 0 with zero radius (when Z 8 = 0
for all 8), or⇠1 centered at 1 with zero radius (when Z 9 = 1 for all 9), or⇠01 with 0 and
1 on its diameter (when Z 8 take both values 0 and 1). Since # � 4, /# (B) < ; for only
B = 0 or 1. In particular the maximum number Bmax = 1 of support constraint is less
than = = 3. The partitioning of /# in (13.102) is summarized in Table 13.4. The sets

B Z := (Z1, . . . , Z# ) 2 /# �
B

!
C�B

P
# (event) G

⇤
#

0 Z
8 = 0 for all 8 ; {8min = 1} ?

#

0
⇠0

Z
9 = 1 for all 9 ; { 9min = 1} ?

#

1
⇠
1

(Z 8 , Z 9 ) = (0,1) for : 8s, # � : 9s ; {8min, 9min} ?
:

0
?
#�:
1

⇠
01

1 Z
8 = 0, Z 9 = 1 for all 9 < 8 {8} { 9min} ?0?

#�1
1

⇠
01

Z
9 = 1, Z 8 = 0 for all 8 < 9 { 9} {8min} ?

#�1
0

?
1

⇠
01

Table 13.4 Example 13.9. The set of generalized support constraints is �C = �B [ !C�B .

/
# (1) and /# (2) consist of all Z 2 /# with 1 and 2 generalized support constraints

respectively. All �C contains 1 since it is the smallest in the lexicographical order. For
example, for # = 4, /4 contains 16 constraints Z in 4 �C :

�
1 = {1}, /

4 (�1) = {0000,1111}, P
4 (/4 (�1)) = ?4

0
+ ?4

1

�
2 = {1,2}, /

4 (�2) = {01GG,10GG}, G = 0 or 1, P
4 (/4 (�2)) = 2?0?1

�
2 = {1,3}, /

4 (�2) = {001G,110G}, G = 0 or 1, P4 (/4 (�2)) = ?2
0
?1 + ?2

1
?0

�
2 = {1,4}, /

4 (�2) = {0001,1110} P
4 (/4 (�2)) = ?3

0
?1 + ?3

1
?0

In general

P
#

⇣
/
# (1)

⌘
= ?

#

0
+ ?#

1

P
#

⇣
/
# (2)

⌘
=

#�2’
:=2

✓
#

:

◆
?
:

0
?
#�:
1

+#?0?#�1
1

+#?#�1
0

?1

and hence

P
#

⇣
/
#

⌘
= P#

⇣
/
# (1)

⌘
+P#

⇣
/
# (2)

⌘
= (?0 + ?1)# = 1

as expected. The expressions above for
Õ
�

2 P
4 (/4 (�2)) and for P4 �

/
4 (2)

�
agree too:

2?0?1 + ?2
0
?1 + ?2

1
?0 + ?3

0
?1 + ?3

1
?0 =

✓
4
2

◆
?

2
0
?

2
1
+4?0?3

1
+4?3

0
?1 = 2?0?1 (2� ?0?1)

For part 2, the violation probability is (from (13.103))

P
# (+ (G⇤

#
) > n) =

2’
C=1

’
�
C

P
#

⇣
Z :+ (G⇤

#
) > n , Z 2 /# (�C )

⌘
(13.104)

Recall + (G⇤
#
) := P

⇣
G
⇤
#
8 -

Z
#+1

��
Z 2 /#

⌘
. Suppose 0 < n < min{?0, ?1}.
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1. For Z := (Z 8 = 088) 2 /# (1) with one generalized support constraint: This happens
with probability ?#

0
and has the optimal solution G⇤

#
=⇠0 which violates constraint

-
Z
#+1 if and only if Z#+1 = 1. Hence + (G⇤

#
) = ?1 > n with probability ?#

0
, i.e.,

%
#

�
Z :+ (G⇤

#
) > n , (Z 8 = 088)

�
= ?

#

0

2. For Z := (Z 9 = 18 9) 2 /# (1) with one generalized support constraint: This hap-
pens with probability ?

#

1
and has the optimal solution G⇤

#
= ⇠1 which violates

-
Z
#+1 if and only if Z#+1 = 0. Hence + (G⇤

#
) = ?0 > n with probability ?#

1
, i.e.,

%
#

�
Z :+ (G⇤

#
) > n , (Z 9 = 18 9)

�
= ?

#

1

3. For Z 2 /# (2) with two generalized support constraints: This happens with prob-
ability 1� ?#

0
� ?#

1
and the optimal solution -⇤

#
= ⇠01 . Hence + (G⇤

#
) = 0 < n in

this case, i.e., %#
�
Z :+ (G⇤

#
) > n , Z 2 /# (2)

�
= 0.

Substituting all this into (13.104) we have P# (+ (G⇤
#
) > n) = ?#

0
+ ?#

1
. The argument

above also shows that P# (+ (G⇤
#
) > n) = 0 if n > max{?0, ?1}.

The upper bound on the number of generalized support constraints for this example
is Cmax = 2 < =. Hence, in view of Remark 13.5, the bound in Theorem 13.15 is

C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 = (1� n)# +#n (1� n)#�1

Using min{?0, ?1}/#  n  min{?0, ?1}, it can be checked that this bound is greater
than or equal to ?#

0
+ ?#

1
, as it should be. ⇤

Fix any �C ✓ {1, . . . ,#} with C indices. As for the uniformly supported case, consider
three scenario programs, the first with# constraints and the other two with C constraints:

1. CSP(#): Every (realization of) Z := (Z1, . . . , Z# ) 2 /# (C) defines a CSP(#) that
has # constraints and has a unique set of C generalized support constraints (they
may not be in �C unless Z 2 /# (�C )).

2. CSP(Z (�C )): For an arbitrary Z 2 /# (C), CSP(Z (�C )) is the scenario program
with C constraints Z (�C ) := (Z 8 , 8 2 �C ) 2 / C (some of which may not be support
constraints for CSP(Z (�C )), and G⇤

�
C

denotes its unique optimal solution. Define
the subset of /# (C) that produces G⇤

�
C

that satisfy all constraints in Z \ Z (�C ):

.
# (�C ) :=

�
Z 2 /# (C) : G⇤

�
C of CSP(Z (�C )) 2 -

Z
8 , 8 8 �C

 
3. CSP( Z̃) or CSP(C̃): Let / C (C) ✓ / C denote the set of constraints Z̃ := ( Z̃1, . . . , Z̃ C ) 2
/
C that are all support constraints for CSP( Z̃). It is equipped with the conditional

distribution P(·|/ C (C)). We also write CSP(C̃) for CSP( Z̃) if the underlying Z̃ is
understood. Denote its unique optimal solution by G̃⇤

C
. The violation probability of

G̃
⇤
C

is defined in (13.97), reproduced here:

+

�
G̃
⇤
C

�
:= P

⇣
Z̃
C+1 2 / : G̃⇤

C
8 -

Z̃
C+1

��� Z̃ := ( Z̃1, . . . , Z̃ C ) 2 / C (C)
⌘

(13.105a)
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conditioned on a Z̃ 2 / C (C) with distribution function

�
C (E |/ C (C)) := PC

�
+

�
G̃
⇤
C

�
 E |/ C (C)

�
, E 2 [0,1] (13.105b)

conditioned on /
C (C) (as opposed to a Z̃ 2 / C (C)). The proof of Lemma 13.20

applies to / C (C) (in place of / B (B)) and shows that �C (E |/ C (C)) = EC over E 2 [0,1],
depending on C but not / C (C).

The proof for the general case parallels that for the uniformly supported case, with
/
# (�C ) and /# (C) here playing the roles of /# (�B) and /# (B) there. For a uniformly

supported problem, /# (�B) =.# (�B) (Lemma 13.19). For a general problem, the main
di�erence is /# (�C ) ✓.# (�C ), conditioned on /# (C) (Lemma 13.21). This is because
the lexicographical order in Definition 13.5 destroys their equivalence, leading to an
upper bound on the tail probability of + (G⇤

#
) in Theorem 13.15, as the next example

demonstrates. (See Table 13.3 for more comparisons.)

Example 13.10 (/# (�C ) |/# (C)) ✓.# (�C ) |/# (C)). Use the problem in Example 13.9
to demonstrate that:

1. Lemma 13.17 does not hold for generalized support constraints /# (�C ) |/# (C).
Why?

2. /# (�C ) ✓ .# (�C ) conditioned on /# (C).

Solution. Part 1 of Example 13.9 shows, when # = 4 and ?0 = ?1 = 1/2:

P
4 (/4 (�1) |/4 (1)) =

?
4
0
+ ?4

1

?
4
0
+ ?4

1

= 2/2 > 1/4

P
4 (/4 ({1,2}) |/4 (2)) =

1
2� ?0?1

= 8/14 > 1/6

P
4 (/4 ({1,3}) |/4 (2)) =

1
2(2� ?0?1)

= 4/14 > 1/6

P
4 (/4 ({1,4}) |/4 (2)) =

?
2
0
+ ?2

1

2(2� ?0?1)
= 2/14 < 1/6

Therefore (13.91) in Lemma 13.17 does not apply to generalized support constraints

(e.g., for # = 4, C = 2,
✓
#

C

◆�1

= 1/6).

To understand why, focus on the case # = 4, C = 2, �C = {1,3} for which (G = 0 or 1)

/
# (C) = {01GG,10GG,001G,110G,0001,1110}

/
# (�C ) |/# (C) = {001G,110G}

.
# (�C ) |/# (C) = {0G1G,1G0G} ) /

# (�C ) |/# (C)

i.e., in contrast to a uniformly supported problem with B support constraints for which
/
# (�B) = .# (�B), here, conditioned on /# (C), /# (�C ) is a strict subset of .# (�C ).

This is because the order of non-support constraints does not matter for a uniformly
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supported problem, but due to the nonuniqueness of latent support constraints, the
order of constraints (Z 8 , 8 8 �C ) that are not generalized support constraints does matter
because of the lexicographical order. Hence (Z 8 , 8 8 �C ) in /# (�C ) are limited to values
so that Z (�C ) is the unique set of generalized support constraints for CSP(#), whereas
(Z 8 , 8 8 �C ) in .# (�C ) are not. In the example above, Z = 001G is in /4 (�2) but not
Z = 011G whereas both are in .4 (�2).9 ⇤

Recall

/
# (�C ) :=

�
Z 2 /# (C) : Z (�C ) are gen. supp. const. for CSP(#)

 
We next extend Lemma 13.19 to general CSP(#) that may not be uniformly supported.
As illustrated in Example 13.10, /# (�C ) ✓ .# (�C ) conditioned on /

# (C) because
.
# (�C ) may contain Z for which Z (�C ) is not the set of generalized support constraint

for CSP(#). The lemma implies that Z (�C ) is nonetheless always a maximal set of
latent support constraints, together with the support constraints, for CSP(#).

Lemma 13.21. Fix any # � = and suppose assumption C13.3 holds. Fix a �C ✓
{1, . . . ,#} with 1  C  =.

1. For any Z 2 /# (�C ), G⇤
C
= G⇤

C+1 = · · · = G⇤
#

where G⇤
:

is the optimal solution of the
resulting CSP(:) after # � : constraints not in �C are removed from Z .

2. /# (�C ) ✓ .# (�C ) conditioned on /# (C). Moreover if Z 2 .# (�C ) then Z (�C ) is
the set of support constraints for CSP(Z (�C )).

3. P#
�
.
# (�C )

��
/
# (C)

�
= P#

⇣
G̃
⇤
C
2 -

Z̃
8 , 8 = C +1, . . . ,# |/ C (C)

⌘
.

4. We have

P
#

⇣
/
# (�C )

��
/
# (C)

⌘
 P#

⇣
.
# (�C )

��
/
# (C)

⌘
=

π 1

0
(1� E)#�C3�C (E |/ C (C))

(13.106)

Proof We parts 1 and 2 together. Suppose Z 2 /# (�C ), i.e., �C is the (unique) set of C
generalized support constraints for CSP(#) with a unique decomposition �C = �B[!C�B
of support constraints and latent support constraints. The set �C2 := {8 8 �C } may contain
other latent support constraints for CSP(#) but no support constraints. If we remove
a constraint from �

C2 , the resulting optimal solution G⇤
#�1 = G⇤

#
. If # � 1 = C then

G
⇤
�
C
= G⇤

#�1 = G
⇤
#

since optimal solutions are unique and hence G⇤
�
C
satisfies -

Z
8 , 8 8 �C . If

#�1 > C then �C remains the set of generalized support constraints for CSP(#�1), i.e.,
�
C remains the set of support constraints for CSP(Z (�C )), and no constraint Z 8 , 8 8 �B ,

becomes a support constraint for CSP(# � 1) (Exercise 13.19). Moreover Exercise
13.19 shows that G⇤

�
C
= G⇤

C
= G⇤

C+1 = · · · = G⇤
#

. In particular G⇤
�
C
2 -

Z
8 , 8 2 �C2 . Therefore

Z 2 .# (�C ).

Let Z 2 .# (�C ), i.e., Z (�̃C ) is the set of generalized support constraints for CSP(#)

9 Noe that . # (� C ) and /# (� C ) cannot be made equal in probability by relabeling constraints, as done
in Lemma 13.17.
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for some �̃C . If �C = �̃C then we have proved part 2. Suppose �C < �̃C and Z (�C ) is not the
set of support constraints for CSP(Z (�C )). Let  := �C [ �̃C and consider the scenario
program CSP(Z ( )) (without duplicate constraint) that can be obtained in two ways:

1. Add constraints in �C \ �̃C to CSP(Z (�̃C )). Since �̃C is the set of support constraints
for CSP(Z (�̃C )) and G⇤

�̃
C
= G⇤

 
= G⇤

#
(part 1), none of the constraints in �C \ �̃C can

be a support constraint for CSP(Z ( )) (otherwise, removing one such constraint
will strictly reduce the optimal cost, contradicting G⇤

 
= G⇤

#
). Hence all support

constraints of CSP( ) are in �̃ \ �.
2. Add constraints in �̃

C \ �C to CSP(Z (�C )). Since Z 2 .# (�C ), G⇤
�
C

satisfies all
constraints in Z and hence G⇤

�
C
= G⇤

 
= G⇤

#
implies that none of the constraints in

�̃
C \ �C can be a support constraint for CSP(Z ( )), a contradiction.

This shows that Z (�C ) is the set of support constraints for CSP(Z (�C )) and completes
the proof of part 2.

For part 3, part 2 implies that, if Z 2 .# (�C ), then Z (�C ) is the unique set of C
generalized support constraints for CSP(Z (�C )). This means

.
# (�C ) =

�
Z 2 /# (C) : Z (�C ) 2 / C (C), G⇤

�
C 2 -Z 8 , 8 8 �C

 
The key observation is that, unlike for /# (�C ), .# (�C ) does not impose any order on
any Z 2.# (�C ), as long as Z (�C ) 2 / C (C) and G⇤

�
C
2 -

Z
8 , 8 8 �C (see Example 13.10). This

means that the conditioning on /# (C) in .# (�C ) above is equivalent to conditioning
Z (�C ) on / C (C) and allowing Z (�C2) := (Z 8 , 8 8 �C ) to take any value in /#�C (as in the
uniformly supported case), i.e.,

.
# (�C ) =

�
(Z (�C ), Z (�C2)) 2 / C (C)⇥ /#�C : G⇤

�
C 2 -Z 8 , 8 8 �C

 
Hence (by possibly relabeling constraints; cf. (13.99))

P
#

⇣
.
# (�C )

��
/
# (C)

⌘
= P#

⇣
( Z̃ , Z̃ C+1, . . . , Z̃# ) 2 / C (C)⇥ /#�C : G̃⇤

C
2 -

Z̃
8 , 8 � C +1

���/ C (C)⌘
which is part 3.

Part 4 follows the same argument as that of Lemma 13.19. Conditioned on a
Z̃ 2 / C (C), we have

P
#�C

⇣
G̃
⇤
C
2 -

Z̃
8 , 8 � C +1

��� Z̃ 2 / C (C)⌘ =
�
1�+

�
G̃
⇤
C

� �
#�C

where +
�
G̃
⇤
C

�
is defined in (13.105). Hence, conditioned on /

C (C) as opposed to a
Z̃ 2 / C (C), we have

P
#

⇣
G̃
⇤
C
2 -

Z̃
8 , 8 � C +1

���/ C (C)⌘ =
π
/
C

�
1�+

�
G̃
⇤
C

� �
#�C
P
C

⇣
3Z̃

1, . . . ,3Z̃ C
��
/
C (C)

⌘

=
π 1

0
(1� E)#�C3�C (E |/ C (C)) (13.107)

where the second equality follows from (13.105). Parts 2 and 3 of the lemma then
prove (13.106). ⇤



700 Stochastic OPF

We now use Lemmas 13.20 and 13.21 to bound P#
�
+ (G⇤

#
) > n

�
for the general

case when CSP(#) may not be uniformly supported.

Proof of Theorem 13.15: general case We will intersect the event
�
+ (G⇤

#
) > n

�
with

the disjoint sets /# (�C ) and the summands in (13.103) are

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘
 P#

⇣
+ (G⇤

�
C ) > n , .# (�C )

��
/
# (C)

⌘

= P#
⇣
+ (G̃⇤

C
) > n , G̃⇤

C
2 -

Z̃
8 , 8 � C +1

���/ C (C)⌘

=
π
{+ ( G̃⇤

C
)>n }

�
1�+

�
G̃
⇤
C

� �
#�C
P
C

⇣
3Z̃

1, . . . ,3Z̃ C
��
/
C (C)

⌘

=
π 1

n

(1� E)#�C3�C (E |/ C (C))

where the inequality follows because, conditioned on /# (C), G⇤
#
= G⇤

�
C

and /# (�C ) ✓
.
# (�C ) in conditional probability from parts 1 and 2 of Lemma 13.21, the first equality

follows from part 3 of Lemma 13.21, and the last equality follows from (13.105).

Substituting this into (13.103) we have

P
#

�
+ (G⇤

#
) > n

�
=

=’
C=0

P
# (/# (C))

’
�
C

P
#

⇣
+ (G⇤

#
) > n , /# (�C )

��
/
# (C)

⌘


=’
C=0

P
# (/# (C))

✓
#

C

◆ π 1

n

(1� E)#�C3 (EC )

where we have used �C (E) = EC from Lemmas 13.20 and the fact that there are
✓
#

C

◆

many �C . It is shown in (13.101) that
✓
#

C

◆ π 1

n

(1� E)#�C3 (EC ) =
C�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 

C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

where 1  Cmax  = is an upper bound on the number of generalized support constraints
for almost all Z 2 /# . We therefore have

P
#

�
+ (G⇤

#
) > n

�


C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8 (13.108)

since
Õ
=

C=0P
# (/# (C)) = 1. This implies the bound in Theorem 13.15 for the general

case. ⇤

13.3.6 Sample complexity

Theorems 13.14 and 13.15 translate into sample complexity results for CSP(#), mak-
ing use of the Markov’s inequality and the Cherno� bound. They provide thresholds
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for # that guarantee su�ciently small violation probability + (G⇤
#
), in expectation or

probability (they are proved in Exercise 13.21).

Corollary 13.22 (Sample complexity). Fix any # � = and suppose assumption C13.3
holds. For any n 2 (0,1) and any V 2 (0,1):

1. ⇢#
�
+ (G⇤

#
)
�
 V if # � (=/V)�1.

2. P#
�
+ (G⇤

#
) > n

�
 V if # � # (n , V) where

(a) # (n , V) := (=/n V)�1;
(b) or

# (n , V) := min

(
# :

=�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8  V

)
(13.109)

(c) or

# (n , V) := min
⇢
# : (# � (=�1)) ln

# � (=�1)
# (1� n) + (=�1) ln

=�1
#n

� ln
1
V

�

13.3.7 Optimality guarantee

In Chapter 13.3.6 we use the violation probability bound of Theorem 13.15 to derive
the sample complexity of CSP(#) (13.84). If # � # (n , V) in (13.109) then its optimal
solution G⇤

#
is feasible for CCP(n) (13.83) with probability at least 1� V, according

to Corollary 13.22. In this subsection we show that the same # (n , V) in (13.109) also
guarantees that the optimal value 2⇤CSP (#) of CSP(#) is close to the optimal value
2
⇤
RCP of the robust program RCP (13.82) and the optimal value 2⇤CCP (n) of the chance

constrained program CCP(n) (13.83) with high probability.

The feasibility of G⇤
#

for CCP(n) with high probability connects 2⇤CSP (#) to 2⇤CCP (n),
provided # � # (n , V). Unless the violation probability + (G⇤

#
) = 0, G⇤

#
is however

infeasible for RCP. The key to connecting 2⇤CSP (#) to 2⇤RCP is that if G is feasible for
CSP(n) then it is feasible for a perturbed robust program defined as follows: for E 2 R<,

RCP(E) : 2
⇤
RCP (E) := min

G2- ✓R=
2

T
G s.t. ⌘̄(G) := sup

Z 2/
⌘(G, Z)  E (13.110)

where 2 2 R=, Z 2 R: is an uncertain parameter taking value in the uncertainty set
/ ✓ R: , E 2 R< is a perturbation vector, ⌘ : R= ⇥R: ! R< is a convex (and hence
continuous) function in G for every Z 2 / , and - is a nonempty closed convex set. Since
⌘(G, Z) is convex in G for every Z 2 / , ⌘̄(G) is a convex function. The unperturbed robust
program RCP (13.82) is (13.110) with E = 0. While CCP(n) relaxes RCP by requiring
constraint satisfaction only probabilitistically, RCP(E) relaxes RCP by allowing a
certain amount E of violation. To relate the feasibility of CCP(n) and RCP(E) we need
the following definition.
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Definition 13.6. 1. The probability of worst-case constraints is the function ? :
- ⇥R<+ ! [0,1] defined as:

?(G,1) := P
��
Z 2 / : 98 := 8(Z) s.t. ⌘̄8 (G)� ⌘8 (G, Z) < 18

 �
where ⌘̄(G) := sup

Z
0 2/ ⌘(G, Z 0).

2. A perturbation bound with respect to ? is the function Ē : [0,1]! R<+ defined as:

Ē(n) := sup
⇢
1 2 R<+ : inf

G2-
?(G,1)  n

�

where the supremum here is taken componentwise of vectors 1. ⇤

The motivation for Definition 13.6 is that Ē(n) connects RCP(Ē(n)) to CCP(n), as
follows. For each G 2 - , Z violates the constraint ⌘(G, Z)  0 if and only if ⌘̄8 (G) �
⌘8 (G, Z) < ⌘̄8 (G) for at least one 8 and therefore ?(G, ⌘̄(G)) is the violation probability
+ (G) defined in (13.85a). This means that the chance constraint + (G)  n in CCP(n)
is equivalent to ?(G, ⌘̄(G))  n . Hence + (G)  n implies ⌘̄(G)  Ē(n), componentwise
by definition of Ē(n). This is summarized in the following lemma. It implies that Ē(n)
defines the tightest perturbation vector E 2 R<+ such that the feasible set of CCP(n)
is an inner approximation of the feasible set of RCP(E). We emphasize that, like the
violation probability + (G), ?(G,1) and hence the perturbation bound Ē(n), depend on
the constraint function ⌘, the uncertainty set / and the probability measure P.

Lemma 13.23. [164] If G is feasible for the chance constrained program CCP(n)
(13.83), then it is feasible for the perturbed robust program RCP(Ē(n)) (13.110).

The scenario program CSP(#) (13.84) is a relaxation of the robust program RCP
(13.82) and is an approximation of the chance constrained program CCP(n) (13.83).
Let G⇤

#
be the random optimal solution of CSP(#) ensured by C13.3. If # � # (n , V)

defined in (13.109) then we have

2
⇤
RCP (Ē(n))  2

⇤
CCP (n) / 2

T
G
⇤
#

= 2
⇤
CSP (#)  2

⇤
RCP (13.111)

where the first inequality follows from Lemma 13.23, / means “smaller or equal to
with probability at least 1� V” and it follows from Corollary 13.22 since # � # (n , V),
and the last inequality follows since CSP(#) is a relaxation of RCP. In particular the
optimal values of the chance constrained and convex scenario programs lie between
those of the robust program and its perturbed counterpart with high probability.

To quantify how close 2⇤CSP (#) is to 2⇤RCP and to 2⇤CCP (n), we will relate the optimal
values 2⇤RCP (E) and 2

⇤
RCP (0) by establishing, using the envelop theorem, su�cient

conditions under which 2⇤RCP (E) is Lipschitz continuous. Let the Lagrangian and the
dual function of the perturbed robust program (13.110) be: for E 2 R<,

! (G,`;E) := 2
T
G + `T ( ⌘̄(G)� E), G 2 - ✓ R=, ` 2 R< (13.112a)

3 (`;E) := inf
G2- ✓R=

! (G,`;E), ` 2 R<+ (13.112b)
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For each perturbation vector E, let (G(E),`(E)) denote a primal-dual optimal solution
of (13.110). We make the following assumptions on the perturbed robust program
(13.110):

C13.4 For all n 2 [0,1] the perturbation bound Ē(n) in Definition 13.6 takes value
in a compact and convex set + ✓ R<+ .
C13.5 For each E 2 + ✓ R<+ :
(a) There exists a unique primal-dual optimal solution (G(E),`(E)) and it is

continuous at E.
(b) Strong duality holds at (G(E),`(E)).
C13.6 [Slater condition]: There exists Ḡ 2 - such that ⌘(Ḡ) < Emin where Emin

8
:=

min{E8 : E 2 +} is the minimum element of + .

Define

!RCP :=
2

T
Ḡ�minG2- 2T

G

min8
�
E

min
8
� ⌘̄8 (Ḡ)

� � 0 (13.113)

where Emin
8

:=min{E8 : E 2+} and ⌘̄(G) := sup
Z 2/ ⌘(G, Z). The numerator in !RCP is the

cost of the Slater point Ḡ from a lower bound of the optimal cost and the denominator
is the smallest gap of Ḡ from the feasibility boundary.

Lemma 13.24. Consider the perturbed robust program (13.110) and suppose assump-
tions C13.3–C13.6 hold. Then 2⇤RCP (E) is a Lipschitz continuous function on + ✓ R<+ ,
i.e., for all E1,E2 2 + , ��

2
⇤
RCP (E1)� 2⇤RCP (E2)

��  !RCP kE1� E2k

where k · k can be the Euclidean norm or the ✓1 norm and !RCP is defined in (13.113).

Proof For any E 2 + , assumption C13.5 and the Saddle Point Theorem 8.19 implies
that the primal-dual optimal solution (G(E),`(E)) is a saddle point of (13.112a):

! (G(E),`;E)  ! (G(E),`(E);E)  ! (G,`(E);E) , G 2 - , ` 2 R<+
Clearly rE! (G,`;E) = �` is a continuous function on - ⇥R<+ ⇥+ . This, together with
assumption C13.5(a), allows us to apply the Saddle-point Envelop Theorem 8.19 which
states that 2⇤RCP (E) is continuously di�erentiable and 10

rE2⇤RCP (E) = rE! (G(E),`(E);E) = �`(E)

Fix any E1,E2 in+ . The mean value theorem gives 2⇤RCP (E1)�2⇤RCP (E2) = `T (D) (E1�E2)
for some D between E1 and E2 (D 2+ because+ is convex). Hence, by Cauchy-Schwarz
inequality, ��

2
⇤
RCP (E1)� 2⇤RCP (E2)

��  k`(D)kkE1� E2k (13.114)

where the norm k · k can either be the Euclidean norm or the ✓1 norm. We now bound

10 To be precise, assumption C13.5 should be defined for all E 2 + � for some open set containing the
compact set + so that rE2⇤RCP (E) is well defined on the boundary of + .
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k`(E)k over E 2+ . Fix any E 2+ . Since `(E) attains the optimal value of the perturbed
robust program (13.110), strong duality implies:

2
⇤
CRP (E) = 3 (`(E);E)  2

T
Ḡ + `T (E)

�
⌘̄(Ḡ)� E

�
 2

T
Ḡ +max

8

(⌘8 (Ḡ)� E8)
’
8

`8 (E)

where the first inequality follows from (13.112b) and the last inequality follows since
`(E) � 0. Hence, noting that ⌘̄(Ḡ)� E < 0 by the Slater condition C13.6,

’
8

`8 (E) 
2

T
Ḡ� 2⇤RCP (E)

min8
�
E8 � ⌘̄8 (Ḡ)

�  2
T
Ḡ�minG2- 2T

G

min8
�
E8 � ⌘̄8 (Ḡ)

�
Since `(E) � 0 we have

k`(E)k2  k`(E)k1 
2

T
Ḡ�minG2- 2T

G

min8
�
E8 � ⌘̄8 (Ḡ)

�
Maximizing both sides over the compact set + yields sup

E2+ k`(E)k  !RCP. Substi-
tuting into (13.114) proves the lemma. ⇤

The next result from [164] uses (13.111) and Lemma 13.24 to quantify how close
2
⇤
CSP (#) is to 2⇤RCP and to 2⇤CCP (n).

Theorem 13.25 (Optimality guarantees [164]). Consider the robust program RCP
(13.82), the chance constrained program CCP(n) (13.83), and the convex scenario
program CSP(#) (13.84). Suppose assumptions C13.3–C13.6 hold. Given any n 2
[0,1], any V 2 [0,1] and any # � # (n , V) in (13.109), we have

P
#

�
2
⇤
RCP� 2⇤CSP (#) 2 [0,⇠ (n)]

�
� 1� V (13.115a)

P
#

�
2
⇤
CSP (#)� 2⇤CCP (n) 2 [0,⇠ (n)]

�
� 1� V (13.115b)

where

⇠ (n) := min
⇢
!RCPkĒ(n)k2, max

G2-
2

T
G�min

G2-
2

T
G

�

!RCP is defined in (13.113).

Proof The inequalities in (13.111) imply that 2⇤RCP � 2⇤CSP (#) 2 [0,⇠1] with prob-
ability 1 and 2

⇤
CSP (#) � 2⇤CCP (n) 2 [0,⇠1] with probability at least 1 � V where

⇠1 := maxG2- 2T
G�minG2- 2T

G. We are hence left with showing that, with probability
at least 1� V, 2⇤RCP� 2⇤CSP (#)  !RCPkĒ(n)k2 and 2⇤CSP (#)� 2⇤CCP (n)  !RCPkĒ(n)k2.

From (13.111) we have, with probability at least 1� V,

2
⇤
CSP (#) � 2

⇤
RCP (Ē(n)) � 2

⇤
RCP (0)� !RCP kĒ(n)k2

where the last inequality follows from Lemma 13.24. Hence 2
⇤
RCP � 2⇤CSP (#) 

!RCPkĒ(n)k2 with probability at least 1� V. Furthermore (13.111) implies that, with
probability at least 1� V,

2
⇤
CSP (#)� 2⇤CCP (n)  2

⇤
RCP� 2⇤RCP (Ē(n))  !RCPkĒ(n)k2
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where the last inequality follows from Lemma 13.24. ⇤

13.4 Two-stage optimization with recourse

Consider the situation where decisions are made in two stages under uncertainty
indexed by l in a sample space ⌦. The first-stage decision G needs to be made before
l is realized and the second-stage decision H(l) is made after l is realized as a
function of l. The first-stage decision G is made taking into account of the e�ect of
uncertainty by minimizing not just a first-stage cost in G, but also the expected (or
worst-cast) second-stage cost incurred by H(l) given G. This can be formulated as a
two-stage stochastic program with recourse. In this section we study the structure of
feasible regions associated with such a problem, the optimal value of the second-stage
decision, and the optimality condition and strong duality of the overall problem. As
we will see two-stage optimization generally involves extended real-valued functions
that will require the use of nonsmooth techniques studied Chapter 12.

Applications include the security constrained economic dispatch of Chapter 6.4.4
and the security constrained unit commitment of Chapter 6.4.5. Also see security
constrained unit commitment in Chapter 13.6 where the second stage cost &(G) is the
worst-case instead of the expected cost.

13.4.1 Stochastic linear program with fixed recourse

Consider the following two-stage stochastic program with recourse where the second-
stage problem is a linear program:

min
G2R=1

5 (G) + ⇢Z
✓

min
H (l)2R=2

@
T (l)H(l)

◆
(13.116a)

s.t. �G = 1, G 2  (13.116b)

) (l)G +,H(l) = ⌘(l), H(l) � 0, 8l 2 ⌦ (13.116c)

where

• For the first-stage problem, the real-valued cost function 5 :R=1!R is convex (and
hence continuous overR=1 ), � 2 R<1⇥=1 , 1 2 R<1 ,  ✓ R=1 is a closed convex cone.
For instance  := R=1

+ , the nonnegative quadrant (closed in R=1 ). It is important
that the first-stage quantities ( 5 , �,1, ) are certain.

• For each sample l 2 ⌦ the second-stage problem is a linear program in H(l),
with the cost vector @(l) 2 R=2 , and the constraint parameters ) (l) 2 R<2⇥=1 ,
, 2 R<2⇥=2 , and ⌘(l) 2 R<2 . The second-stage decision H(l) is called a recourse
action (or corrective action). These quantities, except, , are random, dependent
on l. The second-stage problem is generally semi-infinite and intractable when
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⌦ is an infinite set. The constraint H(l) � 0 does not lose generality because if
H(l) is allowed to take value in R=2 , H(l) can be replaced by I1 (l)� I2 (l) where
I1 (l) � 0 and I2 (l) � 0 are two nonnegative variables.

• The matrix , is called a recourse matrix. It is assumed to be deterministic, i.e.,
independent of l, in (13.116c). Problems with deterministic , are said to have
fixed recourse. In general , (l) can also depend on l. Stochastic programs with
random recourse are much more complicated (see Lemma 13.26 and the discussion
that follows). We will only deal with problems with fixed recourse.

• The random variable Z := Z (l) is a function of l and is the column vector

Z := Z (l) := (@(l),⌘(l),)T
8
(l), 8 = 1, . . . ,<2)

where )8 (l) is the 8th row of ) (l). The size of Z is : := =2 +<2 +<2=1. Denote
the set of possible values of Z by / := {Z (l) 2 R: : l 2 ⌦}. The expectation ⇢Z in
(13.116a) is taken with respect to Z .

To understand the structure of the stochastic program (13.116), re-write it in terms
of the solution of the second-stage problem. Given a first-stage decision G and a
realization of the random vector Z 2 / define the extended real-valued functions
&̃ : R=1 ⇥R: ! [�1,1] and & : R=1 ! [�1,1] as:

&̃(G, Z) := min
H (l)�0

@
T (l)H(l) s.t. ,H(l) = ⌘(l)�) (l)G (13.117a)

&(G) := ⇢Z &̃(G, Z) (13.117b)

In particular, &̃(G, Z) is defined to be 1 if the second-stage problem (13.117a) is
infeasible for the given G, and �1 if it is feasible and unbounded below. The case
of &̃(G, Z) =1 can be a reasonable model of a practical situation (e.g. a generation
schedule in the first stage leads to insu�cient supply when outages occur in the
second stage), but &̃(G, Z) = �1 means that the objective can be infinitely improved
in the second stage and usually indicates an improper model. We thus usually assume
&̃(G, Z) > �1 on the domain of interest. The optimal value &̃(G, Z) of the second-stage
problem (13.117a) is called the second-stage value function and &(G) the second-
stage expected value function or the recourse function. Both are extended real-valued
functions studied in Chapter 12.2.1.

The stochastic program (13.116) is then equivalent to the following problem:

5
⇤ := min

G2R=1
5 (G) +&(G) s.t. �G = 1, G 2  (13.117c)

where the cost function is extended real-valued even though 5 is real-valued. Com-
paring the conic program (12.69) studied in Chapter 12.9.4 with (13.117), it is clear
that the di�culty of stochastic program (13.117) lies in the structural and computa-
tional properties of &(G). Even though the second-stage problem (13.117a) is a linear
program in H(l), the recourse function &(G) is generally not a linear function of G
and therefore (13.117) is generally not a linear program. We will show below that, for
the problem (13.116) with fixed recourse, if Z has finite second moment, then &(G) is
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a convex function and (13.117) is indeed a conic program studied in Chapter 12.9.4.
Conditions for strong duality and KKT optimality of (13.117) can therefore be derived
from Theorem 12.31 (although the computation of &(G) and its subdi�erential is gen-
erally di�cult). The fact that the second-stage problem (13.117a) is a linear program
is important in deriving these results. We therefore sometimes refer to (13.116) as a
stochastic linear program.

Tractability. We start with the feasibility of (13.117) and some basic properties of the
recourse function &(G). We then present the optimality condition and strong duality
for the problem when it is convex.

Let ⇠1 := {G 2 R=1 : �G = 1, G 2  }. The first-stage decision G is feasible if G 2 ⇠1

and if G has a feasible second-stage completion so that (13.117c) is well defined. There
are two interpretations of feasible second-stage completion, expressed by the following
two definitions:

⇠2 := dom(&) := {G 2 R=1 :&(G) <1} (13.118a)

⇠
0
2 :=

Ÿ
a.e.Z 2/

{G 2 R=1 : &̃(G, Z) <1} (13.118b)

The set ⇠2 consists of G for which the expected &̃(G, Z) is finite. The set ⇠ 02 consists of
G for which the second-stage problem is always feasible for almost every (a.e.) Z 2 / ,
i.e., for a.e. l 2 ⌦, there exists an H(l) � 0 that satisfies,H(l) = ⌘(l)�) (l)G. If Z
can take only finitely many values, then ⇠2 = ⇠ 02, as the next example shows.

Example 13.11 (Generator scheduling). Consider the scheduling of two independent
generators with the same capacity 0. A slow but cheap generator must be scheduled
in advance of a random demand Z (l) > 0 at a generation level G 2 [0,0] and unit cost
21. A fast but expensive generator can be scheduled after the random demand Z (l) is
realized at a generation level H(l) := H(Z (l)) 2 [0,0] and unit cost 22 > 21. Our goal
is to choose (G, H(F)) to meet demand Z (l) at the minimum total expected cost:

5
⇤ := min

G2R
21G +&(G) s.t. 0  G  0 (13.119a)

where &(G) := ⇢Z &̃(G, Z) and

&̃(G, Z) := min
0H (l)0

22H(l) s.t. G + H(l) = Z (l) (13.119b)

Given the first-stage decision G and the realized demand Z (l), the second-stage decision
is H(l) := H(Z (l)) = Z (l) � G if this generation level lies in [0,0]; otherwise, the
second-stage problem is infeasible and &̃(G, Z) = 1. This means that the first-stage
decision G must satisfy Z (l)� 0  G  Z (l) in order that &̃(G, Z) = 22H(l) <1.

Suppose Z (l) = 0 + n with probability ? and Z (l) = 0 � n with probability 1� ?.
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Then

H(0 + n) =

(
0 + n � G if G � n
infeasible if G < n

, &̃ =

(
22 (0 + n � G) if G � n
1 if G < n

H(0� n) =

(
0� n � G if G  0� n
infeasible if G > 0� n

, &̃ =

(
22 (0� n � G) if G  0� n
1 if G > 0� n

Therefore when Z (l) = 0+ n , which happens with probability ?, &̃(G, Z) =1 if G < n .
When Z (l) = 0 � n , which happens with probability 1� ?, &̃(G, Z) =1 if G > 0 � n .
Hence

⇠
0
2 :=

Ÿ
Z

{G : &̃(G, Z) <1} = {G : G � n}
Ÿ

{G : G  0� n}

Moreover if G < n or G > 0� n then &(G) = ⇢Z &̃(G, Z) =1, i.e.,

⇠2 := dom(&) := {G : n  G  0� n}

Hence ⇠ 02 = ⇠2.

We also have ⇠2 ✓ ⇠1 := {G : 0  G  0}. On ⇠2,

&(G) = ?22 (0 + n � G) + (1� ?)22 (0� n � G) = 22 (0 + n (2?�1))� 22G

Then (13.119) is:

5
⇤ := min

G2R
(21� 22)G + 22 (0 + n (2?�1)) s.t. n  G  0� n

Since 22 > 21, the optimal G⇤ = 0�n and 5 ⇤ = 21 (0�n) +222n ?, i.e., the cheap generator
should always produces at the lower level 0�n of the random demand and the expensive
generator will pick up the slack (2n with probability ?). ⇤

If Z is a continuous random variable, however,⇠2 and⇠ 02 may be di�erent, e.g., when
the problem has random rather than fixed recourse or when ⇢Z Z2 =1 (see Exercise
13.22). The following result provides a su�cient condition for the equivalence of these
two interpretations (⇠2 = ⇠ 02) for the case of fixed recourse.11

Lemma 13.26. [157, Theorems 4 and 5, p.111] Consider the stochastic program
(13.116) or its equivalent (13.117) with fixed recourse, i.e., , is independent of l.
Suppose Z has finite second moment. Then

1. ⇠2 = ⇠ 02 = dom(&).
2. ⇠2 is closed and convex.
3. ⇠2 is polyhedral, i.e., defined by a finite set of linear inequalities, provided

• ) (l) = ) is fixed; or

11 We assume all functions have the necessary properties that allow us to mostly ignore issues of
measurability and well-posedness of& (G) for general distributions. See e.g. [156, Chapter 2.1.3], [157]
for discussions on these issues.
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• ) (l) and ⌘(l) are independent and the support of the distribution of ) (l) is
polyhedral.

We now give an intuition on why a finite second moment is su�cient for ⇠2 = ⇠ 02.
The argument also shows the importance of the second-stage problem (13.117a) being a
linear program. Suppose the optimal value &̃(G, Z) is finite. Suppose also for simplicity
that  = R=1 . Then an optimal H⇤ (l) of the linear program exists that is an extreme
point (vertex) of the feasible set. Such a point is called an optimal basic feasible solution
and takes the form given in (8.61):

H
⇤ (l) = ,

�1
�
⇤ (⌘� ⇤ (l)�)� ⇤ (l)G)

where ,�
⇤ is a =2 ⇥ =2 nonsingular submatrix of , and ⌘� ⇤ (l),)� ⇤ (l) are the cor-

responding =2-submatrices of ⌘(l) and ) (l) respectively, both dependent on H⇤ (l).
The second-stage value function is

&̃(G, Z) = @
T (l) H⇤ (l) = @

T (l),�1
�
⇤ (⌘� ⇤ (l)�)� ⇤ (l)G)

Hence &̃(G, Z) is a quadratic function in Z and the finite second moment of Z implies
that &(G) := ⇢Z &̃(G, Z) is bounded. If, on the other hand, , (l) depends on l, then
&(G) depends on higher moments of Z . The assumption of fixed recourse and finite
second moments is only su�cient; see [165] for more general su�cient conditions,
including for the case where, (l) is not fixed.

In view of Lemma 13.26 we will consider stochastic program (13.116) with fixed
recourse and assume Z has finite second moment. Then we will not need to di�erentiate
between ⇠2 := dom(&) and its alternative ⇠ 02. A stochastic program is said to have
a relatively complete recourse if ⇠1 ✓ dom(&), i.e., an G that satisfies first-stage
constraints always has a feasible second-stage completion for a.e. Z 2 / . It is said to
have a complete recourse if {,H : H � 0} = R<2 regardless of the first-stage decision
G, i.e., the positive cone spanned by the columns of , equals R<2 . This means that
there is a second-stage completion for any G (not necessarily in ⇠1) and a.e. Z . A
stochastic program that has a complete recourse has a relatively complete recourse,
but the converse may not hold.

The following result implies that the deterministic equivalent (13.117) is a convex
and di�erentiable problem.

Lemma 13.27 (Recourse function&(G)). [157, Theorems 6, p.112] Consider problem
(13.117) with fixed recourse, i.e.,, is independent of l. Suppose Z has finite second
moment. Then

1. The recourse function &(G) is convex and Lipschitz on dom(&) := {G 2 R=1 :
&(G) <1}.

2. If the distribution function of Z is absolutely continuous, then&(G) is di�erentiable
in the relative interior ri(dom(&)) of dom(&).

3. Suppose Z takes finitely many values a.s. Then
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• dom(&) is closed, convex, and polyhedral.
• &(G) is piecewise linear and convex on dom(&).

Note that &(G) is convex even for problems with random recourse and without the
finite moment assumption; see Lemma 13.29 below.

Example 13.12 (m&(G) and ⇢Z mG&̃(G, Z)). Consider the second-stage linear program
(13.117a) with fixed recourse, specified by: H(l) 2 R2,, = [1 1], ) 2 R1⇥=1 is fixed,
⌘(l) 2 R is a uniform random variable over [1,2],

@1 (l) =

(
1 with probability 1�U
�1 with probability U

, @2 (l) = 0 with probability 1

and ⌘ and @ are independent random variables. The random vector Z := Z (l) :=
(@(l),⌘(l)) 2 R3. For each l 2 ⌦,

&̃(G, Z (l)) := min
H (l)�0

@1 (l)H1 (l) s.t. H1 (l) + H2 (l) = ⌘(l)�)G (13.120)

Let &(G) := ⇢Z &̃(G, Z).

1. Solve the linear program (13.120) explicitly to show that dom(&) = {G 2 R=1 :
)G  1} and the extended real-valued function & : R=1 ! (�1,1] is:

&(G) = �U (⇢⌘ (⌘)�)G) + Xdom(&) (G) (13.121)

where the expected value of ⌘ is ⇢⌘ (⌘) = 1.5 and the indicator function is X- (G) = 0
if G 2 - and1 if G 8 - .

2. Show that, for Ḡ 2 dom(&),

m&(Ḡ) = U)
T +#dom(&) (Ḡ) =

(�
U)

T if )T
Ḡ < 1�

(U+_))T : _ � 0
 

if )T
Ḡ = 1

(13.122)

where #- (Ḡ) denotes the normal cone of - at Ḡ 2 - .
3. For each Z , derive the extended real-valued function &̃(G, Z) and mG&̃(Ḡ, Z) for
Ḡ 2 dom(&̃(·, Z)) (dom(&̃(·, Z)) depends on Z and is generally di�erent from
dom(&).)

4. Show that m&(Ḡ) = ⇢Z
�
mG&̃(Ḡ, Z)

�
+#dom(&) (Ḡ) for Ḡ 2 dom(&).

Solution. We first claim that &(G) := ⇢Z &̃(G, Z) < 1, i.e., G 2 dom(&), if and only if
the first-stage decision G satisfies )G  1. If&(G) <1 then &̃(G, Z) =1must have zero
probability, i.e., (13.120) must be feasible at G for almost all l. This means that

⌘(l)�)G = H1 (l) + H2 (l) � 0 8⌘(l) 2 [1,2]

Therefore G must satisfy )G  min
⌘2 [1,2] ⌘ = 1. It is easy to check that the converse

holds as well.
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Restricting G to )G  1, we have then &̃(G, Z) <1 for all Z . The optimal solution H⇤

and optimal value of (13.120) are

H
⇤ =

(
(0,⌘�)G) if @1 = 1

(⌘�)G,0) if @1 = �1

&̃(G, Z) = @1H
⇤
1 =

(
0 if @1 = 1

�(⌘�)G) if @1 = �1

Hence, &(G) = ⇢
⌘ |@1=�1 ()G� ⌘|@1 = �1)P@1 (@1 = �1) = �U (⇢⌘ (⌘)�)G) where the

last equality follows from the independence of ⌘ and @. Here ⇢⌘ (⌘) = 1.5 and )G  1.
This proves part 1.

From Table 12.2, the subdi�erential of an indicator function is its normal cone,
i.e., mX- (Ḡ) = #- (Ḡ) for any Ḡ 2 - . Hence m&(Ḡ) = U)T + #dom(&) (Ḡ) for all Ḡ 2
dom(&). For the polyhedral set dom(&) = {G 2 R=1 : )G  1}, Theorem 12.3 says that
#dom(&) (Ḡ) = {_)T 2 R=1 : _ 2 R+ s.t. _()Ḡ�1) = 0}, which implies part 2.

For parts 3 and 4, the reasoning in part 1 implies that, for G 2 R=1 , l 2 ⌦,

&̃(G, Z (l)) =

8>>>>>>>>><
>>>>>>>>>:

0 if )G  1, 8(a.e.) ⌘(l), @(l) = 1

�(⌘(l)�)G) if )G  1, 8(a.e.) ⌘(l), @(l) = �1

�(⌘(l)�)G) if )G 2 (1,2], ⌘(l) � )G, 8(a.e.) @(l)
1 if )G 2 (1,2], ⌘(l) < )G, 8(a.e.) @(l)
1 if )G > 2, 8(a.e.) ⌘(l),@(l)

Let ⇠ (⌘) := ⇠ (⌘(l)) := {G 2 R=1 : )G  ⌘(l)}; note that ⇠ (⌘) is a random set de-
pending on ⌘(l) 2 [1,2]. Then dom(&̃(·, Z (l))) = ⇠ (⌘(l)). For each Z := Z (l) :=
(@(l),⌘(l)) and G 2 R=1 ,

&̃(G,@1,⌘) =

(
X
⇠ (⌘) (G) if @1 = 1

X
⇠ (⌘) (G) +)G� ⌘ if @1 = �1

Hence, for each Z ,

mG&̃(Ḡ,@1,⌘) =

(
#
⇠ (⌘) (Ḡ) if @1 = 1

#
⇠ (⌘) (Ḡ) +)T if @1 = �1

, Ḡ 2 ⇠ (⌘) = dom(&̃(·,@1,⌘))

We now evaluate ⇢Z mG&̃(Ḡ, Z) for Ḡ in the deterministic set dom(&). Note that
dom(&) ⇢ ⇠ (⌘) with probability 1; in particular dom(&) = ⇠ (⌘) only when ⌘ = 1
which happens with probability 0. Since @ and ⌘ are independent we have

⇢Z mG&̃(Ḡ, Z) = (1�U)⇢⌘
�
#
⇠ (⌘) (Ḡ)

�
+ U

⇣
⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
+)T

⌘
= U)

T + ⇢⌘
�
#
⇠ (⌘) (Ḡ)

�
We claim that ⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
= 0. Note that ⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
=

Ø 2
1+#⇠ (⌘) (Ḡ)3⌘. Since
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Ḡ 2 dom(&) ⇢ ⇠ (⌘) with probability 1, Ḡ is in the interior of ⇠ (⌘) with probability 1
if ⌘ 2 (1,2]. Therefore ⇢⌘

�
#
⇠ (⌘) (Ḡ)

�
= 0 and

⇢Z mG&̃(Ḡ, Z) = U)
T, Ḡ 2 dom(&)

Hence (13.122) implies m&(Ḡ) = ⇢Z
�
mG&̃(Ḡ, Z)

�
+#dom(&) (Ḡ) for Ḡ 2 dom(&). ⇤

KKT condition and duality. When the problem (13.117) with fixed recourse has
finite second moment, Lemma 13.27 implies that the extended real-valued recourse
function&(G) is convex and hence always subdi�erentiable in ri(dom(&)), whether or
not the distribution of Z is absolutely continuous. This makes (13.117) a conic program
(12.69) studied in Chapter 12.9.4. Recall the dual cone  ⇤ of  in Definition 12.1:

 
⇤ := {` 2 R=1 : `T

G � 0 8G 2  } (13.123a)

Let the dual variables be _ 2 R<1 and ` 2  ⇤ ✓ R=1 . Define the Lagrangian function
of (13.117):

! (G,_,`) := 5 (G) +&(G)�_T (�G� 1)� `T
G, G 2 R=1 , _ 2 R<1 , ` 2  ⇤

The dual function is

3 (_,`) := min
G2R=1

! (G,_,`) = _
T
1 + 30 (_,`), _ 2 R<1 , ` 2  ⇤ (13.123b)

where

30 (_,`) := min
G2R=1

⇣
5 (G) +&(G)� (�T

_+ `)T
G

⌘
(13.123c)

The dual problem is:

3
⇤ := max

_2R<1 ,`2 ⇤
_

T
1 + 30 (_,`) (13.123d)

We make the following assumptions:

C13.7: Finite second moment and well posed&(G). ⇢Z Z2
<1 and&(G) 2 (�1,1].

C13.8:

– 5 : R=1 ! R in (13.117c) is convex over R=1 and  is a closed convex cone.
– Slater condition. There exists Ḡ 2 ri(dom(&))\ ri( ) such that �Ḡ = 1.

Assumption C13.7 and Lemma 13.27 imply that &(G) is convex on dom(&) (hence
subdi�erentiable). Assumptions C13.7 and C13.8 imply that & is proper. The proper-
ness and the convexity of & on dom(&), and the existence of Ḡ 2 ri(dom(&)) imply
that m ( 5 +&) (G) = m 5 (G) + m&(G) for all G 2 dom(&), according to Theorem 12.18.
These properties, together with the Slater condition C13.8, allow us to apply The-
orem 12.31 on conic program (or more precisely for an extended real-valued cost
function, the Slater Theorem 12.27 and the generalized KKT Theorem 12.21) to the
stochastic program (13.117), with the following implication.
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Theorem 13.28 (Strong duality and KKT for stochastic LP). Consider problem
(13.117) with fixed recourse, i.e., , is independent of l, and its dual (13.123).
Suppose assumptions C13.7 and C13.8 hold. Then

1. Strong duality and dual optimality. If the optimal value 5
⇤ of (13.117) is finite

then there exists a dual optimal solution (_⇤,`⇤) 2 R<1 ⇥ ⇤ that closes the duality
gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).

2. KKT characterization. A feasible G⇤ 2  with �G⇤ = 1 is optimal if and only if there
exist subgradients b⇤ 2 m 5 (G⇤) andk⇤ 2 m&(G⇤), a dual feasible (_⇤,`⇤) 2R<1⇥ ⇤
such that

b
⇤ +k⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

In this case (G⇤,_⇤,`⇤) is a saddle point that closes the duality gap and is primal-
dual optimal. ⇤

Example 13.13 (Linear program). Consider problem (13.117) with fixed recourse and
its dual (13.123). Suppose 5 (G) := 2T

G and  := R=1
+ the nonnegative quadrant. Then

 
⇤ =  = R=1

+ , 30 (_,`) = 0 if 2 = �T
_ + ` and �1 otherwise in which case the dual

problem becomes:

3
⇤ := max

_2R<1 ,`2R=1
+

_
T
1 s.t. 2 = �T

_+ `

Suppose & is di�erentiable. Then the KKT condition becomes: G⇤ 2 dom(&) with
�G
⇤ = 1 and G⇤ � 0 is optimal if and only if there exists (_⇤,`⇤) 2 R<1 ⇥R=1

+ such that

r&(G⇤) = �2+ �T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0

⇤

Problems with relative complete recourse. When problem (13.117) has a relative
complete recourse we can rewrite the KKT condition in Theorem 13.28 in terms of
⇢Z mG&(G⇤, Z) instead of m&(G⇤). Then mG&(G⇤, Z) can be evaluated using envelop
theorems studied in Chapter 8.3.6 (see Exercise 13.24). Write the stochastic program
(13.117) as an unconstrained optimization:

min
G2R=1

5 (G) +&(G) + X⇠1 (G)

where ⇠1 := {G 2 R=1 : �G = 1,G 2  },  ✓ R=1 is a closed convex cone, and X⇠1 (G)
is the indicator function of ⇠1. The generalized KKT Theorem 12.21 implies that a
feasible G⇤ 2 ⇠1 is optimal if and only if

0 2 m 5 (G⇤) + m&(G⇤) + #⇠1 (G⇤) (13.124)

The property m&(Ḡ) = ⇢Z mG&̃(Ḡ, Z) +#dom(&) (Ḡ) in Example 13.12 holds more gen-
erally. Usually m&(Ḡ) = mG⇢Z&(Ḡ, Z) is not the same as ⇢Z mG&(Ḡ, Z), i.e., one cannot
generally interchange the order of expectation and subderivative. It is shown in [157,
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Theorem 11, p.117] [166, Proposition 2.11] however that if Ḡ 2 ⇠1\dom(&), i.e., if Ḡ
is feasible for (13.117), then

m&(Ḡ) = ⇢Z mG&(Ḡ, Z) + #dom(&) (Ḡ)

If the stochastic program has a relatively complete recourse, then ⇠1 ✓ dom(&) and
hence #dom(&) (Ḡ) ✓ #⇠1 (Ḡ) for all feasible Ḡ 2 ⇠1. This and the fact that #⇠1 (Ḡ) and
#dom(&) (Ḡ) are convex cones imply that #⇠1 (Ḡ) +#dom(&) (Ḡ) = #⇠1 (Ḡ). Substituting
all this into (13.124) we have: G⇤ 2 ⇠1 is optimal if and only if

0 2 m 5 (G⇤) + ⇢Z mG&(G⇤, Z) + #⇠1 (G⇤) (13.125a)

Theorem 12.5 implies that #⇠1 (Ḡ) = {�T
_ + ` 2 R=1 : _ 2 R<1 , ` 2  �,`T

Ḡ = 0} for
Ḡ 2 ⇠1 where  � ✓ R=1 is the polar cone of  (Exercise 12.16). Therefore, while
(13.124) yields the KKT condition in Theorem 13.28 in terms of m&(G⇤), for problems
with a relatively complete recourse, (13.125a) yields an equivalent condition in terms
of ⇢Z mG&(G⇤, Z): G⇤ 2⇠1 is optimal if and only if there exists subgradients b⇤ 2 m 5 (G⇤)
and k⇤ 2 ⇢Z mG&(G⇤, Z), a dual feasible (_⇤,`⇤) 2 R<1 ⇥ ⇤ such that

b
⇤ +k⇤ = �

T
_
⇤ + `⇤, `

⇤T
G
⇤ = 0 (13.125b)

It is not common in applicaitons, however, that an analytical expression for &(G) or
&̃(G, Z) is available. When Z is a continuous random variable, &(G) and its derivative
generally need to be computed by numerical integration of &(G, Z) and its derivative.
This limits the practical solution of stochastic linear programs to problems where the
dimensionality of Z is small. One approach is to approximate a continuous Z by a
discrete random variable.

Multi-stage extension. The multi-stage extension of the stochastic program with
fixed recourse (13.117) is:

5
⇤ := min

G02R=0
5 (G0) +&1 (G0) s.t. ,0G0 = ⌘0, G0 2  

where the initial decision G0 is independent ofl and the value function&1 (G0) is given
by: for C = 1, . . . ,g,

&C (GC�1 (l)) := ⇢
ZC (l)&̃C (GC�1 (l), ZC (l))

&̃C (GC�1 (l), ZC (l)) := min
GC (l)�0

⇣
@

T
C
(l)GC (l) +&C+1 (GC (l))

⌘

s.t. ,CGC (l) = ⌘C (l)�)C (l)GC�1 (l)

where &g+1 (G) := 0 at the last stage C = g. Hence the initial decision G0 is made before
the realization of l. For each C = 1, . . . ,g, the stage-C decision GC (l) depends on
stage-(C�1) decision GC�1 (l), the realized stage-C cost @C (l) and constraint parameter
(,C ,⌘C (l),)C (l)), as well as the stage-(C + 1) value function &C+1 (G). The basic
theory on the e�ective domains dom(&C ), the value functions &C (G), and optimality
conditions can be extended from two-stage to multi-stage problems. Like dynamic
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programming, a multi-stage stochastic program with recourse can su�er from the
curse of dimensionality as the number of stages grows; see [157, Chapter 10] for
computational methods for multi-stage stochastic programs that possess simplifying
structures.

13.4.2 Stochastic nonlinear program with general recourse

Consider the stochastic nonlinear program:

5
⇤ := inf

G2R=1
51 (G) +&(G) s.t. �1G = 11, ⌘1 (G)  0 (13.126)

where the extended real-valued function & : R=1 ! [�1,1] is &(G) := ⇢l &̃(G,l),
l takes value in a sample space ⌦, and

&̃(G,l) := inf
H (l)2R=2

52 (G, H(l),l) (13.127a)

s.t. �2 (l)G +, (l)H(l) = 12 (l),⌘2 (G, H(l),l)  0 (13.127b)

First-stage functions are 51 :R=1!R, �1 2 R<1⇥=1 , 11 2 R<1 , ⌘1 :R=1!R;1 . Second-
stage functions are 52 : R=1 ⇥R=2 ⇥⌦! R, �2 (l) 2 R<2⇥=1 , , (l) 2 R<2⇥=2 and
12 (l) 2 R<2 for eachl 2⌦, and ⌘2 :R=1 ⇥R=2 ⇥⌦!R;2 . Compared with the stochas-
tic linear program (13.117) the main di�erence is that the recourse problem (13.127) is
generally not a linear program and that the recourse is generally not fixed (in particular,
the recourse matrix , (l) generally depends on l). We ignore measurability issues,
i.e., we assume all functions and sets we encounter are measurable. Furthermore we
make the following assumptions:

C13.9: Convexity.
1. 51 and ⌘1 are convex on R=1 .
2. For a.e. l 2 ⌦, 52 (·, ·,l) and ⌘2 (·, ·,l) are convex on R=1 ⇥R=2 .

We next study properties of the recourse function &(G) and then optimality condi-
tions. Under assumption C13.9, both &̃(G,l) and &(G) are closed convex functions in
G (Exercises 13.25), even though their e�ective domains dom(&(·,l)) and dom(&)
may not be closed sets (see Remark 12.3).

Lemma 13.29. Consider the stochastic nonlinear program with recourse
(13.126)(13.127) and suppose C13.9 holds.

1. &̃(G,l) and &(G) are convex on R=1 for a.e. l 2 ⌦.
2. If for every G1 2 R=1 the feasible region of the recourse problem (13.127) is

bounded, then

(a) &̃(G,l) and &(G) are lower semicontinuous on R=1 for a.e. l 2 ⌦.
(b) &̃(G,l) and &(G) are closed functions on R=1 for a.e. l 2 ⌦.

3. The e�ective domain dom(&) := {G 2 R=1 :&(G) <1} is a convex set.
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Let⇠1 := {G 2 R=1 : �1G = 11, ⌘1 (G)  0}. The Weierstrass Theorem 12.22 in Chap-
ter 12.7 implies the existence of primal optimal solution (Exercise 13.26) under the
additional assumption:

C13.10: Well posed &(G). &(G) 2 (�1,1].

Note that it is not necessary for the feasible set ⇠1\dom(&) of (13.126) to be closed.

Theorem 13.30 (Primal optimality). Consider the stochastic nonlinear program with
recourse (13.126)(13.127) and suppose assumptions C13.9 and C13.10 hold. Suppose
further that, for every G1 2 R=1 , the feasible region of the recourse problem (13.127)
is bounded. If ⇠1 is bounded and ⇠1\dom(&) < ;, then (13.126) has a finite optimal
value and it is attained at some G⇤ 2 R=1 . ⇤

Lemma 13.29 implies that dom(&) is a convex set (not necessarily closed) and&(G)
is a convex function on R=1 under Assumption C13.9, and hence (13.126) is a convex
problem. The Lagrangian is

! (G,_,`) := 51 (G) +&(G) + _T (�1G� 11) + `T
⌘1 (G) (13.128a)

The dual function is

3 (_,`) := inf
G2R=1

! (G,_,`), _ 2 R<1 , ` 2 R;1 (13.128b)

and the dual problem is

3
⇤ := sup

_,`�0
3 (_,`) (13.128c)

For strong duality and dual optimality we need the following additional assumption.

C13.11: Slater condition. There exists Ḡ 2 ri(dom( 51)) \ ri(dom(&)) such that
�1Ḡ = 11 and ⌘1 (Ḡ) < 0.

Assumptions C13.10 and C13.11 imply that & is proper. The properness and the con-
vexity of & on dom(&) (from Lemma 13.29), and the existence of Ḡ 2 ri(dom(&))
imply that m ( 51 +&) (G) = m 51 (G) + m&(G) for all G 2 dom(&), according to Theo-
rem 12.18. These properties, together with the Slater condition C13.11, allow us
to apply the Slater Theorem 12.27 and the generalized KKT Theorem 12.21 to
(13.126)(13.127)(13.128), with the following implication (cf. Exercise 12.24).

Theorem 13.31 (Strong duality and KKT for stochastic NLP). Consider the stochas-
tic program with general recourse (13.126)(13.127) and its dual (13.128). Suppose
assumptions C13.9, C13.10 and C13.11 hold. Then

1. Strong duality and dual optimality. If the optimal value 5
⇤ of (13.126) is finite

then there exists a dual optimal solution (_⇤,`⇤) 2 R<1 ⇥R;1+ that closes the duality
gap, i.e., 5 ⇤ = 3⇤ = 3 (_⇤,`⇤).
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2. KKT characterization. A feasible G⇤ 2 ⇠1 is optimal if and only if there exists a
dual feasible (_⇤,`⇤) 2 R<1 ⇥R;1+ such that

0 2 m 51 (G⇤) + m&(G⇤) + �T
1_
⇤ +

’
8

`
⇤
8
m⌘18 (G⇤) `

⇤T
⌘1 (G⇤) = 0

i.e., there exist subgradients b⇤ 2 m 51 (G⇤) and k⇤ 2 m&(G⇤), \⇤
8
2 m⌘18 (G⇤), and a

dual feasible (_⇤,`⇤) 2 R<̄1 ⇥R<1�<̄1
+ such that

0 = b
⇤ + k⇤ + �T

1_
⇤ + ⇥⇤T`⇤, `

⇤T
⌘1 (G⇤) = 0

where the rows of the matrix ⇥⇤ are \T
8
. In this case (G⇤,_⇤,`⇤) is a saddle point

that closes the duality gap and is primal-dual optimal. ⇤

As for stochastic linear programs, under appropriate conditions, we can express
m&(G) in terms of the expectation over l of m&(G,l), as

m&(G) = ⇢lmG&(G,l) + #dom(&) (G)

13.5 Example application: stochastic economic dispatch

In rest of this chapter we present power system examples to illustrate stochastic opti-
mization ideas studied in Chapters 13.1–13.4.

We have studied in Chapter 6.4 the problem of optimally scheduling generations and
demands and pricing electricity when there is no uncertainty. In this section we discuss
how the nominal economic dispatch problem of Chapter 6.4 can be modified when
uncertainty arises. Our main purpose is to illustrate various concepts of stochastic OPF
in a concrete application.

Consider a power network modeled by the DC power flow model of Chapter 4.6.2.
The network is represented by a connected graph ⌧ = (# ,⇢) of # + 1 nodes and
" := |⇢ | lines where # := {0}[# , # := {1,2, . . . ,#} and ⇢ ✓ # ⇥# . Let ⇠ denote
the (# + 1) ⇥" incidence matrix (defined in (4.14)). Each line ; := ( 9 , :) 2 ⇢ is
parametrized by its susceptance 1; > 0. Let ⌫ := Diag(1; , ; 2 ⇢) � 0 be the diagonal
matrix of line susceptances. Suppose at each bus 9 :

• There is possibly an uncontrollable generation 6 9 � 0 (e.g. photovoltaic) and an
uncontrollable load 3 9 � 0. The net demand to the grid is 6 9 � 3 9 .

• There is a single dispatchable unit ? 9 taking value within its capacity limits
[?min
9

, ?max
9

]. It can be a generator (?min
9
� 0), a controllable load (?max

9
 0),

or a prosumer ?min
9
 0  ?max

9
. Let 5 9 (?8) denote the cost function of unit 9 , i.e.,

5 9 (? 9 ) models the generation cost at a generator bus with ? 9 � 0 and � 5 9 (? 9 )
models the utility of consuming �? 9 � 0 at a load bus.
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Any of (6 9 ,3 9 ) and ?min
9

= ?max
9

can be set to zero if they are not present at node 8.

The Laplacian matrix ! associated with ⌧ is defined to be

! := ⇠⌫⇠
T

(See Chapter 4.6.1 for properties of !.) A net injection (vector) (? + 6 � 3) induces
power flows % on lines given by

% = (
T
? := ⌫⇠

T
!
†(? +6� 3) (13.129)

where ( := !†⇠⌫ is called a shift factor. The expression (13.129) for % is valid if
and only if 1

T (? +6� 3) = 0, i.e., if and only if supply and demand are balanced. The
power flow % 9: on each line 9 ! : 2 ⇢ is directional (i.e, % 9: < 0 means power flows
from buses : to 9). There are line capacities %min

9:
< 0 < %

max
9:

in each direction and the

line flows % = (T
? induced by ? must lie within these limits.

13.5.1 Nominal ED

We have studied the following nominal economic dispatch in Chapter 6.4.2 that min-
imizes aggregate production cost subject to capacity limits, power balance, and line
limits, when (6,3) are known:

min
?

min??max

’
92#

5 9 (? 9 ) (13.130a)

s.t. 1
T (? +6� 3) = 0 [W] (13.130b)

%
min  (

T (? +6� 3)  %
max [^�, ^+] (13.130c)

with associated Lagrange multipliers (W, ^�, ^+) with (^�, ^+) � 0. The locational
marginal price (LMP) or nodal price is the following vector:

_ := _(W, ^) =: W1+ (^ := W1+
⇣
!
†
⇠⌫

⌘
^ 2 R#+1 (13.131)

where ^ := ^� � ^+. The Slater Theorem 8.17 of Chapter 8.3.4 implies that if the cost
functions 5 9 are convex and the economic dispatch (6.22) has a finite optimal value,
then there exist optimal Lagrange multipliers (W⇤, ^�⇤, ^+⇤) and hence an LMP _

⇤

such that a dispatch ?
⇤ is optimal for (13.131) if and only if ?⇤ is primal feasible,

(^�⇤, ^+⇤) � 0, and (?⇤,W⇤, ^�⇤, ^+⇤) satisfies stationarity:

5
0
9
(?⇤
9
)

8>>><
>>>:

= _
⇤
9

if ?
min
9

< ?
⇤
9
< ?

max
8

> _
⇤
9

only if ?
⇤
9
= ?min

9

< _
⇤
9

only if ?
⇤
9
= ?max

9

(13.132a)

and complementary slackness:

(^�⇤)T
⇣
%

min� (T (?⇤ +6� 3)
⌘
= 0,

�
^
+⇤�T

⇣
(

T (?⇤ +6� 3)�%max
⌘
= 0 (13.132b)
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13.5.2 Robust ED

Suppose the uncontrollable generations and demands (6 9 ,3 9 ) are uncertain. For sim-
plicity we take 5 9 (? 9 ) := 2 9 ? 9 so that the economic dispatch is a linear program. To
formulate robust economic dispatch we first relax the power balance equality constraint
(13.130b) into an inequality constraint:

5min := min
?

min??max
2

T
? (13.133a)

s.t. 1
min  1

T (? +6� 3)  1max [W�,W+] (13.133b)

%
min  (

T (? +6� 3)  %max [^�, ^+] (13.133c)

with associated Lagrange multipliers (W�,W+, ^�, ^+) with (W�,W+) � 0 and (^�, ^+) �
0. We assume 1min

< 0 < 1
max and %min

< 0 < %
max. The rationale is that the dispatch

decisions and LMP (?⇤,_⇤) are made in advance, e.g., 5 or 15 minutes before delivery,
before (6,3) are realized. At delivery time when (6,3) are realized, as long as the power
imbalance 1

T (? + 6� 3) over the entire network is small enough in magnitude, it can
be met by some reserve generation and demand response in some manner. (Scheduling
of reserves is formulated in Chapter 6.4.4 as a two-stage optimization with recourse.)
Let W := W��W+ and recall ^ := ^�� ^+. Then, as for the nominal ED (13.130), a primal
feasible ?⇤ and a dual feasible (W�⇤,W+⇤, ^�⇤, ^+⇤) are optimal if and only if they satisfy
(13.132) with LMP _⇤ := W⇤1+ (^⇤, as in (13.131) but with W⇤ := W�⇤ �W+⇤.

Suppose the uncertain generations and loads (68 ,38) take values in ⌧8 ⇥ ⇡8 :=
[0,6max

8
]⇥ [0,3max

8
] and let⌧⇥⇡ := (Œ

8
⌧8)⇥ (

Œ
8
⇡8). The robust counterpart of the

relaxed economic dispatch (13.133) chooses an optimal dispatch ?⇤ so that power can
be balanced in the worst-case realization of (6,3):

5
⇤
rED := min

?
min??max

2
T
? (13.134a)

s.t. 1
min  1

T (? +6� 3)  1max, 8(6,3) 2 ⌧ ⇥⇡ (13.134b)

%
min  (T (? +6� 3)  %max, 8(6,3) 2 ⌧ ⇥⇡ (13.134c)

We now show that this semi-infinite problem is equivalent to a finite linear program.
The subproblems (13.8) corresponding to the power balance constraint (13.134b) are:

min
(6,3)2⌧⇥⇡

1
T (6� 3) = �1

T
3

max, max
(6,3)2⌧⇥⇡

1
T (6� 3) = 1

T
6

max

Therefore the semi-infinite constraint (13.134b) has the finite reformulation:

1
min +1

T
3

max  1
T
?  1

max�1
T
6

max

which is feasible only if 1
T (3max +6max)  1max � 1min. This constraint says that the

dispatch must be able to meet the largest possible demand but also allow the largest
possible generation.

Denote by B 9; the ( 9 , ;) entry of ( := !†⇠⌫ and let B; := (B 9; , 9 2 #) denote the ;th
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column of (. Then we have for the ;th constraint in (13.134c):

min
(6,3)2⌧⇥⇡

B
T
;
(6� 3) = �

�
C
�
;

�T
1, max

(6,3)2⌧⇥⇡
B

T
;
(6� 3) =

�
C
+
;

�T
1

where (C�
;
)T := C�T

;
(B;) and (C+

;
)T := C+T

;
(B;) are row vectors in R#+1

+ that depend on B;:

C
�
; 9

:=

(
|B 9; |3max

9
if B 9; � 0

|B 9; |6max
9

if B 9;  0
, C

+
;8

:=

(
|B 9; |6max

9
if B 9; � 0

|B 9; |3max
9

if B 9;  0

Recall that B 9; is the marginal increase in line flow �%; for additional unit of injection
�? 9 at bus 9 . Therefore, for upper line limit C+

;
, when node B 9; � 0, the worst-case

uncertainty on line ; (in terms of pushing the line flow towards %max
;

) is 6max
9

; otherwise
the worst-case uncertainty is 3max

9
. The worst-case realization of (6,3) can be di�erent

for di�erent constraints ; and the robust formulation requires that the line flow %; on
any line ; due to any realization (6: ,3: ) must stay within its line limit (%min

;
,%max
;

). Let
)
� and )+ be matrices whose ;th rows are the row vectors (C�

;
)T and (C+

;
)T respectively.

Then the semi-infinite constraint (13.134c) has the finite reformulation:

%
min +)�1  (

T
?  %

max�)+
1

Therefore the semi-infinite robust program (13.134) can be reformulated as a linear
program:

5
⇤
rED := min

?
min??max

2
T
? (13.135a)

s.t. 1
min + 3maxT

1  1
T
?  1max�6maxT

1 [W�,W+] (13.135b)

%
min +)�1  (T

?  %max�)+
1 [^�, ^+] (13.135c)

with associated Lagrange multipliers (W�,W+, ^�, ^+) with (W�,W+) � 0 and (^�, ^+) �
0. As for the relaxed economic dispatch (13.133), a primal feasible ?⇤ and a dual
feasible (W�⇤,W+⇤, ^�⇤, ^+⇤) are optimal if and only if the stationarity and complemen-
tary slackness conditions (13.132) hold with LMPs defined as _⇤ := W⇤1+ (^⇤ where
W
⇤ := W�⇤ �W+⇤ and ^⇤ := ^�⇤ � ^+⇤.

The lower and upper limits on power imbalance and line flows are tighter in the
robust program (13.135) than those in (13.133). The tightening accommodates the
worst-case uncertainty and can be too conservative.

13.5.3 Chance constrained ED

The constraints (13.133b)(13.133c) are

1
T (6� 3) � 1

min�1
T
?, (

T (6� 3) � %
min� (T

?

1
T (6� 3)  1

max�1
T
?, (

T (6� 3)  %
max� (T

?

Define the random (column) vector taking value in R"+1:

Z :=
⇣
1

T (6� 3), (T (6� 3)
⌘
=

⇥
1 (

⇤T (6� 3) (13.136a)
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Let �Z (I) denote the distribution function of Z and assume it is continuous. Let
⌘1 : R#+1! R"+1 and ⌘2 : R#+1! R"+1 be the a�ne functions:

⌘1 (?) :=
⇣
1

min�1
T
?, %min� (T

?

⌘
(13.136b)

⌘2 (?) :=
⇣
1

max�1
T
?, %max� (T

?

⌘
(13.136c)

Then the chance constrained formulation (13.49) of the relaxed economic dispatch
(13.133) is:

5
⇤
ccED := min

?
min??max

’
92#

5 9 (? 9 ) s.t. �Z (⌘2 (?))��Z (⌘1 (?)) � 1� n (13.136d)

corresponding to the chance constraint P (⌘1 (?)  Z  ⌘2 (?)) � 1 � n . Even if
�Z (⌘ 9 (?)) are concave functions in ? (which will be the case if �Z (I) is concave in I
since �Z is nondecreasing and nonnegative), their di�erence �Z (⌘2 (?)) ��Z (⌘1 (?))
may not be concave in ?, and hence the chance constrained economic dispatch (13.136)
is generally a nonconvex problem.

13.5.4 Scenario-based ED

Suppose
�
Z

1, . . . , Z 
�

with  � # + 1 are iid samples according to the distribution
function �I . Then the scenario program corresponding to (13.136) is:

5
⇤
sED ( ) := min

?
min??max

’
92#

5 9 (? 9 ) s.t. ⌘1 (?)  Z :  ⌘2 (?), : = 1, . . . , (13.137)

Suppose the cost is linear, i.e., 5 9 (G 9 ) = 2 9G 9 and that the minimum cost 5 ⇤sED ( )
in (13.137) is finite for every realization Z :=

�
Z

1, . . . , Z 
�
. Then (13.137) is a linear

program for every Z since ⌘8 (?) are a�ne functions and Theorem 8.23 on linear
program optimality implies that both the primal and dual optimal values are attained.
Let ?⇤

 
denote an optimal solution of the randomized problem (13.137). It violates

the chance constraint in (13.136d) with a (random) probability + (?⇤
 
) with mean

⇢
#

�
+ (?⇤

 
)
�
 (# +1)/( +1) according to Theorem 13.14. Moreover Theorem 13.15

implies that the tail probability of + (?⇤
 
) is bounded by a Binomial tail:

P
 

�
+

�
?
⇤
 

�
> n

�


#’
8=0

✓
 

8

◆
n
8 (1� n) �8

For any V > 0 we can choose the number  of samples greater than the threshold
 (n , V) given in (13.109) to guarantee that the P 

�
+

�
?
⇤
 

�
> n

�
 V. Moreover such a

 will ensure that, with probability at least 1� V, the optimal value 5 ⇤sED of the scenario
program is close to the optimal values 5 ⇤rED and 5

⇤
ccED according to Theorem 13.25.

Let

(̃ :=
⇥
1 (

⇤
, %̃

min :=

1

min

%
min

�
, %̃

max :=

1

max

%
max

�
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For each realization of the  samples (Z1, . . . , Z ), the scenario program (13.137) is a
convex program and a special case of robust ED (13.134) with a finite set of uncertain
values for (6,3):

5
⇤
sED ( ) := min

?
min??max

’
92#

5 9 (? 9 ) (13.138a)

s.t. %̃
min�min

:

Z
:  (̃

T
?  %̃

max�max
:

Z
: (13.138b)

Therefore for the (randomized) program (13.138), LMP _⇤
 

can be defined in the same
way as that for (13.133), but with possibly a tighter constraint. A primal feasible ?⇤

 

and a dual feasible (W�⇤
 

,W+⇤
 

, ^�⇤
 

, ^+⇤
 
) are optimal if and only if the stationarity and

complementary slackness conditions (13.132) hold.

13.5.5 Special case: no congestion

We illustrate the impact of uncertainty on the prices, optimal dispatch and cost using
the following special case:

1. Omit line limits, i.e., the line capacities are large enough not to pose any constraint.
This problem is traditionally called the economic dispatch (the version with line
limits are traditionally called DC OPF).

2. All units are generators with cost functions 5 9 (? 9 ) := ?2
9
/(2[ 9 ) over [0,1] where

[ 9 > 0. We assume no production limits, i.e., the generators’ capacities are large
so that their generation levels will be constrained by costs and power balance
constraints rather than capacity limits.

Let Z := 1
T (6� 3) denote the total uncontrollable excess generation and we assume it

takes value in a compact set / . Then the nominal economic dispatch (13.133) given a
realization Z0 2 / , its robust counterpart (13.135), and the scenario-based ED (13.137)
are all convex quadratic programs of the form:

5
⇤ (1) := min

?�0

’
9

5 9 (? 9 ) s.t. 1  1
T
?  1 [W�,W+] (13.139a)

with respectively (we assume 1 > 0 a.s.):

5
⇤
min : 0 < 1 := 1

min� Z0, 1 := 1
max� Z0 (13.139b)

5
⇤
rED : 0 < 1 := 1

min�min
Z 2/

Z , 1 := 1
max�max

Z 2/
Z (13.139c)

5
⇤
sED ( ) : 0 < 1 := 1

min�min
:

Z
: , 1 := 1

max�max
:

Z
: (13.139d)

where the scenario-based ED is a randomized program defined by  iid samples of
the total uncontrollable excess generation Z1, . . . , Z .

We now analyze the LMP W⇤ := W�⇤ � W+⇤ and optimal dispatch programs in ?⇤ for
(13.139) and compare their optimal values 5 ⇤min, 5 ⇤rED, 5 ⇤sED ( ). Since the marginal costs
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5
0
9
(? 9 ) = ? 9/[ 9 > 0 for ? 9 > 0 for all 9 , W⇤ = 5

0
9
(?⇤
9
) > 0 at optimality and the lower

bound of the power balance constraint is tight. Given any W > 0, ? 9 (W) := 5 0�1
9

(W) = [ 9W
is the amount that is incentive compatible for unit 9 to produce. At optimality, power
balance becomes 1 = W⇤

Õ
#

9=0 [ 9 , and hence

W
⇤ =

1Õ
8
[8

, ?
⇤
9
= ? 9 (W⇤) =

[ 9Õ
8
[8

1, 5
⇤ (1) =

1
2

2
Õ
8
[8

(13.140)

Hence the optimal cost 5 ⇤ depends only on the lower limit 1. We can interpret [ 9 as
a participation factor: generator 9 produces a share of the minimum excess demand 1
proportional to its [ 9 . Define the deterministic quantity Z/ and the random variable
Z as:

Z/ := min
I2/

Z , Z := min
:

Z
:

i.e., Z/ represents the worst-case demand (�Z/ > 0 is the largest in /) and Z rep-
resents the worst-case demand among the  random samples. Applying (13.140) to
(13.139), the di�erences in LMPs, optimal dispatches and optimal costs under robust
and scenario-based ED, in comparison with the nominal ED (13.133) if the realization
of (6,3) were known in advance, are respectively

W
⇤
rED�W⇤min =

Z
0� Z/Õ
8
[8

� 0, W
⇤
sED�W⇤min =

Z
0� Z Õ
8
[8

?
⇤
rED, 9 � ?⇤min, 9 =

[ 9 (Z0� Z/ )Õ
8
[8

� 0, ?
⇤
sED, 9 � ?⇤min, 9 =

[ 9 (Z0� Z )Õ
8
[8

and the di�erences in the optimal costs are:

5
⇤
rED� 5 ⇤min =

1
2
Õ
9
[ 9

⇣
Z

0� Z/
⌘ ⇣

21min� Z0� Z/
⌘
� 0 (13.141a)

5
⇤
sED ( )� 5 ⇤min =

1
2
Õ
9
[ 9

⇣
Z

0� Z 
⌘ ⇣

21min� Z0� Z 
⌘

(13.141b)

By assumption, 21min�Z0�Z/ � 21min�Z0�Z/ > 0 a.s.. Since the worst-case demand
is always higher, i.e., Z0 � Z/ a.s., robust ED always produces a larger LMP, dispatches
more power and incurs a higher optimal cost than the nominal ED (13.133). This may
not be the case with scenario-based ED since it is a randomized program. If Z0

< Z 

(i.e., actual excess generation is less than the scenario minimum), then 5 ⇤sED ( ) < 5
⇤
min

though the scenario-based dispatch will not meet the actual supply and will rely on
reserves. On the other hand

5
⇤
rED � max

�
5
⇤
min, 5 ⇤sED ( )

 
a.s.

Suppose Z0 is also drawn from the same distribution as the  random samples in
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scenario-based ED. Then the expected optimality gaps are, from (13.141),

5
⇤
rED�⇢ 5 ⇤min =

1
2
Õ
9
[ 9

⇣
⇢Z

0� Z/
⌘ ⇣

21min�⇢Z0� Z/
⌘
� 0

⇢ 5
⇤
sED ( )�⇢ 5 ⇤min =

1
2
Õ
9
[ 9

⇣
⇢Z

0�⇢Z 
⌘ ⇣

21min�⇢Z0�⇢Z 
⌘
� 0

where ⇢- denotes the expectation of the random variable - .

13.6 Example application: security constrained unit commitment

We have formulated in Chapter 6.4.5 security constrained unit commitment as a two-
stage stochastic linear program with fixed recourse (studied in Chapter 13.4.1) where
the second-stage cost is the expected cost. The first-stage variable D := (D 9 (C) 8 98C) are
binary commitment decisions for all units 9 in all periods C. The second-stage variable
G(C) := (?(C),Amin (C),Amax (C),A: (C), : � 1) in period C are dispatch and reserve amounts
for all units in C. Let G := (G(C) 8C). The uncertainty l takes a finite number values
indexed by : = 1, . . . , . It takes the form (assuming the dispatch costs and the reserve
requirement functions ⌘C : are linear functions; see (6.47)):

min
D

5 (D) +⇢l&̃⇤ (D,l) s.t. �D  1 (13.142a)

where, given the first-stage decision D and uncertainty l, the second-stage problem is
the linear program:

&̃
⇤ (D,l) := min

G

@
T (l)G s.t. ) (l)D +,G(l)  ⌘(l) (13.142b)

In this section we present an alternative formulation from [167] that combines the idea
of two-stage optimization with recourse with robust optimization where the second-
stage cost is not the expected cost, but the worst-case cost.

13.6.1 Two-stage adaptive robust formulation

Suppose the uncertain parameter is the uncontrollable net demand Z (C) := 3 (C) �6(C)
in period C that takes continuous values in the uncertainty set:

/
C :=

(
Z (C) 2 R#+1 :

’
9

|Z 9 (C)� Z̄ 9 (C) |
Ẑ 9 (C)

 �C , |Z 9 (C)� Z̄ 9 (C) |  Ẑ 9 (C)8 9
)

where Z̄ 9 (C) and Ẑ 9 (C) are the forecast net demand and the maximum forecast error
respectively for C = 1, . . . ,) . Let Z := (Z (C)8C) 2 / := /1 ⇥ · · ·⇥ /) . The first-stage
variable D := (D 9 (C) 8 98C) 2 {0,1}(#+1)) are binary commitment decisions for all units
9 in all periods C. The second-stage variable G(C, Z) := (?(C),Amin (C),Amax (C),A (C, Z)) in
period C are dispatch and reserve amounts for all units in C in response to Z (C) 2 / C . Let
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G(Z) := (G(C, Z) 8C) 2 R4(#+1)) be the second-stage responses to Z for all periods. The
two-stage robust adaptive formulation of security constrained unit commitment takes
the form (cf. (13.142)):

min
D2{0,1}(#+1))

5 (D) + max
Z 2/

&̃
⇤ (D, Z) s.t. �D  1 (13.143)

where, given a commitment decision D 2 {0,1}(#+1)) and a net demand Z 2 / , the
second-stage problem is:

&̃
⇤ (D, Z) := min

G2R4(#+1))
@

T (Z)G s.t. ) (Z)D +,G(Z)  ⌘(Z) (13.144)

i.e., the commitment decision D⇤ is chosen to minimize the worst-case optimal dispatch
cost where the worst case is over all possible uncontrollable net demands Z 2 / .

A di�culty in (13.143)(13.144) is that the second-stage decision is a max-min
problem. This can be converted into a max-max problem using LP duality. Suppose for
each (D, Z) the optimal &̃⇤ of the linear program (13.144) is attained (finite) so strong
duality holds (Theorem 8.23). The dual problem is

&̃
⇤ (D, Z) = max

`�0
() (Z)D� ⌘(Z))T

` s.t. ,
T
`+ @(Z) = 0

Then the max-min problem maxZ 2/ &̃⇤ (D, Z) in (13.143) becomes a max-max problem:

max
Z 2/

&̃
⇤ (D, Z) = max

Z 2/ ,`�0
() (Z)D� ⌘(Z))T

` s.t. ,
T
`+ @(Z) = 0 (13.145)

This problem is generally intractable if () (Z),⌘(Z),@(Z)) depend on Z (even with
fixed recourse ,). For the security constrained unit commitment problem (6.47),
suppose the matrix ) (Z) and the cost vector @(Z) in (13.145) are independent of Z , i.e.,
) (Z) = ) and @(Z) = @. This will be the case if the cost functions 5C (?(C) + A (C, Z), Z)
and the reserve requirement functions ⌘C (Amin (C),Amax (C), Z) of the security constrained
real-time dispatch problem 5

⇤ in (6.47) are of the form:

5C (H, Z) := @
T
C
H, ⌘C (A , Ā , Z) := ⌘

T
C
A + ⌘̄T

C
Ā

i.e., the coe�cients @C ,⌘
C
, ⌘̄C are independent of the uncertain parameter Z . The un-

certain parameter Z enters only into (6.47g)(6.47h) in a way that the cost coe�cient
⌘(Z) = Z in (13.145). Then the problem (13.145) becomes:

&
⇤ (D) := max

Z 2/
&̃
⇤ (D, Z) = max

Z 2/ ,`�0
()D� Z)T

` s.t. ,
T
`+ @ = 0 (13.146)

The feasible set is a fixed polyhedron independent of Z . The only nonlinearity is the
bilinear term Z

T
` in the objective function. Bilinear programs are generally NP-hard.

13.6.2 Solution

In the following we present the solution method from [167] for the two-stage op-
timization (13.143)(13.146). It is a two-level algorithm where the outer level uses
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Benders decomposition for solving (13.143) for the commitment decision D using cuts
generated from the inner level. The inner level solves the bilinear program (13.146)
approximately.

Outer algorithm: Benders decomposition

Step 0 Choose any feasible first-stage solution D0 to (13.143). Solve &⇤ (D0) in (13.146)
to get an initial solution (Z1,`1). Set ⇠ lb := �1, ⇠ub :=1 and : := 1.

Step 1 Solved the mixed integer program

min
D,U

5 (D) +U s.t. �D  1, U � ()D� Z;)T
`; , ;  : (13.147)

This step solves (13.143) with&⇤ in (13.146) approximated by U. Let the optimum
be (D: ,U: ) and the minimum value ⇠ lb := 5 (D: ) +U: .

Step 2 Solve a linearized version of the inner problem &
⇤ (D: ) in (13.146) and denote its

optimal solution by (Z:+1,`:+1). Let the maximum value be⇠ub := 5 (D: ) +&⇤ (D: )
(see below).

Step 3 If ⇠ub�⇠ lb
< n , stop and return D: ; otherwise, set : := : +1 and goto Step 1.

Inner algorithm: bilinear program &
⇤ (D)

Step 0 Choose an initial Z1 2 / . Set $lb := �1, $ub :=1 and 9 := 1.
Step 1 Solved the (dual) linear program &̃

⇤ (D: , Z 9 ) := max`�0 ()D: � Z 9 )T
` s.t. ,T

`+
@ = 0 in (13.146). Let the optimum be ` 9 and the linearization of the bilinear term
Z

T
` around (Z 9 ,` 9 ) be

! 9 (Z ,`) := Z
T
9
` 9 + (`� ` 9 )T

Z 9 + (Z � Z 9 )T
` 9

Let $lb := ()D: � Z 9 )T
` 9 .

Step 2 If$ub�$lb
< X, stop and return (Z 9 ,` 9 ); otherwise, set 9 := 9 +1 and goto Step 3.

Step 3 Solve the linearized version of &⇤ (D: ) in (13.146):

$
ub := max

Z 2/ ,`�0,V
D

T
:
)`� V s.t. ,

T
`+ @ = 0, V � ! 9 (Z ,`)

Let the optimum be (Z 9+1,` 9+1). Goto Step 1.

Note that the Benders cut added to the Outer algorithm in Step 1 are valid, i.e.,
&
⇤ (D) � ()D� Z 9 )T

` 9 for all D because from (13.146)

&
⇤ (D) := max

Z 2/
&̃
⇤ (D, Z) � &̃

⇤ (D, Z 9 ) � ()D� Z 9 )T
` 9 , 8D

where the last inequality follows because ` 9 in Step 1 of the Inner algorithm is feasible
for the dual linear program, i.e.,,T

` 9 + @ = 0.
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13.7 Chapter summary

1. Robust optimization (13.7) chooses an optimal G⇤ that remains feasible in the
worst-case realization of the uncertain parameter Z . It is generally semi-infinite
and intractable, but has a finite convex reformulation if the subproblem (13.8)
sup

Z 2/ (G) ⌘(G, Z)  0 has a finite convex representation. This depends on both the
constraint function ⌘ and the uncertainty set / (G). Examples of tractable robust
programs are summarized in Table 13.1.

2. Chance constrained optimization (13.45) chooses an optimal G⇤ that satisfies con-
straints with high probability, not necessarily with probability 1, and is hence less
conservative than robust optimization. If the constraint function ⌘ is concave and
the distribution function �Z is U-concave for some U 2 [�1,1], then the feasible
set {G : �Z (⌘(G)) � ?} is convex and closed (Theorem 13.7). Under the Slater
condition, strong duality holds, dual optimality is attained, and a saddle point is
primal-dual optimal (Theorem 13.8).

3. Concentration inequalities can be used to bound chance constraints and derive a
convex safe approximation of a chance constrained program. The most widely used
inequalities include the Markov’s inequality, Chebyshev’s inequality, Cherno�
bound. The Azuma-Hoe�ding inequalities provide an exponential bound on the
tail probability of the sample mean of independent bounded random variables
(Theorem 13.11) or the tail probability of a martingale with bounded increments
(Theorem 13.12). These results are summarized in Table 13.2.

4. Convex scenario optimization CSP(#) (13.84) chooses an optimal G⇤
#

that satisfies
# iid constraints. It is a randomized problem and hence the violation probability
+ (G⇤

#
) is itself a random variable under the product measure P# on the # random

samples. Its expected value and tail probability are bounded by:

⇢
#

�
+

�
G
⇤
#

� �
 B

max

# +1
, P

#
�
+

�
G
⇤
#

�
> n

�

C
max�1’
8=0

✓
#

8

◆
n
8 (1� n)#�8

where Bmax  = and Cmax  = are upper bounds on the numbers of support constraints
and generalized support constraints respectively. If CSP(#) is uniformly supported
with B support constraints, then Bmax and Cmax can both be replaced by B and the
bounds are tight (Theorems 13.14 and 13.15). The key proof ideas are summarized
in Table 13.3. These bounds translate into sample complexity, i.e., thresholds for
# that guarantee su�ciently small violation probability + (G⇤

#
) in expectation

or probability (Corollary 13.22). These thresholds also guarantee that the optimal
cost of CSP(#) is close to that of the robust program (13.82) or chance constrained
program (13.83) with high probability.

5. While robust, chance constrained and scenario-based programs only make de-
cisions before the uncertain parameter Z is realized, a two-stage linear program
(13.117) makes a first-stage decision before Z is realized and a second-stage de-
cision (recourse action) after Z is realized. When the recourse matrix , is fixed
and the second moment of Z is finite, the e�ective domain dom(&) of the recourse
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function&(G) is a closed and convex set,&(G) is convex and Lipschitz on dom(&)
and di�erentiable in ri(dom(&)) (Lemma 13.27). In this case the two-stage LP
(13.117) is a conic program and the Slater Theorem 12.31 implies that strong
duality holds, dual optimality is attained, and the KKT condition characterizes a
primal-dual optimum and a saddle point (Theorem 13.28). These properties can
be extended to two-stage nonlinear programs (Theorem 13.31).

6. Finally these concepts applied to stochastic economic dispatch and security con-
strained unit commitment with a two-stage adaptive robust formulation.

13.8 Bibliographical notes

Tractability of the robust optimization mostly follows [168] (Theorem 13.1 on robust linear program follows
[168, Theorem 1.3.4, p.20], Theorem 13.2 on robust second-order cone program follows [168, Theorem
6.3.2, pp. 162–165], and Theorem 13.4 on robust SDP follows [168, Theorem 8.2.3]). Theorem 13.7 on the
convexity of the feasible set of chance constrained optimization is adapted from [156, Theorem 4.43, p.117].
See [156, Chapter 4.2] for more results on U-concavity of functions and convexity of chance constrained
sets. The concentration inequalities in Chapter 13.2.2 are some of the most basic inequalities in probability;
see [169] for much more results. The safe approximation in Theorem 13.9 of the chance constrained linear
program is a special case of the original result in [170]. The main references for convex scenario optimization
include [162, 160, 163, 164]. The proof of Lemma 13.17 is from [162]. Theorem 13.14 is first proved in
[160] and the proof here is adapted from [163]. The proof of Theorem 13.15 in Chapter 13.3.5 for general
problems seems to be new. Theorem 13.25 on optimality guarantees for scenario program is from [164].
For sample average approximation to chance constrained program, see [171, 172]. Recent monograph on
distributionally robust learning includes [173]. Stochastic program is studied in e.g. [174] [157, Chapter
3][156, Chapter 2] (e.g., Lemma 13.26 is from [157, Theorems 4 and 5, p.111], with detailed proof in [174,
Theorems 4.1, 4.7, 4.10]. Part 1 of Lemma 13.27 is proved in [174, Theorems 7.6, 7.7]; part 2 in [157,
Theorem 6, pp.112] [175, 176]; and part 3 in [157, Theorems 1, 2, p.106; Theorem 5, pp.111].) More general
results on optimality, duality, and sensitivity of optimal solutions to parameter and distribution perturbations
can be found in [176, 174, 166, 177].

For a recent survey of stochastic optimization in power systems, see [106]. Unit commitment was first
formulated as a two-stage robust optimization in [167, 178, 179] and extended in [180] to a multi-stage
problem to take into account of uncertain hourly net demand that unfolds over 24 hours the following day.

13.9 Problems

Chapter 13.1
Exercise 13.1 (Representation). 1. Explain why -1 := {G 2 R= : kGk1  1} is speci-

fied by =2 inequalities. Show that it is the same as -2 := {G 2 R= :
Õ
=

8=1 H8  1,�H8 
G8  H1, 8 = 1, . . . ,=}, a set specified by 2= variables and 2=+1 inequalities.

2. Explain why -1 := {G 2 R= : kGk1  1} is specified by 2= inequalities. Show that
it is the same as -2 := {G 2 R= : H8  1,�H8  G8  H1, 8 = 1, . . . ,=}, a set specified
by 2= variables and 3= inequalities.
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Exercise 13.2 (Closed and convex /). Consider the robust optimization (13.2) repro-
duced here:

min
G2R=

5 (G) s.t. ⌘(G, Z)  0, 8Z 2 / (13.148)

where 5 : R= ! R is a cost function and / 2 R! is an uncertainty set. Suppose, for
every G 2 R=, ⌘(G, ·) is convex and continuous on / . Show that we can assume without
loss of generality that / is closed and convex. (Hint: Show that if G is a feasible solution
for (13.148) then it remains feasible when / is extended to its closure cl(/) or convex
hull conv(/).)

Exercise 13.3 (Robust SOCP relaxation of OPF). This problem shows how to formulate
the robust counterpart of a nominal problem that involves equality constraints.

Consider the second-order cone relaxation of optimal power flow (OPF) in (11.5).
Recall the (# +1)⇥# incidence matrix⇠ of a radial network and let⇠+ := max{⇠,0},
⇠
� :=min{⇠,0}. Let H1 := (?,@) 2 R2(#+1) denote injections that are assumed control-

lable and H2 := (E,✓,%,&) 2 R4#+1 the resulting states. Let A := Diag(A 9: , ( 9 , :) 2 ⇢)
and G := Diag(G 9: , ( 9 , :) 2 ⇢) denote the given diagonal matrices of line resistances
and inductances.

1. Show that the SOCP relaxation of OPF in (11.5) takes the form:

min
H1,H2

2
T
1H1 + 2T

2H2 (13.149a)

s.t. �0H1 +⌫0H2 = 0, ⌫ 9: H2 2  soc, ( 9 , :) 2 ⇢ (13.149b)

H
min
1  H1  Hmax

1 , E
min  E  Emax, ✓  ✓max (13.149c)

for some (4# +1) ⇥ (4# +1) matrix ⌫ 9: for every line ( 9 , :) 2 ⇢ , where  soc :=
{(D, C) 2 R4 : kDk2  C} is the standard second-order cone, and

�0 :=
266664
I#+1 0#+1

0#+1 I#+1

0# 0#

377775
, ⌫0 :=

266664
0#+1 ⇠

�
A �⇠ 0(#+1)⇥#

0#+1 ⇠
�
G 0(#+1)⇥# �⇠

⇠
T

A
2 + G2 �2A �2G

377775
(13.149d)

with I< being the identity matrix of size <, and 0<, 0<⇥= being respectively the
<⇥< and <⇥= zero matrices.

2. Suppose the line resistances A +�A and inductances G +�G have uncertain per-
turbations of �A := Diag(�A 9: , ( 9 , :) 2 ⇢) and �G := Diag(�G 9: , ( 9 , :) 2 ⇢) re-
spectively. Let the uncertain parameter Z := (�A , �G) that takes value in some
uncertainty set /Z . Show that the robust counterpart of (13.149) is:

min
H1, C

C s.t. 2
T
1H1 + 2T

2H2  C, ⌫ 9: H2 2  soc, ( 9 , :) 2 ⇢ , 8H2 2 / (H1)

H
min
1  H1  Hmax

1 , Emin  E  Emax, ✓  ✓max, 8H2 2 / (H1)

where (derive �⌫(Z))

/ (H1) := {H2 2 R4#+1 : �0H1 + (⌫0 +�⌫(Z))H2 = 0, 8Z 2 /Z }
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i.e., the uncertainty set /Z has been embedded in the new uncertainty set / (H1).
Is the robust counterpart tractable?

Exercise 13.4 (Robust LP: / (G)). 1. Prove part 1 of Theorem 13.1. Show that if
/ (G) := { Z 2R: : kZ k1  ⌘(G) } depends on G then the semi-infinite linear program
(13.10) is equivalent to:

min
(G,H)2R=+:

2
T
G s.t. ⌘(G)

!’
;=1

H;  �(0T
0G� 10), �H;  0T

;
G� 1;  H; , ; = 1, . . . , :

which may not be convex.
2. Prove part 2 of Theorem 13.1. Show that if / (G) := { Z 2 R: : kZ k2  A (G) }

depends on G then the semi-infinite linear program (13.10) is equivalent to:

min
G2R=

2
T
G s.t. 0

T
0G + A (G)

s’
;

⇣
0

T
;
G� 1;

⌘2
 10

which may not be convex.

Exercise 13.5. Recall the second order cone  soc := {(Z ,D) 2 R:+1 : kZ k2  D} and the
a�ne set � := {(Z ,D) 2 R:+1 : D = A} for a given A > 0. Derive a tractable reformulation
of the robust linear program (13.10) with the uncertainty set / :=  soc\�, by adapting
the proof of part 3 of Theorem 13.1. Compare your result with part 2 of Theorem 13.1.

Exercise 13.6 (Robust LP). Show that the robust LP:

min
G2R=

2
T
G s.t. (08 +D8)T

G  18 , 8kD8 k2  d, 8 = 1, . . . ,<

where 08 ,D8 2 R= and 18 2 R is equivalent to the deterministic second-order cone
program:

min
G2R=

2
T
G s.t. 0

T
8
G + dkGk2  18 , 8 = 1, . . . ,<

Exercise 13.7 (Robust SOCP). Derive �̂(G) 2 R<⇥: , 1̂(G) 2 R<, Û(G) 2 R: , V̂(G) 2 R
such that G 2 R= is feasible for the robust SOCP (13.16) if and only if��

�̂(G)Z + 1̂(G)
��

2  Û
T (G)Z + V̂(G), 8Z 2 /

Exercise 13.8 (Robust SOCP). [168, Proposition 6.2.1] Prove Theorem 13.2, assuming
the problem (13.22) is feasible and bounded.

Exercise 13.9. Prove (13.30): for any 01 2 R< and 02 2 R= we have

�dk01k2k02k2 = min
- 2R<⇥=:k- k2d

0
T
1-02

where the spectral norm k- k2 := supkE k21 k-Ek2 = fmax (-) is the largest singular
value of - .
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Chapter 13.2.

Exercise 13.10 (Concavity). Let ⌘ :R=!R< and 5 :R<!R be real-valued functions
(so their e�ective domains are R= and R< respectively). Show that If 5 is concave
nondecreasing and ⌘ is concave then 5 (⌘(G)) is concave in G.

Exercise 13.11 (U-concavity). Prove Lemma 13.6.

Exercise 13.12 (Chance-constrained program). Consider the dual problem (13.49b):

3
⇤ := sup

`�0
3 (`) := sup

`�0
3- (`) + 3/ (`) (13.150a)

where - ✓ R=, /? ✓ R< and

3- (`) := inf
G2-

⇣
2(G)� `T

⌘(G)
⌘
, 3/ (`) := inf

I2/?
`

T
I (13.150b)

Suppose - and /? are nonempty, convex and compact and denote the sets of minimizers
in (13.150b) by

- (`) := {G 2 - : 3- (`) = 2(G)� `T
⌘(G)}, / (`) := {I 2 /? : 3/ (`) = `T

I}

1. Show that - (`) and / (`) are nonempty, convex and compact. Hence 3 (`) is a
real-valued concave function.

2. Show that m3- (`) = conv (�⌘(G) : G 2 - (`)) for ` 2 R<+ .
3. Show that m3/ (`) = / (`) for ` 2 R<+ .
4. Show that m3 (`) = conv (�⌘(G) : G 2 - (`)) + / (`) for ` 2 R<+ .

(Hint: For part 1 use Corollary 12.23 or Theorem 12.26 of Chapter 12.7. For parts 2
and 3 use Theorem 12.19 of Chapter 12.3.3. For part 4 use Theorem 12.18 of Chapter
12.3.3.)

Exercise 13.13 (Chance-constrained program). Consider the dual problem and con-
dition in Exercise 13.12. Suppose, in addition, that conditions C13.1 and C13.2 of
Theorem 13.8 are satisfied, so that the set of dual optimal solutions `⇤ is nonempty,
convex and closed.

1. Show that `⇤ � 0 is optimal for (13.150) if and only if there exists (G⇤, I⇤) such
that

G
⇤ 2 - (`⇤), I

⇤ 2 / (`⇤), I
⇤ � ⌘(G⇤) 2 #R<+ (`⇤) (13.151)

where #. (H) denotes the normal cone of . at H 2 . .
2. Conclude that (13.151) is equivalent to (the saddle point characterization (13.51)

in Theorem 13.8)

G
⇤ 2 - (`⇤), I

⇤ 2 / (`⇤), ⌘(G⇤) � I⇤, (`⇤)T (⌘(G⇤)� I⇤) = 0

(Hint: For part 1 apply Theorem 12.21 to (13.150). Part 2 follows from Theorem 12.3.)
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Exercise 13.14 (Log moment-generating function ln⇢ (4_. )). Show that k. (_) :=
ln⇢ (4_. ) is convex in _ 2 R. (Hint: Use Hölder’s inequality: ⇢ |-. | 
(⇢ ( |- |?))1/? (⇢ ( |. |@)1/@ for any random variables - ,. and any ?,@ 2 [1,1] with
1/? +1/@ = 1.)

Exercise 13.15 (Cherno� bound: Binomial distribution). Consider the Binomial ran-

dom variable . 2 {0, . . . ,=} with parameter (=, ?), i.e., P(. = :) =
✓
=

:

◆
?
: (1� ?)=�:

for : 2 {0, . . . ,=}. Show that

1. The moment-generating function of . is ⇢4_. =
�
?4
_ +1� ?

�
=.

2. For any 0 2 (0,1)

P(. � =0)  exp
✓
�=

✓
0 ln

0

?

+ (1� 0) ln
1� 0
1� ?

◆◆

This bound is used to bound the Binomial tail in Theorem 13.15.

Exercise 13.16 (Concentration inequality: ⇢ (max8 -8)). Derive the concentration in-
equality (13.66) for the maximum of a finite number of sub-Gaussian random variables.
(Hint: Apply Jensen’s inequality to 4_⇢ (max8 -8) .)

Exercise 13.17 (Importance sampling). We wish to estimate the tail probabil-
ity P/ (/ � C) where / is a standard Gaussian random variable with distribution
�/ := # (0,1).

1. Given # iid samples (I1, . . . , I# ) under distribution �/ := # (0,1), what is a simple
way to estimate P/ (/ � C)?

2. Suppose C > 0 is large so that P/ (/ � C) is small and it will take many samples to
have a reliable estimate. Suppose we obtain = iid samples (H8 , 8 = 1, . . . ,=) from the
distribution �. := # (C,1) under which P. (. � C) = 1/2. Explain how to estimate
P/ (/ � C).

Chapter 13.3.

Exercise 13.18 (Violation probability). Consider the following scenario program
CSP(#) with N iid constraints:

min
G2R
�G s.t. G  Z 8 , 8 = 1, . . . ,#

where each Z 8 takes value in [0,1] with uniform distribution. Is the problem uniformly
supported? Derive the distribution of the violation probability + (G⇤

#
).

Exercise 13.19 (Generalized support constraints). 1. Show that if CSP(#) with # �
= has at most Bmax support constraints (i.e., there are at most Bmax support con-
straints for all Z 2 /# ), then CSP(:) has at most Bmax support constraints for all
: � # .

2. Suppose CSP(#) with # � = is uniformly supported with 1  B  = support
constraints. Fix any Z 2 /# = /# (B) with �B as its set of support constraints.
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(a) Let �B2 := {8 : 8 8 �B} be the set of non-support constraints in Z . Consider
CSP(# �1) obtained from CSP(#) by removing a constraint from �

B2 . Show
that �B remains support constraints for CSP(# �1) and �B2 \ { 9} remains non-
support constraints for CSP(#�1) (with probability 1). (Hint: Since Z 8 are iid
and CSP(#) is uniformly supported, no sample value Z 8 = I can have nonzero
probability; otherwise Z 8 = I for all 8 has no support constraint and nonzero
probability).

(b) Let CSP(# � :) be the resulting scenario program by removing : constraints
from �

B2 , 0  :  # � B, and let G⇤
#�: denote its unique optimal solution.

Show that G⇤
B
= G⇤

B+1 = · · · = G⇤
#

.
(c) Show that Z has no latent support constraint.

3. Suppose CSP(#) is not uniformly supported and let �C be a set of generalized
support constraints for CSP(#). Fix a Z 2 /# (�C ).

(a) Let �C2 := {8 : 8 8 �C } be constraints in Z that are not generalized support
constraints (for any 0  C  =). Consider CSP(# �1) obtained from CSP(#)
by removing a constraint from �

C2 . Show that �C remains the unique set of
generalized support constraints for CSP(#�1) and ⌫\{ 9} contains no support
constraint for CSP(# �1).

(b) Let CSP(#� :) be the resulting scenario program after removing : constraints
from �

C2 , 0  :  #� C, and let G⇤
#�: denote its unique optimal solution. Show

that G⇤
C
= G⇤

C+1 = · · · = G⇤
#

.

Exercise 13.20 (Latent support constraints). 1. We are given three points 0,1,2 2R2

on a plane. Each of the # � 4 iid random variables (Z1, . . . , Z# ) is equal to
0,1,2 with nonzero probabilities ?0, ?1 , ?2 respectively with ?0 + ?1 + ?2 := 1.
Given Z := (Z1, . . . , Z# ) 2 /# , CSP(#) determines the smallest circle, specified
by G := (G1,G2,G3) 2 R3, going through all # points (Z1, . . . , Z# ).
(a) Derive the sets /# (�C ) where �C = {1}[ !C�1 contains a single support con-

straint Z1 and maximum sets !C�1 of latent constraints for C = 2,3.
(b) Give a Z 2 /# (�C ) with a single support constraint Z1 and list all its sets of

latent support constraints, a maximal set of latent support constraints, and the
maximum set of latent support constraints in the lexicographical order.

(c) Give a Z 2 /# (�C ) with a single support constraint Z1 for which, if !1 and !2

are sets of latent support constraints, then their union !1[ !2 is a set of latent
support constraints.

2. Give an example where !1 and !2 are sets of latent support constraints with
respect to a certain Z 2 /# (�B), but not their union !1[ !2. (Hint: Modify part 1
by adding a forth point 3 2 R2 to 0,1,2.)

Exercise 13.21 (Sample complexity). Prove Corollary 13.22.

Chapter 13.4.

Exercise 13.22 (Stochastic LP: ⇠2 and ⇠ 02). In general, ⇠2 < ⇠ 02 in (13.118).
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1. For stochastic linear program with fixed recourse, provide an example where
⇠2 ( ⇠

0
2. (Hint: ⇢Z Z2 =1; see Lemma 13.26.)

2. For stochastic linear program with random recourse, provide an example where
⇠
0
2 ( ⇠2.

Exercise 13.23 (Stochastic LP:⇠2 and⇠ 02). Give an example random variable that has
finite first moment but infinite second moment.

Exercise 13.24 (mG&̃(G, Z)). Fix any Z and recall from (13.117a) (omitting l or Z in
notation)

&̃(G, Z) := min
H�0

@
T
H s.t. ,H = ⌘�)G

Suppose, for each G 2 R=1 ,

1. There exists a unique primal-dual optimal solution (H(G),_(G),`(G)) for &̃(G, Z);
moreover it is continuous at G.

2. Strong duality holds at (H(G),_(G),`(G)).

Show that &̃(G, Z) is continuously di�erentiable and rG&̃(G, Z) = )T
_(G). (Hint: Use

envelop theorem (Chapter 8.3.6). See [156, Proposition 2.2, p.28] on subdi�erentia-
bility of &̃(Ḡ, Z) when (H(G),_(G),`(G)) is not unique and continuous in G.)

Exercise 13.25. [157, Theorem 34 and 35; p.157][Stochastic nonlinear program] Prove
Lemma 13.29 following these steps:

1. Why is it su�cient only to show that &̃(G,l) is convex, lower semicontinuous
(lsc) and closed on R=1 for a.e. l 2 ⌦?

2. Fix an l. For each G 2 dom(&̃(·, Z)), does there exist a sequence {H: := H: (l)}
such that H: is feasible for the recourse problem and lim: 52 (G, H: ,l) = &̃(G,l)?
Use this to show the convexity of &̃(G,l).

3. Show that &̃(G,l) is lsc, i.e., &̃(Ḡ,l)  liminfG &̃(G: ,l) if G: ! Ḡ. Conclude
that &̃(·,l) is also closed since its domain is R=1 . (Hint: Show that, for every G,
&̃(G,l) = 52 (G, H(G),l) for some H(G) under the assumption of Lemma 13.29.)

Exercise 13.26. [157, Theorem 39; p.158][Stochastic nonlinear program] Prove The-
orem 13.30 following these steps:

1. Write (13.126) as an unconstrained minimization of an extended real-valued func-
tion 5̃ over R=1 .

2. Show that dom( 5̃ ) is bounded.
3. Show that the 5̃ is closed and proper.
4. Conclude that Theorem 13.30 holds. (Hint: Use the Weierstrass Theorem 12.22 in

Chapter 12.7.)



Part III

Unbalanced three-phase
networks





14 Device models

Single-phase models are a good approximation of the reality for many transmission
network applications where lines are symmetric and loads are balanced. In that case,
a similarity transformation produces three networks in a sequence coordinate, called
zero, positive, and negative-sequence networks, that are decoupled. Each network can
be analyzed using a single-phase model studied in Part I. These sequence networks
are coupled when lines are not transposed or equally spaced, e.g., as in distribution
systems, or when loads are unbalanced or nonlinear, e.g., AC furnaces, high-speed
trains, power electronics, or single or two-phase laterals in distribution networks. In
that case single-phase analysis can produce incorrect power flow solutions. In this Part
we extend the single-phase models of Part I to the unbalanced three-phase setting.

A three-phase network consists of three-phase devices connected by three-phase
lines and transformers. In many emerging applications in secondary distribution cir-
cuits, the controllable devices are the single-phase devices that make up three-phase
devices in . or � configurations. In this case it is important to model carefully the in-
ternal voltages, currents, and powers across these single-phase devices and understand
how they determine the terminal voltages, currents, and powers that are externally
observable and that interact over the network. It will become clear that the crucial
di�erence between single-phase and three-phase systems lies in device models, not in
network equations that relate the terminal variables, and that single-phase models and
analysis of Part I extend directly to the three-phase setting.

We first provide in Chapter 14.1 an overview of models for three-phase devices,
lines and transformers, and how to use these component models to compose an overall
system model. We summarize in Chapter 14.2 mathematical properties that underly
the behavior of three-phase systems. Finally we derive in Chapter 14.3 the models of
three-phase voltage sources, current sources, power sources, and impedances in . and
� configurations. In Chapter 15 we derive general branch models for three-phase lines
and transformers. We will use these branch models in Chapters 16 and 17 to construct
network models and study unbalanced three-phase analysis. Finally in Chapter 18 we
extend optimal power flow to unbalanced three-phase models.
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14.1 Motivation and overview

Figure 14.1 shows a simple example of a three-phase system with three components,
two devices connected by a line. For example the single-terminal device on the left

three-phase 
source

three-phase 
load

a

b

c

a

b

c

n n

Figure 14.1 A simple model of a three-phase system consisting of a source connected through a
line to a load.

can model a three-phase generator and the other single-terminal device can be a three-
phase load. Each terminal has three wires (or ports or conductors) indexed by its phases
0,1,2, and possibly a neutral wire indexed by =. Internally, a three-phase device can
be in . or � configuration, and the . configuration may have a neutral wire that may
be grounded. A three-phase line has two terminals, each terminal with three or four
wires, and it connects two single-terminal devices, one at each end of the line. The line
may model a transmission or distribution line or a transformer. The distribution line
can be underground or overhead with a neutral wire that may be grounded in regular
spacing along the line.

Example 14.1 (Motivating example). Consider a generator modeled as a power source
f9 supplying a load modeled as a current source �: through a low-voltage distribution
line modeled as a series admittance HB

9:
. For example f9 can model a photovoltaic

system with a smart inverter or a battery and �: can model a residential house or a
set of smart electric vehicle chargers. Let + 9 ,+: denote the terminal voltages of the

(a) Single-phase system

Jab

Jbc
y sjk

(b) Unbalanced three-phase system

Figure 14.2 A power source f9 supplying a load (current source) �
:

through a distribution line
H
B

9:
.

distribution line and � 9: the current from 9 to : . For the single-phase system shown in
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Figure 14.2(a), these quantities are scalars and satisfy

� 9: = H
B

9:
(+ 9 �+: ) (14.1a)

f9 = + 9 �
H
9:

, � 9 = � 9: (14.1b)

Suppose both the power source f9 and the current source �: are controllable and
our goal is to choose (f9 , �: ) so as to minimize a certain cost subject to constraints
on voltages (+ 9 ,+: ) and the line current � 9: . This can be formulated as an optimal
power flow problem (studied in Chapter 9) with device variables (f9 , �: ) and terminal
variables (+ 9 ,+: , � 9: ), together with the constraint (14.1) on these variables.

Consider now an unbalanced three-phase system shown in Figure 14.2(b)
where three such power sources f�

9
:= (f01 ,f12 ,f20) and current sources ��

:
:=

(�01
:

, �12
:

, �20
:
) are arranged in � configuration and connected to each other by a three-

phase line with the admittance matrix HB
9:
2 C3⇥3. Let+8 := (+0

8
,+1
8

,+2
8
) for 8 = 9 , : and

� 9: := (�0
9:

, �1
9:

, �2
9:
) denote the terminal voltages and currents as before. It is important

to note that the terminal variables (+ 9 ,+: , � 9: ) are not directly controllable, only the
controllable devices (f�

9
, ��
:
) are, as in the single-phase system. The terminal variables

(+ 9 ,+: , � 9: ) still satisfy (14.1a), but their relation with the internal device variables
(f�

9
, ��
:
) is more complicated than (14.1b), as we will explain in this chapter. ⇤

The basic idea in modeling a three-phase component (voltage/current/power source,
impedance, transformer) is to explicitly separate its model into an internal model that
specifies the characteristics of the constituent single-phase components in terms of
internal variables, and a conversion rule that maps its internal variables to its terminal
variables. The internal model depends only on the type of components (nonideal voltage
sources, ZIP loads, or di�erent single-phase transformer models) regardless of their
configurations. The conversion rule depends only on their configurations regardless of
the type of components. They determine an external model which is a relation between
the terminal variables, obtained by eliminating the internal variables from the set of
equations describing the internal model and the conversion rule. We next describe this
procedure in detail.

Internal and terminal variables have been introduced in Chapter 1.2.1 and their
conversion in Chapter 1.2.2 in the context of balanced three-phase systems. In this
chapter we study them in the unbalanced three-phase setting.

14.1.1 Internal and terminal variables, conversion rule

A single-phase device can be a voltage source, a current source, a power source or an
impedance. A three-phase device consists of three such single-phase devices arranged
in . or � configuration.

The internal variables of a single-terminal three-phase device are shown in Figure
14.3 and defined as follows:
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V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n'

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 14.3 Internal and terminal variables associated with a single-terminal three-phase
device.

• +. :=
�
+
0=,+1=,+2=

�
2 C3, �. :=

�
�
0=, �1=, �2=

�
2 C3, B. :=

�
B
0=, B1=, B2=

�
2 C3,

(+=, �=, B=) 2 C3: line-to-neutral voltages, currents, and powers across the single-
phase devices in . configuration, as well as the voltage, current, and power across
the neutral impedance I=, respectively. By definition B0= :=+0= (�0=)H is the power
across the phase-0 device, etc. The neutral voltage +=, with respect to a common
reference point, is generally nonzero. A . -configured device may or may not have
a neutral line which may or may not be grounded and the grounding impedance
I
= may or may not be negligible. When present, the current on the neutral line

is denoted by �= in the direction coming out of the device. The Kirchho� current
law dictates that �= =

Õ
q
�
q=. The internal power across the neutral impedance is

B
= :=

�
+
= �+=0

�
�̄
= where �̄= denotes the complex conjugate of �=.

• +� :=
�
+
01 ,+12 ,+20

�
2 C3, �� :=

�
�
01 , �12 , �20

�
2 C3, B� :=

�
B
01 , B12 , B20

�
2 C3 :

line-to-line voltages, currents, and powers across the single-phase devices respec-
tively in � configuration. By definition B01 := +01

�
�̄
01

�
is the power across the

phase-0 device, etc.

Note that the direction of the internal power B0= or B01 across a single-phase device is
defined in the direction of the current across the device. The neutral line, when present,
is often assumed grounded, i.e., +=

0
= 0, and the voltage reference point is the ground.

In this case B= =+= �̄=.

The terminal variables of the three-phase device in Figure 14.3 are defined as
follows:

• + :=
�
+
0,+1 ,+2

�
2 C3, � :=

�
�
0, �1 , �2

�
2 C3, B :=

�
B
0, B1 , B2

�
2 C3,

�
+
=
0
, �=

0
, B=

0 � 2
C

3: terminal voltages, currents, and powers respectively. The terminal voltage + is
defined with respect to an arbitrary but common reference point, e.g., the ground.
The terminal current � is defined in the direction coming out of the device, i.e.,
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� is defined to be the current injection from the device to the rest of the network
when it is connected to a bus bar, regardless of whether it generates or consumes
power. By definition B0 :=+0 �̄0 is the power across the terminal 0 and the common
reference point. When there is a neutral wire its terminal voltage (with respect to
the common reference point), current and power are denoted by

�
+
=
0
, �=

0
, B=

0 �
with

�
=
0
= �= and B=

0
:=+=

0
�̄
=
0
=+=

0
�̄
=.

These variables are summarized in Table 14.1.

Voltage Current Power Neutral line

Internal variable +
. /�

�
. /�

B
. /� (+=, �=, B=)

Terminal variable + � B

⇣
+
=
0
, �=

0
, B=

0 ⌘

Table 14.1 Internal and terminal variables of single-terminal three-phase devices. The notation
G
. /� is a shorthand for the pair (G. ,G�).

Consider a device 9 . Denote its internal variable by G 9 :=⇣
+
. /�
9

, �. /�
9

, B. /�
9

, (+=
9
, �=
9
, B=
9
)
⌘

and its terminal variable by H 9 :=⇣
+ 9 , � 9 , B 9 , (+=

0
9

, �=
0
9

, B=
0
9
)
⌘
. The relation between the internal variable G 9 and the

terminal variable H 9 depends only on whether device 9 is in . or � configuration, not
on its type. This is represented by

5
conv
9

�
G 9 , H 9

�
= 0 (14.2)

14.1.2 Three-phase device model

An internal model of a three-phase device is a relation between the internal variables�
+
. , �. , B.

�
or between

�
+
�, ��, B�

�
. It describes the behavior of the single-phase

devices, and does not depend on their. or � configuration nor the absence or presence
of a neutral line. For example the internal model of an ideal voltage source specified
by its internal voltage ⇢. /� 2 C3 is

+
. /� = ⇢

. /�, B
. /� = diag

✓
⇢
. /�

⇣
�
. /�

⌘H
◆

where the notation G. /� is a shorthand for the pair (G. ,G�) and diag(G) is a diagonal
matrix with the vector G on its diagonal. The internal model of an impedance specified
by a diagonal matrix I. /� 2 C3⇥3 is

+
. /� = I

. /�
�
. /�, B

. /� = diag
✓
+
. /�

⇣
�
. /�

⌘H
◆
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For a device 9 , index its internal variables by subscript 9 and denote its internal model
by

5
int
9

⇣
+
. /�
9

, �. /�
9

⌘
= 0, B

. /�
9

= diag
✓
+
. /�
9

⇣
�
. /�
9

⌘H
◆

(14.3)

The external model of a device is the relation between its terminal variables (+ , �, B)
and possibly

�
+
=
0
, �=

0
, B=

0 �
. It describes the externally observable behavior of the device

and depends on both the internal model of the single-phase devices and their config-
uration. How the . or � configuration determines its external model is described by
conversion rules that map internal variables to terminal variables. While the internal
model 5 int depends only on the type of single-phase devices (e.g., voltage source vs
impedance), the conversion rules depend only on the configuration (. vs �), but not
on the device type. This will be explained in detailed in Chapter 14.3. For a device 9 ,
index its internal variables by subscript 9 and denote its external model by

5
ext
9

(+ 9 , � 9 ) = 0, B 9 = diag
⇣
+ 9 �

H
9

⌘
(14.4)

The importance of the external model is that devices interact over a network only
through their terminal variables (+ 9 , � 9 ). The external model 5 ext

9
of each three-phase

device imposes local constraints on its own terminal variables while network equations,
to be studied in Chapters 16 and 17, impose global constraints on the terminal variables
across devices.

Though not explicit, the models 5 int
9

and 5
ext
9

in (14.3) and (14.4) respectively may

include the internal and terminal variables (+=, �=, B=) and
�
+
=
0
, �=

0
, B=

0 �
respectively

associated with the neutral in a . configuration. These functions are linear for voltage
sources, current sources and impedances, but quadratic for power sources; see Chapter
14.3.

A three-phase device 9 can therefore be modeled in two equivalent ways:

1. An internal model 5 int
9

in (14.3) that describes the relation between its internal

variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

⌘
and the conversion rule 5

conv
9

in (14.2) that maps
internal variables to terminal variables.

2. An external model 5 ext
9

in (14.4) that describes the relation between its terminal
variables (+ 9 , � 9 ). The external model 5 ext

9
is obtained by applying the conversion

rule 5 conv
9

to the internal model 5 int
9

to eliminate the internal variables.

The first model ( 5 conv
9

, 5 int
9
) is useful when the application under study needs to deter-

mine or optimize some of the internal variables such as the power B. /�
9

generated or
consumed by each of the single-phase devices connected at a bus 9 , e.g., the charging
power of a single-phase Level-2 electric vehicle charger. Otherwise the external model
5

ext
9

can be used if the application involves only terminal variables.
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Remark 14.1. One should be careful with the direction in which currents and powers
are defined when relating internal and external powers (see Chapter14.3). For instance
+
0= is the voltage drop between terminal 0 and the neutral = and �0= is the current from

0 to =. The power B0= is therefore the power delivered to the device in the direction
of the current �0=. If the device models a generator then the power it generates is
�B0= =+0=

�
��̄0=

�
. ⇤

14.1.3 Three-phase branch model

Let the terminals of a three-phase line or transformer be indexed by 9 and : . Let

+ 9 :=
⇣
+
0

9
,+1
9
,+2
9

⌘
2 C3 and +: :=

�
+
0

:
,+1
:

,+2
:

�
2 C3 denote the voltages at terminals

9 and : respectively with respect to an arbitrary but common reference point. Let

�̃ 9: :=
⇣
�̃
0

9:
, �̃1
9:

, �̃2
9:

⌘
2 C3 denote the sending-end current from terminal 9 to terminal

: along the line or transformer, and �̃: 9 denote the sending-end current in the opposite
direction. The external behavior of a three-phase line or transformer is described by a
linear relation between

�
+ 9 ,+: , �̃ 9: , �̃: 9

�
2 C12 of the form

6
branch
9:

�
+ 9 ,+: , �̃ 9: , �̃: 9

�
= 0 (14.5a)

where 6branch
9:

is defined by 3⇥3 matrix parameters of the line ( 9 , :).

Let ( 9: :=
⇣
(
0

9:
,(1
9:

,(2
9:

⌘
2 C3 denote the sending-end power from terminal 9 to

terminal : along the line or transformer, and (: 9 denote the sending-end power in the
opposite direction. For each phase q = 0,1,2, (q

9:
:=+ q

9
( �̃ q
9:
)H. In vector form this is

( 9: := diag
⇣
+ 9 �̃

H
9:

⌘
, (: 9 := diag

⇣
+: �̃

H
: 9

⌘
(14.5b)

The voltages at the neutrals are +=
9

and +=
:

. If the neutrals are grounded and there is
no neutral wire between the neutral terminals at 9 and : , the neutral current is denoted

by
⇣
�̃
=

96
, �̃=
:6

⌘
. When there is a neutral wire connecting the neutral terminals at 9 and

: , the current in the neutral wire is denoted by
⇣
�̃
=

9:
, �̃=
: 9

⌘
. The branch model 6branch

9:

in (14.5a) then includes neutral voltages and currents and is defined by 4⇥ 4 matrix
parameters of the line. The power flow equation (14.5b) is modified accordingly. This
is called a 4-wire model of the line or transformer.

The branch model 6branch
9:

in (14.5) defines the end-to-end behavior of a three-

phase line or transformer. We reiterate that 6branch
9:

depends on the three-phase devices

connected to its terminals only through their terminal variables. The function 6branch
9:

is linear when ( 9 , :) represents a transmission or distribution line or a transformer.
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( 5 conv
9

, 5 int
9

, 5 ext
9
) is linear if the device is not a power source and nonlinear otherwise.

The network functions (6branch
9:

,6cur
9

,6pwr
9

) are all linear, but the line power definition
(14.5b) is nonlinear.

We will derive the device models ( 5 conv
9

, 5 int
9

, 5 ext
9
) in Chapter 14.3 and the branch

model 6branch
9:

in Chapter 15. We will study two classes of network model, the bus
injection model in Chapter 16 and the branch flow model in Chapter 17. For BIM,
the model can either be the linear equation � = .+ obtained from the current balance
equations (14.5a)(14.6a) or nonlinear power flow equations obtained from the power
balance equations (14.5b)(14.6b). For BFM, the model consists of nonlinear power
flow equations that involve both nodal and branch variables, obtained from the power
balance equations (14.5b)(14.6b).

Therefore, the overall system model will be linear if no power sources are involved
and the linear network model � = .+ is used to describe the interaction of terminal
variables over the network. Otherwise, the system model will be nonlinear either
because the device model involving power sources is nonlinear or nonlinear power
flow equations are used to model the network, or both.

Comparison with single-phase system. As we will see in this and the following
chapters, a three-phase system has the same structure as a single-phase system. The
key di�erence is the device model ( 5 conv

9
, 5 int
9

, 5 ext
9
) and the branch model 6branch

9:
: they

are much subtler in a three-phase system than in a single-phase system. The network
functions (6cur

9
,6pwr
9

) remains the same in a three-phase system as in a single-phase

system, except that the variables are inC3 rather than scalars. These models are derived
in Part III for three-phase systems, as indicated in Table 14.2.

Three-phase Single-phase

Device model ( 5 conv
9

, 5 int
9

, 5 ext
9

) Ch 14.3 Ch 4.1.1, 4.1.2

Network model: BIM (�+ or B+) Ch 16.1 Ch 4.3.1
Network model: BFM (radial) Ch 17.1 Ch 5.2

Table 14.2 System model = device model + network model.

14.1.6 Balanced operation

If the following conditions are satisfied throughout the network:

1. all lines have symmetric geometry;
2. zero total current: 80 (C) + 81 (C) + 82 (C) = 0 at all times C;
3. zero total charge: @0 (C) + @1 (C) + @2 (C) = 0 at all times C;
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then the system is balanced and its phases are decoupled. This means that (14.4)
reduces to

5
ext,q (+ q , � q) = 0, B

q = +
q

�̄
q , q = 0,1,2

and similarly for equations (14.5)(14.6). For example the line current �0
9:

in phase 0

depends only on voltages
⇣
+
0

9
,+0
:

⌘
in phase 0, but not on voltages in other phases.

This allows per-phase analysis, as we have done in part I. These decoupling conditions
can be satisfied if the terminal voltages of all three-phase sources are balanced (i.e.,
they have equal magnitudes and are separated by 120� in phase), all three-phase
impedances are identical, all three-phase lines has symmetric geometry (e.g. through
transposition), and all three-phase transformers are symmetric and decoupled. In that
case the magnetic coupling across phases can be modeled by self-impedance alone,
e.g., a three-phase line behaves as if its mutual inductances and capacitances across
phases are zero and self inductances and capacitances are equal in each phase, as shown
in Chapter 2.1.4. A general formulation of per-phase analysis of a balanced network
and its formal justification is provided in Chapter 16.2.6. The underlying mathematical
property is explained in Corollary 1.3 and Theorem 14.2.

If the conditions above are not satisfied, self-impedance alone is not su�cient to
model the coupling across phases of a line and per-phase analysis becomes inaccurate.
An unbalanced three-phase model is necessary for power flow analysis. Before deriving
in detail the internal and external models of these components we first describe some
mathematical tools that are important for our derivation.

14.2 Mathematical properties of three-phase network

In this section we collect several mathematical properties that are used extensively in
subsequent chapters. These properties underlie much of the behavior of three-phase
systems. Specifically we use the spectral properties of the conversion matrices � and
�T defined in Chapter 1.2.2 to derive in Chapter 14.2.1 their pseudo inverses. The
eigenvectors of � are orthogonal and can serve as a basis of C3. In Chapter 14.2.2 we
use this basis to transform voltages and currents to a sequence coordinate in which
an unbalanced network may become decoupled if there is su�cient symmetry in the
system. Finally we collect some properties of the Kronecker product in Chapter 14.2.3
that are useful in the analysis of a balanced network.
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14.2.1 Pseudo-inverses of �,�T.

The main characters of three-phase networks arise from the spectral properties of the
conversion matrices � and �T, defined in (1.12) of Chapter 1.2.2 and reproduced here:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
(14.7)

We have seen in Chapter 1.2.4 that these conversion matrices play an important role
in relating the internal and external behaviors of a balanced three-phase system. In
such a system, positive-sequence voltages and currents are in span(U+) and U+ is an
eigenvector of � and �T. This means that the transformation of balanced voltages and
currents under �,�T reduces to a scaling of these variables by their eigenvalues 1�U
and 1�U2 respectively (Corollary 1.3). The voltage and current at every point in a
network can be written as linear combinations of transformed source voltages and
source currents, transformed by

�
�,�)

�
and line admittance matrices. Therefore if

the source voltages and source currents are balanced positive-sequence sets and lines
are identical and phase-decoupled, then the transformed voltages and currents remain
in span(U+) and hence are balanced positive-sequence sets. This is the key property
that enables balanced sources to induce balanced voltages and currents throughout
a balanced network, allowing per-phase analysis of three-phase systems. A formal
statement and proof of this property for general three-phase networks is provided in
Chapter 16.2.6.

For unbalanced systems where voltages and currents are not necessarily in span(U+),
Corollary 1.3 is not applicable and we need the concept of pseudo inverses of �,�T in
order to convert between terminal variables and line-to-line variables internal to a �
configuration. Even though � and �T are not invertible, their pseudo inverses �† and
�T† respectively always exist. The pseudo inverse "† of a matrix " 2 C=⇥= maps the
null space of "H to zero. The orthogonal complement of the null space of "H is the
range space of " . "† restricted to the range space acts like an inverse of " in that it
maps each vector E in the range space of " to the unique vector D := "†

E in the range
space of "H. The vector D is the one in C= with the minimum norm such that "D = E.
See Appendix A.7 for more properties of pseudo-inverse. The facts relevant to us is
summarized in the following lemma (from Theorem A.13 and Theorem A.16 on the
spectral decomposition and pseudo-inverse of a normal matrix, as well as Theorem
A.19 and Remark A.2 on pseudo-inverses.)

Lemma 14.1. Let " 2 C=⇥= be a normal matrix, i.e., ""H = "H
" .

1. Unitary diagonalization. There exists a unitary matrix * 2 C=⇥= and a diagonal
matrix ⇤ 2 C=⇥= with

" = *⇤*H =
=’
8=1

_8D8D
H
8

where
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(a) ⇤ =diag(_1, . . . ,_=) consists of the eigenvalues of ";
(b) columns of* are any orthonormal set of corresponding eigenvectors of " .

2. Pseudo inverse. The pseudo-inverse of " is given by "† =*⇤†
*

H where ⇤† :=
Diag

�
_
�1
1 , . . . ,_�1

=

�
with _�1

9
:= 0 if _ 9 = 0.

3. Consider "G = 1. A solution G exists if and only if 1 is orthogonal to null
�
"

H�
in

which case

G = "
†
1 +F, F 2 null (")

Moreover "†
1 is the unique solution to "G = 1 with the minimum Euclidean

norm because every solution satisfies kGk2 = k"†
1k2 + kFk2, F 2 null(").

Theorem 1.2 shows that � and �T are normal matrices and their spectral decompo-
sitions are

� = �⇤�̄, �T = �̄⇤� (14.8a)

where ⇤ is a diagonal matrix and � is a unitary matrix (with ��1 = �H = �̄) defined
in (1.18), reproduced here:

⇤ :=
266664
0

1�U
1�U2

377775
, � :=

1p
3

⇥
1 U+ U�

⇤
:=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(14.8b)

with U := 4�i2c/3 and U+ and U� being the standard positive and negative sequence
vectors respectively:

U+ :=
266664

1
U

U
2

377775
, U� :=

266664
1
U

2

U

377775
Here �̄ is the componentwise complex conjugate of �. Since � and �T are normal
(Theorem 1.2), Lemma 14.1 implies that their pseudo inverses are

�† = �⇤†
�̄, �T† = �̄⇤†

� (14.8c)

where ⇤† := Diag
�
0, (1�U)�1, (1�U2)�1� . This yields the following simple expres-

sions for these pseudo inverses. The proof of the theorem is left as Exercise 14.1.

Theorem 14.2 (Pseudo inverses of �,�T). 1. The null spaces of � and �T are both
span(1) where 1 := (1,1,1).

2. Their pseudo-inverses are

�† =
1
3
�T, �T† =

1
3
� = �†T

In particular the operations T and † on � commute.
3. � and �T are related by

�T = �%�, � = �%T�T
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where %T = %�1 for the shift (permutation) matrix

% :=
266664
0 0 1
1 0 0
0 1 0

377775
4. Consider �G = 1 where 1,G 2 C3. Solutions G exist if and only if 1

T
1 = 0, in which

case the solutions G are given by

G =
1
3
�T
1 +W1, W 2 C

5. Consider �T
G = 1 where 1,G 2 C3. Solutions G exist if and only if 1

T
1 = 0, in which

case the solutions G are given by

G =
1
3
�1 +W1, W 2 C

6. ��† = �†� = 1
3��

T = 1
3�

T� = I� 1
311

T where I is the identity matrix of size 3.

This theorem underlies much of the mathematical properties for three-phase systems.
Recall that ��T = �T� are Laplacian matrices of the graphs in Figure 1.9.

14.2.2 Similarity transformation and symmetrical components

Fortescue transformation. Since � and �T are normal matrices, they have orthonor-
mal eigenvectors (1,U+,U�) which are the columns of � defined in (14.8b). We can
therefore use � to define a similarity transformation (see Appendix A.4 for discussions
on similarity transformation). This idea is due to Fortescue [181] and � is sometimes
called a (normalized) Fortescue matrix. It simplifies the analysis of an unbalanced
three-phase system when the network has a certain symmetry, as explained in Chapter
16.3.

Consider a vector G that may represent a voltage or current. Recall that � is unitary
and complex symmetric (Theorem 1.2) and therefore its inverse is:

�
�1 = �

H = �̄ =
1p
3

⇥
1 Ū+ Ū�

⇤
=

1p
3

266664
1

H

U
H
+
U

H
�

377775
(14.9)

(Note that Ū+ = U�, Ū� = U+; more properties of U are studied in Exercise 1.8). The
matrix � defines the transformation:

G = �G̃, G̃ := �
�1
G = �̄G

The vector G̃ is called the sequence variable of G. Its components

G̃0 :=
1p
3

1
H
G, G̃+ :=

1p
3
U

H
+ G, G̃� :=

1p
3
U

H
�G
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are called the zero-sequence, positive-sequence, and negative-sequence components of
G. They are also called symmetrical components of G. We will sometimes refer to G as
a phase variable to di�erentiate it from the sequence variable G̃. The relation G = �G̃
expresses the phase variable in terms of its sequence components:

G =
1p
3
(G̃01+ G̃+U+ + G̃�U�) =

1
3

⇣⇣
1

H
G

⌘
1+

⇣
U

H
+ G

⌘
U+ +

⇣
U

H
�G

⌘
U�

⌘

Sequence voltage, current, power. Applying this similarity transformation to phase
voltage + and current �, we obtain their sequence variables:

+̃ = �̄+ , �̃ = �̄ �

The vector of power in the phase coordinate is B := diag
�
+�

H�
and that in the sequence

coordinate is B̃ := diag
�
+̃ �̃

H�
. They are related through the outer product of voltage and

current in their respective coordinates according to:

B̃ := diag
⇣
+̃ �̃

H
⌘
= diag

⇣
�̄+ �

H
�̄

H
⌘
= diag

⇣
�̄+ �

H
�

⌘

B := diag
⇣
+�

H
⌘
= diag

⇣
�+̃ �̃

H
�

H
⌘
= diag

⇣
�+̃ �̃

H
�̄

⌘

The total powers 1
T
B̃ = 1

T
B however are equal in both coordinates:

1
T
B̃ = �̃

H
+̃ =

⇣
�

H
�̄

H
⌘ �
�̄+

�
= �

H
+ = 1

T
B

since �̄H
�̄ = ��̄ = I. This is sometimes referred to as power invariance property of the

similarity transformation �. In Chapter 16.3 we will apply sequence variables to the
external models of Chapter 14.3 to define sequence networks.

We can interpret ��T = �T� = 3I� 11
T as an operator that filters out the zero-

sequence component of a variable. For example, decompose a voltage + 9 2 C3 into its
sequence components

+ 9 = W 91+_ 9U+ + ` 9U�
where W 9 := 1

31
T
+ 9 is its zero-sequence component. Denote by +±

9
:= _ 9U+ + ` 9U� the

non-zero-sequence component of + 9 . Then ��T
+ 9 = �T�+ 9 = 3+±

9
.

In Definition 1.1, we call G a balanced vector if its zero-sequence component G̃0 = 0
and exactly one of G̃+ and G̃� is nonzero. In particular a balanced positive-sequence
vector is in span(U+). To simplify exposition in this chapter it is convenient to generalize
the definition of balanced vector to include a zero-sequence component.

Definition 14.1 (Generalized balanced vector). A vector Ĝ := (Ĝ1, Ĝ2, Ĝ3) 2 C3 is called
a generalized balanced vector if Ĝ = G + W1, for some W 2 C, such that G is balanced
according to Definition 1.1. ⇤

Hence a generalized balanced vector Ĝ may contain a nontrivial zero-sequence
component G̃0 and exactly one of G̃+ and G̃�. We will often refer to a generalized balanced
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vector Ĝ simply as balanced if there is no risk of confusion or if the di�erentiation is not
important, even if W < 0. Corollary 1.3 shows that, if G is a balanced positive-sequence
vector, then � (G +W1) = (1�U)G and �T (G +W1) = (1�U2)G.

Park transformation. Besides Foretescue transformation �, several other similarity
transformations have been proposed that have di�erent advantages and disadvantages
for steady-state fault analysis; see [182] that explains their relation. Park’s transforma-
tion [183] is applicable not only to steady-state voltage and current phasors, but also to
instantaneous voltages, currents, and flux linkages in the time domain. It is originally
proposed for analyzing synchronous machines and is defined by the following real
orthonormal matrix (which is the normalized version of Park’s original matrix; we
follow [1]):

% :=

r
2
3

2666664

1p
2

cos\ sin\
1p
2

cos(\ �120�) sin(\ �120�)
1p
2

cos(\ +120�) sin(\ +120�)

3777775
It can be verified that % is orthonormal so that %�1 = %T. The matrix can be used to
transform instantaneous phase voltages, currents and flux linkages. For example, for
instantaneous voltages we have

E =
266664
E
0

E
1

E
2

377775
=

r
2
3

2666664

1p
2

cos\ sin\
1p
2

cos(\ �120�) sin(\ �120�)
1p
2

cos(\ +120�) sin(\ +120�)

3777775

266664
E

0

E
3

E
@

377775
= %Ẽ

Ẽ =
266664
E

0

E
3

E
@

377775
=

r
2
3

2666664

1p
2

1p
2

1p
2

cos\ cos(\ �120�) cos(\ +120�)
sin\ sin(\ �120�) sin(\ +120�)

3777775

266664
E
0

E
1

E
2

377775
= %

T
E

The transformed coordinate is called the 03@, or zero-direct-quadrature, or rotor co-
ordinate. The 012 variables are stator-based quantities and the 03@ variables are
rotor-based quantities. Similarly we can transform 012 currents and flux linkages into
the 03@ coordinate with 8̃ = %T

8 and _̃ = %T
_. The model of a synchronous machine

becomes simpler in the rotor coordinate. For example the inductance matrix ! in the
012 coordinate that relates currents and flux linkages, _ = !8, becomes diagonal in the
rotor coordinate, i.e., _̃ = !̃8̃ for a diagonal !̃.

14.2.3 Kronecker product

The simple structure that underlies a balanced three-phase network studied in Chapter
16.2.6 depends on properties of the Kronecker product. For instance the admittance
matrix . of a balanced three-phase network can be written as the Kronecker product
of a per-phase admittance matrix and the identity matrix I of size 3. The following
lemma is used in various places of Part III.
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Lemma 14.3 (Kronecker product). Let �,⌫,⇠,⇡ be complex matrices of appropriate
dimensions.

1. (�+⌫) ⌦⇠ = (�⌦⇠) + (⌫⌦⇠); ⇠ ⌦ (�+⌫) = (⇠ ⌦ �) + (⇠ ⌦ ⌫).
2. (�⌦ ⌫) (⇠ ⌦⇡) = (�⇠) ⌦ (⌫⇡).
3. (�⌦ ⌫)T = �

T ⌦ ⌫T; (�⌦ ⌫)H = �
H ⌦ ⌫H.

4. (�⌦ ⌫)�1 = �
�1 ⌦ ⌫�1; (�⌦ ⌫)† = �

† ⌦ ⌫† where �† denotes the pseudo-
inverse of �.

5. rank (�⌦ ⌫) = rank � · rank ⌫.

14.3 Three-phase device models

In this section we develop the external models (14.4)(14.5) of three-phase devices in
terms of their internal specifications. The models of three-phase devices developed in
Chapter 1.2 and the phase-decoupled line model of Chapter 2 are special cases of the
models in this section.

We start by describing in Chapter 14.3.1 the conversion rules (14.10) and
(14.11)(14.12) that maps internal variables

�
+
. /�, �. /�, B. /�

�
to terminal variables

(+ , �, B) for devices in . and � configurations respectively. These conversion rules de-
pend only on the configuration and are applicable to any types of devices. In Chapters
14.3.2 and 14.3.3 we present the internal models of four types of devices in . and
� configuration respectively and apply the conversion rules to these internal models
to derive their external models. In Chapter 14.3.4 we explain how to derive the .
equivalent of an ideal �-configured voltage or current source in an unbalanced setting.

14.3.1 Conversion rules

Conversion in . configuration. Consider a generic three-phase device in . config-
uration with internal and terminal variables defined as in Figure 14.3(a). Its terminal
voltage, current, and power (+ , �, B) are related to its internal variables (+. , �. , B. ) by:

+ = +
. + +=1, � = ��. , �1

T
� = �

=, B = �
⇣
B
. ++= �̄.

⌘
(14.10)

where �̄. denotes the componentwise complex conjugate of the vector �. 2 C3. The
negative sign on the current and power conversions is due to the definition of

�
�
. , B.

�
as internal current and power delivered to the single-phase devices whereas (�, B) is
defined as the terminal current and power injections out of the three-phase device; see
Remark 14.1. The property �1

T
� = �= follows from the KCL at the neutral.

Here B. := diag
�
+
.
�
.H�

is the internal power delivered across the single-phase
devices, or equivalently, �B. is the power generated internally by these devices. The
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term +
=
�̄
. is the vector power delivered across the neutral and the common reference

point (e.g., the ground). The terminal power B := diag
�
+�

H�
is power delivered from the

device across the phase lines and the common reference point. Hence �B. = B++= �̄.
says that the power generated by the device is equal to that delivered to the neutral
impedance and the rest of the network. This follows from the conversion between
voltages and currents:

B := diag
⇣
+�

H
⌘
= diag

⇣
+
.

⇣
��.H

⌘⌘
++=diag

⇣
1

⇣
��.H

⌘⌘
= �

⇣
B
. ++= �̄.

⌘

The conversion rule (14.10) holds whether or not there is a neutral line and whether
or not the neutral is grounded with zero or nonzero neutral impedance I=. If there is
not a neutral line then �= := 0 and we have 1

T
� = 1

T
�
. = 0. If the neutral is grounded,

then �= is the current from the neutral to the ground and += = I=�= = �I=1T
� whether

or not I= = 0. If the neutral is ungrounded but connected to the neutral of a 4-wire line,
then �= is the current on the neutral line leaving the neutral of the device. Its value will
depend on network interaction; see Example 16.5 and Exercise 16.7.

Remark 14.2 (Neutral voltage+=). In general the neutral voltage += with respect to a
common reference point is nonzero whether or not there is a neutral line and whether
or not the neutral is grounded. If the neutral is grounded with zero neutral impedance
and voltages are defined with respect to the ground, then+= = 0, and hence+ =+. and
B = �B. . It is important to explicitly include += in a network model because not every
. -configured device in a network may be grounded or grounded with zero neutral
impedance. ⇤

Remark 14.3 (Total power). The total terminal power is

1
T
B = �1

T
B
. � +=

⇣
1

T
�̄
.

⌘

The first term 1
T
B
. on the right-hand side is the total power delivered across the

single-phase devices. The expression says that the total terminal power injection is
equal to the total power �1

T
B
. generated internally net of power consumed by the

neutral impedance.

If the neutral is ungrounded then 1
T
�
. = 0 by KCL and 1

T
B = �1

T
B
. . If the neutral is

grounded (i.e.,+=
0
= 0) through an impedance then+=

⇣
1

T
�̄
.

⌘
is the power delivered to

the neutral impedance. In general the internal power delivered to the neutral impedance
is B= :=

�
+
= �+=0

�
�̄
= ⇤

Conversion in � configuration. Consider a generic three-phase device in � config-
uration with internal and terminal variables defined as in Figure 14.3(b). We now apply
Theorem 14.2 to convert between internal and external variables in � configuration.

Voltage and current conversion. The relation between terminal voltage and current
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(+ , �) and internal voltage and current
�
+
�, ��

�
is:

266664
+
01

+
12

+
20

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
,

266664
�
0

�
1

�
2

377775
= �

266664
1 0 �1
�1 1 0
0 �1 1

377775|              {z              }
�T

266664
�
01

�
12

�
20

377775

or in vector form

+
� = �+ , � = ��T

�
� (14.11a)

where �,�T are given in (14.7). Given appropriate vectors +� and �, solutions + and
�
� to (14.11a) is provided by Theorem 14.2.

1. Given+�, there is a solution+ to (14.11a) if and only if+� is orthogonal to 1, i.e.,

+
01 ++12 ++20 = 0

which expresses Kirchho�’s voltage law. In that case, there is a subspace of
solutions + given by

+ = �†+� +W1 =
1
3
�T
+
� +W1, W 2 C (14.11b)

This amounts to an arbitrary reference voltage for+ . The quantity W := 1
31
)

+ is the
(scaled) zero-sequence voltage of+ . In most applications we are given a reference
voltage (e.g.,+0 := U+ at the reference bus 0) which will fix the constant W for every
�-configured device (di�erent devices may have di�erent zero-sequence voltages
W).

2. Given �, there is a solution �� to (14.11a) if and only if � is orthogonal to 1, i.e.,

�
0 + �1 + �2 = 0

which expresses Kirchho�’s current law. In that case, there is a subspace of ��

that satisfy (14.11a), given by

�
� = ��T†

� + V1 = �1
3
�� + V1, V 2 C (14.11c)

where V specifies the amount of loop flow in �� and does not a�ect the terminal
current � since �T

�
� = 0. The quantity V := 1

31
)

�
� is the (scaled) zero-sequence

current of ��.

We make two remarks regarding the solutions (+ , ��). First the minimum-norm solution

+ :=
1
3
�T
+
� =

1
3

266664
+
01 �+20

+
12 �+01

+
20 �+12

377775
sets W = 0 such that 1

T
+ = 3W = 0. Note that this solution does not set one of (+0,+1 ,+2)

to zero. A consequence of the arbitrary reference voltage is that, given the internal
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voltage and current
�
+
�, ��

�
with 1

T
+
� = 0 of a �-configured device, its terminal

power vector B depends on the arbitrary constant W (similar to the e�ect of the neutral
voltage += on B for a . -configured device); see Remark 14.4. To fix + to be the
minimum-norm solution (14.11b) with W = 0, it is important to include explicitly the
condition 1

T
+ = 0 together with +� = �+ , i.e., the minimum-norm solution with W = 0

is the unique solution to the system of equations:

+
� = �+ , 1

T
+ = 0, (given +� that satisfies 1

T
+
� = 0)

Second the minimum-norm solution sets V = 0 and is

�
� = �1

3
�� = �1

3

266664
�
0 � �1
�
1 � �2
�
2 � �0

377775
It contains zero loop flow, i.e., 1

T
�
� = 3V = 0. Analogous to the case above, a con-

sequence of an arbitrary V is that, given the terminal voltage and current (+ , �) of a
�-configured device, its internal power vector B� depends on the zero-sequence current
V; see Remark 14.4. To fix � to be the minimum-norm solution (14.11c) with V = 0,
it is important to include explicitly the condition 1

T
�
� = 0 together with � = ��T

�
�,

i.e., the minimum-norm solution with V = 0 is the unique solution to the system of
equations:

� = ��T
�
�, 1

T
�
� = 0 (given � that satisfies 1

T
� = 0)

Power conversion. The terminal power injection from the device is B := diag
�
+�

H�
and

the internal power delivered across the single-phase devices in the direction 01, 12,
20 is B� := diag

�
+
�
�
�H�

. Unlike a . -configured power source for which the terminal
power B is related directly to the internal power B. (see (14.10)), for a �-configured
power source, the relation between B and B

� is indirect through
�
+
�, ��

�
, through

(+ , �), or through
�
+ , ��

�
. We now derive these relations using the voltage and current

conversion (14.11).

Given internal voltage and current
�
+
�, ��

�
with 1

T
+
� = 0, the internal power is

B
� := diag

�
+
�
�
�H�

. To express the terminal power B in terms of
�
+
�, ��

�
, we use

(14.11a) (14.11b) to write the terminal voltage and current as

+ = �†+� +W1, W 2 C, � = ��T
�
�

where di�erent W correspond to di�erent reference voltages. Therefore

+�
H =

⇣
�†+� +W1

⌘ ⇣
��T

�
�
⌘H

= ��†
⇣
+
�
�
�H

⌘
�+W

⇣
1�

H
⌘

Hence the terminal power B can be expressed in terms of the internal voltage and
current

�
+
�, ��

�
as

B := diag
⇣
+�

H
⌘
= �diag

⇣
�†

⇣
+
�
�
�H

⌘
�
⌘
+W�̄, 1

T
+
� = 0 (14.12a)
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where �̄ is the componentwise complex conjugate of the terminal current � = ��T
�
�

and W 2 C is determined by a reference voltage.

Example 14.2. Given internal voltage and current
�
+
�, ��

�
with 1

T
+
� = 0, evaluate

the terminal power B := diag
�
+�

H�
directly using the solution (14.11b) with W := 0.

Solution. We have

� = ��T
�
� = �

266664
1 0 �1
�1 1 0
0 �1 1

377775
266664
�
01

�
12

�
20

377775
= �

266664
�
01 � �20
�
12 � �01
�
20 � �12

377775
Combine with (14.11b) with W = 0 to write B := diag

�
+�

H�
in terms of (+�, ��, B�):

B := �1
3

266664

�
+
01 �+20

� �
�̄
01 � �̄20

�
�
+
12 �+01

� �
�̄
12 � �̄01

�
�
+
20 �+12

� �
�̄
20 � �̄01

�
377775
= �1

3

©≠≠
´

266664
B
01 + B20
B
12 + B01
B
20 + B12

377775
�

266664
+
20 0 +

01

+
12

+
01 0

0 +
20

+
12

377775
266664
�̄
01

�̄
12

�̄
20

377775
™ÆÆ
¨

This is (14.12a) with W = 0. ⇤

We next relate B and B� in terms of terminal voltage and current (+ , �). Given (+ , �)
with 1

T
� = 0, B := diag

�
+�

H�
. To express B� in terms of (+ , �), use (14.11a) (14.11c)

to write the internal voltage and current as

+
� = �+ , �

� = ��T†
� + V1, V 2 C

where di�erent V correspond to di�erent loop flows in the � configuration. Therefore

+
�
�
�H = �1

3
�

⇣
+�

H
⌘
�T + V̄

⇣
+
�

1
T
⌘

where we have used �T† = 1
3� from Theorem 14.2. Hence the internal power B� :=

diag
�
+
�
�
�H�

can be expressed in terms of the terminal voltage and current (+ , �) as

B
� := diag

⇣
+
�
�
�H

⌘
= �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V̄+�, 1

T
� = 0 (14.12b)

where +� = �+ and V 2 C is determined by the amount of loop flow in ��.

Even though (14.12a) and (14.12b) contain the zero-sequence voltage and current
(W, V), the total powers 1

T
B and 1

T
B
� do not.

Remark 14.4 (Total powers). 1. Given an internal voltage and current
�
+
�, ��

�
, the

terminal power vector B in (14.12a) does not depend on the zero-sequence current
V := 1

31
T
�
� but does depend on the zero-sequence voltage W := 1

31
T
+ . Since � =

��T
�
� and hence 1

T
� = 0, the total terminal power however is independent of W:

1
T
B = �1

Tdiag
⇣
�†

⇣
+
�
�
�H

⌘
�
⌘
= �(B01 + B12 + B20) = 1

T
B
�

where the second equality follows from the explicit expression for B in Example
14.2. This is the same as the total power 1

T
B in . configuration in Remark 14.3

when the neutral is ungrounded so that 1
T
�
. = 0 by KCL.
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2. Analogously, from (14.12b), the internal power vector B� depends on zero-
sequence current V. Since +� = �+ and hence 1

T
+
� = 0, the total internal power

however is independent of the loop flow:

1
T
B
� = �1

Tdiag
⇣
�

⇣
+�

H
⌘
�†

⌘

It can be shown that 1
Tdiag

�
�

�
+�

H�
�†

�
= 1

Tdiag
�
+�

H�
, confirming that the total

internal and terminal powers are equal, i.e., 1
T
B
� = 1

T
B (Exercise 14.5).

Voltage and current phasor measurements on a split-phase transformer in a Califor-
nia utility are presented in Chapter 3.1.6. Even though the transformer is single-phase,
the split-phase system can be treated as a �-configured three-phase load with one
terminal grounded (see Figure 3.10) and analyzed using techniques discussed in this
chapter. The internal (load) power B� given by (14.12b) cannot be computed from
terminal voltage and current measurements (+ , �) because of the unknown loop-flow
parameter V 2 C, but the total internal power 1

T
B
� is equal to the total terminal power

1
T
B which can be computed from (+ , �) measurements. The result is illustrated in

Figure 3.11(e) which is the sums of the curves in Figure 3.11(c) for the real part and
that in Figure 3.11(d) for the imaginary part. ⇤

Finally we can relate B and B� through the terminal voltage and internal current�
+ , ��

�
. Indeed both B and B� can be expressed in terms of

�
+ , ��

�
using (14.11a):

B := diag
⇣
+�

H
⌘
= �diag

⇣
+�

�H�
⌘

(14.12c)

B
� := diag

⇣
+
�
�
�H

⌘
= diag

⇣
�+��H

⌘
(14.12d)

An important advantage of (14.12c)(14.12d) is that
�
+ , ��

�
contains implicitly both

the zero-sequence voltage W := 1
31

T
+ and the zero-sequence current V := 1

31
T
�
�. This

is often a more computationally convenient model than (14.12a) and (14.12b).

In summary:

• Given internal voltage and current (+�, ��) with 1
T
+
� = 0, the terminal power B as

a function of (+�, ��) is given by (14.12a).
• Given terminal voltage and current (+ , �) with 1

T
� = 0, the internal power B� as a

function of (+ , �) is given by (14.12b).
• Given terminal voltage and internal current

�
+ , ��

�
, the terminal power B and the

internal power B� are given by (14.12c) and (14.12d) respectively.

These expressions are used to derive the external model a constant-power source in �
configuration; see Chapter 14.3.3.

Finally, note that unlike the relation � = ��T
�
� which expresses KCL, it is not true

that B = ��T
B
�. The relation between terminal power and internal power is given only

indirectly by (14.12).
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14.3.2 Devices in . configuration

In this subsection we first present parameters of a voltage source, current source, power
source, and impedance in . configuration. For each device we then specify its internal
model. Finally we apply the conversion rule (14.10) to the internal model of each
device to derive its external model.

Device specification. The devices we study are shown in Figure 14.5.

V aI a

V n

I n

zn

I b

I c

V b

V c

n' I n'
V n'

Ean

Ecn Ebn

zan

zcn zbn

(a) Voltage source
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I n
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I c
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ycn
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(b) Current source

V aI a
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I n
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I b

I c

V b

V c

n' I n'
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(c) Power source

V aI a

V n

I n

zn

I b

I c

V b

V c

n' I n'
V n'

zan

zcn zbn

(d) Impedance

Figure 14.5 Three-phase devices in . configuration. (a) A voltage source. (b) A current source.
(c) A power source. (d) An impedance. Note that the direction of �. and f. is
terminal-to-neutral. Oct 8, 2025: (iv) Power source: f0! f

0=,f1! f
1=,f2 ! f

2=.)

1. Voltage source
�
⇢
. , I. , I=

�
. A voltage source is a single-terminal three or four-

wire device. When the configuration is. , as shown in Figure 14.5(a), it is specified
by three parameters. Its internal voltage is fixed at ⇢. := (⇢0=,⇢1=,⇢2=) and its
series impedance matrix is I. := diag

�
I
0=, I1=, I2=

�
. If there is a neutral wire then

its impedance is a scalar I= which may or may not be zero whether or not the neutral
is grounded. An ideal voltage source is one with I. = 0 and I= = 0. A voltage source
can serve as a Thévenin equivalent circuit of a synchronous generator for which
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the internal voltage ⇢. is typically balanced. It can also model the primary or
secondary side of a transformer, or a grid-forming inverter.

2. Current source
�
�
. , H. , I=

�
. A current source is a single-terminal three or four-

wire device. When the configuration is. , as shown in Figure 14.5(b), it is specified
by three parameters. Its internal current is fixed at �. := (�0=, �1=, �2=) and its
shunt admittance matrix is H. := Diag

�
H
0=, H1=, H2=

�
. If there is a neutral wire

then its impedance is a scalar I= which may or may not be zero whether or not
the neutral is grounded. An ideal current source is one with H. = 0 and I= = 0. A
current source can serve as a Norton equivalent circuit of a synchronous generator.
It can also model a load such as an electric vehicle charger, or a grid-following
inverter.

3. Power source
�
f
. , I=

�
. A single-terminal three or four-wire power source in .

configuration is shown in Figure 14.5(c) and specified by two parameters. It
consumes a constant power f. :=

�
f
0=,f1=,f2=

�
or injects a constant power

�f. . If there is a neutral wire then its impedance is a scalar I= which may or
may not be zero whether or not the neutral is grounded. An ideal power source is
one with I= = 0. A power source can model a load, a generator, or the primary or
secondary side of a transformer.

4. Impedance
�
I
. , I=

�
. A single-terminal three or four-wire impedance in . con-

figuration as shown in Figure 14.5(d) is specified by an impedance matrix
I
. := Diag

�
I
0=, I1=, I2=

�
. If there is a neutral wire then its impedance is a scalar

I
= which may or may not be zero whether or not the neutral is grounded. An

impedance can model a load.

Note that the direction of �. and f. is defined to be terminal-to-neutral, opposite to
that of the terminal current �.

The list above only specifies the internal parameters of a. -configured device. When
it is connected to a network, its neutral voltage+= will need to be either specified (e.g.,
it is grounded directly so that += = 0) or computed (e.g., when it is ungrounded and
connected to a distribution line) in order to translate between its internal voltage+. and
external voltage+ =+. ++=1 (from (14.10)). We will discuss in Chapter 16.2, for each
device in a typical three-phase analysis problem, what quantities are parameters that
should be specified and what are variables to be computed through network equations.
An assumption that is often made, sometimes implicitly, is:

C14.1: All neutrals are grounded either through an impedance I= or directly (I= = 0)
and all voltages are defined with respect to the ground.

This assumption is often satisfied in practice. Under this assumption, +=
0
= 0 (see

Figure 14.5). Moreover the internal neutral voltage += is not independently specified
but is determined by the current through the neutral impedance I=:

+
= = I

=

⇣
1

T
�
.

⌘
= �I=

⇣
1

T
�

⌘
(14.13)
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If the neutral is directly grounded, i.e., I= = 0, then += = 0. Without C14.1 or for an
ungrounded voltage source, knowing the internal voltage and current

�
+
. , �.

�
alone

may not be su�cient to determine the external voltage + . We will be explicit when we
assume C14.1.

Voltage source (⇢. , I. , I=). Internal model. Referring to Figure 14.5(a) the internal
model of a voltage source is

+
. = ⇢

. + I. �. , +
= �+=0 = I

=

⇣
1

T
�
.

⌘
, �

= = 1
T
�
. (14.14a)

By an ‘internal model’, we mean that given one of the internal variables+. and �. , the
other is determined by (14.14a). Given �. , the neutral current �= is also determined; if
+
=
0
is given as well (e.g., +=

0
= 0 if the neutral is grounded), then the internal neutral

voltage += is determined by (14.14a).

The model yields an internal power B. := diag
�
+
.
�
.H�

across the nonideal voltage
source and an internal power B= :=

�
+
= �+=0

�
�
=H across the impedance I= on the

neutral line, given by:

B
. = diag

⇣
⇢
.

�
.H

⌘
+diag

⇣
I
.

�
.

�
.H

⌘
=

266664
⇢
0=
�̄
0=

⇢
1=
�̄
1=

⇢
2=
�̄
2=

377775|     {z     }
B
.

ideal

+
2666664

I
0= |�0= |2

I
1=

��
�
1=

��2
I
2= |�2= |2

3777775|        {z        }
Bimp

(14.14b)

B
= = I

=

��1T
�
.

��2 (14.14c)

External model. To derive an external model, apply the conversion rule (14.10), repro-
duced here:

+ = +
. + +=1, � = ��. , �1

T
� = �

=, B = �
⇣
B
. ++= �̄.

⌘

to the internal model (14.14) to eliminate the internal variables (here, �̄. is the complex
conjugate of vector �. componentwise). This yields a relation between its terminal
variables (+ , �, B):

+ = ⇢. ++=1� I. �, 1
T
� = ��=, B = diag

⇣
⇢
.

�
H
⌘
++= �̄ �diag

⇣
I
.

� �
H
⌘

(14.15a)

By an ‘external model’, we mean that given one of the terminal variables + and �, the
other is determined by (14.15a). Given �, the neutral current �= is also determined.
This model holds whether there is a neutral line or whether the neutral line is grounded
or ungrounded but connected to another device over a four-wire line. As discussed
before, �= = 0 if the neutral is ungrounded.

Suppose assumption C14.1 holds so that+=
0
= 0 and+= = �I=

⇣
1

T
�

⌘
. Then (14.15a)

yields the external model:

+ = ⇢
. � /. � (14.15b)
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where

/
. := I

. + I
=

11
T =

266664
I
0= + I= I

=
I
=

I
=

I
1= + I= I

=

I
=

I
=

I
2= + I=

377775
(14.15c)

This has the same form as that of a single-phase voltage source discussed in Chapter
1.1.2. The neutral impedance I= couples the phases. Substituting (14.15b) into B =
diag

�
+�

H�
expresses the terminal power B as a quadratic function of + :

B = diag
✓
+

⇣
⇢
. �+

⌘H ⇣
(/. )�1

⌘H
◆

(14.15d)

assuming /. is invertible (/. is invertible if both I. is invertible and I= < 0). In that
case (Exercise 14.6)

(/. )�1 = �H
. where � := I�

H
.

⇣
11

T
⌘

H
0= + H1= + H2= + H= (14.16a)

Here H. :=Diag
�
H
0=, H1=, H2=

�
:= (I. )�1 and H= := (I=)�1. When H0= = H1= = H2= := H

and H= := 0 (i.e., the neutral is not grounded) we have

(/. )�1 =
H

3

266664
2 �1 �1
�1 2 �1
�1 �1 2

377775
(14.16b)

The linear �-+ relation and the nonlinear+-B or �-B relation in (14.4) takes the form
of (14.15) for a voltage source.

If I= = 0 then /. = I. . From (14.15b) the phases are decoupled, i.e., +0 = ⇢0= �
I
0=
�
0, whether or not the current � and the voltage+ are balanced. For an ideal voltage

source where both I= = 0 and I. = 0, the internal and external models (14.14) (14.15)
here reduce to, under assumption C14.1,

+ = + = ⇢
. , B = B

. = diag(⇢. �H)

Example 14.3. Unlike for an ideal voltage source, B. in (14.14b) includes both the
power B.ideal := diag

�
⇢
.
�
.H�

across the ideal voltage source and the power Bimp :=
diag

�
I
.
�
.
�
.H�

delivered to the series impedance I. . Hence the net power injection is

B = �
⇣
B
.

ideal + Bimp ++= �̄.
⌘

Summing across phases 0,1,2 shows that the total power generated is equal to the total
power injection and total power consumed by the internal impedances of the voltage
source:

�1
T
B
.

ideal = 1
T
B+1

T
Bimp + B=

where B= given by (14.14c) is the power delivered to the impedance I= on the neutral
wire. ⇤
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Current source (�. , H. , I=). Internal model. Referring to Figure 14.5(b) the internal
model of a current source is given by

�
. = �

. + H.+. , +
= �+=0 = I

=

⇣
1

T
�
.

⌘
, �

= = 1
T
�
. (14.17a)

This yields an internal power B. := diag
�
+
.
�
.H�

across the nonideal current source
and an internal power B= := += �̄= across the impedance I= on the neutral line, given
by (Exercise 14.7):

B
. = diag

⇣
+
.

�
.H

⌘
+diag

⇣
+
.

+
.H
H
.H

⌘
=

266664
+
0=
�̄
0=

+
1=
�̄
1=

+
2=
�̄
2=

377775|      {z      }
B
.

ideal

+
2666664

H̄
0= |+0= |2

H̄
1=

��
+
1=

��2
H̄
2= |+2= |2

3777775|         {z         }
Badm

(14.17b)

B
= := +

=

�̄
= = I

=

���1T
�
. +diagT

⇣
H
.

⌘
+
.

���2 ++=0 ⇣1T
�̄
.

⌘
(14.17c)

where diag
�
H
.
�

denotes the column vector (H0=, H1=, H2=).

External model. The derivation here is analogous to that for a voltage source above.
Applying the conversion rule (14.10) to the internal model (14.17a) yields an external
model of a current source that relates its terminal variables:

� = ��. � H. (+ �+=1) , 1
T
� = ��= (14.18a)

B = �diag
⇣
+�

.H
⌘
�diag

⇣
+ (+ �+=1)H

H
.H

⌘
(14.18b)

As discussed earlier, �= = 0 if the neutral is ungrounded.

The interpretation of the ‘internal model’ and the ‘external model’ for a current
source, or for other . -configured devices, is analogous to the interpretation for a
voltage source discussed above.

Suppose assumption C14.1 holds so that += = �I=
⇣
1

T
�

⌘
. Then (14.18b) yields

(Exercise 14.8):

+ = �
⇣
I
.

�
. + /. �

⌘
, � = ��

⇣
�
. + H.+

⌘
(14.18c)

where I. :=
�
H
.
��1, /. is defined in (14.15c) and, assuming /. is invertible, � is

defined in (14.16a). Substituting (14.18c) into B = diag
�
+�

H�
expresses the terminal

power B as a quadratic function of + :

B = �diag
⇣
+

⇣
�
.H ++H

H
.H

⌘
�

H
⌘

(14.18d)

The linear �-+ relation and the nonlinear +-B or �-B relation in (14.4) takes the form of
(14.18) for a current source.

Analogous to a voltage source, the phases are decoupled if I= = 0. An ideal current
source with H. = 0 and I= = 0 has

� = ��. = ��. , B = �diag
⇣
+�

.H
⌘

(14.19)
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Power source
�
f
. , I=

�
. Internal model: By definition the power delivered to a

constant-power source and the power delivered to the impedance I= on the neutral line
are respectively (Figure 14.5(c))

B
. := diag

⇣
+
.

�
.H

⌘
= f

. , B
= :=

⇣
+
= �+=0

⌘
�̄
= = I

=

��1T
�
.

��2 (14.20)

External model: Apply the conversion rule to the internal model (14.20) yields an
external model that relates the terminal variables:

f
. = �diag

⇣
(+ �+=1)�H

⌘
, B = �f. ++= �̄, 1

T
� = ��= (14.21a)

Suppose assumption C14.1 holds so that +=
0
= 0 and += = �I=

⇣
1

T
�

⌘
. We can then

rewrite the vector += �̄. as

+
=

�̄ = �I=
⇣
1

T
�

⌘
�̄ = �I=

⇣
�̄ �

T
⌘
1

This yields a quadratic relation between + and � (Exercise 14.9):

+ = �Diag�1 ( �̄)f. � I=
⇣
11

T
⌘
� (14.21b)

and between B and �:

B = �
⇣
f
. + I=

⇣
�̄ �

T
⌘
1

⌘
(14.21c)

It is generally not possible to solve (14.21b) for � in closed form and hence there is
generally not an explicit B-+ model for a power source. From (14.21c) the total power
�1

T
f
. generated by the constant-power source is equal to the total power injection

and the power delivered to the impedance on the neutral line:

�1
T
f
. = 1

T
B+ I=

⇣
1

T
�
.

⌘
|     {z     }
�+ =

⇣
1

T
�̄
.

⌘
|  {z  }
��̄ =

= 1
T
B+ B=

Clearly B = �f. if I= = 0.

Impedance
�
I
. , I=

�
. Internal model: Referring to Figure 14.5(d) the internal model

of an impedance is

+
. = I

.

�
. , B

. := diag
⇣
+
.

�
.H

⌘
, B

= :=
⇣
+
= �+=0

⌘
�̄
= = I

=

��1T
�
.

��2 (14.22)

External model: Application of the conversion rule (14.10) to the internal model
(14.22) yields an external model that relates the terminal variables:

+ = �I. � ++=1, �1
T
� = �

= (14.23a)

If assumption C14.1 holds so that+=
0
= 0 and+= = �I=

⇣
1

T
�

⌘
, then the external model

reduces to:

+ = �/. � (14.23b)
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where /. := I. + I=11
T is the same e�ective impedance in (14.15c). Substituting

(14.23b) into B = diag
�
+�

H�
expresses B as a quadratic function of + :

B = �diag
⇣
++

H (/. )�H
⌘

(14.23c)

assuming /. is invertible (see (14.16a)). If I= = 0 then /. = I. is diagonal.

Balanced impedance. When I
= < 0 but I. is balanced, i.e., I0= = I1= = I2=, then

/
. = I0=I + I= 11

T and its o�-diagonal entries will couple voltages and currents in
di�erent phases. One can perform a similarity transformation using the unitary matrix
� to what is called the sequence coordinate as explained in Chapter 14.2.2. In the
sequence coordinate, the transformed impedance /̃. , called the sequence impedance,
is diagonal:

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
This leads to decoupled voltages and currents in the sequence coordinate called sym-
metrical components. The decoupled relation between the sequence voltages, currents
and impedances can be interpreted as defining separate sequence networks that can be
analyzed independently. This is explained in Chapter 16.3.1.

Remark 14.5 (Phase decoupling). The matrix /. := I. + I=11
T in (14.15) (14.18)

(14.23) is called the phase impedance matrix or the impedance matrix. Suppose as-
sumption C14 holds.

1. If I= = 0 in these four devices, i.e., the neutrals are directly grounded, then the
phases are decoupled. This is because, for a power source, B = �f. , for the other
devices += = 0 and /. = I. becomes diagonal and hence for a voltage source,
+ = ⇢ � I. �, for a current source, + = �I. (�. + �), and for an impedance, and
+ = �I. �.

2. If I= < 0 but the currents satisfy �0 + �1 + �2 = 0 then �= = 0 and+= = 0. In this case
the phases are also decoupled. If the voltage+ is balanced and I0= = I0= = I2= =: I
then �= = 0, += = 0 and the phases are decoupled, provided I +3I= < 0 (Exercise
14.10).

3. In unbalanced operation, however, the neutral current �= may be nonzero and
/
. generally has nonzero o�-diagonal entries that couple voltages and currents

in di�erent phases. As mentioned above, if I0= = I0= = I2= then the sequence
impedance /̃. is diagonal and hence decoupled in the sequence domain (Chapter
16.3). ⇤

14.3.3 Devices in � configuration

In this subsection we first present parameters of the same single-phase devices studied
in Chapter 14.3.2, but arranged in � rather than . configuration. For each device we
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then specify its internal model. Finally we apply the conversion rule (14.11)(14.12) to
the internal model of each device to derive its external models.

Internal specification. The three-phase devices we study are shown in Figure 14.6.

V aI a

I b

I c

V b

V c

Eab

Eca

Ebc

zab

zbc
zca

(a) Voltage source

yca
J ca Jab

V a
I a

I b

I c
V b

V cJbc

ybc

yab

(b) Current source

V a
Ia

I b

I c
V b

V c

(c) Power source

zca

V a
I a

I b

I c
V b

V c

zbc

zab

(d) Impedance

Figure 14.6 Three-phase devices in � configuration. (a) A voltage source. (b) A current source.
(c) A power load. (d) An impedance. Note the direction of �� and f�.

1. Voltage source
�
⇢
�, I�

�
. A three-wire voltage source in� configuration as shown in

Figure 14.6(a) is specified by its internal line-to-line voltage ⇢� := (⇢01 ,⇢12 ,⇢20)
and series impedance matrix I� :=Diag

�
I
01 , I12 , I20

�
. We assume that I01 + I12 +

I
20 < 0 for nonideal voltage source. An ideal voltage source is one with I� = 0.

2. Current source
�
�
�, H�

�
. A three-wire current source in� configuration as shown in

Figure 14.6(b) is specified by its internal line-to-line current �� := (�01 , �12 , �20)
and shunt admittance matrix H� := Diag

�
H
01 , H12 , H20

�
. An ideal current source is

one with H� = 0.
3. Power sourcef�. A three-wire power source in� configuration as shown in Figure

14.6(c) consumes a constant power f� :=
�
f
01 ,f12 ,f20

�
or injects a constant

power �f�.
4. Impedance I�. A three-wire impedance in � configuration as shown in Figure

14.6(d) is specified by an impedance matrix I� := Diag
�
I
01 , I12 , I20

�
. We assume

that I01 + I12 + I20 < 0.
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Figure 14.6 shows that the model of a voltage source or a current source reduces to
that of an impedance if we take ⇢� = �� = 0. We thus start with the simplest device.

Impedance I�. Internal model. Referring to Figure 14.6(d) the internal model of an
impedance I� in � configuration is

+
� = I

�
�
�, B

� := diag
⇣
+
�
�
�H

⌘
= diag

⇣
I
�
�
�
�
�H

⌘
(14.24)

By an ‘internal model’, we mean that given one of the internal variables +� and ��,
the other is uniquely determined by (14.24). More precisely, given any �� that satisfies
1

T
I
�
�
� = 0, the internal voltage is given by+� = I���. Equivalently, given any+� that

satisfies 1
T
+
� = 0, the internal current is given by �� = H�+�. Therefore the internal

voltage and current +�, �� of an impedance are not arbitrary, but constrained by
1

T
I
�
�
� = 1

T
+
� = 0.

External model. The terminal voltage and current (+ , �) are related to the internal
voltage and current

�
+
�, ��

�
according to the conversion rule (14.11a) for�-configured

devices, reproduced here

+
� = �+ , � = ��T

�
�

Unlike the internal model (14.24) which is invertible in the sense that one of +� and
�
� uniquely determines the other, the external model of a �-configured impedance is

not invertible. We will derive two external models. The first maps uniquely from +

to �. The second maps � to a set (subspace) of + , i.e., + is determined from � only
up to an arbitrary zero-sequence voltage W which can be determined given a reference
voltage. The asymmetry between these two external models is due to the singularity of
the conversion matrices �,�T and can be interpreted as follows. The terminal voltage
+ contains more information (its zero-sequence voltage W := 1

31
T
+) than the terminal

current �. It uniquely determines the internal voltage +� and hence �� (from (14.24))
and �. In contrast � contains no information about the zero-sequence current V := 1

31
T
�
�

and hence does not uniquely determine the internal current �� or + .

To derive the first external model that maps + to � from the internal model, define
the admittance matrix H

� :=
�
I
���1

. Substituting into (14.24) to obtain �
� = H�+�,

multiplying both sides by ��T and applying the conversion rule, the first external
model of an impedance is: given any + , the terminal current � is determined by:

� = �.�+ (14.25a)

where the e�ective admittance .� is the complex symmetric Laplacian matrix of the
graph in Figure 1.9:1

.
� := �T

H
� � =

266664
H
01 + H20 �H01 �H20
�H01 H

12 + H01 �H12
�H20 �H12 H

20 + H12

377775
(14.25b)

1 Note that H� is complex symmetric, generally not Hermitian. Therefore span(1) is a subset of the null
space of . �. For a su�cient condition for the null space of . � to be span(1) , see Chapter 4.5.
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Note that the terminal current � given by (14.25a) satisfies 1
T
� = 0.

To derive the second external model that maps any � satisfying 1
T
� = 0 to + ,

substitute the conversion rule into the internal model (14.24) to eliminate
�
+
�, ��

�
:

�+ = I
�
⇣
��T†

� + V1

⌘

where the zero-sequence internal current V := 1
31

T
�
� 2 C is not arbitrary but depends

on �. Multiplying both sides by 1
T gives

0 = 1
T�+ = � 1

T
I
�|{z}

Ĩ
�T

�T†
� + V

⇣
1

T
I
�
1

⌘
|   {z   }

Z

where Ĩ� := I�1 is the impedances in vector form and Z := I01 + I12 + I20 is the total
impedance. Hence V is determined by the terminal current � according to (this is
verified in Example 16.6)

V =
1
Z

⇣
Ĩ
�T�T†

⌘
�

and V = 0 if and only if Ĩ�T�T†
� = 0; we will interpret this condition in Remark 14.6.

Therefore

�+ = �I�
✓
I� 1

Z

1Ĩ
�T

◆
�T†

�

Since the right-hand side is orthogonal to 1, the second external model is: given any �
with 1

T
� = 0, the terminal voltage + is determined up to a reference voltage by

+ = �/�� +W1, W 2 C (14.25c)

where the e�ective impedance is

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
� (14.25d)

If V = 0 then /� in (14.25c) reduces to /� := 1
9�

T
I
��.

Remark 14.6 (V and W). 1. Recall that Ĩ� := I�1 2 C3 is the impedance in vector
form. The derivation of (14.25c)(14.25d) shows that V is the projection of the
terminal current � onto the transformed impedance �† Ĩ� normalized by the total
impedance Z := I01 + I12 + I20:

V = �
T (�† Ĩ�/Z)

where we have used �T† = �†T from Theorem 14.2. Hence the zero-sequence
internal current V = 0 if and only if the terminal current � is orthogonal to the
transformed impedance �† Ĩ� or I� = I01I is balanced.

2. We can also eliminate the variable W := 1
31

T
+ and write (14.25c) equivalently in

terms of only (+ , �) with 1
T
� = 0:✓
I� 1

3
11

T
◆
+ = �/��
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Given � that satisfies 1
T
� = 0, this is a system of 2 linearly independent equations in

3 variables+ . It is often more convenient to use (14.25c) in analysis as it expresses
+ explicitly in terms of � despite the additional variable W; see Example 16.10. ⇤

We summarize our discussion as a theorem. It implies that the internal model (14.24)
and the two external models (14.25a)(14.25b) and (14.25c)(14.25d) are equivalent in
the sense that one set of relation can be derived from another set. The theorem also
implies that /� and .� are pseudo-inverses of each other (see Exercise 14.11).

Theorem 14.4 (Impedance). Given the conversion rules +� = �+ and � = ��T
�
�, the

following models of an impedance I� = (H�)�1 are equivalent:

1. Internal model: given any �� that satisfies 1
T
I
�
�
� = 0, the internal voltage is given

by +� = I���. Equivalently, given any +� that satisfies 1
T
+
� = 0, the internal

current is given by �� = H�+�.
2. External model: given any + , the terminal current is given by � = �.�+ where
.
� := �T

H
��.

3. External model: given any � that satisfies 1
T
� = 0, the terminal voltage is given by

+ = �/�� +W1 for some W 2 C where

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

where Ĩ� := I�1 is the impedance in vector form and Z := I01 + I12 + I20 is the total
impedance. Moreover the zero-sequence internal current V := 1

31
T
�
� is determined

by the given terminal current � according to V = �T (�† Ĩ�/Z), and hence V = 0 if
and only if � is orthogonal to the transformed impedance �† Ĩ� or I� = I01I is
balanced.

Proof The derivation above of (14.25a)(14.25b) and (14.25c)(14.25d) shows that
1) 2 and 3. For the converse we will show that 2) 1 and 3) 1.

The internal model 1 is an expression of +� in terms of any given ��. Suppose we
are given an internal current �� that satisfies 1

T
I
�
�
� = 0. According to the conversion

rule, the terminal current is � := ��T
�
� and the internal voltage is +� := �+ . We need

to show that +� satisfies +� = I
�
�
�, given the external model either 2 or 3.

Suppose we are given the external model 2. Then � is related to the terminal voltage
by � = �

�
�T
H
��

�
+ . Equating � := ��T

�
� and substituting +� := �+ we have

�T
⇣
H
�
+
�� ��

⌘
= 0

Therefore H�+� � �� = V1 for some V 2 C. Multiplying both sides by I� and then 1
T

we have

1
T
⇣
+
�� I���

⌘
= V

⇣
1

T
I
�
1

⌘
= 0
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where the last equality follows because 1
T
I
�
�
� = 0 by assumption. Since Z := 1

T
I
�
1 =

I
01 + I12 + I20, we have V = 0 and hence +� = I

�
�
�. This proves 2) 1. ⇤

The external models (14.25a) and (14.25c) allow us to relate the terminal power B
to + or to � as:

B = diag
⇣
+�

H
⌘
= �diag

⇣
++

H
.
�H

⌘
(14.25e)

B = diag
⇣
+�

H
⌘
= �diag

⇣
/
�
� �

H
⌘
+ W�̄, W 2 C (14.25f)

Balanced impedance. When the impedance is balanced, i.e., I01 = I12 = I20 then
(Exercise 14.11)

/
� =

I
01

3

✓
I� 1

3
11

T
◆

i.e., /� is not diagonal and the o�-diagonal entries will couple voltages and currents
in di�erent phases. As we will see in Chapter 16.3.1, in this case, one can perform
a similarity transformation using the unitary matrix � to what is called the sequence
coordinate as explained in Chapter 14.2.2. In the sequence coordinate, the transformed
impedance /̃�, called the sequence impedance, is diagonal:

/̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
This leads to decoupled voltages and currents in the sequence coordinate called sym-
metrical components. The zero-sequence component (first row and column of /̃�)
is zero, reflecting the fact that �0 + �1 + �2 = 0 in a � configuration since there is
no neutral line. The decoupled relation between the sequence voltages, currents and
impedances can be interpreted as defining separate sequence networks that can be
analyzed independently.

Voltage source
�
⇢
�, I�

�
. Internal model. Referring to Figure 14.6(a) the internal

model of a voltage source in � configuration is

+
� = ⇢

� + I���, B
� := diag

⇣
+
�
�
��

⌘
= diag

⇣
⇢
�
�
�H

⌘
+diag

⇣
I
�
�
�
�
�H

⌘
(14.26)

with the requirement 1
T �
⇢
� + I���

�
= 0.

External model. The external models of a voltage source can be derived in the same
way as those of a �-configured impedance, by applying the conversion rule +� = �+ ,
� = ��T

�
� to the internal model (14.26). We will derive first the external model that

maps any terminal voltage + uniquely to a terminal current � and then the external
model that maps any � that satisfies 1

T
� = 0 to a set (subspace) of + with an arbitrary

zero-sequence voltage W.

To derive the first external model that maps + to � from the internal model (14.26),
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write H� :=
�
I
���1

and �� = H�
�
+
��⇢�

�
. Multiplying both sides by ��T and substi-

tuting the conversion rule we have

� =
⇣
�T
H
�
⌘
⇢
� � .�+ (14.27a)

where.� :=�T
H
�� is the e�ective admittance matrix in (14.25b). Note that the terminal

current � given by (14.27a) satisfies 1
T
� = 0.

To derive the second external model that maps any � satisfying 1
T
� = 0 to + ,

substitute the conversion rule �
� = ��T†

� + V1 from (14.11c) into the (14.26) to
eliminate the internal variable

�
+
�, ��

�
:

�+ = ⇢
� + I�

⇣
��T†

� + V1

⌘
=

⇣
⇢
�� I��T†

�

⌘
+ VI�1

where the zero-sequence current V := 1
31

T
�
� 2 C is not arbitrary but depends on ⇢�

and �. Multiplying both sides by 1
T gives

0 = 1
T�+ = 1

T
⇢
�� 1

T
I
�|{z}

Ĩ
�T

�T†
� + V

⇣
1

T
I
�
1

⌘
|   {z   }

Z

where Ĩ� := I�1 and Z := I01 + I12 + I20. Then2 since �T† = �†T, we have

V =
1
Z

⇣
�

T (�† Ĩ�)�1
T
⇢
�
⌘

i.e., the zero sequence internal current V is the normalized di�erence between the
projection of the given terminal current � onto the transformed impedance �† Ĩ� and
the imbalance 1

T
⇢
� of the internal voltages. Therefore

�+ =
⇣
⇢
�� I��T†

�

⌘
+ 1
Z

I
�
1

⇣
Ĩ
�T�T†

� �1
T
⇢
�
⌘

=
✓
I� 1

Z

Ĩ
�
1

T
◆
⇢
�� I�

✓
I� 1

Z

1Ĩ
�T

◆
�T†

�

Notice that the right-hand side is orthogonal to 1. Hence the second external model
is: given any � with 1

T
� = 0, the terminal voltage + is determined up to a reference

voltage by:

+ = �̂⇢�� /�� +W1, W 2 C (14.27b)

where the e�ective impedance /� is defined in (14.25d) and

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

(14.27c)

This is similar to (14.15b) for the . -configured voltage source. It also reduces to the
external model (14.25c) for a �-configured impedance if ⇢� = 0. The zero-sequence
internal current V = 0 if and only if �T (�† Ĩ�) = 1

T
⇢
�, i.e., if and only if the the

projection of the given terminal current � onto the transformed impedance �† Ĩ� is

2 If the internal voltage ⇢� and the impedance Ĩ� are balanced, then 1
T
⇣
⇢
� � I��T†

�

⌘
= 0 and V = 0.
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equal to the imbalance 1
T
⇢
� of the internal voltages. In this case �̂ and /� in (14.27b)

reduce to

�̂ :=
1
3
�T, /

� :=
1
9
�T
I
��

The following theorem summarizes the relation between the internal model (14.26)
and the two external models (14.27a) and (14.27b)(14.27c) for a voltage source. It is
analogous to Theorem 14.4 for impedance and its proof is left as Exercise 14.13.

Theorem 14.5 (Voltage source). Given the conversion rules +� = �+ and � = ��T
�
�,

the following models of a voltage source are equivalent (denoting H� = (I�)�1):

1. Internal model: given any �� that satisfies 1
T �
⇢
� + I���

�
= 0, the internal voltage

is given by+� = ⇢� + I���. Equivalently, given any+� that satisfies 1
T
+
� = 0, the

internal current is given by �� = H� (+��⇢�).
2. External model: given any+ , the terminal current is given by � =

�
�T
H
��
⇢
��.�+

where .� := �T
H
��.

3. External model: given any � that satisfies 1
T
� = 0, the terminal voltage is given by

+ = �̂⇢�� /�� +W1 for some W 2 C where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�
1

T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

and Ĩ� := I�1, Z := I01 + I12 + I20. Moreover the zero-sequence internal current
V := 1

31
T
�
� is given by

V =
1
Z

⇣
�

T (�† Ĩ�)�1
T
⇢
�
⌘

⇤

The external models (14.27a) and (14.27b) allow us to relate the terminal power B
to + or to � as:

B = diag
⇣
+�

H
⌘
= diag

✓
+

⇣
�T
H
�
⇢
��.�+

⌘H
◆

(14.27d)

B = diag
⇣
+�

H
⌘
= diag

⇣⇣
�̂⇢�� /��

⌘
�

H
⌘
+W�̄, W 2 C (14.27e)

For an ideal voltage source where I� = 0 we have �̂ := 1
3�

T, /� = 0 and +� = ⇢�.
Unlike the case when I� < 0, the internal current �� is no longer determined by +�

(it will be determined by interaction with other devices through network equations).
Therefore the two external models (14.27a) and hence (14.27b) may no longer hold.
The external model is, provided 1

T
⇢
� = 0,

+ =
1
3
�T
⇢
� +W1, 1

T
� = 0, B =

1
3

diag
⇣
�T
⇢
�
�

H
⌘
+W�̄ (14.28)

where W is fixed by a reference voltage.
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Current source
�
�
�, H�

�
. Internal model. Referring to Figure 14.6(b) the internal

model of a current source in � configuration is

�
� = �� + H�+�, B

� := diag
⇣
+
�
�
��

⌘
= diag

⇣
+
�
�
�H

⌘
+diag

⇣
+
�
+
�H
H
�H

⌘
(14.29)

with the requirement 1
T
I
� (��� ��) = 0 where I� := (H�)�1.

External model. As for an impedance or a voltage source, we will derive two external
models for a�-configured current source, one mapping any terminal voltage+ uniquely
to a terminal current � and the other mapping any � satisfying 1

T
� = 0 to a set (subspace)

of + with an arbitrary zero-sequence voltage W. As we will see these models and their
derivation will be identical to those for a voltage source if we replace �� with �H�⇢�
everywhere �� appears.

To derive the first external model from the internal model (14.29), multiplying both
sides of �� = �� + H�+� by ��T and substituting the general conversion rule +� = �+
and � = ��T

�
� for �-configured devices, we have

� = �
⇣
�T
�
� +.�+

⌘
(14.30a)

where .� := �T
H
�� is the e�ective admittance matrix in (14.25b).

To derive the second external model that maps any � satisfying 1
T
� = 0 to + ,

substitute �� = ��T†
� + V1 into the (14.29), denoting by I� := (H�)�1:

�+ = �I��� + I�
⇣
��T†

� + V1

⌘
= �I�

⇣
�
� +�T†

�

⌘
+ VI�1

where the zero-sequence current V 2 C is not arbitrary but depends on ⇢
� and �.

Multiplying both sides by 1
T gives

0 = 1
T�+ = �1

T
I
�
�
�� 1

T
I
�|{z}

Ĩ
�T

�T†
� + V

⇣
1

T
I
�
1

⌘
|   {z   }

Z

where Ĩ� := I�1 and Z := I01 + I12 + I20. Then

V =
Ĩ
�T

Z

⇣
�
� +�T†

�

⌘

Therefore

�+ = �I�
⇣
�
� +�T†

�

⌘
+ 1
Z

Ĩ
�
Ĩ
�T

⇣
�
� +�T†

�

⌘

= �
✓
I� 1

Z

Ĩ
�
1

T
◆
I
�
�
�� I�

✓
I� 1

Z

1Ĩ
�T

◆
�T†

�

Since the right-hand side is orthogonal to 1, the second external model is: given any �
with 1

T
� = 0, the terminal voltage + is determined up to a reference voltage by:

+ = �
⇣
(�̂I�)�� + /��

⌘
+W1, W 2 C (14.30b)

where �̂ is defined in (14.27c) and /
� in (14.25d). This is similar to (14.18c) for
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the . -configured current source. It also reduces to the external model (14.25c) for a
�-configured impedance if �� = 0. The zero-sequence internal current V = 0 if and
only if Ĩ�T �

�
� +�T†

�

�
= 0, i.e., if and only if the projection of the source current ��

onto the impedance vector Ĩ� and the projection of the terminal current � onto the
transformed impedance �† Ĩ� sum to zero. In this case �̂ and /� in (14.30b) reduce to

�̂ :=
1
3
�T, /

� :=
1
9
�T
I
��

as for a voltage source.

The following theorem will be the same as Theorem 14.5 for a voltage source if we
replace �� with �H�⇢�.

Theorem 14.6 (Current source). Given the conversion rules +� = �+ and � = ��T
�
�,

the following models of a current source are equivalent (denoting I� = (H�)�1):

1. Internal model: given any �� that satisfies 1
T
I
� (�� � ��) = 0, the internal voltage

is given by +� = I� (�� � ��). Equivalently, given any +� that satisfies 1
T
+
� = 0,

the internal current is given by �� = �� + H�+�.
2. External model: given any + , the terminal current is given by � = �

�
�T
�
� +.�+

�
where .� := �T

H
��.

3. External model: given any � that satisfies 1
T
� = 0, the terminal voltage is given by

+ = �
⇣
(�̂I�)�� + /��

⌘
+W1 for some W 2 C where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�
1

T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

and Ĩ� := I�1, Z := I01 + I12 + I20. Moreover the zero-sequence internal current
V := 1

31
T
�
� is given by

V =
Ĩ
�T

Z

⇣
�
� +�T†

�

⌘

⇤

The external models (14.30a) and (14.30b) allow us to relate the terminal power B
to + or to � as:

B = diag
⇣
+�

H
⌘
= �diag

⇣
+�

�H�+++H
.
�H

⌘
(14.30c)

B = diag
⇣
+�

H
⌘
= �diag

⇣⇣
�̂I��� + /��

⌘
�

H
⌘
+W�̄, W 2 C (14.30d)

For an ideal current source where H� = 0 we have

� = ��T
�
�, B = �diag(+��H�) (14.31)
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Power source f�. Internal model. Referring to Figure 14.6(c) the internal model of
a constant-power source is

B
� := diag

⇣
+
�
�
�H

⌘
= f

� (14.32)

This specifies the powers (f01 ,f12 ,f20) delivered to these single-phase devices.

External model. Applying the power conversion rule (14.12b) to the internal model
B
� = f� yields an external model of a constant-power source that relates its terminal

voltage and current (+ , �):

f
� = �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V̄�+ , 1

T
� = 0 (14.33a)

where V represents the amount of loop flow in the internal current ��. All three
quantities (+ , �, V) are variables to be determined by the interaction with other devices
through the network; see Chapter 16.1. Here (+ , �) are terminal variables but, unlike
the external models of other devices, V is a quantity internal to the � configuration.

An alternative model of a constant-power source is (14.12d) that relates its terminal
voltage + with its internal current ��:

f
� := diag

⇣
+
�
�
�H

⌘
= diag

⇣
�+��H

⌘
(14.33b)

An advantage of this model is that it contains implicitly both the zero-sequence terminal
voltage W := 1

31
T
+ and zero-sequence internal current V := 1

31
T
�
�.

The two models (14.33a) and (14.33b) are equivalent: expand (14.33a) to get

f
� = �1

3

2666664

�
�
0 � �1

�H �
+
0 �+1

�
�
�
1 � �2

�H �
+
1 �+2

�
(�2 � �0)H (+2 �+0)

3777775
+ V̄

266664
+
0 �+1

+
1 �+2

+
2 �+0

377775
=

✓
Diag

⇣
��T†

�

⌘H
+ V̄I

◆
|                      {z                      }

Diag(��H)

(�+)

which is (14.33b). Given one of +� or ��, the other can be uniquely determined from
f
� := diag

�
+
�
�
�H�

. This implies two external models for a�-configured power source,
one mapping any terminal voltage + uniquely to a terminal current � and the other
mapping any � satisfying 1

T
� = 0 to a set of + , similar to the external models for a

�-configured impedance, voltage or current source.

Specifically, given a terminal voltage + and hence +� = �+ , the internal current ��

can be uniquely determined from (14.33b) and then � =��T
�
� and V = 1

31
T
�
�. Given an

internal current ��, however, only+� = �+ , but not+ , can be uniquely determined from
(14.33a) or (14.33b). The terminal voltage+ (or equivalently, its zero-sequence voltage
W) needs to be determined through network equations or from a reference voltage. If,
instead of ��, only a terminal current � is given, then there will be ambiguity due
to both the zero-sequence current V in �� and the zero-sequence voltage W in + ; see
Exercise 14.14. These quantities will be determined through network equations.
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For a balanced system however the loop flow V and the internal voltages +� are
uniquely determined by f� and a terminal current �, as the next example illustrates.

Example 14.4 (Balanced systems). Consider a constant-power source with a given
f
� whose external behavior is described by (14.33a). For example, f01 can be the

power drawn by a level-2 electric vehicle charger between phases 0 and 1. The given
power f� may not be balanced, but we assume the internal voltage+� and the terminal
current � are positive-sequence balanced vectors. Suppose � = 8U+ for some 8 2 C.

1. Show that the given f� and � must satisfy

f
� 2 span

✓
� (1� Ū)8̄

3
1+ V̄U+

◆

for some V 2 C. Hence the internal power f� is di�erent in each phase if and only
if the loop flow V < 0.

2. Show that the internal voltage +� are uniquely determined by f� and �, but the
terminal voltage + is unique only up to an arbitrary reference voltage:

+
� =

�1
T
f
�

(1� Ū)8 U+, + =
�1

T
f
�

38
U+ +W1, W 2 C

Hence neither depends on V.
3. Show that

V̄ =
(f12 �f01)8̄4�c/3
f
01 +f12 +f20

Solution. By Corollary 1.3 we have for any balanced vector G 2 C3 in positive sequence

�G = (1�U)G, �T
G = (1�U2)G

Hence the internal current is

�
� = ��T†

� + V1 = �1
3
�� + V1 = �1�U

3
8U+ + V1

where the second equality follows from Theorem 14.2. By assumption+� is a positive-
sequence balanced vector, i.e.,+� = EU+ where E 2 C is a scalar to be determined. Then

f
� = diag

⇣
+
�
�
�H

⌘
= Ediag

 
U+

✓
� (1�U)8

3
U+ + V1

◆H
!

= E

✓
� (1� Ū)8̄

3
diag

⇣
U+U

H
+
⌘
+ V̄U+

◆
= E

✓
� (1� Ū)8̄

3
1+ V̄U+

◆
(14.33c)

i.e., f� lies in span
⇣
� (1�Ū) 8̄

3 1+ V̄U+
⌘

for some V. To determine E, multiplying both

sides by 1
T to get

E =
�1

T
f
�

(1� Ū)8̄ and +
� = EU+
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Hence+� is uniquely determined byf� and a balanced terminal current �. The terminal
voltage + is given by (noting 1� Ū = 1�U2)

+ = �†+� +W1 =
E

3
�T
U+ +W1 =

�1
T
f
� (1�U2)

3(1� Ū)8̄ U+ +W1 =
�1

T
f
�

38̄
U+ +W1

which is unique up to an arbitrary reference voltage specified by W 2 C. Therefore + is
a generalized balanced vector.

From (14.33c) we have

f
01 = E

✓
� (1� Ū)8̄

3
+ V̄

◆
, f

12 = E

✓
� (1� Ū)8̄

3
+ UV̄

◆

and hence f01 �f12 = E(1�U) V̄, or

V̄ =
(f12 �f01) (1� Ū)8̄

(f01 +f12 +f20) (1�U) =
(f12 �f01)8̄4�c/3
f
01 +f12 +f20

⇤

Whereas (14.33a) relates the internal power f� to the external voltage and current
(+ , �), we can also use the conversion rule (14.12a) to relate the external power B to
the internal voltage and current

�
+
�, ��

�
. Specifically, the internal voltage and current

(+�, ��) and the terminal power B of a constant-power source must satisfy:

B = �1
3

diag
⇣
�T

⇣
+
�
�
�H

⌘
�
⌘
�W�T

�̄
�, f

� = diag
⇣
+
�
�
�H

⌘
, 1

T
+
� = 0 (14.33d)

where W is fixed by a reference voltage. An equivalent model in terms of
�
+ , ��

�
is

(using (14.12d))

B = �diag
⇣
+�

�H�
⌘
, f

� = diag
⇣
�+��H

⌘
(14.33e)

The choice of di�erent models in (14.33) for three-phase analysis depends on the
specification of the problem. See Example 16.13 in Chapter ??.

Remark 14.7 (Total power). Since f� is the power delivered to the single-phase
devices while B is the power injected from the three-phase power source to the network
it is connected to, (14.33) implies that (the negative of) its total internal power is equal
to its total terminal power, i.e., 1

T
B = �1

T
f
� (Exercise 14.15). In particular the total

terminal power 1
T
B is independent of the loop-flow V and zero-sequence voltage W

even when B does. ⇤

Remark 14.8 (Phase decoupling). Determine conditions under which phases become
decoupled (Exercise ??). ⇤

14.3.4 �-. transformation

In Chapter 1.2.4 we define the . equivalent of an ideal �-configured device in a
balanced system to be a . -configured device that has the same external behavior.
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In this section we extend the concept to the unbalanced setting. External behavior
can be defined as its line-to-line or terminal voltage for an ideal voltage source, its
terminal current for an ideal current source, or its terminal voltage-current relation for
an impedance. We will show that a voltage or current source has a . -equivalent if it
is an ideal source, not necessarily balanced, and generally has no . -equivalent if it is
nonideal. An impedance has a . -equivalent only in a balanced setting where voltages
and currents are balanced vectors.

Ideal voltage source
�
⇢
�,W

�
. Consider an ideal �-configured voltage source speci-

fied by its internal voltage ⇢� and zero-sequence terminal voltage W with zero internal
impedance I� = 0. Its terminal voltage is, from (14.28):

+ =
1
3
�T
⇢
� +W1, 1

T
� = 0 (14.34)

where W is fixed by a given reference voltage. The terminal voltage of an ideal . -
configured voltage source

�
⇢
. ,+=

�
with zero internal impedance I. = 0 is, from

(14.15a):

+ = ⇢
. ++=1, 1

T
� = ��= (14.35)

The . -equivalent of the voltage source
�
⇢
�,W

�
can be defined in two ways: they can

have either the same line-to-line voltage or the same terminal voltage with respect to
an arbitrary but fixed reference point. The former definition is independent of the zero-
sequence voltage W of the voltage source nor the neutral voltage += of its . -equivalent
and hence is less stringent than the latter definition, as we will see. The terminal
currents in (14.34) and (14.35) imply that the . -equivalent under both definitions is
ungrounded and has no neutral line, so that �= := 0

Under the first definition of equivalence, the ideal voltage source (⇢�,W), not
necessarily balanced, and its . -equivalent have the same line-to-line voltage. From

(14.34) and (14.35), the . -equivalent satisfies �
�
⇢
. ++=1

�
= �

⇣
1
3�

T
⇢
� +W1

⌘
and

hence

�⇢. =
✓
I� 1

3
11

T
◆
⇢
�

where we have used 1
3��

T = I� 1
311

T from Theorem 14.2. Since the right-hand side is
orthogonal to 1, the equation admits a subspace of solution for ⇢. :

⇢
. =

1
3
�T
⇢
� +W01, W

0 2 C (14.36a)

where we have used �T
⇣
I� 1

311
T
⌘
= �T. Therefore the . -equivalent is an ungrounded

. -configured ideal voltage source that has no neutral line so that 1
T
� = ��= := 0, has

an arbitrary neutral voltage +=, is independent of the zero-sequence voltage W of the
given voltage source (⇢�,W), and has an internal voltage ⇢. that has an arbitrary
zero-sequence voltage W0.
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Under the second definition of equivalence, the . -equivalent has the same terminal
voltage as the ideal voltage source

�
⇢
�,W

�
and is therefore, from (14.34) and (14.35):

⇢
. :=

1
3
�T
⇢
�, +

= := W (14.36b)

Therefore the more stringent definition of equivalence leads to an ungrounded . -
equivalent without a neutral line that is a special case of (14.36a) where the neutral
voltage is fixed at += := W and the zero-sequence voltage W0 of ⇢. is set to zero.

If ⇢� is balanced then �T
⇢
� = (1�U2)⇢� =

p
34�ic/6

⇢
� (Corollary 1.3) and ⇢.

reduces to the expression (1.31a) derived in Chapter 1.2.4 for balanced systems:

⇢
. =

1p
34ic/6

⇢
�

Example 14.5 (. -equivalent with equal line-to-line voltage). Given a general �-
configured device with internal voltage +�, its equivalent line-to-neutral voltage is
defined in [37, p.204] to be

+
. :=

1
3

266664
2 1 0
0 2 1
1 0 2

377775
+
� (14.37)

Show that this is the. -equivalent of an ideal voltage source+� in (14.36a) with W0 := 0:

+
. :=

1
3
�T
+
�

Solution. Theorem 14.2 implies

+
. :=

1
3
�T
+
� =

1
3

⇣
�T +11

T
⌘
+
� =

1
3

©≠≠
´

266664
1 0 �1
�1 1 0
0 �1 1

377775
+

266664
1 1 1
1 1 1
1 1 1

377775
™ÆÆ
¨
+
�

which is (14.37). ⇤

For a nonideal �-configured voltage source
�
⇢
�, I�,W

�
, its terminal voltage is, from

(14.27b):

+ = �̂T
⇢
�� /�� +W1

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�
1

T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

It generally does not have a . -equivalent. Indeed, since the . -equivalent needs to be
ungrounded so that 1

T
� = 0, its external model is + = ⇢

. � I. � ++=1 from (14.15a).
In general the e�ective impedance /� is not diagonal and hence may not be interpreted
as an internal series impedance matrix I

. of an . -configured source, even if the
impedance is balanced I� := I01I (in which case /� = I

01

3 (I� 1
311

T)), as long as the
voltages and currents are unbalanced.
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Ideal current source ��. An ideal �-configured current source ��, not necessarily
balanced, has an external model of � = ��T

�
�. Note that 1

T
� = 0. The external model

of a . -configured current source is � = ��. , 1
T
� = ��=. Hence the . -equivalent is an

ungrounded . -configured ideal current source without a neutral line so that �= = 0 and
an internal current

�
. = �T

�
�

If �� is balanced then Corollary 1.3 implies

�
. = (1�U2)�� =

p
3

4
ic/6 �

�

the same expression (1.31a) for balanced systems.

As for a voltage source, a nonideal �-configured current source may not have a
. -equivalent (Exercise 14.16).

Impedance I
�. It can be shown that a �-configured impedance I

� has no . -
equivalent, except in a balanced setting where I

� = I0I and the terminal voltage
and current (+ , �) across I� are balanced vectors (Exercise 14.17). In that case the
. -equivalent is I�eq = I

�/3 (as derived in (1.31b)).

14.3.5 Comparison with single-phase devices

Assume C14.1 holds, i.e., neutrals are grounded and voltages are defined with respect
to the ground. We compare the external models of three-phase devices to those of their
single-phase counterparts. As we will see they are structurally the same, except for the
�-configured power source.

E

I

V

z

(a) Single-phase

V a
Ia

V n

Zn

I b

I c
V b

V c

I n

zan

zbn

zcn

EbnEcn

Ean

(b) . configuration

V a
Ia

I b

I c
V b

V c
Ebc

Eca

Eab

zca

zab

zbc

(c) � configuration

Figure 14.7 Comparison of single-phase and three-phase voltage sources.

Voltage source. Figure 14.7 shows a single-phase voltage source specified by an
internal voltage⇢ and a series impedance I and three-phase voltage sources in grounded
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. and � configurations. Their external models are, from (14.15b) and (14.27b):

single-phase: + = ⇢ � I�
. -configuration: + = ⇢

. � /. �, /
. := I

. + I=11
T

�-configuration: + = �̂⇢� � /�� + W1, 1
T
� = 0

J

I

Vy

(a) Single-phase

ycn
JbnV n

I n

zn

yanJan

J cn

V a
I a

I b

I c
V b

V c

ybn

(b) . configuration

yca
J ca Jab

V a
I a

I b

I c
V b

V cJbc

ybc

yab

(c) � configuration

Figure 14.8 Comparison of single-phase and three-phase current sources.

Current source. Figure 14.8 shows a single-phase current source specified by an
internal current � and a shunt admittance H and three-phase current sources in grounded
. and � configurations. Their external models are, from (14.18c) and (14.30a):

single-phase: � = � (� + H+)

. -configuration: � = ��
⇣
�
. + H.+

⌘
, � := I� H

.
11

T

H
= +

⇣
1

T
H
. 1

⌘

�-configuration: � = �
⇣
�T
�
� + .�+

⌘
, .

� := �T
H
� �

(a) Single-phase

V n

I n

zn

V a
I a

I b

I c
V b

V c

(b) . configuration

V a
Ia

I b

I c
V b

V c

(c) � configuration

Figure 14.9 Comparison of single-phase and three-phase power sources. Oct 8, 2025: Fig (b):
f
0! f

0=,f1! f
1=,f2 ! f

2=. Also, this PDF is from iPad, not Megan?)

Power source. Figure 14.9 shows a single-phase power source specified by an inter-
nal power f and three-phase power sources in grounded . and � configurations. Their
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external models are, from (14.21c) and (14.33e):

single-phase: B = �f

. -configuration: B = �
⇣
f
. + I=

⇣
�̄ �

T
⌘
1

⌘

�-configuration: B = �diag
⇣
+�

�H�
⌘
, f

� = diag
⇣
�+��H

⌘

I

Vz

(a) Single-phase

V n

I n
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V a
I a

I b
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V b
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zcn zbn

(b) . configuration
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I c
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V c

zbc

zab

(c) � configuration

Figure 14.10 Comparison of single-phase and three-phase impedances.

Impedance. Figure 14.10 shows a single-phase impedance specified by I and three-
phase impedances in grounded. and� configurations. Their external models are, from
(14.23b) and (14.25a):

single-phase: + = �I�
. -configuration: + = �/. �, /

. := I
. + I

=

11
T

�-configuration: � = �.�+ , .
� := �T

H
��

14.3.6 Summary of three-phase devices

The external models of three-phase devices are summarized in Table 14.3 and will be
used to compose system models for optimal power flow problems in Chapter 18.

When the devices are ideal these models reduce to a simpler form summarized in
Tables 14.4 and 14.5. The internal models of ideal devices are:

1. Ideal voltage source ⇢. /�:

+
. /� = ⇢

. /�, B
. /� = diag

✓
⇢
. /�

⇣
�
. /�

⌘H
◆

(14.38a)

2. Ideal current source �. /�:

�
. /� = �

. /�, B
. /� = diag

✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.38b)
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Component . configuration � configuration
Specification Internal External Specification Internal External

Voltage source
⇣
⇢
. , I. , I=

⌘
(14.14) (14.15)

⇣
⇢
�, I�

⌘
(14.26) (14.27)

Current source
⇣
�
. , H. , I=

⌘
(14.17) (14.18)

⇣
�
�, H�

⌘
(14.29) (14.30)

Power source
⇣
f
. , I=

⌘
(14.20) (14.21) f

� (14.32) (14.33)

Impedance
⇣
I
. , I=

⌘
(14.22) (14.23) I

� (14.24) (14.25)

Line (3-wire model) (15.8)

Transformers

Table 14.3 Specification, internal and external models of three-phase components.

3. Ideal power source f. /�:

B
. /� = f

. /�, f
. /� = diag

✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.38c)

4. Impedance I. /�:

+
. /� = I

. /�
�
. /�, B

. /� = diag
✓
+
. /�

⇣
�
. /�

⌘H
◆

(14.38d)

In each case the internal specification of the three-phase device fixes one of the terminal
variables (+ , �, B) and the relation between the remaining variables characterizes its
external behavior. In the rest of this book we often assume sources are ideal and

Device Assumption . configuration

Voltage source I
. = 0 + = ⇢. +W1 B = diag

⇣
⇢
.
�
H
⌘
+W�̄

Current source H
. = 0 � = ��. B = �diag

⇣
+�
.H

⌘
Power source diag

⇣
�
H
⌘
(+ �W1) = �f. B = �f. +W�̄

Impedance + = �I. � +W1 B = �diag
⇣
+ (+ �W1)H

H
.H

⌘

Table 14.4 External models of ideal single-terminal devices in . configuration. The quantity
W :=+= is the neutral voltage. If all neutrals are directly grounded and voltages are defined with
respect to the ground, then W :=+= = 0 for all . -configured devices.

characterized by Tables 14.4 and 14.5 (see Chapter 15.1.4 for a justification).

Consider a network of three-phase voltage sources, current sources, power sources,
and impedances connected by three-phase lines and transformers. A power flow prob-
lem typically specifies a set of these devices and the objective is to determine other
voltages, currents, and powers on the network. The specification of these devices in-
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Device Assumption � configuration

Voltage source I
� = 0 + = �†⇢� +W1 B = diag

⇣
�†⇢��H

⌘
+W�̄

1
T
⇢
� = 0 1

T
� = 0

Current source H
� = 0 � = ��T

�
�

B = �diag
⇣
+�

�H�
⌘

Power source f
� = diag

⇣
�+��H

⌘
, B = �diag

⇣
+�
�H�

⌘
1

T
� = 0 f

� = �diag
⇣
�T†

⇣
+�

H
⌘
�T

⌘
+ V̄�+

1
T
+
� = 0 B = �diag

⇣
�†

⇣
+
�
�
�H

⌘
�
⌘
�W�T

�̄
�

Impedance � = �.�+ B = �diag
⇣
++

H
.
�H

⌘
1

T
� = 0 + = �/�� +W1 B = �diag

⇣
/
�
� �

H
⌘
+W�̄

Table 14.5 External models of ideal single-terminal devices in � configuration. The quantity
W := 1

3 1T
+ is the zero-sequence voltage of + and V := 1

3 1T
�
� is the zero-sequence current of

�
�.

clude not only internal voltages, currents, or powers, but also some of the zero-sequence
quantities (W, V). We will discuss these issues in Chapter 16.2.

14.4 Chapter summary

1. As for a single-phase system, a three-phase system model consists of a de-
vice model and a network model. The key di�erence is the device model
( 5 conv
9

, 5 int
9

, 5 ext
9
) and the branch model 6branch

9:
: they are much subtler in a three-

phase system than in a single-phase system.
2. Much of the mathematical properties of a three-phase system boils down to the

spectral properties of the conversion matrices (�,�T) (Theorem 14.2). In a bal-
anced setting, all variables are in span(U+). The linear transformation by (�,�T)
scales these variables by a nonzero factor, and hence these variables stay in
span(U+). In an unbalanced setting, variables may also have a zero-sequence
component in span(1) and hence the pseudo-inverses of (�,�T) are needed to
convert between internal and terminal variables of �-configured devices.

3. The conversion rule 5 conv
9

converts between the internal and terminal variables of
a three-phase device and depends only on its configuration. The internal model
5

int
9

of a device is a relation between its internal variables (+. /�
9

, �.�
9

, B. /�
9

) and
depends only on its type. Its external model 5 ext

9
is a relation between its terminal

variables (+ 9 , � 9 , B 9 ) and can be obtained by eliminating the internal variables
from 5

conv
9

and 5
int
9

. A device model is either the pair ( 5 conv
9

, 5 in
9
) or its external

model 5 ext
9

. These models of have been derived in Chapter 14.3 for voltage sources,
current sources, power sources, and impedances.
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14.5 Bibliographical notes

The concept of symmetrical component is described in a seminal paper [181] by C. L. Fortescue to simplify
the analysis of unbalanced operation of a multiphase system. Its use for fault current analysis is explained
in e.g. [184] which also proposes a di�erent transform called (U,V,0) components. Park transform [183]
is applicable also to instantaneous voltages, currents, and flux linkages in transient, not just steady-state
phasors. These and other transforms, such as those of Clarke, Concordia, and Kimbark, are compared in
[182]. The symmetrical transform is interpreted in [185, 186] as spatial discrete Fourier transform, the Clarke
transform as principal component analysis, and Park transform as FM modulation. Three-phase models are
studied in [5, Chapter 11] for power sources, in [37] for loads and voltage regulars, and in [187, Chapter 3]
for distribution lines, transformers and switches.

14.6 Problems

Chapter 14.2.

Exercise 14.1 (Proof of Theorem 14.2). Prove Theorem 14.2. (Hint: Use (A.19) in
Appendix A.7.)

Exercise 14.2. Verify the four defining properties of pseudo-inverse of �:

1. (��†)� = �.
2. �†(��†) = �†.
3. ��† is Hermitian.
4. �†� is Hermitian.

(Hint: Theorem 14.2.)

Chapter 14.3.

Exercise 14.3. Suppose � = ��T
�
�. Show that +�H �

�†�
�
=+�H.

Exercise 14.4 (Total power: . ). Consider the three-phase voltage source serving a
three-phase impedance load shown in Figure 14.11. Suppose the terminal voltage + is
defined with respect to the ground. The terminal power B := diag(+�H) is the power
delivered across the terminals 0,1,2 and the ground.

1. Suppose the source and the load are grounded as in Figure 14.11. Relate the total
terminal power 1

T
B and the total internal power (1T

B
. ,1T

B
0. ) for both the voltage

source and the impedance.
2. Repeat but assume that neither the source nor the load is grounded.
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zn'zn

a'

c'

b'

Ean

Ecn Ebn
n n'

Ia Va

Ib

Ic

Vb

Vc

I n

za'n'

zb'n'zc'n'

voltage source impedance

Figure 14.11 Terminal power B and internal power B. .

Exercise 14.5 (Total power: �). Show that 1
Tdiag

�
�

�
+�

H�
�†

�
= 1

Tdiag
�
+�

H�
and

hence the total internal and terminal powers are equal, i.e., 1
T
B
� = 1

T
B.

Exercise 14.6 (. -configured voltage source). Derive (14.16a). (Hint: Use the matrix
inversion formula of Appendix A.3.2.)

Exercise 14.7 (. -configured current source). Consider the current source in Figure
14.5(b). Derive (14.17) for internal power B. and B=.

Exercise 14.8 (. -configured current source). Consider the current source in Figure
14.5(b). Suppose assumption C14.1 holds. Derive (14.18c):

+ = �
⇣
I
.

�
. + /. �

⌘
, � = ��

⇣
�
. + H.+

⌘

assuming /. is invertible.

Exercise 14.9 (. -configured power device). Suppose all voltages are defined with

respect to the ground, so that += = �I=
⇣
1

T
�

⌘
. Derive (14.21b).

Exercise 14.10 (. -configured impedance). Consider a three-phase impedance I. in
. configuration with an e�ective impedance /. := I. + I=11

T in (14.23b). Show that
if + is balanced and I0 = I1 = I2 then the neutral current �= = 0 and the phases are
decoupled, i.e., + = �I. �, provided I+3I= < 0.

Exercise 14.11 (Balanced impedance I�). The two equivalent external models of
impedance I� in Table 14.5 are

from (14.25a) : � = �.�+
from (14.25c)(14.25d) : + = �/�� +W1, 1

T
� = 0

where the e�ective admittance and impedance matrices are .� := �T
H
�� and /� :=

1
9�

T
I
��. Suppose the impedance is balanced, i.e., I� := nI =: [�1

I.



786 Device models

1. Show that

.
� = 3[

✓
I� 1

3
11

T
◆

, /
� =

1
3[

✓
I� 1

3
11

T
◆

(14.39)

2. Show that the external models reduce to:

� = �3[ (+ �W1)

+ = � 1
3[
� +W1, 1

T
� = 0

3. Show that /� and .� are pseudo-inverses of each other, i.e., /�.�/� = /� and
.
�
/
�
.
� = .�. In particular /�.� = .�/� = I� 1

311
T.

Exercise 14.12 (Voltage source in � configuration). Consider the voltage source in
Figure 14.6(a).

1. Show that 1
T
� = 0 implies 1

T �
⇢
�� I��T†

�

�
= 0.

2. Show that the converse is not true.

Exercise 14.13 (Voltage source in � configuration). Prove Theorem 14.5. (Hint: See
the proof of Theorem 14.4.)

Exercise 14.14 (Voltage source in � configuration). Consider the model of a constant-
power source (14.33a), reproduced here:

f
� = �1

3
diag

⇣
�

⇣
+�

H
⌘
�T

⌘
+ V̄�+ , 1

T
� = 0, V 2 C

Given a terminal current � with 1
T
� = 0, show that the zero-sequence current V := 1

31
T
�
�

can take two values.

Exercise 14.15 (Total power in �). Consider a power source with internal power
f
� := (f01 ,f12 ,f20) in � configuration. Show that (the negative of) its total internal

power is equal to its total terminal power, i.e., 1
T
B = �1

T
f
�.

Exercise 14.16 (�-. transformation: nonideal
�
�
�, H01I

�
). Consider a symmetric non-

ideal current source
�
�
�, H01I

�
with identical shunt admittance H� := H01I. Show that

it cannot be equivalent to a nonideal . -configured current source
�
�
. , H. , I=

�
under

assumption C14.1.

Exercise 14.17 (�-. transformation: impedance I
�). Consider a �-configured

impedance I� = Diag(I0, I1 , I2).

1. Show that it has no . -equivalent in an unbalanced setting even if I0 = I1 = I2 .
2. Show that in a balanced setting, i.e., when I0 = I1 = I2 and the terminal voltage

and current (+ , �) across I� are balanced vectors, the . -equivalent is I�eq = I
�/3

(as derived in (1.31b)).



15 Branch models

We have derived device models in Chapter 14. In Chapter 15.1 we model a three-phase
transmission or distribution line. In Chapter 15.2 we extend the simplified model of
transformers in Chapter 3.1.4 from the single-phase setting to the three-phase setting.
In Chapter 15.3 we extend the transformer model in Chapter 3.1.5 based on a unitary
voltage network from the single-phase to the three-phase setting. It is sometimes
more convenient for the analysis of a radial network to model lines and transformers
by their transmission matrices rather than admittance matrices. This is explained in
Chapter 15.4. In Chapter 15.5 we explain how to identify model parameters from
measurements. We will use these branch models in Chapters 16 and 17 to construct
network models and study unbalanced three-phase analysis.

15.1 Three-phase transmission or distribution line models

As explained Chapter 2.1 the electromagnetic interactions among the electric charges in
wires of di�erent phases couple the voltages on and currents in these wires. The relation
between the voltages and currents in these phases can be modeled by a linear mapping
that depends on the line characteristics (resistances, inductances, capacitances).

15.1.1 Review: single-phase model

The linear mapping becomes decoupled when the phases are balanced, leading to a per-
phase model of a transmission or distribution line as a two-terminal device specified
by a ⇧-equivalent circuit (HB

9:
, H<

9:
, H<
: 9
), as explained in Chapter 2.2.2. The terminal

(or bus) voltages (+ 9 ,+: ) and sending-end line currents (� 9: , �: 9 ) on this two-terminal
device describes the end-to-end behavior of the line. They are linearly related according
to Kirchho�’s and Ohm’s laws:

� 9: = H
B

9:

�
+ 9 �+:

�
+ H<

9:
+ 9 , �: 9 = H

B

: 9

�
+: �+ 9

�
+ H<

: 9
+: (15.1a)

The terms H<
9:
+ 9 and H<

: 9
+: assume that the shunt admittances connect the buses 9 and

: both to the common reference point, e.g., the ground. The sending-end line power
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�
( 9: ,(: 9

�
is related to (+ 9 ,+: ) by

( 9: =
⇣
H
B

9:

⌘H
+ 9

�
+ 9 �+:

�H +
⇣
H
<

9:

⌘H
+ 9+

H
9

(15.1b)

(: 9 =
⇣
H
B

: 9

⌘H
+:

�
+: �+ 9

�H +
⇣
H
<

: 9

⌘H
+:+

H
:

(15.1c)

When HB
9:

= HB
: 9

and the shunt admittances are zero, i.e., H<
9:

= H<
: 9

= 0, then � 9: =
��: 9 and (15.1a) reduces to

+ 9 �+: = I
B

9:
� 9: (15.1d)

where IB
9:

:=
⇣
H
B

9:

⌘�1
is the series impedance of the line. We now extend these relations

to an unbalanced three-phase transmission or distribution line.

15.1.2 Four-wire three-phase model

A three-phase line has three wires one for each phase 0,1,2. It may also have a neutral
wire which may be grounded at one or both ends if the device connected to that end of
the line is in. configuration. Consider then a four-wire three-phase line where the total
current 80 (C) + 81 (C) + 82 (C) and the total charge @0 (C) + @1 (C) + @2 (C) may be nonzero
and they flow through the neutral wire (if present) and the earth return. The e�ect of
neutral or earth return on the impedance of a transmission line depends on details such
as how many neutral wires are present, whether they are grounded along the lines at
regular spacing, etc.

To build intuition we first omit line charging. In this case the three-phase voltages and
currents are related by a series impedance matrix, similar to (15.1d) for a single-phase
system. We then incorporate the e�ect of line charging by including shunt admittances
to obtain a model that generalizes (15.1a) to the three-phase system.

Without shunt admittances. Consider a four-wire three-phase line with a neutral
wire. The voltage between one end of a wire to the other end depends linearly on the

current in each of the four wires. Let +̂ 9 :=
⇣
+
0

9
,+1
9
,+2
9
,+=
9

⌘
and +̂: :=

�
+
0

:
,+1
:

,+2
:
,+=
:

�
be the terminal (or nodal or bus) voltages at terminals 9 and : respectively of the phase
and neutral wire ( 9 , :), with respect to an arbitrary but common reference point, e.g.,

the ground. Let �̂ 9: :=
⇣
�
0

9:
, �1
9:

, �2
9:

, �=
9:

⌘
denote the currents in these lines. Then the

four-wire three-phase line can be modeled by a series impedance matrix1
Î
B

9:
2 C4⇥4

1 It is sometimes called a series phase impedance matrix to di�erentiate it from a series sequence
impedance matrix for sequence variables (studied in Chapter 16.3).
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that linearly relates these voltages and currents:

266666664

+
0

9

+
1

9

+
2

9

+
=

9

377777775
�

26666664

+
0

:

+
1

:

+
2

:

+
=

:

37777775
=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775|                         {z                         }
Î
B

9:

266666664

�
0

9:

�
1

9:

�
2

9:

�
=

9:

377777775
(15.2a)

or in vector form

+̂ 9 � +̂: = Î
B

9:
�̂ 9: (15.2b)

For example, the series impedance matrix Î
B

9:
can model an overhead three-phase

line with an overhead neutral wire and earth return. Here Îqq
9:

are called the self-

impedances of phase q wires, including the e�ect of earth return, and Îqq
0

9:
the mutual

impedances between phase q and phase q0 wires, including the e�ect of earth return.
Their values depend on the wire materials, their lengths, distances between them, the
operating frequency, and the resistivity of the earth. To relate these impedances to
the physical system, suppose a voltage is applied between the phase 0 terminals and
therefore completing the phase 0 circuit, while circuits of phases 1,2,= are open. Then
the current �0

9:
in the phase 0 wire is nonzero while all other currents � q

9:
= 0, q < 0,

so that

266666664

+
0

9

+
1

9

+
2

9

+
=

9

377777775
�

26666664

+
0

:

+
1

:

+
2

:

+
=

:

37777775
=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775

266666664

�
0

9:

0
0
0

377777775
Hence the self-impedance

Î
00

9:
=
+
0

9
�+0

:

�
0

9:

is the ratio of the voltage applied between the phase 0 terminals to the current in the
phase 0 wire when all other circuits are open. The current �0

9:
induces voltages in other

phases and the mutual impedance

Î
10

9:
=
+
1

9
�+1

:

�
0

9:

is the ratio of the voltage induced across the phase 1 terminals to the phase 0 current
when only the phase 0 circuit is complete.

With shunt admittances. To incorporate the e�ect of line charging, let the series

admittance matrix be ĤB
9:

:=
⇣
Î
B

9:

⌘�1
, assuming ÎB

9:
is invertible. Let

⇣
Ĥ
<

9:
, Ĥ<
: 9

⌘
denote

the shunt admittance matrices. The terminal voltages
�
+̂ 9 ,+̂:

�
2C8 and the sending-end
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currents
�
� 9: , �: 9

�
2 C8 respectively are related according to

�̂ 9: = Ĥ
B

9:

�
+̂ 9 � +̂:

�
+ Ĥ<

9:
+̂ 9 , �̂: 9 = Ĥ

B

9:

�
+̂: � +̂ 9

�
+ Ĥ<

: 9
+̂: (15.3)

This model is illustrated in Figure 15.1. It has exactly the same form as (15.1a), except

I njk I nkj

I ajk

I bjk

I cjk

I akj

I bkj

I ckj

Vj
a

Vj
b

Vj
n

Vj
c

Vk
a

Vk
b

Vk
c

Vk
n

ŷsjk

ŷmjk ŷmkj

Figure 15.1 A four-wire line characterized by 4⇥4 series and shunt admittance matrices⇣
Ĥ
B

9:
, Ĥ<
9:

, Ĥ<
: 9

⌘
.

that the variables and admittances are vectors and matrices respectively. It generalizes
(15.1a) from a single-phase model to a three-phase model. The terms H<

9:
+̂ 9 and H<

: 9
+̂:

in (15.3) assume that the shunt admittances connect the buses 9 and : both to the
common reference point for terminal voltages, e.g., the ground.

15.1.3 Three-wire three-phase model

An equivalent three-wire model can be derived from the four-wire models (15.2)
and (15.3). To this end denote the phase voltages by + 9 := (+0

9
,+1
9
,+1
9
) and +: :=

(+0
:

,+1
:

,+1
:
) and phase currents by � 9: := (�0

9:
, �1
9:

, �2
9:
).

Without shunt admittances. Ignore first shunt admittances. Decompose the
impedance matrix ÎB

9:
in (15.2a) into

Î
B

9:
=

"
Î
qq

9:
Î
q=

9:

Î
=q

9:
Î
==

9:

#
:=

266666664

Î
00

9:
Î
01

9:
Î
02

9:
Î
0=

9:

Î
10

9:
Î
11

9:
Î
12

9:
Î
1=

9:

Î
20

9:
Î
21

9:
Î
22

9:
Î
2=

9:

Î
=0

9:
Î
=1

9:
Î
=2

9:
Î
==

9:

377777775
(15.4a)

where Îqq
9:
2 C3⇥3, Î==

9:
2 C, and Îq=

9:
, Î=q
9:

are of matching dimensions. Then (15.2a)
can be rewritten as "

+ 9

+
=

9

#
�


+:

+
=

:

�
=

"
Î
qq

9:
Î
q=

9:

Î
=q

9:
Î
==

9:

# "
� 9:

�
=

9:

#
(15.4b)
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The Schur complement of Î==
9:

of ÎB
9:

is

I
schur
9:

:= Î
qq

9:
� 1
Î
==

9:

Î
q=

9:
Î
=q

9:
=

2666664

Î
00

9:
Î
01

9:
Î
02

9:

Î
10

9:
Î
11

9:
Î
12

9:

Î
20

9:
Î
21

9:
Î
22

9:

3777775
� 1
Î
==

9:

2666664

Î
0=

9:

Î
1=

9:

Î
2=

9:

3777775
h
Î
=0

9:
Î
=1

9:
Î
=2

9:

i

(15.5a)

Then we can perform Kron reduction on (15.4) to obtain an equivalent three-wire
model that relates + 9 �+: and �=

9:
to � 9: and +=

9
�+=

:
:

+ 9 � +: = I
schur
9:

� 9: +
Î
q=

9:

Î
==

9:

⇣
+
=

9
�+=

:

⌘
(15.5b)

�
=

9:
= �

Î
=q

9:

Î
==

9:

� 9: +
1
Î
==

9:

⇣
+
=

9
�+=

:

⌘
(15.5c)

i.e., a complete three-wire model expresses the phase voltages + 9 �+: and the neutral
current �=

9:
in terms of the phase currents � 9: and neutral voltage di�erence +=

9
�+=

:
.

It is equivalent to the four-wire model (15.2) for the case where shunt admittances are
assumed zero. Therefore in using three-wire models we generally have to keep track of
neutral voltages for . -configured devices because +=

9
�+=

:
a�ects the phase voltages

and currents (+ 9 �+: , � 9: ) through (15.5b).

We refer to the complete model (15.5) as a three-wire model because when the
neutral wire is absent or open circuited (e.g., when connecting devices in � configura-
tion) or when the neutral is grounded at both the sending and the receiving ends of the
line, the phase voltages and currents (+ 9: , � 9: ) are related simply by a 3⇥3 impedance
matrix:

1. Neutral wire absent: �=
9:
= 0. Then (15.5) reduces to

+ 9 �+: = Î
qq

9:
� 9: , +

=

9
�+=

:
= Î

=q

9:
� 9: (15.6a)

where Îqq
9:
2 C3⇥3 is defined in (15.4a). The neutral voltages +=

9
,+=
:

are generally
nonzero since they are not grounded (assuming voltages are defined with respect
to the ground) and their di�erence depends on the phase currents according to
(15.6a).

2. Neutral wire grounded: +=
9
=+=

:
.2 Then (15.5) reduces to

+ 9 �+: = I
schur
9:

� 9: , �
=

9:
= �

Î
=q

9:

Î
==

9:

� 9: (15.6b)

2 We assume here that the neutral of a . -configured four-wire device is connected to the external terminal
= of the device through a neutral impedance I=

9
, and the external terminal = is then connected to both

the ground and the neutral of the line. The neutral impedance I=
9

of the device may or may not be zero
but + =

9
= + =

:
.
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Even though +=
9
=+=

:
across the neutral wire, the current �=

9:
in the neutral wire is

generally nonzero and given by (15.6b).

Hence when �=
9:
= 0 or +=

9
=+=

:
, we can use a simplified three-wire model and charac-

terize a three-phase line by a 3⇥3 series impedance matrix IB
9:

that relates the phase
voltages and currents:

+ 9 �+: = I
B

9:
� 9: (15.7)

where IB
9:

:= Îqq
9:

if �=
9:
= 0 and IB

9:
:= Ischur

9:
if+=

9
=+=

:
. This is a direct generalization of

(15.1d) from a single-phase model to a three-phase model. Even though the three-wire
model (15.7) involves no neutral voltage or current, the 3⇥ 3 impedance matrix IB

9:

includes the e�ect of neutral lines and earth return (see (15.6)).

Remark 15.1 (Missing phases). Distribution systems, especially low-voltage net-
works, often contain lines that are single, two, or three-phased. For notational sim-
plicity we can still use 3⇥3 impedance matrix IB

9:
or admittance matrix HB

9:
in most

applications by simply setting the rows and columns of missing phases to zero, e.g.,

I
B

9:
=

2666664

I
B00

9:
I
B01

9:
0

I
B10

9:
I
B11

9:
0

0 0 0

3777775
if phase 2 is missing and IB

9:
=

2666664
I
B00

9:
0 0

0 0 0
0 0 0

3777775
if phases 1,2 are

missing. (Also see (15.25) in Chapter 15.2.8 for open transformers.) ⇤

With shunt admittances. To incorporate the e�ect of line charging, let the series

admittance matrix be HB
9:

:=
⇣
I
B

9:

⌘�1
, assuming IB

9:
is invertible. Let

⇣
H
<

9:
, H<
: 9

⌘
denote

the shunt admittance matrices. The terminal voltages
�
+ 9 ,+:

�
2C6 and the sending-end

currents
�
� 9: , �: 9

�
2 C6 respectively are related according to

� 9: = H
B

9:

�
+ 9 �+:

�
+ H<

9:
+ 9 , �: 9 = H

B

9:

�
+: �+ 9

�
+ H

<

: 9
+: (15.8a)

This model is the three-wire version of (15.3). It is illustrated in Figure 15.2 which is
a three-wire version of Figure 15.1. The terms H<

9:
+ 9 and H<

: 9
+: in (15.8a) assume that

I cjk I ckj

I ajk I akj

I bjk I bkj
Vj

a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

y sjk

ymjk ymkj

Figure 15.2 A three-wire line characterized by 3⇥3 series and shunt admittance matrices⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
.

the shunt admittances connect the buses 9 and : both to the common reference point
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for terminal voltages, e.g., the ground. The model (15.8a) is justified in the following
example.

Example 15.1 (Three-wire model). Derive the three-wire model (15.8a) from the
four-wire model (15.3) with nonzero shunt admittances for three cases:

1. Neutral wire grounded: +=
9
= +=

:
= 0, i.e., both neutrals are directly grounded and

voltages are defined with respect to the ground (assumption C14.1 with I= = 0).
2. Neutral wire absent: �=

9:
= 0. We assume 1

T
� 9: = 0 whenever �=

9:
= 0, e.g., the line

is connected to a �-configured device.
3. Both: +=

9
=+=

:
= 0 and �=

9:
= 0, i.e., the neutral is directly grounded and there is no

neutral line between the two terminals (and 1
T
� 9: = 0).

Solution. Write (15.3) as, in the 9 ! : direction:"
� 9:

�
=

9:

#
=

"
Ĥ
B,qq
9:

Ĥ
B,q=
9:

Ĥ
B,=q
9:

Ĥ
B,==
9:

# "
+ 9 �+:
+
=

9
�+=

:

#
+

"
Ĥ
<,qq
9:

Ĥ
<,q=
9:

Ĥ
<,=q
9:

Ĥ
<,==
9:

# "
+ 9

+
=

9

#

We derive the three-wire model for each case from this expression. The model in the
:! 9 direction is analogous and omitted.

1. Neutral wire grounded: +=
9
=+=

:
= 0. Substitute into the expression:

� 9: = Ĥ
B,qq
9:

(+ 9 �+: ) + Ĥ<,qq
9:

+ 9

�
=

9:
= Ĥ

B,=q
9:

(+ 9 �+: ) + Ĥ<,=q
9:

+ 9

Therefore, even though +=
9
= +=

:
on the neutral line, �=

9:
is generally nonzero and

driven by the voltages in the phase lines + 9 ,+: .
2. Neutral wire absent: �=

9:
= 0. Substitute �=

9:
= 0 into the expression to write+=

9
�+=

:

in terms of the other variables:

+
=

9
�+=

:
= �

⇣
Ĥ
B,==
9:

⌘�1 ⇣
Ĥ
B,=q
9:

(+ 9 �+: ) + Ĥ<,=q
9:

+ 9 + Ĥ<,==
9:

+
=

9

⌘
Hence

� 9: = H
B,schur
9:

(+ 9 �+: ) + H<,schur
9:

+ 9 + 3+=9

where HB,schur
9:

and H<,schur
9:

are the Schur complements of ĤB,==
9:

and Ĥ<,==
9:

of the

four-wire series and shunt admittance matrices respectively, and 3 2 C3 is:

H
B,schur
9:

:= Ĥ
B,qq
9:
� ĤB,q=

9:

⇣
Ĥ
B,==
9:

⌘�1
Ĥ
B,=q
9:

H
<,schur
9:

:= Ĥ
<,qq
9:
� ĤB,q=

9:

⇣
Ĥ
B,==
9:

⌘�1
Ĥ
<,=q
9:

3 := Ĥ
<,q=
9:
� ĤB,q=

9:

⇣
Ĥ
B,==
9:

⌘�1
Ĥ
<,==
9:
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Finally 1
T
� 9: = 0 implies that +=

9
is not arbitrary but depends on + 9 �+: and + 9 :

0 = 1
T
� 9: =

⇣
1

T
H

s, schur
9:

⌘
(+ 9 �+: ) +

⇣
1

T
H

m, schur
9:

⌘
+ 9 +

⇣
1

T
3

⌘
+
=

9

Substituting +=
9

into � 9: we have

� 9: =

 
H
B,schur
9:

�
1

T
H

s, schur
9:

1
T
3

3

!
(+ 9 �+: ) +

 
H
<,schur
9:

�
1

T
H

m, schur
9:

1
T
3

3

!
+ 9

3. Both: +=
9
= +=

:
= 0 and �=

9:
= 0. Substituting +=

9
= 0 into part 2 we have, in both

directions:

� 9: =
⇣
H
B,schur
9:

+ H<,schur
9:

⌘
+ 9 � HB,schur

9:
+:

�: 9 =
⇣
H
B,schur
9:

+ H<,schur
: 9

⌘
+: � HB,schur

9:
+ 9

or � = .+ where � := (� 9: , �: 9 ) 2 C6 and + := (+ 9 ,+: ) 2 C6 are the nodal current
injections and voltages respectively and . 2 C6⇥6 is the admittance matrix of he
three-wire line model:

. :=

"
H
B,schur
9:

+ H<,schur
9:

�HB,schur
9:

�HB,schur
9:

H
B,schur
9:

+ H<,schur
: 9

#

Notice that . is block-symmetric. Moreoever 1
T
� 9: = 0 implies that + 9 ,+: must

satisfy: ⇣
1

T
H

s, schur
9:

⌘
(+ 9 �+: ) = �

⇣
1

T
H

m, schur
9:

⌘
+ 9

i.e., the total net current over phases 0,1,2 on the series admittance Hs, schur
9:

from

9 to : is supplied by the shunt current through Hm, schur
9:

at bus 9 . Similarly in the
:! 9 direction. ⇤

To describe the relation between the sending-end line power and the voltages�
+ 9 ,+:

�
, define the matrices ( 9: ,(: 9 2 C3⇥3 by (from (15.8a)):

( 9: := + 9

�
� 9:

�H = + 9

�
+ 9 �+:

�H
⇣
H
B

9:

⌘H
++ 9+H

9

⇣
H
<

9:

⌘H
(15.8b)

(: 9 := +:

�
�: 9

�H = +:

�
+: �+ 9

�H
⇣
H
B

9:

⌘H
++:+H

:

⇣
H
<

: 9

⌘H
(15.8c)

The three-phase sending-end line power from terminals 9 to : along the line is the vector
diag

�
( 9:

�
of diagonal entries and that in the opposite direction is the vector diag

�
(: 9

�
.

The o�-diagonal entries of these matrices represent electromagnetic coupling between
phases. This generalizes (15.1b)(15.1c) from a single-phase model to a three-phase
model.

Example 15.2 (External vs internal variables). Figure 15.3 shows a three-phase voltage
source connected to a three-phase impedance load through a three-phase line. As the
figure highlights, the voltages (+ 9 ,+: ) and currents (� 9: , �: 9 ) in (15.8a) are terminal
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I c
jk I c

kj

I a
jk I a

kj

I b
jk I b

kj

Vj
a

Vj
b

Vj
c

Vk
a

Vk
b

Vk
c

zk
ab

zk
bc

zk
ca

E cn E bn
E an

zj
a

zj
b

zj
c

zj
n

ideal
voltage source

series 
impedance impedance zk

Figure 15.3 A voltage source connected to an impedance load through a three-phase line. (Oct
8, 2025: I0

9
! I

0=

9
, I1
9
! I

1=

9
, I2
9
! I

2=

9
.)

voltages and currents regardless of whether the three-phase devices connected to
terminals 9 and : are in . or � configuration. The relation between the terminal
variables and internal variables are derived in Chapters 14.3.2 and 14.3.3.

The terminal variable
�
+ 9 , � 9 , B 9

�
at each bus 9 satisfies both the external device

model and the line model (15.8):

0 = 5
ext
9

�
+ 9 , � 9

�
, B 9 = diag

⇣
+ 9 �

H
9

⌘
� 9 = � 9:

�
+ 9 ,+:

�
, B 9 = diag

�
( 9:

�
+ 9 ,+:

� �
where 5

ext
9

denotes the external model (14.15) of a . -configured voltage source, and
� 9: and ( 9: denote the three-wire line model in (15.8a) and (15.8b) respectively. ⇤

Remark 15.2 (Three-wire model). We will mostly use three-wire line models (15.8)
for simplicity, but all analysis extends to four-wire models (including a neutral line)
or five-wire models (including a neutral line and the ground return) almost without
change with proper definitions that include neutral and ground variables; see Example
16.5 in Chapter 16.2 and Exercise 16.7. ⇤

In most practical situations the series impedance matrix I
B

9:
is symmetric, i.e.,⇣

I
B

9:

⌘
qq
0

=
⇣
I
B

9:

⌘
q
0
q

, q,q0 = 0,1,2, meaning that the coupling between phases q and

q
0 does not depend on direction. It is also common in practice that the shunt admittance

matrices H<
9:

and H<
: 9

are symmetric. Formally we assume throughout this chapter that
the series and shunt admittance matrices of a transmission or distribution line satisfy:

C15.1: IB
9:

is symmetric and invertible. Moreover IB
9:
= IB

: 9
.

C15.2: H<
9:

and H<
: 9

are symmetric matrices.

These matrices are generally complex symmetric, but not Hermitian. By Theorem 4.4,
I
B

9:
is invertible and Re(HB

9:
) � 0 if Re(IB

9:
) � 0. Assumption C15.1 implies that HB

9:

is symmetric and HB
9:
= HB

: 9
(Exercise 15.1).
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Symmetric line. When the line geometry is symmetric (e.g. through transposition)
then the series impedance matrix IB

9:
has the following important property:

I
00

9:
= I

11

9:
= I

22

9:
=: I 9: and I

01

9:
= I

10

9:
= I

12

9:
= I

21

9:
= I

20

9:
= I

02

9:
=: n 9:

so that

I
B

9:
=

266664
I 9: n 9: n 9:

n 9: I 9: n 9:

n 9: n 9: I 9:

377775
=

�
I 9: � n 9:

�
I+ n 9:11

T (15.9a)

Typically |I 9: | > |n 9: |. Then the line admittance HB
9:

:=
⇣
I
B

9:

⌘�1
has the same structure:

H
B

9:
=

266664
H 9: X 9: X 9:

X 9: H 9: X 9:

X 9: X 9: H 9:

377775
=

�
H 9: � X 9:

�
I+ X 9:11

T (15.9b)

where

H 9: :=
I 9: + n 9:�

I 9: � n 9:
� �
I 9: +2n 9:

� , X 9: := �
n 9:�

I 9: � n 9:
� �
I 9: +2n 9:

� (15.9c)

and (15.9c) follows from:

I = H
B

9:
I
B

9:
=

⇣ �
H 9: � X 9:

�
I+ X 9:11

T
⌘ ⇣ �

I 9: � n 9:
�
I+ n 9:11

T
⌘

=
�
H 9: � X 9:

� �
I 9: � n 9:

�
I +

�
n 9: H 9: + I 9:X 9: + n 9:X 9:

�
11

T

Typically |H 9: | > |X 9: |. If the sources and loads are balanced so that currents sum to zero
8
0 (C) + 81 (C) + 82 (C) = 0 and charges sum to zero @0 (C) +@1 (C) +@2 (C) = 0 across phases

then n 9: = 0 (see Chapter 2.1.4), i.e., IB
9:

is diagonal and the voltages and currents of
di�erent phases are decoupled. Otherwise IB

9:
is not diagonal and therefore the voltages

and currents of di�erent phases are coupled even if the line is symmetric, i.e., even
if the series impedance IB

9:
satisfies (15.9). As we will see in Chapter 16.3.4, in this

case, when shunt admittances are assumed zero, a similarity transformation using the
unitary matrix � yields a diagonal impedance matrix ĨB

9:
in the sequence coordinate.

This leads to decoupled relation between the sequence voltages and currents across the
three-phase line that can be interpreted as defining separate sequence networks.

15.1.4 Ideal voltage and current sources

We often model a nonideal three-phase voltage or current source as an ideal source
in series or in parallel with an impedance or admittance matrix. These impedance or
admittance matrices can be treated as three-phase lines with parameters (HB

9:
, H<
9:

, H<
: 9
)

determined by the external model of the nonideal sources, as we now explain.

A voltage or current source in . configuration may or may not have a neutral line
which may or may not be grounded. For example, Figure 15.4(a) shows a nonideal
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voltage source
�
⇢
. , I. , I= := 0

�
in . configuration whose neutral is directly grounded

so that += := 0. It can be treated as an ideal voltage source ⇢. connected to a three-

phase line
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with a diagonal series impedance HB

9:
:=

�
I
0=, I1=, I2=

��1

and zero shunt admittances H<
9:

= H<
: 9

= 0. Figure 15.4(b) shows a nonideal current

V a
Ia

I b

I c

V b

V c

za

zb

zc

Ecn Ebn

Ean

series
impedance zY

ideal voltage source EY

(a) Voltage source

V a
Ia

I b

I c

V b

V c

ya

yb

yc

shunt
admittance yY

ideal current source JY

Jan

JbnJ cn

(b) Current source

Figure 15.4 Nonideal three-phase sources in . configuration. (Oct 8, 2025: (a) :
I
0! I

0=, I1! I
1=, I2 ! I

2=. (b) : H0! H
0=, H1! H

1=, H2 ! H
2=.)

source
�
�
. , H. , I= := 0

�
in . configuration whose neutral is directly grounded so that

+
= := 0. It can be treated as an ideal current source

�
�
. , I=

�
connected to a three-phase

line
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with diagonal shunt admittances H<

9:
:= 0 and H<

: 9
:= H. so that

��. = H<
: 9
+ + � where (+ , �) are the terminal voltage and current of the (nonideal)

current source. Its series admittance HB
9:

is arbitrary, say, HB
9:

:= I; its value determines

the voltage + 9 at the terminal of the ideal current source by ��. = HB
9:
(+ 9 �+).

A voltage source
�
⇢
�, I�

�
in � configuration, shown in Figure 15.5(a), has an

external model, from (14.27b),

+ =
✓
1
3
�T

⇣
�̃⇢�

⌘
+W1

◆
� /��, W 2 C

where (from (14.27c) and (14.25d))

�̃ :=
✓
I� 1

Z

Ĩ
�
1

T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

Hence we can treat a nonideal voltage source as an ideal voltage source in � configura-
tion with an internal voltage �̃⇢� connected to a three-phase line (HB

9:
, H<
9:

, H<
: 9
) with

a series impedance /� (using Theorem 14.2), and H<
9:
= H<

9:
= 0.

A current source
�
�
�, H�

�
in � configuration, shown in Figure 15.5(b), has an

external model (14.30a):

� = ��T
�
��.�+

Hence it can be treated as an ideal current source with an internal current �� in �
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ideal voltage source E

(a) Voltage source

ideal current source J

(b) Current source

Figure 15.5 Nonideal three-phase sources in � configuration.

configuration in series with a three-phase line (HB
9:

, H<
9:

, H<
: 9
) with shunt admittances

H
<

9:
= 0 and H

<

: 9
:= .� := �T

H
�� from (14.25b). The series impedance HB

9:
can be

arbitrary (say, HB
9:

:= I) because, from Figure 15.5(b), ��T
�
� = HB

9:
(+ 9 �+) where + 9

is determined by the choice of HB
9:

.

Hence we will often assume end devices are ideal in power flow analysis or opti-
mization when it is possible to incorporate their internal series impedances or shunt
admittances into the network model. The next example shows how to combine these
lines with other parts of a circuit.

Example 15.3 (Ideal sources). Figure 15.6 shows a nonideal three-phase voltage source
in. configuration connected to a nonideal three-phase current source in� configuration
through a three-phase line (HB

9:
, H<
9:

, H<
: 9
). It is equivalent to an ideal voltage source

ideal
voltage source

series 
impedance

nonideal voltage source
(EjY, zjY )

shunt
admittance

ideal current
source

nonideal current source
(Jk

Figure 15.6 A voltage source connected to a current source through a three-phase line. (Oct 8,
2025: I0

9
! I

0=

9
, I1
9
! I

1=

9
, I2
9
! I

2=

9
.)

connected to an ideal current source through three lines with parameters (I.
9
,0,0),

(HB
9:

, H<
9:

, H<
: 9
) and (I,0, H�

:
) as shown in the one-line diagram in Figure 15.6. ⇤
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15.2 Three-phase transformer models: simplified circuit

In this section we show that, as for a three-phase line, the external model of a three-
phase transformer takes the form of an admittance matrix . . The general method is
similar to that for other three-phase devices:

1. Define internal and terminal variables.
2. Derive conversion rules that relate internal and terminal variables.
3. Define the internal model that relates these internal variables.
4. Finally eliminate the internal variables to arrive at the external model that relates

the external variables.

We start by reviewing the single-phase transformer. The notation and the derivation
generalize naturally when these transformers are configured into a three-phase trans-
former.

15.2.1 Review: single-phase transformer

Consider the simplified mode of a single-phase transformer in Figure 3.5 of Chapter
3.1.4, reproduced in Figure 15.7, consisting of an ideal transformer with a voltage
gain =, a leakage admittance H; and a shunt admittance H< on the primary side. Let
the turns ratio be 0 := =�1.3 The currents entering/leaving and the voltages across the

ym

yl

V̂j V̂k

I j
nVj

n Vk
n

Ikn

I j
Vj Vk

IkÎj Îk

1  :   n

ideal transformer

Figure 15.7 Single-phase transformer: simplified model. The internal variables (+̂ 9 , �̂ 9 ),
(+̂
:
, �̂
:
) and terminal variables (+ 9 ,+=

9
, � 9 ), (+: ,+=

:
, �
:
).

ideal transformer are denoted by variables with a hat:
�
+̂ 9 , �̂ 9

�
,
�
+̂: , �̂:

�
. They are called

internal variables. The dot notation on the ideal transformer indicates that the internal
currents are defined to be positive when �̂ 9 flows into and �̂: flows out of the dotted
terminals, as indicated in Figure 15.7.

The terminal voltages
⇣
+ 9 ,+=

9
,+: ,+=

:

⌘
are defined with respect to an arbitrary but

3 Even though we abuse notation and use 0 both to denote a phase and a turns ratio, its meaning should be
clear from the context.
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common reference point, e.g., the ground. We emphasize that, while the internal
voltages (+̂ 9 ,+̂: ) are defined to be the voltage drops across the ideal transformer

windings, the terminal voltages
⇣
+ 9 ,+=

9
,+: ,+=

:

⌘
are defined with respect to a common

reference point; in particular the primary and secondary windings are not assumed to
be grounded. The terminal currents

�
� 9 , �:

�
are defined to be the sending-end currents

from buses 9 and : respectively to the other side, as shown in Figure 15.7. The terminal
and internal variables are related by the conversion rule:

� 9 = H
;

⇣
+ 9 �+=9 � +̂ 9

⌘
, � 9 = H

<

+̂ 9 + �̂ 9 , �
=

9
= �� 9 (15.10a)

+̂: = +: �+=: , �̂: = ��: , �
=

:
= ��: (15.10b)

where the neutral currents (�=
9
, �=
:
) are injections from the neutral terminals into the

ideal transformer and follow from �
=

9
= �(H<+̂ 9 + �̂ 9 ) = �� 9 and �=

:
= �̂: = ��: respec-

tively. The internal model of the single-phase (ideal) transformer is defined by its
transformer gains (=,0):

+̂: = =+̂ 9 , �̂: =
1
=

�̂ 9 =: 0�̂ 9 (15.10c)

Eliminating the internal variables from (15.10) yields an external model that relates
the terminal variables:

� 9 = H
;

⇣⇣
+ 9 �+=9

⌘
� 0

�
+: �+=:

� ⌘
�: = �0�̂ 9 = �0� 9 + 0H<

�
0(+: �+=: )

�
or in terms of an admittance matrix . :

� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

.

 
+ 9

+:

�
�

"
+
=

9

+
=

:

#!
(15.11a)

We can add neutral currents from (15.10) to (15.11a):"
�
=

9

�
=

:

#
= �


� 9

�:

�
= �.

 
+ 9

+:

�
�

"
+
=

9

+
=

:

#!

to obtain a two-wire model of a single-phase transformer:

26666664

� 9

�:

�
=

9

�
=

:

37777775
=


. �.
�. .

�
|       {z       }

.
2wire

26666664

+ 9

+:

+
=

9

+
=

:

37777775
(15.11b)

Both the 2⇥2 admittance matrix. and the 4⇥4 matrix.2wire are complex symmetric.
While . generally has nonzero row and column sums, .2wire has zero row and column
sums. The admittance matrix .2wire is represented by a four-node network in Figure
15.8(a). Since .2wire has zero row and column sums, there are no shunt admittances in
the four-node network in Figure 15.8(a).
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a2(yl+ym)yl

ayl

(a) General circuit model.

a(a

(b) ⇧-circuit model.

Figure 15.8 (a) Circuit model of admittance matrix .2wire and (b) when neutrals are grounded
with zero grounding impedances, +=

9
=+=

:
= 0.

It is often assumed implicitly that neutrals are grounded with zero grounding
impedance and voltages are defined with respect to the ground (assumption C14.1). In
this case, +=

9
=+=

:
= 0 and the model (15.11a) reduces to a ⇧-circuit model:


� 9

�:

�
= .


+ 9

+:

�

The four-node network in Figure 15.8(b) then reduces to a ⇧ circuit in which parallel
branches to the ground are combined into shunt admittances, i.e., it can be characterized
by series and shunt admittances given by

H̃
B

9:
:= 0H

; , H̃
<

9:
:= (1� 0)H; , H̃

<

: 9
:= 0(0�1)H; + 02

H
< (15.11c)

like a transmission or distribution line.

We now explain how these relations (15.10)(15.11) extend naturally to three-phase
transformers in an unbalanced setting.

15.2.2 General derivation method

The external model of a three-phase transformer depends on the models of its con-
stituent single-phase transformers and their configuration on each side of the three-
phase transformer. In particular each of the primary and secondary sides can be in .
or � configuration, giving four configurations for a standard three-phase transformer.
The external model can be derived in four simple steps, similar to the derivation for a
single-phase transformer or other three-phase devices:

1. Conversion rule: For the primary side, define the internal variables (+̂ 9 , �̂ 9 ) and
external variables (+ 9 ,+=

9
, � 9 ) (defined precisely below) and relate them.

2. Conversion rule: For the secondary side, define the internal variables (+̂: , �̂: ) and
external variables (+: ,+=

:
, �: ) and relate them.
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3. Internal model: Couple these relations through the transformer gains (15.10c) on
(+̂ 9 , �̂ 9 ), (+̂: , �̂: ) for each of the single-phase transformers.

4. External model: Derive the external model, a relation between external variables
(+ 9 , � 9 ) and (+: , �: ), by eliminating the internal variables.

This method is modular and applicable in a general setting where the single-phase
transformers may have di�erent admittances or turns ratios, the neutrals of . configu-
rations may or may not be connected to the other side, may or may not be grounded, with
zero or nonzero grounding impedances. It is applicable to non-standard transformers
such as open transformers.

We now describe these steps in more detail.

1. Primary side. Consider the primary circuit of a three-phase transformer in . or
� configuration in Figure 15.9. The internal voltages and currents associated with the
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Figure 15.9 Primary side of a three-phase transformer in . (left) or � (right) configuration.

ideal transformer are denoted by

+̂
.

9
:=

2666664

+̂
0=

9

+̂
1=

9

+̂
2=

9

3777775
, �̂

.

9
:=

2666664

�̂
0=

9

�̂
1=

9

�̂
2=

9

3777775
, +̂

�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
The terminal voltages and currents are denoted by

+ 9 :=

2666664

+
0

9

+
1

9

+
2

9

3777775
, � 9 :=

2666664

�
0

9

�
1

9

�̂
2

9

3777775
regardless of the configuration. For . configuration the (terminal) neutral voltage and

current are denoted by
⇣
+
=

9
, �=
9

⌘
in the direction shown in Figure 15.9. As for the single-

phase model, these voltages are defined with respect to a common reference point (e.g.,
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the ground); in particular the neutrals are not assumed to be grounded. The internal

voltages and currents
⇣
+̂
. /�
9

, �̂. /�
9

⌘
, however, are defined across the ideal transformers.

In general, + 9 < +̂.
9
++=

9
1 and +̂�

9
< �+ 9 unless H; = 0; � 9 < �̂.

9
and � 9 < �T

�̂
�
9

unless
H
< = 0.

The leakage admittances of the transformer are denoted by the diagonal ma-
trix H

; := Diag
�
H
;0, H;1 , H;2

�
and the shunt admittances are denoted by H

< :=
Diag

�
H
<0, H<1 , H<2

�
. From (15.10a) for each single-phase transformer the terminal

variables are related to the internal variables according to the conversion rule:

. : � 9 = H
;

⇣
+ 9 �+=9 1� +̂.

9

⌘
, � 9 = H

<

+̂
.

9
+ �̂.

9
, �

=

9
= �1

T
� 9 (15.12a)

� : �̂
�
9
= H

;�+ 9 � (H; + H<)+̂�9 , � 9 = �T
⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.12b)

For . configuration in Figure 15.9, the neutral current �=
9

in (15.12a) follows from

�
=

9
= �1

T
⇣
H
<
+̂
.

9
+ �̂.

9

⌘
= �1

T
� 9 . For � configuration �̂�

9
in (15.12b) follows from �̂

01

9
+

H
<0
+̂
01

9
= H;0

⇣
+
0

9
�+1

9
� +̂01

9

⌘
, etc. Clearly 1

T
� 9 = 0 for � configuration. Moreover

(15.12a) and (15.12b) imply that the internal and terminal voltages are related according
to

. : + 9 = +̂
.

9
++=

9
1+ I; � 9 (15.12c)

� : +̂
�
9

=
⇣
I+ I;H<

⌘�1 ⇣
�+ 9 � I; �̂�9

⌘
(15.12d)

where I; := (H;)�1.

2. Secondary side. Consider the secondary side of a three-phase transformer in .
or � configuration in Figure 15.10. The internal voltages and currents associated with

V̂k
ab

V̂k
bc

V̂k
ca

Vk
a

Vk
b

Vk
c

Figure 15.10 Secondary side of a three-phase transformer in . (left) or � (right) configuration.
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the transformer are denoted by

+̂
.

:
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+̂
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377775
, �̂

.

:
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�
:

:=
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�̂
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:
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:

�̂
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:

377775
The terminal voltages and currents are denoted by

+: :=
266664
+
0

:

+
1

:

+
2

:

377775
, �: :=

266664
�
0

:

�
1

:

�̂
2

:

377775
regardless of the configuration. For . configuration the neutral voltage and current are
denoted by

�
+
=

:
, �=
:

�
in the direction shown in Figure 15.10.

From (15.10b) for each single-phase transformer the terminal variables are related
to the internal variables according to the conversion rule:

. : +: = +̂
.

:
++=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�̂
.

:
= �1

T
�: (15.13a)

� : +̂
�
:

= �+: , �: = �T
�̂
�
:

(15.13b)

For � configuration, 1
T
�: = 0.

3. Internal model. The voltage and current gains across the ideal transformer define
an internal model which couples the internal variables in the primary and secondary
circuits and connects the relations (15.12) and (15.13). These gains are determined
by the turns ratios of the constituent single-phase ideal transformers according to
(15.10c), but tailored for di�erent configurations. Denote the voltage gain of the ideal
three-phase transformer by a real diagonal matrix = := Diag

�
=
0,=1 ,=2

�
2 R3⇥3 and its

turns ratio by 0 := =�1 2 R3⇥3. Then

.. : +̂
.

:
= =+̂

.

9
, ��̂.

:
= 0�̂

.

9
(15.14a)

�� : +̂
�
:

= =+̂
�
9
, ��̂�

:
= 0�̂

�
9

(15.14b)

�. : +̂
.

:
= =+̂

�
9
, ��̂.

:
= 0�̂

�
9

(15.14c)

.� : +̂
�
:

= =+̂
.

9
, ��̂�

:
= 0�̂

.

9
(15.14d)

These are internal models of a three-phase (ideal) transformer. The negative signs on
�̂
.

:
and �̂�

:
are due to the convention that the transformer current gain is defined for

secondary current leaving the dotted terminal of the secondary winding (see Figure
15.10). When the turns ratios 0 := 00I are identical across phases we have, for �.
transformers,

V 9 :=
1
3

1
T
�̂
�
9
= �=

0

3
1

T
�̂
.

:
= �=

0

3
�
=

:

i.e., the loop flow in � is proportional to the neutral current in . when transformers
are balanced; similarly for .� transformers.
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4. External model. The external model of a three-phase transformer relates the
terminal variables (+ 9 ,+=

9
, � 9 ) and (+: ,+=

:
, �: ) on both sides of the transformer in

terms of the leakage admittance H; , the shunt admittance H<, and the turns ratio 0.

It can be derived by eliminating the internal variables
⇣
+̂
. /�
9

, �̂. /�
9

⌘
and

⇣
+̂
. /�
:

, �̂. /�
:

⌘
from the conversion rules (15.12)(15.13) and the internal model (15.14).

The external models, derived in detail below, turn out to have a striking modular
structure. To describe the general form let + :=

�
+ 9 ,+:

�
2 C6 and � :=

�
� 9 , �:

�
2 C6.

Define a 6⇥6 admittance matrix ... and a column vector += 2 C6:

... :=

H
; �0H;

�0H; 0
2 (H; + H<)

�
, +

= :=

"
+
=

9
1

+
=

:
1

#
(15.15a)

where 1 := (1,1,1). For notational convenience,+=
9

(or+=
:

) denotes the neutral voltage
when the primary (or secondary) circuit is in . configuration zero otherwise. If the
neutrals are directly grounded with zero grounding impedances, then += = 0.

Let ⇡ denote a 6⇥6 block diagonal matrix whose value depends on configuration.
As we will explain below, ... is the admittance matrix of a transformer in .. config-
uration. It is the same as that in (15.11a) for a single-phase transformer, except that 0, H
are now 3⇥3 diagonal matrices rather than scalars. The external models of three-phase
transformers in .. , ��, �. and .� configurations take the form

� = ⇡
T
...⇡ (+ �+=) (15.15b)

where ⇡ is a 6⇥6 block diagonal matrix that depends on configuration:

.. configuration: ⇡ :=

I 0
0 I

�
(15.15c)

�� configuration: ⇡ :=

� 0
0 �

�
(15.15d)

�. configuration: ⇡ :=

� 0
0 I

�
(15.15e)

.� configuration: ⇡ :=

I 0
0 �

�
(15.15f)

Hence the external models of ��, �. , .� configurations can be obtained by pre-
multiplying the admittance matrix ... of the .. configuration by �T and post-
multiplying it by � for a (primary or secondary) circuit that is in � configuration.

The expression (15.15) has a simple interpretation. Its right-hand side implies
that a transformer does not constrain neutral voltages but only transforms line-to-
neutral voltages from one side to the other. The admittance matrix ... represents
this transformation by three single-phase transformers that use a common neutral as
their reference (see Figure 15.11 below). This is preceded on the left by a connection
network described by ⇡T that connects to the primary terminal of the transformer and
is followed on the right by a connection network described by ⇡ that connects to the
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secondary terminal. To illustrate the end-to-end behavior, consider a ��-configured
transformer. Then ⇡ (+ �+=) = ⇡+ = (�+ 9 ,�+: ) maps terminal voltages + into line-
to-line voltages at the terminals of the three single-phase transformers (see Figure 15.12
below). These voltages are transformed by ... into currents ...⇡+ in the internal
of the � configurations. These internal currents are then mapped by ⇡T into terminal
currents � that is externally observable. Note that the external model of a �-configured
primary or secondary-side circuit depends on its terminal voltage + 9 only through its
line-to-line voltage �+ 9 (see Chapter 15.4.2 for the e�ect of � connection on terminal
voltages and currents).

Remark 15.3. 1. Neither the voltage gains = :=Diag
�
=
0,=1 ,=2

�
nor the admittances

H
; := Diag

�
H
;0, H;1 , H;2

�
, H< := Diag

�
H
<0, H<1 , H<2

�
may be equal across phases

0,1,2. Unless otherwise specified we assume = and 0 are real matrices. This is
the case if they represent voltage gains and turns ratios of constituent single-phase
transformers (they can be complex if phase-shifting transformers are involved or
if the three-phase transformer is the .. equivalent model of a �. -configured
transformer in a balanced setting; see Example 15.4).

2. The derivation method is modular. If a di�erent single-phase transformer model
is used, e.g., with complex transformer gains, then the relations (15.12) or (15.13)
need to be modified but the structure of the derivation remains unchanged.

3. The model (15.15) is a three-wire model that does not include neutral currents.
See (15.18c) for a four-wire model that does.

4. The method is also applicable to non-standard transformers such as open trans-
formers. Indeed the external model of an open �� transformer is also given by
(15.15b) (15.15d) but with the diagonal matrices H; , H< in... in (15.15a) replaced
by Diag

�
H
;0, H;1 ,0

�
and Diag

�
H
<0, H<1 ,0

�
respectively with H;2 = H<2 = 0 on the

third leg that has no transformer. See Chapter 15.2.8. ⇤

We next illustrate this general method by deriving the external models (15.15) of
three-phase transformers. We start by explaining when a transformer can be represented
by a three-phase ⇧ circuit.

15.2.3 Three-phase ⇧ circuit, block symmetry, symmetry

Refer to the ⇧-circuit model in Figure 15.8(b) for a single-phase transformer where

the neutral voltages +=
9
= +=

:
= 0. The series and shunt admittances

⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
of

the ⇧ circuit are given by (15.11c). They define a 2⇥ 2 admittance matrix . 9: that
relates

�
+ 9 ,+:

�
to

�
� 9: , �: 9

�
that is complex symmetric. This is because the application

of Kirchho�’s laws to this circuit yields

� 9: = H̃
B

9:

�
+ 9 �+:

�
+ H̃<

9:
+ 9 , �: 9 = H̃

B

9:

�
+: �+ 9

�
+ H̃<

9:
+: (15.16)

Therefore a single-phase transformer always has a ⇧-circuit representation and, in this
sense, behaves like a single-phase transmission line.
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This is not the case for three-phase transformers. Consider a three-phase transformer
and denote by. 9: the 6⇥6 admittance matrix that maps its voltage vectors

�
+ 9 ,+:

�
2C6

to its current vectors
�
� 9: , �: 9

�
2 C6, i.e.,

� 9:

�: 9

�
=


. 9:,11 . 9:,12

. 9:,21 . 9:,22

�
|              {z              }

.9:


+ 9

+:

�

If . 9: can be represented by a three-phase ⇧-circuit model, i.e., if it behaves like a
three-phase transmission line as shown in Figure 15.2, then (15.16) must also hold but⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
are now 3⇥3 matrices, not scalars. This means that the two o�-diagonal

submtrices of . 9: 2 C6 must be equal . 9:,12 = . 9:,21 and . 9: must be of the form

. 9: =

"
H̃
B

9:
+ H̃<

9:
�H̃B

9:

�H̃B
9:

H̃
B

9:
+ H̃<

: 9

#

We call such a matrix block symmetric (see Definition 16.1). In contrast, if . 9: is
symmetric then .T

9:,12 = . 9:,21. As we will see a three-phase transformer may not be
block symmetric and hence may not have a three-phase ⇧-circuit representation. For
balanced systems, this manifests itself as the per-phase model of a�. or.�-configured
transformer having no single-phase⇧-circuit representation because of the its complex
voltage gain  (=), as discussed in Chapter 4.1.3.3. This phenomenon is generalized in
the rest of this section for unbalanced systems.

Whether or not . 9: is block symmetric we can always interpret . 9: as the 6⇥ 6
admittance matrix of a single-phase network consisting of 6 buses, indexed by 8q,
8 = 9 , : and q 2 {0,1,2}, as studied in Chapter 4.3.1. This is referred to as its single-
phase equivalent circuit and studied in Chapter 16.1.2.

A matrix can be symmetric but not block symmetric, and vice versa. Symmetry of
a matrix is determined only by its o�-diagonal entries but its diagonal entries can be
arbitrary. Block symmetry is determined only by its o�-diagonal blocks but its diagonal
blocks can be arbitrary. A symmetric. 9: is block symmetric if.T

9:,12 =. 9:,12. A block
symmetric. 9: is symmetric if all submatrices. 9:,12,. 9:,11,. 9:,22 are symmetric. These
are reasonable assumptions for modeling a three-phase transmission or distribution
line, i.e., . 9: for a transmission or distribution line can be assumed to be both block
symmetric and symmetric and therefore has both a three-phase⇧-circuit representation
and a single-phase equivalent circuit. This is not necessarily the case for three-phase
transformers.

We will generalize the concepts of block symmetry and single-phase equivalent
circuit in Chapter 16.1.2 to a network setting.
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Figure 15.11 .. -configured transformer.

15.2.4 .. configuration

Referring to Figure 15.11 and combining the variables defined in Chapter 15.2.2
for each configuration, the internal voltages and currents associated with the ideal
transformer are:
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The terminal voltages and currents are:
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as well as the the neutral voltages and currents

⇣
+
=

9
, �=
9

⌘
and

�
+
=

:
, �=
:

�
as shown in the

figure. The relation between the internal and terminal variables is given by (15.12a)
and (15.13a) for . configurations on the primary and secondary sides respectively:

� 9 = H
;

⇣
+ 9 �+=9 1� +̂.

9

⌘
, � 9 = H

<

+̂
.

9
+ �̂.

9
, �

=

9
= �1

T
� 9 (15.17a)

+: = +̂
.

:
++=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�: (15.17b)

The transformer gains that relate the internal variables are:

+̂
.

:
= =+̂

.

9
, �̂

.

:
= �0�̂.

9
(15.17c)

Here H
; := Diag

�
H
;0, H;1 , H;2

�
is the leakage admittance matrix, H

< :=
Diag

�
H
<0, H<1 , H<2

�
is the shunt admittance matrix, = := Diag

�
=
0,=1 ,=2

�
is the volt-

age gain matrix and 0 := =�1 is the turns ratio matrix.



15.2 Three-phase transformer models: simplified circuit 809

We can derive an external model that relates the terminal variables by eliminating
the internal variables from (15.17). Specifically we have from (15.17a)(15.17b)

+̂
.

9
= (+ 9 �+=9 1)�

⇣
H
;

⌘�1
� 9 , +̂

.

:
= +: �+=: 1

�̂
.

9
= � 9 � H< (+ 9 �+=9 1) + H<

⇣
H
;

⌘�1
� 9 , �̂

.

:
= �:

Substituting it into (15.17c) yields the external model of a three-phase transformer in
.. configuration:


� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.18a)

�
=

9
= �1

T
� 9 , �

=

:
= �1

T
�: (15.18b)

where we have used H;0 = 0H; and 0(H; + H<)0 = 02 (H; + H<) since they are all diagonal
matrices. The expression (15.18a) is the same as the external model (15.11a) for a
single-phase transformer, except that, instead of scalars, the variables

�
+ 9 , � 9 ,+: , �:

�
are vectors in C3 and the parameters 0, H; , H< are 3⇥ 3 matrices. It is the expression
(15.15).

We can also express the neutral currents
⇣
�
=

9
, �=
:

⌘
in terms of the terminal voltages

instead of the terminal currents using (15.18a)(15.18b):"
�
=

9

�
=

:

#
= �


1

T 0
0 1

T

�
...

|           {z           }
.
=

..

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!

A four-wire model includes the neutral currents. To derive the four-wire model we
rewrite this and (15.18a) as
� 9

�:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


+ 9

+:

�
�


H
;
1 �0H;1

�0H;1 0
2 (H; + H<)1

�
|                         {z                         }

... (I2⌦1)

"
+
=

9

+
=

:

#

"
�
=

9

�
=

:

#
= �


1

T
H
; �1

T
0H
;

�1
T
0H
;

1
T
0

2 (H; + H<)

�
|                            {z                            }

(I2⌦1
T)...


+ 9

+:

�
+


1

T
H
;
1 �1

T
0H
;
1

�1
T
0H
;
1 1

T
0

2 (H; + H<)1

�
|                               {z                               }

(I2⌦1
T)... (I2⌦1)

"
+
=

9

+
=

:

#

where I2 is the identity matrix of size 2, 1
T
H
;
1 =

Õ
q
H
;q , 1

T
0H
;
1 =

Õ
q
0
q
H
;q , and

1
T
0

2 (H; + H<)1 =
Õ
q
(0q)2 (H;q + H<q). Hence the four-wire model of a three-phase
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transformer in .. configuration is:

26666664

� 9

�:

�
=

9

�
=

:

37777775
=

"
... �... (I2 ⌦ 1)

�
⇣
I2 ⌦ 1

T
⌘
...

⇣
I2 ⌦ 1

T
⌘
... (I2 ⌦ 1)

#

|                                                 {z                                                 }
.

4wire
..

26666664

+ 9

+:

+
=

9

+
=

:

37777775
(15.18c)

This model extends (15.11b) with neutral currents to three-phase transformers. The
matrix ... in (15.18a) is both symmetric and block symmetric (see Chapter 15.2.3)
because 0, H; and H< are diagonal. This, together with (�⌦ ⌫)T = �T ⌦ ⌫T, imply that
the four-wire admittance matrix .4wire

..
is also symmetric. While the admittance matrix

... generally has nonzero row and column sums, .4wire
..

has zero row and column
sums.

If both neutrals are grounded with zero impedances and voltages are defined with
respect to the ground, then +=

9
=+=

:
= 0 and (15.18a) reduces to


� 9

�:

�
= ...


+ 9

+:

�
=


H
; �0H;

�0H; 0
2 (H; + H<)

� 
+ 9

+:

�

which can be represented as a three-phase ⇧ circuit. This means that the external
behavior of a.. transformer, when its neutral voltages are zero, has the same structure
as that of a three-phase transmission line and can be specified by 3⇥3 series and shunt

admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
where

H̃
B

9:
:= 0H

; , H̃
<

9:
:= (I� 0) H; , H̃

<

: 9
:= 0(0� I)H; + 02

H
< (15.18d)

This extends the single-phase ⇧-circuit model (15.11c) to the three-phase setting.

15.2.5 �� configuration

Referring to Figure 15.12, and combining the variables defined in Chapter 15.2.2
for each configuration, the internal voltages and currents associated with the ideal
transformer are:

+̂
�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
, +̂

�
:

:=
266664
+̂
01

:

+̂
12

:

+̂
20

:

377775
, �̂

�
:

:=
266664
�̂
01

:

�̂
12

:

�̂
20

:

377775
The terminal voltages and currents are denoted by (+ 9 , � 9 ), (+: , �: ), as for a .. -
configured transformer. The relation between the internal and terminal variables is
given by (15.12b) and (15.13b) for � configurations:

�̂
�
9
= H

;�+ 9 � (H; + H<)+̂�9 , � 9 = �T
⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.19a)

+̂
�
:

= �+: , �: = �T
�̂
�
:

(15.19b)



15.2 Three-phase transformer models: simplified circuit 811
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Figure 15.12 ��-configured transformer.

The transformer gains that relate the internal variables are:

+̂
�
:

= =+̂
�
9
, �̂

�
:

= �0�̂�
9

(15.19c)

To derive an external model, eliminate the internal variables from (15.19). We obtain
from (15.19b)(15.19c):

+̂
�
9

= =
�1
+̂
�
:

= 0�+: , �T
0�̂
�
9
= ��:

Substitute into the first expression in (15.19a) to eliminate (+̂�
9
, �̂�
9
):

�: = �
⇣
�T
0H
;�

⌘
+ 9 +

⇣
�T
0

2 (H; + H<)�
⌘
+:

Substitute again +̂�
9

into the first expression in (15.19a) to obtain �̂�
9
= H;�+ 9 � 0(H; +

H
<)�+: . Substitute this and +̂�

9
into the second expression in (15.19a) to eliminate

(+̂�
9
, �̂�
9
):

� 9 =
⇣
�T
H
;�

⌘
+ 9 �

⇣
�T
0H
;�

⌘
+:

The external model of a three-phase transformer in �� configuration is hence
� 9

�:

�
=


�T
H
;� ��T

0H
;�

��T
0H
;� �T

0
2 (H; + H<)�

�
|                                 {z                                 }

.��


+ 9

+:

�
(15.20a)

or in terms of the admittance matrix ... in (15.18a) for a .. -configured transformer:
� 9

�:

�
=


�T 0
0 �T

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


� 0
0 �

� 
+ 9

+:

�
(15.20b)
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This is the expression (15.15). Unlike... the admittance matrix.�� is not invertible (it
has zero row and column sums). Since .�� is block symmetric (as well as symmetric)
it can be represented as a three-phase ⇧ circuit. This means that its external behavior
has the same structure as that of a three-phase transmission line and can be specified

by 3⇥3 series and shunt admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
where

H̃
B

9:
:= �T

0H
;�, H̃

<

9:
:= �T(I� 0)H;�, H̃

<

: 9
:= �T

⇣
0(0� I)H; + 02

H
<

⌘
� (15.20c)

This is the⇧-circuit model (15.18d) for.. -configured transformer, multiplied on both
sides by �T and � respectively.

The submatrices in (15.20b) are (same structure as .� := �T
H
�� in (14.25b)):

�T
H
;� =

266664
H
;0 + H;2 �H;0 �H;2
�H;0 H

;1 + H;0 �H;1
�H;2 �H;1 H

;2 + H;1

377775
�T
0H
;� =

266664
Ĥ
;0 + Ĥ;2 �Ĥ;0 �Ĥ;2
�Ĥ;0 Ĥ

;1 + Ĥ;0 �Ĥ;1
�Ĥ;2 �Ĥ;1 Ĥ

;2 + Ĥ;1

377775
where Ĥ;q := 0qH;q for q 2 {0,1,2}. In the special case where the single-phase trans-
formers are identical, i.e., H; = H;0I and 0 := 00I, these matrices are particularly simple:

⇣
H
;0

⌘
�T� = H

;0

266664
2 �1 �1
�1 2 �1
�1 �1 2

377775
,

⇣
0
0

H
;0

⌘
�T� = 0

0

H
;0

266664
2 �1 �1
�1 2 �1
�1 �1 2

377775
(15.21)

since �T� =
⇣
3I�11

T
⌘
. These expressions are often used in simplified models of

three-phase transformers.

15.2.6 �. configuration

This is a popular configuration for stepup transformers in distribution systems. Re-
ferring to Figure 15.13, the internal voltages and currents associated with the ideal
transformer are:

+̂
�
9

:=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9

:=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
, +̂

.

:
:=

266664
+̂
0=

:

+̂
1=

:

+̂
2=

:

377775
, �̂

.

:
:=

266664
�̂
0=

:

�̂
1=

:

�̂
2=

:

377775
The terminal voltages and currents are denoted by (+ 9 , � 9 ), (+: , �: ), as before. The
relation between the internal and terminal variables is given by (15.12b) for � config-
uration on the primary side and (15.13a) for . configuration on the secondary side:
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Figure 15.13 �. -configured transformer.

�̂
�
9
= H

;�+ 9 � (H; + H<)+̂�9 , � 9 = �T
⇣
�̂
�
9
+ H<+̂�

9

⌘
(15.22a)

+: = +̂
.

:
++=

:
1, �: = �̂

.

:
, �

=

:
= �1

T
�: (15.22b)

The transformer gains that relate the internal variables are:

+̂
.

:
= =+̂

�
9
, �̂

.

:
= �0�̂�

9
(15.22c)

Eliminating the internal variables from (15.22), the external model of a three-phase
transformer in �. configuration is (Exercise 15.3):

� 9

�:

�
=


�T
H
;� ��T

0H
;

�0H;� 0
2 (H; + H<)

�
|                       {z                       }

.�.


+ 9

+:

�
�


��T

0H
;

0
2 (H; + H<)

�
+
=

:
1 (15.23a)

or in terms of the admittance matrix ... in (15.18a):
� 9

�:

�
=


�T 0
0 I

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


� 0
0 I

� ✓ 
+ 9

+:

�
�


0
+
=

:
1

� ◆
(15.23b)

It is the expression (15.15). The matrix.�. in (15.23a) is not invertible. It is symmetric
but not block symmetric. Therefore it cannot be represented as a three-phase ⇧ circuit
even if the neutral voltage +=

:
= 0.

Even though there is no neutral line on the primary side, the primary current � 9
is a�ected by the neutral voltage +=

:
when the transformer is not balanced. If it is

balanced, i.e., if 0 = 00I and H = H0I, then �T
1 = 0 and � 9 becomes independent of +=

:
.
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15.2.7 .� configuration

Figure 15.14 shows a .�-configured three-phase transformer. Its external model is
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yla
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cn

I ja
Vj

a
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Figure 15.14 .�-configured transformer.

(Exercise 15.4):
� 9

�:

�
=


H
; �0H;�

��T
0H
; �T

0
2 (H; + H<)�

�
|                               {z                               }

..�


+ 9

+:

�
�


H
;

��T
0H
;

�
+
=

9
1 (15.24a)

or in terms of the admittance matrix ... in (15.18a):
� 9

�:

�
=


I 0
0 �T

� 
H
; �0H;

�0H; 0
2 (H; + H<)

�
|                     {z                     }

...


I 0
0 �

�  
+ 9

+:

�
�

"
+
=

9
1

0

#!
(15.24b)

It is the expression (15.15). The matrix ..� is singular, symmetric but not block
symmetric. In particular it cannot be represented as a three-phase ⇧ circuit even if the
neutral voltage +=

9
= 0.

15.2.8 Open transformer

Open transformers where at least one leg of a three-phase transformer is open (not
connected) are widely used in distribution systems to connect single-phase loads,
e.g., a household. The analysis of a closed transformer can be adapted to that of an
open transformer. Indeed their external models are identical, except that the admittance
matrices are H̃; =Diag

�
H
;0, H;1 ,0

�
and H̃< =Diag

�
H
<0, H<1 ,0

�
for an open transformer

without the third leg (compare (15.20) with (15.25) for an open �� transformer). We
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now derive the external model of an open �� transformer. Other configurations, such
as open .. , open �. , or open .�, can be analyzed in a similar manner. The analysis
proceeds in the same manner as for its closed version, once the voltage gain expression
has been modified to represent the open transformer leg where the internal voltages
+̂
20

9
and +̂20

:
are no longer related by a voltage gain.

Figure 15.15 shows an open��-configured transformer where only two single-phase
transformers are used. The leakage admittances of these transformers are

�
H
;0, H;1

�
and
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Figure 15.15 Open ��-configured transformer.

their voltage gains are
�
=
0,=1

�
. The internal voltages and currents associated with the

ideal transformer are:

+̂
�
9
=

2666664

+̂
01

9

+̂
12

9

+̂
20

9

3777775
, �̂

�
9
=

2666664

�̂
01

9

�̂
12

9

�̂
20

9

3777775
, +̂

�
:

:=
266664
+̂
01

:

+̂
12

:

+̂
20

:

377775
, �̂

�
:

:=
266664
�̂
01

:

�̂
12

:

�̂
20

:

377775
As we will explain below (see (15.26)), the primary internal voltage +̂20

9
:= +2

9
�+0

9

on the missing leg will be defined in terms of the terminal voltages and the internal
current �̂20

:
will be set to zero.

The terminal voltages and currents are denoted by (+ 9 , � 9 ) 2 C6, (+: , �: ) 2 C6, as
before. We will show that its external model is

� 9

�:

�
=


�T
H̃
;� ��T

0H̃
;�

��T
0H̃
;� �T

0
2 ( H̃; + H̃<)�

�
|                                 {z                                 }

.open��


+ 9

+:

�
(15.25a)

or 
� 9

�:

�
=


�T 0
0 �T

� 
H̃
; �0H̃;

�0H̃; 0
2 ( H̃; + H̃<)

� 
� 0
0 �

� 
+ 9

+:

�
(15.25b)
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where

H̃
; :=

266664
H
;0 0 0
0 H

;1 0
0 0 0

377775
, H̃

< :=
266664
H
<0 0 0
0 H

<1 0
0 0 0

377775
(15.25c)

and 0 := Diag
�
0
0,01 ,02

�
. The constant 02 is introduced for notational convenience

and can take any arbitrary nonzero finite value, e.g. 02 = 1, as its value does not a�ect
the external model. Hence the admittance matrix .open�� in (15.25a)(15.25b) are the
same as.�� in (15.20a)(15.20b) for a closed �� transformer, except that H;2 = H<2 = 0
on the third leg that has no transformer. It is also the same as the expression (15.15)
with (H; , H<) in ... replaced by ( H̃; , H̃<). The matrix .open�� is block symmetric (as
well as symmetric) and therefore has a three-phase⇧-circuit representation with series
and shunt admittance matrices:

H̃
B

9:
:= �T

0H̃
;�, H̃

<

9:
:= �T(I� 0) H̃;�, H̃

<

: 9
:= �T

⇣
0(0� I) H̃; + 02

H̃
<)

⌘
� (15.25d)

which is the same as (15.20c) with (H; , H<) replaced by ( H̃; , H̃<).

We now show how to modify the internal model to account for the open leg, and
then follow the same derivation for the external model of a closed �� transformer (in
Chapter 15.2.5) using the modified conversion rule and internal model.

For notational convenience, we introduce an artificial voltage gain =2 which can
take any nonzero finite values, e.g., =2 := 1. As before let = := Diag

�
=
0,=1 ,=2

�
and

0 := =�1. Recall that H; := Diag
�
H
;0, H;1 , H;2

�
and H< := Diag

�
H
<0, H<1 , H<2

�
. Then

H̃
; = H; (I�⇢3) and H̃< = H< (I�⇢3) where ⇢3 := Diag(0,0,1). The fact that the third

leg of the transformer is open requires two adjustments to the derivation for a closed
�� transformer. These adjustments modify the internal model (the current and voltage
gain on the missing leg) and the derivation then follows the same procedure, as we
now explain.

1. The relation between the internal and terminal variables are still given by
(15.19a)(15.19b) with the following modifications: replace (H; , H<) by ( H̃; , H̃<)
and enforce the current on the missing leg on the secondary side to be zero (see
Figure 15.15):

H̃
;2 := 0, H̃

<2 := 0, �̂
20

:
:= 0 (15.26a)

This implies that �̂20
9

= 0 and �2
9
= �( �̂12

9
+ H<1+̂12

9
) on the primary side from the

last row of (15.19a).
2. For the internal model (15.19c), the current gain �̂�

:
= �0 �̂�

9
remains unchanged

(given (15.26a)), but the voltage gain needs modification. Define the internal
voltages +̂20

9
:= +2

9
�+0

9
and +̂20

:
:= +2

:
�+0

:
in terms of terminal voltages. These

internal voltages are not related by the voltage gain =, unlike in a closed transformer.
In order to follow the same derivation we will replace the voltage gain expression

+̂
�
9
= 0+̂�

:
in (15.19c), as follows. In the analysis of a closed �� transformer, the
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voltage gain is used to relate +̂�
9

to +: through

+̂
�
9

= 0+̂
�
:

= 0�+:

For an open �� transformer, the last row of this relation is modified to:

+̂
20

9
= 0

2

+̂
20

:
+

⇣
+̂
20

9
� 02+̂20

:

⌘

leading to the voltage relation +̂�
9
= 0+̂�

:
+⇢3

⇣
+̂
�
9
� 0+̂�

:

⌘
where⇢3 :=Diag(0,0,1).

The right-hand side of the voltage relation can then be written in terms of the
terminal voltage + 9 because :

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0+̂�: (15.26b)

which can then be related to +: using +̂�
:
= �+: .

In summary, these two modifications (15.26) means that, for open �� transformer, the
conversion rules are (15.19a)(15.19b) with (H; , H<) replaced by ( H̃; , H̃<):

�̂
�
9
= H̃

;�+ 9 � ( H̃; + H̃<)+̂�
9
, � 9 = �T

⇣
�̂
�
9
+ H̃<+̂�

9

⌘
(15.27a)

+̂
�
:

= �+: , �: = �T
�̂
�
:

(15.27b)

and the internal model (15.19c) is replaced by:

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0+̂�: , �̂
�
:

= �0�̂�
9

(15.27c)

To derive the external model, we then follow the same procedure to eliminate
internal variables from (15.27). For example we obtain from (15.27b)(15.27c):

+̂
�
9

= ⇢3�+ 9 + (I�⇢3) 0�+: , �T
0�̂
�
9
= ��:

Substitute into the first expression in (15.27a) to eliminate (+̂�
9
, �̂�
9
):

�: = �
⇣
�T
0H̃
;�

⌘
+ 9 +

⇣
�T
0

2 ( H̃; + H̃<)�
⌘
+:

where we have used ( H̃; + H̃<)⇢3 = 0. Similarly we have

� 9 =
⇣
�T
H̃
;�

⌘
+ 9 �

⇣
�T
0H̃
;�

⌘
+:

verifying the external model (15.25). With H;2 = H<2 = 0 the matrices are explicitly:

�T
H̃
;� =

266664
H
;0 �H;0 0
�H;0 H

;1 + H;0 �H;1
0 �H;1 H

;1

377775
, �T

0H̃
;� =

266664
Ĥ
;0 �Ĥ;0 0
�Ĥ;0 Ĥ

;1 + Ĥ;0 �Ĥ;1
0 �Ĥ;1 Ĥ

;1

377775
where Ĥ;q := 0qH;q for q 2 {0,1}.
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15.2.9 Single-phase equivalent

A three-phase transformer is equivalent to a .. -configured transformer if they have
the same external model, i.e., their admittance matrices are equal. In general a three-
phase transformer not in .. configuration does not have a .. equivalent, except in a
balanced setting. In a balanced setting, not only does a three-phase transformer have a
.. equivalent, there is also a single-phase transformer that can be naturally interpreted
as the single-phase equivalent of the .. equivalent. For simplicity we assume H< = 0.

Specifically, the external model of a .. -configured transformer with turns ratio 0̃
and leakage admittance H̃; is given by its admittance matrix .̃.. (from (15.18)):


� 9

�:

�
=


H̃
; �0̃ H̃;

�0̃ H̃; 0̃
2
H̃
;

�
|            {z            }

.̃..

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!
(15.28)

where (+=
9
,+=
:
) are its neutral voltages. For a ��-configured transformer with turns

ratio 0 and leakage admittance H; , its admittance matrix .�� determines its external
behavior according to (from (15.20b)):

� 9

�:

�
=


�T 0
0 �T

� 
H
; �0H;

�0H; 0
2 (H; + H<)

� 
� 0
0 �

�
|                                               {z                                               }

.��


+ 9

+:

�
(15.29)

The ��-configured transformer has a .. equivalent if .�� = .̃.. for some .̃.. . Since
the submatrices of .̃.. are diagonal while those of .�� may not, there is generally
no .. equivalent, unless the constituent single-phase transformers are identical, i.e.,
unless 0 := 00I and H; := H;0I. In this case (15.29) becomes (using �T� = 3I�11

T)


� 9

�:

�
=

266664
H
;0

⇣
3I�11

T
⌘

�00H;0
⇣
3I�11

T
⌘

�00H;0
⇣
3I�11

T
⌘

(00)2
H
;0

⇣
3I�11

T
⌘377775


+ 9

+:

�
= .̃..

✓ 
+ 9

+:

�
�


W 91

W:1

� ◆

where W 9 := 1
31

T
+ 9 , W: := 1

31
T
+: and

.̃.. := 3H;0


1 �00
�00 (00)2

�
⌦ I

Therefore, when the constituent single-phase transformers are identical:

• A�� transformer has a.. equivalent with the same turns ratio 0̃ := 00I, three-times
the leakage admittance H̃; := 3H;0I, and the admittance matrix .̃.. .

• The neutral voltages of the .. equivalent are the zero-sequence terminal voltages
+
=

9
= W 9 , +=

:
= W: of the �� transformer. If the voltages (+ 9 ,+: ) are balanced (i.e.,

+ 9 := E 9U+,+: := E:U+) then W 9 = W: = 0 and the neutral is directly grounded.
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• Moreover we can interpret the 2⇥2 matrix

.̃1q := 3H;0


1 �00
�00 (00)2

�

as the admittance matrix of a single-phase equivalent of the �� transformer. This
property is used in Chapter 3.4 for per-phase analysis and justified here.

For a �. transformer, when not only are its constituent single-phase transformers
identical, but its terminal voltages (+ 9 ,+: ) are also balanced and its neutral voltage
+
=

:
= 0, then it has a .. equivalent and hence a single-phase equivalent. The ..

equivalent and hence the single-phase equivalent in this case require complex, rather
than real, turns ratios, as the next example shows.

Example 15.4 (Single-phase equivalent of �. configuration with +=
:
= 0). Consider a

�. -configured transformer with H< := 0. Suppose the system is balanced, i.e.,

0 := 0
0

I, H
; := H

;0

I, + 9 := E 9U+, +: := E:U+

and the neutral on the secondary side +=
:
= 0. Then its .. equivalent and single-phase

equivalent can be shown to be respectively (Exercise 15.7):

.̃.. := .̃1q ⌦ I, .̃1q := H̃
;0


1 �0̃0
�0̃0H |0̃0 |2

�

where

H̃
;0 := 3H;0, 0̃

0 :=
0
0

1�U =
0
0

p
34ic/6

⇤

15.3 Three-phase transformer models: unitary voltage network

In this section we extend the single-phase model in Chapter 3.1.5 based on unitary
voltage network to three-phase transformers. Multiple copies of the single-phase circuit
in Figure 3.6(b) can be connected in � or . configuration on each side of the unitary
voltage network to create three-phase transformers. The derivation of their external
models follows a similar method as that in Chapter 15.2.2: (i) Define internal variables
for the unitary voltage network in each phase. (ii) Derive the internal models that relate
these internal variables. (iii) The transformer gains across the two ideal transformers
define the conversion between the internal and terminal variables. (iv) Eliminate the
internal variables to arrive at the external models.
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15.3.1 Internal model: UVN per phase

The internal variables on the unitary voltage network in each phase q 2 {0,1,2} are
defined in Figure 15.16. Note that the voltages (+̂ q0 ,+̂ q

9
,+̂ q
:
) are defined to be the

Î0
ø:= 0

y0
ø

yjø ykø

V̂j
ø V̂k

øV̂0
ø

Îjø Îkø

Figure 15.16 Unitary voltage network in each phase q of a three-phase transformer.

voltage drops, whether the unitary voltage network is grounded or not. These variables
satisfy (3.11) for each phase q 2 {0,1,2}:

�̂
q

9
= H

q

9
(+̂ q
9
� +̂ q0 ), �̂

q

:
= H

q

:
(+̂ q
:
� +̂ q0 ), �̂

q

0 + �̂ q
9
+ �̂ q

:
= H

q

0 +̂
q

0 (15.30)

Define the internal variables and admittance matrices:

�̂8 :=
266664
�̂
0

8

�̂
1

8

�̂
2

8

377775
, +̂8 :=

266664
+̂
0

8

+̂
1

8

+̂
2

8

377775
, H8 := Diag

⇣
H
0

8
, H1
8
, H2
8

⌘
, 8 = 0, 9 , :

Then (15.30) is in vector form in terms of a 9⇥9 admittance matrix:

266664
�̂0

�̂ 9

�̂:

377775
=

266664

Õ
8
H8 �H 9 �H:

�H 9 H 9 0
�H: 0 H:

377775
266664
+̂0

+̂ 9

+̂:

377775
(15.31)

where
Õ
8
H8 = H0 + H 9 + H: 2 C3⇥3 is a diagonal matrix of all admittances. Since �̂0 =

0 2 C3 we can eliminate +̂0 and derive the 6⇥6 Kron-reduced admittance matrix .uvn

that maps +̂ := (+̂ 9 ,+̂: ) 2 C6 to �̂ := ( �̂ 9 , �̂: ) 2 C6 (Exercise 15.8):

�̂ = .uvn+̂ where .uvn := ©≠
´
I2 ⌦

 ’
8

H8

!�1™Æ
¨

H 9 (H0 + H: ) �H 9 H:
�H 9 H: H: (H0 + H 9 )

�
(15.32)

and I2 is the identity matrix of size 2. This is the internal model that relates �̂ and +̂ .

Remark 15.4. The phases of these internal variables are decoupled in (15.32) since the
admittance matrices H8 2 C3⇥3 are diagonal. The phases will be coupled in the terminal
variables (+ 9 ,+: ) and (� 9 , �: ) through . or � connections, as we now explain. ⇤

15.3.2 Conversion rule

Let the terminal currents of the three-phase transformer be �8 := (�0
8

, �1
8

, �2
8
), its termi-

nal voltages be +8 := (+0
8

,+1
8

,+2
8
), and the terminal neutral voltage of . configuration
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be +=
8

, 8 = 9 , : . The primary side is illustrated in Figure 15.17. These voltages are
defined respect to an arbitrary and common reference point, e.g., the ground. Let

" 9 := Diag
⇣
1/#0

9
,1/#1

9
,1/#2

9

⌘
and ": := Diag

�
1/#0

:
,1/#1

:
,1/#2

:

�
be the trans-

former gain matrices of the ideal transformers on each side of the unitary voltage
network. We do not assume the neutrals of. connections are grounded or the numbers
of turns are the same across phases.

To derive the conversion between internal and terminal variables, consider first the
primary side where three single-phase ideal transformers are connected to the left end
of the unitary voltage network in Figure 15.16. Figure 15.17(a) shows the primary side
in . configuration. The conversion rule between the internal variables (+̂ 9 , �̂ 9 ) and the

Nj
c : 1

Nj
b : 1

Nj
a : 1

I ja
Vj

a

I jb
Vj

b

I jn
Vj

n

I jc
Vj

c

V̂j
a V̂k

a

V̂k
b

V̂k
c

V̂j
b

V̂j
c

Îja

Îjb

Îjc

Îka

Îkb

Îkc

ykayja

y0a

ykbyjb

y0b

ykcyjc

y0c

(a) . configuration

I ja
Vj

a

I jb
Vj

b

I jc
Vj

c

V̂j
a

V̂j
b

V̂j
c

Îja

Îjb

Îjc

Îka

Îkb

Îkc

V̂k
a

V̂k
b

V̂k
c

Nj
a : 1

Nj
b : 1

Nj
c : 1

Îjab

Îjbc

Îjca

ykayja

y0a

ykbyjb

y0b

ykcyjc

y0c

(b) � configuration

Figure 15.17 Primary side of a three-phase transformer with unitary voltage networks.

terminal variables (+ 9 , � 9 ,+=
9
) is:

. config.: +̂ 9 = " 9

⇣
+ 9 �+=9 1

⌘
, �̂ 9 = "

�1
9
� 9 (15.33a)

where 1 := (1,1,1). Figure 15.17(b) shows the primary side in � configuration. Let
�̂
�
9

:= ( �̂01
9

, �̂12
9

, �̂20
9
) denote the internal currents entering the primary side of the

ideal transformer as indicated in Figure 15.17(b). From (14.11a) the internal variables
(+̂ 9 , �̂ 9 , �̂�

9
) are related to the terminal variables (+ 9 , � 9 ) according to the conversion

rule:

� config.: +̂ 9 = " 9�+ 9 , �̂ 9 = "
�1
9
�̂
�
9
, � 9 = �T

�̂
�
9

(15.33b)

where �,�T are conversion matrices. Similarly on the secondary side we have the
conversion rule (see Figure 15.18):

. config.: +̂: = ":

�
+: �+=: 1

�
, �̂: = "

�1
:
�: (15.33c)

� config.: +̂: = ":�+: , �̂: = "
�1
:
�̂
�
:
, �: = �T

�̂
�
:

(15.33d)
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b
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n
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Îjca

I ja
Vj

a

I jb
Vj

b

I jc
Vj

c

V̂j
a

V̂j
b

V̂j
c
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Îkc

Ika

Ikb

Ikc

Vk
a

Vk
b

Vk
c

V̂k
c

V̂k
b

V̂k
a

1 : Nk
a

1 : Nk
b

1 : Nk
c
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Îkca

ykayja

y0a

ykbyjb

y0b

ykcyjc

y0c
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Figure 15.18 Three-phase transformer models with unitary voltage networks.

15.3.3 External model

To obtain the external model, substituting the conversion rule (15.33) into the internal
model (15.32) to eliminate the internal variables (+̂ , �̂, �̂�):

.. :

"
�1
9
� 9

"
�1
:
�:

�
= .uvn

"
" 9 (+ 9 �+=

9
1)

": (+: �+=
:

1)

#
, �� :


"
�1
9
�̂
�
9

"
�1
:
�̂
�
:

�
= .uvn


" 9�+ 9
":�+:

�
(15.34a)

�. :

"
�1
9
�̂
�
9

"
�1
:
�:

�
= .uvn


" 9�+ 9

": (+: �+=
:

1)

�
, .� :


"
�1
9
� 9

"
�1
:
�̂
�
:

�
= .uvn

"
" 9 (+ 9 �+=

9
1)

":�+:

#

(15.34b)

Let+ := (+ 9 ,+: ) 2 C6 and � := (� 9 , �: ) 2 C6 denote the vectors of terminal voltages and
currents respectively. Let " :=Diag(" 9 ,": ) 2 R6⇥6 be the transformer gain matrices.
Then the external model of a three-phase transformer is (Exercise 15.9)

� = ⇡
T (".uvn")⇡ (+ �+=) (15.35a)
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where.uvn is defined in (15.32),⇡ 2 C6⇥6 and+= 2 C6 are defined in (15.15). It extends
directly the model (3.12c) from a single-phase to a three-phase setting.

We often do not know the numbers # q
9
, # q

:
of turns of the primary and secondary

windings respectively and hence cannot determine the matrices " 9 ,": , but we can

always determine the turns ratio matrix 0 :="�1
9
": =Diag

⇣
#
0

9
/#0

:
,#1

9
/#1

:
,#2

9
/#2

:

⌘
from the specified rated voltages. The 3⇥3 admittance matrices H0, H1, H2 are assembled
from their per-phase admittances and recall from (3.10) (see Figure 3.6):

H0 := #
2
9
H
< := #

2
9
Diag

⇣
H
<0, H<1 , H<2

⌘

H 9 := #
2
9
H
? := #

2
9
Diag

⇣
H
?0, H?1 , H?2

⌘
, H

?q :=
1
I
?q

, q 2 {0,1,2}

H: := #
2
:
H
B := #

2
9
Diag

⇣
H
B0, HB1 , HB2

⌘
, H

Bq :=
1
I
Bq

, q 2 {0,1,2}

Then the matrix ... := ".uvn" in (15.35a) can also be written in terms of the 3⇥3
turns ratio and admittance matrices 0, H? , HB , H< (Exercise 15.10):

... := H
?

H
B

⇣
0

2
H
< + 02

H
? + HB

⌘�1

I+ 02

H
< (HB)�1 �0
�0 0

2 �
I+ H< (H?)�1�

�
(15.35b)

This extends directly the model (3.12d) from a single-phase to a three-phase setting.
Hence the external model of a standard three-phase transformer, in terms of the turns
ratios 0 instead of (# 9 ,#: ), is

� = ⇡
T
...⇡ (+ �+=) (15.35c)

where ... is defined in (15.35b), ⇡ 2 C6⇥6 and += 2 C6 are defined in (15.15),

reproduced here: += :=
⇣
+
=

9
1,+=

:
1

⌘
are neutral voltages for . configuration (+=

8
:= 0 if

terminal 8 is in � configration) and ⇡ is a 6⇥6 block diagonal matrix that depends on
configuration:

.. : ⇡.. :=

I 0
0 I

�
, �� : ⇡�� :=


� 0
0 �

�

�. : ⇡�. :=

� 0
0 I

�
, .� : ⇡.� :=


I 0
0 �

�

Remark 15.5. 1. As explained in Chapter 3.1.5, the transformer model with unitary
voltage networks is equivalent to the ) equivalent circuit. This holds in both
single-phase and three-phase settings.

2. This model is generally di�erent from the simplified model of Chapter 15.2 which
is the three-phase extension of the model in Chapter 3.1.4. From (15.35) and
(15.15), these models however have the same structure. They di�er only in the
admittance matrix ... for the .. configuration and the di�erence is due to
di�erent models for single-phase nonideal transformers.

3. When the shunt admittances are assumed zero in both models, i.e., Hq0 = H<q = 0
for q 2 {0,1,2}, these two models are equivalent, as in the single-phase case. To
see this, recall that, for each phase q 2 {0,1,2}, the leakage impedances in the
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simplified model are I;q = I?q + (0q)2
I
Bq and hence the leakage admittances per

phase are

H
;q =

⇣
1/H?q + (0q)2 �

H
Bq

��1
=

H
?q
H
Bq

(0q)2
H
?q + HBq , q 2 {0,1,2}

Since all matrices are diagonal we have H; = H?HB
�
0

2
H
? + HB

��1
. Substituting this

and H
< = 0 into (15.35b), ... for the transformer model based on the unitary

voltage network reduces to

... = H
;


I �0
�0 0

2

�

which is the same as... in (15.15a) for the simplified model. (See Exercise 15.11
for another proof).

4. As Remark 15.4 noted, the phases of the internal variables are decoupled in our
model. Alternatively one can model the electromagnetic coupling between the
phases of the internal variables by assuming that the phase 0,1,2 windings at
each end of the unity voltage network are connected in . configuration and the
admittance matrices (H0, H 9 , H: ) of the )-equivalent circuit are not diagonal; see
[188] and also [189, 190]. Then the phases of the internal voltages (+̂. /�

9
,+̂. /�
:

)
and currents ( �̂. /�

9
, �̂. /�
:

) are coupled. ⇤

15.4 Balanced transformer models: transmission matrix

A branch (transmission or distribution line, transformer) can be described by an ad-
mittance matrix that maps its terminal voltages (+ 9 ,+: ) to its sending-end currents
(� 9: , �: 9 ). When a transformer is balanced, it can be equivalently described by a trans-
mission matrix that maps the secondary variable (+: ,��: 9 ) to the primary variable
(+ 9 , � 9: ). For a radial network it is sometimes more convenient to use transmission
matrices because the behavior of a path is described almost by the product of line
transmission matrices in the path. In this section we explain this method for radial
networks under the assumptions:

C15.3a: All branches have zero shunt admittances, H<
9:
= H<

: 9
:= 0.

C15.3b: If ( 9 , :) is a transmission or distribution line, then its series admittances
satisfy IB

9:
= IB

: 9
2 C3⇥3 and are nonsingular with HB

9:
:= (IB

9:
)�1.

C15.3c: If ( 9 , :) is a transformer, then it is balanced with identical turns ratios 0 9: I
and leakage admittances H;

9:
:= H 9: I across phases, 0 9: , H 9: 2 C.

In Chapter 15.4.1 we derive the transmission matrices of lines and transformers
in .. , ��, �. and .� configurations. In Chapter 15.4.2 we summarize the e�ect
of � connection in a transformer on its terminal voltages and currents. This e�ect
is transparent when the transformer is balanced (assumption C15.3c) but obscure
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otherwise. In Chapter 15.4.3 we illustrate these properties by analyzing an example
radial network.

15.4.1 Branch models

Consider a branch ( 9 , :) connecting buses 9 and : that represents a transmission line,
a distribution line or a transformer. We derive its transmission matrix in the following
examples. Since we focus on a single branch in this subsection we often omit the
subscript 9 : of branch parameters.

Example 15.5 (Distribution line). Under assumption C15.3 a three-phase distribution
line is described by Ohm’s law across its series impedance matrix IB

9:
2 C3⇥3 and can

be expressed in terms of a transmission matrix ) line:

+ 9

� 9:

�
=

"
I I

B

9:

0 I

#

|     {z     }
)

line


+:

��: 9

�
(15.36)

We will see below that standard transformers all have the same structure when they are
balanced (assumption C15.3c). ⇤

Non-zero-sequence voltages. We first study how a transformer, especially a �
connection in either or both of the primary and secondary circuits, transforms the non-
zero-sequence voltages and then how it a�ects zero-sequence voltages and currents.

Under assumption C15.3 the admittance matrix ... in the external model (15.15)
of a standard transformer ( 9 , :) becomes:

... := H


I �0I
�0I 0

2
I

�
(15.37)

where H,0 2 C, and HI is its leakage admittance, 0I its turns ratio.

Example 15.6 (.. transformer). Substituting (15.37) into the external model (15.15)
for a .. transformer, we obtain the transmission matrix ). that maps secondary
variables to primary variables:

primary secondary:

"
+ 9 �+=

9
1

� 9:

#
=


I II

0 I

�
|   {z   }
)
.


0(+: �+=

:
1)

�=�: 9

�
(15.38a)

as well as the mapping )̂. in the opposite direction:

secondary primary:

+: �+=

:
1

�: 9

�
=


I =

2
II

0 I

�
|      {z      }

)̂
.

"
=(+ 9 �+=

9
1)

�0� 9:

#
(15.38b)
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where = := 0�1 and I := H�1. This has the same structure as Ohm’s law in (15.36).

We interpret (15.38). First the transmission matrix maps between line-to-neutral
voltages, not terminal (line-to-ground) voltages; e.g., 0(+: �+=

:
1) in (15.38a) is the

voltage at the primary side of the ideal transformer. In particular the transmission
matrix does not constrain the neutral voltages +=

9
and +=

:
which will be determined

by network interactions with other devices connected to the primary and secondary
circuits. Second the transmission matrix )̂

. in (15.38b) from the primary to the
secondary has the leakage impedance referred to the secondary circuit (according
to (3.16a) in Chapter 3.3). Finally, with zero shunt admittance, the current flows
through the transformer scaled by the turns ratio 0 as if it were an ideal transformer,
��: 9 = 0� 9: . ⇤

To see the e�ect of� connection on the propagation of terminal voltages and currents
across a transformer, decompose a terminal voltage + 9 into its sequence components
(as explained in Chapter 14.2.2):

+ 9 = W 91+_ 9U+ + ` 9U� 2 C3 (15.39)

where W 9 := 1
31

T
+ 9 is its zero-sequence component. Denote by +±

9
:= _ 9U+ + ` 9U� the

non-zero-sequence component of + 9 . Note that both + 9 and +±
9

are terminal voltages,
not line-to-line voltages.

Example 15.7 (�� transformer). Substitute (15.37) into the external model (15.15) to
obtain the transmission matrix:

�T�+ 9
� 9:

�
=


I II

0 I

� 
0�T�+:
�=�: 9

�
(15.40)

Since �T� = 3(I� 1
311

T) from Theorem 14.2, we have

�T�+ 9 = 3(+ 9 �W 91) = 3+±
9

(15.41)

where the last equality follows from (15.39). Hence (15.40) becomes, in both directions:

primary secondary:

+
±
9

� 9:

�
=


I

I

3 I

0 I

�
|   {z   }

)
�


0+

±
:

�=�: 9

�
(15.42a)

secondary primary:

+
±
:

�: 9

�
=

"
I

=
2
I

3 I

0 I

#

|      {z      }
)̂
�


=+

±
9

�0� 9:

�
(15.42b)

This has the same structure as Ohm’s law in (15.36) with impedances I/3 and =2
I/3.

Comparing (15.42) with (15.38), we see that a �� transformer transforms between
its non-zero-sequence terminal voltages +±

9
and +±

:
in exactly the same way a ..

transformer does its line-to-neutral voltages, except that the series impedance I in the
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� configuration is reduced to an equivalent impedance I/3 in the transmission matrix
)
� (echoing the �-. transformation (1.31b) in a balanced setting). We therefore have

the same structural properties as those of a.. transformer. First a �� transformer only
transforms between non-zero-sequence voltages +±

9
and +±

:
, but does not constrain

their zero-sequence components W 9 and W: . The zero-sequence components W 9 ,W: are
determined by network interactions with other devices connected to the primary and
secondary circuits. Second the transmission matrix )̂� in (15.42b) has the equivalent
leakage impedance I/3 referred to the secondary circuit (according to (3.16a) in Chap-
ter 3.3). Finally, with zero shunt admittance, the current flows through the transformer
scaled by the turns ratio 0 as if it were an ideal transformer, ��: 9 = 0� 9: . ⇤

Example 15.8 (�. transformer). For a �. transformer the same procedure as in
Example 15.7 shows that (Exercise 15.12)

�T�+ 9
� 9:

�
= =


I II

0 I

�
|   {z   }
)
.


�T (0+: )
��T (=�: 9 )

�
(15.43)

Substituting (15.41) into (15.43) and using the pseudo-inverses �† = 1
3�

T and (�T)† =
1
3�, we have

primary secondary:

+
±
9

� 9:

�
=


I

I

3 I

0 I

�
|   {z   }

)
�


0(�†+: )
�=(�T

�: 9 )

�
(15.44a)

secondary primary:

�†+:
�T
�: 9

�
=

"
I

=
2
I

3 I

0 I

#

|      {z      }
)̂
�


=+

±
9

�0� 9:

�
(15.44b)

This has the same structure as Ohm’s law in (15.36) with impedances I/3 and =2
I/3.

Since � 9: is the terminal current of a � configuration, it contains no zero-sequence
component. Hence there is indeed a solution to (15.44) for �: 9 = 1

3�� 9: + V: 91 where
V: 9 := 1

31
T
�: 9 is the zero-sequence component of �: 9 . Since (15.44) does not constrain

V: 9 , V: 9 needs to be determined from network interactions with other devices (see
Example 15.10).

Comparing (15.44) with (15.42), we see that a �. transformer behaves like a ��
transformer with the same transmission matrix )�, except that the non-zero-sequence
terminal voltage +±

:
and the terminal current �: on the . circuit are replaced by �†+:

and �T
�: 9 respectively. To interpret this, recall that +±

9
in (15.44a) is a non-zero-

sequence terminal voltage on the left-hand side. On the right-hand side, 0(+: �+=
:

1)
and �=�: 9 are the voltage and current on the primary side of the ideal transformer (see
Figure 15.13). In a �. transformer, 0(+: �+=

:
1) is the line-to-line voltage inside the �

configuration. The conversion rule (14.11a) then implies that�†0(+: �+=
:

1) = �†(0+: )
is the corresponding terminal (line-to-ground) voltage without the zero-sequence com-
ponent. Similarly �T (�=�: 9 ) is the terminal current. Therefore (15.44a) expresses
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Ohm’s law across the e�ective impedance I/3 that relates �†(0+: ) and the non-zero-
sequence terminal voltage +±

9
. ⇤

Example 15.9 (.� transformer). For a .� transformer, the same procedure shows
(Exercise 15.13):

primary secondary:

�†+ 9
�T
� 9:

�
=


I

I

3 I

0 I

�
|   {z   }

)
�


0+

±
:

�=�: 9

�
(15.45a)

secondary primary:

+
±
:

�: 9

�
=

"
I

=
2
I

3 I

0 I

#

|      {z      }
)̂
�


=(�†+ 9 )
�0(�T

� 9: )

�
(15.45b)

Hence a .� transformer is equivalent to a �. transformer in the reverse direction, i.e.,
(15.44b) can be obtained from (15.45a) by exchanging indices 9 and : , replacing turns
ratio 0 by its reciprocal and referring the e�ective impedance I/3 to the other side. ⇤

Zero-sequence variables. The external model (15.15) also describes how a trans-
former transforms its zero-sequence voltages and currents (Exercise 15.14):

.. : V 9: = �=V: 9 , V: 9 = 0
2
H(W: �+=: )� 0H(W 9 �+=9 ) (15.46a)

�� : V 9: = 0, V: 9 = 0 (15.46b)

�. : V 9: = 0, V: 9 = 0
2
H(W: �+=: ) (15.46c)

.� : V 9: = H(W 9 �+=9 ), V: 9 = 0 (15.46d)

where V 9: := 1
31

T
� 9: , V: 9 := 1

31
T
�: 9 , W 9 := 1

31
T
+ 9 , and W: := 1

31
T
+: . As for non-zero-

sequence variables above, (15.46) simply expresses Ohm’s law and KCL.

We make three observations. First, a .. transformer transforms between its ter-
minal line-to-neutral voltages + 9 �+=

9
1, but does not constrain its neutral voltage.

The zero-sequence current flows through from 9 to : , scaled by the voltage gain =.
A �� transformer transforms between its non-zero-sequence voltages +±

9
, but does

not constrain its zero-sequence voltage. The zero-sequence currents V 9: = V: 9 = 0,
expressing (cut-based) KCL. For a �. or .� transformer, its � terminal behaves like a
�� transformer and its . terminal behaves like a .. transformer. Second, the equation
V: 9 = 02

H(W: �+=
:
) is linearly independent of (15.44) and therefore they can be used

to derive the terminal line-to-neutral voltage+: �+=
:

1 of a �. transformer, not just+±
:

;
similarly for + 9 �+=

9
1 of a .� transformer. See Example 15.10. The other equations

in (15.46) are derivable from the non-zero-sequence equations above and therefore
redundant. Finally, V 9: , V: 9 are zero-sequence line (terminal) currents, not internal
currents in the � connection of the transformers.4

4 To calculate the internal currents, one has to use the internal model (15.14) and conversion rules
(15.12)(15.13).
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15.4.2 Summary and e�ect of � connection

Denote by ). B
9:

and )�B
9:

the scaled transmission matrices of transformer 9 ! ::

)
. B

9:
:=


I I 9: I

0 I

� 
0 9:

= 9:

�
, )

�B
9:

:=

I (I 9:/3)I
0 I

� 
0 9:

= 9:

�
(15.47a)

Then the transmission matrices of standard three-phase transformers that map sec-
ondary variables to primary variables are, from (15.38a),(15.42a)(15.44a)(15.45a),

.. :

+
0
9
1

� 9:

�
= )

. B

9:


+
0
:

��: 9

�
, ��/�./.� :


%1 9+ 9

%2 9 � 9:

�
= )

�B
9:


(1:+:

�(2: �: 9

�
(15.47b)

where + 0
9
:=+ 9 �+=

9
, + 0
:

:=+: �+=
:

1, and

%1 9 ((1: ) :=

(
1
3�

T� = 1
3��

T if primary (secondary) in � configuration

�† if primary (secondary) in . configuration
(15.47c)

%2 9 ((2: ) :=

(
I if primary (secondary) in � configuration

�T if primary (secondary) in . configuration
(15.47d)

Hence %1 9 ((1: ) filters out the zero-sequence component of + 9 (+: ) and %2 9 ((2: )
filters out the zero-sequence component of � 9 (�: ) in . configuration. For a �. or .�
transformer, its zero-sequence variables at the . terminal satisfy

�. : V: 9 = 0
2
H(W: �+=: ), .� : V: 9 = H(W 9 �+=9 ) (15.47e)

Some consequences of (15.47) are given in (15.46).

We summarize the e�ect of � connection on the terminal voltages and currents
across a balanced transformer (assumption C15.3c). The main insights are:

1. A� connection, either primary or secondary, filters out the zero-sequence voltages
W 9 := 1

31
T
+ 9 and transforms only components of + 9 in span(U+) and span(U�)

across to the other side. For instance, a �� transformer transforms between the
non-zero-sequence terminal voltages +±

9
and +±

:
(cf. (15.42)). A �. transformer

transforms between +±
9

and the e�ective terminal voltage �†+: on the secondary
. circuit (cf. (15.44)).

2. A . connection, either primary or secondary, constrains the zero-sequence cur-
rent and voltage on the . terminal. In particular, a .. transformer transforms
between line-to-neutral voltages, including their zero-sequence components. It
does not constrain its neutral voltages (+=

9
,+=
:
), analogous to a �� transformer not

constraining its zero-sequence voltages (W 9 ,W: ).
3. Other zero-sequence variables will be determined by interactions with other de-

vices on the network. Chapter 16.3.6 studies symmetric networks. A symmetric
network can be transformed to the sequence coordinate and the resulting se-
quence networks will be decoupled. The zero-sequence variables can then be
computed from the zero-sequence network. If no voltage or current sources have
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zero-sequence components, then the zero-sequence network contains only zero-
sequence impedances and hence the zero-sequence voltages W 9 and currents V 9:
will be zero at all buses 9 and lines ( 9 , :) in the network.

We next illustrate these properties in an example.

15.4.3 Radial network analysis

Under assumption C15.3c, it is sometimes more convenient to use the transmission ma-
trices in (15.36) (15.38)(15.42)(15.44)(15.45) and the zero-sequence relation (15.46)
to analyze a radial network because the behavior of a path is almost the product of
transmission matrices in the path, as the next example shows.

Example 15.10 (� transformer network). Consider the radial network in Figure 15.19.
Suppose the four transformers 9 ! : are balanced with turns ratios 0 9: I and leakage

Figure 15.19 Radial network in Example 15.10. (Oct 12, 2025: Add transformer
configurations?)

admittances H 9: I 2 C3⇥3. Let the configurations of these transformers be:

0! 1 : �. , 1! 2 : .�, 2! 3 : �. , 2! 4 : .�

Suppose the voltage E0 at the root bus 0 and the nodal current injections 8 := (81, 82, 83, 84)
at non-root buses are given.

1. Show that the nodal current injection �0 at bus 0 is

�0 = �=01�T
�̃10 = �=01

⇣
�T
81 +=12

⇣
8
±
2 +=23 (�T

83) +
=24

3
(�84)

⌘⌘
(15.48)

where 8±2 := 1
3�

T�82 is the non-zero-sequence current.
2. Derive the line-to-neutral voltages + 9 �+=

9
1 at buses 9 = 1,2,3 (with . termi-

nals) and show that their zero-sequence components are proportional to the zero-
sequence components V 9 := 1

31
T
8 9 of the nodal current injections.

3. Derive the non-zero-sequence voltage +±
4 at bus 4 (� terminal).

Before presenting the solution we make two remarks. First, the line-to-neutral voltages
at buses 1, 2, 3 can be derived because these buses are connected to the . connections
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of transformers where zero-sequence currents and voltages are related by (15.47e).
Their zero-sequence components are zero if those of the nodal current injections are.

Second, �0 in (15.48) has no zero-sequence component because the� configurations
have filtered out all zero-sequence components of current injections 81, 82, 83, 84. It can
be rewritten as

�0 = �
⇣
=01 (�T

81) +=0!28
±
2 +=0!3 (�T

83) +=0!4 (�T†
84)

⌘
reflecting the (unique) path from �0 to each 8: . Specifically �0 is the weighted sum of
filtered versions of the nodal injections 8: , with weights that are products of the gains
on the unique paths from buses 0 to ::

• �0 81: a �. transformer with path gain =01 and filtered injection �T
81.

• �0 82: a cascade of (�. ) (.�) transformers which behaves like a�� transformer,
with path gain =0!2 := =01=12 and filtered injection 8±2 .

• �0  83: a cascade of (�. ) (.�) (�. ) transformers which behaves like a �.
transformer, with path gain =0!3 := =01=12=23 and filtered injection �T

83.
• �0  84: a cascade of (�. ) (.�) (.�) transformers with path gain =0!4 :=
=01=12=24. The path crosses a �-. interface at bus 2, resulting in the filtered
injection �T†

84 = 1
3�84.

Solution. Let �̃ 9: denote the sending-end current from 9 to : and

)
�B
9:

:=

I

I 9:

3 I

0 I

� 
0 9: I

= 9: I

�
=


0 9: I = 9:

I 9:

3 I

0 = 9: I

�

We will work from the leaf nodes 3 and 4 towards the root. KCL at buses 2, 3, 4 are:

�̃32 = 83, �̃42 = 84, ��̃21 + 82 = �̃23 + �̃24 (15.49)

Hence Ohm’s law (15.44a) and (15.45a) and the zero-sequence relation (15.46c) and
(15.46d) across �. and .� transformers 2! 3 and 2! 4 respectively are:

+
±
2
�̃23

�
= )

�B
23


�†+3

��T
83

�
, V32 = 0

2
23H23 (W3�+=3 ) (15.50a)


�†+2

�T
�̃24

�
= )

�B
24


+
±
4
�84

�
, V24 = H24 (W2�+=2 ) (15.50b)

Similarly, KCL at bus 1 and transformer equations (15.45a)(15.46d) across the .�
transformer 1! 2 are:

��̃10 + 81 = �̃12,

�†+1

�T
�̃12

�
= )

�B
12


+
±
2
��̃21

�
, V12 = H12 (W1�+=1 ) (15.51)

KCL at bus 0 and transformer equations (15.44a)(15.46c) across the �. transformer
0! 1 are:

�0 = �̃01,

+
±
0
�̃01

�
= )

�B
01


�†+1

��T
�̃10

�
, V10 = 0

2
01H01 (W1�+=1 ) (15.52)

We now use (15.49)–(15.52) to solve for �0 and + , in two steps:
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1. Step 1: Propagating backward from leaf nodes towards the root, we solve for all
branch currents �̃ 9: and �0 in terms of nodal current injections 8.

2. Step 2: With the solutions for �̃ 9: , we propagate forward from the root towards the
leaf nodes to solve for voltages + in terms of E0 and 8.

From (15.49)(15.50) we have

�̃23 = �=23 (�T
83), �T

�̃24 = �=2484 (15.53)

Since 84 is the terminal current of a� configuration, it has no zero-sequence component
and hence there is a solution for �̃24:

�̃24 = �=24

3
(�84) + V241

where V24 := 1
31

T
�̃24 is the zero-sequence current of �̃24. Hence��̃21 =�82�=23 (�T

83)�
=24
3 (�84) + V241 from (15.49). Substituting into (15.51) we have

�T
�̃12 = �=12

⇣
82 +=23 (�T

83) +
=24

3
(�84)� V241

⌘
(15.54)

Multiplying both sides of the equation by 1
T, we obtain V24:

0 = =12 (3V2�3V24) ) V24 = V2 (15.55)

where V2 := 1
31

T
82 is the zero-sequence component of 82 and is a given quantity.5 Then

we have, from (15.54),

�T
�̃12 = �=12

⇣
8
±
2 +=23 (�T

83) +
=24

3
(�84)

⌘
= �=12 �̃21 (15.56)

where 8±2 := 82� V21 = 1
3�

T�82 is the non-zero-sequence component of 82. Substituting
(15.56) and ��T

�̃10 = ��T
81+�T

�̃12 from (15.51) into (15.52), we arrive at the solution
(15.48) for �̃0.

Using the zero-sequence relations in (15.50)–(15.52), we can propagate forward
from bus 0 and derive the line-to-neutral voltages at buses 1, 2, 3 (Exercise 15.15):

+1�+=1 1 = =01�
⇣
E0�

I01

3
�0

⌘
+ V1

0
2
01H01 + H12

1 (15.57a)

+2�+=2 1 = =12

⇣
�†+1 +

=12I12

3
�̃21

⌘
+ (I24V2)1 (15.57b)

+3�+=3 1 = =23 (�+2) + (=2
23I23)83 (15.57c)

and the non-zero-sequence voltage at bus 4:

+
±
4 = =24

⇣
�†+2 +

=24I24

3
84

⌘
(15.57d)

where �†+1 can be obtained from (15.57a), �+2 and �†+2 can be obtained from
(15.57b), �0 is given by (15.48) and �̃21 by (15.56). Therefore the zero-sequence
component W 9 �+=

9
= 0 if and only if V 9 = 0 at buses 9 = 1,2,3. ⇤

5 If the transformer 2! 4 has no neutral line (so that V24 = 0), then V2 must be zero; otherwise the system
has no solution for the given 82 (KCL cannot be satisfied at bus 2).
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15.5 Example application: parameter identification

We illustrate the application of the transformer models developed in Chapters 15.2
and 15.3 using a three-phase transformer in �. configuration whose simplified circuit
model is shown in Figure 15.20. We first show how to identify model parameters from

V̂j
ab

V̂j
bc

V̂j
ca

I ja
Vj

a
Îjab

I jb
Vj

b
Îjbc

I jc
Vj

c
Îjca

yla

ylb

ylc

V̂k
an

V̂k
bn

V̂k
cn

Vk
a

Vk
b

Vk
c

Figure 15.20 �. -configured transformer with zero shunt admittances.

current and voltage measurements. We then show how to determine various external
and internal voltages and currents, including the loop flow within the � configuration,
from these measurements.

Suppose the single-phase transformers are identical, i.e. their turns ratios 0 := 00I
and leakage admittances H; := H;0I are the same across phases. Suppose the shunt
admittances are zero. Suppose the following measurements are taken:

• Terminal currents � 9 = 8 9 2 C3 and �: = 8: 2 C3.
• Terminal voltages + 9 = E 9 2 C3 (with respect to ground) on the primary (�) side.
• Line-to-line voltages �+: = D: 2 C3 on the secondary (. ) side.
• The neutral is grounded with zero grounding impedance so that +=

:
:= 0.

With zero measurement error. Assume the measurements are error free and let
G := (8 9 , 8: ,E 9 ,D: ) be the measurement vector. We now compute the turns ratio 00

and the leakage admittance H;0 from G. The measurement G := (8 9 , 8: ,E 9 ,D: ) 2 C12,
the parameter \ := (00, H;0) 2 C2, and the variable +: 2 C3 satisfy (15.23a) with
H
; := H;0I,0 := 00I: 

8 9

8:

�
= H

;0


�T� �00�T

�00 � (00)2
I

� 
E 9

+:

�
(15.58)
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We can obtain �T
+: from the line-to-line voltage measurement �+: = D: by shifting

the values of D: (using �T = �%� from Theorem 14.2):

�T
+: =

266664
+
0 �+2

+
1 �+0

+
2 �+1

377775
= �

266664
0 0 1
1 0 0
0 1 0

377775|       {z       }
permutation %

266664
+
0 �+1

+
1 �+2

+
2 �+0

377775
= �%�+: = �%D:

Hence the first row of (15.58) becomes

8 9 = H
;0

⇣
�T�E 9 + 00%D:

⌘
(15.59a)

where % is the permutation matrix

% :=
266664
0 0 1
1 0 0
0 1 0

377775
(15.59b)

This is a set of 3 quadratic equations in a positive real variable 00 2 R+ and a complex
variables H;0 2 C. Under appropriate conditions a solution of (15.59) exists and can be
computed numerically. Let \⇤ := (00⇤, H;0⇤) denote such a solution. All other variables
in Figure 15.20 can then be derived in terms of \⇤ and the measurement G.6

Example 15.11. Calculate, in terms G := (8 9 , 8: ,E 9 ,D: ) and \⇤ := (00⇤, H;0⇤), the fol-
lowing:

• The terminal voltage +: with respect to the ground.
• The internal voltage and current (+̂.

:
, �̂.
:
) on the secondary side.

• The internal voltage and current (+̂�
9
, �̂�
9
) on the primary side and hence the loop

flow V 9 within the � configuration.

Solution. The terminal voltage +: can be calculated from the second row of (15.58):

+: =
1

(00⇤)2
H
;0⇤ 8: +

1
0
0⇤ �E 9 (15.60a)

On the secondary side the internal voltage and current (+̂.
:

, �̂.
:
) are given by the

conversion rule in (15.22b) for . configuration on the secondary side:

+̂
.

:
= +: �+=: 1 = +: , �̂

.

:
= 8: (15.60b)

On the primary side the internal voltage +̂�
9

across the ideal transformers is given by
(15.12d) with I< := 0 (no shunt admittance):

+̂
�
9

= �E 9 �
1
H
;0⇤ �̂

�
9

6 The same method can be used if other voltage and current measurements are taken instead. For example,
if line-to-line voltages �+9 = D 9 2 C3 are measured instead of terminal voltages +9 , the parameter \
can be estimated by solving (15.59) with �E9 replaced by D 9 .
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Instead of expressing �̂�
9

in terms of the measurement 8 9 using H< = 0 and the conversion

rule 8 9 = �T
�̂
�
9
, we will use the transformer current gain in (15.22c) for�. configuration

to express �̂�
9
= �(00⇤)�1

8: , yielding

+̂
�
9

= �E 9 +
1

0
0⇤
H
;0⇤ 8: , V 9 :=

1
3

1
T
�̂
�
9
= � 1

300⇤
1

T
8: (15.60c)

Note that we determine the loop flow V 9 from 8: on the secondary side, not the terminal
current 8 9 on the primary side. ⇤

From Figure 15.20 the terminal powers B 9 and B: are powers injected into the
transformer at terminals 9 and : respectively. Hence 1

T (B 9 + B: ) is the total power loss
in the three-phase transformer due to the leakage impedance 1/H; .

Example 15.12 (Total power loss). For the three-phase transformer in Figure 15.20,
show that the total power loss 1

T (B 9 + B: ) in the transformer is equal to

1
T (B 9 + B: ) =

1
H
;0⇤ k=

0⇤
8: k22

where =0 := 1/00 is the voltage gain. Even though the transformer gain =0 relates the
internal currents ( �̂�

9
, �̂.
:
), not terminal currents (� 9 , �: ), we can interpret =08: as the

“e�ective” terminal current on the primary side.

Solution. The terminal powers are, using (15.60) and 8 9 = �T
�̂
�
9
= �=0⇤�T

8: ,

B 9 := diag
⇣
+ 9 �

H
9

⌘
= �=0⇤diag

⇣
E 98

H
:
�
⌘

B: := diag
⇣
+: �

H
:

⌘
= =

0⇤diag
⇣
�E 98H:

⌘
+ (=0⇤)2

H
;0⇤ diag

⇣
8:8

H
:

⌘

where =0⇤ := 1/00⇤. Hence

B 9 + B: = =
0⇤

⇣
diag

⇣
�E 98H:

⌘
� diag

⇣
E 98

H
:
�
⌘⌘

+ (=0⇤)2

H
;0⇤ diag

⇣
8:8

H
:

⌘

Now

1
Tdiag

⇣
�E 98H:

⌘
�1

Tdiag
⇣
E 9 (8H:�)

⌘
= 8

H
:
(�E 9 )� (8H:�)E 9 = 0

The total power loss in the three-phase transformer is then

1
T (B 9 + B: ) =

(=0⇤)2

H
;0⇤ 1

Tdiag
⇣
8:8

H
:

⌘
=

(=0⇤)2

H
;0⇤ k8: k

2
2

⇤

With measurement error. The relation (15.59) satisfied by G when it contains zero
measurement error can be represented as 5 (G;\) = 0. Given ) noisy measurements
G := (G1, . . . ,G) ), there may not be any choice of \ that satisfies 5 (GC ;\) = 0 for all
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C = 1, . . . ,) . A popular estimate \̂ of \ is one that minimizes error subject to certain
constraints:

\̂ := argmin
\

’
C

k 5 (GC ;\)k s.t. 6(GC ;\)  0, C = 1, . . . ,) (15.61)

for some appropriate norm k · k. Here 6(GC ;\)  0 expresses some known relations that
must hold, e.g., 00 � 0 is real. Then the other variables

ĤC := (+: (C),+̂�9 (C), �̂�9 (C), V 9 ,+̂.: (C), �̂.: (C)), C = 1, . . . ,)

can be derived from (15.60) with \⇤ := (00⇤, H;0⇤) replaced by \̂ := (0̂0, Ĥ;0).

It is possible that the estimate ĤC derived in this way may violate some known
constraints, e.g., Emin

:
 k+: (C)k2  Emax

:
for some C given voltage limits. An alternative

identification method is to estimate the parameter \ and the variables H := (H1, . . . , H) )
jointly from the measurements G := (G1, . . . ,G) ), i.e., solve

(\̂, Ĥ) := arg min
(\ ,H)

’
C

k 5 (GC , HC ;\)k s.t. 6(GC , HC ;\)  0, C = 1, . . . ,)

where 5 represents both (15.59) and (15.60), and 6(GC , HC ;\)  0 expresses some known
constraints on (\̂, Ĥ), including those in (15.61).

15.6 Chapter summary

1. A three-phase transmission or distribution line can be modeled by 4⇥4 series and
shunt admittance matrices (four-wire model). When there is no neutral wire or the
neutral wire is grounded (+=

9
=+=

:
), then the line can be modeled by Kron-reduced

3⇥3 series and shunt admittance matrices as derived in Example 15.1. This is the
three-wire model (15.8).

2. A general method has been developed to derive a unidfied external model (15.15) of
a three-phase transformer. The model extends the simplified model of transformers
in Chapter 3.1.4 from the single-phase setting to the three-phase setting. It exhibits
the role of. and� connection in the primary and secondary circuits in transforming
the terminal voltages and currents.

3. The single-phase model in Chapter 3.1.5 based on unitary voltage network has
been extended to a three-phase model (15.35). It has the same structure as (15.15)
and they are equivalent if shunt admittances are zero in both models.

4. Transmission matrices (15.47) of standard three-phase transformers have been
derived for balanced transformers. They are convenient for the analysis of radial
networks. The balanced transformers make transparent the e�ect of � connection
on terminal voltages and currents (Chapter 15.4.2).

5. These models are illustrated in a parameter identification application.
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15.7 Bibliographical notes

The modeling of transmission lines with earth return is presented in the seminal paper [191] by J. R. Carson.

Circuit models of three-phase line models studied in Chapter 15.1 are developed in e.g. [192, 193, 37]. See

e.g. [187, Chapter 3] for comprehensive models of three-phase components including distribution lines,

transformers and switches. For the simplified model of Chapter 15.2 see [194, 195, 196, 197] for early work

and [37, Ch 8][5, Ch 7.4][198] for recent summary. The idea of decomposing a nonideal transformer into

two ideal transformers connected by a unitary voltage network as in Chapter 15.3 is first mentioned, but

not explored, in [194]. It is developed in detail in [188, 199] where the unitary network consists of three

windings in grounded. configuration at each end of the unitary network connected through a ) equivalent

circuit of leakage admittance matrices and shunt admittance matrices.

15.8 Problems

Chapter 15.1.

Exercise 15.1 (Symmetric H 9: ). Let IB
9:
2 C3⇥3 be a series impedance matrix of a

three-phase line ( 9 , :). Assume IB
9:

is symmetric, invertible and IB
9:

= IB
: 9

. Show that

its inverse HB
9:

:= (IB
9:
)�1 is symmetric. Moreover HB

9:
= HB

: 9
. (Hint: Write IB

9:
= �+ i⌫

and HB
9:
= ⇠ + i⇡ with �T = � and ⌫T = ⌫.).

Exercise 15.2 (One-step Kron reduction of symmetric network). Consider a three-
phase network with = buses and < symmetric lines ( 9 , :) whose shunt admittances
H
<

9:
= H<

: 9
= 0 2 C3⇥3 are assumed zero and series admittances HB

9:
are assumed to have

the structure in (15.9). Moreover the mutual admittance n 9: is assumed to be much
smaller in magnitude than the self admittance d 9: . Specifically we assume:

H
B

9:
= (d 9: � n 9: )I+ n 9:11

T 2 C3⇥3, 8( 9 , :) (15.62a)

where (d 9: ,n 9: ,8( 9 , :)) satisfy

d 9: = d: 9 2 C, n 9: = n: 9 2 C, 8( 9 , :) (15.62b)������
’
:::< 9

d 9:

������ > 4

������
’
:::< 9

n 9:

������ , 9 = 1, . . . ,= (15.62c)

and we define d 9: = n 9: := 0 if 9 ⌧ : . Let . 2 C3=⇥3= denote the admittance matrix.

Decompose . into

. =:

. [=�1,=�1] . [=�1,=]
.

T [=�1,=] .==

�

where. [=�1,=�1] is the 3(=�1)⇥3(=�1) principal submatrix of the first =�1 row
and column blocks of . , the 3(=�1)⇥3 submatrix . [=�1,=] is the =th column block
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of . , and the 3⇥ 3 submatrix .== is the == block of . corresponding to bus =. Let
.
=�1 :=./.== denote the 3(=�1)⇥3(=�1) Kron reduced matrix (Schur complement)

of.== of. . It is the admittance matrix of the virtual network consisting of the first =�1
buses in the sense that, if the current injections �= at bus = is zero, then �=�1 =.=�1

+
=�1

where (�=�1,+=�1) are the current injections and voltages at the first =�1 buses.

1. Show that . 9: = .: 9 = .T
9:

.

2. Show that .=�1
9:

=.=�1
: 9

= (.=�1
9:

)T, i.e., the one-step Kron reduction preserves line
symmetry.

Chapter 15.2.

Exercise 15.3 (�. -configured transformer). Derive the external model (15.23) of the
�. -configured three-phase transformer in Figure 15.13.

Exercise 15.4 (.�-configured transformer). Derive the external model (15.24) of the
.�-configured three-phase transformer in Figure 15.14.

Exercise 15.5 (.. equivalent). Consider a three-phase transformer in�� configuration
with H< := 0 in a balanced setting, i.e., suppose

H
; := H

;0

I, 0 := 0
0

I, + 9 := E 9U+, +: := E:U+

where U+ := (1,U,U2) is the unit positive-sequence vector and U := 4�i2c/3. Use
(15.20a) directly to show that the admittance matrix .̃.. of its .. equivalent is
given by: 

� 9

�:

�
=


H̃ �0H̃
�0H̃ 0

2
H̃

�
|          {z          }

.̃..


+ 9

+:

�

where H̃; = 3H;0I and 0 = 00I. (Hint: Use Corollary 1.3.)

Exercise 15.6 (Complex voltage gain). Consider a .. -configured transformer with
a complex voltage gain (matrix) = := diag

�
=
0,=1 ,=2

�
2 C3⇥3. Let its turns ratio be

0 := =�1 2 C3⇥3. Let H; 2 C3⇥3 denote its leakage admittance and assume its shunt
admittance H< = 0. Show that its external model is


� 9

�:

�
=


H
; �0H;

�0H
H
; |0 |2H;

�
|               {z               }

...

 
+ 9

+:

�
�

"
+
=

9
1

+
=

:
1

#!

�
=

9
= �1

T
� 9 , �

=

:
= �1

T
�:

where |0 |2 is the matrix |0 |2 := Diag
�
1/|=0 |2,1/|=1 |2,1/|=2 |2

�
.

Exercise 15.7 (.. equivalent). Derive the.. equivalent and the single-phase equiva-
lent of a �. transformer in Example 15.4. (Hint: Apply Corollary 1.3 to (15.23b), and
then use Exercise 15.6.)
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Chapter 15.3.

Exercise 15.8 (Unitary voltage network: 3q transformers). Derive (15.32).

Exercise 15.9 (Unitary voltage network: 3q transformers). Derive the admittance
matrix (15.35a), reproduced here:

� = ⇡
T (".uvn")⇡ (+ �+=)

for the transformer model in Chapter 15.3.

Exercise 15.10 (Unitary voltage network: turns ratio 0). Prove (15.35b).

Exercise 15.11 (3q transformer: H< = H0 = 0). Suppose shunt admittances H0 = H< =
Diag(0,0,0). Then the admittance matrices .uvn defined in (15.32) and ... defined in
(15.15a) become

.uvn :=
⇣
I2 ⌦ (H 9 + H: )�1

⌘ 
H 9 H: �H 9 H:
�H 9 H: H 9 H:

�
, ... :=


H
; �0H;

�0H; 0
2
H
;

�

Show that ".uvn" = ... .

Chapter 15.4.

Exercise 15.12 (E�ect of � connection: �. ). For Example 15.8, show that:

1. The primary line-to-line voltage �+ 9 depends on the secondary line-to-neutral
voltage +: �+=

:
1:

�+ 9 = 0(+: �+=: 1) + I(�=�: 9 )

2. The non-zero-sequence voltages +±
9

and +±
:

are related according to (15.43):

�T�+ 9
� 9:

�
=


I II

0 I

�
|   {z   }
)..


0�T

+:

�=�T
�: 9

�

3. The zero-sequence variables satisfy V 9: = 0 and V: 9 = 02
H(W: �+=

:
).

Exercise 15.13 (E�ect of � connection: .�). Derive the transmission matrices in
(15.45) in Example 15.9 for a .� transformer.

Exercise 15.14 (Transformer on zero-sequence vars). Derive the transformation
(15.46) of zero-sequence variables by a transformer.

Exercise 15.15 (Example 15.10). 1. For any G 2 C3, let G± := 1
3�

T�G. Show that
�G = �G±, �T

G = �T
G
±, �†G = �†G±, and G = 1

3��
†
G +W1 where W := 1

31
T
G.

2. Derive the nodal voltages in (15.57) of Example 15.10 (Hint: Use part 1 and the
zero-sequence relations in (15.50)–(15.52).)



16 Bus injection models

A system consists of a device model and a network model. Three-phase device models
are studied in Chapters 14. In this and the next chapters we use the branch models of
Chapter 15 to construct network models and analyze unbalanced three-phase systems
consisting of these network models together with the device models of Chapter 14.

In Chapter 16.1 we extend the bus injection model of Chapter 4.3 from single-
phase to unbalanced three-phase networks. In Chapter 16.2 we formulate a general
three-phase analysis problem. In particular we prove in Chapter 16.2.6 formally that
if all branches and devices are balanced, and all voltage and current sources are
balanced vectors, then the system is equivalent to per-phase networks and its analysis
can be solved by per-phase analysis. In Chapter 16.3 we explain that, if voltage and
current sources are not balanced vectors but the system has a certain symmetry, we
can transform it to a sequence coordinate in which the system becomes decoupled.
Single-phase analysis can then be applied to individual sequence networks.

16.1 Three-phase BIM

In Chapter 16.1.1 we define a generic model for modeling three-phase transmission
lines, distribution lines, and transformers. We will call it interchangeably a branch
model or a line model. In Chapter 16.1.2 we combine the branch model and the current
balance equation (KCL) to linearly relate the nodal (terminal) current injections �
and voltages + through a network admittance matrix . , � = .+ . In Chapter 16.1.3 we
present nonlinear power flow equations that relate nodal (terminal) power injections
B 9 and voltages + 9 . We study invertibility of the admittance matrix . and its principal
submatrices in Chapter 16.1.4 and illustrate its application in Chapter 16.1.5.

For notational simplicity we assume all devices and lines have three phases, but
it is easy to generalize to the case where a bus or a line has a single, two, or three
phases. Usually the same equations involving 3⇥3 line impedance/admittance matrices
or transformer turns ratio matrices apply, with rows and columns of missing phases
simply set to zero (see e.g. Remark 15.1 on three-phase lines or (15.25) in Chapter
15.2.8 for open transformers).
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16.1.1 Branch model

Consider a network with # +1 three-phase devices connected by three-phase branches
represented as an undirected graph⌧ := (# ,⇢) where every bus 9 2 # and every branch
( 9 , :) 2 ⇢ has 3 phases. A bus is where the terminals of three-phase devices and three-
phase branches are connected. A branch models a transmission or distribution line,
or a transformer. We will hence refer to 9 2 # interchangeably as a bus, a node, or
a terminal, and ( 9 , :) 2 ⇢ interchangeably as a branch, a line, a link, or an edge. In
particular, a line may refer to a generic branch or a transmission or distribution line
and the meaning should be clear from the context.

We also assume for simplicity that, unless otherwise specified, we can use three-
wire models for these lines and their characterization includes the e�ects of neutral
and earth return on the phase variables. This assumption is reasonable if, e.g., neutral
wires are absent so that �=

9
= 0, the line connects devices in � configuration, or the

neutrals are directly grounded with equal spacing along a line and at both ends of the
line so that all neutrals have +=

9
= 0. Otherwise, the line model in this section needs to

be augmented with neutral lines with variables in C4 instead of C3 and line admittance
matrices in C4⇥4 instead of C3⇥3; see Example 16.5 and Exercise 16.7. As we will see,
even though lines are assumed to be three-wired,. -configured devices such as voltage,
current and power sources and impedances do have neutral lines in our models and
their neutral voltages +=

9
may be nonzero.

For each line ( 9 , :) 2 ⇢ let
�
+ 9 ,+:

�
2 C6 denote the terminal voltages at each end of

the line and
�
� 9: , �: 9

�
2 C6 denote the sending-end line currents in both directions. In

general each line ( 9 , :) 2 ⇢ is characterized by four 3⇥3 series and shunt admittance

matrices,
⇣
H
B

9:
, H<
9:

⌘
from 9 to : and

⇣
H
B

: 9
, H<
: 9

⌘
from : to 9 . See Figure 16.1. They

j k
Vj VkIjk , Sjk

sj , Ij

Skj , Ikj
Ik , sk

( ys
jk , y

m
jk ) ( ys

kj , y
m
kj )

Figure 16.1 Network graph and notations.

define the relation between
�
+ 9 ,+:

�
and

�
� 9: , �: 9

�
:

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

: 9
(+: �+ 9 ) + H

<

: 9
+: (16.1a)
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or in matrix form: 
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(16.1b)

We emphasize that HB
9:

and HB
: 9

may be di�erent matrices and therefore this general
model. 9: may not have a three-phase⇧-circuit representation. When HB

9:
= HB

: 9
, it can

model:

• A transmission or distribution line where, from (15.8a), HB
9:

= HB
: 9

is its series

admittance and
⇣
H
<

9:
, H<
: 9

⌘
are its shunt admittances.

• A transformer in .. configuration where neutral voltages are zero (+=
9
= +=

:
= 0),

from (15.18d),

H
B

9:
= H

B

: 9
:= 0Ĥ

; , H
<

9:
:= (I� 0) Ĥ; , H

<

: 9
:= 0(0� I) Ĥ; + 02

Ĥ
< (16.2a)

with 0 := Diag(00,01 ,02) being the turns ratios of the transformer, Ĥ; :=
Diag(H;0, H;1 , H;2) and Ĥ

< := Diag(H<0, H<1 , H<2) its leakage and shunt admit-
tances respectively.

• A transformer in �� configuration where, from (15.20c),

H
B

9:
= H

B

: 9
:= �T

0Ĥ
;� (16.2b)

H
<

9:
:= �T (I� 0) Ĥ;�, H

<

: 9
:= �T

⇣
0(0� I) Ĥ; + 02

Ĥ
<

⌘
� (16.2c)

Or a transformer in open �� configuration where, from (15.25d), (HB
9:

=

H
B

: 9
, H<
9:

, H<
: 9
) are given by (16.2b)(16.2c) with Ĥ; and Ĥ< replaced by the leakage

and shunt admittances H̃; := Diag(H;0, H;1 ,0) and H̃< := Diag(H<0, H<1 ,0) respec-
tively of the open transformer.

When HB
9:
< HB

: 9
is allowed, this model can also model transformers in other configu-

rations:

• A transformer in �. configuration with zero neutral voltage (+=
:
= 0) where, from

(15.23a),

H
B

9:
:= �T

0Ĥ
; , H

B

: 9
:= 0Ĥ

; � (16.3a)

H
<

9:
:= �T

Ĥ
; (�� 0), H

<

: 9
:= 0Ĥ

; (0��) + 02
Ĥ
< (16.3b)

• A transformer in .� configuration with zero neutral voltage (+=
9
= 0) where, from

(15.24a),

H
B

9:
:= 0Ĥ

; �, H
B

: 9
:= �T

0Ĥ
; (16.3c)

H
<

9:
:= Ĥ

; (I� 0�), H
<

: 9
:= �T

⇣
0Ĥ
; (0�� I) + 02

Ĥ
<�

⌘
(16.3d)
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Remark 16.1 (Transformer models). 1. We emphasize that the models (16.2) (16.3)
assume that, for three-phase transformers with. configuration either in the primary
or secondary side, their neutrals are directly grounded so the neutral voltages+=

9
= 0

or +=
:
= 0. Otherwise there will be an additive term involving +=

9
,+=
:

; see Chapter
15.2.

2. While the shunt admittances H<
9:

and H<
: 9

in the branch model are typically equal
for a transmission or distribution line, they are typically di�erent for a transformer.
Moreover they are generally nonzero for a transformer even if the shunt admittances
Ĥ
< := Diag(H<0, H<1 , H<2) (or H̃< := Diag(H<0, H<1 ,0) for open �� transformer)

of the constituent single-phase transformers are assumed zero.

3. The series and shunt admittance matrices
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
in (16.2) are

all complex symmetric. None of the series and shunt admittances in (16.3) are
symmetric. Moreover the admittance matrices corresponding to � configuration
in the primary or secondary side are singular, i.e., unlike for single-phase trans-
formers, none of the admittances HB

9:
, H<
9:

, HB
: 9

, H<
: 9

in the branch model may have
an inverse. ⇤

For simplicity we often restrict ourselves to the special case where HB
9:

= HB
: 9

. In
this case we characterize a line ( 9 , :) by three series and shunt admittance matrices⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. With HB

9:
= HB

: 9
, (16.1) reduces to

� 9: = H
B

9:
(+ 9 �+: ) + H

<

9:
+ 9 , �: 9 = H

B

9:
(+: �+ 9 ) + H

<

: 9
+: (16.4a)

or in terms of the admittance matrix . 9: :
� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�
(16.4b)

which is now block symmetric (see Definition 16.1). We say . 9: has a three-phase ⇧-
circuit representation in the sense that its external behavior is the same as the external
behavior (15.8a) of a three-phase transmission line; see Figure 15.2.

This more restrictive . 9: model (16.4) cannot be used to model transformers in �.
and .� configurations (cf. (16.3)). It is however still widely used. We therefore often
adopt this model and will explicitly state it as assumption C16.1 below when we use it.

16.1.2 �+ relation

Associated with each bus 9 are three nodal variables
�
B 9 , � 9 ,+ 9

�
2 C9 representing its

(net) nodal power injection, current injection and voltage respectively. To simplify
notation we assume, without loss of generality, that at most one single-terminal device
is connected to a bus but one or more lines can be connected to the bus. This means that
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(B 9 , � 9 ) are the terminal power and current (coming out) of the device.1 As explained in
Chapters 14.3.2 and 14.3.3, the external behavior of a three-phase device is described
by the relation between (+ 9 , � 9 ) or that between (+ 9 , B 9 ). We can assume without loss
of generality that these three-phase devices are ideal (see Chapter 15.1.4) and their
behavior is summarized in Tables 14.4 and 14.5. We will use 9 to refer to both a bus
and the unique device connected to bus 9 .

Let (B, �,+) :=
⇣
B 9 , � 9 ,+ 9 , 9 2 #

⌘
2 C3(#+1) be nodal variables over the entire net-

work. As for a single-phase network, a three-phase network model is a relation between
the nodal or terminal current and voltage (+ , �) or a relation between the nodal or
terminal power and voltage (+ , B), independent of the internal . or � configurations
of the three-phase devices that are connected by the lines. In this subsection we derive
the linear �+ relation defined by an admittance matrix . . In Chapter 16.1.3 we derive
the B+ relation in the form of nonlinear power flow equations. These network models
express nodal current or power balance using the branch model (16.1):

� 9 =
’
:: 9⇠:

� 9: , B 9 =
’
:: 9⇠:

diag
�
( 9:

�
, 9 2 #

where ( 9: :=+ 9 �H
9:

are matrices defined in (15.8b).

Network admittance matrix . . Substitute the line currents (16.1) into the current
balance equation to get

� 9 =
’
:: 9⇠:

� 9: =
’
:: 9⇠:

H
B

9:
(+ 9 �+: ) + ©≠

´
’
:: 9⇠:

H
<

9:

™Æ
¨
+ 9

Therefore

� 9 = ©≠
´
©≠
´
’
:: 9⇠:

H
B

9:

™Æ
¨
+ H<

9 9

™Æ
¨
+ 9 �

’
:: 9⇠:

H
B

9:
+: , 9 2 # (16.5a)

where

H
<

9 9
:=

’
:: 9⇠:

H
<

9:
(16.5b)

Note that � 9 is the net current injection.2 In vector form, this relates the bus current
vector � := (�0, . . . , �# ) to the bus voltage vector + := (+0, . . . ,+# ):

� = .+ (16.6a)

1 If  three-phase devices with terminal current injections � 91, . . . , � 9 are connected to bus 9 then the
net bus injection is � 9 :=

Õ
:
� 9: . Unless otherwise specified we assume  = 1.

2 If there is a nodal shunt admittance load Hsh
9

, e.g., a capacitor bank, in addition to a device whose

terminal injection is �̃ 9 , then the net injection from bus 9 to the rest of the network is � 9 = �̃ 9 � Hsh
9
+9 .

This assumes that Hsh
9

connects bus 9 to the ground and the terminal voltage +9 is defined with respect
to the ground.
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through a 3(# +1) ⇥3(# +1) admittance matrix . where its 3⇥3 submatrices . 9: 2
C

3⇥3 are given by

. 9: :=

8>>><
>>>:

�HB
9:

, 9 ⇠ : ( 9 < :)Õ
;: 9⇠; H

B

9;
+ H

<

9 9
, 9 = :

0 otherwise

(16.6b)

The submatrices. 9: and.: 9 may be di�erent if ( 9 , :) models a three-phase transformer
in �. or .� configuration.

Example 16.1. The admittance matrix . for a 3-terminal network with zero shunt
admittances is shown in Figure 16.2. ⇤
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(b) Admittance matrix . .

Figure 16.2 The admittance matrix . for a 3-bus network with no shunt admittances.

Definition 16.1 (Block symmetry and block row sum). Given a matrix � 2 C3=⇥3=,
partition it into = ⇥ = blocks of 3⇥ 3 submatrices. Denote by � 9: 2 C3⇥3 its 9 :th
submatrix.

1. � is called block symmetric if � 9: = �: 9 for all 9 , : = 1, . . . ,=.
2. � is said to have zero block row sums if

Õ
:
� 9: = 0 for all 9 = 1, . . . ,=. ⇤

A matrix can be symmetric but not block symmetric, and vice versa. Symmetry
of a matrix is determined only by its o�-diagonal entries but its diagonal entries can
be arbitrary. Block symmetry is determined only by its o�-diagonal blocks but its
diagonal blocks can be arbitrary. A symmetric matrix � is block symmetric if and only
if all its o�-diagonal blocks are themselves symmetric, i.e., �T

9:
= � 9: , for all 9 < : . A

block symmetric � is symmetric if and only if all blocks � 9: , including the diagonal
blocks, are symmetric (Exercise 16.1). We will remark on zero block row sums below
after introducing single-phase equivalent circuit.

In general an admittance matrix . defined by (16.6) may neither be block sym-
metric nor symmetric. If the series admittances HB

9:
= HB

: 9
for all lines ( 9 , :) 2 ⇢ then

the admittance matrix . is block symmetric and hence has a three-phase ⇧-circuit
representation. As in Chapter 4 we label the following assumption and will explicitly
state it when it is required:
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C16.1: The series admittance matrices HB
9:
= HB

: 9
for every line ( 9 , :) 2 ⇢ , so that

the admittance matrix . is block symmetric.

If every ( 9 , :) 2 ⇢ models a transmission or distribution line or a transformer described
by (16.2), then . is block symmetric with a three-phase ⇧-circuit representation. If
some ( 9 , :) 2 ⇢ model transformers described by (16.3), however, then . is not.

Under assumption C16.1,. can be expressed in terms of the incidence matrix as for
a single-phase network (see (4.15)). Let ⇠ denote the bus-by-line incidence matrix:

⇠ 9; =

8>><
>>:
I if 1 = 9 ! : for some bus :
�I if �1 = 8! 9 for some bus 8
0 otherwise

Let ⇠ ⌦ I denote the Kronecker product of ⇠ and the identity matrix I of size 3.

Let . B := Diag
⇣
H
B

;
, ; 2 ⇢

⌘
be the 3|⇢ | ⇥ 3|⇢ | block diagonal matrix with the series

admittance matrices HB
;
2 C3⇥3 as its diagonal blocks, and .< := Diag

⇣
H
<

9 9
, 9 2 #

⌘
the

|# |⇥ |# | block diagonal matrix with the total shunt admittances H<
9 9
2 C3⇥3 in (16.5b)

as its diagonal blocks. Then the admittance matrix in (16.6b) is, when HB
9:
= HB

: 9
,

. = (⇠ ⌦ I). B (⇠ ⌦ I)T +.<

Single-phase equivalent circuit. The 3(# + 1) ⇥ 3(# + 1) admittance matrix . in
(16.6) defines a single-phase equivalent circuit of the three-phase network. Recall that
a three-phase network can be represented by a graph ⌧ := (# ,⇢) where # is a set of
# +1 three-phase buses and ⇢ is a set of three-phase lines. The admittance matrix .

induces a network graph ⌧3q := (#3q
,⇢3q) where #

3q
has 3(# +1) buses. Each bus

in #
3q

is indexed by 9q with 9 2 # ,q 2 {0,1,2} in the original network ⌧. Each line
in ⇢3q is indexed by ( 9q, :q0). Denote the ( 9q, :q0)th entry of the 3(# +1)⇥3(# +1)
admittance matrix . by . qq

0

9:
. There is a line between bus 9q and another distinct bus

:q
0 in ⌧3q if and only if . qq

0

9:
is nonzero. We call this graph ⌧3q the single-phase

equivalent (graph) of the three-phase network ⌧.

Remark 16.2 (Single-phase equivalent graph). We caution however that the admit-
tance matrix . relates only nodal current injections to voltages, and therefore single-
phase modeling and analysis methods developed in Part I for single-phase networks
apply to this single-phase equivalent ⌧3q only for nodal variables, not line currents.
For instance only the current �0

9:
(say) between the buses 90 and :0 is defined in the

graph ⌧3q (see Figure 16.3), not currents �01
9:

between the buses 90 and :1 or �01
9 9

in

⌧
3q because there is no physical current between phases. Moreover the current �0

9:

depends not only on the voltage drop +0
9
�+0

:
(as in a true single-phase network), but

also on +1
9
�+1

:
and +2

9
�+2

:
(though not on +0

9
�+1

:
or +0

9
�+1

9
). ⇤

Suppose shunt admittances are zero, i.e., H<
9:

= H<
: 9

= 0 for all ( 9 , :) 2 ⇢ . Then the
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3(# + 1) ⇥ 3(# + 1) admittance matrix . has zero block row sums (Definition 16.1),
because

. 9 9 =
’

::( 9,:)2⇢
H
B

9:
=

’
:

�. 9: , 9 2 #

so that
Õ
:
. 9: = 0 for all 9 . Furthermore . has zero block column sums if and only

if . is block symmetric. The matrix has zero row sums if
Õ
:,q0. 9 q,:q0 = 0 for all 9q.

This is equivalent to’
:,q0

.
qq
0

9:
=

’
q
0 2{0,1,2 }

H
qq
0

9 9
�

’
::( 9,:)2⇢
q
0 2{0,1,2 }

H
qq
0

9:
= 0, 9q 2 # ⇥ {0,1,2}

i.e., zero row sums requires only that the 3⇥ 3 matrix
Õ
:
. 9: have zero row sums,

whereas zero block row sums requires that
Õ
:
. 9: be a zero matrix. Hence if a matrix

has zero block row sums, then all its row sums are zero, but the converse does not
necessarily hold.

In general . is not symmetric (nor block symmetric), i.e., it may not satisfy C4.1 as
the admittance matrix of a single-phase network. It is symmetric, and block symmetric,
under the following condition:

C16.2: In addition to C16.1, all series and shunt admittance matrices HB
9:

, H<
9:

, H<
: 9

are complex symmetric, so that the admittance matrix . is both symmetric and
block symmetric.

Therefore if . satisfies C16.2, then H
B

9:
= HB

: 9
= HBT

9:
, H<

9:
= H<T

9:
and H

<

: 9
= H<T

: 9
for

all ( 9 , :). Suppose all transmission and distribution line models satisfy C16.2 (in
particular, it satisfies assumptions C15.1 and C15.2), but the network contains �. or
.� transformers described by (16.3), then. is neither symmetric nor block symmetric.
On the other hand, if all transformers are .. or �� described by (16.2), then . is both
block symmetric and symmetric (hence satisfying C16.2). In this case . has a three-
phase⇧-circuit representation and the admittance matrix of its single-phase equivalent
is complex symmetric.

Kron reduction. Suppose an admittance matrix . 2 C3(#+1)⇥3(#+1) is decomposed
into submatrices:

. =:

.11 .12

.
T
12 .22

�

with a nonsingular .22. Then the Kron-reduced admittance matrix, denoted by ./.22

is its Schur complement

./.22 := .11�.12.
�1
22 .

T
12

We will study its properties in Chapter 16.1.4.
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Radial network. Even when the multiphase network⌧ is radial (i.e., with tree topol-
ogy), its single-phase equivalent ⌧3q is a meshed network (i.e., has cycles), but in
that case, ⌧3q has a radial macro-structure in which each line is represented as a
clique (complete subgraph). Specifically ⌧3q has a maximal clique consisting of the

set
n
9q, :q0 2 #3q

: q,q0 2 {0,1,2}
o

of buses if and only if ( 9 , :) is a line in ⌧; see

Figure 16.3. The corresponding principal submatrix .
⌧

3q ( 9 , :) 2 C6⇥6 of . is:

jc

kckb

jbja

ka

Figure 16.3 A clique of ⌧3q corresponding to line ( 9 , :) in ⌧.

.
⌧

3q ( 9 , :) =

. 9 9 . 9:

.: 9 .::

�

The graph⌧3q is a chordal graph and this can be exploited to simplify the semidefinite
relaxation of optimal power problems (see Chapter ?? and also Remark 16.2 for a word
of caution).

16.1.3 B+ relation

Let B 9 ,+ 9 2 C3 denote the three-phase power injections and voltages at bus 9 and

� 9: 2 C3 the three-phase sending-end line current from 9 to : . Let B :=
⇣
B 9 , 9 2 #

⌘
and

+ :=
⇣
+ 9 , 9 2 #

⌘
. Then

B 9 =
’
:: 9⇠:

diag
⇣
+ 9 �

H
9:

⌘
, 9 2 #

Therefore from (15.8)

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (16.7a)

This directly generalizes (4.21a) from the single-phase to the three-phase setting.

Alternatively we can also relate B and + using the single-phase equivalent network
⌧

3q of Chapter 16.1.2 in which power balance holds at each bus 9q in terms of the
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elements . qq
0

9:
of the 3(# +1)⇥3(# +1) admittance matrix . defined in (16.6):

B
q

9
=

’
:2#

q
0 2{0,1,2 }

⇣
.
qq
0

9:

⌘H
+
q

9

⇣
+
q
0

:

⌘H
, 9 2 # , q 2 {0,1,2} (16.7b)

This directly generalizes (4.21b) to the three-phase setting.

Power flow analysis and optimization for unbalanced three-phase networks can be
conducted using both forms of the bus injection model (16.7), as long as only nodal
variables are of interest. Otherwise (16.7a) should be used (see Remark 16.2). The
model (16.7) does not require condition C16.1 nor C16.2.

16.1.4 Invertibility of . , .22 and ./.22

In this subsection we study the invertibility and properties of . , .22 and its Schur
complement ./.22. These results extend those in Chapter 4.5 from single-phase to
three-phase networks.

Invertibility of . . Recall that a real matrix ⌧ is positive semidefinite (or positive
definite), denoted⌧ ⌫ 0 (or⌧ � 0), if⌧ is symmetric and ET

⌧E � 0 (or ET
⌧E > 0) for all

real vectors E (see Remark A.1 in Appendix A.5). Under assumption C16.2 (HB
9:
= HB

: 9
,

H
<

9:
and H

<

: 9
are complex symmetric) the admittance matrix . 2 C3(#+1)⇥3(#+1) is

both symmetric and block symmetric. Write admittances in terms of their real and
imaginary parts, HB

9:
= 6B

9:
+ i1

B

9:
, H<

9:
= 6<

9:
+ i1

<

9:
, and H<

: 9
= 6<

: 9
+ i1

<

: 9
. Consider the

following conditions on the conductances 6B
9:

,6<
9:

,6<
: 9
2 R3⇥3:

C16.3: For all lines ( 9 , :) 2 ⇢ , 6B
9:
⌫ 0, 6<

9:
⌫ 0, 6<

: 9
⌫ 0.

C16.4a: For all buses 9 2 # , 6<
9 9

:=
Õ
:::⇠ 9 6

<

9:
� 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 6<
9:
� 0

C16.4b: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 6<
9
0
:
0 � 0.

C16.4c: For all lines ( 9 , :) 2 ⇢ , 6B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that the intersection of the null spaces of 6<
9
0
:
0 and 6<

:
0
9
0 is {0}.

Condition C16.4b is a special case of C16.4c which does not require positive definite-
ness of 6<

9:
. The next result extends Theorems 4.4, 4.5, and 4.11 in Chapter 4.5 from

single-phase to three-phase networks.

Theorem 16.1. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. If the conductance matrices 6B
9:

,6<
9:

,6<
: 9
2 R3⇥3 satisfy

conditions C16.3 and one of C16.4a, C16.4b, C16.4c, then

1. The admittance matrix .�1 2 C3(#+1)⇥3(#+1) exists and is symmetric. Moreover
both Re(. ) � 0 and Re(.�1) � 0.
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In addition if . =:

.11 .12

.
T
12 .22

�
with an invertible .22, then

2. The Schur complement./.22 :=.11�.12.
�1
22 .

T
12 of.22 is symmetric and invertible.

Moreover both Re(./.22) � 0 and Re
�
(./.22)�1� � 0.

Proof Let ⌧ := Re(. ) 2 R3(#+1)⇥3(#+1) . We will show that ⌧ � 0. The claims then
follow from Theorems 4.4 and 4.11.

Fix any real vector d 2 R3(#+1) and decompose it into d =: (d 9 , 9 2 #) with d 9 2 R3.
We have using (16.6b) and (16.5b)

d
T
⌧d =

’
9

’
:::⇠ 9

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d:

⌘
+

’
92#

d
T
9
6
<

9 9
d 9

=
’

( 9,:)2⇢

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d: � dT

:
6
B

: 9
d 9 + dT

:
6
B

: 9
d:

⌘
+

’
9

’
:::⇠ 9

d
T
9
6
<

9:
d 9

=
’

( 9,:)2⇢
(d 9 � d: )T

6
B

9:
(d 9 � d: ) +

’
( 9,:)2⇢

⇣
d

T
9
6
<

9:
d 9 + dT

:
6
<

: 9
d:

⌘
(16.8)

where the last equality uses 6B
9:
= 6B

: 9
for all ( 9 , :) 2 ⇢ from C16.2. Since 6B

9:
,6<
9:

,6<
: 9
2

R
3⇥3 are positive semidefinite for all lines ( 9 , :) 2 ⇢ by C16.3, every summand is

nonnegative and hence dT
⌧d = 0 if and only if every summand in (16.8) is zero. We

examine each of the three cases:

• C16.4a holds: The second term in (16.8) is equal to
Õ
92# d

T
9
6
<

9 9
d 9 . Under C16.4a,

for all buses 9 2 # , dT
9
6
<

9 9
d 9 > 0 unless d 9 = 0. This implies that ⌧ � 0.

• C16.4b holds: For the first term in (16.8) to be zero we must have d 9 = d: for all
( 9 , :) 2 ⇢ . Since the network is connected, this implies that d 9 = d1 for all 9 2 # .
The second term in (16.8) then becomes, if d1 < 0,

’
9

’
:::⇠ 9

d
T
9
6
<

9:
d 9 = d

T
1
©≠
´
’
9

’
:::⇠ 9

6
<

9:

™Æ
¨
d1 � d

T
16
<

9
0
:
0d1 > 0

Therefore dT
⌧d > 0 unless d = 0, i.e., ⌧ � 0.

• C16.4c holds: As for the case of C16.4b, we must have d 9 = d1 for all 9 2 # . Then
the second term in (16.8) becomes, if d1 < 0,’

( 9,:)2⇢

⇣
d

T
9
6
<

9:
d 9 + dT

:
6
<

: 9
d:

⌘
� d

T
1

⇣
6
<

9
0
:
0 + 6<

:
0
9
0

⌘
d1 > 0

where the last inequality follows because 6<
9
0
:
0 and 6<

:
0
9
0 are positive semidefinite

and their null spaces intersect only at the origin. This implies that ⌧ � 0.

Hence in all three cases ⌧ is positive definite. Since . is complex symmetric and .22

is nonsingular by assumption, Theorems 4.4 and 4.11 complete the proof. ⇤
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Consider the following conditions on the conductances 1B
9:

,1<
9:

,1<
: 9
2 R3⇥3:

C16.5: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0, 1<

9:
� 0, 1<

: 9
� 0.

C16.6a: For all buses 9 2 # , 1<
9 9

:=
Õ
:::⇠ 9 1

<

9:
� 0, i.e., for all 9 , there exists a line

( 9 , :) 2 ⇢ such that 1<
9:
� 0

C16.6b: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that 1<
9
0
:
0 � 0.

C16.6c: For all lines ( 9 , :) 2 ⇢ , 1B
9:
� 0. Furthermore there exists a line ( 9 0, : 0) 2 ⇢

such that the intersection of the null spaces of 1<
9
0
:
0 and 1<

:
0
9
0 is {0}.

Condition C16.6b is a special case of C16.6c which does not require negative definite-
ness of 1<

9:
. The next result extends Theorems 4.4, 4.6, and 4.11 in Chapter 4.5 from

single-phase to three-phase networks. Its proof is left as Exercise 16.2.

Theorem 16.2. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. If the susceptance matrices 1B
9:

,1<
9:

,1<
: 9
2 R3⇥3 satisfy

conditions C16.5 and one of C16.6a, C16.6b, C16.6c, then

1. The admittance matrix .�1 2 C3(#+1)⇥3(#+1) exists and is symmetric. Moreover
Im(. ) � 0 and Im(.�1) � 0.

In addition if . =:

.11 .12

.
T
12 .22

�
with invertible .22, then

2. The Schur complement./.22 :=.11�.12.
�1
22 .

T
12 of.22 is symmetric and invertible.

Moreover Im(./.22) � 0 but Im
�
(./.22)�1� � 0. ⇤

The conditions in Theorem 16.1 not only ensure Re(. ) � 0 and those in Theorem
16.2 not only ensure Im(. ) � 0. Each set of conditions also ensures UH

.U < 0 for any
nonzero U 2 C3(#+1) (Exercise 16.3). Since a necessary condition for . to be singular
is the existence of a nonzero U with UH

.U = 0, these conditions imply the invertibility
of . , as expected, and extend the su�cient conditions in Theorems 4.5 and 4.6 to
three-phase networks.

Remark 16.3 (Singularity of �-configured transformers). The admittance matrix of a
three-phase transformer involving � configuration is singular (see (15.15) or (15.35)).
This causes the admittance matrix. of a network that contains such transformers to be
singular. A proposal in the literature is to add small shunt admittances (diagonal entries)
to the admittance matrix of such a transformer to make it nonsingular. It is unclear that
this is always necessary because the external models in (15.15) and (15.35) of a �-
configured circuit depend on its terminal voltage+ 9 only through its line-to-line voltage
�+ 9 . See Chapter 15.4 on the e�ect of � connection on terminal voltages and currents.
Indeed, in examples of Chapters 16.2.2 and 16.2.3, all quantities of interest (e.g.,
internal load voltages, currents, and powers) can be determined without the knowledge
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of the terminal voltages + 9 of �-configured sources (only non-zero-sequence voltages
are su�cient). ⇤

Invertibility of.22 when H<
9:
= H<

: 9
= 0. Let � ( # and.� be the 3|�|⇥3|�| principal

submatrix of . consisting of row and column blocks . 9: with 9 , : 2 �. Suppose the
shunt admittances are zero, H<

9:
= H<

: 9
= 0 so that the admittance matrix . has zero

block row sums and is not invertible. The next result provides a set of simple su�cient
conditions for a principal submatrix .� to be invertible when � is a strict subset of # .
Its proof is similar to those of Theorems 4.7 and 4.8 and left as Exercise 16.4.

Theorem 16.3. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. Suppose H<
9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . Consider

the principal submatrix .� 2 C3 |� |⇥3 |� | for a strict subset � ( # .

1. If 6B
9:
� 0 for all lines ( 9 , :) 2 ⇢ then .�1

�
exists and is symmetric. Moreover both

Re(.�) � 0 and Re(.�1
�
) � 0.

2. If 1B
9:
� 0 for all lines ( 9 , :) 2 ⇢ then .�1

�
exists and is symmetric. Moreover

Im(.�) � 0 but Im(.�1
�
) � 0.

Even when not all 6B
9:

are positive definite and not all 1B
9:

are negative definite the
admittance matrix. can still be invertible because they cannot be zero simultaneously.
The next result extends Theorem 4.10 from single-phase to three-phase setting.

Theorem 16.4. Suppose the network is connected and the admittance matrix . 2
C

3(#+1)⇥3(#+1) satisfies C16.2. Suppose H
<

9:
= H<

: 9
= 0 for all lines ( 9 , :) 2 ⇢ . If

6
B

9:
⌫ 0 and 1B

9:
� 0 for all lines ( 9 , :) 2 ⇢ then the principal submatrix.� 2 C3 |�|⇥3 |� |

for a strict subset � ( # satisfies:

1. Re(.�) ⌫ 0, Im(.�) � 0.
2. Moreover Re(.�)� Im(.�) � 0.
3. .�1

�
exists and is symmetric.

Proof The proof of Theorem 4.10 for single-phase network shows that ⌧� is diago-
nally dominant since 6B

9:
2R are nonnegative and hence its eigenvalues are nonnegative

by the the Ger�gorin disc theorem. In the three-phase case, we cannot use this argument
since not every element of the 3⇥ 3 conductance matrix 6B

9:
is nonnegative. We will

use the argument in the proof of Theorem 16.1 (see (16.8)).

Let⌧� :=Re(.�). Since H<
9:

:= 0 by assumption for all ( 9 , :) 2 ⇢ , the 3⇥3 submatrix
⌧ 9 9 is given by:

⌧ 9 9 :=
’

:8�:( 9,:)2⇢
6
B

9:
+

’
:2�:( 9,:)2⇢

6
B

9:
, 9 2 �
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Using this and ⌧ 9: = �6B
9:
2 R3⇥3 for 9 ⇠ : we have

d
T
⌧�d

=
’
92�

©≠
´
d

T
9

©≠
´

’
:8�:( 9,:)2⇢

6
B

9:
+

’
:2�:( 9,:)2⇢

6
B

9:

™Æ
¨
d 9 �

’
:2�:( 9,:)2⇢

d
T
9
6
B

9:
d:

™Æ
¨

=
’

9,:2�:( 9,:)2⇢

⇣
d

T
9
6
B

9:
d 9 � dT

9
6
B

9:
d: � dT

:
6
B

: 9
d 9 + dT

:
6
B

: 9
d:

⌘
+

’
92�

d
T
9

©≠
´

’
:8�:( 9,:)2⇢

6
B

9:

™Æ
¨
d 9

=
’

9,:2�:( 9,:)2⇢
(d 9 � d: )T

6
B

9:
(d 9 � d: ) +

’
92�

d
T
9

©≠
´

’
:8�:( 9,:)2⇢

6
B

9:

™Æ
¨
d 9

where the third equality uses HB
9:
= HB

: 9
from condition C16.2. Therefore when 6B

9:
⌫ 0

for all lines ( 9 , :) 2 ⇢ , dT
⌧�d ⌫ 0. Since ⌧� is real symmetric, Re(.�) = ⌧� � 0.

Similar, letting ⌫� := Im(.�), we have

d
T
⌫�d =

’
9,:2�:( 9,:)2⇢

(d 9 � d: )T
1
B

9:
(d 9 � d: ) +

’
92�

d
T
9

©≠
´

’
:8�:( 9,:)2⇢

1
B

9:

™Æ
¨
d 9

Since 1B
9:
� 0 and ⌫� is symmetric, ⌫� � 0. This implies that ⌧��⌫� ⌫ 0.

We now show that, indeed, ⌧� � ⌫� � 0 because the network is connected and
� ⇢ # is a strict subset. The argument is the same as that for Theorem 4.10 for single-
phase networks. For a 3=⇥ 3= matrix " , let " [ 9 , :] denote the 3⇥ 3 submatrix of
" consisting of the 9 th row block and the :th column block. Since ⌧�� ⌫� is real
symmetric, consider, for any nonzero real vector d 2 R3 |� | ,

d
T (⌧��⌫�)d =

’
92�

’
:2�

d
T
9
(⌧�[ 9 , :] �⌫�[ 9 , :])d:

=
’
92�

’
:2�:

( 9,:)2⇢

d
T
9
(�6B

9:
+ 1B

9:
)d: +

’
92�

d
T
9

©≠≠≠
´

’
:2�:

( 9,:)2⇢

(6B
9:
� 1B

9:
) +

’
:8�:

( 9,:)2⇢

(6B
9:
� 1B

9:
)
™ÆÆÆ
¨
d 9

=
’
9,:2�:
( 9,:)2⇢

�
d 9 � d:

�T (6B
9:
� 1B

9:
)
�
d 9 � d:

�
+
’
92�

d
T
9
⌧ 9 d 9

where the third equality has used 6
B

9:
= 6B

: 9
for all ( 9 , :) 2 ⇢ from C16.2. Here

⌧ 9 :=
Õ
:8�:( 9,:)2⇢ (6B9: � 1B9: ) for 9 2 � and the summation in ⌧ 9 is not vacuous

because the network is connected and � ( # . For every line ( 9 , :) 2 ⇢ , HB
9:
< 0 and

hence 6B
9:
� 1B

9:
� 0 since 6B

9:
⌫ 0 and 1B

9:
⌫ 0. This implies ⌧ 9 � 0 as well for all

9 2 �. Therefore for dT (⌧��⌫�)d > 0 for any real vector d < 0, i.e., ⌧��⌫� � 0.

Finally⌧��⌫� � 0 implies that.� is nonsingular (it is clear that.�1
�

is symmetric
if it exists). The argument is exactly the same as that for Theorem 4.10 for single-phase
networks. ⇤
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Theorems 16.3 and 16.4 guarantee the existence of Kron reduction ./.� under
assumption C16.2 and at least one of three sign definite conditions on Re(HB

9:
) and

Im(HB
9:
) when H<

9:
= H<

: 9
= 0. We illustrate their application next.

16.1.5 Application: Kron reduction of .

In this section we illustrate the invertibility properties studied in Chapter 16.1.4 by
justifying and deriving the Kron reduction of a three-phase network by induction.
This has applications in identifying its three-phase admittance matrix from partial
measurements of voltage and current phasors at a subset of buses.

Consider a three-phase network with = buses and < symmetric lines ( 9 , :) whose
shunt admittances H<

9:
= H<

: 9
= 0 2 C3⇥3 are assumed zero. Let . 2 C3=⇥3= denote the

admittance matrix. Let � of size : < = denote a strict subset of the buses. Without
loss of generality we can assume � := {=� : + 1, . . . ,=}. Let .� denote the 3: ⇥ 3:
principal submatrix consisting of the last : row and column blocks of . and assume
.� is nonsingular. To justify the Kron reduction ./.�, we will study iterative Kron
reduction where a single bus is Kron reduced in each iteration until all buses in � have
been Kron reduced. The idea is to derive conditions that both guarantee the existence
of one-step Kron reduction and are preserved by the one-step Kron reduction. Then
the existence of arbitrary ./.� can be justified by induction.

Specifically decompose . into

. =:

. [=�1,=�1] . [=�1,=]
.

T [=�1,=] .==

�

where. [=�1,=�1] is the 3(=�1)⇥3(=�1) principal submatrix of the first =�1 row
and column blocks of . , the 3(=�1)⇥3 submatrix . [=�1,=] is the =th column block
of . , and the 3⇥3 submatrix .== is the == block of . corresponding to bus =. By one-
step Kron reduction of bus =, we mean taking the Schur complement .=�1 :=./.== of
.== of . . The 3(=� 1) ⇥ 3(=� 1) matrix .=�1 is the admittance matrix of the virtual
network consisting of the first =� 1 buses. If the current injections at bus = is zero,
i.e., �= = 0, then.=�1 linearly relates the current injections �=�1 2 C3(=�1) and voltages
+
=�1 2 C3(=�1) at the first =�1 buses by �=�1 = .=�1

+
=�1. The 9 : block .=�1

9:
2 C3⇥3

of .=�1 := ./.== is:

.
=�1
9:

:= . 9: �. 9=.�1
==
.=: , 9 , : = 1, . . . ,=�1 (16.9)

Justification of the Kron reduction ./.� consists of the following steps:

1. Identify a su�cient condition C that is satisfied by . .
2. Prove that condition C guarantees that .�1

==
, and hence .=�1 := ./.==, exist.

3. Prove that condition C is satisfied by.=�1, i.e., the one-step Kron reduction of bus
= preserves C.
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Then ./.� exists by induction.

For example, the su�cient condition C can be: for all buses 9!= : , i.e., buses 9 , :
that are either adjacent ( 9 ⇠ :) or connected through bus = ( 9 ⇠ = and = ⇠ :), both
H
B

9:
and .=�1

9:
satisfy C16.2 and the real or imaginary parts of HB

9:
and .=�1

9:
are sign

definite, i.e.,

• For all lines 9 ⇠ : , either Re(HB
9:
) � 0, or Im(HB

9:
) � 0, or Re(HB

9:
) ⌫ 0 and

Im(HB
9:
) � 0; and

• For all buses 9!= : , either Re(.=�1
9:

) � 0, or Im(.=�1
9:

) � 0, or Re(.=�1
9:

) ⌫ 0 and

Im(.=�1
9:

) � 0.

Then Theorems 16.3 and 16.4 imply that the iterative Kron reduction is well defined
and ./.� exists by induction.

In the following example we present a particularly simple condition C under which
./.� can be justified by induction.

Example 16.2 (Uniform line). Suppose the shunt admittances H<
9:

= H<
: 9

= 0 2 C3⇥3

are zero. Moreover we assume all lines ( 9 , :) are of the same type and di�er only in
their lengths _ 9: > 0. Specifically we assume:

C16.7: For all lines ( 9 , :)

H
B

9:
= _ 9: H, _ 9: = _: 9 > 0

where H 2 C3⇥3 is nonsingular and _ 9: 2 R+. Define _ 9: = _: 9 := 0 if 9 ⌧ : .

A consequence of C16.7 is that HB
9:
= HB

: 9
. Therefore the admittance matrix . is block

symmetric, i.e., it satisfies C16.1. If HB
9:

are also symmetric then . is both symmetric
and block symmetric, i.e., it satisfies C16.2. For example if the series admittances have
the structure in (15.9), i.e., H = (d� n)I+ n11

T, then . satisfies C16.2. In that case, H is
nonsingular if |d | > 4|n | (this is a special case of the line model in Exercise 15.2).

From the discussion above, to justify the existence of Kron reduction./.�, it su�ces
to show that (i) .== is nonsingular so that the one-step Kron reduction .=�1 := ./.==
exists; and that (ii) the properties in C16.7 are preserved by the one-step Kron reduction
to reduce bus =, i.e., .=�1

9:
given by (16.9) satisfy

.
=�1
9:

= _
=�1
9:
H, _

=�1
9:

= _
=�1
: 9

, 8 buses 9!= :

for some _=�1
9:
2 R+ to be derived below. By induction, an arbitrary Kron reduction of

. can be obtained iteratively by one-step reduction of a single bus at a time. Moreover
the Kron reduced admittance matrix is block symmetric (.=�1

9:
=.=�1

: 9
), i.e., it satisfies

C16.1 (and C16.2 if and only if .=�1
9:

= .=�1
: 9

= (.=�1
9:

)T.)
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Substituting . 9: = �HB
9:

= �_ 9: H into (16.9) and recalling . 9 9 :=
Õ
8:8< 9 H

B

8 9
=Õ

8:8< 9 _8 9 H, each 9 : block of the Kron reduced admittance matrix .=�1 is

.
=�1
9:

=

8>>><
>>>:
�_ 9: H�_ 9=H

⇣Õ
=�1
8=1 _8=H

⌘�1
_=: H, 9 < :

Õ
8:8< 9 _8 9 H�_ 9=H

⇣Õ
=�1
8=1 _8=H

⌘�1
_=: H, 9 = :

(16.10)

where we recall that _8 9 := 0 if 8 ⌧ 9 . If 9 < : then .=�1
9:

=: �_=�1
9:
H with

_
=�1
9:

:= _ 9: +
_ 9=_:=Õ
8:8<=_8=

, 9 < : (16.11)

where we have used _=: = _:= (
Õ
8:8<=_8= > 0 since the network is connected). Hence

_
=�1
9:

> 0 if and only if 9!= : , i.e., either 9 and : are adjacent (_ 9: > 0) or 9 and :

are connected through bus = (_ 9=_:= > 0). If 9 = : then .=�1
9 9

=
Õ
8:8< 9,8<=_

=�1
8 9

H, i.e.,

.
=�1 has zero block row and column sums. To see this, we have from (16.11)

’
8:8< 9,8<=

_
=�1
8 9

H =

 ’
8:8< 9,8<=

_8 9 +_ 9=
Õ
8:8< 9,8<=_8=Õ
8:8<=_8=

!
H

=

 ’
8:8< 9,8<=

_8 9 +_ 9=
✓Õ

8:8<=_8= �_ 9=Õ
8:8<=_8=

◆!
H

=

 ’
8:8< 9

_8 9 �
_

2
9=Õ

8:8<=_8=

!
H = .

=�1
9 9

where the last equality follows from _ 9= = _= 9 and (16.10). In summary

.
=�1
9:

=

( �_=�1
9:
H 9 < :⇣Õ

8:8< 9,8<=_
=�1
8 9

⌘
H 9 = :

where _=�1
9:

is given by (16.11) and _=�1
9:

> 0 if and only if 9!= : . Obviously _=�1
: 9

=
_
=�1
9:

. Therefore .=�1 exists and the properties in C16.7 are preserved by the one-step
Kron reduction to reduce bus =. Arbitrary Kron reduction is then justified by induction
under assumption C16.7. ⇤

16.2 Unbalanced three-phase analysis

A device model relates its internal and terminal variables. A network equation relates
the terminal variables of these devices. A typical three-phase analysis problem is: given
a collection of voltage sources, current sources, power sources and impedances con-
nected by three-phase branches (i.e., transmission or distribution lines, transformers),
compute a certain set of external and internal variables. We first summarize in Chap-
ter 16.2.1 that an overall system model consists of a device model of Chapter 14.3 and
a network model of Chapters 16.1.2 and 16.1.3. Then we illustrate in Chapters 16.2.2
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and 16.2.3 three-phase analysis using examples. We formulate in Chapter 16.2.4 a
general three-phase analysis problem and outline in Chapter 16.2.5 a solution strategy
based on intuitions from these examples. Finally we analyze a balanced system in
Chapter 16.2.6 and formally justify per-phase analysis studied in Chapter 1.2.5.

16.2.1 System model = device model + network model

Power flow analysis or optimization applications in low-voltage networks involve three-
phase devices, either in . or � configuration, connected by three-phase lines (recall
that a line can model a transmission or distribution line or a transformer). Recall that
the overall system model consists of:

1. A device model for each three-phase device 9 . For ideal devices, this can either
be:
• Internal model (14.38) and conversion rules (14.10) and (14.11)(14.12); or
• External model summarized in Tables 14.4 and 14.5 when only terminal quan-

tities are needed.
For nonideal devices, this can either be:
• Internal model summarized in Table 14.3 and conversion rules (14.10) and

(14.11)(14.12); or
• External model summarized in Table 14.3 when only terminal quantities are

needed.
2. A network (BIM) model that relates terminal power, current, and voltage (B, �,+),

either:
• The linear current balance equation (16.5)(16.6); or
• The quadratic power flow equation (16.7).

If only voltage sources, current sources and impedances are involved then the overall
model can be linear, consisting of the nodal current balance equation (16.5)(16.6) and
linear device models. If power sources are also involved then, even though (16.5)(16.6)
can still be used as the network model, the overall model will be nonlinear because of
nonlinear power source models.

16.2.2 Examples: voltage and current sources

Three-phase power flow or optimization problems in practice are large-scale and can
only be solved numerically. The purpose of analyzing small examples is to illustrate
the models introduced in Chapters 14, 15 and 16.1 and to gain intuition on how to
specify analysis problems using these concepts.

Consider a simple system consisting of a three-phase generator that supplies a three-
phase impedance load I. /�

:
through a three-phase line (HB

9:
, H<
9:

, H<
: 9
). Our goal is to
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determine the internal power B. /�
:

received by the load, given generator parameters.
Specifically the generator may be modeled as a voltage source with internal voltage
⇢
. /�
9

, a current source with internal current �. /�
9

, or a power source with internal

power f.�
9

. Given the line parameters (HB
9:

, H<
9:

, H<
: 9
), the load impedance I. /�

:
, and

the internal voltage ⇢. /�
9

or current �. /�
9

or power f.�
9

of the generator, we are

interested in computing the voltages (+. /�
:

,+: ) and currents (�. /�
:

, �: ) at the load,

which will determine B. /�
:

.

Through a series of examples (and exercises) in this and the next subsections, we will
explain how the governing equations of this simple system change and what additional
information must be specified in order to uniquely determine B. /�

:
, as the generator

is modeled by di�erent devices, the devices are in di�erent configurations, and the
neutrals are connected to the ground or to each other. Additional information may
include neutral voltages (+=

9
,+=
:
), or a zero-sequence terminal voltage W 9 := 1

31
T
+ 9 ,

or a zero-sequence internal current V�
:

:= 1
31

T
�
�
:
. To unify notation we will often use

W 9 to denote the neutral voltage +=
9

for a . -configured device3 and the zero-sequence

terminal voltage 1
31

T
+ 9 for a �-configured device.

The examples (and exercises) in this subsection are driven by an ideal voltage source
⇢
. /�
9

or current source �. /� for which the analysis problem is linear, because both the
device models and the network equation � = .+ are linear. We will therefore focus on
linear analysis to compute the terminal and internal voltages and currents (+: , �: ) and⇣
+
. /�
:

, �. /�
:

⌘
. They determine the internal load power B. /�

:
(as well as terminal power

B: ). (Examples driven by a power source is discussed in Chapter 16.2.3.)

If the neutrals are grounded directly and voltages are defined with respect to the
ground (i.e., condition C14.1 with I= := 0), then neutral voltages W 9 := +=

9
= 0 and

W: :=+=
:
= 0; otherwise they may be nonzero. The first three examples illustrate when

the neutral voltages can be arbitrary and must be specified for the analysis problem to
be solvable and when they are variables that can be uniquely determined.

Example 16.3 (Generator/load in. configuration). Consider the system in Figure 16.4
where an (ideal) voltage source is connected through a three-phase line to an impedance,
both in . configuration. We assume there is no neutral line (in particular the neutrals

are not grounded). Suppose the load impedance I.
:
, line parameters

⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
,

and the internal voltage ⇢.
9

are specified (assumption C16.1 is satisfied).

Given the neutral voltages W 9 := +=
9

and W: := +=
:

, derive the internal load voltage

and current
�
+
.

:
, �.
:

�
, which determines the internal power B.

:
:= diag(+.

:
�
.H
:

) received
by the load.

Solution. The terminal voltages (+ 9 ,+: ) and current injections (� 9 , �: ) are related

3 Note the zero-sequence component 1
3 1

T
+9 of the terminal voltage of a . -configured device is generally

di�erent from its neutral voltage + =
9

.
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Figure 16.4 Example 16.3: An ungrounded . -configured generator connected through a
three-phase line to an ungrounded . -configured impedance load.

according to (16.5):

� 9 = H
B

9:

�
+ 9 �+:

�
+ H<

9:
+ 9 (16.12a)

�: = H
B

9:

�
+: �+ 9

�
+ H<

: 9
+: (16.12b)

From Table 14.4, the external models for the ideal voltage source and impedance in .
configuration are

+ 9 = ⇢
.

9
+W 91, +: = �I.

:
�: +W:1 (16.12c)

This is a system of 12 linear equations in 12 unknowns
�
+ 9 , � 9

�
and (+: , �: ).

Substituting+ 9 from (16.12c) and the current conversion rule �.
:
=��: into (16.12b)

we have

��.
:

= �HB
9:

⇣
⇢
.

9
+W 91

⌘
+

⇣
H
B

9:
+ H<

: 9

⌘
+: (16.13a)

Substituting +: from (16.12c) we have✓⇣
H
B

9:
+ H<

: 9

⌘�1
+ I.

:

◆
�
.

:
=

⇣
H
B

9:
+ H<

: 9

⌘�1
H
B

9:
+ 9 � W:1 (16.13b)

Hence

�
.

:
= ��: =

⇣
Î 9: + I.:

⌘�1
Î 9: H

B

9:
+ 9 � W:

⇣
Î 9: + I.:

⌘�1
1

=
⇣
I
.

:
+ I

B

9:
+ I

B

9:
H
<

: 9
I
.

:

⌘�1
+ 9 � W:

⇣
Î 9: + I.:

⌘�1
1

where IB
9:

:=
⇣
H
B

9:

⌘�1
, Î 9: :=

⇣
H
B

9:
+ H<

: 9

⌘�1
and + 9 = ⇢.

9
+W 9 . From (16.12c)

+
.

:
= I

.

:
�
.

:
= I

.

:

⇣
I
.

:
+ IB

9:
+ IB

9:
H
<

: 9
I
.

:

⌘�1
+ 9 � W: I.:

⇣
Î 9: + I.:

⌘�1
1

Hence
�
+
.

:
, �.
:

�
at the load depend not just on the voltage source ⇢.

9
, but also the

neutral voltages W 9 and W: which must be specified.

Under condition C14.1 with I
= := 0 so that W 9 = W: = 0, we have + 9 = ⇢.

9
and
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+: = +.
:

. Then the expression for +: is the familiar voltage divider rule in the three-
phase setting. ⇤

In Example 16.3 the neutral voltages W 9 ,W: must be given explicitly to solve for
(+.
:

, �.
:
). Often neutral voltages are not explicitly given but additional information

is available to either compute their values, provide additional equations, or eliminate
them in terms of other variables, as illustrated in the next two examples.

Example 16.4 (Indirect specification of W: := +=
:

). Repeat Example 16.3 with the
modification that the impedance is specified only by I.

:
(i.e., W: is not given), and that

its neutral is connected through a given impedance I=
:

to the ground and not to the
voltage source. Assume all voltages are defined with respect to the ground.

Solution. The equations (16.12) in Example 16.3 is now a system of 12 linear equations
in 12 unknowns

�
+ 9 ,+: , � 9 , �:

�
and an additional scalar unknown W: := +=

:
. KCL and

Ohm’s law provide an additional equation (since +=
:

is defined with respect to the
ground):

W: := +
=

:
= �I=

:

⇣
1

T
�:

⌘
Substituting W: into +: , the external device model (16.12c) in Example 16.3 can be
replaced by:

+ 9 = ⇢
.

9
+W 91, +: = �

⇣
I
.

:
+ I=

:
11

T
⌘

|          {z          }
/
.

:

�: (16.14)

It says that the external behavior of the impedance I.
:

when its neutral is grounded
through I

=

:
is equivalent to an impedance with an e�ective admittance /.

:
that is

grounded directly so that W: := +=
:
= 0. Therefore the same computation leads to the

same solution for (+: , �: ) with the following replacement:

I
.

:
! /

.

:
, W: ! 0

⇤

The next example illustrates the case where the neutrals are not grounded but
connected directly to each end of a four-wire line (also see Exercise 16.7). In this
case, neither W 9 nor W: needs to be explicitly specified and can be determined from
the network equation � = .+ . This is an example where W 9 of a voltage source cannot
be specified arbitrarily but is constrained by the network equation, in contrast to the
three-wire models of Examples 16.3 and 16.4. This is because, when the neutral of the
voltage source 9 is not grounded nor connected to bus : , the current � 9 is determined
only by (+ 9 ,+: ) through (16.12a) and W 9 can be arbitrary. With the neutral wire,
the additional constraint �=

9
= �1

T
� 9 determines W 9 uniquely. Similarly for W: for the

impedance.
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Example 16.5 (Four-wire model). Repeat Example 16.3 with the modification that the
neutrals of both devices are ungrounded and are connected to the neutral wires at each
end of a 4-wire line (see Figure 16.5), and neither W 9 :=+=

9
nor W: :=+=

:
is specified.

a

b

c

a

b

c

n n

Vj
a Vk

a

sj
a , I a

j

Vj
n , I n

j

Ik
a , sk

a 

Ik
n , Vk

n

three-phase 
line

(y sjk , y
m
jk , y

m
kj)

n n

Figure 16.5 Example 16.5: An ungrounded . -configured generator connected through a
four-wire line to an ungrounded . -configured impedance load.

Solution. Define the terminal voltages (with respect to a common reference point) and
currents in C4 in the direction indicated in Figure 16.5:

+̂ 9 :=

266666664

+
0

9

+
1

9

+
2

9

+
=

9

377777775
, +̂: :=

26666664

+
0

:

+
1

:

+
2

:

+
=

:

37777775
, �̂ 9 :=

266666664

�
0

9

�
1

9

�
2

9

�
=

9

377777775
, �̂: :=

26666664

�
0

:

�
1

:

�
2

:

�
=

:

37777775
These terminal variables are related by �̂ = .̂+̂ as in (16.12a) (16.12b), except that the
admittance matrices are replaced by their four-wire counterparts (15.3):

�̂ 9 = Ĥ
B

9:

�
+̂ 9 � +̂:

�
+ Ĥ<

9:
+̂ 9 , �̂: = Ĥ

B

9:

�
+̂: � +̂ 9

�
+ Ĥ<

: 9
+̂: (16.15a)

The external model of a four-wire voltage source in. configuration is, since the neutrals
are ungrounded and connected to each other,

+̂ 9 =

266666664

⇢
0=

9
++=

9

⇢
1=

9
++=

9

⇢
2=

9
++=

9

+
=

9

377777775
=


⇢
.

9

0

�
|{z}
⇢̂
.

9

+W 9 1̂ =: ⇢̂.
9
+W 9 1̂, �

=

9
= �1

T
� 9 (16.15b)

where 1̂ is the vector of all 1s of size 4 and � 9 := (�0
9
, �1
9
, �2
9
). Similarly the internal

model of a four-wire impedance in. configuration is, since the neutrals are ungrounded
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and connected to each other,

+̂: =

26666664

I
0=

:
�
0=

:

I
1=

:
�
1=

:

I
2=

:
�
2=

:

0

37777775
+ W: 1̂ = �


I
.

:
0

0 0

�
�̂: + W: 1̂, �

=

:
= �1

T
�: (16.15c)

This is a set of 18 linear equations in 18 unknowns
�
+̂ 9 , �̂ 9 ,W 9

�
and

�
+̂: , �̂: ,W:

�
. It

replaces (16.12) for which neutrals are ungrounded and unconnected to each other and
W 9 ,W: must be given explicitly. It can be solved as in Example 16.3.

Exercise 16.6 expresses (W 9 ,W: ) in terms of the phase voltages and currents�
+ 9 ,+: , � 9 , �:

�
. ⇤

The next two examples consider the setup of Example 16.3 in � configuration when
the load is supplied by a voltage source (Example 16.6) or a current source (Example
16.7). In general each bus 9 has three internal variables (+�

9
, ��
9
, V�
9
) 2 C7 and terminal

variables (+ 9 , � 9 ,W 9 ) 2 C7. Given (some of the) internal parameters of the source at bus
9 , these examples illustrate how the zero-sequence voltage W 9 := 1

31
T
+ 9 and current

V
�
9

:= 1
31

T
�
�
9

a�ect the internal power B�
:

:= diag(+�
:
�
�H
:

) delivered to the load at bus :
and other variables.

Example 16.6 (Voltage source in � configuration). Consider the system in Example
16.3 when the devices are in � configuration and the shunt admittances H<

9:
= H<

: 9
:= 0

of the three-phase line are assumed zero, as shown in Figure 16.6, Besides the series

a

b

c

a

b

c

Vj
a Vk

a

sj
a , I a

j Ik
a , sk

a 

three-phase 
line

(y s
jk , y

m
jk , y

m
kj)

generator j load k

Figure 16.6 Example 16.6: A �-configured generator connected through a three-phase line to a
�-configured impedance load.

impedance IB
9:

:=
⇣
H
B

9:

⌘�1
, the load impedance I�

:
, and the internal voltage ⇢�

9
with

1
T
⇢
�
9
= 0, suppose the zero-sequence terminal voltage W 9 := 1

31
T
+ 9 and zero-sequence

internal current V�
9

:= 1
31

T
�
�
9

of the voltage source are also specified.

1. Show that

�
�
:

= /
�1
Th⇢

�
9
, +

�
:

= I
�
:
/
�1
Th⇢

�
9

(16.16)
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where /Th := �IB
9:
�T + I�

:
is the Thévenin equivalent of the three-phase line and

load impedance, and the expression for+�
:

follows a voltage divider rule. Therefore
the internal load voltage and currents (+�

:
, ��
:
, V�
:
), and hence the internal power

B: := diag(+�
:
�
�H
:

) delivered to the load, depend only on ⇢�
9
, but not on the zero-

sequence terminal voltage W 9 (nor V�
9
) of the voltage source.

2. Derive all other variables: the internal and terminal voltages and currents
(+�
:

, ��
:
, V�
:
,+: , �: ,W: ) at the load and the terminal voltage and the internal and

terminal currents (��
9
, V�
9
,+ 9 , � 9 ) at the generator. Verify that V�

9
is needed only

to uniquely determine ��
9

(from � 9 ). The voltage W 9 is needed only to uniquely

determine + 9 (from ⇢
�
9
) and, through the network equation, (+: ,W: ). Moreover

none of the variables depend on the phase voltage + 9 of the voltage source, but
only its line-to-line voltage �+ 9 = ⇢�

9
.

3. Show that W: = W 9 when the three-phase line is symmetric with I
B

9:
=: (I 9: �

n 9: )I+ n 9:11
T (i.e., of the form in (15.9)).

4. We show in Remark 14.6 that the internal variable V�
:

and terminal current �: must
satisfy V�

:
= �T

:
(�† Ĩ�

:
/Z: ) where Ĩ�

:
:= I�

:
1 is the impedance vector and Z: := 1

T
I
�
:
1

is the total impedance. Verify this expression. Show that V�
:
= 0 when the load

impedance is balanced, i.e., if I�
:
= I01

:
I, regardless of (⇢�

9
,W 9 , V�

9
).

Solution. We will derive all the variables in the following order: ⇢�
9
) (��

:
,+�
:
) )

(�: , V�
:
)) (+ 9 , � 9 )) (+: ,W: , ��

9
).

The current balance equation (16.5) with H<
9:
= H<

: 9
= 0 is:

+: = + 9 � IB
9:
� 9 (16.17)

Multiplying both sides by � and substituting the conversion rule +�
:
= �+: , ⇢�

9
= �+ 9 ,

and � 9 = ��: since the shunt admittances are zero, we have

+
�
:

= �+: = ⇢
�
9
+ �IB

9:
�:

Substitute the internal model +�
:
= I�

:
�
�
:

of impedance and the conversion rule �: =
��T

�
�
:

to get ⇣
�IB

9:
�T + I�

:

⌘
�
�
:

= ⇢
�
9

(16.18)

Recall that the internal current ��
:

of an impedance must satisfy 1
T
I
�
:
�
�
:
= 0 (see its

internal model (14.24)). This is indeed satisfied according to (16.18). Then (16.16)
follows.

We now derive the other variables
⇣
+ 9 , � 9 , ��

9

⌘
and

�
+: , �: ,W: , V�

:

�
. The terminal

current and the zero-sequence current of the impedance are respectively

�: = ��T
�
�
:

= ��T
/
�1
Th⇢

�
9
, V

�
:

:=
1
3

1
T
�
�
:

=
1
3

1
T
/
�1
Th⇢

�
9
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Using the external model of an ideal voltage source from Table 14.5 we have

+ 9 =
1
3
�T
⇢
�
9
+W 91, � 9 = ��: = �T

/
�1
Th⇢

�
9

(16.19)

where W 9 is given. Hence

+: = + 9 � IB
9:
� 9 =

✓
1
3
�T � IB

9:
�T
/
�1
Th

◆
⇢
�
9
+W 91

W: =
1
3

1
T
+: = W 9 �

1
3

⇣
1

T
I
B

9:
�T

⌘
/
�1
Th⇢

�
9

(16.20)

Since ��T
�
�
9
= � 9 = �T

/
�1
Th⇢

�
9

from (16.19) and the right-hand side is orthogonal to 1,

this equation has a subspace of solutions ��
9
= � 1

3��
T
/
�1
Th⇢

�
9
+ V�

9
1 by Theorem 14.2

where V�
9

:= 1
31

T
�
�
9

is the given zero-sequence internal current of the voltage source.

Using 1
3��

T = I� 1
311

T also from Theorem 14.2 we have

�
�
9
= �/�1

Th⇢
�
9
+

✓
1
3

1
T
/
�1
Th⇢

�
9
+ V�

9

◆
1

This completes the derivation of all the variables. In summary, V�
9

is needed only

to uniquely determine ��
9

(from � 9 ) and the zero-sequence voltage W 9 is needed only

to uniquely determine + 9 (from ⇢
�
9
) and, through the network equation, (+: ,W: ).

Moreover no quantity depends on the phase voltage+ 9 , but only the line-to-line voltage
�+ 9 = ⇢�

9
.

If IB
9:
=: (I 9: � n 9: )I+ n 9:11

T, then 1
T
I
B

9:
= (I 9: +2n 9: )1T and hence, from (16.20),

W 9 �W: =
1
3

⇣
1

T
I
B

9:
�T

⌘
/
�1
Th⇢

�
9
= 0

Finally we verify that the expressions V�
:
= 1

31
T
/
�1
Th⇢

�
9

and �: = ��T
/
�1
Th⇢

�
9

satisfy

V
�
:
= �T

:
(�† Ĩ�

:
/Z: ) where Ĩ�

:
:= I�

:
1 and Z: := 1

T
I
�
:
1. We have

⇣
Ĩ
�T
:
�T†

⌘
�: = �Ĩ�T

:

⇣
�T†�T

⌘
/
�1
Th⇢

�
9
= �Ĩ�T

:
/
�1
Th⇢

�
9
+ Z:

3
1

T
/
�1
Th⇢

�
9

where we have used �T†�T = I� 1
311

T from Theorem 14.2. Since 1
T
+
�
:
= 1

T�+: = 0
we have

Ĩ
�T
:
/
�1
Th⇢

�
9
= 1

T
I
�
:
/
�1
Th⇢

�
9
= 1

T
+
�
:

= 0

Hence
�
Ĩ
�T
:
�T†�

�: = Z: V�
:

as desired. Moreover, when I�
:
= I01

:
I, we have Ĩ�T

:
�T† =

I
01

:
1

T�T† = 0 and hence V�
:
= 0. ⇤

The next example studies the same system as that in Example 16.6 but with the
voltage source replaced by a current source. Again no variables depend on the terminal
voltage + 9 of the generator (nor +�

9
).
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Example 16.7 (Current source in� configuration). Consider Example 16.6 but with an
ideal current source instead of the ideal voltage source. Besides the series impedance
I
B

9:
, the load impedance I�

:
, and the internal current ��

9
, suppose W 9 is also specified.

1. Derive all other variables: the internal and terminal voltages and currents
(+�
:

, ��
:
, V�
:
,+: , �: ,W: ) at the load as well as the internal voltage and the termi-

nal voltages and current (+�
9
,+ 9 , � 9 ,W 9 ) at the generator.

2. Show that W: = W 9 when the three-phase line is symmetric with I
B

9:
=: (I 9: �

n 9: )I+ n 9:11
T (i.e., of the form in (15.9)).

3. Let D: := ( Ĩ�
:
/Z: )�1/3 denote the imbalance of the normalized impedance vector

Ĩ: , normalized by the total impedance Z: . Show that the zero-sequence internal
load current V�

:
:= 1

31
T
�
�
:

equals the projection of the source current ��
9

onto D: .

Hence V�
:
= 0 if ��

9
is orthogonal to D: . In particular, if I�

:
= I01

:
I is balanced then

D: = 0 and V�
:
= 0 regardless of ��

9
.

If the shunt admittances
⇣
H
<

9:
, H<
: 9

⌘
are nonzero, then W 9 need not be specified and can

be derived; see Exercise 16.8.

Solution. We will derive the variables in the following order: ��
9
) (V�

9
, � 9 , �: ) )

(V�
:
, ��
:
,+�
:
). Then (��

9
,W 9 )) W: )+: )+ 9 )+

�
9
.

From �
�
9

we have, since shunt admittances H<
9:
= H<

: 9
= 0,

V
�
9
=

1
3

1
T
�
�
9
, � 9 = ��T

�
�
9
, �: = �� 9 = �T

�
�
9

Substituting the current conversion rule �: = ��T
�
�
:
, we have �T

�
�
:
= ��T

�
�
9
. Since the

right-hand size is orthogonal to 1, this equation has a subspace of solutions for ��
:
:

�
�
:

= ��T†�T
�
�
9
+ V�

:
1 = �(��

9
� V�

9
1) + V�

:
1 (16.21)

where V�
9

and V�
:

are the zero-sequence internal currents at the load and the generator

respectively, we have used �T†�T = I� 1
311

T from Theorem 14.2. This says that the
internal load current ��

:
depends only on the source current ��

9
net of its internal loop

flow V
�
9
1. To determine V�

:
, recall that the internal current ��

:
of an impedance must

satisfy 1
T
I
�
:
�
�
:
= 0. Then (16.21) implies �1

T
I
�
:
�
�
9
+

⇣
1

T
I
�
:
1

⌘
(V�
9
+ V�

:
) = 0, and hence

V
�
:
=
�
�T
9
Ĩ
�
:

Z:

� V�
9
, �

�
:

= ���
9
+
�
�T
9
Ĩ
�
:

Z:

1 (16.22a)

where Ĩ�
:

:= I�
:
1 is the load impedance in vector form and Z: := 1

T
I
�
:
1 is the total

impedance. The quantity �:
9

:= ��T
9
( Ĩ�
:
/Z: ) 2 C is the projection of the source current

�
�
9

onto the normalized load impedance vector Ĩ�
:
/Z: . Hence the loop flow V

�
:

in the

load is �:
9

net of the loop flow V
�
9

in the generator. Then

+
�
:

= I
�
:
�
�
:

= �I�
:
�
�
9
+ �:

9
Ĩ
�
:

(16.22b)
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An equivalent representation is

�
�
:

= ��:��9 , +
�
:

= �I�
:
�:�

�
9

(16.22c)

where �: :=
⇣
I� 1

Z:

1Ĩ
�T
:

⌘
. It can be checked that 1

T
+
�
:
= 0, as expected.

To determine W: := 1
31

T
+: , multiplying both sides of the network equation +: =

+ 9 � IB
9:
� 9 =+ 9 + IB

9:
�T
�
�
9

by 1
31

T we have

W: = W 9 +
1
3

1
T
I
B

9:
�T
�
�
9

(16.23)

Hence

+: =
1
3
�T
+
�
:
+W:1

where+�
:

and W: are given by (16.22b) and (16.23) respectively. Then+ 9 =+: + IB
9:
� 9 =

+: � IB
9:
�T
�
�
9

and +�
9
= �+ 9 = +�

:
�

⇣
�IB

9:
�T

⌘
�
�
9
. This completes the derivation of all

the variables.

As for Example 16.6, W: = W 9 if IB
9:

=: (I 9: � n 9: )I+ n 9:11
T because in that case,

1
T
I
B

9:
=

�
I 9: +2n 9:

�
1

T in (16.23).

Finally substitute V
�
9

:= 1
31

T
�
�
9

into (16.22a) to get V�
:

:= ��T
9
D: where D: :=

( Ĩ�
:
/Z: )�1/3 is the imbalance of the normalized impedance vector Ĩ: . Hence V�

:
=�V�

9

if and only if ��
9

is orthogonal to the impedance vector Ĩ�
:
, and V�

:
= 0 if and only if

�
�
9

is orthogonal to D: . If the impedance I�
:
= Z01

:
I then D: = 0 and hence V�

:
= 0. The

converse is not necessarily true, because e.g. when ��
9

:= 8 9U+ is balanced, for some

8 9 2 C, V�
9
= 0 but the loop flow V

�
:
= (8 9/Z: )

�
U

T
+ Ĩ
�
:

�
can be zero even if I�

:
< Z01

:
I. ⇤

Example 16.8 (Balanced system). Assume the system in Example 16.6 is a balanced
system, i.e., given

• The voltage source parameters
⇣
⇢
�
9
,W 9 , V�

9

⌘
with ⇢�

9
:= _ 9U+ where _ 9 2 C, U+ :=

(1,U,U2), and U := 4�i2c/3,
• The impedance I�

:
:= Z 0

:
I where Z 0

:
2 C.

• Line admittance IB
9:
= Z 9: I, i.e., the phases are decoupled.

1. Show that /Th = (Z 0
:
+3Z 9: )I� Z 9:11

T in (16.16) and /�1
Th = (1/0)

⇣
Z
0
:
I+ Z 9:11

T
⌘

where 0 := Z 0
:
(Z 0
:
+3Z 9: ). In particular, they are not diagonal.

2. Show that all variables
�
+ 9 ,+: , � 9 , �:

�
,
�
+
�
:

, ��
:

�
are balanced positive-sequence

sets, i.e., in span(U+), even though neither /Th nor /�1
Th is diagonal.

Solution. By definition

/Th := I
�
:
+�IB

9:
�T = (Z 0

:
+3Z 9: )I� Z 9:11

T



16.2 Unbalanced three-phase analysis 867

where we have used ��T = 3I� 11
T from Theorem 14.2. Apply the matrix inversion

formula (A.6) in Appendix A.3: given a scalar 2 2 C, vectors 1,3 2 C=, and the identity
matrix I= of size =, ⇣

I= + 123T
⌘�1

= I= � 1
⇣
2
�1 + 3T

1

⌘�1
3

T

we therefore have (with 2 := �Z 9:/(Z 0
:
+3Z 9: ), 1 = 3 = 1)

/
�1
Th =

1
Z
0
:
(Z 0
:
+3Z 9: )

⇣
Z
0
:
I+ Z 9:11

T
⌘

(16.24)

We now show that all voltages and currents are balanced positive-sequence sets,
i.e., in span(U+). Substituting ⇢�

9
= _ 9U+ and I�

:
= Z 0

:
I into results in Example 16.6

yields the internal variables at the load:

�
�
:

= /
�1
Th⇢

�
9
= (_ 9/0)

⇣
Z
0
:
I+ Z 9:11

T
⌘
U+ =

_ 9

Z
0
:
+3Z 9:

U+

+
�
:

= I
�
:
�
�
:

=
Z
0
:

Z
0
:
+3Z 9:

_ 9U+, V
�
:

:=
1
3

1
T
�
�
:

= 0

where we have used 1
T
U+ = 0. The expression for +�

:
is the voltage divider rule.

We now calculate the terminal variables (+: , �: ,W: ) at the load and
⇣
+ 9 , � 9 , ��

9

⌘
at

the generator. The key property that we will use is Corollary 1.3 which states that: For
any balanced positive-sequence vector G + 21 2 C3 with 2 2 C, we have

� (G + 21) = (1�U)G, �T (G + 21) = (1�U2)G

The terminal current of the impedance are

�: = ��T
�
�
:

= �
_ 9

Z
0
:
+3Z 9:

�T
U+ = �

(1�U2)_ 9
Z
0
:
+3Z 9:

U+

Using the external model of an ideal voltage source from Table 14.5 we have

+ 9 =
1
3
�T
⇢
�
9
+W 91 =

1
3
(1�U2)_ 9U+ +W 91

� 9 = ��: =
(1�U2)_ 9
Z
0
:
+3Z 9:

U+

Hence

+: = + 9 � IB
9:
� 9 =

(1�U2)Z 0
:

3
⇣
Z
0
:
+3Z 9:

⌘ _ 9U+ +W 91, W: =
1
3

1
T
+: = W 9

Finally

�
�
9
= �1

3
�� 9 + V�9 1 = �

(1�U) (1�U2)_ 9
3
⇣
Z
0
:
+3Z 9:

⌘ U+ + V�9 1

⇤



868 Bus injection models

Example 16.9 (With �� transformer). Consider the system in Example 16.6 but with
the voltage source and the impedance load connected by a�� transformer with singular
series admittance and nonzero shunt admittances (from (15.20c)):

H
B

9:
:= �T

0H
;�, H

<

9:
:= �T(I� 0)H;�, H

<

: 9
:= ��T

0 (I� 0) H;�

Derive ��
:

when ⇢�
9

and V�
:

:= 1
31

T
�
�
:

are given (together with I�
:
). If W 9 is also given,

then all other variables can be derived in terms of ��
:

and W 9 as in Example 16.6.

Solution. With a transformer instead of a transmission line, the current balance equation
(16.17) becomes

�: = (HB
9:
+ H<

: 9
)+: � HB

9:
+ 9 = �T

0
2
H
;�+: � �T

0H
;�+ 9

Substituting the conversion rule �+: =+�
:

, �+ 9 = ⇢�
9
, and �: = ��T

�
�
:
, we have

��T
�
�
:

= �T
0

2
H
;

+
�
:
� �T

0H
;

⇢
�
9

Substitute the internal model +�
:
= I�

:
�
�
:

of impedance to get

�T
⇣⇣
I+ 02

H
;

I
�
:

⌘
�
�
:
� 0H;⇢�

9

⌘
= 0

Since the null space of �T is span(1), we have⇣
I+ 02

H
;

I
�
:

⌘
�
�
:

= 0H
;

⇢
�
9
+ V0

:
1

for some V0
:
2 C. Assuming the diagonal matrix I+ 02

H
;
I
�
:

is nonsingular, we have

�
�
:

=
⇣
I+ 02

H
;

I
�
:

⌘�1 ⇣
0H
;

⇢
�
9
+ V0

:
1

⌘
=

2666664

[
0
b
0
⇢
01

9

[
1
b
1
⇢
12

9

[
2
b
2
⇢
20

9

3777775
+ V0

:

266664
b
0

b
1

b
2

377775
(16.25a)

where [
q := 0qH;q and b

q :=
⇣
1+ (0q)2

H
;q
I
qq
0

:

⌘�1
for q 2 {0,1,2} and qq

0 2
{01,12,20}. To derive V0

:
, substitute V�

:
:= 1

31
T
�
�
:

into (16.25a) and get

V
0
:
=

3V: �
Õ
q
[
q
b
q
⇢
qq
0

9Õ
q
b
q

(16.25b)

i.e., ��
:

is given by (16.25). ⇤

16.2.3 Examples: power sources

In this subsection we continue our study of the simple system in Chapter 16.2.2
consisting of a three-phase generator that supplies a three-phase impedance load I. /�

:

through a three-phase line (HB
9:

, H<
9:

, H<
: 9
), but the generator will be modeled as a power

source.
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A general solution strategy is as follows. First we relate internal voltages and
currents to power sources (f�

9
,W 9 ) to obtain a system of quadratic equations that can

be solved numerically (e.g. (16.29) in Example 16.10). Then all other voltages and
currents can be obtained analytically in terms of a solution of the quadratic equations.

Finally we derive internal and external power using B
. /�
9

:= diag
⇣
+
. /�
9

�
. /�H
9

⌘
and

B 9 := diag
⇣
+ 9 �

H
9

⌘
respectively. This solution strategy is illustrated in the next example,

and extended in Chapter 16.2.5 to general three-phase networks.

Example 16.10 (Power source in � configuration). Consider the system in Example
16.6, except that:

• Instead of a voltage source, the generator is an ideal three-phase power source

with given parameters
⇣
f
�
9
,W 9

⌘
.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
with nonzero H<

9:
and H<

: 9
are given. In particular

assumption C16.1 is satisfied.

Derive all remaining internal and external variables
⇣
+
�
8

, ��
8

, B�
8
, V�
9

⌘
and (+8 , �8 , B8 ,W: ),

8 = 9 , : .

Solution. The current balance equation � =.+ , the internal models of the power source
and impedance, and the conversion rules are:


� 9

�:

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

# 
+ 9

+:

�
(16.26a)

f
�
9
= diag

⇣
+
�
9
�
�H
9

⌘
, +

�
:

= I
�
:
�
�
:

(16.26b)

�+8 = +
�
8

, �8 = ��T
�
�
8

, 8 = 9 , : (16.26c)

Assuming the admittance matrix . is invertible (e.g., it satisfies the conditions in
Theorem 16.1 or 16.2), denote its inverse by

.
�1 :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#�1

=

I 9 9 I 9:

I: 9 I::

�

We can then relate the internal variables
�
+
�
8

, ��
8

�
, 8 = 9 , : , by eliminating the external

variables to get 
+
�
9

+
�
:

�
= �Diag (�,�)


I 9 9 I 9:

I: 9 I::

�
Diag

⇣
�T,�T

⌘ 
�
�
9

�
�
:

�
(16.27)

f
�
9
= diag

⇣
+
�
9
�
�H
9

⌘
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Eliminating +�
:

using +�
:
= I�

:
�
�
:

and re-arranging, we get


/ 9 9 / 9: I

/: 9 /:: + I�
:

0

� 2666664

�
�
9

�
�
:

+
�
9

3777775
=


0
0

�
(16.28a)

diag
⇣
+
�
9
�
�H
9

⌘
= f

�
9

(16.28b)

where / 9 9 := �I 9 9�T and so on. This is a system of 9 quadratic equations in 9 variables⇣
+
�
9
, ��
9
, ��
:

⌘
. It can be solved numerically. All other variables can then be derived

analytically in terms of a solution
⇣
+
�
9
, ��
9
, ��
:

⌘
of (16.28).

We can further reduce (16.28) by eliminating +�
9

and ��
:

to get a quadratic equation

in ��
9
:

diag
✓✓
�/ 9 9 + / 9:

⇣
/:: + I�:

⌘�1
/: 9

◆
�
�
9
�
�H
9

◆
= f

�
9

(16.29)

In summary we can first solve (16.29) numerically to obtain ��
9

and then derive all

other variables, or first solve (16.28) numerically to obtain
⇣
+
�
9
, ��
9
, ��
:

⌘
and then all

other variables. They are equivalent to solving the original system (16.26) numerically.

We now derive all other variables from �
�
9
, by tracing back the derivation of (16.29).

From (16.28a) we have

�
�
:

= �
⇣
/:: + I�:

⌘�1
/: 9 �

�
9
, +

�
9

=
✓
�/ 9 9 + / 9:

⇣
/:: + I�:

⌘�1
/: 9

◆
�
�
9

From (16.26b) we have

+
�
:

= I
�
:
�
�
:

= �I�
:

⇣
/:: + I�:

⌘�1
/: 9 �

�
9
,

The internal zero-sequence currents are given by

V
�
9
=

1
3

1
T
�
�
9
, V

�
:
=

1
3

1
T
�
�
:

This completes the derivation of internal voltages and currents, all in terms of ��
9
.

The terminal currents can be obtained from the conversion rule (16.26c):

� 9 = ��T
�
�
9
, �: = ��T

�
�
:

= �T
⇣
/:: + I�:

⌘�1
/: 9 �

�
9

Note that 1
T
+
�
9
= 1

T
+
�
:
= 0 from (16.27). Hence the conversion rule (16.26c) yields

(recall that W 9 is specified)

+ 9 =
1
3
�T
+
�
9
+W 91 (16.30a)
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Given the terminal voltage + 9 of the power source, (+: ,W: ) of the impedance can then
be determined through the network equation (16.26a):

+: =
⇣
H
B

9:
+ H<

: 9

⌘�1 ⇣
H
B

9:
+ 9 + �:

⌘
, W: =

1
3

1
T
+: (16.30b)

⇤

The derivation in Example 16.10 relies on the assumption that the admittance matrix
. in (16.26a) is invertible. If the shunt admittances H<

9:
= H<

: 9
= 0 then. has zero block

row sums (Definition 16.1), i.e.,
Õ
:
. 9: = 0 for all 9 . This implies that . has zero row

sums, i.e.,
Õ
:,q0.

qq
0

9:
= 0 for all 9q, and is therefore singular. In that case, additional

information needs to be specified to obtain a unique solution, as the next example
illustrates.

Example 16.11 (Power source). Repeat Example 16.10 but with the following changes:

• The given series admittance HB
9:

is nonsingular and shunt admittances H<
9:
= H<

: 9
=

0. In particular assumption C16.1 is satisfied.

• V�
9
+ V�

:
:= 1

31
T
⇣
�
�
9
+ ��

:

⌘
= V0 is given.

Solution. When H<
9:
= H<

: 9
= 0 the network equation (16.26a) reduces to

� 9 = ��: = H
B

9:

�
+ 9 �+:

�
(16.31)

Hence �T
⇣
�
�
9
+ ��

:

⌘
= 0 from (16.26c), implying that

�
�
9
+ ��

:
=

⇣
V
�
9
+ V�

:

⌘
1 = V

0
1 (16.32)

with V0 a given quantity. We will express +�
9

in terms of ��
9

in order to write f9 =

diag
⇣
+
�
9
�
�H
9

⌘
as a quadratic equation in ��

9
.

Multiplying both sides of (16.31) by IB
9:

:=
⇣
H
B

9:

⌘�1
and using the conversion rule

again (16.26b)(16.26c), we have

+
�
9

=
⇣
�IB

9:
�T + I�

:

⌘
�
�
:

= /
�
9:

⇣
���

9
+ V01

⌘
= �/�

9:
�
�
9
+ V0Ĩ�

:
(16.33)

where the second equality follows from (16.32), /�
9:

:= �IB
9:
�T + I�

:
, and Ĩ�

:
:= I�

:
1.

Hence we have

f
�
9
= diag

⇣
+
�
9
�
�H
9

⌘
= diag

⇣
�/�

9:
�
�
9
�
�H
9

+ V0Ĩ�
:
�
�H
9

⌘
(16.34)

This is a system of three quadratic equations in three variables ��
9
2 C3. Assume a

solution exists and can be obtained by solving (16.34) numerically.

Given a solution ��
9

of (16.34), all other variables can be derived analytically in terms
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of ��
9

by tracing back the derivation of (16.34), similar to the derivation in Example

16.10. Specifically we have � 9 = ��T
�
�
9

and V�
9

:= 1
31

T
�
�
9
. We obtain +�

9
from (16.33),

from which we have + 9 = 1
3�

T
+
�
9
+W 91. This computes all voltages and currents of the

power source 9 .

The network equation (16.31) then yields +: = + 9 � IB
9:
� 9 and hence also W: :=

1
31

T
+: . We also have �: = �� 9 = �T

�
�
9
, V�

:
= V0 � V�

9
, and hence ��

:
= � 1

3��: + V�:1 and

+
�
:
= I�

:
�
�
:
. This computes all voltages and currents of the impedance : . ⇤

The next example shows that if the power source and the impedance are balanced
and the line is decoupled and balanced, then all voltages, currents, and powers are gen-
eralized balanced vectors. This gives rise to a single-phase equivalent of the balanced
three-phase network, using properties of the Kronecker product from Lemma 14.3.

Example 16.12 (Balanced power source). Repeat Example 16.10 when the system is
balanced, i.e.,

• Power source
⇣
f
�
9
,W 9

⌘
with f

�
9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
, i.e., f�

9
is a

generalized balanced vector. Moreover its voltage and current
⇣
+
�
9
, ��
9

⌘
are also

generalized balanced vectors.
• Impedance I�

:
:= Z�

:
I.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,[<

9:
I,[<

: 9
I

⌘
with nonzero [B

9:
, [<

9:
and

[
<

: 9
.

Show that all internal and external variables
�
+
�
8

, ��
8

, B�
8
, V�
8

�
and (+8 , �8 , B8 ,W8), 8 = 9 , : ,

are generalized balanced vectors.

Solution. We will substitute the balanced system assumption into the solution of Ex-

ample 16.10. By assumption the source voltage and current
⇣
+
�
9
, ��
9

⌘
are generalized

balanced vectors. Let (recall that 1
T
+
�
9
= 0)

+
�
9

=: E�
9
U+, �

�
9
=: 8�

9
U+ + V�9 1 (16.35)

giving (noting diag
�
U+UH

+
�
= 1)

f
�
9
= diag

✓
E
�
9
U+

⇣
8
�
9
U+ + V�9 1

⌘H
◆
=

⇣
E
�
9
V̄
�
9

⌘
U+ +

⇣
E
�
9
8̄
�
9

⌘
1

where
⇣
E
�
9
, 8�
9
, V�
9

⌘
2 C3 are to be determined, and Ḡ denotes the complex conjugate of

any G 2 C. Therefore, since f�
9
= 0 9U+ + 1 91,

E
�
9
V̄
�
9
= 0 9 , E

�
9
8̄
�
9
= 1 9 (16.36)

which are two quadratic equations in unknowns
⇣
E
�
9
, 8�
9
, V�
9

⌘
2 C3. Note that V�

9
< 0 if
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and only if the given internal power f�
9

is di�erent in each phase (with di�erent phase
angles separated by 120�).

We will solve this problem by substituting the given balanced system parameters
into the solution of Example 16.10.

Specifically the admittance matrix is

. :=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

#
=

"
[
B

9:
+[<

9:
�[B

9:

�[B
9:

[
B

9:
+ H<

: 9

#

|                        {z                        }
.

1q

⌦I

where ⌦ denotes Kronecker product. Assuming the 2⇥ 2 admittance matrix .1q is

invertible with inverse
�
.

1q ��1 =:

Z 9 9 Z 9:

Z: 9 Z::

�
we have

.
�1 =

⇣
.

1q
⌘�1
⌦ I =:


Z 9 9 Z 9:

Z: 9 Z::

�
⌦ I

where the first equality follows from (�⌦ ⌫)�1 = ��1 ⌦ ⌫�1 from Lemma 14.3. Then
(16.27) becomes

+
�
9

+
�
:

�
= �Diag (�,�)

✓ 
Z 9 9 Z 9:

Z: 9 Z::

�
⌦ I

◆
Diag

⇣
�T,�T

⌘ 
�
�
9

�
�
:

�

= �

Z 9 9 Z 9:

Z: 9 Z::

�
⌦

⇣
��T

⌘ 
�
�
9

�
�
:

�

Then (16.28) becomes (16.36) together with


Z 9 9

�
��T�

Z 9:

�
��T�

I

Z: 9

�
��T�

Z::

�
��T� + Z�

:
I 0

� 2666664

8
�
9
U+ + V�

9
1

�
�
:

E
�
9
U+

3777775
=


0
0

�

where we have used (16.35). This is a system of 8 (redundant) quadratic equations that

can be solved numerically for the 6 unknowns
⇣
E
�
9
, 8�
9
, V�
9

⌘
2 C3 and ��

:
2 C3.

To evaluate (16.29) we have

�
�
9
�
�H
9

=
⇣
8
�
9
U+ + V�9 1

⌘ ⇣
8
�
9
U+ + V�9 1

⌘H
=

���8�
9

���2U+UH
+ + 8�9 V̄�9 U+1

T + 8̄�
9
V
�
9
1U

H
+ +

���V�
9

���2 11
T

and therefore ⇣
��T

⌘
�
�
9
�
�H
9

= 3
✓���8�
9

���2 U+UH
+ + 8�

9
V̄
�
9
U+1

T
◆

(16.37a)

where we have used ��T
U+ = 3U+ from Corollary 1.3 and �T

1 = 0. Furthermore

⇣
/:: + I�:

⌘�1
=

⇣
Z::

⇣
��T

⌘
+ Z�

:
I

⌘�1
=

1

3Z:: + Z�
:

 
I� Z::

Z
�
:

11
T

!
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where the last equality has used ��T = 3I� 11
T from Theorem 14.2 and the matrix

inversion formula (see Appendix A.3.2):

(I= +⌫⇡)�1 = �= �⌫ (I: +⇡⌫)�1
⇡

when ⌫,⇡T 2 C=⇥: and I=, I: denote identity matrices of sizes =, : respectively. Hence

/ 9:

⇣
/:: + I�:

⌘�1
/: 9 =

Z 9: Z: 9

3Z:: + Z�
:

⇣
��T

⌘  
I� Z::

Z
�
:

11
T

! ⇣
��T

⌘
=

3Z 9: Z: 9
3Z:: + Z�

:

��T

(16.37b)

Together with / 9 9 = Z 9 9��T, (16.37) implies that (16.29) is

f9 = 0 9U+ + 1 91 =

 
�Z 9 9 +

3Z 9: Z: 9
3Z:: + Z�

:

!
diag

⇣
��H

�
�
9
�
�H
9

⌘

= 3

 
�Z 9 9 +

3Z 9: Z: 9
3Z:: + Z�

:

!

|                     {z                     }
2

✓
8
�
9
V̄
�
9
U+ +

���8�
9

���2 1

◆

where we have used diag
�
U+UH

+
�
= 1. Hence

2 8
�
9
V̄
�
9
= 0 9 , 2

���8�
9

���2 = 1 9 (16.38)

which is a system of 2 quadratic equations in 2 unknowns (8�
9
, V�
9
). This yields the

magnitude of 8�
9
, |8�

9
|2 = 1 9/2, which implies that the specification cannot be arbitrary,

e.g., 1 9/2 must be real.

Suppose (16.38) can be solved for a solution of (8�
9
, V�
9
). All other variables such

as E�
9
2 C and ��

:
2 C3 can be obtained as in Example 16.10. Like the derivation of

(16.38), this process will also show that all variables are generalized balanced vectors
in positive-sequence sets. Typically, given a solution (8�

9
, V�
9
), all variables can be

determined uniquely up to a reference angle. ⇤

Example 16.12 shows that the given power f�
9

cannot be arbitrary but must be
consistent with other parameters of the network such as line and device impedances,
e.g., from (16.38), 1 9/2 must be real. This generalizes the single-phase case where a
power source B supplies an impedance load I with a current 8. Then B = I |8 |2 implying
that B/I is a read number. This is because \I = \B fixes the phase di�erence between
the voltage E and current 8 across the impedance.

Remark 16.4 (Nonuniqueness of specification). Device specification is not unique
and depends on the application under study. For Example 16.10, since both internal
voltages +�

9
and +�

:
are obtained in terms of ��

9
in (16.30), we can either specify W 9

for the power source and derive W: of the impedance through the network equation,
as done in Example 16.10, or alternatively, we can specify W: and determine W 9 from
the network equation instead. (See also Example 16.13 as well as Remark 16.6 on the
asymmetry in device specifications.) ⇤



16.2 Unbalanced three-phase analysis 875

The next example with two power sources further compares solution methods when
the same system is specified di�erently. The di�erence lies in whether, for each of the
two power sources, its zero-sequence terminal voltage W8 or zero-sequence internal
current V�

8
is specified.

Example 16.13 (Power sources). Consider the system in Figure 16.6 where both the

generator and load are power sources. Suppose the line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
are

specified with nonzero H<
9:

, H<
: 9

, as in Example 16.10.

1. Suppose the power sources are specified as
⇣
f
�
9
,W 9

⌘
and

�
f
�
:

,W:
�
. Determine all

variables
�
+
�
8

, ��
8

, V�
8

�
and (+8 , �8 , B8), 8 = 9 , : .

2. Suppose the power sources are specified as
⇣
f
�
9
, V�
9

⌘
and

�
f
�
:

, V�
:

�
. Determine all

variables
�
+
�
8

, ��
8

�
and (+8 , �8 , B8 ,W8), 8 = 9 , : .

3. Suppose the power sources are specified as
⇣
f
�
9
,W 9

⌘
and

�
f
�
:

, V�
:

�
. Determine all

variables
�
+
�
8

, ��
8

�
and (+8 , �8 , B8), 8 = 9 , : , and V�

9
,W: .

Solution. The solution for these problems boils down to a system of quadratic equations
that can be solved numerically. All other variables can then be derived analytically in
terms of a solution of the quadratic equations. For each of the two power sources, if
its zero-sequence terminal voltage W8 is specified, we will use the internal model for
the power source to obtain the system of quadratic equations in the internal currents
�
�
8

. Then the internal voltage +�
8

can be derived and, with the given W8 , the terminal
voltages +8 . If its zero-sequence current V�

8
is specified, on the other hand, we will

use an external model to obtain the quadratic equations in the terminal current �8 from
which, with the given V�

8
, the internal current ��

8
can then be derived. The network

equation is used to express +�
8

in terms of ��
8

in the first case and express +8 in terms
of �8 in the second case in the derivation of the system of quadratic equations.

1. The internal model of the power sources, the conversion rules, and the current
balance equation are

f
�
8
= diag

⇣
+
�
8
�
�H
8

⌘
, +

�
8

= �+8 , �8 = ��T
�
�
8

, 8 = 9 , : (16.39a)

� 9

�:

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
9:

H
B

9:
+ H<

: 9

# 
+ 9

+:

�
(16.39b)

Assume the admittance matrix. in (16.39b) is invertible and let.�1 =:

I 9 9 I 9:

I: 9 I::

�
.
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Then substituting the conversion rules into the network equation (16.39b) yields
+
�
9

+
�
:

�
= �Diag (�,�)


I 9 9 I 9:

I: 9 I::

�
Diag

⇣
�T,�T

⌘
|                                          {z                                          }

/ :=
266664
/ 9 9 / 9:

/: 9 /::

377775


�
�
9

�
�
:

�
(16.40)

Substituting +�
9

and +�
:

into the internal power source models in (16.39a) yields

f
�
9
= �diag

⇣⇣
/ 9 9 �

�
9
+ / 9: ��:

⌘
�
�H
9

⌘
(16.41a)

f
�
:

= �diag
⇣⇣
/: 9 �

�
9
+ /:: ��:

⌘
�
�H
:

⌘
(16.41b)

This is a system of 6 quadratic equations in 6 unknowns
⇣
�
�
9
, ��
:

⌘
2 C6.

Suppose (16.41) can be solved numerically for a solution
⇣
�
�
9
, ��
:

⌘
. All other

variables can then be derived in terms of
⇣
�
�
9
, ��
:

⌘
. Specifically, the internal voltages

can be obtained from the internal power source model (16.39a) (or equivalently
from (16.40)),+�

8
=

�
diag

�
�
�H
8

� ��1
f
�
8

, 8 = 1,2. Using W8 , the terminal voltages are
determined by the conversion rule, +8 = 1

3 �
T
+
�
8
+ W81, 8 = 1,2. In terms of ��

8
we

have V�
8

:= 1
31

T
�
�
8

and �8 = ��T
�
�
8

, 8 = 9 , : . The terminal power is B8 := diag
�
+8 �

H
8

�
,

8 = 9 , : .
2. When

�
W 9 ,W:

�
are given as in part 1, we set up equation (16.41) to solve numerically

for
⇣
�
�
9
, ��
:

⌘
, so that +�

8
and then +8 can be derived for 8 = 9 , : . When

⇣
V
�
9
, V�
:

⌘
are given instead, we will use the external model (14.33a) of a power source,
reproduced here:

f
�
8

= �1
3

diag
⇣
�

⇣
+8 �

H
8

⌘
�T

⌘
+ V̄�

8
�+8 , 1

T
�8 = 0, 8 = 9 , :

and the network equation to obtain a system of quadratic equations in terminal cur-
rents (� 9 , �: ). Specifically, instead of (16.40), we have from the network equation
(16.39b), 

+ 9

+:

�
=


I 9 9 I 9:

I: 9 I::

� 
� 9

�:

�

Substituting into the external models of the power sources we have

f
�
9
= �1

3
diag

⇣
�

�
I 9 9 � 9 + I 9: �:

�
�

H
9
�T

⌘
+ V̄�

9
�

�
I 9 9 � 9 + I 9: �:

�
, 1

T
� 9 = 0

f
�
:

= �1
3

diag
⇣
�

�
I: 9 � 9 + I:: �:

�
�

H
:
�T

⌘
+ V̄�

:
�

�
I: 9 � 9 + I:: �:

�
, 1

T
�: = 0

This is a system of 8 (redundant) quadratic equations that can be solved numerically
for

�
� 9 , �:

�
2 C6. Given a solution

�
� 9 , �:

�
, the internal currents can be determined

from the conversion rule and the given
⇣
V
�
9
, V�
:

⌘
as ��

8
= � 1

3��8 + V�8 1, 8 = 9 , : . The
remaining variables can then be derived as in part 1.
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3. This combines the solution approaches of parts 1 and 2. Specifically we use the
internal model for power source 9 and the external model for ::

f
�
9
= diag

⇣
+
�
9
�
�H
9

⌘
, +

�
9

= �+ 9 , � 9 = ��T
�
�
9

(16.42a)

f
�
:

= �1
3

diag
⇣
�

⇣
+: �

H
:

⌘
�T

⌘
+ V̄�

:
�+: , 1

T
�: = 0 (16.42b)

From the network equation (16.39b) we have
+
�
9

+:

�
= Diag (�, I)


I 9 9 I 9:

I: 9 I::

�
Diag

⇣
��T, I

⌘ 
�
�
9

�:

�
=


��I 9 9�T �I 9:
�I: 9�T

I::

� 
�
�
9

�:

�

Substituting +�
9

and +: into the internal power source models in (16.42) yelds

f
�
9
= diag

⇣⇣
��I 9 9�T

�
�
9
+�I 9: �:

⌘
�
�H
9

⌘

f
�
:
= �1

3
diag

⇣
�

⇣
�I: 9�T

�
�
9
+ I:: �:

⌘
�

H
:
�T

⌘
+ V̄�

:
�
⇣
�I: 9�T

�
�
9
+ I:: �:

⌘
, 1

T
�: = 0

This is a system of 7 (redundant) quadratic equations that can be solved numerically

for
⇣
�
�
9
, �:

⌘
2 C6. All other variables can then be derived analytically in terms of

a solution
⇣
�
�
9
, �:

⌘
as done in parts 1 and 2. ⇤

16.2.4 General analysis problem

We now explain how to formulate a general three-phase analysis problem. Consider
a three-phase network ⌧ := (# ,⇢) where each line ( 9 , :) 2 ⇢ is characterized by

3⇥ 3 series and shunt admittance matrices
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
. At each bus

9 2 # we assume, without loss of generality, there is a single three-wire device in
either . or � configuration. Associated with each device 9 are its internal variables⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V�
9

⌘
2 C10 (or in C9 for . -configured devices 9 without V�

9
) and

terminal variables
�
+ 9 , � 9 , B 9 ,W 9

�
2 C10 (recall that W 9 is the neutral voltage for a . -

configured device and the zero-sequence voltage for a �-configured device). Some
of these variables will be specified in the problem under study. The others are to be
computed from network equations, device models and the conversion rules.

We start by describing which of these variables are specified for each type of devices
in order for an analysis problem to be solvable, using the internal and external device
models in Tables 14.4 and 14.5. It is important to keep in mind that device specification
is not unique and depends on the details of an application, as discussed in Remark 16.4
and illustrated in Example 16.13. Our formulation here is only an illustration on how
the models and concepts and structural properties that we have studied earlier can be
used for analysis.

The principle of analysis described here, however, is widely applicable and can be
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applied to other formulations. For instance, we formulate our analysis problem in a
three-wire model. If the neutrals of two . -configured devices are not grounded and
are connected to each other through a four-wire line, then a four-wire model needs
to be used; see Example 16.5 and Exercise 16.7. In that case the neutral voltages of
these devices may not be arbitrarily specified but must be determined through network
equations and device models, even for a voltage source, unlike the formulation here.

Partition # into 8 disjoint subsets:

• #. /�
E

: buses with ideal voltage sources in. or� configurations. Let #E := #.
E
[#�

E
.

• #. /�
2

: buses with ideal current sources in. or� configurations. Let #2 := #.
2
[#�

2
.

• #. /�
8

: buses with impedances in . or � configurations. Let #8 := #.
8
[#�

8
.

• #. /�
?

: buses with ideal power sources in. or � configurations. Let #? := #.
?
[#�

?
.

with # = #E [#2 [#8 [#? . These devices are specified as follows.

1. Voltage source
⇣
⇢
.

9
,W 9

⌘
or

⇣
⇢
�
9
,W 9 , V�

9

⌘
: It is specified by its internal voltage

⇢
. /�
9

and a parameter W 9 where W 9 :=+=
9

is the neutral voltage for . configuration

and W 9 := 1
31

T
+ 9 is the zero-sequence terminal voltage for � configuration. For

� configuration, ⇢�
9

should satisfy 1
T
⇢
�
9
= 0. The zero-sequence internal current

V
�
9

:= 1
31

T
�
�
9

also needs to be specified in order to determine ��
9

from the terminal
current � 9 .

2. Current source
⇣
�
.

9
,W 9

⌘
or ��

9
: It is specified by its internal current �. /�

9
. For

a . -configured current source, its neutral voltage W 9 is also specified. For a �-
configured current source, the zero-sequence voltage W8 can either be arbitrary and
therefore must be specified, or is determined by network equations and cannot be
arbitrarily specified; compare Example 16.7 and Exercise 16.8.

3. Power source
�
f
. ,W 9

�
or

�
f
�,W 9

�
: It is specified by its internal power and voltage�

f
. /�,W 9

�
. See Example 16.13 for other power source specifications and their

solution methods.
4. Impedance

�
I
. ,W 9

�
or I�: A . -configured impedance 9 is specified by its internal

impedance I.
9

and the neutral voltage W 9 . A �-configured impedance 9 is specified

by I�
9
. Its zero-sequence voltage and current

⇣
W 9 , V�

9

⌘
can generally be derived

from network equations as we will see in Chapter 16.2.5.

A three-phase analysis problem is: given devices specified as above connected by

lines with given admittance matrices
⇣
H
B

9:
, H<
9:

⌘
,
⇣
H
B

: 9
, H<
: 9

⌘
, determine some or all of

the internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V�
9

⌘
and terminal variables

�
+ 9 , � 9 , B 9 ,W 9

�
at

every bus 9 . This is summarized in Table 16.1. Note that the analysis problem does not
assume C16.1 and therefore each line ( 9 , :) may model a transmission or distribution
line, or a three-phase transformer where its series admittance matrices HB

9:
and HB

: 9

may be di�erent.
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buses 9 specification int. vars. term. vars

#
.

E
+
.

9
:= ⇢.

9
, W 9

⇣
�
.

9
, B.
9

⌘ �
+ 9 , � 9 , B 9

�
#
�
E

+
�
9

:= ⇢�
9
, W 9 , V�

9
,

⇣
�
�
9
, B�
9

⌘ �
+ 9 , � 9 , B 9

�
#
.

2
�
.

9
:= �.

9
,W 9

⇣
+
.

9
, B�
9

⌘ �
+ 9 , � 9 , B 9

�
#
�
2

�
�
9

:= ��
9

⇣
+
�
9

, B�
9
, V�
9

⌘ �
+ 9 , � 9 , B 9 ,W 9

�
#
.

8
I
.

9
, W 9

⇣
+
.

9
, �.
9

, B.
9

⌘ �
+ 9 , � 9 , B 9

�
#
�
8

I
�
9

⇣
+
�
9

, ��
9
, B�
9
, V�
9

⌘ �
+ 9 , � 9 , B 9 ,W 9

�

#
.

?
f
.

9
, W 9

⇣
+
.

9
, �.
9

⌘ �
+ 9 , � 9 , B 9

�
#
�
?

f
�
9
, W 9

⇣
+
�
9

, ��
9
, V�
9

⌘ �
+ 9 , � 9 , B 9

�

Table 16.1 Three-phase analysis problem: given a specification, compute the remaining internal
and terminal variables.

We make a few remarks on the voltage W 9 . See Example 16.7 on how the loop flow
V
�
:

of an impedance : may depend on V�
9

of a current source 9 .

Remark 16.5 (Voltage W 9 ). 1. . configuration. The voltage parameter W 9 needs to be
specified for every. -configured device in our formulation here. It may be specified
explicitly, or more likely, indirectly. By that, we mean information additional to
generic device models is available to either compute their values, provide additional
equations, or eliminate them in terms of other variables. For instance if the neutral
of a . -configured device is grounded and all voltages are defined with respect to

the ground, then W 9 = +=
9
= �I=

9

⇣
1

T
� 9

⌘
, which allows the elimination of W 9 from

the model. If the neutral is grounded directly (i.e., I=
9
= 0), then W 9 = 0. If the

neutral is not grounded but the internal voltage +.
9

is known to satisfy 1
T
+
.

9
= 0

(e.g. a balanced source), then W 9 = 1
31

T
+ 9 is the zero-sequence terminal voltage.

This is studied in detail in Examples 16.3 and 16.4 for a three-wire line model.
For a . -configured current source, W 9 is usually not needed to determine its

terminal voltage + 9 (which will be determined by the network equation), but
needed to compute its internal voltage +.

9
=+ 9 �W 91.

Example 16.5 and Exercise 16.7 consider a four-wire line model where the
neutrals of the voltage source and the impedance are connected to each other. Here
the (internal) neutral voltages

�
W 9 ,W:

�
of neither device can be arbitrarily specified

but must be determined through the network equation and device models.
2. � configuration. For a �-configured voltage source, the zero-sequence voltage
W 9 := 1

31
T
+ 9 needs to be specified, e.g., by specifying one of its terminal voltages,

say, +0
9
. For a �-configured current source or impedance, W 9 can be determined

once its terminal voltage + 9 is determined from the network equation. For a �-
configured power source, either W 9 or V�

9
can be specified; see Example 16.13.

3. Neutral voltage W 9 and zero-sequence voltage. For any . -configured device, we
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have

+ 9 = +
.

9
+ +=

9
1

The parameter W 9 :=+=
9

may or may not equal the zero-sequence terminal voltage
1
31

T
+ 9 . They are equal if and only if the internal voltages have no zero-sequence

component since 1
31

T
+ 9 = 1

31
T
+
.

9
++=

9
. ⇤

Remark 16.6 (Asymmetry in � specification). As summarized in Table 16.1, in our

formulation, for � configuration, a voltage source needs to specify both
⇣
W 9 , V�

9

⌘
, but a

power source only needs to specify its W 9 , and a current source or impedance needs to
specify none. This asymmetry is because internal currents ��

9
contain more information

(they fix V�
9
) than internal voltages+�

9
(they do not fix W 9 ). The device specification and

the network equation determine
⇣
⇢
�
9
, � 9

⌘
for voltage sources, which contains neither

W 9 nor V�
9
. These quantities therefore need to be specified. The device specification

and the network equation, on the other hand, determine
⇣
�
�
9
,+ 9

⌘
for current sources,

which contains both V�
9

and W 9 . For impedances, as we will see in Chapter 16.2.5, the

network equation will determine their internal currents ��
9

which contain V�
9
. When the

terminal voltages of all sources, including power sources, are specified or obtained,
the terminal voltages + 9 of impedances can be determined by the network equation.

Therefore both
⇣
W 9 , V�

9

⌘
are determined by the network equation in that case. ⇤

16.2.5 Solution strategy

The solution strategy for the problem formulated in Chapter 16.2.4 consists of three
steps:

1. Write down a network equation that relates the terminal variables (+ , �, B), either
the current balance equation (16.5)(16.6) � =.+ or the power flow equation (16.7).
We can always use the linear equation � = .+ because dividing componentwise
both sides of (16.7) by + 9 and taking complex conjugate yields � = .+ .

2. Write down the device models of the given collection of sources and impedances,
either their internal models and conversion rules, or their external models.

3. Numerically solve this system of equations for desired variables.

Step 1 specifies, for the entire network, an equation that relates all the terminal vari-
ables. For examples, see (16.43) and (16.45) for analysis problems without and with
power sources respectively. Step 2 specifies, for each device, equations relating its
terminal variables to its internal variables or specified parameters. For examples, see
(16.44d)(16.44d) and (16.46a) respectively.

In the rest of this subsection we first describe in detail Steps 1 and 2 above to obtain
a system of equations that can be solved numerically. We will use the current balance
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equation � = +. as our network equation. We first derive the solution for the case
without power sources. We then show how to extend the solution to incorporate power
sources simply by adding their device models to the system of equations. We will focus
on determining terminal and internal voltages and currents. Once they are determined,

internal and terminal powers can be calculated using B. /�
9

:= diag
⇣
+
. /�
9

�
. /�H
9

⌘
and

B 9 := diag
⇣
+ 9 �

H
9

⌘
respectively.

Without power sources. Recall that #E := #.
E
[+�

E
, #2 := #.

2
[+�

2
, and #8 :=

#
.

8
[+�

8
are the set of buses with, respectively, voltage sources, current sources, and

impedances. With a slight abuse of notation define the following (column) vectors of
terminal voltages and currents:

(+E , �E ) :=
�
+ 9 , � 9 , 9 2 #E

�
, (+2 , �2) :=

�
+ 9 , � 9 , 9 2 #2

�
, (+8 , �8) :=

�
+ 9 , � 9 , 9 2 #8

�
Some of them will be specified and the remaining voltages and currents will be
determined from the network equation and device models. Step 1 of the solution
strategy is to write the network equation � = .+ :

266664
�E

�2

�8

377775
=

266664
.EE .E2 .E8

.2E .22 .28

.8E .82 .88

377775|                {z                }
.

266664
+E

+2

+8

377775
(16.43)

where the admittance matrix . is defined in (16.6).

Step 2 is to describe the device models. The specifications for voltage sources,
current sources and impedances are, from Table 16.1:⇣

⇢
. /�
E

,W. /�
E

, V�
E

⌘
:=

⇣
⇢
. /�
9

, W 9 , 9 2 #. /�E
; V�

9
, 9 2 #�

E

⌘
⇣
�
. /�
2

,W.
2

⌘
:=

⇣
�
. /�
9

, 9 2 #. /�
2

; W 9 , 9 2 #.2
⌘

⇣
/
. /�
8

,W.
8

⌘
:=

⇣
Diag

⇣
I
�
9
, 9 2 #. /�

8

⌘
; W 9 , 9 2 #.8

⌘
To unify notation we define the following matrices

�. †
E

:= I.
E
⌦ I, ��†

E
:= I�

E
⌦�†, �†

E
:= Diag

⇣
�. †
E

,��†
E

⌘

�.
2

:= I.
2
⌦ I, ��

2
:= I�

2
⌦�, �2 := Diag

⇣
�.
2

,��
2

⌘

�.
8

:= I.
8
⌦ I, ��

8
:= I�

8
⌦�, �8 := Diag

⇣
�.
8

,��
8

⌘

where I denotes the identity matrix of size 3, I.
E
, I.
2

, I.
8

denote the identity matrices of
sizes |#.

E
|, |#.

2
|, |#.

8
| respectively and I�

E
, I�
2
, I�
8

denote the identity matrices of sizes
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|#�
E
|, |#�

2
|, |#�

8
| respectively. Define vectors of specification

⇢E :=

⇢
.

E

⇢
�
E

�
, �2 :=


�
.

2

�
�
2

�
, /8 := Diag

⇣
/
.

8
,/�
8

⌘
(16.44a)

WE :=

W
.

E

W
�
E

�
, W2 :=


W
.

2

0

�
, W8 :=


W
.

8

0

�
(16.44b)

so that WE 2 C |#E | , W2 2 C |#2 | and W8 2 C |#8 | . Then the terminal voltage and current
+E and �2 in (16.43) are given by

+E :=

⇢
.

E
+W.

E
⌦ 1

��†
E
⇢
�
E
+W�

E
⌦ 1

�
= �†

E
⇢E + WE ⌦ 1 (16.44c)

�2 := �

�
.

2

��T
2
�
�
2

�
= ��T

2
�2 (16.44d)

Define the following notations for internal variables of impedances:

�
.

8
:=

⇣
�
.

9
, 9 2 #.

8

⌘
, �

�
8

:=
⇣
�
�
9
, 9 2 #�

8

⌘
, �

int
8

:=

�
.

8

�
�
8

�

+
.

8
:=

⇣
+
.

9
, 9 2 #.

8

⌘
, +

�
8

:=
⇣
+
�
9
, 9 2 #�

8

⌘
, +

int
8

:=

+
.

8

+
�
8

�

The internal model of the impedances in . and � configurations is then

+
int
8

= /8 �
int
8

(16.44e)

where /8 is defined in (16.44a). The conversion rule for (�8 ,+8) is:

�8 =

��.
8

���T
8
�
�
8

�
= ��T

8
�
int
8

, �8+8 =

+
.

8
+W.

8
⌦ 1

+
�
8

�
= +

int
8

+W8 ⌦ 1 (16.44f)

The analysis problem is: Solve the network equation (16.43) and the device models
(16.44) for the unknown external and internal variables. This can be done by numer-
ically solving the system of equations (16.43)(16.44). Note that the analysis problem
defined by (16.43)(16.44) does not assume C16.1 and therefore each line ( 9 , :) may
model a transmission or distribution line, or a three-phase transformer where its series
admittance matrices HB

9:
and HB

: 9
may be di�erent.

Exercise 16.12 explains how to reduce (16.43)(16.44) to a smaller system of linear
equations in (+2 , � int

8
), which can then be solved numerically. All other variables can be

derived analytically in terms of a solution (+2 , � int
8
). This is motivated by the examples

in Chapter 16.2.2.

With power sources. Analysis problems with power sources can be solved follow-
ing the same procedure, but with the addition of device models of power sources.
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Specifically the current balance equation (16.43) is extended to

26666664

�E

�2

�8

�?

37777775
=

26666664

.EE .E2 .E8 .E ?

.2E .22 .28 +2?

.8E .82 .88 .8 ?

.?E .?2 .?8 .??

37777775|                          {z                          }
.

26666664

+E

+2

+8

+?

37777775
(16.45)

where
�
+? , �?

�
:=

�
+ 9 , � 9 , 9 2 #?

�
, with #? := #.

?
[#�

?
, are the terminal voltages and

currents of power sources.

The device model (16.44) also needs to be extended to include power sources. For

a . -configured power source,
⇣
B
.

9
:= f.

9
,W 9 :=+=

9

⌘
are specified. For a �-configured

power source, we assume that
⇣
B
�
9

:= f�
9
,W 9 := 1

31
T
+ 9

⌘
are specified. Let f? :=


f
.

?

f
�
?

�
.

Then the internal models of the power sources in . and � configurations are

f
.

?
=

⇣
diag

⇣
+
.

9
�
.H
9

⌘
, 9 2 #.

?

⌘
, f

�
?

:=
⇣
diag

⇣
+
�
9
�
�H
9

⌘
, 9 2 #�

?

⌘
To simplify notation define the internal currents and voltages for all power sources:

�
.

?
:=

⇣
�
.

9
, 9 2 #.

?

⌘
, �

�
?

:=
⇣
�
�
9
, 9 2 #�

?

⌘
, �

int
?

:=

�
.

?

�
�
?

�

+
.

?
:=

⇣
+
.

9
, 9 2 #.

?

⌘
, +

�
?

:=
⇣
+
�
9
, 9 2 #�

?

⌘
, +

int
?

:=

+
.

?

+
�
?

�

Then the internal models of the power sources can be written as

f? = diag
⇣
+

int
?
�
intH
?

⌘
(16.46a)

This is a quadratic equation in internal voltage and current
⇣
+

int
?

, � int
?

⌘
. Define

��
?

:= I�
?
⌦�, �? := Diag

⇣
I
.

?
,��
?

⌘
, W? :=


W
.

?

0

�

where I�
?

denotes the identity matrix of size |#�
?
|, I.

?
the identity matrices of size

3|#.
?
|, and W.

?
:=

⇣
W 9 :=+=

9
, 9 2 #.

?

⌘
are neutral voltages of all . -configured power

sources 9 . The current and voltage conversion rule is (similar to (16.44f))

�? = ��? � int
?

, �?+? = +
int
?

+W? ⌦ 1 (16.46b)

The analysis problem can be stated as: Solve the network equation (16.45) and the
device models (16.44) (16.46) for the unknown external and internal variables. This
system of equations (16.45)(16.44)(16.46) can be solved numerically.

Exercise 16.13 explains how to reduce (16.45)(16.44)(16.46) to a smaller system of
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nonlinear equations in
⇣
+2 , � int

8
,+ int
?

, � int
?

⌘
, which can then be solved numerically. All

other variables can be derived analytically in terms of a solution
⇣
+2 , � int

8
,+ int
?

, � int
?

⌘
.

This is motivated by the examples in Chapter 16.2.3.

16.2.6 Balanced network

In this subsection we show that, if the voltage sources, current sources, and impedances
are generalized balanced vectors and the lines are decoupled, then the analysis problem
formulated in Chapter 16.2.4 can be solved by analyzing a certain simpler per-phase
network. The intuition is that the balanced voltage and current sources render all
voltages and currents in the network to be balanced due to Corollary 1.3. To simplify
exposition we only consider the case without power sources so that our problem remains
linear.

We first explain how the device models and the admittance matrix simplify in a
balanced system. We then use that to simplify the three-phase problem in Chapter
16.2.4. Finally, by substituting the result into the analysis in Chapter 16.2.5, we show
that the problem is equivalent to solving a per-phase system.

Balanced devices. When the devices are balanced positive-sequence sets with pa-
rameters _ 9 ,` 9 , Z 9 2 C:

⇢
. /�
9

:= _ 9U+, 9 2 #E , �
. /�
9

:= ` 9U+, 9 2 #2 , I
. /�
9

:= Z 9 I, 9 2 #8
their internal models in Table 16.1 reduce to those specified in Table 16.2. In vector
form the voltage sources are

⇢
.

E
= _

.

E
⌦U+, ⇢

�
E

= _
�
E
⌦U+, ⇢E :=


⇢
.

E

⇢
�
E

�
= _E ⌦U+

where _.
E

:=
�
_ 9 , 9 2 #.E

�
, _�
E

:=
�
_ 9 , 9 2 #�E

�
and _E :=

�
_ 9 , 9 2 #E

�
. Defining similar

quantities for current sources and impedances, the specification (16.44a)(16.44b) in
vector form reduces to

⇢E :=

_
.

E

_
�
E

�
⌦U+ = _E ⌦U+, WE :=


W
.

E

W
�
E

�
(16.47a)

�2 :=

`
.

2

`
�
2

�
⌦U+ = `2 ⌦U+, W

0
2

:=

W
.

2

0

�
(16.47b)

/8 := Diag
⇣
Z
.

8
, Z�
8

⌘
⌦ I = Z8 ⌦ I, W

0
8

:=

W
.

8

0

�
(16.47c)

where Z.
8

:= Diag
�
Z 9 , 9 2 #.

8

�
, Z�
8

:= Diag
�
Z 9 , 9 2 #�

8

�
, Z8 := Diag

�
Z
.

8
, Z�
8

�
are diago-

nal matrices of sizes
��
+
.

8

��, ��+�
8

��, |+8 | respectively.

The external models in Table 16.2 are obtained by substituting these specifications
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into the external models in Tables 14.4 and 14.5 and applying Corollary 1.3 and
Theorem 14.2, specifically

�U+ = (1�U)U+, �T
U+ =

⇣
1�U2

⌘
U+, �† =

1
3
�T, �T† =

1
3
�

The internal variables are obtained from terminal variables through conversion rules
(14.10) and (14.11). The derivation of the impedance model in Table 16.2 in � config-
uration is in Exercise 14.11. These models are special cases of the three-phase devices

buses 9 specification external model term. vars int. vars

#
.

E
⇢
.

9
= _ 9U+, W 9 + 9 = _ 9U+ +W 91 � 9 �

.

9
= �� 9

#
�
E

⇢
�
9
= _ 9U+, W 9 , V�

9
+ 9 = 1

3 (1�U2)_ 9U+ +W 91 � 9 �
�
9
= ��T†

� 9 + V�
9
1

1
T
� 9 = 0

#
.

2
�
.

9
= ` 9U+,W 9 � 9 = �` 9U+ + 9 +

.

9
= + 9 �W 91

#
�
2

�
�
9
= ` 9U+ � 9 = �(1�U2)` 9U+ + 9 +

�
9

= �+ 9 , W 9 := 1
3 1

T
+ 9

V
�
9

:= 1
3 1

T
�
�
9

#
.

8
I
.

9
= Z 9 I, W 9 � 9 = �[ 9

�
+ 9 �W 91

� �
+ 9 , � 9

�
+
.

9
= + 9 �W 91, �.

9
= �� 9

#
�
8

I
�
9
= Z 9 I, V�

9
� 9 = �3[ 9

�
+ 9 � W 91

� �
+ 9 , � 9

�
+
�
9

= �+ 9 , W 9 := 1
3 1

T
+ 9

�
�
9
= ��T†

� 9 + V�
9
1

Table 16.2 Internal and external models of balanced positive-sequence sources and
impedances with [ 9 := Z�1

9
.

in Chapters 14.3.2 and 14.3.3. To simplify the notation for the external models of
voltage and current sources, define

Û 9 :=

8>>>><
>>>>:

1 if 9 2 #.
E
[#.

2
[#.

8

(1�U2)/3 if 9 2 #�
E

(voltage sources)
(1�U2) if 9 2 #�

2
(current sources)

3 if 9 2 #�
8

(admittance)
Then when the voltage and current sources are balanced, their external models
(16.44c)(16.44d) reduce to:

+E =
�
Û 9_ 9U+ +W 91, 9 2 #E

�
=: _̂E ⌦U+ + WE ⌦ 1 (16.47d)

�2 =
�
�Û 9` 9U+, 9 2 #2

�
=: � ˆ̀2 ⌦U+ (16.47e)

where _̂E ,WE 2 C |#E | and ˆ̀2 2 C |#2 | .

Remark 16.7 (�-. transformation). The specification (16.47d)(16.47e) corresponds
to the first step of per-phase analysis in Chapter 1.2.5 that converts all � configured
devices to their . equivalents that have the same external behavior. It generalizes
the standard practice of assuming W 9 = 0 to the case where W 9 may be nonzero,
because some . -configured devices on the network may not be grounded, some may
be grounded through nonzero earthing impedances, and some �-configured devices
have nonzero zero-sequence voltages. ⇤



886 Bus injection models

The internal models of impedances (16.44e) and the conversion rules (16.44f)
become

+
int
8

= /8 �
int
8

= (Z8 ⌦ I) � int
8

(16.47f)

�8 =


��.
8

�
�
I
�
8
⌦��T

8

�
�
�
8

�
= ��T

8
�
int
8

(16.47g)

�8+8 =

+
.

8
+W.

8
⌦ 1

+
�
8

�
= +

int
8

+W0
8
⌦ 1 (16.47h)

where /8 , Z8 ,W0
8

are defined in (16.47c), I.
8

, I�
8

are the identity matrices of sizes
��
+
.

8

�� , ��+�
8

��
respectively, and (16.47g) uses the property �T ⌦ ⌫T = (�⌦ ⌫)T from Lemma 14.3 in
Chapter 14.2.3.

Balanced admittance matrix . . We assume all lines are balanced, i.e.,

H
B

9:
= [

B

9:
I, H

<

9:
= [

<

9:
I, H

<

: 9
= [

<

: 9
I (16.48a)

for some constants [B
9:

,[<
9:

,[<
: 9
2C. In particular the phases are decoupled. The relation

(16.5) between terminal voltages + := (+0, . . . ,+# ) and currents � := (�0, . . . , �# ) then
reduces to

� 9 =
’
:: 9⇠:

⇣
H
B

9:
+ H<

9:

⌘
+ 9 �

’
:: 9⇠:

H
B

9:
+: =

’
:: 9⇠:

[ 9:+ 9 �
’
:: 9⇠:

[
B

9:
+: (16.48b)

where [ 9: := [B
9:
+ [<

9:
and + 9 , � 9 2 C3. This in vector form is � = .+ . The balanced

lines in (16.48a) allow us to write the admittance matrix. using the Kronecker product.
This is the key mathematical structure, in addition to the conversion matrices �,�T

as described in Corollary 1.3, that underlies the balanced property of all voltages and
currents in the network.

Specifically, define the (# +1)⇥ (# +1) per-phase admittance matrix .1q by

.
1q
9:

:=

8>>><
>>>:

�[B
9:

, 9 ⇠ : 2 ⇢Õ
:: 9⇠:

⇣
[
B

9:
+ [<

9:

⌘
, 9 = :

0 otherwise

(16.49a)

This is the bus admittance matrix studied in Chapter 4.3.1 for the per-phase circuit of a
balanced three-phase network where each line is characterized by four complex scalars⇣
[
B

9:
,[<
9:

⌘
,
⇣
[
B

: 9
,[<
: 9

⌘
. In particular . does not assume C16.1 and hence .1q may not

satisfy C4.1. Therefore each line ( 9 , :) may model a transmission or distribution line,
or a three-phase transformer where its series admittance matrices HB

9:
and HB

: 9
may be

di�erent.

Substituting (16.48a) into the admittance matrix . in (16.6) for the three-phase
network, we can write . in terms of the per-phase admittance matrix .1q using the
Kronecker product:

. = .
1q ⌦ I (16.49b)
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The relation � = .+ for the three-phase network becomes

� =
⇣
.

1q ⌦ I
⌘
+ (16.49c)

Per-phase analysis. We are interested in determining the terminal and internal
voltages:

+�E := (+2 ,+8) :=
�
+ 9 , 9 2 #2 [#8

�
(16.50a)

+
int
�E :=

⇣
+

int
2

,+ int
8

⌘
:=

⇣
+
. /�
9

, 9 2 #2 [#8
⌘

(16.50b)

W
�
�E :=

⇣
W
�
2
,W�
8

⌘
:=

⇣
W 9 , 9 2 #�2 [#�8

⌘
(16.50c)

and terminal and internal currents

��2 := (�E , �8) :=
�
� 9 , 9 2 #E [#8

�
(16.50d)

�
int
�2 :=

⇣
�
int
E

, � int
8

⌘
:=

⇣
�
. /�
9

, 9 2 #E [#8
⌘

(16.50e)

V
�
�E :=

⇣
V
�
2
, V�
8

⌘
:=

⇣
V
�
9
, 9 2 #�

2
[#�

8

⌘
(16.50f)

Let G :=
�
+�E , ��2 ,+ int

�E , �
int
�2 ,W

�
�E , V

�
�E

�
. When the network is balanced the three-phase

analysis problem in Chapter 16.2 reduces to: solve for G given the device specification
(16.47) and the network equation (16.49).

We make two assumptions on the per-phase admittance matrix .1q . Partition the
per-phase admittance matrix .1q defined in (16.49) into submatrices (�11, �21, �22):

.
1q =:

2666664

.
1q
EE

.
1q
E2

.
1q
E8

.
1q
2E

.
1q
22

.
1q
28

.
1q
8E

.
1q
82

.
1q
88

3777775
=:


�11 �

T
21

�21 �22

�
(16.51)

The matrix �22 is complex symmetric and therefore a legitimate admittance matrix.
Assume:

C16.8: The submatrix �22 is invertible.

Assuming C16.8 (see Chapter 4.5 for su�cient conditions for the invertibility of
principal submatrices of an admittance matrix), denote the inverse of �22 by"

/
1q
22

/
1q
28

/
1q
82

/
1q
88

#
:=

"
.

1q
22

.
1q
28

.
1q
82

.
1q
88

#�1

= �
�1
22 (16.52)

The second assumption is:

C16.9: The impedances Z 9 2 C are nonzero for all 9 2 #8 , the submatrix /1q
88

in
(16.52) and the matrix

⇠̂8 =
✓⇣
/

1q
88

⌘�1
⌦ I

◆
+ �T

8

⇣
Z
�1
8
⌦ I

⌘
�8
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are invertible.

The following result says that, when the internal voltages and currents of non-power
sources are balanced, so are all other voltages and currents in the network.

Theorem 16.5 (Balanced voltages and currents). Suppose C16.8 and C16.9 hold.

1. Any solution G of (16.47)(16.49) consists of generalized balanced vectors in pos-
itive sequence, i.e., any voltage or current G 9 in (16.50) at bus 9 is of the form
G 9 = 0 9U+ + 1 91 for some 0 9 ,1 9 2 C.

2. Moreover all G 9 are balanced vectors, i.e., 1 9 = 0, if WE = 0 for all voltage sources
and the neutral voltages W.

8
= 0 for all . configured impedances.

An important implication of Theorem 16.5 is as follows. By substituting the fact that
the voltages and currents G are generalized balanced vectors into the analysis method
in Chapter 16.2.5 and Exercise 16.12, one can show that the phases are decoupled and
that the three-phase network decomposes into two independent per-phase networks,
a positive-sequence per-phase network and a zero-sequence per-phase network, from
which a solution G can be derived. This result, together with Theorem 16.5, are proved
in [200] under the simplifying assumption that +=

9
:= 0 for all . -configured devices

and W 9 := 0 for voltage sources 9 2 #�
E
. This justifies the per-phase analysis of Chapter

1.2.5 for a general balanced network.

16.3 Appendix: symmetric network

A general three-phase analysis problem is formulated in Chapter 16.2.4 and a solution
strategy is described in Chapter 16.2.5. When the network is balanced, the phases are
decoupled and the network decomposes into per-phase networks and the problem can
be solved using per-phase analysis, as explained in Chapter 16.2.6. When the network
is not balanced, e.g., the sources are unbalanced or the transmission lines are not phase-
decoupled, we can apply the similarity transformation � defined in Chapter 14.2.2 to
transform terminal phase voltage and current (+ , �) into sequence voltage and current
(+̃ , �̃). Even though the phases are coupled, we show in Chapters 16.3.1–16.3.5 that
if three-phase lines are symmetric and loads are identical, then their external models
are decoupled in the sequence coordinate. They define sequence networks that can
be analyzed separately, similar to the per-phase networks of a balanced network.
The results from analyzing the sequence networks can then be transformed back to
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the original phase coordinate. We describe in Chapter 16.3.6 how to compose the
sequence networks from sequence models of devices and branches, and how to solve
the three-phase analysis problem using these decoupled sequence networks when the
original network is symmetric.

Symmetric components and sequence networks are most useful for fault analysis in a
system that is more or less balanced, e.g., a three-phase network that remains balanced
until the fault location. Without any symmetry, symmetrical components may not o�er
much advantage because they do not lead to decoupled sequence networks.

16.3.1 Sequence impedances

. configuration
�
I
. , I=

�
. Consider the four-wire three-phase impedance

�
I
. , I=

�
in

. configuration shown in Figure 14.5 of Chapter 14.3.2. Under assumption C14.1 (all
neutrals are grounded and all voltages are defined with respect to the ground), recall
the external model (14.23b) relating the terminal voltage and current (+ , �):

+ = �/. � with /
. := I

. + I= 11
T =

266664
I
0= + I= I

=
I
=

I
=

I
0= + I= I

=

I
=

I
=

I
2= + I=

377775
Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = � �̄/. �| {z }
/̃
.

�̃ = �/̃. �̃

where � from (14.8b) and its inverse ��1 = �̄ from (14.9) are

� =
1p
3

⇥
1 U+ U�

⇤
=

1p
3

266664
1

T

U
T
+
U

T
�

377775
:=

1p
3

266664
1 1 1
1 U U

2

1 U
2

U

377775
(16.53a)

�̄ =
1p
3

⇥
1 U� U+

⇤
=

1p
3

266664
1

T

U
T
�
U

T
+

377775
:=

1p
3

266664
1 1 1
1 U

2
U

1 U U
2

377775
(16.53b)

We call /̃. a sequence impedance matrix to di�erentiate it from the (phase) impedance
matrix /. . Substituting /. = I. + I=11

T, � and �̄, we have (Exercise 16.16)

/̃
. =

1
3

266664
1
)

Ĩ U
T
+ Ĩ U

T
� Ĩ

U
T
� Ĩ 1

)

Ĩ U
T
+ Ĩ

U
T
+ Ĩ U

T
� Ĩ 1

)

Ĩ

377775
+

266664
3I= 0 0
0 0 0
0 0 0

377775
(16.54)

where Ĩ :=
�
I
0=, I1=, I2=

�
is the phase impedance vector. Hence the neutral impedance

I
= appears only in the zero-sequence impedance.

If the impedance is balanced I0= = I1= = I2=, then 1
)

Ĩ = 3I0= and UT
+ Ĩ = U

T
� Ĩ = 0
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and

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
(16.55a)

Hence the sequence impedance matrix /̃. is diagonal even though the phase impedance
/
. is not. This implies that the external model +̃ = �/̃. �̃ relating the sequence voltage

and current in the sequence coordinate is decoupled:

266664
+̃0

+̃+
+̃�

377775
= �

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.55b)

i.e., the external model consists of three separate impedances:

zero-seq impedance: +̃0 = � (I0= +3I=) �̃0
positive-seq impedance: +̃+ = �I0= �̃+
negative-seq impedance: +̃� = �I0= �̃�

The interpretation is as follows. When the similarity transformation defined by the
unitary matrix � transforms a power network from the 012 phase coordinate to 0+�
sequence coordinate (see Chapter 14.2.2), a balanced impedance with I0= = I1= = I2=

becomes decoupled in the sequence coordinate. If all devices are decoupled in the
sequence coordinate, the entire sequence networks are decoupled and the sequence
impedances are impedances on these decoupled sequence networks. Each sequence
network can be analyzed separately like a single-phase network. We will explain in
Chapter 16.3.6 how to compose the sequence networks from sequence models of
individual devices.

Note that if the impedance is not balanced then the relation +̃ = /̃. �̃ is generally
coupled and power flow analysis using the sequence variables may not o�er any
advantage over using the phase variables.

� configuration I�. Consider the three-wire three-phase impedance I� in � con-
figuration shown in Figure 14.6 of Chapter 14.3.3. Recall the external model
(14.25c)(14.25d) relating the terminal voltage and current (+ , �):

+ = �/�� +W1, 1
T
� = 0 (16.56)

where the zero-sequence voltage W := 1
31

T
+ is also a variable to be determined in an

analysis problem and

/
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
|            {z            }

Î
�

�
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Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = �
⇣
�̄/

�
�

⌘
|    {z    }

/̃
�

�̃ +W�̄1, 1
T
��̃ = 0 (16.57a)

where � and its inverse �̄ is given in (16.53). It can be shown (Exercise 16.17) that

/̃
� :=

1
9
(�⇤)H

Î
� (�⇤) with ⇤ :=

266664
0

1�U
1�U2

377775
(16.57b)

where /̃� := I�
⇣
I� 1

Z
1Ĩ
�T

⌘
. Moreover W�̄1 = +̃041 and 1

T
��̃ =

p
3�̃0 = 0, where 41 :=

(1,0,0) is the unit vector.

If the impedance is balanced, i.e., I01 = I12 = I20 then (Exercise 16.17)

/
� =

I
01

3

✓
I� 1

3
11

T
◆

, /̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
(16.58a)

and the external model (16.57) of a�-configured impedance in the sequence coordinate
becomes decoupled:

266664
0
+̃+
+̃�

377775
= � I

01

3

266664
0
�̃+
�̃�

377775
, �̃0 =

1p
3
(�0 + �1 + �2) = 0 (16.58b)

For a �-configured load, �̃0 = 0 because there is no neutral wire and therefore KCL
dictates that the line currents sum to zero. The model (16.58) defines three separate
impedances in the sequence coordinate:

zero-seq impedance: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq impedance: +̃+ = � I
01

3
�̃+

negative-seq impedance: +̃� = � I
01

3
�̃�

The interpretation is that a balanced �-configured impedance with I01 = I12 = I20

connected to a bus in a power network is transformed into an impedance of I01/3 at
that bus (as we have seen in Chapter 1.2.4) in the positive and the negative-sequence
networks and no impedance at that bus in the zero-sequence network (i.e., in the circuit
model for the zero-sequence network, the connection between this bus and the ground
is open). This does not mean that the voltage + 9,0 = 0 at bus 9 in the zero-sequence
network where the impedance is connected. It means that there is zero injection at bus
9 ( �̃ 9,0 = 0) and +̃ 9,0 will be determined by the network equation; see Chapter 16.3.6.

Remark 16.8 (Terminal variables). It is important to remember that the models derived
in this section relate the sequence variables (+̃ , �̃) of the terminal voltage and current
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(+ , �), not the internal voltage and current
�
+
. /�, �. /�

�
. See Example 16.14 on how

to use sequence networks to calculate internal currents and powers. ⇤

16.3.2 Sequence voltage sources

. configuration
�
⇢
. , I. , I=

�
. Consider the four-wire three-phase voltage source�

⇢
. , I. , I=

�
in . configuration shown in Figure 14.5 of Chapter 14.3.2. Under as-

sumption C14.1 (all neutrals are grounded and all voltages are defined with respect
to the ground), recall the external model (14.15b) relating the terminal voltage and
current (+ , �):

+ = ⇢
. � /. � with /

. := I
. + I=11

T

where /. is the same matrix as that for . -configured impedance. Substitute + = �+̃
and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = �̄⇢
.|{z}

⇢̃
.

� �̄/. �| {z }
/̃
.

�̃ =: ⇢̃. � /̃. �̃

The sequence impedance matrix /̃
. := �̄/. � is the same matrix as that for . -

configured impedance and the sequence internal voltage is:

⇢̃
. := �̄⇢

. =
1p
3

266664
1

H
⇢
.

U
H
+⇢

.

U
H
�⇢

.

377775
i.e., the components of ⇢̃. are the normalized projection of ⇢. onto the positive-
sequence basis (1,U+,U�).

When the impedance I. is balanced, i.e., I0= = I1= = I2=, even if the internal voltage
⇢
. is unbalanced, its external model in the sequence coordinate becomes decoupled

(using (16.55b)):

266664
+̃0

+̃+
+̃�

377775
=

266664
⇢̃
.

0
⇢̃
.

+
⇢̃
.

�

377775
�

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.59a)

This defines three separate nonideal voltage sources:

zero-seq voltage source: +̃0 = ⇢̃
.

0 � (I0= +3I=) �̃0
positive-seq voltage source: +̃+ = ⇢̃

.

+ � I0= �̃+
negative-seq voltage source: +̃� = ⇢̃

.

� � I0= �̃�
As for a balanced impedance, the voltage source becomes decoupled in the sequence
coordinate even if they remain unbalanced. The sequence networks are illustrated in
Figure 16.8. 4

4 The sequence networks of synchronous generators are generally more complicated and their sequence
impedances (mostly reactances) are generally unequal unlike the model in (16.59a); see e.g. [194,
Section 2.3].
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(a) Zero-seq network (b) Positive-seq network (c) Negative-seq network

Figure 16.7 The sequence networks of a voltage source
⇣
⇢
. , I. , I=

⌘
with balanced impedance

I
. := I0=I. ⇢̃.0 = ⇢̃.� = 0 if ⇢. := ⇢0=U+ is balanced.

Furthermore, if ⇢. = ⇢0=U+ is a balanced positive-sequence set then only the
positive-sequence voltage is nonzero:

�̄⇢
. = ⇢̃

. =
1p
3

266664
1

H

U
H
+
U

H
�

377775
(⇢0=U+) =

266664
0p

3⇢0=

0

377775
The external model of a balanced . -configured voltage source in the sequence coordi-
nate becomes (from (16.59a)):

266664
+̃0

+̃+
+̃�

377775
=

266664
0p

3⇢0=

0

377775
�

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
266664
�̃0

�̃+
�̃�

377775
(16.59b)

This defines a voltage source
⇣p

3⇢0=, I0=
⌘

on the positive-sequence network and
impedances on the other sequence networks:

zero-seq impedance: +̃0 = � (I0= +3I=) �̃0
positive-see voltage source: +̃+ =

p
3⇢0= � I0= �̃+

negative-seq impedance: +̃� = �I0= �̃�

� configuration
�
⇢
�, I�

�
. Consider the three-phase voltage source

�
⇢
�, I�

�
in �

configuration shown in Figure 14.6 of Chapter 14.3.3. One of its external models is
(14.27b), reproduced here 5

+ = �̂⇢�� /�� +W1, 1
T
� = 0

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�
1

T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1Ĩ
�T

◆
�

where Ĩ� := I�1 is a column vector and Z := 1
T
Ĩ
� is a scalar. This is similar to the

model (16.56) of �-configured impedance with the extra term �̂⇢�. Substitute+ = �+̃

5
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and � = ��̃ to obtain the external model in the sequence coordinate:

+̃ = �̄�̂⇢�|{z}
⇢̃
�

� �̄/��| {z }
/̃
�

�̃ +W�̄1 =: ⇢̃�� /̃� �̃ + +̃041, 1
T
��̃ = 0

where 1
T
��̃ =

p
3�̃0 = 0. This is similar to (16.57) with the extra term (Exercise 16.18)

⇢̃
� := �̄�̂⇢� = ⇤†

�̄

✓
I� 1

Z

Ĩ
�
1

T
◆
⇢
� with ⇤† :=

266664
0

(1�U)�1

(1�U2)�1

377775
If the impedance is balanced, i.e., I01 = I12 = I20 then Ĩ� := I011, Z := 3I01 , and

(Exercise 16.18 and from (16.58a))

⇢̃
� =

266664
0

(1�U)�1
⇢̃
�
+

(1�U2)�1
⇢̃
�
�

377775
, /

� =
I
01

3

✓
I� 1

3
11

T
◆

, /̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
where the sequence voltages are the normalized projections of ⇢� onto positive and
negative-sequence basis: ⇢̃�+ := 1

3U
H
+⇢

� and ⇢̃�� := 1
3U

H
�⇢

�. The zero-sequence voltage
⇢̃
�
0 = 0 because there is no neutral line in � configuration. Hence the external model

in the sequence coordinate is

266664
0
+̃+
+̃�

377775
=

266664
0

(1�U)�1
⇢̃
�
+

(1�U2)�1
⇢̃
�
�

377775
� I

01

3

266664
0
�̃+
�̃�

377775
, �̃0 =

1p
3

⇣
�
0 + �1 + �2

⌘
= 0 (16.60a)

The voltage sources in the sequence coordinate are therefore unbalanced but decoupled:

zero-seq voltage source: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq voltage source: +̃+ =
⇢̃
�
+

1�U �
I
01

3
�̃+

negative-seq voltage source: +̃� =
⇢̃
�
�

1�U2
� I

01

3
�̃�

As for a �-configured impedance, a symmetric voltage source in a power network is
transformed into voltage sources in the positive and negative-sequence networks. The
equivalent series impedance of the sequence voltage sources is I01/3 as we have seen
in Chapter 1.2.4. There is no device (open circuit) in the zero-sequence network, which
means that, when the voltage source is connected to bus 9 , there is zero injection at bus
9 in the zero-sequence network ( �̃ 9,0 = 0) and +̃ 9,0 will be determined by the network
equation; see Chapter 16.3.6. These sequence networks are illustrated in Figure 16.8.

Furthermore, if ⇢� := ⇢01U+ is a balanced positive-sequence set then

⇢̃
�
+ =

p
3⇢01 , ⇢̃

�
� = 0
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(a) Zero-seq network (b) Positive-seq network (c) Negative-seq network

Figure 16.8 The sequence networks of a voltage source
⇣
⇢
�, I�

⌘
with balanced impedance

I
� := I01I. ⇢̃�0 = ⇢̃�� = 0 if ⇢� := ⇢01U+ is balanced.

and

266664
0
+̃+
+̃�

377775
=

266664
0

4
�ic/6

⇢
01

0

377775
� I

01

3

266664
0
�̃+
�̃�

377775
(16.60b)

since
p

3/(1� U) = 4�ic/6. This defines a voltage source
�
4
�ic/6

⇢
01 , I01/3

�
in the

positive-sequence network and an impedance I01/3 in the negative-sequence network:

zero-seq voltage source: null ( �̃0 = 0, /̃0 = 1, open circuit)

positive-seq voltage source: +̃+ = 4
�ic/6

⇢
01 � I

01

3
�̃+

negative-seq voltage source: +̃� = � I
01

3
�̃�

There is no device (open circuit) in the zero-sequence network.

16.3.3 Sequence current sources

The derivation of sequence networks follow the same procedure as that for impedances
and voltage sources.

. configuration
�
�
. , H. , I=

�
. An external model of a . -configured current source�

�
. , H. , I=

�
is (from (14.18b)):

� = ��. � H. (+ �+=1)

Substitute + = �+̃ and � = ��̃ to obtain the external model in the sequence coordinate:

�̃ = � �̄�.|{z}
�̃
.

� �̄H. �|{z}
.̃
.

+̃ + +=�̄H. 1

where �̃. := �̄�. and

.̃
. := �̄H

.

� =
1
3

⇣
H
0=

11
H + H1=U�UH

� + H2=U+UH
+
⌘

(16.61)
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If the phase admittance H. := H0=I is balanced then the sequence admittance is also
balanced:

.̃
. := �̄H

.

� = H
0=

I, �̄H
.

1 = H
0=

�̄1 = H
0=

266664

p
3

0
0

377775
The current source becomes decoupled in the sequence coordinate even though it is
unbalanced:

266664
�̃0

�̃+
�̃�

377775
= �

266664
�̃
.

0
�̃
.

+
�̃
.

�

377775
� H0=

©≠≠
´

266664
+̃0

+̃+
+̃�

377775
�

266664

p
3+=

0
0

377775
™ÆÆ
¨

In particular the neutral voltage += appears only in the zero-sequence network. When
assumption C14.1 holds (the neutral is grounded and voltages are defined with respect

to the ground) so that += = �I=
⇣
1

T
�

⌘
, we have

+
= = �I=

⇣
1

T
��̃

⌘
= � I

=

p
3

⇣
1

T ⇥
1 U+ U�

⇤
�̃

⌘
= �
p

3I= �̃0

i.e., the neutral voltage depends only on the zero-sequence current �̃0 (of the terminal
current �). Substitute this into expressions above, the sequence voltage and current�
+̃ , �̃

�
satisfies, when H. := H0=I,

266664
(1+3H0=I=) �̃0

�̃+
�̃�

377775
= �

266664
�̃
.

0
�̃
.

+
�̃
.

�

377775
� H0=

266664
+̃0

+̃+
+̃�

377775
(16.62)

and the current source becomes decoupled in the sequence coordinate even if they
remain unbalanced:

zero-seq current source: �̃0 = �
�̃
.

0

1+3H0=I=
� H

0=

1+3H0=I=
+̃0

positive-seq current source: �̃+ = ��̃.+ � H0=+̃+
negative-seq current source: �̃� = ��̃.� � H0=+̃�

These sequence networks are illustrated in Figure 16.9. If the current source �. :=
�
0=
U+ is a balanced positive-sequence set, then �̃.+ =

p
3�0= and �̃.0 = �̃.� = 0.

Instead of sequence current sources in (16.62), equivalent voltage sources in the
sequence domain can also be derived starting from the external model of a current
source (from (14.18c)): + = �

�
I
.
�
. + /

.
�

�
where I. :=

�
H
.
��1 and /

. := I. +
I
=

11
T; see Exercise 16.20.

� configuration
�
�
�, H�

�
. The external model of a �-configured current source is

(from (14.30a)):

� = �
⇣
�T
�
� +.�+

⌘
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(a) Zero-seq network (b) Positive-seq network (c) Negative-seq network

Figure 16.9 The sequence networks of a current source
⇣
�
. , H. , I=

⌘
with balanced impedance

H
. := I0=I. �̃.+ =

p
3�0= and �̃.0 = �̃.� = 0 if �. := �0=U+ is balanced.

where .� := �T
H
� � is the matrix in (14.27a). Substitute + = �+̃ and � = ��̃ to obtain

the external model in the sequence coordinate:

�̃ = �
©≠≠
´
�̄�T

�
�| {z }

�̃
�

+ �̄.��|{z}
.̃
�

+̃

™ÆÆ
¨
=: �

⇣
�̃
� + .̃�+̃

⌘
(16.63)

where

�̃
� := �̄�T

�
� = 3⇤†

�̄�
�

.̃
� := �̄

⇣
�T
H
��

⌘
� = �̄

⇣
3�⇤†

�̄

⌘
H
� �
�⇤�̄

�
� = 3⇤†

⇣
�̄H

�
�

⌘
⇤

where we have used � = �⇤�̄ and �T = 3�† = 3�⇤†
�̄ from (14.8).

If the phase admittance H. := H01I is balanced, then the e�ective phase admittance
.
� is not diagonal but its sequence admittance .̃� is unbalanced but diagonal:

.
� := H

01�T� = 3H01
✓
I� 1

3
11

T
◆

.̃
� := �̄.

�
� = 3H01

⇣
I� 414

T
1

⌘

where we have used �T� = 3
⇣
I� 1

311
T
⌘

from Theorem 14.2 and �̄1 =
p

341 with

41 := (1,0,0). Hence the current source is unbalanced but decoupled in the sequence
coordinate (from (16.63)):

266664
�̃0

�̃+
�̃�

377775
= �

266664
�̃
�
0
�̃
�
+
�̃
�
�

377775
�3H01

266664
0
+̃+
+̃�

377775
(16.64)

The zero-sequence network has an ideal current source �̃�0 and the other two sequence
networks each has a nonideal current source:

zero-seq current source: �̃0 = ��̃�0
positive-seq current source: �̃+ = ��̃�+ � 3H01+̃+

negative-seq current source: �̃� = ��̃�� � 3H01+̃�
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These sequence networks are illustrated in Figure 16.10. If the current source �� :=

(a) Zero-seq network (b) Positive-seq network (c) Negative-seq network

Figure 16.10 The sequence networks of a current source
⇣
�
�, H�

⌘
with balanced impedance

H
� := I01I. ⇢̃�0 = ⇢̃�� = 0 if ⇢� := ⇢01U+ is balanced.

�
01
U+ is a balanced positive-sequence set, then �̄U+ =

p
342 and �̃� = 3�01⇤†

�̄U+ =
(0,34�ic/6

�
01 ,0). There is no device in the zero-sequence network because � config-

uration has no neutral line.

16.3.4 Sequence line model

Consider a three-phase line connecting bus 9 and bus : that is modeled by only a series
phase impedance matrix IB

9:
. We omit shunt admittances for simplicity.6 The terminal

voltage and the line current is related by Ohm’s law:

+ 9 � +: = I
B

9:
� 9:

Convert to the sequence coordinate by substituting+ 9 = �+̃ 9 ,+: = �+̃: and � 9: = ��̃ 9:
to get

+̃ 9 � +̃: =
⇣
�̄I

B

9:
�

⌘
�̃ 9: =: ĨB

9:
�̃ 9: (16.65a)

where ĨB
9:

:= �̄IB
9:
� is called the sequence impedance matrix of line ( 9 , :). This does

not assume C16.1, i.e., IB
9:

and IB
: 9

may be di�erent.

If the phase impedance matrix IB
9:
= (I 9: � n 9: )I+ n 9:11

T is symmetric (i.e., of the
form in (15.9)) then

Ĩ
B

9:
:= �̄I

B

9:
� =

266664
I 9: +2n 9: 0 0

0 I 9: � n 9: 0
0 0 I 9: � n 9:

377775
(16.65b)

6 Shunt admittances can be included using (15.8a): � 9: = HB
9:
(+9 �+: ) + H<

9:
+9 in which case the

sequence admittance matrices
⇣
H̃
B

9:
, H̃<
9:

, H̃<
: 9

⌘
are given by:

�̃ 9: =
⇣
�̄ H

B

9:
�

⌘
|      {z      }

H̃
B

9:

�
+̃9 � +̃:

�
+

⇣
�̄ H

<

9:
�

⌘
|      {z      }

H̃
<

9:

+̃9
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i.e., the sequence impedance matrix of a symmetric line ( 9 , :) is diagonal. This defines
three separate sequence networks:

zero-seq impedance: +̃ 9,0� +̃:,0 =
�
I 9: +2n 9:

�
�̃ 9:,0

positive-seq impedance: +̃ 9,+� +̃:,+ =
�
I 9: � n 9:

�
�̃ 9:,+

negative-seq impedance: +̃ 9,� � +̃:,� =
�
I 9: � n 9:

�
�̃ 9:,�

The phase impedance matrix IB
9:

in (15.9) is complex symmetric but not Hermitian.
In general a complex symmetric matrix may not be diagonalizable (see Exercise 16.21
for an example). The matrix IB

9:
however is normal and hence unitarily diagonalizable

through the unitary matrix � (Exercise 16.22).

16.3.5 Sequence transformers

Consider a three-phase transformer with turns ratio 0 := Diag(00,01 ,02), leakage
admittance H := Diag(H0, H1 , H2) and zero shunt admittance. Let � := (� 9: , �: 9 ) 2 C6

denote the sending-end currents and + := (+ 9 ,+: ) 2 C6 the nodal voltages. For nota-
tional convenience, define+= := (+=

9
1,+=

:
1) 2 C6 where+=

9
(or+=

:
) denotes the neutral

voltage if the primary (or secondary) circuit is in. configuration and 0 otherwise. Let

... :=

H �0H
�0H 0

2
H

�
(16.66a)

The external model (15.15) of three-phase transformers is reproduced here:

� = ⇡
T
config...⇡config (+ �+=) (16.66b)

where ⇡config is a 6⇥6 block diagonal matrix indexed by configuration:

⇡.. :=

I 0
0 I

�
, ⇡�� :=


� 0
0 �

�
, ⇡�. :=


� 0
0 I

�
, ⇡.� :=


I 0
0 �

�
(16.66c)

Convert to the sequence coordinate by substituting � 9: = ��̃ 9: , + 9 = �+̃ 9 , +=
9
1 = �+̃=

9
,

etc. to get

�

�

� 
�̃ 9:

�̃: 9

�
=


⇡

T
1

⇡
T
2

� 
H �0H
�0H 0

2
H

� 
⇡1

⇡2

� 
�

�

�  
+̃ 9

+̃:

�
�

"
+̃
=

9
1

+̃
=

:
1

#!

Therefore the transformer model in the sequence coordinate is (using ��1 = �̄ = �H):

�̃ = .̃xform
�
+̃ � +̃=

�
(16.67a)

where �̂ := Diag(�,�) and, since +̃=
9

:= �̄ (+=
9
1) =
p

3+=
9
41,

.̃xform :=
�
⇡config�̂

�H
...

�
⇡config�̂

�
, +̃

= :=
p

3(+=
9
41,+=

:
41) (16.67b)

where 41 := (1,0,0). As expected, the neutral voltage of a . configuration has only
zero-sequence component.
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Suppose the transformer is balanced, i.e., 0 = 00I and H = H0I. Substituting into
(16.67) it can be shown that .̃xform is decoupled (Exercise 16.24). Specifically the
transformer admittance matrix .̃xform for standard configurations are:

.̃.. =

H
0
I �00H0I

�00H0I (00)2
H
0
I

�
= ... , .̃�� =


H
0 �00H0

�00H0 (00)2
H
0

�
⌦ |⇤|2

(16.68a)

.̃�. =

H
0 |⇤|2 �00H0⇤̄
�00H0⇤ (00)2

H
0
I

�
, .̃.� =


H
0
I �00H0⇤

�00H0⇤̄ (00)2
H
0 |⇤|2

�
(16.68b)

where ⇤ := Diag(0,1 � U,1 � U2) are the eigenvalues of � and |⇤|2 :=
Diag

�
0, |1�U |2, |1�U2 |2

�
= Diag(0,3,3). For instance the model (16.67) for a �.

transformer implies

�̃ 9: = H
0 |⇤|2+̃ 9 � 00H0⇤̄

⇣
+̃: �
p

3+=
:
41

⌘
,

�̃: 9 = (00)2
H
0

⇣
+̃: �
p

3+=
:
41

⌘
� 00H0⇤+̃ 9

Therefore the sequence variables are decoupled. In particular, the zero-sequence cur-
rents are �̃ 9:,0 = 0 and �̃: 9,0 = (00)2

H
0 (+̃:,0�

p
3+=
:
).

16.3.6 Three-phase analysis

We now explain how to compose sequence networks from individual device models
in the sequence coordinate derived in Chapters 16.3.1–16.3.4. We will show that if a
network is unbalanced but symmetric, its sequence networks are decoupled and can be
analyzed separately.

Definition 16.2 (Symmetric network). A network ⌧ :=
⇣
# ,⇢

⌘
that connects a set of

three-phase devices by three-phase lines is called symmetric if the following assump-
tions hold:

C16.10: All impedances are symmetric I. /�
9

= I0=/01
9

I.

C16.11: All voltage sources have symmetric series impedances I. /�
9

= I0=/01
9

I.

C16.12: All current sources have symmetric shunt admittances H. /�
9

= H0=/01
9

I.
C16.13: All three-phase lines ( 9 , :) have series impedances that satisfy IB

9:
= IB

: 9

(assumption C16.1) and (15.9) (IB
9:
= (I 9: � n 9: )I+ n 9:11

T). Moreover their shunt
admittances are zero.
C16.14: All three-phase transformers ( 9 , :) are balanced, i.e., their turns ratios
0 9: = 00

9:
I and leakage admittances H;

9:
= H;0

9:
I are equal across phases. Moreover

their shunt admittances are zero. ⇤

Suppose we are given a symmetric network with a single three-phase device at each
bus. As before, partition the set # of buses into 6 disjoint subsets:
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• #. /�
E

: buses with nonideal voltage sources in . or � configurations:
�
⇢
. , I. , I=

�
,�

⇢
�, I�

�
.

• #. /�
2

: buses with nonideal current sources in . or � configurations:
�
�
. , H. , I=

�
,�

�
�, H�

�
.

• #. /�
8

: buses with impedances in . or � configurations:
�
I
. , I=

�
, I�.

Suppose assumption C14.1 holds (the neutral is grounded and voltages are defined
with respect to the ground, though +=

9
may not be zero if I=

9
< 0). The assumption of

a single three-phase device at each bus are made without loss of generality only to
simplify presentation (see Example 16.14 for a network where there are two devices
connected to a single bus). We will follow the solution strategy of Chapter 16.2.5 that
solves (from (16.43))

266664
�E

�2

�8

377775
=

266664
.EE .E2 .E8

.2E .22 .28

.8E .82 .88

377775|                {z                }
.

266664
+E

+2

+8

377775
(16.69)

for the terminal voltage +�E := (+2 ,+8) and current ��2 := (�E , �8). All other variables
such as internal voltages and currents

�
+
. /�, �. /�

�
can then be derived in terms of the

terminal voltages and currents (+ , �).

We now show that (16.69) decomposes into three decoupled sequence networks
that can be solved separately. If not only is the network symmetric but all voltage
and current sources are also balanced positive-sequence sets (in particular, have no
zero-sequence components), then it is su�cient to analyze only the positive-sequence
network. This is because in that case there are only impedances and admittances, but no
voltage or current sources, in the zero-sequence and the negative-sequence networks.

Let I#+1 be the identity matrix of size # + 1 so that I#+1 ⌦ � is a matrix of size
3(# + 1) ⇥ 3(# + 1). Convert both sides of (16.69) into the sequence coordinate by
substituting

� =: (I#+1 ⌦ �) �̃, + =: (I#+1 ⌦ �) +̃

to obtain

266664
�̃E

�̃2

�̃8

377775
=

266664
.̃EE .̃E2 .̃E8

.̃2E .̃22 .̃28

.̃8E .̃82 .̃88

377775|                {z                }
.̃

266664
+̃E

+̃2

+̃8

377775
with .̃ := (I#+1 ⌦ �̄). (I#+1 ⌦ �) (16.70a)

and we have used (I#+1 ⌦ �)�1 = I#+1 ⌦ �̄ from Lemma 14.3. The three rows (3 9 +
1,3 9 + 2,3 9 + 3) of (16.70a) corresponding to the sequence current �̃ 9 2 C3 of device
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9 = 0, . . . ,# , are:

�̃ 9 =
’
9: 9⇠:
:2#E

H̃
B

9:

�
+̃ 9 � +̃:

�
+

’
9: 9⇠:
:2#2

H̃
B

9:

�
+̃ 9 � +̃:

�
+

’
9: 9⇠:
:2#8

H̃
B

9:

�
+̃ 9 � +̃:

�

+
’
9: 9⇠:
:2#E

H̃
<

9:
+̃ 9 +

’
9: 9⇠:
:2#2

H̃
<

9:
+̃ 9 +

’
9: 9⇠:
:2#8

H̃
<

9:
+̃ 9 (16.70b)

where H̃B
9:

and H̃<
9:

are the series and shunt admittance matrices of branch ( 9 , :) in the
sequence coordinate and they equal the zero matrix if ( 9 , :) 8 ⇢ . If ( 9 , :) represents

a transmission or distribution line, then H̃
B

9:
:=

⇣
Ĩ
B

9:

⌘�1
:=

⇣
�̄I

B

9:
�

⌘�1
and H̃

<

9:
:= 0

from (16.65). If ( 9 , :) represents a transformer, then H̃B
9:

and H̃<
9:

can be derived from
the admittance matrices in (16.68). The network equation (16.70) relates terminal
variables.

To show that the three-phase network decomposes into decoupled sequence net-
works we have to show both of the following:

1. The three rows of (16.70b) are decoupled, i.e., the zero-sequence current �̃ 9,0
depends only on voltages +̃:,0 of its adjacent buses : < 9 in the zero-sequence net-
work but not on voltages +̃:,B in the other sequence networks B 2 {+,�}. Similarly
for the positive and negative-sequence currents

�
�̃ 9,+, �̃ 9,�

�
.

2. At each bus 9 , the terminal voltage and current
�
+̃ 9 , �̃ 9

�
are decoupled, i.e., the

zero-sequence voltage +̃ 9,0 does not depend on the positive or negative-sequence
currents

�
�̃ 9,+, �̃ 9,�

�
at bus 9 . Similarly for +̃ 9,+ and +̃ 9,�.

The first claim follows from C16.13 and C16.14 in Definition 16.2 which implies that
H̃
B

9:
and H̃

<

9:
are diagonal matrices. This means that the three rows of (16.70b) are

decoupled at all buses 9 2 # . We hence only need to prove the second claim that
locally at each bus 9 the sequence voltage +̃ 9,B , B 2 {0,+,�}, does not couple the
sequence currents �̃ 9,B0 , B0 < B. This can be shown using the models derived in Chapters
16.3.1–16.3.3.

Specifically the external models of the three-phase devices are as follows.

1. Impedances 9 2 #8 from (16.55b) and (16.58b):

266664
+̃ 9,0

+̃ 9,+
+̃ 9,�

377775
= �

2666664

I
0=

9
+3I=

9
0 0

0 I
0=

9
0

0 0 I
0=

9

3777775

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #.

8
(16.71a)

266664
0
+̃ 9,+
+̃ 9,�

377775
= �

I
01

9

3

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #�

8
(16.71b)
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2. Voltage source 9 2 #E from (16.59a) and (16.60a):

266664
+̃ 9,0

+̃ 9,+
+̃ 9,�

377775
=

2666664

⇢̃
.

9,0

⇢̃
.

9,+
⇢̃
.

9,�

3777775
�

2666664

I
0=

9
+3I=

9

I
0=

9

I
0=

9

3777775

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #.

E
(16.71c)

266664
0
+̃ 9,+
+̃ 9,�

377775
=

266664
0

1
1�U

1
1�U2

377775

2666664

⇢̃
�
9,0

⇢̃
�
9,+

⇢̃
�
9,�

3777775
�
I
01

9

3

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
, 9 2 #�

E
(16.71d)

3. Current sources 9 2 #2 from (16.62) and (16.64):

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
= � 1

1+3H0=
9
I
=

9

2666664

�̃
.

9,0

�̃
.

9,+
�̃
.

9,�

3777775
�

H
0=

9

1+3H0=
9
I
=

9

266664
+̃ 9,0

+̃ 9,+
+̃ 9,�

377775
, 9 2 #.

2
(16.71e)

266664
�̃ 9,0

�̃ 9,+
�̃ 9,�

377775
= �

2666664

�̃
�
9,0

�̃
�
9,+
�̃
�
9,�

3777775
� 3H01

9

266664
0
+̃ 9,+
+̃ 9,�

377775
, 9 2 #�

2
(16.71f)

Therefore the terminal voltage and current
�
+̃ 9 , �̃ 9

�
at each bus 9 are decoupled, even if

they are unbalanced. The network equation (16.70) and the device models (16.71) thus
decompose into separate 0/+/� sequence networks that can be analyzed separately,
similar to per-phase analysis for balanced networks.

We illustrate the analysis of sequence networks with an example.

Example 16.14 (Sequence network analysis). Consider the network shown in Figure
16.11 where a voltage source and a current source supply power through two symmetric
lines to two loads in parallel. Suppose the network is symmetric (Definition 16.2), i.e.,

V1a

V1b

V1c

V2a

V2b

V3a

V3b

V3cV2c

z s12 zs23

Y-voltage source
(E1Y , z1Y  , z1

n )
line
zs12

line
zs23

Y-impedance
(z2Y  , z2

n )

Figure 16.11 Example 16.14: Three-phase unbalanced sources supplies power two balance
loads in parallel through symmetric lines.

• . -configured voltage source
�
⇢
.

1 , I.1 , I=1
�

with I.1 := I0=1 I.
• �-configured current source

�
�
�
3 , H�3

�
with H�3 := H013 I.
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• Balanced impedances
�
I
.

2 , I=2
�
, I�2 with I.2 := I0=2 I and I�2 := I012 I.

• Symmetric distribution lines with series impedance matrices IB
9:

= (I 9: � n 9: )I+
n 9:11

T for ( 9 , :) = (1,2), (2,3).

Suppose also C14.1 holds (i.e., all neutrals are grounded and voltages are defined with
respect to the ground). Calculate:

1. The terminal load voltages +2 :=
�
+
0

2 ,+12 ,+22
�
;

2. The internal current �.2 :=
�
�
0=

2 , �1=2 , �2=2

�
and the total complex power 1

T
B
.

2 deliv-
ered to the . -configured load;

3. The internal current ��2 :=
�
�
01

2 , �122 , �202

�
and the total complex power 1

T
B
�
2 deliv-

ered to the �-configured load;

Solution. The network equation (16.70) and the device models (16.71) decompose into
separate 0/+/� sequence networks as shown in Figure 16.12. We will first determine the

z1
an+3z1

n z12+2

(a) Zero-seq network

z1
an z12

(b) Positive-seq network

z1
an z12

(c) Negative-seq network

Figure 16.12 Example 16.14: Circuit models of sequence networks.

terminal sequence voltage +̃2 and then the terminal sequence currents �̃12 and �̃22 coming
out of the. -configured and �-configured impedances respectively. The terminal phase
variables are then +2 = �+̃2, �12 = ��̃12 , and �22 = ��̃22 . Given these terminal variables
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we can determine internal currents
�
�
.

2 , ��2
�

and powers
�
B
.

2 , B�2
�

using the conversion
rules.

To determine +̃2, apply KCL at bus 2 of the zero-sequence networks to get

⇢̃
.

1,0� +̃2,0�
I
0=

1 +3I=1
�
+ (I12 +2n12)

=
+̃2,0

I
0=

2 +3I=2
+ �̃�3,0 (16.72a)

To analyze the positive and negative-sequence networks let the Thévenin equivalent
load admittance be

.̃2 = H
0=

2 +3H012

where H
0=

2 :=
�
I
0=

2

��1 and H
01

2 :=
�
I
01

2

��1
. KCL at bus 2 of the positive-sequence

network gives

⇢̃
.

1,+� +̃2,+

I
0=

1 + (I12� n12)
= .̃2+̃2,+ +3H013 +̃3,+ + �̃�3,+

To eliminate +̃3,+ apply KCL at bus 3 to get

+̃2,+� +̃3,+
I23� n23

= 3H013 +̃3,+ + �̃�3,+

yielding

+̃3,+ = d̃3 +̃2,+� d̃3 (I23� n23) �̃�3,+ where d̃3 :=
1

1+3H013 (I23� n23)

Hence we have, after eliminating +̃3,+

⇢̃
.

1,+� +̃2,+

I
0=

1 + I12� n12
=

⇣
.̃2 +3d̃3H

01

3

⌘
+̃2,+ +

⇣
1�3d̃3H

01

3 (I23� n23)
⌘
�̃
�
3,+ (16.72b)

Similarly, from the negative-sequence network, we get

⇢̃
.

1,� � +̃2,�

I
0=

1 + I12� n12
=

⇣
.̃2 +3d̃3H

01

3

⌘
+̃2,� �

⇣
1�3d̃3H

01

3 (I23� n23)
⌘
�̃
�
3,� (16.72c)

The terminal sequence voltage +̃2 :=
�
+̃2,0,+̃2,+,+̃2,�

�
can be obtained from (16.72).

From the 0/+/� sequence networks, the terminal sequence load currents are

�̃
1
2,0 = � +̃2,0

I
0=

2 +3I=2
, �̃

1
2,+ = �+̃2,+

I
0=

2

, �̃
1
2,� = �+̃2,�

I
0=

2

�̃
2
2,0 = 0, �̃

2
2,+ = �3+̃2,+

I
01

2

, �̃
2
2,� = �3+̃2,�

I
01

2

From the terminal sequence variables
�
+̃2, �̃12 , �̃22

�
we can obtain the terminal phase

variables

+2 = �+̃2, �
1
2 = ��̃

1
2 , �

2
2 = ��̃

2
2
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To obtain the internal currents �.2 and ��2 , apply the conversion rules to get

�
.

2 = ��12 , �
�
2 = ��T†

�
2
2 + V21 = �1

3
��22 + V21

for an arbitrary V 2 C, where ��2 exists because �̃22,0 = 0 means 1
T
�
2
2 = 0.

Finally to calculate the internal powers B.2 and B�2 we first obtain the internal voltages:

+
.

2 = +2�+=2 1 = +2 + I=2
⇣
11

T
⌘
�
1
2 , +

�
2 = �+2

where the second equality follows from +
=

2 = �I=2
⇣
1

T
�
1
2

⌘
under C14.1. Hence

B
.

2 := diag
⇣
+
.

2 �
.H
2

⌘
= �diag

⇣
+2�

1H
2 + I=2

⇣
11

T
⌘
�
1
2 �

1H
2

⌘

B
�
2 := diag

⇣
+
�
2 �

�H
2

⌘
= �diag

⇣
�+2�

2H
2 �

†
⌘
+ V̄2�+2

The total internal powers are 1
T
B
.

2 and 1
T
B
�
2 (which is independent of V2). ⇤

16.4 Chapter summary

1. The three-phase bus injection models (BIM) (16.6) and (16.7) extend directly
the single-phase BIM to the unbalanced three-phase setting. They relate nodal
currents or powers to nodal voltages through a three-phase admittance matrix . .
They are constructed from the branch models (16.1) for transmission or distribution
lines and for transformers (16.2)(16.3) and express nodal current or power balance.
Su�cient conditions for nonsingularity of. have been extended from single-phase
to three-phase networks (Theorems 16.1–16.4).

2. The network models here and the device models of Chapter 14 are combined to
define a general three-phase analysis problem that aims to derive terminal and
internal variables from a set of parameters. The network equations have the same
structure as those in the single-phase setting and the key di�erence lies in three-
phase device and transformer models. Examples have been presented to illustrate
the interaction between terminal and internal variables. This general formulation
is used to justify per-phase analysis when the system is balanced.

3. When sources are not balanced but the network is symmetric (Definition 16.2), we
can apply a similarity transformation to transform terminal voltages and currents
into the sequence coordinate. The resulting sequence networks are decoupled and
can be analyzed separately.

16.5 Bibliographical notes

Three-phase load flow solvers have been developed since at least the 1960s, e.g., see [201] for solution
in the sequence coordinate and [35, 194] in the phase coordinate. A three-phase network is equivalent to
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a single-phase circuit where each node in the equivalent circuit is indexed by a (bus, phase) pair [194].
Single-phase power flow algorithms such as Newton Raphson [202] or Fast Decoupled methods [203] can
be directly applied to the equivalent circuit. See also [5, Chapter 11] for recent algorithms for solving
three-phase power flows. A su�cient condition is derived in [204] to ensure a fixed-point iteration of an AC
power flow equation converges to a unique power flow solution. Su�cient conditions are also proved in [21]
for the invertibility of three-phase admittance matrix which then ensures the validity of / -bus method for
computing power flow solutions.

16.6 Problems

Chapter 16.1.

Exercise 16.1 (Symmetry and block symmetry). Consider a 3=⇥ 3= matrix � parti-
tioned as in Definition 16.1.

1. Suppose � is symmetric. Show that it is block symmetric if and only if all its
o�-diagonal blocks are symmetric, i.e., �T

9:
= � 9: , for all 9 < : .

2. Suppose � is block symmetric. Show that it is symmetric if and only if all blocks
� 9: , including the diagonal blocks, are symmetric.

Exercise 16.2 (Invertibility of . ). Prove Theorem 16.2.

Exercise 16.3 (Invertibility of . ). This exercise shows that the set of conditions in
Theorem 16.1 and that in Theorem 16.2 each ensures UH

.U < 0 for any nonzero
U 2 C3(#+1) . Suppose C16.2 is satisfied, i.e., HB

9:
= HB

: 9
, H<

9:
and H

<

: 9
are complex

symmetric, so that the admittance matrix . is both symmetric and block symmetric.
Consider UH

.U for any U 2 C3(#+1) , and write HB
9:

, H<
9 9

:=
Õ
:: 9⇠: H

<

9:
and U 9 in terms

of their real and imaginary parts:

H
B

9:
=: 6B

9:
+ i1

B

9:
2 C3⇥3, H

<

9 9
=: 6

<

9 9
+ i1

<

9 9
2 C3⇥3, U 9 =: d 9 + in 9 2 C3
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1. Show that the real and imaginary parts of UH
.U are:

Re
⇣
U

H
.U

⌘
=

’
( 9,:)2⇢

✓ 
d 9

n 9

�
�


d:

n:

� ◆T "
6
B

9:
0

0 6
B

9:

# ✓ 
d 9

n 9

�
�


d:

n:

� ◆

+
’
92#

h
d

T
9

n
T
9

i "
6
<

9 9
0

0 6
<

9 9

# 
d 9

n 9

�
(16.73)

Im
⇣
U

H
.U

⌘
=

’
( 9,:)2⇢

✓ 
d 9

n 9

�
�


d:

n:

� ◆T "
1
B

9:
0

0 1
B

9:

# ✓ 
d 9

n 9

�
�


d:

n:

� ◆

+
’
92#

h
d

T
9

n
T
9

i "
1
<

9 9
0

0 1
<

9 9

# 
d 9

n 9

�
(16.74)

2. Show that the conditions in Theorem 16.1 ensure UH
.U < 0 for any nonzero

U 2 C3(#+1) .
3. Show that the conditions in Theorem 16.2 ensure UH

.U < 0 for any nonzero
U 2 C3(#+1) .

Exercise 16.4 (Invertibility of .22). Prove Theorem 16.3.

Exercise 16.5 (Power flow equation). Derive the three-phase power injection B 9 2 C3

in terms of the voltage vector + 2 C3(#+1) :

B 9 =
’
:: 9⇠:

diag
⇣⇣
4

T
9
⌦ I

⌘
++

H
⇣
(4 9 � 4: ) ⌦ HBH

9:

⌘
+

⇣
4

T
9
⌦ I

⌘
++

H
⇣
4 9 ⌦ H<H

9:

⌘⌘

Chapter 16.2.

Exercise 16.6 (Four-wire model in . -configured). For Example 16.5, express the
neutral voltages (W 9 ,W: ) in terms of the phase voltages and currents

�
+ 9 ,+: , � 9 , �:

�
.

Exercise 16.7 (Four-wire model in . -configured). Repeat Example 16.5 but for the
case where the neutrals = of the voltage source and the impedance are connected

through impedances
⇣
I
=

9
, I=
:

⌘
to their respective external neutral terminals =0 which

are then connected to the four-wire line. See Figure 16.13. Note that +=
9

is the voltage
(with respect to a common reference point) at the neutral internal of the device, and

+
=
0
9

is the voltage at the terminal of the neutral line of the device, and that
⇣
+
=
0
9

,+=
0
:

⌘
do not need to be given or grounded.

Exercise 16.8 (. and � devices). Consider a . -configured current source that is
grounded directly so that W 9 := +=

9
= 0, and connected to a �-configured impedance

through a three-phase line, as shown in Figure 16.14. Suppose the following are
specified: current source (�.

9
,W 9 := 0), load impedance I

�
:
, and line admittances✓⇣

I
B

9:

⌘�1
, H<
9:

, H<
: 9

◆
with at least one of

⇣
H
<

9:
, H<
: 9

⌘
being nonzero. Follow the solu-

tion strategy outlined in Chapter 16.2.5 to solve the network. State any invertibility
assumptions in your derivation.
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Figure 16.13 Exercise 16.7: An ungrounded . -configured generator connected through a
four-wire line to an ungrounded . -configured impedance load.
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Figure 16.14 Three-phase . -configured current source connected through a three-phase line to
a �-configured impedance load.

Exercise 16.9 (Balanced power source). Solve Example 16.11 when the system is
balanced, i.e.,

• Power source
⇣
f
�
9
,W 9

⌘
with f

�
9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
, i.e., f�

9
is a

generalized balanced vector. Moreover its voltage and current
⇣
+
�
9
, ��
9

⌘
are also

generalized balanced vectors.
• Impedance I�

:
:= Z�

:
I.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,0,0

⌘
.

• V 9 + V: := 1
31

T
⇣
�
�
9
+ ��

:

⌘
= V0 with a given V0.

Exercise 16.10 (Power sources). Repeat Example 16.13 when the shunt admittances

are zero, i.e., the three-phase line is specified as
⇣
H
B

9:
, H<
9:
= H<

: 9
= 0

⌘
with nonsingular

H
B

9:
, as in Example 16.11. Since the admittance matrix is no longer invertible, suppose

V 9 + V: := 1
31

T
⇣
�
�
9
+ ��

:

⌘
= V0 is also given.

Exercise 16.11 (Balanced power sources). Consider the system in Figure 16.6 where
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both the generator and load are power sources and the lines have zero shunt admittances,
as in Example 16.11. Suppose the system is balanced and the following are specified:

• Power source
⇣
f
�
9
,W 9

⌘
with f�

9
= 0 9U+ + 1 91 for given

�
0 9 ,1 9

�
, with its voltage

and current
⇣
+
�
9
, ��
9

⌘
being generalized balanced vectors.

• Power source f�
:
= 0:U+ + 1:1 for given (0: ,1: ), with its voltage and current⇣

+
�
9
, ��
9

⌘
being generalized balanced vectors. Note that W: is not specified.

• Line admittances
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
:=

⇣
[
B

9:
I,0,0

⌘
.

Show how to derive all variables
�
+
�
8

, ��
8

, V8
�

and
�
+8 , �8 ,W 9

�
, 8 = 9 , : . In particular show

that W 9 = W: .

Exercise 16.12 (Reduced system). 1. Reduce (16.43)(16.44) to a smaller system of
linear equations in (+2 ,+ int

8
), which can then be solved numerically.

2. Derive all other variables analytically in terms of a solution (+2 ,+ int
8
). (State the

matrices that need to be nonsingular.)
3. Suppose the solution

�
+2 , � int

8

�
is a generalized balanced vector, show that all other

variables are generalized balanced positive-sequence sets as well.

Exercise 16.13 (Reduced system). 1. Reduce (16.45)(16.44)(16.46) to a smaller sys-

tem of nonlinear equations in
⇣
+2 , � int

8
,+ int
?

, � int
?

⌘
, which can then be solved numer-

ically.

2. Derive all internal variables
⇣
+
. /�
9

, �. /�
9

, B. /�
9

, V 9
⌘

and external variables�
+ 9 , � 9 , B 9 ,W 9

�
in terms of a solution

⇣
+2 , � int

8
,+ int
?

, � int
?

⌘
.

Exercise 16.14 (Balanced network). Suppose (�⇥I)+ = 1⌦U++2⌦1 where � 2C=⇥=,
1,2 2 C=, I is the identity matrix of size 3 and 1 is the vector of all 1s of size
3. Let W 9 := 1

31
T
+ 9 , 9 = 1, . . . ,=, be the zero-sequence component of + 9 2 C3, and

W := (W 9 , 9 = 1, . . . ,=). Show that �W = 2.

Chapter 16.3.

Exercise 16.15. Prove that if a vector + of three-phase voltages is a balanced negative
sequence then the negative-sequence voltage +̃� =

p
3+0 and the zero-sequence and

the positive-sequence voltages are both zero, +̃0 = +̃+ = 0.

Exercise 16.16 (Sequence impedance /̃. ). Derive /̃. in (16.54). Show that if I0= =
I
1= = I2= then

/̃
. =

266664
I
0= +3I= 0 0

0 I
0= 0

0 0 I
0=

377775
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Exercise 16.17 (Sequence impedance /̃�). Derive (16.57). Show that if I01 = I12 = I20

then

/̃
� =

I
01

3

266664
0 0 0
0 1 0
0 0 1

377775
and the external model of the �-configured impedance in the sequence coordinate is:

266664
0
+̃+
+̃�

377775
= � I

01

3

266664
0 0 0
0 1 0
0 0 1

377775
266664
�̃0

�̃+
�̃�

377775
, �̃0 = 0

Exercise 16.18 (Sequence network: �-configured voltage source). One of the external
models of a �-configured voltage source is (from (14.27b)):

+ = �̂⇢�� /�� +W1, 1
T
� = 0

where

�̂ :=
1
3
�T

✓
I� 1

Z

Ĩ
�

1
T
◆

, /
� :=

1
9
�T
I
�
✓
I� 1

Z

1 Ĩ
�T

◆
�

and Ĩ� := diag
�
I
��

1 and Z := 1
T
Ĩ
�.

1. Show that the voltage and current in the sequence domain satisfies +̃ = ⇢̃�� /̃� �̃ +
+̃041 and 1

T
��̃ = 0 which is similar to (16.57) with the extra term ⇢̃

�:

⇢̃
� := ⇤†

�̄

✓
I� 1

Z

Ĩ
�

1
T
◆
⇢
�

2. If the impedance is balanced, i.e., I01 = I12 = I20, show that

⇢̃
� =

266664
0

(1�U)�1
⇢̃
�
+

(1�U2)�1
⇢̃
�
�

377775
with ⇢̃

�
+ :=

1p
3
U

H
+⇢

�, ⇢̃�� :=
1p
3
U

H
�⇢

�

In particular, ⇢̃� has no zero-sequence voltage.
3. Show that this gives rise to decoupled sequence networks:

zero-seq network: null

positive-seq network: +̃+ =
⇢̃
�
+

1�U �
I
01

3
�̃+

negative-seq network: +̃� =
⇢̃
�
�

1�U2
� I

01

3
�̃�

Hence if ⇢� := ⇢01U+ is a balanced positive-sequence set, show that the negative-
sequence network reduces to an impedance.

Exercise 16.19 (Sequence network: �-configured voltage source). Repeat Exercise
16.18 starting with the alternative external models of a �-configured voltage source is
(from (14.27a)).



912 Bus injection models

Exercise 16.20 (Sequence network: . -configured current source). Suppose assump-

tion C14.1 holds so that += = �I=
⇣
1

T
�

⌘
. Derive the sequence networks for a . -

configured current source (as those in Chapter 16.3.3) starting from the external model
in the phase domain (from (14.18c)):

+ = �
⇣
I
.

�
. + /. �

⌘

where I. :=
�
H
.
��1 and /. := I. + I=11

T.

Exercise 16.21. Consider the complex symmetric matrix

" :=

1 8

8 �1

�

Show that " is not diagonalizable by computing its Jordan form and that:

1. Its eigenvalue _ = 0 has algebraic multiplicity of 2 and geometric multiplicity of
1.

2. Its eigenvector is E1 = (�8,1) and generalized eigenvector is E2 = (�28,1).

Exercise 16.22. Consider the complex symmetric phase impedance matrix

I :=
266664
B < <

< B <

< < B

377775
where B,< 2 C.

1. Show that IIH = IH
I. Hence, even though I is symmetric but not Hermitian, it is

normal.
2. Since I is normal, it is unitarily similar to a diagonal matrix Ĩ, i.e., there exists a

unitary matrix � such that Ĩ = �H
I�. Find � and Ĩ.

Exercise 16.23 (Unbalanced currents). Consider a balanced load I. /� := II in (a) .
configuration or (b) � configuration, with one of the loads open-circuited, as shown in
Figure 16.15. Find the sequence currents �̃ := ( �̃1, �̃2, �̃3) and the neutral current �= (for
. configuration) when the terminal phase currents are (�2 = 0 for . configuration, but
not necessarily for � configuration):

� =
266664

8
0

8
0
4

i2c/3

�
2

377775
Why is only the negative-sequence component nonzero even though the loads are
unbalanced because of the open circuit?

Exercise 16.24 (Sequence transformers). Consider a balanced transformer with turns
ratio 0 = 00I, leakage admittance H = H0I and zero shunt admittance. Show that the
transformer model (16.67) in the sequence coordinate is decoupled.
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I a

I n

I b

I c := 0

z

z z

(a) . configuration

z z

z

I a

I b

I c

(b) . configuration

Figure 16.15 Sequence components of unbalanced phase currents in balanced load II.



17 Branch flow models: radial
networks

In this chapter we extend the single-phase branch flow models of Chapter 5 to unbal-
anced three-phase networks. We will build on materials in Chapter 16 on unbalanced
bus injection models.

17.1 Three-phase BFM for radial networks

Unless otherwise specified this chapter considers radial networks, i.e., networks with
tree topology. In this section we extend the three branch flow models of Chapters
5.2.1–5.2.3 from a single-phase setting to a three-phase setting.

17.1.1 Branch model

We use the three-phase branch model of Chapter 16.1.1 where each line ( 9 , :) 2 ⇢ is

characterized by four 3⇥ 3 series and shunt admittance matrices,
⇣
H
B

9:
, H<
9:

⌘
from 9

to : and
⇣
H
B

: 9
, H<
: 9

⌘
from : to 9 . It defines the relation between the terminal voltages�

+ 9 ,+:
�

and currents
�
� 9: , �: 9

�
:


� 9:

�: 9

�
=

"
H
B

9:
+ H<

9:
�HB

9:

�HB
: 9

H
B

: 9
+ H<

: 9

#

|                        {z                        }
.9:


+ 9

+:

�

We emphasize that HB
9:

and H
B

: 9
may be di�erent (i.e., . 9: may not be block sym-

metric) and H<
9:

and H<
: 9

may be di�erent. Moreover, when ( 9 , :) models a nonideal
three-phase transformer, any of these 3⇥3 admittance matrices may be singular and the
shunt admittances (H<

9:
, H<
: 9
) of the branch model are generally nonzero even when the

shunt admittances of the constituent single-phase transformers are assumed zero; see
Remark 16.1 and (16.2)(16.3) for branch parameters when ( 9 , :) models a three-phase

transformer. Therefore we assume
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
are given for each branch

( 9 , :) 2 ⇢ , but series impedance matrices IB
9:

:=
⇣
H
B

9:

⌘�1
and IB

: 9
:=

⇣
H
B

: 9

⌘�1
may not
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exist. Generally we will write power flow equations in terms of the series admittance
matrices instead of the series impedance matrices (unless the series admittance ma-
trices are assumed nonsingular). Di�erent models are suitable for modeling di�erent
switching elements as summarized in Table 5.1, reproduced here as Table 17.1.

assumptions applicability line vars 1-phase 3-phase

general
⇣
H
B

9:
, H<
9:

⌘
distribution line both dirs (5.3) (17.1)

and
⇣
H
B

: 9
, H<
: 9

⌘
nonideal .. , ��, �. , .� (cycle cond)

H
B

9:
= HB

: 9
distribution line one dir (5.5) (17.4)

nonideal .. , ��

C17.1: HB
9:

= HB
: 9

distribution line one dir (5.9), (5.11) (17.7)

H
<

9:
= H<

: 9
= 0 (5.14), (5.15)

Table 17.1 Branch flow models: assumptions, applicability and models.

We refer to ( 9 , :) 2 ⇢ interchangeably as a branch, a line, a link or an edge.

17.1.2 With HB
9 :
< HB

: 9

To extend the branch flow model (5.3) for single-phase networks to unbalanced three-
phase networks define the following variables:

B 9 2 C3, E 9 2 S3
+, 9 2 #

✓ 9: ,✓: 9 2 S3
+, ( 9: ,(: 9 2 C3⇥3, ( 9 , :) 2 ⇢

where S=+ ✓ C=⇥= is the set of of =⇥ = complex (Hermitian and) positive semidefinte
matrices. It will become clear that E 9 ,✓ 9: ,( 9: are rank-1 matrices. The diagonal entries
of E 9 are the squared magnitudes of the nodal voltages (+0

9
,+1
9
,+2
9
), the diagonal entries

of ✓ 9: are the squared magnitudes of the sending-end line currents (�0
9:

, �1
9:

, �2
9:
) from

9 to : , the diagonal entries of ( 9: are the sending-end line powers ((0
9:

,(1
9:

,(2
9:
) from

9 to : , and similarly in the opposite direction. Let B := (B 9 , 9 2 #),E := (E 9 , 9 2 #), ✓ :=
(✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢), ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢), and let G := (B,E,✓,() 2 C12(#+1)+30" .
Define for each ( 9 , :) 2 ⇢ the total admittance matrices

H̃ 9: := H
B

9:
+ H<

9:
, H̃: 9 := H

B

: 9
+ H<

: 9
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Hence H̃ 9: = HB
9:

and H̃: 9 = HB
: 9

if and only if H<
9:

= H<
: 9

= 0 2 C3⇥3. The extension of
(5.3) to an unbalanced three-phase network is the following model:

B 9 =
’
:: 9⇠:

diag(( 9: ), 9 2 # (17.1a)

H̃ 9:E 9 H̃
H
9:
� HB

9:
E:

⇣
H
B

9:

⌘H
=

⇣
H̃ 9:( 9: + (H

9:
H̃

H
9:

⌘
� ✓ 9: , ( 9 , :) 2 ⇢ (17.1b)

H̃: 9E: H̃
H
: 9
� HB

: 9
E 9

⇣
H
B

: 9

⌘H
=

⇣
H̃: 9(: 9 + (H

: 9
H̃

H
: 9

⌘
� ✓: 9 , ( 9 , :) 2 ⇢ (17.1c)"

E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0,

"
E: (: 9

(
H
: 9

✓: 9

#
⌫ 0, ( 9 , :) 2 ⇢ (17.1d)

rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, rank

"
E: (: 9

(
H
: 9

✓: 9

#
= 1, ( 9 , :) 2 ⇢ (17.1e)

⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ bH

9:
=

⇣
H
B

: 9

⌘† ⇣
E: H̃

H
: 9
� (: 9

⌘H
+ b: 9 , ( 9 , :) 2 ⇢ (17.1f)

for some b 9: and b: 9 2 C3⇥3 whose columns are in the null spaces of
⇣
H
B

9:

⌘
and

⇣
H
B

: 9

⌘
respectively, where �† denotes the pseudo-inverse of any matrix � (see Theorem A.19
on pseudo-inverse in Appendix A.7). We assume +0 2 C3 is given and E0 := +0+

H
0 .

These equations extend (5.3) from single-phase to three-phase networks and express
the same four properties that a power flow solution G := (B,E,✓,() satisfies:

1. Power balance: Unlike the power balance equation (5.3a), (17.1a) constrains only
the diagonal terms of 3⇥3 matrices ( 9: . Their o�-diagonal terms are determined
jointly with the other equations.

2. Ohm’s law: (17.1b)(17.1c) originate from the Ohm’s law and KCL � 9: = HB
9:
(+ 9 �

+: ) + H<
9:
+ 9 , but unlike (5.3b)(5.3c), (17.1b)(17.1c) use only admittance matrices

(HB
9:

, H<
9:
) and (HB

: 9
, H<
: 9
), but not impedance matrices because these admittances

may be singular (e.g., when they model transformers in � configuration).
3. Apparent power: The explicit definition (5.3d) of apparent power for single-phase

networks becomes the implicit psd rank-1 condition (17.1d)(17.1e). A solution G
of (17.1) does not contain voltage and current angles, but (17.1d)(17.1e) ensures
the existence of phasors (+ 9 , � 9: ) so that

E 9 = + 9+
H
9
, ✓ 9: = � 9: �

H
9:

, ( 9: = + 9 �
H
9:

(17.2a)

or equivalently "
E 9 ( 9:

(
H
9:

✓ 9:

#
=


+ 9

� 9:

� h
+

H
9

�
H
9:

i
, 9 ! : 2 ⇢ (17.2b)

as well as the quantities in the opposite direction. These conditions are the only
nonlinear equations in this three-phase branch flow model, with (17.1d) being
convex and (17.1e) being nonconvex. The vectors

�
+ 9 , � 9:

�
are unique up to a

reference angle i 9: 2 (�c,c], one for each line 9 ! : 2 ⇢ . When the network
graph is connected, i 9: as well as i: 9 in the opposite direction are the same for



17.1 Three-phase BFM for radial networks 917

all lines ( 9 , :) 2 ⇢ . Moreover a given +0 at the reference bus 0 will fix the angles
of all

�
+ 9 , � 9: , �: 9

�
; see Lemma 17.2. 1 See also Example 17.1 in Chapter 17.3.

4. Cycle condition: The linear cycle condition (5.3e) becomes (17.1f). Pseudo-inverse
is used because the admittances HB

9:
and HB

: 9
may be singular. If they are nonsingular

then b 9: = b: 9 = 0 2 C3⇥3. We will discuss in Chapter 17.2.3 the role of tree
topology, the cycle condition, and angle recovery after we have extended (17.1) to
general networks that may contain cycles.

Like the single-phase model (5.3) for radial networks, (17.1) does not require
H
B

9:
= HB

: 9
(assumption C17.1 below) and allows nonzero shunt admittances (H<

9:
, H<
: 9
).

It is therefore suitable for modeling nonideal three-phase transformers in standard
configurations in addition to distribution and short transmission lines (line parameters
when ( 9 , :) models a three-phase transformer are given in (16.2)(16.3)). If the admit-

tances
⇣
H
B

9:
, H<
9:

⌘
and

⇣
H
B

: 9
, H<
: 9

⌘
are scalars then (17.1) reduces to (5.3) for single-phase

networks.

17.1.3 With nonzero shunt admittances

Suppose now H
B

9:
= HB

: 9
, but shunt admittances can be nonzero. This means that the

3(# + 1) ⇥ 3(# + 1) admittance matrix . is block symmetric and has a three-phase
⇧-circuit representation. In this case we show that we can use a directed graph with an
arbitrary orientation and define branch current and power only in the direction of each
line, but not in the reverse direction. The model therefore requires no cycle condition.

Specifically, we assume ⌧ = (# ,⇢) is directed. Fix a graph orientation and denote
interchangeably a line by ( 9 , :) or 9 ! : . Define series branch current and power
matrices (✓B ,(B) in terms of the sending-end variables (✓,() by:

( 9: = (
B

9:
+ E 9 H<H

9:
, ✓ 9: = ✓

B

9:
+ H<

9:
E 9 H

<H
9:

+2Re
⇣
H
<

9:
(
B

9:

⌘
(17.3)

Under the assumption HB
9:
= HB

: 9
, the three-phase branch flow model (17.1) reduces to

the following simpler model that involves series branch matrices (✓B
9:

,(B
9:
) only in the

1 A fixed +0 is needed in the equivalence Theorem 17.1. A given +0 also enables Algorithm 4 in Chapter
17.2.3 that explicitly constructs voltage and current phasors (+ , � ) from a power flow solution
G := (B, E ,✓,() of (17.1), and enables a backward forward sweep method in Chapter 17.4.2. Note
however that fixing +0 may not guarantee the uniqueness of power flow solutions G since (17.1) is
nonlinear, but given a power flow solution G, the psd rank-1 decomposition (+ , � ) in (17.2) is unique
provided the network is connected and +0 is fixed.
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direction of the line 9 ! ::’
:: 9!:

diag
⇣
(
B

9:
+ E 9 H<H

9:

⌘
=

’
8:8! 9

diag
⇣
(
B

8 9
� (HB

8 9
)†✓B

8 9
� E 9 H<H

98
� b8 9

⌘
+ B 9 , 9 2 #

(17.4a)

H
B

9:
(E 9 � E: )HBH

9:
= 2Re

⇣
H
B

9:
(
B

9:

⌘
� ✓B

9:
, 9 ! : 2 ⇢ (17.4b)"

E 9 (
B

9:

(
BH
9:

✓
B

9:

#
⌫ 0, rank

"
E 9 (

B

9:

(
BH
9:

✓
B

9:

#
= 1, 9 ! : 2 ⇢ (17.4c)

where +0 2 C3 is given. These equations express the same properties as (17.1):

1. Power balance: (17.1a) reduces to (17.4a) where diag(. . . ) on the right-hand side
is the receiving power at bus 9 from bus 8. Here (HB

8 9
)† denotes the pseudo-inverse

of HB
8 9

and b8 9 is any matrix whose columns are in null(HB
8 9
) (b8 9 is 0 if HB

8 9
is

nonsingular). The term (HB
8 9
)†✓B

8 9
+ b8 9 gives the series power loss across the series

admittance HB
9:

in terms of the series current ✓B
8 9

, with ambiguity b8 9 due to the
singularity of HB

9:
; see Exercise 17.2 for an example where line ( 9 , :) represents a

�� transformer whose HB
9:

is singular.
2. Ohm’s law: (17.1b)(17.1c) reduce to (17.4b).
3. Apparent power: (17.1d)(17.1e) reduce to (17.4c).
4. Cycle condition: (17.1e) becomes vacuous when HB

9:
= HB

: 9
, i.e., the cycle condition

is required only when we need to keep track of branch variables in both directions.

The model (17.4) does not assume H
B

9:
is nonsingular and hence is applicable to

nonideal transformers involving � circuits (see Table 17.1). Let B := (B 9 , 9 2 #),E :=
(E 9 , 9 2 #), ✓B := (✓B

9:
, 9 ! : 2 ⇢), (B := ((B

9:
, 9 ! : 2 ⇢), and let G := (B,E,✓B ,(B) 2

C
12(#+1)+15" where" = # is the number of lines. Given a solution G := (B,E,✓B ,(B) of

(17.4), the sending-end current ✓ and power ( are given in terms of the series variables
(✓B ,(B) by (17.3).

We now show that (17.1) and (17.4) are equivalent when H
B

9:
= HB

: 9
, i.e., there

is a power flow solution (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) of (17.1) with sending-
end branch variables in both directions if and only if there is a power flow solution
(E, B,✓B

9:
,(B
9:

,8 9 ! :) of (17.4) with series branch variables only in one direction.

To this end, unlike in the single-phase case in Chapter 5.2.2, we will define the
series matrices (✓B

9:
,(B
9:
) through the voltage and current phasors in (17.2). Let

(E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) be a power flow solution of (17.1) with sending-end
branch variables in both directions. Then let (+ 9 , � 9: ) be the voltages and sending-end
currents guaranteed by (17.2) (which is unique given +0). Define the series branch
current phasors �B

9:
, current matrices ✓B

9:
and power flow matrices (B

9:
in terms of the

sending-end variables by:

� 9: = �
B

9:
+ H<

9:
+ 9 , ✓

B

9:
= �

B

9:
�
BH
9:

, (
B

9:
= + 9 �

BH
9:

(17.5a)
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Hence the diagonals of ✓B
9:

and (B
9:

represent the squared magnitude of the series
current and real and reactive powers respectively through the series admittance HB

9:

from bus 9 to bus : . Then it can be shown that (E, B,✓B
9:

,(B
9:

,8 9 ! :) satisfies (17.4)
and (17.3) (Exercise 17.3). Moreover since (17.5a) implies �B

9:
= HB

9:
(+ 9 �+: ), we can

define branch variables in the opposite direction of 9 ! ::

�
B

: 9
:= ��B

9:
, �: 9 = �

B

: 9
+ H<

: 9
+: , ✓

B

: 9
= �

B

: 9
�
BH
: 9

, (
B

: 9
= +: �

BH
: 9

(17.5b)

This immediately implies the relation between series matrices in the opposite directions
(using HB

9:
= HB

: 9
):

H
B

9:

⇣
(
B

9:
+ (B

: 9

⌘
= ✓

B

9:
, ✓

B

9:
= ✓

B

: 9
(17.6)

When HB
9:

is nonsingular, this says that the sum of series branch flows in both directions
(diagonal terms) is equal to the complex line loss across the series impedance IB

9:
. When

H
B

9:
is singular, (17.6) has a solution if and only if the columns of ✓B

9:
are in range(HB

9:
),

which is the case since ✓B
9:
= �B

9:
�
BH
9:

= HB
9:
(+ 9 �+: )�BH

9:
.

Conversely let (E, B,✓B
9:

,(B
9:

,8 9 ! :) be a power flow solution of (17.4). Then
(17.4c) guarantees the existence of (+ 9 , �B

9:
) for each 9! : and �B

: 9
:=��B

9:
in the oppo-

site direction that satisfies E 9 =+ 9+H
9

and (17.5). We can therefore define the sending-
end currents (� 9: , �: 9 ) using (17.5), and hence sending-end matrices (✓ 9: ,✓: 9 ) and
(( 9: ,(: 9 ) using (17.2). Then it can be shown that (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :))
satisfies (17.1) (Exercise 17.3).

17.1.4 With zero shunt admittances (Generalized DistFlow)

Suppose the following condition holds:

C17.1: For every line ( 9 , :) 2 ⇢ ,
• The series admittance matrices satisfy HB

9:
= HB

: 9
.

• The shunt admittance matrices are zero, H<
9:
= H<

: 9
= 0.

• The series admittance H
B

9:
matrices are nonsingular; denote the series

impedance by IB
9:

:=
⇣
H
B

9:

⌘�1
.

Assumption C17.1 means that the 3(# + 1) ⇥ 3(# + 1) admittance matrix . is block
symmetric and has a three-phase ⇧-circuit representation. Moreover it has zero block
row sums since H<

9:
= H<

: 9
= 0. In this case ( 9 , :) can model a distribution or short

transmission line, but is not suitable for modeling a nonideal transformer since their
(H<
9:

, H<
: 9
) are generally nonzero (see Remark 16.1 and also Table 17.1).

Zero shunt admittances H<
9:

= H<
: 9

= 0 also means that all series branch variables
in (17.4) are equal to sending-end branch variables. Moreover the nonsingularity of
H
B

9:
means that its inverse IB

9:
exists and b8 9 = 0 in (17.4a). Therefore the model (17.4)
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reduces to the following model proposed in [136] that generalizes DistFlow equations
from a single-phase to a three-phase setting:’

:: 9!:
diag(( 9: ) =

’
8:8! 9

diag
⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (17.7a)

E 9 � E: =
⇣
I
B

9:
(

H
9:
+ ( 9: IBH

9:

⌘
� IB

9:
✓ 9: I

BH
9:

, 9 ! : 2 ⇢ (17.7b)"
E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, 9 ! : 2 ⇢ (17.7c)

where +0 2 C3 is given.

Alternatively, instead of arriving at (17.7) through (17.4), we can observe

( 9: + (: 9 = I
B

9:
✓ 9: , ✓ 9: = ✓: 9 (17.8)

under assumption C17.1. Then (17.7) follows directly by substituting (17.8) into (17.1)
(Exercise 17.4).

17.2 Equivalence, angle recovery and cycle condition

The branch flow models for an unbalanced three-phase radial networks are (17.1)
with shunt admittances and without assumption C17.1 and the generalized DistFlow
equations (17.7) when C17.1 holds. We will show that they are equivalent to the bus
injection model (16.7a) studied in Chapter 16.1.3, reproduced here:

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
+ + 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (17.9)

To this end we first extend the branch flow models (17.1) and (17.7) to general networks
possibly with cycles. We then use these generalized branch flow models as a bridge to
relate BFM (17.1) and (17.7) for radial networks to BIM (17.9) for general networks.

17.2.1 Extension to general networks

To extend the branch flow model (5.26) for a general network possibly with cycles from
the single-phase setting to the unbalanced three-phase setting, define the following
variables:

B 9 2 C3, + 9 2 C3, 9 2 #
� 9: , �: 9 2 C3, ✓ 9: ,✓: 9 2 S3

+, ( 9: ,(: 9 2 C3⇥3, ( 9 , :) 2 ⇢

where S=+ ✓ C=⇥= is the set of of = ⇥ = complex (Hermitian and) positive
semidefinte matrices. Let B := (B 9 , 9 2 #), + := (+ 9 , 9 2 #), � := (� 9: , �: 9 , ( 9 , :) 2 ⇢),
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✓ := (✓ 9: ,✓: 9 , ( 9 , :) 2 ⇢) and ( := (( 9: ,(: 9 , ( 9 , :) 2 ⇢). Let G̃ := (B,+ , �,✓,() 2
C

6(#+1)+42" . The branch flow model for a general three-phase network is the fol-
lowing power flow equations in G̃:

B 9 =
’
:: 9⇠:

diag
�
( 9:

�
, 9 2 # (17.10a)

� 9: = H̃ 9:+ 9 � HB
9:
+: , �: 9 = H̃: 9+: � HB

: 9
+ 9 , ( 9 , :) 2 ⇢ (17.10b)

✓ 9: = � 9: �
H
9:

, ✓: 9 = �: 9 �
H
: 9

, ( 9 , :) 2 ⇢ (17.10c)

( 9: = + 9 �
H
9:

, (: 9 = +: �
H
: 9

, ( 9 , :) 2 ⇢ (17.10d)

where H̃ 9: := HB
9:
+ H<

9:
and H̃: 9 = HB

: 9
+ H<

: 9
. The equation (17.10a) imposes power

balance at each bus, (17.10b) describes the Kirchho�’s and Ohm’s laws, (17.10c)
defines the squared current magnitude matrices, and (17.10d) defines branch power in
terms of the associated voltage and current. A key to generalizing single-phase BFM
to the 3-phase setting is the generalization in (17.10c)(17.10d) of the quadratic relation
E 9✓ 9: = |( 9: |2 in single phase using outer products of � 9: and

�
+ 9 , � 9:

�
. This relation is

explicit in BFM (17.10) for general networks that include voltage and current angles,
but is implicit in BFMs for radial networks that do not include voltage and current
angles (see (17.1d)(17.1e) and (17.7c)). For convenience we assume here the vector
+0, not just + q0 , q 2 {0,1,2}, is given (e.g. used in angle recovery in Chapter 17.2.3
and a backward forward sweep method in Chapter 17.4.2). Since this model does not
require assumption C17.1, it is suitable for modeling three-phase transformers in .. ,
��, �. and .� configurations.

When assumption C17.1 holds, we can adopt a directed graph and obtain the
following simpler BFM by substituting (17.8) into (17.10):

B 9 +
’
8:8! 9

diag
�
(8 9 � I8 9✓8 9

�
=

’
:: 9!:

diag(( 9: ), 9 2 # (17.11a)

+ 9 �+: = I
B

9:
� 9: , 9 ! : 2 ⇢ (17.11b)

✓ 9: = � 9: �
H
9:

, 9 ! : 2 ⇢ (17.11c)

( 9: = + 9 �
H
9:

, 9 ! : 2 ⇢ (17.11d)

with a given +0 2 C3. In this case the line variables are directed with B := (B 9 , 9 2 #),
+ := (+ 9 , 9 2 #), � := (� 9: , 9 !2 ⇢), ✓ := (✓ 9: , 9 ! : 2 ⇢) ( := (( 9: , 9 ! : 2 ⇢), and
G̃ := (B,+ , �,✓,() 2 C6(#+1)+21" .

17.2.2 Equivalence of BFM and BIM

We now show that BFMs (17.1) and (17.7) for radial networks and (17.10) and (17.11)
for general networks are all equivalent to the BIM (17.9), in the following sense. Define
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the solution sets (as functions of a reference voltage +0):

V :=
n
(B,+) 2 C6(#+1) : (B,+) satisfies (17.9) given +0

o

X̃ :=
n
G̃ := (B,+ , �,✓,() 2 C6(#+1)+42" : G̃ satisfies (17.10) given +0, HB

9:
+: < 0 8( 9 , :)

o

Xtree :=
n
G := (B,E,✓,() 2 C12(#+1)+30" : G satisfies (17.1) given +0 and E0 =+0+

H
0

o

Xdf :=
n
G := (B,E,✓,() 2 C6(#+1)+21" : G satisfies (17.7) given +0 and E0 =+0+

H
0

o

where # + 1 is the number of nodes and " := |⇢ | is the number of lines in ⌧. The
condition H

B

9:
+: < 0 is reasonable and has the following interpretation. Recall the

current �B
9:

:= HB
9:
(+ 9 �+: ) through the series admittance matrix HB

9:
. If HB

9:
+: = 0 then

�
B

9:
= HB

9:
+ 9 , i.e., bus : is like the ground, contradicting the model of series admittance

H
B

9:
. The condition excludes such voltages + from X̃.

We say that two sets � and ⌫ are equivalent, denoted by � ⌘ ⌫, if there is a bijection
between them. The following theorem generalizes Theorem 5.2 of Chapter 5.3 from
single-phase to unbalanced three-phase networks, under the simplifying assumption
that the series line admittances are nonsingular for all lines ( 9 , :) 2 ⇢ (see Remark
17.1 for singular admittances). When HB

9:
= HB

: 9
but they may be singular and shunt

admittances (H<
9:

, H<
: 9
) may be nonzero, we have already shown in Chapter 17.1.3 that

(17.4) is equivalent to (17.1). This is hence omitted here.

Theorem 17.1. Suppose the network ⌧ is connected and +0 at the reference bus 0 is
given.

1. Then V ⌘ X̃.
2. If ⌧ is a tree and HB

9:
, HB
: 9

are nonsingular for all lines ( 9 , :) 2 ⇢ , then X̃ ⌘ Xtree.

3. If ⌧ is a tree and assumption C17.1 holds, then X̃ ⌘ Xtree ⌘ Xdf.

Proof When assumption C17.1 holds, the model (17.1) reduces to (17.7) for radial
networks and (17.10) reduces to (17.11) for general networks. It therefore su�ces to
prove the equivalence of V, X̃ and Xtree.

Part 1: V ⌘ X̃. Fix any (B,+) 2 V. We will construct an G̃ := (B,+ , �,✓,() 2 X̃. Define
(�,✓,() in terms of + by (17.10b)(17.10c)(17.10d). Therefore, to show that G̃ 2 X̃, it
su�ces to show that G̃ also satisfies (17.10a). Since (B,+) satisfies (17.9) we have

B 9 =
’
:: 9⇠:

diag
⇣
+ 9 ( H̃ 9:+ 9 � HB

9:
+: )H

⌘
=

’
:: 9⇠:

diag
�
( 9:

�

where the second equality follows from (17.10b)(17.10d). Therefore G̃ satisfies (17.10)
and hence is in X̃. Conversely, if G̃ := (B,+ , �,✓,() satisfies (17.10) then substituting
(17.10b)(17.10d) into (17.10a) yields (17.9). Hence (B,+) 2 V.

Part 2: X̃ ⌘ Xtree. We explicitly construct a bijection between these two sets. Fix any
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G̃ := (B,+ , �,✓,() with the given +0 that satisfies (17.10). Define the mapping G̃ 7! G

from X̃ to C12(#+1)+30" by G := (B,E,✓,() where E := (E 9 , 9 2 #) with

E 9 := + 9+
H
9

(17.12)

In the rest of this proof we will show that G satisfies (17.1), i.e., the mapping G̃ 7! G

defined by (17.12) is from X̃ to Xtree.

In the next subsection we then show that this mapping G̃ 7! G is injective when the
network is connected and +0 is given (Lemma 17.2) and surjective when the network
is a tree and the linear cycle condition (17.1f) is satisfied (Lemma 17.3). It is therefore
a bijection between X̃ and Xtree.

First G clearly satisfies (17.1a). To prove (17.1b), we have from (17.10b) and (17.10c)

✓ 9: = H̃ 9:E 9 H̃
H
9:
+ HB

9:
E: H

BH
9:
� H̃ 9:+ 9+H

:
H
BH
9:
� HB

9:
+:+

H
9
H̃

H
9:

(17.13)

We have from (17.10b) and (17.10d) ( 9: = E 9 H̃H
9:
�+ 9+H

:
H
BH
9:

and (
H
9:

= H̃ 9:E 9 �
H
B

9:
+:+

H
9
. Hence

H̃ 9:+ 9+
H
:
H
BH
9:

= H̃ 9:E 9 H̃
H
9:
� H̃ 9:( 9: , H

B

9:
+:+

H
9
H̃

H
9:

= H̃ 9:E 9 H̃
H
9:
� (H

9:
H̃

H
9:

Substituting into (17.13) yields

✓ 9: = �H̃ 9:E 9 H̃H
9:
+ HB

9:
E: H

BH
9:
+

⇣
H̃ 9:( 9: + (H

9:
H̃

H
9:

⌘
which is (17.1b). Similarly (17.1c) follows from (17.10b)(17.10c)(17.10d). To prove
the psd and rank-1 conditions (17.1d)(17.1e), use (17.12) and (17.10c)(17.10d) to get"

E 9 ( 9:

(
H
9:

✓ 9:

#
=


+ 9

� 9:

� h
+

H
9

�
H
9:

i
,

"
E: (: 9

(
H
: 9

✓: 9

#
=


+:

�: 9

� h
+

H
:

�
H
: 9

i

which implies (17.1d)(17.1e). Finally to prove the cycle condition (17.1f), use again
( 9: = E 9 H̃H

9:
�+ 9+H

:
H
BH
9:

and (: 9 = E: H̃H
: 9
�+:+H

9
H
BH
: 9

to obtain

+ 9+
H
:

=
⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ bH

9:
, +:+

H
9

=
⇣
E: H̃

H
: 9
� (: 9

⌘ ⇣
H
BH
: 9

⌘†
+ bH

: 9

where the columns of b 9: are in null
⇣
H
B

9:

⌘
and the columns of b: 9 are in null

⇣
H
B

: 9

⌘
.

Therefore ⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
�

⇣
H
B

: 9

⌘† ⇣
E: H̃

H
: 9
� (: 9

⌘H
= b: 9 � bH

9:

which is (17.1f). This completes the proof that G satisfies (17.1), i.e., the mapping
G̃ 7! G defined by (17.12) is from X̃ to Xtree. ⇤

We next prove the mapping G̃ 7! G from X̃ to Xtree is a bijection under the condition
of Theorem 17.1.
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17.2.3 Tree topology, cycle condition, angle recovery

Consider the mapping G̃ := (B,+ , �,✓,() 7! G := (B,E,✓,() from X̃ to Xtree defined by
(17.12). Suppose +0 is given. In this subsection we show that the mapping is injective
when the network graph⌧ is connected and it is surjective when⌧ is a (connected) tree
and G 2 Xtree satisfies the linear cycle condition (17.1f). Moreover the cycle condition
becomes vacuous when assumption C17.1 holds, i.e., any G satisfying (17.7) also
satisfies (17.1f) for a radial network. We will also provide an algorithm to construct
the unique G̃ 2 X̃ given an G 2 Xtree.

Connected graph ⌧ and uniqueness of (+ , �).

Lemma 17.2 (Injectivity). Suppose the network graph ⌧ is a (connected) tree and
+0 is given. If G̃ := ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃ and Ĝ = ( B̂,+̂ , �̂, ✓̂, (̂) 2 X̃, with +̃0 = +̂0 = +0, are
mapped to the same G = (B,E,✓,() 2 Xtree through (17.12), then G̃ = Ĝ.

Proof By definition of the mapping G̃ 7! G we have B̃ = B = B̂, ✓̃ = ✓ = ✓̂, (̃ = ( = (̂.
Moreover +̃ 9+̃H

9
= E 9 = +̂ 9+̂H

9
for all 9 2 # . We have to show that +̃ = +̂ and �̃ = �̂. Since

the psd rank-1 decomposition (17.2) is unique up to an arbitrary phase,
�
+̃ 9 , �̃ 9:

�
and

(+̂ 9 , �̂ 9: ) can di�er only by an arbitrary phase shift i 9: for each ( 9 , :), and
�
+̃: , �̃: 9

�
and (+̂: , �̂: 9 ) can di�er only by an arbitrary phase shift i: 9 for each ( 9 , :). We argue,
by induction, that i 9: and i: 9 must be the same for all lines ( 9 , :) 2 ⇢ as long as the
network is connected. Moreover +̂0 = +̃0 implies that i 9: = i: 9 = 0 for all ( 9 , :) 2 ⇢ .

Assume without loss of generality a graph orientation where, since the graph is
a tree, all lines point away from bus 0. Start from bus 0 towards the leaf nodes in a
breadth-first search order, we have

+̂0 = +̃04
ii0 9 , �̂0 9 = �̃0 94

ii0 9 , 8 9 s.t. 0! 9 2 ⇢

Since +̃0 = +̂0 =+0, we must have i0 9 = 0 (we project all angles to (�c,c]). This means
that fixing +0 ensures that the psd rank-1 decomposition of (17.2) is unique over each
line 0! 9 2 ⇢ . Using (17.10b), we therefore have�

+̂0, �̂0 9
�
=

�
+̃0, �̃0 9

�
, H

B

0 9+̂ 9 = H̃0 9+̂0� �̂0 9 = HB0 9+̃ 9 , 8 9 s.t. 0! 9 2 ⇢ (17.14)

which implies that +̂ 9 and +̃ 9 di�er by a vector in the null space of HB0 9 . This is the base
case of the induction argument. Similarly, for each bus 9 that is adjacent to bus 0 (i.e.,
0! 9 2 ⇢) we have

+̂ 9 = +̃ 94
ii 9: , �̂ 9: = �̃ 9:4

ii 9: , 8: s.t. 9 ! : 2 ⇢

Multiplying both sides of the first equality by HB0 9 , we get from (17.14) that i 9: = 0

since HB0 9+̂ 9 < 0 and HB0 9+̃ 9 < 0 by the definition of X̃. Using again (17.10b), we have
for all 9 adjacent to bus 0,�
+̂ 9 , �̂ 9:

�
=

�
+̃ 9 , �̃ 9:

�
, H

B

9:
+̂: = H̃ 9:+̂ 9 � �̂ 9: = HB

9:
+̃: , 8: s.t. 9 ! : 2 ⇢ (17.15)

By induction, (17.15) must hold for all lines 9 ! : 2 ⇢ since the graph is connected.
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The same argument in the opposite direction shows that i: 9 = 0 and �̂: 9 = �̃: 9 for all
lines 9 ! : 2 ⇢ . Therefore G̃ = Ĝ and the mapping G̃ 7! G is injective. ⇤

In summary the psd rank-1 decomposition (17.2) is unique if the network graph
is a tree, +0 2 C3 is given, and (+ , �) satisfies Ohm’s law (17.10b). As we see in
Lemma 17.3 below, this fact implies that the phasors (+̃ 9 (G), �̃ 9: (G), �̃: 9 (G)) that we
will compute from a given G 2 Xtree is the unique psd rank-1 decomposition in (17.2).

Angle recovery on tree graph. Suppose the network graph ⌧ is a (connected) tree
with nonsingular series admittances HB

9:
and HB

: 9
(not necessarily equal). A power flow

solution G = (B,E,✓,() 2 Xtree does not contain voltage and current angles, but the psd
rank-1 condition (17.1d)(17.1e) ensures the existence of voltage and angle phasors (see
(17.2)). Given an G 2 Xtree, the algorithm from [136] to recover voltage and current
phasors (+̃ , �̃) := (+̃ (G), �̃ (G)) relies on the observation that, if ( 9: = +̃ 9 �̃H

9:
, then taking

the Hermitian transpose and multiplying both sides by +̃H
9
, we have

⇣
+̃

H
9
+̃ 9

⌘
�̃

H
9:

= +̃
H
9
(8 9 ) �̃ 9: =

1
tr(E 9 )

(
H
9:
+̃ 9 (17.16)

Assume without loss of generality a graph orientation where all lines point away from
bus 0. Compute recursively ( �̃ 9: ,+̃: , �̃: 9 ) from +̃ 9 (and E 9 ,( 9: ,(: 9 in G), starting from
9 = 0 where +̃0 = +0 is given with E0 = +0+

H
0 and propagating towards leaf nodes in a

bread-first search order: given +̃ 9 with E 9 =+ 9+H
9
,

�̃ 9: := �̃ 9: (G) :=
1

tr(E 9 )
(

H
9:
+̃ 9 , 8: s.t. 9 ! : 2 ⇢ (17.17a)

+̃: := +̃ 9: (G) := I
B

9:
H̃ 9:+̃ 9 � IB

9:
�̃ 9: , 8: s.t. 9 ! : 2 ⇢ (17.17b)

�̃: 9 := �̃: 9 (G) :=
1

tr(E: )
(

H
: 9
+̃: , 8: s.t. 9 ! : 2 ⇢ (17.17c)

where IB
9:

:= (HB
9:
)�1 and H̃ 9: := HB

9:
+ H<

9:
. The pseudo code is given in Algorithm 4.

Remark 17.1 (Singular HB
9:

or HB
: 9

). The computation of +̃: in (17.17b) uses the fact

that the series admittance HB
9:

is nonsingular. If HB
9:

is singular the computation of +̃:
in (17.17b) needs to be replaced by: determine any +̃: that satisfies

H
B

9:
+̃: = H̃ 9:+̃ 9 � �̃ 9: , 8: s.t. 9 ! : 2 ⇢

This requires the columns of the right-hand side matrix H̃ 9:+̃ 9 � �̃ 9: to be in range(HB
9:
),

in which case +̃: can be taken to be +̃: :=
⇣
H
B

9:

⌘† �
H̃ 9:+̃ 9 � �̃ 9:

�
. Similarly for HB

: 9
in

the opposite direction. See Exercise 17.2 for an example where line ( 9 , :) represents a
�� transformer whose HB

9:
is singular. ⇤

The role of the cycle condition (17.1f) is to ensure the consistency of the line
flows (( 9: ,(: 9 ) in opposite directions in the given power flow solution G 2 Xtree so
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Algorithm 4: Recover G̃ = ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃ from G = (B,E,✓,() 2 Xtree.
Down orientation where all lines point away from root bus 0.

Input: G = (B,E,✓,() 2 Xtree; +0 2 C3.
Output: G̃ = ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃

1: B̃  B; ✓̃  ✓; (̃  (;
2: #visit  {0};
3: while #visit < # do

4: find 9 ! : such that 9 2 #visit and : 8 #visit;
5: compute

�̃ 9:  
1

tr
�
E 9

� (H
9:
+̃ 9

+̃:  I
B

9:
H̃ 9:+̃ 9 � IB

9:
�̃ 9:

�̃: 9  
1

tr (E: )
(

H
: 9
+̃:

#visit  #visit[ {:}

6: end while

that a psd rank-1 decomposition (+ 9 , � 9: , �: 9 ) can be recovered from G. Specifically the
computation of +̃: in (17.17b) is so that the Ohm’s law �̃ 9: = H̃ 9:+̃ 9 � HB

9:
+̃: in (17.10b)

is satisfied. This, together with (17.10d), implies ( 9: = E 9 H̃H
9:
� +̃ 9+̃H

:
H
BH
9:

and hence

+̃ 9+̃
H
:

=
⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ bH

9:
, ( 9 , :) 2 ⇢ (17.18a)

where the columns of b 9: are in null(HB
9:
). However +̃: computed by (17.17b) must

also satisfy the Ohm’s law �̃: 9 = H̃: 9+̃: � HB
: 9
+̃ 9 in the opposite direction. This together

with (: 9 in (17.10d) yields

+̃:+̃
H
9

=
⇣
E: H̃

H
: 9
� (: 9

⌘ ⇣
H
BH
: 9

⌘†
+ bH

: 9
, ( 9 , :) 2 ⇢ (17.18b)

where the columns of b: 9 are in null(HB
: 9
). This implies the cycle condition (17.1f) on

G 2 Xtree.

We next prove that, given +̃0 := +0 2 C3, the phasors (+̃ 9 , �̃ 9: , �̃: 9 ) computed from
(17.17) is the unique psd rank-1 decomposition in (17.2) with respect to the given
G 2 Xtree, and that G̃ := (B,+̃ , �̃,✓,() 2 X̃.

Cycle condition and existence of (+ , �).

Lemma 17.3 (Surjectivity and tree graph ⌧). Suppose the network graph ⌧ is a
(connected) tree with nonsingular series admittances HB

9:
and HB

: 9
and that +0 is given.

Given an G = (B,E,✓,() 2 Xtree with E0 =+0+
H
0 , there is a unique G̃ := ( B̃,+̃ , �̃, ✓̃, (̃) 2 X̃

such that E 9 = +̃ 9+̃H
9
.
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Proof Fix an G = (B,E,✓,() 2 Xtree with a given +0 and E0 = +0+
H
0 . Let B̃ := B, ✓̃ := ✓

and (̃ := (. Compute (+̃ , �̃) by (17.17). We now show that G̃ := (B,+̃ , �̃,✓,() 2 X̃, i.e., G̃
satisfies (17.10), and E 9 = + 9+H

9
. Moreover (+̃ 9 , �̃ 9: ) and (+̃: , �̃: 9 ) are the unique psd

rank-1 decompositions in (17.2) with respect to G.

Clearly (17.10a) follows from (17.1a). It su�ces to prove by induction the following
hypothesis: If (8, 9) 2 ⇢ and

�̃8 9 = H̃8 9+̃8 � HB8 9+̃ 9 (17.19a)

✓8 9 = �̃8 9 �̃
H
8 9

, (8 9 = +̃ 9 �̃
H
8 9

(17.19b)

E 9 = +̃ 9+̃
H
9

(17.19c)

then for all : such that ( 9 , :) 2 ⇢

�̃ 9: = H̃ 9:+̃ 9 � HB
9:
+̃: (17.20a)

✓ 9: = �̃ 9: �̃
H
9:

, ( 9: = +̃ 9 �̃
H
9:

(17.20b)

E: = +̃:+̃
H
:

(17.20c)

The hypothesis in the opposite direction follows the same argument and is omitted.

For the base case 8 = 0 and (0, 9) 2 ⇢ , +̃0 := +0 is given and E0 = +̃0+̃
H
0 . Clearly

(17.19a) follows from (17.17b). We hence have to show (17.19b) and (17.19c). Sub-
stituting (17.17a) into +̃0 �̃

H
0 9 yields

+̃0 �̃
H
0 9 =

1
tr(E0)

+̃0

⇣
+̃

H
0 (0 9

⌘
=

1
tr(E0)

�
E0(0 9

�
= (0 9

where the last equality follows from the fact that, if (:; =+:; �H
:;

, then

E:(:; =
⇣
+:+

H
:

⌘ ⇣
+: �

H
:;

⌘
= tr(E: )(:; (17.21)

With E0 = +̃0+̃
H
0 and (0 9 = +̃0 �̃

H
0 9 , the psd rank-1 condition (17.1d)(17.1e) implies that

✓0 9 = �̃0 9 �̃H
0 9 , proving (17.19b). For (17.19c) we have from (17.17b)

+̃ 9+̃
H
9

= I
B

0 9

�
H̃0 9+̃0� �̃0 9

� �
H̃0 9+̃0� �̃0 9

�H
I
BH
0 9

= I
B

0 9

⇣
H̃0 9E0 H̃

H
0 9 + �̃0 9 �̃H

0 9 � H̃0 9(0 9 � (H
0 9 H̃

H
0 9

⌘
I
BH
0 9 = E 9

where the last equality follows from ✓0 9 = �̃0 9 �̃H
0 9 and (17.1b). This proves (17.19c).

Finally, since +0 is given and (17.19a) holds, (+0, �0 9 ) is the unique psd rank-1 decom-
position in (17.2), as shown in the proof of Lemma 17.2. This completes the proof of
the base case.

The induction proof that (17.19) implies (17.20) follows the same argument as in
the base case. Specifically (17.20a) follows from (17.17b). The computation (17.17a)
yields

+̃ 9 �̃
H
9:

=
1

tr(E 9 )
+̃ 9

⇣
+̃

H
9
( 9:

⌘
= ( 9:
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where the last equality follows from (17.21). With E 9 = +̃ 9+̃H
9

and ( 9: = +̃ 9 �̃H
9:

, the psd

rank-1 condition (17.1d)(17.1e) implies that ✓ 9: = �̃ 9: �̃H
9:

, proving (17.20b). Finally for
(17.20c) we have from (17.17b)

+̃:+̃
H
:

= I
B

9:

�
H̃ 9:+̃ 9 � �̃ 9:

� �
H̃ 9:+̃ 9 � �̃ 9:

�H
I
BH
9:

= E 9

where the last equality uses ✓ 9: = �̃ 9: �̃H
9:

and (17.1b). This proves (17.20c). Finally,
given + 9 in (17.19a) and (17.19a), (+ 9 , � 9: ) is the unique psd rank-1 decomposition in
(17.2), as shown in the proof of Lemma 17.2. This completes the induction proof. ⇤

We close this subsection by explaining another way to compute (+ , �) from an G 2
Xtree that explains why the cycle condition becomes vacuous when assumption C17.1
holds and how the linear cycle condition (17.22) needs to be replaced by a nonlinear

condition when the network graph ⌧ contains cycles. Let +̃ 9 :=
⇣
+̃
0

9
,+̃1
9
,+̃2
9

⌘
denote

the voltages at bus 9 . Let �̃ 9: :=
⇣
�̃
0

9:
, �̃1
9:

, �̃2
9:

⌘
denote the sending-end currents from

9 to : . Write +̃ q
9
= |+̃ q

9
| exp(i\q

9
) for each phase q 2 {0,1,2}. We will first determine

the magnitude and angle ( |+̃ q
9
|,\q

9
) of the voltage, and then those ( | �̃ q

9:
|,\ �̃ q

9:
) of line

current �̃ q
9:

. Similarly for �̃: 9 in the opposite direction. We describe the calculation in
four steps:

1. Voltage magnitudes |+̃ 9 (G) |. Since E 9 2 S3
+ is positive semidefinite its diagonal

entries diag(E 9 ) =
⇣
E
00

9
,E11
9

,E22
9

⌘
are nonnegative. Set the magnitudes of +̃ 9 :=

+̃ 9 (G) to |+̃ q
9
| (G) :=

q
E
qq

9
for q 2 {0,1,2}.

2. Angle di�erences V 9: (G). To determine the phase angle \ 9 of +̃ 9 , note that G
satisfies the cycle condition (17.1f), reproduced here:⇣

E 9 H̃
H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ bH

9:
=

⇣
H
B

: 9

⌘† ⇣
E: H̃

H
: 9
� (: 9

⌘H
+ b: 9 (17.22)

where the columns of b 9: and b: 9 are in the null spaces of
⇣
H
B

9:

⌘
and

⇣
H
B

: 9

⌘
respectively. (Given an G 2 Xtree, the matrix bH

9:
� b: 9 is fixed.) As for the single-

phase case we define the line angle di�erence implied by the power flow solution
G 2 Xtree. Specifically let (from (17.22))

V 9: (G) := \diag
✓⇣
E 9 H̃

H
9:
� ( 9:

⌘ ⇣
H
BH
9:

⌘†
+ bH

9:

◆
, ( 9 , :) 2 ⇢

and let V(G) := (V 9: (G), ( 9 , :) 2 ⇢) 2 (�c,c]3 |⇢ | . From (17.18), V 9: (G) = \+̃ 9 �
\+̃: . The cycle condition (17.22) ensures the consistency between (17.18a)

and (17.18b), i.e., if V: 9 (G) := \diag
✓⇣
E: H̃

H
: 9
� (: 9

⌘ ⇣
H
BH
: 9

⌘†
+ bH

: 9

◆
, then V: 9 (G) =

�V 9: (G) under (17.22).
3. Voltage angles \ 9 . Since the network graph ⌧ is a (connected) tree, " := |⇢ | = # .

Let ⇠ denote the (# + 1) ⇥" incidence matrix. Let \0 := \+0 2 (�c,c]3 denote
the voltage angle at the reference bus 0, let \̂ 2 (�c,c]3# denote the voltage angles



17.2 Equivalence, angle recovery and cycle condition 929

at non-reference buses, and let \ =:
�
\0, \̂

�
. We set V(G) = (⇠T ⌦ I)\ and claim that

this equation has a solution for \ when ⌧ is a tree. To see this, partition ⇠ into its
first row 2

T
0 and the remaining " = # rows ⇠̂ so that

⇠
T =:

⇥
20 ⇠̂

T⇤
The reduced incidence matrix ⇠̂T is # ⇥# and nonsingular. Therefore 20 = ⇠̂T

[

for some [ 2 C# . Then

V(G) =
⇣
⇠

T ⌦ I
⌘
\ =

⇣
2

T
0 ⌦ I

⌘
\0 +

⇣
⇠̂

T ⌦ I
⌘
\̂ =

⇣
⇠̂

T ⌦ I
⌘ �
\̂ + ([ ⌦ \0)

�
(17.23)

where the last equality follows from
⇣
⇠̂

T
[

⌘
⌦ I =

⇣
⇠̂

T ⌦ I
⌘
([ ⌦ I) from Lemma

14.3 and ([ ⌦ I) \0 = [ ⌦ \0. Since ⇠̂T is nonsingular for a radial network, so is⇣
⇠̂

T ⌦ I
⌘
. Hence, for any G 2 Xtree, there is always a subspace of solutions for the

voltage angle \ := \ (G):

\̂ := \̂ (G) =
⇣
⇠̂

T ⌦ I
⌘�1

V(G)� ([ ⌦ \0) 2 (�c,c]3#

unique up to a reference angle \0 2 (�c,c]3.
In summary, given an G 2Xtree and a reference voltage+0 (and hence \0 := \+0),

we define the voltages + 2 C3(#+1) by

+̃
q

9
:= +̃

q

9
(G) :=

q
E
qq

9
exp

⇣
i\
q

9
(G)

⌘
, 9 2 # , q 2 {0,1,2}

where \ := \ (G) := (\0, \̂ (G)) is the unique solution of (17.23). This is abbreviated
as

+̃ 9 := +̃ 9 (G) := diag
�p
E 9

�
� 4i\ 9 (G) , 9 2 #

where � denotes componentwise product.
4. Currents ( �̃ 9: , �̃: 9 ). Define the line currents ( �̃ 9: , �̃: 9 ) := ( �̃ 9: (G), �̃: 9 (G)) in terms

of G and +0:

�̃
q

9:
(G) :=

q
✓
qq

9:
exp

⇣
i

⇣
\
q
0

9
(G)� \(q

0
q

9:

⌘⌘
, ( 9 , :) 2 ⇢ , q 2 {0,1,2} (17.24a)

�̃
q

: 9
(G) :=

q
✓
qq

: 9
exp

⇣
i

⇣
\
q
0

:
(G)� \(q

0
q

: 9

⌘⌘
, ( 9 , :) 2 ⇢ , q 2 {0,1,2} (17.24b)

The q0 in (17.24) can be any phase in {0,1,2} because (q
0
q

9:
=+ q

0

9
�̄
q

9:
.

Remark 17.2 (Cycle condition and meshed ⌧). 1. The cycle condition (17.22). be-
comes vacuous when HB

9:
= HB

: 9
because (17.6) (or (17.8) when (H<

9:
, H<
: 9
) = 0)

allows us to eliminate branch variables in the :! 9 direction.
2. If ⌧ contains cycles then " > # and the 3" ⇥3# matrix ⇠T ⌦ I in (17.23) has a

column rank of 3# < 3" since rank(�⌦ ⌫) = rank� · rank⌫ from Lemma 14.3.
This means that (17.23) has a solution for \ if and only if V(G) is in the column
space of ⇠T ⌦ I, i.e., the linear cycle condition (17.22) needs to be replaced by the
nonlinear cycle condition that V(G) 2 range

�
⇠

T ⌦ I
�

in that case. ⇤
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17.3 Unbalanced three-phase analysis

17.3.1 System model = device model + network model

The overall system model of three-phase devices connected by three-phase lines and
transformers, its specification and analysis are similar to that in the bus injection model
discuss in Chapter 16.2. The only di�erence is that the power flow equations are those
for BFM rather than BIM. Specifically the overall model consists of:

1. A device model for each three-phase device 9 (as in BIM). For ideal devices, this
can either be:
• Internal model (14.38) and conversion rules (14.10) and (14.11)(14.12); or
• External model summarized in Tables 14.4 and 14.5 when only terminal quan-

tities are needed.
For nonideal devices, this can either be:
• Internal model summarized in Table 14.3 and conversion rules (14.10) and

(14.11)(14.12); or
• External model summarized in Table 14.3 when only terminal quantities are

needed.
2. A network (BFM) model that relates terminal power, current, and voltage power

(B, �,+). Any equivalent model can be used, whichever is convenient for the
problem under study:
• The BFM (17.1), (17.4), (17.7) for radial networks. To connect with the

terminal power, current, and voltage of a device model at a each bus, we
also introduce nodal voltages + := (+ 9 , 9 2 #) and sending-end line currents
�̃ :=

�
( �̃ 9: , �̃: 9 ) : 9 ! : 2 ⇢

�
as additional variables that satisfy:

E 9 = + 9+
H
9
, ✓ 9: = � 9: �

H
9:

, ( 9: = + 9 �
H
9:

or
• The BFM (17.11) for general networks (under assumption C17.1).

While the system model of Chapter 16.2.1 is linear if only voltage sources, current
sources and impedances are involved, the BFM models here are quadratic, leading to
a nonlinear system model even if power sources are absent.

A typical three-phase analysis problem can be specified and analyzed the same way
as described in Chapter 16.2 for BIM. A solution typically takes the following steps:

1. Write down the models of the given collection of three-phase devices, either their
internal models and conversion rules or their external models (if internal variables
are not required).

2. Write down network equations that relate the terminal variables.
3. Steps 1 and 2 specify a system of nonlinear equations that relate terminal and
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internal variables as well as given parameters. It generally needs to be solved nu-
merically. We will describe in Chapter 17.4 such an algorithm for radial networks,
the three-phase backward-forward sweep (BFS).

4. Usually we first compute the terminal variables
�
B 9 , � 9 ,+ 9

�
using network equa-

tions, together with some of
�
W 9 , V 9

�
, and then determine the internal variables⇣

+
. /�
9

, �. /�
9

, B. /�
9

⌘
using the conversion rules.

17.3.2 Examples

We now illustrate with examples three-phase BFMs and the analysis procedure. Sup-
pose assumption C17.1 holds.

Example 17.1 (Power source in . configuration). Consider the system in Figure 17.1
where a source supplies a load, both in . configuration, through a line. The following
are given:

• The constant-power source f.
9

:=
⇣
f
0=

9
,f1=

9
,f2=

9

⌘
with \+00 := 0�.

• The impedance load I.
:

:= Diag
�
I
0=

:
, I1=
:

, I2=
:

�
.

• The series impedance matrix I 9: 2 C3⇥3 of the line. Its shunt admittance matrices
are assumed zero.

We assume that both neutrals are directly grounded and all voltages are defined with
respect to the ground, so that the neutral voltages W 9 := +=

9
= W: := +=

:
= 0. Derive the�

B
.

:
,E: ,✓ 9: ,( 9:

�
.

vk , sk

Sjk ,

Figure 17.1 Example 17.1.

Solution. The system is specified by (since assumption C17.1 holds):

1. Netowrk model: The power flow equation (17.7) that relates terminal variables,
specialized to the two-bus system in Figure 17.1, is:

diag(( 9: ) = B 9 , diag
�
( 9: � I 9:✓ 9:

�
= �B: (17.25a)

E 9 � E: =
⇣
I 9: (

H
9:
+ ( 9: IH

9:

⌘
� I 9:✓ 9: IH

9:
(17.25b)"

E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1 (17.25c)
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2. Device model: The internal model of . -configured impedance is (since +: =+.
:
=

I
.

:
�
.

:
and �.

:
= � 9: ):

E: = I
.

:
✓ 9: I

.H
:

, B
.

:
= diag

⇣
I
.

:
✓ 9:

⌘
(17.26a)

and the conversion rule (14.10) between internal and terminal variables is:

B 9 = �
⇣
f
.

9
++=

9
� 9:

⌘
= �f.

9
, B: = �

⇣
B
.

:
++=

:

⇣
�� 9:

⌘⌘
= �B.

:
(17.26b)

The system of quadratic equations (17.25)(17.26) cannot generally be solved in closed
form, but can be solved numerically for

�
B
.

:
,E: ,✓ 9: ,( 9:

�
(see Chapter 17.4).

To better appreciate the structure of the three-phase model we now reduce
(17.25)(17.26) to three quadratic equations in three unknowns � 9: 2 C3. Relate ✓ 9:
to f.

9
by eliminating the terminal powers (B 9 , B: ), line power ( 9: and internal power

B
.

:
from (17.25a) (17.26):

�f.
9

= diag
⇣⇣
I
.

:
+ I 9:

⌘
✓ 9:

⌘
(17.27)

This is a system of three complex quadratic equations in three unknown line currents

� 9: :=
⇣
�
0

9:
, �1
9:

, �2
9:

⌘
because (17.25c) means that ✓ 9: has a rank-1 decomposition

✓ 9: = � 9: �H
9:

(from (17.2)). Let /.
:

:= I.
:
+ I 9: . Then (17.27) is explicitly:

�f.
9

= diag
©≠≠
´

266664
/
00

:
/
01

:
/
02

:

/
10

:
/
11

:
/
12

:

/
20

:
/
21

:
/
22

:

377775

2666664

�
0

9:

�
1

9:

�
2

9:

3777775
h
�
0H
9:

�
1H
9:

�
2H
9:

i™ÆÆ
¨

or

�f0=
9

= /
00

:
�
0

9:
�
0H
9:

+ /01
:
�
1

9:
�
0H
9:

+ /02
:
�
2

9:
�
0H
9:

�f1=
9

= /
10

:
�
0

9:
�
1H
9:

+ /11
:
�
1

9:
�
1H
9:

+ /12
:
�
2

9:
�
1H
9:

�f2=
9

= /
20

:
�
0

9:
�
2H
9:

+ /21
:
�
1

9:
�
2H
9:

+ /22
:
�
2

9:
�
2H
9:

There is a power flow solution for (17.25)(17.26) if and only if (17.27) has a solution
for � 9: , unique up to an angle that can be determined from the given \+00 = 0�.

Once � 9: and hence ✓ 9: are determined from (17.27), all other variables can be
obtained. Specifically since +: = +.

:
++=

:
= +.

:
by assumption, the load voltage and

power are given by (17.26a):

E: = E
.

:
= I

.

:
✓ 9: I

.H
:

=
⇣
I
.

:
� 9:

⌘ ⇣
I
.

:
� 9:

⌘H
, B

.

:
= diag

⇣
I
.

:
✓ 9:

⌘

Since E: has a rank-1 decomposition due to (17.25c),+: :=
�
+
0

:
,+1
:

,+2
:

�
can be obtained

from the first equation as +: = I.
:
� 9: , up to an angle to be determined. Finally we



17.3 Unbalanced three-phase analysis 933

obtain + 9 from �f.
9
= B 9 = diag

⇣
+ 9 �

H
9:

⌘
due to (17.26b) and then ( 9: = + 9 �H

9:
. The

given \+0
9
= 0� then fixes the angles of

�
+ 9 ,+: , � 9:

�
. ⇤

The next example illustrates two solution approaches for constant-power source in
� configuration. Both relate the terminal variables of each device to its parameters and
then relates these terminal variables by the power flow equation. The first approach
boils down to computing the internal current ��

9
of the power source from a system

of quadratic equations, which then yields
⇣
� 9 , V�

9

⌘
and all other variables. The sec-

ond approach boils down to computing the terminal current and the zero-sequence

component
⇣
� 9 , V�

9

⌘
of the power source and then other variables.

As for Example 16.10, only W 9 of the source needs to be given. All other variables

including
⇣
V
�
9
,W: , V�

:

⌘
of the devices can then be determined. The solution method of

these two examples is similar because the overall models in these examples di�er only
in their power flow equations, BIM (16.7) versus BFM (17.11). The positive definite
and rank-1 condition in (17.25c) leads to the equivalence of BFM (17.11) to (17.25)
and BIM (16.7) (Theorem 17.1).

Example 17.2 (Power source in� configuration). Consider the system in Example 17.1

except that the power source
⇣
f
�
9
,W 9

⌘
and the impedance load I�

:
are in� configuration

with \+01
9

:= 0�. Solve for the remaining variables.

Solution 1: compute ��
9
. The system is specified by:

1. Netowrk model: The power flow equation that relates terminal variables remains
(17.25).

2. Device model for power source f�
9
: At bus 9 we use the model (14.33b) and the

conversion rule that relates the terminal variables
�
+ 9 , � 9 , B 9

�
to internal power f�

9

and internal current ��
9
:

B 9 := diag
⇣
+ 9 �

H
9

⌘
(17.28a)

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
= diag

⇣
�+ 9 ��H

9

⌘
, � 9 = ��T

�
�
9

(17.28b)

3. Device model for impedance I�
:
: At bus : the external model in Table 14.5 relates

the terminal variables (+: , �: , B: ) to impedance I�
:

through the admittance matrix
/
�
:

defined in (14.25d):

B: := diag
⇣
+: �

H
:

⌘
, +: = �/��: + W:1, 1

T
�: = 0 (17.28c)

The device models (17.28) relate terminal variables
�
+ 9 , � 9 , B 9

�
and (+: , �: , B: ) to the

internal parameters
⇣
f
�
9
, I�
:

⌘
of the devices through W: (which is to be determined).

The power flow equation (17.25) relates these terminal variables.



934 Branch flow models: radial networks

The rank-1 condition (17.25c) connects these terminal variables and the variables�
E 9 ,E: ,✓ 9: ,( 9:

�
of (17.25):

� 9 = � 9: = ��: , ( 9: = + 9 �
H
9:

(17.29a)

✓ 9: = � 9: �
H
9:

, E 9 = + 9+
H
9
, E: = +:+

H
:

(17.29b)

The equations (17.25)(17.28)(17.29) are a system of quadratic equations in vari-

ables
⇣
+ 9 , � 9 , B 9 , ��

9

⌘
, (+: , �: , B: ,W: ), and

�
� 9: ,E 9 ,E: ,✓ 9: ,( 9:

�
. They can be solved

numerically. Once these terminal variables are determined, the internal variables⇣
V
�
9
,+�
:

, ��
:
, B�
:
, V�
:

⌘
of the devices can be determined. For example once +: is de-

termined from the network equations we can obtain +�
:
= �+: and then ��

:
= I�1

9:
+
�
:

and hence V�
:
.

To better appreciate the structure of this model we now reduce (17.25)(17.28)(17.29)
to 3 quadratic equations in 3 variables ��

9:
. Theorem 17.1 implies the equivalence of

BFMs (17.25) and (17.11). In particular (from (17.11b))

+ 9 �+: = I 9: � 9:

which can also be derived by substituting (17.29) into (17.25b). Substitute +: from
(17.28c) and �: = �� 9: into this equation to eliminate +: :

+ 9 = /̂
�
:
� 9: +W:1, 1

T
� 9: = 0 (17.30)

where /̂�
:

:= /�
:
+ I 9: is the equivalent of the line impedance in series with the load

impedance. Substituting � 9: = � 9 = ��T
�
�
9

into (17.30) and substituting the resulting

+ 9 into (17.28b), we obtain a quadratic equation in ��
9

(using �1 = 0):

f
�
9

:= �diag
⇣⇣
�/̂�

:
�T

⌘
�
�
9
�
�H
9

⌘
, 9 2 # (17.31)

There is a power flow solution to (17.25)(17.28)(17.29) if and only if (17.31) has a
solution for ��

9
. Once ��

9
is determined it yields � 9: = � 9 = ��T

�
�
9

and V�
9

:= 1
31

T
�
�
9
.

Since (17.31) is the same equation as (16.29) in Example 16.10, we can follow the same

procedure there to derive all variables
⇣
+ 9 , � 9 , B 9 , V�

9

⌘
and (+: , �: , B: ,W: ). Then we can

obtain internal variables
�
+
�
:

, ��
:
, B�
:
, V�
:

�
and the BFM variables

�
� 9: ,E 9 ,E: ,✓ 9: ,( 9:

�
from (17.29). In particular, +: yields +�

:
and hence ��

:
and V�

:
. (To get more insight on

its solution, see the solution of the balanced case in Exercise 16.9.)

Solution 2: compute � 9 . Instead of the power source model (17.28b), we can also use
the external model in Table 14.5 to relate the terminal current � 9 direclty to the internal
power f�

9
:

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
= �diag

⇣
�

⇣
+ 9 �

H
9

⌘
�†

⌘
+ V�

9
�+ 9 , 1

T
� 9 = 0 (17.32)

where the internal variable V�
9

is to be determined. Substituting (17.30) into (17.32)
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and noting � 9 = � 9: we have

f
�
9
= �1

3
diag

⇣
�/̂�

:
� 9: �

H
9:
�T

⌘
+ V�

9
�/̂�

:
� 9: , 1

T
� 9: = 0 (17.33)

There is a power flow solution to (17.25)(17.28)(17.29) if and only if there is a solution

� 9: := � 9: (f�
9
) and V�

9
:= V�

9
(f�

9
) to (17.33). Given a solution

⇣
� 9: , V�

9

⌘
and hence ��

9:
,

all other variables can be derived as in Solution 1. ⇤

17.4 Backward forward sweep

In this section we extend the backward forward sweep (BFS) of Chapter 5.4 for the
computation of power flow solutions from single-phase radial networks to three-phase
radial networks. As explained in Chapter 5.4.1 BFS can be interpreted as a Gauss-Siedel
algorithm that computes a fixed point of BFM equations. It has two special structures
that exploit the tree topology of the network. First it partitions the power flow variable
into two vectors G and H and updates them iteratively in an outer loop. Typically G
consists of branch variables, e.g., branch currents or powers, and H consists of nodal
variables, e.g., nodal voltages. Second, for each outer iteration, it computes iteratively
each component of (G, H) in an inner loop that makes use of a spatially recursive
structure enabled by the tree topology. Specifically it computes the components of
G iteratively from leaf nodes towards the root of the tree (backward sweep) and then
computes the components of H iteratively from the root towards the leaf nodes (forward
sweep). The design of BFS involves the choice of power flow equations and variables
(G, H) based on what information is given in a power flow problem. These choices are
not unique and may have di�erent convergence properties. The general algorithmic
structure described in Chapter 5.4.1 applies to three-phase radial networks as well.
We have presented two BFS algorithms in Chapters 5.4.2 and 5.4.3. In this section
we describe an algorithm that extends both single-phase algorithms to the three-phase
setting. As we will see, the main addition is the computation of internal variables
associated with each three-phase device.

We assume in this section that HB
9:

= HB
: 9

so that all lines ( 9 , :) have a three-phase
c-circuit representation.

17.4.1 Complex form BFM

Consider a radial network modeled as a directed graph⌧, rooted at bus 0 and with each
line pointing away from the root bus 0. Each line is characterized by 3⇥3 admittance

matrices
⇣
H
B

9:
, H<
9:

, H<
: 9

⌘
. Suppose there is exactly one three-phase power source at

each bus 9 either in . or � configuration. At every non-root bus 9 2 # , the internal
power f. /�

9
2 C3 of the power source is given and its terminal voltage and current
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(+ 9 , � 9 ) are to be determined. At bus 0, +0 2 C3 is given and the current injection �0
and the internal power injection B. /�0 are to be determined. We assume for simplicity
that all . -configured devices 9 are grounded (C14.1) with I=

9
= 0 so that +=

9
= 0 (see

Remark 17.4 below on the case when I=
9
< 0 so that +=

9
= �I=

9

⇣
1

T
� 9

⌘
).

Consider bus 9 whose parent node is 8 (so 8! 9 is a directed edge) and whose
child nodes are : (so 9 ! : are directed edges); see Figure 17.2. The current balance

k

Ijk

Iij

Vi

Vj

sj , Ij

Y

Y

Figure 17.2 BFS on unbalanced three-phase radial networks.

equation is

� 9 = � 98 +
’
:: 9!:

� 9:

Write the current � 98 in terms of �8 9 in the direction 8! 9 of the line using the current
loss equation (from (17.10b)):

�8 9 + � 98 = H
<

8 9
+8 + H<98+ 9

Substituting into the current balance equation and rearranging, we have

� 9 = ��8 9 + H<8 9+8 + H<98+ 9 +
’
:: 9!:

� 9:

Rewriting this as a spatial recursion suitable for backward sweep to calculate line
currents �8 9 from all currents � 9: in the previous level, given voltages (+8 ,+ 9 ) from the
previous iteration:

�8 9 =
’
:: 9!:

� 9: �
⇣
� 9 � H<8 9+8 � H<98+ 9

⌘
(17.34a)

The forward sweep to calculate voltages + 9 from +8 and �8 9 is:

+ 9 = +8 + IB8 9 H<8 9+8 � IB8 9 �8 9 (17.34b)

where IB
8 9

:=
⇣
H
B

8 9

⌘�1
are series impedances. These network equations relate line cur-

rents � 9: as well as terminal voltages and currents
�
+ 9 , � 9

�
at buses across the network.
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Each terminal variable
�
+ 9 , � 9

�
is related to the internal power f. /�

9
through a three-

phase device model. We adopt the following device models for reasons discussed in
Remark 17.3 below (from (14.21b) and (14.33b) and recall that+=

9
= 0 by assumption):

. configuration: f
.

9
= diag

⇣
+ 9 �

.H
9

⌘
, � 9 = ��.

9

� configuration: f
�
9
= diag

⇣
�+ 9 ��H

9

⌘
, � 9 = ��T

�
�
9

Given + 9 , the forward sweep function 6 9 in (5.34b) to update the nodal variable⇣
�
. /�
9

, � 9
⌘

is:

. : �
.

9
=

�
Diag +̄ 9

��1
f̄
.

9
, � 9 = ��.

9
, 9 2 # (17.35a)

� : �
�
9
=

�
Diag

�
�+̄ 9

� ��1
f̄
�
9
, � 9 = ��T

�
�
9
, 9 2 # (17.35b)

where Ē denotes the componentwise complex conjugate of a vector E. Here, we have
used, for vectors E,F 2 C=, diag(EFH) = Diag(E)F̄ = Diag(F̄)E 2 C= where Diag(E)
is the diagonal matrix whose diagonal is the vector E.

To construct the backward forward sweep, identify lines 9 ! : 2 ⇢ by the buses

: 2 # . Given +0 and f :=
⇣
f
. /�
9

, 9 2 #
⌘
, the BFS will compute the following branch

and nodal variables respectively:

G :=
�
�8 9 , 9 2 #

�
, H :=

⇣
+ 9 , � 9 , �

. /�
9

, 9 2 #
⌘

All other variables, such as injections �0, B0, B. /�0 2C3, branch flow matrices ( 9: 2C3⇥3,
and

�
W 9 , V 9

�
2 C2 of power sources f�

9
, can be computed once (G, H) are determined.

The update function 5 in the backward sweep to update G is defined by (17.34a) and the
update function 6 in the forward sweep to update H is defined by (17.34b) and (17.35).
The function 5 is jointly linear in (G, H). The function 6 is linear in G but nonlinear in
H because of the power source model (17.35).

The boundary conditions are

+0 2 C3 is given , � 9: := 0 for all leaf nodes 9 , + 9 (0) :=+0, 9 2 # (17.36a)

In addition, given the initial voltages
�
+ 9 (0), 9 2 #

�
, the terminal and internal currents⇣

� 9 (0), �. /�(0)
9

, 9 2 #
⌘

are determined using (17.35):

. : �
.

9
(0) =

�
Diag +̄ 9 (0)

��1
f̄
.

9
, � 9 (0) = ��.

9
(0), 9 2 # (17.36b)

� : �
�
9
(0) =

�
Diag

�
�+̄ 9 (0)

� ��1
f̄
�
9
, � 9 (0) = ��T

�
�
9
(0), 9 2 # (17.36c)

The BFS algorithm defined by (17.34)(17.35)(17.36) proceeds as follows.

1. Input: voltage +0 pu and internal power
⇣
f
. /�
9

, 9 2 #
⌘
.

2. Initialization.
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• � 9: (C) := 0 for all leaf nodes 9 for all iterations C = 1,2, . . . .
• +0 (C) :=+0 for all C = 0,1, . . . .

• + 9 (0) := +0 at all buses 9 2 # . Compute
⇣
� 9 (0), �. /�

9
(0)

⌘
using

(17.36b)(17.36c).
3. Backward forward sweep. Iterate for C = 1,2, . . . until a stopping criterion (see

below) is satisfied:
(a) Backward sweep. Starting from the leaf nodes and iterating towards bus 0,

compute for every 8! 9 2 ⇢

�8 9 (C)  
’
:: 9!:

� 9: (C)�
⇣
� 9 (C �1)� H<

8 9
+8 (C �1)� H<

98
+ 9 (C �1)

⌘
(17.37a)

(b) Forward sweep. Starting from bus 0 and iterating towards the leaf nodes,
compute for every 9 2 #

+ 9 (C)  +8 (C) + IB8 9 H<8 9+8 (C)� IB8 9 �8 9 (C) (17.37b)

. : �
.

9
(C)  

�
Diag+̄ 9 (C)

��1
f̄
.

9
, � 9 (C)  ��.9 (C) (17.37c)

� : �
�
9
(C)  

�
Diag

�
�+̄ 9 (C)

� ��1
f̄
�
9
, � 9 (C)  ��T

�
�
9
(C) (17.37d)

where IB
8 9

:=
⇣
H
B

8 9

⌘�1
.

4. Output: branch variable G :=
�
�8 9 (C), 9 2 #

�
and nodal variable H :=⇣

+ 9 (C), � 9 (C), �. /�(C)
9

, 9 2 #
⌘
.

A stopping criterion can be based on the discrepancy between the given internal

powers f. /�
9

and those implied by the nodal variable
⇣
+ 9 (C), � 9 (C), �. /�(C)

9
, 9 2 #

⌘
in

each iteration C. From the device model (17.35), let

f̂9 (C) :=

8>><
>>:

diag
⇣
+ 9 (C)�.H

9
(C)

⌘
for . configuration

diag
⇣
�+ 9 (C)��H

9
(C)

⌘
for � configuration

Then a stopping criterion can be

kf̂(C)�f. /�k22 :=
’
92#

⇣
f̂9 (C)�f. /�

9

⌘2
< n

for a given tolerance n > 0.

Remark 17.3 (Choice of variables). 1. We have used the current balance equa-
tion (17.34a) to relate terminal voltages and currents (+ 9 , � 9 ) across the net-
work. This leads to a linear update function (17.34a) for G in the backward
sweep. Nonlinearity shows up in the device model (17.35) for the nodal vari-

able H :=
⇣
+ 9 , � 9 , �

. /�
9

, 9 2 #
⌘

in the forward sweep.
2. Instead of using terminal currents � 9 , one can alternatively use terminal powers B 9

as the approach in [38] (this is a direct extension of the single-phase BFS in [29] to
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the three-phase setting). In this case, substitute � 9 in (17.34a) by � 9 =
�
Diag+̄ 9

��1
B̄ 9

to obtain a nonlinear update function for G:

�8 9 =
’
:: 9!:

� 9: �
⇣ �

Diag +̄ 9
��1

B̄ 9 � H<8 9+8 � H<98+ 9
⌘
, 9 2 #

In this case the nodal variable becomes H :=
⇣
+ 9 , B 9 , �

. /�
9

, 9 2 #
⌘

and the update
function (17.35) becomes

. : �
.

9
=

�
Diag +̄ 9

��1
f̄
.

9
, B 9 = �f.

9
, 9 2 #

� : �
�
9
=

�
Diag

�
�+̄ 9

� ��1
f̄
�
9
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘
, 9 2 #

3. Unlike in Example 17.2, the BFS method here does not required W 9 to be specified.
This is because +0 is given (not just +00 ) which yields W0; + 9 and W 9 at other buses
are computed iteratively from BFS using network equations (??). Given + 9 , ��

9

and hence V 9 can be obtained from (17.35b). ⇤

Remark 17.4 (Nonzero I
=

9
). If we had assumed C14.1 with I

=

9
< 0 so that +=

9
=

�I=
9

⇣
1

T
�

⌘
, then the device model (17.35a) for a . -configured power source becomes

nonlinear in � 9 (from (14.21b)):

. : + 9 = �
�
Diag

�
�̄ 9

� ��1
f
.

9
� I=

9

⇣
11

T
⌘
� 9 , 9 2 #

Given voltage + 9 this is a system of three quadratic equations in three unknowns
� 9 2 C3:

I
=

9

⇣
1

T
� 9

⌘
�̄ 9 + Diag

�
+ 9

�
�̄ 9 + f.9 = 0

The linear update functions (17.35a) (17.36b) then become nonlinear. Moreover the
update of � 9 is defined only implicitly by a solution of this system of quadratic equations.

⇤

17.4.2 DistFlow model

Consider a three-phase radial network modeled by a directed graph with every link :!
9 2 ⇢ points away from the root bus 0. Assume for simplicity zero shunt admittances,
H
<

9:
= H<

: 9
= 0. The three-phase DistFlow equations for the down orientation are (17.7).

Given +0, hence E0 := +0+
H
0 , and internal power f :=

⇣
f
. /�
9

, 9 2 #
⌘
, we wish to

compute the other variables from (17.7).

The nonlinear equation E 9✓ 9: = |( 9: |2 in (5.9c) for the single-phase model is replaced
by (17.7c) in the three-phase model, reproduced here"

E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1
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These equations are an implicit description and do not directly yield an update equa-
tion for a BFS algorithm, as E 9✓ 9: = |( 9: |2 does in the single-phase model. Instead,
they imply that there exist voltage and current phasors (+ , �̃) that satisfy the rank-1
decomposition in (17.2). Here we use �̃ := ( �̃ 9: , 9 ! : 2 ⇢) to denote line currents to
di�erentiate it from terminal currents � 9 := (� 9 , 9 2 #) in a device model. In order to
compute DistFlow variables (E,✓,() we have to compute iteratively the voltages + 9
and (sending-end) line currents �̃ 9: in the process. Therefore, instead of designing an
BFS algorithm based on (17.7), we will use the following network equations derived
from (17.7) to compute

�
+ , �, �̃

�
:

�̃8 9 = �� 9 +
’
:: 9!:

�̃ 9: (17.38a)

+ 9 = +8 � IB8 9 �̃8 9 (17.38b)

All other terminal variables such as E8 =+8+H
8

, ✓8 9 = �̃8 9 �̃H
8 9

, and (8 9 =+8 �̃H
8 9

, can then be
derived. Note that we have replaced the power balance equation (17.7a) by the current
balance equation (17.38a). The network equation (17.38) is the same as (17.34) with
�̃8 9 = �8 9 . Hence the three-phase DistFlow model can be solved using the BFS algorithm
of Chapter 17.4.1.

17.5 Linear model

We present a linear approximation of the generalized DistFlow model of Chapter
17.1.4. It extends the linear DistFlow model (5.40) of Chapter 5.5.2 with zero shunt
admittances from single-phase to unbalanced three-phase radial networks. In Chapter
17.5.1 we present a linear device model and the conversion rule relating internal and
terminal variables of the devices. In Chapter 17.5.2 we present the network model
that relates terminal voltages, line power flows and nodal power injections. In Chapter
17.5.3 we derive a solution of the linear network model for terminal voltages and line
flows in terms of nodal injections.

The key assumptions in our linear approximation are:

1. Balanced voltage assumption [136]: The voltages are approximately balanced, so
that we can assume

+
0

9

+
1

9

=
+
1

9

+
2

9

=
+
2

9

+
0

9

= 4
i2c/3 (17.39)

2. The real and reactive line losses IB
9:
✓ 9: are much smaller than line flows ( 9: on

each line 9 ! : , so that we can assume ✓ 9: = 0 in the network model (17.7).
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17.5.1 Device model

As explained in Chapter 17.3.1 the overall model consists of a network model and a
device model consisting internal models of ideal devices (voltage, current and power
sources and impedances) and conversion rules. The conversion rule (14.10) of . -
configured devices is a linear relation between internal and terminal variables, so are the
conversion rule (14.11) of �-configured voltage and current sources and impedances.
The conversion rule (14.12) for �-configured power sources is however quadratic,
involving not just internal power f� but also voltage and current. In this subsection
we describe a linear approximate of the conversion rule (14.12) proposed in [205],
based on the balanced voltage assumption (17.39). With this approximation the overall
model involving all four types of devices will be linear.

Consider the conversion rule (14.12c)(14.12d) between the internal and terminal

power of an ideal power source f�
9

:=
⇣
f
01

9
,f12

9
,f20

9

⌘
, reproduced here:

f
�
9

:= diag
⇣
+
�
9
�
�H
9

⌘
= diag

⇣
�+ 9 ��H

9

⌘
(17.40a)

B 9 := diag
⇣
+ 9 �

H
9

⌘
= �diag

⇣
+ 9 �

�H
9
�
⌘

(17.40b)

We now use the balanced voltage assumption (17.39) to derive a linear relation between
B 9 and f�

9
by eliminating (+ 9 , ��

9
) from (17.40). Recall

U := 4
�i2c/3, U+ :=

266664
1
U

U
2

377775
, U+U

H
+ =

266664
1 U

2
U

U 1 U
2

U
2

U 1

377775
For the internal power f�

9
we have, using + 9 =+0

9
U+,

�+ 9 ��H
9

= �U+
h
+
0

9
�̄
01

9
+
0

9
�̄
12

9
+
0

9
�̄
20

9

i
= (1�U)U+

h
+
0

9
�̄
01

9

1
U

⇣
+
1

9
�̄
12

9

⌘
1
U

2

⇣
+
2

9
�̄
20

9

⌘i
= (1�U)U+UH

+⇡ 9 (17.41)

where the second equality follows from �U+ = (1� U)U+ (Corollary 1.3) and the
balanced voltage assumption (17.39) which implies +1

9
= U+0

9
and +2

9
= U2

+
0

9
. The

equality in (17.41) follows because (noting U�1 = U2 = Ū and U�2 = U = Ū2, and UH
+

and ⇡ 9 )

U
H
+ :=

⇥
1 1

U

1
U

2

⇤
, ⇡ 9 :=

2666664

+
0

9
�̄
01

9

+
1

9
�̄
12

9

+
2

9
�̄
20

9

3777775
(17.42)

Hence ⇡ 9 is + 9 ��H
9

with its o�-diagonal entries set to zero. Define the vector 3 9 :=

diag(⇡ 9 ) =
⇣
+
0

9
�̄
01

9
,+1
9
�̄
12

9
,+2
9
�̄
20

9

⌘
. Substituting (17.41) into (17.40a) we have

f
�
9
= diag

⇣
(1�U)U+UH

+⇡ 9

⌘
= (1�U)3 9
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where the last equality follows because, since ⇡ 9 is diagonal, diag(�⇡ 9 ) =�
�11 [⇡ 9 ]11, �22 [⇡ 9 ]22, �33 [⇡ 9 ]33

�
. Therefore we can express 3 9 and ⇡ 9 in terms

of the internal power f�
9
:

3 9 =
1

1�Uf
�
9
, ⇡ 9 = Diag(3 9 ) =

1
1�UDiag

⇣
f
�
9

⌘
(17.43)

For the terminal power B 9 in (17.40b) note that

�
�H
9
� =

h
�̄
01

9
�̄
12

9
�̄
20

9

i 266664
1 �1 0
0 1 �1
�1 0 1

377775
=

h
�̄
01

9
�̄
12

9
�̄
20

9

i
�

h
�̄
20

9
�̄
01

9
�̄
12

9

i

Hence, using + 9 =+0
9
U+,

+ 9 �
�H
9
� = U+

h
+
0

9
�̄
01

9
+
0

9
�̄
12

9
+
0

9
�̄
20

9

i
� U+

h
+
0

9
�̄
20

9
+
0

9
�̄
01

9
+
0

9
�̄
12

9

i

= U+
h
+
0

9
�̄
01

9

1
U

⇣
+
1

9
�̄
12

9

⌘
1
U

2

⇣
+
2

9
�̄
20

9

⌘i
� U+

h
1
U

2

⇣
+
2

9
�̄
20

9

⌘
+
0

9
�̄
01

9

1
U

⇣
+
1

9
�̄
12

9

⌘i

The first term is U+UH
+⇡ 9 as in (17.41). The second term is, using U�1 = U2 = Ū and

U
�2 = U = Ū2,

U+

266664
U

2

1
U

377775

H 2666664

+
2

9
�̄
20

9

+
0

9
�̄
01

9

+
1

9
�̄
12

9

3777775
= U+

266664
U

2

1
U

377775

H 266664
0 0 1
1 0 0
0 1 0

377775|       {z       }
%

2666664

+
0

9
�̄
01

9

+
1

9
�̄
12

9

+
2

9
�̄
20

9

3777775|                        {z                        }
⇡ 9

266664
0 1 0
0 0 1
1 0 0

377775|       {z       }
%

T

where % is a permutation matrix and ⇡ 9 is defined in (17.42). Substituting
(U2,1,U)H

% = UH
+ we therefore have

+ 9 �
�H
9
� = U+U

H
+⇡ 9 � U+UH

+⇡ 9%
T = U+U

H
+⇡ 9

⇣
I�%T

⌘
= U+U

H
+⇡ 9� (17.44)

Substituting (17.44) and (17.43) into (17.40b) we have

B 9 = �diag
⇣
U+U

H
+⇡ 9�

⌘
= � 1

1�Udiag
⇣
U+U

H
+Diag(f�

9
)�

⌘
(17.45)

where Diag(f�
9
) denotes the diagonal matrix with the vector f�

9
as its diagonal. Hence

under the balanced voltage assumption a constant power source f�
9

is linearly related
to its terminal power B 9 by (17.45).

17.5.2 Network model

The network model assumes C17.1 of Chapter 17.1.4 holds. This means that the
model is suitable for modeling distribution or short transmission lines, but may not be
suitable for modeling nonideal transformers since their shunt admittances are generally
nonzero.
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We adopt, without loss of generality, the graph orientation in which all lines point
away from bus 0. For each bus 9 2 # let

• B 9 = ? 9 + i@ 9 2 C3 be the three-phase real and reactive power injections at bus 9 .
• E 9 2 C3⇥3 be the voltage matrix at bus 9 , whose diagonal entries are squared voltage

magnitudes.

For each line 9 ! : 2 ⇢ let

• (̃ 9: 2 C3 be the three-phase sending-end power flow from 9 to : .
• ( 9: 2 C3⇥3 be the line flow matrix whose diagonal entries are (̃ 9: , i.e., diag(( 9: ) =
(̃ 9: .

Let G :=
⇣
B 9 ,E 9 , (̃ 9: ,( 9: , 9 2 # , ( 9 , :) 2 ⇢

⌘
. Then the linear model from [136] that

generalizes the single phase linear DistFlow model to three-phase radial networks is
the following system of equations in G:’

:: 9!:
(̃ 9: = (̃8 9 + B 9 , 9 2 # (17.46a)

( 9: = U+U
H
+ Diag

�
(̃ 9:

�
, 9 ! : 2 ⇢ (17.46b)

E 9 � E: = I
B

9:
(

H
9:
+ ( 9: IBH

9:
, 9 ! : 2 ⇢ (17.46c)

where 8 := 8( 9) is the unique parent node of 9 and Diag((̃ 9: ) is a diagonal matrix
whose diagonal is the vector (̃ 9: .

We now justify the linear model (17.46). As for the single-phase model, if we set
✓ 9: = 0 in the three-phase DistFlow model (17.7a)(17.7b), then we obtain directly
the power balance equation (17.46a) with (̃ 9: = diag(( 9: ) and the voltage equation
(17.46c). Without the nonlinear equation (17.7c), however, these two linear equations
determine uniquely B0 and the diagonal entries (̃ 9: of ( 9: , but not the o�-diagonal
entries of ( 9: . The equation (17.46b) constructs the o�-diagonal entries of ( 9: from
its diagonal entries (̃ 9: , and can be justified using the balanced voltage assumption
(17.39), the same way (17.41) is derived, as follows.

The assumption (17.39) means that the vector+ 9 is determined by a scalar (say)+0
9
.

Then, assuming positive sequence,

+ 9 = +
0

9

266664
1
U

U
2

377775
= +

0

9
U+ (̃ 9: := diag(( 9: ) :=

2666664

+
0

9
�̄
0

9:

+
1

9
�̄
1

9:

+
2

9
�̄
2

9:

3777775
(17.47)

and therefore the 3⇥3 line flow matrix ( 9: is given by:

( 9: := + 9 �
H
9:

= +
0

9
U+

h
�̄
0

9:
�̄
1

9:
�̄
2

9:

i
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This expression says that the columns of ( 9: are in span(U+). Recall that (17.39)
implies that +1

9
= U+0

9
and +2

9
= U2

+
0

9
, and hence (17.46b) follows from

( 9: := U+
h
+
0

9
�̄
0

9:
+
0

9
�̄
1

9:
+
0

9
�̄
2

9:

i
= U+

h
+
0

9
�̄
0

9:

1
U

⇣
+
1

9
�̄
1

9:

⌘
1
U

2

⇣
+
2

9
�̄
2

9:

⌘i
= U+U

H
+Diag

�
(̃ 9:

�
(17.48)

where the last equality has usedU�1 =U2 = Ū,U�2 =U = Ū2, and (17.47). This completes
the justification of the linear model (17.46).

It is important to remember that + 9 is not a variable in the linear DistFlow model
and the justification above is not part of the linear model. In particular a linear voltage
solution E 9 of (17.46) may not be of rank-1, which means that there is no voltage
phasor + 9 with E 9 = + 9+H

9
. When such a + 9 exists, it is generally not phase balanced,

as explained in Remark 17.5 below.

In summary, an overall linear three-phase model consists of a linear power source
model (17.45) and a linear network model (17.46). If other devices such as voltage
sources, current sources or impedances are present, their internal models and conver-
sion rules (14.10)(14.11) are linear and can be included in the overall model.

17.5.3 Linear network solution

In this subsection we derive a solution of the linear network model (17.46). Specif-
ically, given

�
E0, B 9 , 9 2 #

�
, (17.46) can be used to determine

�
B0,E 9 , 9 2 #

�
and�

(̃ 9: ,( 9: , 9 ! : 2 ⇢
�

iteratively (Exercise 17.6):

B0 = �
’
92#

B 9 (17.49a)

(̃8 9 = �
’
:2T 9

B: , (8 9 = U+U
H
+Diag

�
(̃8 9

�
, 8! 9 2 ⇢ (17.49b)

E 9 = E0�
’

(8,:)2P 9

⇣
I
B

8:
(

H
8:
+ (8: IBH

8:

⌘
, 9 2 # (17.49c)

where 8 := 8( 9) is the unique parent of bus 9 , T 9 is the subtree rooted at bus 9 , including
9 , and P: is the set of lines on the unique path from bus 0 to bus :; see Figure 17.3.

Remark 17.5 (Approximate solution + 9 ). The iterative solution (17.49) has two im-
plications.

1. Since the graph orientation is where all lines point away from the root bus 0,
(17.49b) says that the line flow (̃8 9 arriving at bus 9 from its parent 8 supplies all
the loads �B: in the subtree rooted at bus 9 , including 9 . This is a consequence of
the zero line loss assumption.

2. The 3⇥3 a solution matrix E 9 is generally not of rank 1, in which case no voltage+ 9
exists such that E 9 =+ 9+H

9
, even if the reference bus voltage E0 = |+00 |2U+UH

+ is phase
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j

Tj

Pj

Figure 17.3 Solution of linear branch flow model for unbalanced three-phase radial networks.

balanced and of rank 1 (and even if all lines are symmetric whose series impedances
I
B

9:
satisfy (15.9a)). This is because the linear model is an approximation and its

solution may not satisfy the Kirchho�’s laws. If E0 = |+00 |2U+UH
+ then E 9 from

(17.49c) may not be of rank 1 but are Hermitian for all 9 and hence have a spectral
decomposition. An approximate voltage + 9 can be taken as the largest spectral
component of E 9 , i.e., if E 9 =

Õ
8
d8D8D

H
8

where d8 are real eigenvalues and D8 are
eigenvectors of E 9 with |d1 | � |d2 | � |d3 |, then + 9 =

p
|d1 |D1 can be taken as an

approximate voltage solution + 9 . It will generally not be phase balanced. ⇤

In many distribution system applications we are interested only in voltage magni-
tudes, i.e., not in the whole matrix E 9 , but only its diagonal terms denoted by

Ẽ 9 := diag(E 9 ), 9 2 #

We will treat the linear model (17.46) as a system of equations in squared voltage
magnitudes Ẽ 9 and line flows (̃ 9: . Given injections B 9 at non-reference buses 9 < 0,
we now explain how to derive an explicit solution for Ẽ 9 at non-reference buses 9 and
flows (̃ 9: on all lines 9! : in terms of B 9 , from which B0 and ( 9: can also be obtained.
This generalizes Theorem 5.3 from a single-phase to a three-phase setting.

The key observation is the following properties from [206]: diag(GHH) = Diag(G) H̄
and Diag(G)H = Diag(H)G for any vectors G, H, where H̄ denotes the componentwise
complex conjugate of H. Even though the matrix IB

9:
(

H
9:
+( 9: IBH

9:
is generally complex,

its diagonal diag
⇣
I
B

9:
(

H
9:
+ ( 9: IBH

9:

⌘
= 2Re

⇣
diag

⇣
( 9: I

BH
9:

⌘⌘
is real. Applying all this to

(17.46) we have, for 9 ! : 2 ⇢ ,

Ẽ 9 � Ẽ: = 2Re
⇣
diag

⇣
U+U

H
+Diag((̃ 9: )IBH

9:

⌘⌘
= 2Re

⇣
Diag(U+)

⇣
Ī
B

9:
Diag((̃ 9: )Ū+

⌘⌘
= 2Re

�
/̄ 9: (̃ 9:

�
(17.50)

where / 9: :=Diag(Ū+)IB
9:

Diag(U+) and /̄ 9: is the componentwise complex conjugate
of the matrix / 9: .

To write the linear model (17.46) in vector form, let the (# +1)⇥" matrix⇠ denote
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the bus-by-line incidence matrix of the network. Let the Kronecker product⇠ ⌦ I of the
incidence matrix and the identity matrix of size 3 be the three-phase incidence matrix.
Decompose ⇠ and ⇠ ⌦ I into the row 2

T
0 corresponding to bus 0 and the remaining

reduced incidence matrix ⇠̂:

⇠ =:

2

T
0
⇠̂

�
, ⇠ ⌦ I =


2

T
0 ⌦ I
⇠̂ ⌦ I

�

Denote vectors of injections and squared voltage magnitudes at non-reference buses
and line flows by

B̂ := (B 9 , 9 2 #) 2 C3# , Ê := (Ẽ 9 , 9 2 #) 2 C3# , (̃ :=
�
(̃ 9: , 9 ! : 2 ⇢

�
2 C3"

Define the 3" ⇥3" block diagonal matrix / with / 9: as its diagonal blocks:

/ := Diag
�
/ 9: , 9 ! : 2 ⇢

�
= Diag

⇣
Diag(Ū+)IB

9:
Diag(U+), 9 ! : 2 ⇢

⌘
(17.51)

Then, using (17.50) and (17.51), the linear model (17.46) in vector form is:

B̂ =
⇣
⇠̂ ⌦ I

⌘
(̃, B0 =

⇣
2

T
0 ⌦ I

⌘
(̃ (17.52a)

2Re
�
/̄ (̃

�
= (20 ⌦ I)Ẽ0 +

⇣
⇠̂

T ⌦ I
⌘
Ê (17.52b)

Since the network is radial, ⇠̂ is nonsingular and therefore
⇣
⇠̂

T ⌦ I
⌘�1

= ⇠̂�T ⌦ I exists
from Lemma 14.3. Hence the solution of (17.52) is

(̃ =
⇣
⇠̂
�1 ⌦ I

⌘
B̂, B0 =

⇣
2

T
0⇠̂
�1 ⌦ I

⌘
B̂ (17.53a)

Ê = 2Re
�
/̄
0
B̂

�
+ (1# ⌦ Ẽ0) (17.53b)

where / 0 :=
⇣
⇠̂
�T ⌦ I

⌘
/

⇣
⇠̂
�1 ⌦ I

⌘
, /̄ 0 is its componentwise complex conjugate, and 1#

is the vector of all 1s of size # . Here (17.53a) has used (�⌦ ⌫) (⇠ ⌦⇡) = (�⇠ ⌦ ⌫⇡)
from Lemma 14.3 and (17.53b) has used ⇠̂�T

20 = �1# from Theorem 4.1. When all
lines point away from bus 0 then (17.53a) reduces to (17.49a)(17.49b).

Define the real and imaginary parts (A; ,G;) of /;:

/; := Diag(Ū+)IB
;
Diag(U+) =: A; + iG; 2 C3⇥3, ; 2 ⇢

Similarly let B̂ =: ?̂ + i@̂ 2 C3# and / 0 =: ' + i- 2 C3#⇥3# . Then (17.53b) becomes
(Exercise 17.7):

Ê = 2 ('?̂ + -@̂) + (1# ⌦ Ẽ0) (17.54a)

where the component blocks of (',-) are

' 9: =
’

;2P 9\P:

A; 2 C3⇥3, - 9: =
’

;2P 9\P:

G; 2 C3⇥3, 8 9 , : 2 # (17.54b)

and P 9 is the unique path from bus 0 to bus 9 inclusive, as in the single-phase case in
Theorem 5.3. Note however that A; + iG; is not the line impedance IB

;
but its transformed

version Diag(Ū+)IB
;
Diag(U+).
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17.6 Chapter summary

1. A three-phase system model consists of a device model and a network model. A
network model can take two forms: the three-phase bus injection models studied
in Chapter 16 and the three-phase branch flow models (BFM) (17.1) (17.4) (17.7)
tailored for radial networks studied in this chapter.

2. BFM is equivalent to BIM in the sense that there is a one-one correspondence
between their power flow solutions (Theorem 17.1). Given a BFM solution in
terms of voltage and line current magnitudes, voltage and current phasors can be
computed according to (17.17).

3. The backward-forward sweep method for solving single-phase BFM extends di-
rectly to three-phase networks. It solves nonlinear power flow equations by exploit-
ing a spatial recursive structure over the tree topology and is a form of Gauss-Siedel
algorithm

4. When line losses are small relative to line power flows and voltages are balanced,
the single-phase LinDistFlow extends to unbalanced three-phase networks. It con-
sists of a linear device model (17.45) and a linear network model (17.46). Given
nodal power injections, the voltages and line power flows can be solved in closed
form (17.49) and (17.53), similar to the single-phase LinDistFlow solution.

17.7 Bibliographical notes

Algorithms for solving power flows in three-phase radial networks are developed in [35, 36, 37, 38, 41, 42].
See bibliographical notes in Chapter 5.7 for both single-phase and three-phase networks. The single-phase
linear DistFlow model is extended to three-phase networks in [136]. The idea in Chapter 17.5.1 of using
the balanced voltage assumption to derive a linear conversion rule for a �-configured power source is from
[205]. The linear solution (17.53) in Chapter 17.5.3 for squared voltage magnitudes Ẽ9 is from [206].

17.8 Problems

Chapter 17.1.

Exercise 17.1 (diag(·)). For any column or row vector G 2 C= let Diag(G) denote the
=⇥ = diagonal matrix with G as its diagonal. For any matrix - 2 C=⇥= let diag(-)
denote the vector in C= whose entries are the diagonal entries of - . Given an < ⇥ =
matrix - , the vectorization of - , denoted vec(-), is the column vector formed from
stacking the columns of - , i.e.,

vec(-)]
8+( 9�1)< = -8 9 , 8 = 1, . . . ,<, 9 = 1, . . . ,=

Let Ḡ, -̄ denote the componentwise complex conjugates of the vector G, matrix -

respectively. Show that:
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1. diag(- +. ) = diag(-) +diag(. ); Diag(G + H) = Diag(G) +Diag(H).
2. diag(GHH) = diag( H̄GT) = Diag(G) H̄ = Diag( H̄)G if G, H are vectors. These relations

may not hold if G, H are matching matrices. (For an application see Chapter 17.5.3).
3. diag(�Diag(G)⌫) =

�
� �⌫T�

G where ��⌫ denote the componentwise product of
matrices � and ⌫. (This extracts the variable G and expresses the quantity on the
left-hand side in the usual form "G.)

4. Let � be =1 ⇥ =2, ( be =2 ⇥ =3 and ⌫ be =3 ⇥ =4. Show that vec(�(⌫) = (⌫T ⌦
�)vec((). Show that this reduces to the expression in part 3 when =1 = =4, =2 = =3

and ( = Diag(G).
5. Recall the conversion matrices �,�T (in Theorem 14.2 of Chapter 14.2.1). For any
G := (G0,G1 ,G2) 2 C3 let G� := (G01 ,G12 ,G20) := (G0 � G1 ,G1 � G2 ,G2 � G0) so that
�G = G�. Show that

diag
⇣
�T
GG

H�
⌘
= %diag

⇣
G
�
G
�H

⌘
, diag

⇣
�2
GG

H�2T
⌘
= ⌧diag

⇣
G
�
G
�H

⌘
where the shift (permutation) matrix % and ⌧ are:

% :=
266664
0 0 1
1 0 0
0 1 0

377775
, ⌧ :=

266664
2 2 �1
�1 2 2
2 �1 2

377775
(This expresses the quantities on the left-hand sides in terms of only the squared
magnitudes of G�.)

Exercise 17.2 (�� transformer). Consider a �� transformer whose equivalent line
parameters (HB

9:
, H<
9:

, H<
: 9
) has a singular series admittance matrix HB

9:
given by (16.2b),

reproduced here:

H
B

9:
= H

B

: 9
:= �T

0H
;�

where 0 := Diag(00,01 ,02) and H; := Diag(H;0, H;1 , H;2) are the turns ratios and the
leakage admittances of the single-phase transformers in phases 0,1,2. Define the series
branch currents �B

9:
and powers ((B

9:
,(B
: 9
) by (17.5).

1. Show that null(HB
9:
) = span(1) if

Õ
q
=
q
I
;q < 0 where =q := 1/0q , I;q := 1/H;q

for q 2 {0,1,2}.
2. Show that the series branch current �B

9:
depends only on the line-to-line voltages

(�+ 9 ,�+: ), not on the terminal voltages (+ 9 ,+: ) directly.
3. Show that the series power matrices in opposite directions satisfy

diag
⇣
(
B

9:
+ (B

: 9

⌘
= diag

⇣
(HB
9:
)†✓B

9:

⌘
+W 9: �̄B

9:
(17.55)

for any W 9: 2 C.

Interpretation. The series current �B
9:

depends only on the di�erence �(+ 9 �+: )
of the line-to-line voltages at the primary and secondary sides of the transformer,
not terminal voltages + 9 �+: . Hence (HB

9:
)†✓B

9:
represents the power loss due to the

di�erence �(+ 9 �+: ). The total loss (which is the diagonal terms of) (B
9:
+(B

: 9
consists
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of this loss plus W 9: �BH
9:

where W 9: is a uniform o�set of+ 9 �+: , uniform across phases
0,1,2. This o�set is determined by other information, e.g., if a terminal at the primary
side and one at the secondary side are grounded.

Exercise 17.3 (BFM with HB
9:
= HB

: 9
). This exercise shows that the branch flow model

(17.1) is equivalent to the simpler model (17.4) when HB
9:
= HB

: 9
.

1. Suppose (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) is a power flow solution of (17.1).
Define the series variables (✓B

9:
,(B
9:
) by (17.5a) only in the direction of 9 ! : .

Show that (E, B,✓B
9:

,(B
9:

,8 9 ! :) satisfies (17.4) and (17.3).
2. Conversely suppose (E, B,✓B

9:
,(B
9:

,8 9 ! :) satisfies (17.4). Then (17.4c) guaran-
tees the existence of (+ 9 , �B

9:
) for each 9 ! : and �

B

: 9
:= ��B

9:
in the opposite

direction that satisfies E 9 =+ 9+H
9

and (17.5). We can therefore define the sending-
end currents (� 9: , �: 9 ) using (17.5), and hence sending-end matrices (✓ 9: ,✓: 9 )
and (( 9: ,(: 9 ) using (17.2). Show that (E, B, (✓ 9: ,✓: 9 ), (( 9: ,(: 9 ),8( 9 , :)) satisfies
(17.1).

Exercise 17.4 (Generalized DistFlow). Assume C17.1 holds. Derive the generalized
three-phase DistFlow equations (17.7) by substituting H̃ 9: = H̃: 9 = HB

9:
= HB

: 9
, H<

9:
=

H
<

: 9
= 0, and (17.8) into (17.1).

Chapter 17.4.

Exercise 17.5 (Backward forward sweep). For the model in Chapter 17.4.1, instead
of sending-end branch current � 9: 2 C3, derive a BFS algorithm to compute the
branch current �B

9:
2 C3 over the series impedance, as well as the nodal variable

H :=
⇣
+ 9 , � 9 , ��

9
9 2 #

⌘
.

Chapter 17.5.

Exercise 17.6 (Three-phase linear BFM). Given
�
E0, B 9 , 9 2 #

�
, derive the iterative

solution (17.49).

Exercise 17.7 (Three-phase linear BFM). This exercise extends Theorem 5.3 from a
single-phase setting to a three-phase setting.

1. For each line ; = ( 9 , :) with series impedance I
B

;
2 C3⇥3, derive /; :=

Diag(Ū+)IB
;
Diag(U+) in (17.51).

2. Fill in the details in the derivation of the linear solution (17.53).
3. Derive (17.54).

(Hint: Use Theorem 4.1.)



18 Power flow optimization

In this chapter we study optimal power flow (OPF) problems for unbalanced three-
phase networks. As for single-phase networks studied in Chapter 9, OPF is a constrained
optimization that takes the form

min
D,G

2(D,G) subject to 5 (D,G) = 0, 6(D,G)  0

The cost function 2 may represent generation cost, voltage deviation, power loss, or
user disutility. The variable D collects control decisions such as generator commitment,
generation setpoints, transformer taps, capacitor switch status, electric vehicle charging
levels, thermostatic settings, or inverter reactive power. The variable G collects network
state such as voltage levels, line currents, or power flows. The constraint functions 5 ,6
describe current or power balance, generation or consumption limits, voltage or line
limits, and stability and security constraints, as well as other operational requirements.
OPF is a fundamental problem because it underlies numerous power system operation
and planning applications. While the structure of OPF remains the same as for single-
phase networks, in this chapter, the cost function 2 and constraint functions 5 ,6 model
three-phase devices and networks.

We formulate OPF and study its semidefinite relaxation using the bus injection
model in Chapter 18.1 and the branch flow model in Chapter 18.2. We apply these
models in Chapter 18.3 to optimize distribution system planning.

18.1 OPF and relaxation: BIM

A system model consists of a device model and a network model. In Chapter 18.1.1 we
describe our device model that will be used with both the bus injection model and the
branch flow model. We formulate OPF in Chapter 18.1.2 in the bus injection model.
We show how to reformulate OPF into a rank constrained semidefinite optimization
problem in Chapters 18.1.3 and into a nonconvex quadratically constrained quadratic
program (QCQP) in Chapter 18.1.5 (generalizing OPF in Chapter 9.1 from a single-
phase to a three-phase setting). Finally we present a semidefinite relaxation of OPF in
Chapter 18.1.4.
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18.1.1 Device model

A key assumption underlying our OPF formulation is that all controllable devices are
the single-phase devices that make up three-phase devices. Therefore internal variables
D 9 are optimization variables (i.e., D 9 :=+. /�

9
for voltage sources, D 9 := �. /�

9
for current

sources,
⇣
B
. /�
9

, ��
9

⌘
for power sources). Their values determine the terminal variables

(B 9 ,+ 9 , � 9 ) through conversion rules. These terminal variables interact over the network
through either the current balance equation � =.+ or the power balance equation, but
they are typically not directly controllable. In this chapter we use the power balance
equation to relate the terminal voltages and power injections (B,+). A device model
therefore consists of:

• A conversion rule from Chapter 14.3 that relates an internal variable D 9 of device
9 to its terminal power and voltage (B 9 ,+ 9 ).

• Operational constraints on the internal variable D 9 . These constraints are local to
9 .

We describe each of them next.

Conversion rules. In this chapter, unless otherwise specified, all devices are assumed
to be ideal.

1. Voltage source D 9 :=+. /�
9

: For an ideal voltage source its internal voltage +. /�
9
2

C
3 is an optimization variable. It is related to the terminal voltage + 9 through a

linear constraint (from the conversion rules (14.10) and (14.11a)):

. configuration: + 9 = +
.

9
++=

9
1 (18.1a)

� configuration: �+ 9 = +
�
9

(18.1b)

We assume here that the neutral voltage +=
9

of a . -configured device is a given
parameter. For example,+=

9
= 0 if the neutral of the. -configured device is directly

grounded and all voltages are defined with respect to the ground.
2. Current source D 9 := �. /�

9
: For an ideal current source its internal current �. /�

9
2C3

is an optimization variable. It is related to the terminal variables
�
B 9 ,+ 9

�
through

a quadratic constraint (from (14.19) and (14.31)):

. configuration: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
(18.1c)

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘

(18.1d)

3. Power source D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
: For an ideal power source we assume that the

internal power and current
⇣
B
. /�
9

, �. /�
9

⌘
are optimization variables. We assume

the neutral voltage +=
9

of a . -configured power source is a given parameter, e.g.,
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+
=

9
= 0. They are related to the terminal variables

�
B 9 ,+ 9

�
according to (from

(14.21a) and (14.33e):

. configuration: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B

.

9
= �B 9 �+=9 �̄.9 (18.1e)

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘
, B

�
9
= diag

⇣
�+ 9 ��H

9

⌘
(18.1f)

For a . -configured power source, if +=
9
= 0, then

. configuration: B 9 = �B.
9

It is possible to formulate OPF in which a power source is characterized only by

its internal power D 9 := B. /�
9

instead of D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
, but the formulation is

more complicated; see Exercise 18.5.

4. Impedance
⇣
I
.

9
,+=
9

⌘
or I�

9
: An impedance, if not controllable, does not introduce

any addition optimization variable but imposes an additional constraint on the
terminal variables (B 9 ,+ 9 ) (from (14.23a) and Theorem 14.4):

. configuration: B 9 = �diag
✓
+ 9

⇣
+ 9 �+=9 1

⌘H
H
.H
9

◆
(18.1g)

� configuration: B 9 = �diag
⇣
+ 9+

H
9
.
�H
9

⌘
(18.1h)

where H. /�
9

:=
⇣
I
. /�
9

⌘�1
and.�

9
:= �T

H
��. The neutral voltage+=

9
is usually a fixed

parameter, e.g. +=
9
= 0.

The conversion rule (18.1) takes the form 5
. /�
9

�
D 9 , B 9 ,+ 9

�
= 0 and is local to each bus

9 .

Note the structural similarity between . and � configurations when +=
9
= 0: (18.1)

then reduces to

Voltage source: + 9 = +
.

9
, �+ 9 = +

�
9

(18.2a)

Current source: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘

(18.2b)

Power source: B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘

(18.2c)

B
.

9
= �B 9 , B

�
9
= diag

⇣
�+ 9 ��H

9

⌘
(18.2d)

Impedance: B 9 = �diag
⇣
+ 9+

H
9
H
.H
9

⌘
, B 9 = �diag

⇣
+ 9+

H
9
.
�H
9

⌘
(18.2e)

where .�
9

:= �T
H
��. Once an optimal solution

⇣
D

opt
9

, Bopt
9

,+opt
9

⌘
of an OPF problem is

chosen, other internal variables for each device 9 can be derived (possibly requiring
additional information e.g. V�

9
of an ideal voltage source).

Remark 18.1 (Implicit optimization over (W 9 , V�
9
)). An optimal+opt

9
for a�-configured

device described by (18.1b) also implies an optimal zero-sequence voltage W�opt
9

:=
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1
31

T
+

opt
9

. If W�
9

is given instead, then (18.1b) should be replaced by + 9 = �†+�
9
+ W 91.

Similarly for other devices, e.g., �-configured impedance.

Similarly, optimization over ��
9

in a �-configured current source or power source

implicitly chooses an optimal zero-sequence current V�opt
9

:= 1
31

T
�
�opt
9

. If V�
9

is given

then it imposes an additional constraint through the conversion rule ��
9
= � 1

3�� 9 + V�9 1
(and express � 9 in terms of

�
B 9 ,+ 9

�
). ⇤

Device constraints. The operational constraints on the devices are also local to each
bus 9 and are inequality constraints on the internal variables D 9 only, of the form
6
. /�
9

�
D 9

�
 0:

1. Voltage source D 9 :=+. /�
9

:

E
. /�min
9

 diag
⇣
D 9D

H
9

⌘
 E

. /�max
9

(18.3a)

where E. /�min
9

,E. /�max
9

2 C3 are given bounds on squared voltage magnitudes.

2. Current source D 9 := �. /�
9

:

diag
⇣
D 9D

H
9

⌘
 ✓

. /�max
9

(18.3b)

where ✓. /�max
9

2 C3 are given bounds on squared current magnitudes.

3. Power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
:

B
. /�min
9

 D 91  B
. /�max
9

, diag
⇣
D 92D

H
92

⌘
 ✓

. /�max
9

(18.3c)

where B. /�min
9

, B. /�max
9

2 C3 are given bounds on internal powers.

18.1.2 Three-phase OPF

Consider a three-phase network modeled as an undirected graph ⌧ := (# ,⇢) where
there are # +1 buses 9 2 # and" lines in ⇢ . Each line ( 9 , :) 2 ⇢ is characterized by 3⇥
3 admittance matrices

⇣
H
B

9:
, H<
9:

⌘
2C6 and

⇣
H
B

: 9
, H<
: 9

⌘
2C6. We now explain the network

model (power flow equations and constraints), the variables and the cost function that
define an OPF problem. As for the single-phase OPF studied in Chapter 9.1.2 we assume
there is exactly one three-phase device at each bus 9 . We will then interchangeably
refer to 9 as a bus or a device. See Chapter 9.1.2 on how to relax this assumption.

Network constraints. Let the terminal (nodal) variable G :=
⇣
B 9 ,+ 9 , 9 2 #

⌘
repre-

sents the terminal voltages and power injections at buses 9 . The power flow equations
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relate these variables, from (16.7):

B 9 =
’
:: 9⇠:

diag
✓
+ 9 (+ 9 �+: )H

⇣
H
B

9:

⌘H
++ 9+H

9

⇣
H
<

9:

⌘H
◆

, 9 2 # (18.4)

which directly extend the single-phase equations (9.3). This constraint is global as it
couples voltages and powers (+ 9 , B 9 ) at all neighboring buses.

The operational constraints on G := (+ , B) are the same as (9.4) for single-phase
OPF, except that the variables and their bounds are 3-dimensional vectors, rather than
scalars, for three-phase networks:

injection limits: B
min
9
 B 9  B

max
9

, 9 2 # (18.5a)

voltage limits: E
min
9
 diag

⇣
+ 9+

H
9

⌘
 E

max
9

, 9 2 # (18.5b)

line limits: diag
⇣
� 9: (+)�H

9:
(+)

⌘
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.5c)

diag
⇣
�: 9 (+)�H

: 9
(+)

⌘
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (18.5d)

where
�
� 9: (+), �: 9 (+)

�
in (18.5c) are given by (16.1) reproduced here:

� 9: (+) = H
B

9:

�
+ 9 �+:

�
+ H<

9:
+ 9 , �: 9 (+) = H

B

: 9

�
+: �+ 9

�
+ H<

: 9
+:

The constraint (18.5a) can be due to limits on the busbar to which the three-phase device
is connected. The constraints (18.5a)(18.5b) are local at each bus 9 but (18.5c)(18.5d)
are global.

Optimization variables. As mentioned above a key assumption underlying our for-
mulation is that all controllable devices are the single-phase devices that make up
three-phase devices. There are therefore two types of optimization variables (D,G):
the internal variable D := (D 9 , 9 2 #) represents controllable quantities of the three-
phase devices discussed in Chapter 18.1.1 and the nodal voltages and power injections

G :=
⇣
B 9 ,+ 9 , 9 2 #

⌘
that result from these control decisions. The conversion rule relates

D to G which then interacts over the network through either the current balance equation
� =.+ or the power balance equation. The terminal variable G is typically not directly
controllable (even though it is an optimization variables).1

Cost function. As for single-phase OPF, the cost function ⇠ (D,G) may represent
generation cost, real power loss, estimation error, voltage deviations, or user disutility,
depending on applications. For instance to minimize the cost of real power generations
we can use

⇠ (D,G) := ⇠ (D, B,+) :=
’

gens. 9

2 9 1
TRe

⇣
B
. /�
9

⌘

Other example costs include estimation error in state estimation and user disutility in
demand response.

1 Additional variables and constraints will be required in most applications; see examples in Chapter
18.3.1.
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OPF. Define the feasible set

V3? := {(D,G) := (D, B,+) | (D,G) satisfies (18.1)(18.3)(18.4)(18.5)} (18.6a)

Then a simple OPF formulation in the three-phase setting is

min
(D,G)

⇠ (D,G) s.t. (D,G) 2 V3? (18.6b)

where+0 2 C3 is given. The constraint (18.3) describes local operational constraints on
the internal variables D of the three-phase devices, (18.4)(18.5) describe the network
equation and operational constraints on the terminal variable G := (B,+), and the
conversion rule (18.1) relates D and G and is also a local constraint. Since the constraints
(18.4)(18.5c)(18.5d) do not require HB

9:
= HB

: 9
(assumption C16.1), the OPF formulation

(18.6) can accommodate three-phase transformers whose admittance matrices . are
not block symmetric, e.g., transformers in �. and .� configurations.

Remark 18.2 (Uncontrollable parameters). As for single-phase OPF, the formulation
(18.6) allows the case where a quantity is not an optimization variable but a given
parameter. For instance a given uncontrollable constant-power load or a given renew-
able generation at bus 9 can be represented by setting B. /�

9
= B. /�min

9
= B. /�max

9
to the

specified value. ⇤

Structurally the three-phase OPF (18.6) takes the form with G := (B,+):

min
(D,G)

⇠ (D,G) (18.7a)

s.t. 5
. /�
9

�
D 9 , B 9 ,+ 9

�
= 0, 6

. /�
9

�
D 9

�
 0, 9 2 # (18.7b)

5 (B,+) = 0, 6(B,+)  0 (18.7c)

where the local constraint (18.7b) represents the conversion rule (18.1) that relates D 9
to its terminal variables G 9 and operational constraints (18.3) on the internal variables
D 9 of device 9 . The global constraint (18.7c) represents the power flow equation (18.4)
and operational constraint (18.5) on the terminal variable G.

18.1.3 Semidefinite reformulation

In this subsection we show how to reformulate OPF (18.6) into a semidefinite form,
which suggests naturally a semidefinite relaxation in Chapter 18.1.4. To simplify
notation we illustrate our method under the assumptions:

• Every device in OPF (18.6) is either an ideal voltage source or an ideal power
source in . or � configuration.

• The neutrals of all . -configured devices are directly grounded and all voltages are
defined with respect to the ground so that all neutral voltages +=

9
= 0.



956 Power flow optimization

The method however applies without these assumptions; see Remark 18.3 on how to
incorporate current sources.

The conversion rule (18.2) and the local operational constraint (18.3) in the device
model are expressed in terms of the internal variable D 9 :=+. /�

9
for a voltage source and

D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
for a power source. The network equation and constraint (18.4)(18.5)

are expressed in terms of the terminal variable G := (B,+). We will first reformulate
the network model (18.4)(18.5) and then reformulate the device model (18.2)(18.3) as
semidefinite and rank constraints using a di�erent set of variables, as summarized in
Table 18.1. This results in two reformulations (18.12) and (18.15) of OPF (18.6) which

OPF int var: voltage int var: power dev model terminal var net model

(18.6) +
. /�
9
2 C3

⇣
B
. /�
9

, �. /�
9

⌘
2 C6 (18.2)(18.3) (+ , B) 2 C6(#+1) (18.4)(18.5)

(18.12) ,
. /�
9
2 C3⇥3

B
. /�
9
2 C3 (18.11) , 2 C3(#+1)⇥3(#+1) (18.9)(18.10)

-
�
9
2 C3⇥3

B 2 C3(#+1)

✓
�
9
2 C3⇥3

(18.15) none -
�
9
2 C3⇥3 (18.14) , 2 C3(#+1)⇥3(#+1) (18.13)

✓
�
9
2 C3⇥3

Table 18.1 Internal and terminal variables of ideal voltage and power sources for OPF (18.6)
and its equivalent semidefinite reformulations (18.12) and (18.15) under assumption +=

9
= 0.

(Oct 26, 2025: Table too wide - shift left?)

have a natural semidefinite relaxation.

Network equations and constraints. The power flow equation (18.4) is reproduced
here:

B 9 =
’
:: 9⇠:

diag
⇣
+ 9 (+ 9 �+: )H

H
BH
9:

+ + 9+H
9
H
<H
9:

⌘
, 9 2 # (18.8)

Consider the 3(# +1)⇥3(# +1) matrix, =++H. Its 3⇥3 submatrices, 9 9 and, 9:

for ( 9 , :) 2 ⇢ satisfy:

, 9 9 = + 9+
H
9
, , 9: = + 9+

H
:

, 9 2 # , ( 9 , :) 2 ⇢

With this, (18.8) is equivalent to the following equation that is linear in, :

B 9 =
’
:: 9⇠:

diag
⇣ �
, 9 9 �, 9:

�
H
BH
9:
+, 9 9 H

<H
9:

⌘
, 9 2 # (18.9a)
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The network constraint (18.5) can be expressed also as linear functions of (B,,):

injection limits: B
min
9
 B 9  B

max
9

, 9 2 # (18.9b)

voltage limits: E
min
9
 diag

�
, 9 9

�
 E

max
9

, 9 2 # (18.9c)

line limits: diag
�
✓ 9:

�
, 9 9 ,, 9: ,,::

� �
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.9d)

diag
�
✓: 9

�
, 9 9 ,,: 9 ,,::

� �
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (18.9e)

where, motivated by � 9: (+) =
⇣
H
B

9:
+ H<

9:

⌘
+ 9 � HB

9:
+: and �: 9 (+) =

⇣
H
B

: 9
+ H<

: 9

⌘
+: �

H
B

: 9
+ 9 , we define the 3⇥3 matrices:

✓ 9:

�
, 9 9 ,, 9: ,,::

�
:= H̃ 9:, 9 9 H̃

H
9:
�2Re

⇣
H̃ 9:, 9: H

BH
9:

⌘
+ HB

9:
,:: H

BH
9:

✓: 9

�
, 9 9 ,,: 9 ,,::

�
:= H̃: 9,:: H̃

H
: 9
�2Re

⇣
H̃: 9,: 9 H

BH
: 9

⌘
+ HB

: 9
, 9 9 H

BH
: 9

where H̃ 9: := HB
9:
+ H<

9:
and H̃: 9 := HB

: 9
+ H<

: 9
. Here the lower and upper bounds in

(18.9b) – (18.9e) are 3-dimensional real vectors ((18.9b) represents two pair of real
inequalities). To obtain a reformulation in terms only of a 3(# +1)⇥3(# +1) complex
matrix, without the voltage variable + , we replace the quadratic equation, = ++H

by the equivalent specification

, ⌫ 0, rank(,) = 1 (18.10)

Then the power flow equation (18.4) and constraint (18.5) are equivalent to the linear
constraints (18.9) and the nonlinear constraint (18.10). These constraints are global.
As we will see, the semidefinite relaxation of the three-phase OPF (18.6) is obtained
by omitting the nonconvex rank-1 constraint in (18.10).

Device model and Conversion rules. To reformulate the device model (18.2)(18.3),
we apply the same method to the internal variables. The conversion rule (18.2) is:

1. Voltage source +. /�
9
2 C3:

. configuration: + 9 = +
.

9

� configuration: �+ 9 = +
�
9

We reformulate this using a matrix variable D 9 :=,. /�
9
2 C3⇥3, as follows:

. configuration: , 9 9 = ,
.

9
, ,

.

9
⌫ 0, rank

⇣
,
.

9

⌘
= 1 (18.11a)

� configuration: �, 9 9�T = ,
�
9
, ,

�
9
⌫ 0, rank

⇣
,
�
9

⌘
= 1 (18.11b)

where, 9 9 is a 3⇥3 principal submatrix of the 3(#+1)⇥3(#+1) matrix, defined
in (18.10), representing terminal voltages, while,. /�

9
is a 3⇥3 matrix associated

with internal voltages +. /�
9

of device 9 . The conditions (18.11a)(18.11b) ensure

that there exists an internal voltage +. /�
9

, unique up to a rotation, so that ,. /�
9

=

+
. /�
9

⇣
+
. /�
9

⌘H
.
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The device constraint (18.3a) on the internal voltage magnitude can be expressed
as a linear function of the internal variable D 9 :=,. /�

9
:

E
(. /�)min
9

 diag
�
D 9

�
:= diag

⇣
,
. /�
9

⌘
 E

(. /�)max
9

(18.11c)

where the bounds
⇣
E
(. /�)min
9

,E (. /�)max
9

⌘
2 R6 are given nonnegative real vectors

since D 9 :=,. /�
9

is (Hermitian and) positive semidefinite.

2. Power source
⇣
B
. /�
9

, ��
9

⌘
2C6: Since+=

9
= 0 by assumption we can omit the variable

�
.

9
for . -configured voltage source (provided constraints on �

.

9
are inactive).

Therefore the conversion rule is:

. configuration: B 9 = �B.
9

� configuration: B 9 = �diag
⇣
+ 9 �

�H
9
�
⌘
, B

�
9
= diag

⇣
�+ 9 ��H

9

⌘

We reformulate this using an internal variable D 9 :=
⇣
B
. /�
9

,-�
9
,✓�
9

⌘
where B. /�

9
2C3

is the vector of terminal power injections and -�
9
,✓�
9

are 3⇥ 3 matrices for a �-
configured power source, defined by:

. configuration: B 9 = �B.
9

(18.11d)

� configuration: B 9 = �diag
⇣
-
�
9
�
⌘
, B

�
9
= diag

⇣
�-�

9

⌘
(18.11e)

0 �
"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
, 1 = rank

"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
(18.11f)

For a �-configured power source, the condition (18.11f) ensure that there exist a
terminal voltage + 9 and an internal current ��

9
so that , 9 9 = + 9+H

9
, ✓�
9
= ��

9
�
�H
9

,

and -�
9
=+ 9 ��H

9
.

The device constraint (18.3c) on the internal powers and currents can be ex-

pressed as linear functions of the internal variable D 9 :=
⇣
B
. /�
9

,-�
9
,✓�
9

⌘
:

B
(. /�)min
9

 B
. /�
9
 B

(. /�)max
9

, diag
⇣
✓
�
9

⌘
 ✓

�max
9

(18.11g)

where the lower and upper bounds are given nonnegative real vectors.

Therefore the conversion rule (18.2) and the device constraint (18.3) are equivalent
to the constraint (18.11) in terms of the new set of internal variables D 9 and terminal
variables (B,,), as summarized in Table 18.1. These constraints are local at each
bus 9 . The rank-1 constraints in (18.11a)(18.11b)(18.11f) are nonconvex and the other
constraints are convex (or linear). These rank-1 constraints will be omitted below to
derive a SDP relaxation of the three-phase OPF (18.6).

Equivalent OPF. In summary, let B 2 C#+1 denote the terminal power injections
and , 2 C3(#+1)⇥3(#+1) denote the matrix associated with terminal voltages. Let
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D := (D 9 , 9 2 #) denote the internal variables defined by

D 9 :=

(
,
. /�
9

if device 9 is a voltage source⇣
B
. /�
9

,-�
9
,✓�
9

⌘
if device 9 is a power source

(18.12a)

We assume the terminal voltage +0 at bus 0 is given and imposes the constraint
,00 =+0+

H
0 . Putting all this together, in terms of the network model (18.9)(18.10) and

the device model (18.11), the three-phase OPF (18.6) is equivalent to

min
(D,B,, )

⇠ (D, B,,) s.t. (18.9)(18.10)(18.11),,00 = +0+
H
0 (18.12b)

where +0 2 C3 is given. This is a nonconvex problem because of the rank-1 constraint
in (18.10) due to the network equation, in (18.11a)(18.11b) due to . and �-configured
voltage sources, and in (18.11f) due to �-configured power sources. As for (18.6), the
reformulation (18.12) does not require the assumption HB

9:
= HB

: 9
(C16.1) and hence can

accommodate standard three-phase transformers, e.g., in �. and .� configurations.

Remark 18.3 (Current sources). Ideal current sources can be incorporated into the
equivalent OPF (18.12) in the same way power sources are. Consider a current source
�
. /�
9

, with +=
9
= 0 if 9 is in . configuration, described by (from (18.2b))

B 9 = �diag
⇣
+ 9 �

.H
9

⌘
, B 9 = �diag

⇣
+ 9 �

�H
9
�
⌘

Instead of using �. /� as the internal variable, we reformulate the conversion rule using
the internal variable D 9 := (-. /�

9
,✓. /�) 2 C3⇥3⇥C3⇥3 as:

B 9 =

8>><
>>:
. : �diag

⇣
-
.H
9

⌘
� : �diag

⇣
-
�H
9
�
⌘ ,

"
, 9 9 -

. /�
9

-
. /�H
9

✓
. /�
9

#
⌫ 0, rank

"
, 9 9 -

. /�
9

-
. /�H
9

✓
. /�
9

#
= 1

This condition ensures the existence of a terminal voltage + 9 and an internal current
�
. /�
9

such that , 9 9 = + 9+H
9
, ✓. /�
9

= �. /�
9

�
. /�H
9

and -. /�
9

= + 9 �
. /�H
9

. The device con-

straint (18.3b) becomes linear in ✓. /�
9

. Note that the network constraint (18.9c) on, 9 9

also constrains -. /�
9

, the product of the internal current and terminal voltage. ⇤

An OPF problem in practice involves many more variables and constraints. The
formulation (18.6) and its semidefinite form (18.12) contain full internal and terminal
variables. This is convenient for extension to incorporate additional constraints; see
example applications in Chapter 18.3.1 and 18.3.2. Otherwise, we can eliminate many
variables from (18.6) to arrive at an equivalent but simpler version with fewer variables,
as we now explain.

Simplified OPF. Even though the internal variables D 9 defined in (18.12a) represent
controllable devices, OPF (18.12) has an equivalent but simplified version that involves
only internal variables D 9 := (-�

9
,✓�
9
) for�-configured power sources 9 and the terminal
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variable , for all power and voltage sources in . or � configuration. Specifically the
network model (18.9) and (18.10) can be written in terms of, only:

injection limits: B
min
9
 B 9 (,)  B

max
9

, 9 2 # (18.13a)

voltage limits: E
min
9
 diag

�
, 9 9

�
 E

max
9

, 9 2 # (18.13b)

line limits: diag
�
✓ 9:

�
, 9 9 ,, 9: ,,::

� �
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.13c)

diag
�
✓: 9

�
, 9 9 ,,: 9 ,,::

� �
 ✓

max
: 9

, ( 9 , :) 2 ⇢ (18.13d)

psd rank-1: , ⌫ 0, rank(,) = 1 (18.13e)

where B 9 ,✓ 9: ,✓: 9 are linear functions of, :

B 9 (,) :=
’
:: 9⇠:

diag
⇣ �
, 9 9 �, 9:

�
H
BH
9:
+, 9 9 H

<H
9:

⌘
(18.13f)

✓ 9:

�
, 9 9 ,, 9: ,,::

�
:= H̃ 9:, 9 9 H̃

H
9:
�2Re

⇣
H̃ 9:, 9: H

BH
9:

⌘
+ HB

9:
,:: H

BH
9:

✓: 9

�
, 9 9 ,,: 9 ,,::

�
:= H̃: 9,:: H̃

H
: 9
�2Re

⇣
H̃: 9,: 9 H

BH
: 9

⌘
+ HB

: 9
, 9 9 H

BH
: 9

In the above, H̃ 9: := HB
9:
+ H<

9:
and H̃: 9 := HB

: 9
+ H<

: 9
.

For the device model (18.11), voltage sources and . -configured power sources can
be described by their terminal matrices , 9 9 only. For example, for a voltage source
9 , its internal matrix ,. /�

9
and device constraints (18.11a)(18.11b) can be omitted

and its voltage limit (18.11c) can be specified in terms of its terminal matrix , 9 9

(Exercise 18.6). Specifically (18.11) can be simplified into the following variables and
constraints:

1. Voltage source, 9 9 2 C3⇥3:

. configuration: E
. min
9
 diag

�
, 9 9

�
 E. max

9
(18.14a)

� configuration: E
�min
9
 diag

⇣
�, 9 9�T

⌘
 E�max

9
(18.14b)

2. Power source, 9 9 2 C3⇥3 or (, 9 9 ,-�
9
,✓�
9
) 2 C3⇥3⇥C3⇥3⇥C3⇥3:

. configuration: (18.13a) since +=
9
= 0 by assumption

� configuration: B
�min
9

 diag
⇣
�-�

9

⌘
 B

�max
9

(18.14c)

diag
⇣
✓
�
9

⌘
 ✓

�max
9

(18.14d)"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
⌫ 0, rank

"
, 9 9 -

�
9

-
�H
9

✓
�
9

#
= 1 (18.14e)

For a �-configured power source, the condition (18.14e) ensure that there exist a
terminal voltage + 9 and an internal current ��

9
so that , 9 9 = + 9+H

9
, ✓�
9
= ��

9
�
�H
9

,

and -�
9
=+ 9 ��H

9
.
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Therefore OPF (18.12) is equivalent to the following simpler problem with the
internal variable

D :=
⇣⇣
-
�
9
,✓�
9

⌘
2 C3⇥3⇥C3⇥3 : �-configured power sources 9

⌘
(18.15a)

and the terminal matrix, 2 S3(#+1) :

min
(D,, )

⇠ (D,,) s.t. (18.13)(18.14),,00 = +0+
H
0 (18.15b)

where +0 2 C3 is given. This is a nonconvex problem because of the rank-1 constraint
in (18.13e) and (18.14e). As for (18.12), the simplified OPF (18.15) does not require
the assumption HB

9:
= HB

: 9
(C16.1) and hence can accommodate standard three-phase

transformers, e.g., in �. and .� configurations.

Given an optimal solution (Dopt,,opf) of the simplified OPF (18.15), the inter-
nal variables corresponding to controllable devices (+. /�

9
for voltage sources and

(B. /�
9

, ��
9
) for power sources) can be uniquely determined. Specifically the psd rank-1

constraint (18.13e) ensures that all its submatrices,opf
9 9

are psd rank-1 and hence have

a rank-1 decomposition,,opf
9 9

=+opt
9

(+opt
9
)H. This yields the internal voltage

+
. opt
9

= +
opt
9

, +
�opt
9

= �+opt
9

,

for a . or �-configured voltage source respectively. For a power source,
(18.11d)(18.11e) implies that its internal power is:

B
.

9
= �B 9

�
,

opt� , B
�
9
= diag

⇣
�-�opt

9

⌘

and the internal current ��
9

is obtained from the rank-1 decomposition of (18.14e). In
the above, B 9 (,opt) is given by (18.13f) since +=

9
:= 0 by assumption.

18.1.4 SDP relaxation

Consider the semidefinite formulation of OPF (18.15). Define the matrix " (�,⌫,⇡) 2
C

6⇥3 as a function of 3⇥3 Hermitian matrices �,⇡, and a 3⇥3 arbitrary matrix ⌫:

" (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
(18.16)

Then " (�,⌫,⇡) is Hermitian. For instance the matrix in (18.14e) is "
⇣
, 9 9 ,-�

9
,✓�
9

⌘
.

Let #�
?
✓ # denote the set of power sources in � configuration. Omitting the rank-1

constraints in (18.13e) and (18.14e) yields an SDP relaxation of the simplified OPF
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(18.15):

min
(D,, )

⇠ (D,,) (18.17a)

s.t. network constraints: (18.13a)� (18.13d) (18.17b)

device constraints: (18.14a)� (18.14d) (18.17c)

,00 = +0+
H
0 , , ⌫ 0, "

⇣
, 9 9 ,-�9 ,✓�

9

⌘
⌫ 0, 9 2 #�

?
(18.17d)

where +0 2 C3 is given and "
⇣
, 9 9 ,-�

9
,✓�
9

⌘
is defined in (18.16). The constraints in

(18.17b) and (18.17c) are linear in (D,,). Those in (18.17d) are convex. As for OPF
(18.15), its SDP relaxation (18.17) does not require the assumption HB

9:
= HB

: 9
(C16.1)

and hence can accommodate standard three-phase transformers, e.g., in �. and .�
configurations.

Let
�
D

opt,,opt� denote an optimal solution of the SDP relaxation (18.17). We say
(18.17) is exact if the psd matrices of every optimal solution

�
D

opt,,opt� are of rank 1:

rank
�
,

opt� = 1, rank
⇣
"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘⌘
= 1, 9 2 #�

?
(18.18)

If there are no power sources in � configuration, then rank
�
,

opt� = 1 guarantees the

exactness of (18.17). Otherwise (18.17) is not exact if rank
⇣
"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘⌘
> 1

for some power sources 9 2 #�
?
. The following result says that, even in this case, an

optimal solution of (18.15) can be recovered from
�
D

opt,,opt� , provided rank
�
,

opt� = 1
and the cost⇠ does not depend on ✓�

9
. Therefore rank

�
,

opt� = 1 is su�cient for finding
an optimal solution to OPF (18.15).

Theorem 18.1 ([138]). 1. Suppose the matrix " (�,⌫,⇡) 2 C6⇥3 defined in (18.16)
is positive semidefinite and rank(�) = 1. Then � is psd rank-1, ⌫ is rank-1, and ⇡
is psd.

2. Suppose the cost ⇠ is independent of the current matrices ✓�
9

of �-configured

power sources 9 2 #�
?
. Let

�
D

opt,,opt� be a solution of the relaxation (18.17). If
rank

�
,

opt� = 1 then an optimal solution
�
D,,opt� of (18.15) can be recovered.

Proof Since " (�,⌫,⇡) is psd it has a spectral decomposition:

" (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
= _1


D1

E1

� ⇥
D

H
1 E

H
1

⇤
+

’
8>1

_8


D8

E8

� ⇥
D

H
8

E
H
8

⇤

where _8 are the eigenvalues of " (�,⌫,⇡) and (D8 ,E8) are an set of corresponding
orthonormal eigenvectors (Theorem A.13 of Appendix A.6.2). Since � is of rank 1,
D8 = 0 for all 8 > 1 and hence " (�,⌫,⇡) must be of the form

" (�,⌫,⇡) =

G

I

� ⇥
G

H
I

H⇤
+


0 0
0   

H

�
(18.19)

for some vectors G, I and matrix  . Therefore � = GGH is psd rank-1, ⌫ = GIH is rank-1
(but not necessarily psd), and ⇡ = IIH +  H is psd (but not necessarily rank-1).
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Suppose
�
D

opt,,opt� is a solution of the relaxation (18.17) with rank
�
,

opt� =
1. Part 1 implies that there may be power sources 9 2 #�

?
such that

rank
⇣
"

⇣
,

opt
9 9

,-�opt
9

,✓�opt
9

⌘⌘
> 1 because rank

⇣
✓
�opt
9

⌘
> 1. Part 1 however also guar-

antees the existence of phasors
⇣
+

opt
9

, ��opt
9

⌘
2 C6 such that

,
opt
9 9

= +
opt
9

⇣
+

opt
9

⌘H
, -

�opt
9

= +
opt
9

⇣
�
�opt
9

⌘H
, 9 2 #�

?
(18.20a)

Consider the point
�
D̃,,opt� obtained from

�
D

opt,,opt� by replacing ✓�opt
9

in Dopt
9

by

✓̃
�
9

:= �
�opt
9

⇣
�
�opt
9

⌘H
, 9 2 #�

?
(18.20b)

It can be checked that
�
D̃,,opt� is feasible for OPF (18.15). Since the cost ⇠ is

independent of ✓̃�
9
,
�
D̃,,opt� is optimal for OPF (18.15) (and for its relaxation (18.17)).

⇤

The method (18.20) to recover an optimal solution
�
D̃,,opt� of OPF (18.15) from an

optimal solution of its relaxation may not work well in practice because of inevitable
numerical errors. Even if,opt

9 9
is close to being rank-1, i.e., its second largest eigenvalue

is several orders of magnitude smaller than its largest eigenvalue, -�
9

can be far from

being rank-1. For instance -
�
9

can have multiple large eigenvalues with the same

magnitude (see [138, Remark 1]). In this case ��opt
9

may not be obtained from -
�opt
9

using (18.20a). A method suggested in [138] to address this numerical issue is to add

_

Õ
9
tr

⇣
✓
�
9

⌘
to the cost function of the SDP relaxation (18.17) for a positive but small

weight _ > 0. This produces an optimal solution in which ✓�opt
9

tends to be of low rank.

18.1.5 QCQP reformulation

Instead of semidefinite reformulation described in Chapter 18.1.3, the three-phase OPF
(18.6) can also be reformulated as a QCQP in (+ ,D), following the same procedure
studied in Chapter 9.1.3 for single-phase OPF. In terms of (18.7), we will first rewrite
the local device constraint 6. /�

9

�
D 9

�
 0 in (18.7b) as quadratic forms. We then rewrite

the network constraint (18.7c) as quadratic forms, and finally we rewrite the conversion
rule 5. /�

9

�
D 9 , B 9 ,+ 9

�
= 0 in (18.7b).

Device constraints as quadratic forms. We start by writing the local device con-
straint (18.3), represented by 6. /�

9

�
D 9

�
 0 in (18.7b), as quadratic forms. Let

4
0 := (1,0,0), 4

1 := (0,1,0), 4
2 := (0,0,1) (18.21a)

⇢
q := 4

q

4
qT 2 C3⇥3, q 2 {0,1,2} (18.21b)

Then the device constraint (18.3) becomes quadratic forms per phase q local to each
bus 9 :
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1. Voltage source D 9 :=+. /�
9

:

E
(. /�)qmin
9

 D
H
9
⇢
q

D 9  E
(. /�)qmax
9

, q 2 {0,1,2} (18.22a)

2. Current source D 9 := �. /�
9

:

D
H
9
⇢
q

D 9  ✓
(. /�)qmax
9

, q 2 {0,1,2} (18.22b)

3. Power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
:

B
. /�min
9

 D 91  B
. /�max
9

, D
H
92⇢

q

D 92  ✓
(. /�)qmax
9

, q 2 {0,1,2}
(18.22c)

Network constraints as quadratic forms. Next we eliminate the power flow equa-
tion (18.4), represented by 5 (B,+) = 0 in (18.7c), by substituting B 9 (+) as functions of
+ into the network constraint (18.5) on the terminal variables represented by 6(B,+)  0
in (18.7c). This reduces (18.7c) to a single inequality constraint of the form

6(+ , B(+))  0

where components of 6 are quadratic forms in + . The conversion into quadratic forms
follows the same derivation in Chapter 9.1.3, but treating . as the admittance matrix
of a network with 3(# +1) buses indexed by 9q.

The quantities defined in (18.21) are of size 3 or 3⇥ 3 and useful for specifying
local constraints. To specify network constraints we define similar quantities but of
size # +1, 3(# +1) or 3(# +1)⇥3(# +1), indexed by 9 2 #:

4 9 2 {0,1}#+1, 4
q

9
2 {0,1}3(#+1) , ⇢

q

9
:= 4

q

9

⇣
4
q

9

⌘H
, q 2 {0,1,2} (18.23)

i.e., 4 9 is of size # + 1 and has a single 1 in its 9 th position, 4q
9

is of size 3(# + 1)
and has a single 1 in its 9qth position, and ⇢ q

9
is the 3(# + 1) ⇥ 3(# + 1) diagonal

Hermitian matrix with a single 1 in the ( 9q, 9q)th entry and 0 everywhere else. We
can, e.g., write a single voltage + q

9
2 C or a three-phase voltage + 9 2 C3 in terms of

the voltage vector + 2 C3(#+1) as

+
q

9
= 4

qH
9
+ , + 9 =

⇣
4

H
9
⌦ I

⌘
+ , q 2 {0,1,2}, 9 2 # (18.24)

where I is the identity matrix of size 3. Then the network constraint (18.7c) becomes:

1. Injection limits: Let. 2 C3(#+1)⇥3(#+1) denote the 3(# +1)⇥3(# +1) admittance
matrix. Define the matrix. q

9
:= 4q

9
4
qH
9
. where 4q

9
2 {0,1}3(#+1) is the unit vector

with a single 1 at the 9qth entry and 0 elsewhere. Define the Hermitian and skew
Hermitian components of . qH

9
:

�q
9

:=
1
2

⇣
.
qH
9

+. q
9

⌘
,  q

9
:=

1
2i

⇣
.
qH
9
�. q

9

⌘
, q 2 {0,1,2}, 9 2 # (18.25a)
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Then

?
q

9
:= Re

⇣
B
q

9

⌘
=+H�q

9
+ , @

q

9
:= Im(Bq

9
) =+H q

9
+ , q 2 {0,1,2}, 9 2 #

and the injection limits become

?
qmin
9
 +H�q

9
+  ?qmax

9
, @

qmin
9
 +H q

9
+  @qmax

9
, 8q, 9 (18.25b)

2. Voltage limits: The terminal voltage limits are

E
qmin
9

 +
H
⇢
q

9
+  E

qmax
9

, q 2 {0,1,2}, 9 2 # (18.25c)

where ⇢ q
9

is defined in (18.23).
3. Line limits: The same derivation as that for single-phase OPF shows that the limit

on the sending-end current � q
9:

is (Exercise 18.1)

���� q
9:

���2 := +
H
.̂
q

9:
+  ✓

qmax
9:

, q 2 {0,1,2}, ( 9 , :) 2 ⇢ (18.25d)

where .̂ q
9:

:= .̃H
9:
⇢
q
.̃ 9: is a 3(# +1) ⇥3(# +1) matrix and .̃ 9: is a 3⇥3(# +1)

matrix given by

.̃ 9: :=
⇣
(4 9 � 4: )T ⌦ HB

9:
+ 4

T
9
⌦ H<

9:

⌘

(Here ⇢ q is defined in (18.21) and 4 9 in (18.23).) The matrix .̂ 9: is Hermitian

and hence +H
.̂
q

9:
+ is indeed a real number. Similarly for

���� q
: 9

���2.

Conversion rules as quadratic forms. Finally we eliminate B 9 from the the conver-
sion rule (18.1) for three-phase devices, represented by the local equality constraint
5
. /�
9

�
D 9 , B 9 ,+ 9

�
= 0 in (18.7b). This reduces 5. /�

9

�
D 9 , B 9 ,+ 9

�
= 0 to an equality con-

straint of the form

5
. /�
9

�
D 9 , B 9 (+),+

�
= 0, 9 2 #

where 5
. /�
9

is a quadratic form in (D 9 ,+). It also transforms the original local con-

straints into global constraints since the function B 9 (+) :=
⇣
B
0

9
(+), B1

9
(+), B2

9
(+)

⌘
, de-

fined in (18.25b) and reproduced here, depends on +: at all neighbors : of 9 :

B
q

9
(+) = +

H
⇣
.
qH
9

⌘
+ = +

H
⇣
�q
9
+ i q

9

⌘
+ , q 2 {0,1,2}, 9 2 # (18.26)

where . q
9

:= 4q
9
4
qT
9
. and �q

9
and  q

9
are defined in (18.25a).

We now use (18.21)(18.23)(18.24)(18.26) to convert the conversion rule 5
. /�
9

in
(18.1) into inhomogeneous quadratic forms in (D 9 ,+). They can then be homogenized
using the identity (9.15) in Remark 9.4.

1. Voltage source D 9 :=+. /�
9

: Application of (18.24) to the conversion rules (18.1a)
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(18.1b) leads to the following linear constraints in (D 9 ,+):

. configuration:
⇣
4

H
9
⌦ I

⌘
+ = D 9 ++=9 1 (18.27a)

� configuration: �
⇣
4

H
9
⌦ I

⌘
+ = D 9 (18.27b)

where +=
9

is assumed given (e.g., +=
9
= 0).

2. Current source D 9 := �. /�
9

: The conversion rules (18.1c)(18.1d) for a current source
are equivalent to the following inhomogeneous quadratic equations in (D 9 ,+)
(Exercise 18.2):

. configuration: B
q

9
(+) = �DH

9

⇣
4

H
9
⌦ ⇢ q

⌘
+ (18.27c)

� configuration: B
q

9
(+) = �DH

9

⇣
4

H
9
⌦ (�⇢ q)

⌘
+ (18.27d)

where B 9 (+) is given in (18.26). These constraints are global as B 9 (+) depend on
+: at neighboring buses : .

3. Power source D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
: For a . -configured power source let D 9 =:

(D 91,D 92) where D 91 := B.
9

and D 92 := �.
9
. Then the conversion rule (18.1e) is

equivalent to the following inhomogeneous quadratic equations in (D 9 ,+) (Exer-
cise 18.3): for q 2 {0,1,2}

. : B
q

9
(+) = �DH

92

⇣
4

H
9
⌦ ⇢ q

⌘
+ , B 9 (+) = �D 91�+=9 D̄ 92 (18.27e)

where B 9 (+) is given in (18.26) and +=
9

is assumed given (e.g., +=
9
= 0).

For a �-configured power source let D 9 =: (D 91,D 92) where D 91 := B�
9

and D 92 :=
�
�
9
. Then the conversion rule (18.1f) is equivalent to the following inhomogeneous

quadratic equations in (D 9 ,+) (Exercise 18.3): for q 2 {0,1,2}, qi 2 {01,12,20}

� : B
q

9
(+) = �DH

92

⇣
4

H
9
⌦ (�⇢ q)

⌘
+ , D

qi

91 = DH
92

⇣
4

H
9
⌦

�
⇢
q�

� ⌘
+ (18.27f)

where B 9 (+) is given in (18.26).

4. Impedance
⇣
I
.

9
,+=
9

⌘
or I�

9
: The equality constraint (18.1g) or (18.1h) imposed by

an impedance
⇣
I
.

9
,+=
9

⌘
or I�

9
respectively is equivalent to the following inhomo-

geneous quadratic equations in + (Exercise 18.4): for q 2 {0,1,2}

. : B
q

9
(+) = +

H
⇣⇣
4 94

H
9

⌘
⌦

⇣
H
.H
9
⇢
q

⌘⌘
+ � +̄=

9

⇣
4

H
9
⌦

⇣
1

H
H
.H
9
⇢
q

⌘⌘
+ (18.27g)

� : B
q

9
(+) = �+H

⇣⇣
4 94

H
9

⌘
⌦

⇣
.
�H
9
⇢
q

⌘⌘
+ (18.27h)

where +=
9

is assumed given (e.g., +=
9
= 0), .�

9
:= �T

H
�
9
� and H�

9
:=

⇣
I
�
9

⌘�1
.

Note the structural similarity between . and � configurations when +=
9
= 0
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Three-phase OPF as QCQP. We have thus eliminated the power flow equation
5 (B,+) = 0 in (18.7), and expressed the local device constraints 6. /�

9

�
D 9

�
 0, the

network constraints 6(+ , B(+))  0, and conversion rules 5. /�
9

�
D 9 , B 9 (+),+ 9

�
= 0 as

quadratic forms in (D,+). Therefore (18.7) is equivalent to the inhomogeneous QCQP
(assuming ⇠ is also expressed as a quadratic form in (D,+)):

min
(D,+ )

⇠ (D, B(+),+) s.t. (18.22)(18.25)(18.27) (18.28)

where B(+) is defined in (18.26) and +0 2 C3 is given. The inhomogeneous quadratic
constraints in (18.28) can be homogenized (see (9.15) in Remark 9.4). As for (18.7),
the QCQP formulation (18.28) does not require the assumption H

B

9:
= HB

: 9
(C16.1)

and hence can accommodate standard three-phase transformers, e.g., in �. and .�
configurations.

18.2 OPF and relaxation: BFM for radial networks

In this section we formulate three-phase OPF for radial networks using the branch flow
model. We assume for simplicity C17.1 of Chapter 17.1.4 (as in the single-phase case
studied in Chapter 9.2), reproduced here: for every line ( 9 , :) 2 ⇢ ,

• The series admittance matrices satisfy HB
9:
= HB

: 9
.

• The shunt admittance matrices are zero, H<
9:
= H<

: 9
= 0.

• The series admittance HB
9:

matrices are nonsingular; denote the series impedance

by IB
9:

:=
⇣
H
B

9:

⌘�1
.

These assumptions mean that the model is suitable for distribution lines but not for
nonideal transformers (see Table 17.1), but HB

9:
= HB

: 9
allows us to adopt a directed

network graph ⌧ = (# ,⇢) and include branch variables in only one direction. We
denote a line in ⇢ from bus 9 to bus : either by ( 9 , :) 2 ⇢ or 9 ! : . Without loss of
generality we take bus 0 as the root of the tree.

As in BIM, we assume that only the single-phase devices that make up three-phase
devices are directly controllable. There are therefore two types of optimization variables
(D,G). The internal variable D := (D 9 , 9 2 #) represents controllable quantities of the
three-phase devices, as in BIM. The variable G represents both terminal variables (e.g.,
a nodal voltage + 9 ) as well as the line variables (e.g., a line power ( 9: ). The variable G
interacts over the network through power flow equations. Both BIM and BFM use the
same device model. Their di�erence lies in the power flow equations that, for BFM,
include line variables as well.

We now explain the device model and the network model (power flow equations
and operational constraints) that define a three-phase OPF problem in BFM.
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18.2.1 Three-phase OPF

To simplify notation we assume (as in Chapter 18.1.3):

• Every device is either an ideal voltage source or an ideal power source in . or �
configuration. (See Remark 18.3 on how to incorporate ideal current sources.)

• The neutral voltages +=
9
= 0 of all . -configured devices.

Device constraints. We can use any of the three device models summarized in
Table 18.2. In this section we will use the compact device model (18.14) to formulate

dev model int var: voltage int var: power OPF (bim) chapter

(18.2)(18.3) +
. /�
9
2 C3

⇣
B
. /�
9

, �. /�
9

⌘
2 C6 (18.6) Ch 18.1.1

(18.11) ,
. /�
9
2 C3⇥3

B
. /�
9
2 C3 (18.12) Ch 18.1.3

-
�
9
2 C3⇥3

✓
�
9
2 C3⇥3

(18.14) none -
�
9
2 C3⇥3 (18.15) Ch 18.1.3

, 9 9 := E 9 ✓
�
9
2 C3⇥3

Table 18.2 Internal variables of ideal voltage and power sources for OPF (18.6) and its
equivalent semidefinite reformulations (18.12) and (18.15) under assumption +=

9
= 0.

OPF in BFM and its semidefinite relaxation. In Chapter 18.3.1 and 18.3.2 however
we will use the device model (18.11) that includes full internal variables to model
distribution system applications.

Network constraints. Power flow equations relate the following terminal (nodal)
variables and line variables:

B 9 2 C3, E 9 2 S3
+, 9 2 #

✓ 9: 2 S3
+, ( 9: 2 C3⇥3, 9 ! : 2 ⇢

where S=+ ✓ C=⇥= is the set of =⇥ = complex (Hermitian and) positive semidefinte
matrices. Let B := (B 9 , 9 2 #),E := (E 9 , 9 2 #), ✓ := (✓ 9: , 9 ! : 2 ⇢), ( := (( 9: , 9 !
: 2 ⇢). Here (B,E,✓,() directly generalizes the corresponding variables in the single-
phase model. Let G := (B,E,✓,().
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We use the power flow equation (17.7) of Chapter 17.1.4, reproduced here:’
:: 9!:

diag(( 9: ) =
’
8:8! 9

diag
⇣
(8 9 � IB8 9✓8 9

⌘
+ B 9 , 9 2 # (18.29a)

E 9 � E: =
⇣
I
B

9:
(

H
9:
+ ( 9: IBH

9:

⌘
� IB

9:
✓ 9: I

BH
9:

, 9 ! : 2 ⇢ (18.29b)"
E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, rank

"
E 9 ( 9:

(
H
9:

✓ 9:

#
= 1, 9 ! : 2 ⇢ (18.29c)

where+0 2 C3 is given. Given matrices
�
E 9 ,✓ 9: ,( 9:

�
, the psd rank-1 condition (18.29c)

ensures the existence of
�
+ 9 , �̃ 9:

�
(uniquely up to a reference angle) such that E 9 =+ 9+H

9
,

✓ 9: = �̃ 9: �̃H
9:

and ( 9: =+ 9 �̃H
9:

(as the psd rank-1 condition (18.14e) does for�-configured
power sources). These network constraints are global.

The operational constraints on G are similar to those in (18.5) for BIM:

injection limits: B
min
9
 B 9  B

max
9

, 9 2 # (18.30a)

voltage limits: E
min
9
 diag

�
E 9

�
 E

max
9

, 9 2 # (18.30b)

line limits: diag
�
✓ 9:

�
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.30c)

The constraint (18.30a) can be due to limits on the busbar to which the three-phase
device is connected. All constraints in (18.30) are local at each bus 9 or on each line
( 9 , :). While the voltage and line limits (18.5b)(18.5c) in BIM are generally nonconvex,
these limits (18.30b)(18.30c) in BFM are linear in G.

OPF. Let ⇠ (D,G) denote the cost function. We assume +0 2 C3 is given and impose
E0 =+0+

H
0 . Let the internal variable be:

D :=
⇣⇣
-
�
9
,✓�
9

⌘
2 C3⇥3⇥C3⇥3 : �-configured power sources 9

⌘
(18.31a)

With (D,G) := (D, B,E,✓,(), let the feasible set be

T3? :=
�
(D,G) : (D,G) satisfies (18.14)(18.29)(18.30),E0 =+0+

H
0

 
(18.31b)

with , 9 9 replaced by E 9 in the device model (18.14). Then the three-phase OPF
problem is:

min
(D,G)

⇠ (D,G) s.t. (D,G) 2 T3? (18.31c)

As for the bus injection model, the device constraints (18.14) on the internal variables
D are local to each bus 9 and the network constraints (18.29)(18.30) on the terminal
and line variables G := (B,E,✓,() are global. By Theorems 17.1, the feasible set T3?

in (18.31b) is equivalent to the feasible set V3? of the three-phase OPF (18.6) in
BIM. Hence these problems are equivalent, assuming their cost functions are the same
and C17.1 holds. Unlike (18.6), (18.31) assumes C17.1 and hence is not suitable for
transformers.
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18.2.2 SDP relaxation

OPF (18.31) is nonconvex because of the rank-1 constraint in the device model (18.14e)
and the network model (18.29c). Omitting these constraints leads to a semidefinite
relaxation of (18.31). Recall the function " (�,⌫,⇡) that constructs a 6⇥ 6 matrix
from 3⇥3 matrices �,⌫,⇡, defined in (18.16) and reproduced here:

" (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
(18.32)

where �,⇡ are Hermitian and ⌫ is arbitrary. The psd constraints in (18.29c) and
(18.31). can be written in terms of " respectively as

"

⇣
E 9 ,-�9 ,✓�

9

⌘
=

"
E 9 -

�
9

-
�H
9

✓
�
9

#
⌫ 0, 9 2 #�

?

"

�
E 9 ,( 9: ,✓ 9:

�
=

"
E 9 ( 9:

(
H
9:

✓ 9:

#
⌫ 0, 9 ! : 2 ⇢

where #�
?

denotes the set of �-configured power sources. Then an SDP relaxation of
(18.31) is:

min
(D,G)

⇠ (D,,) (18.33a)

s.t. (18.14a)� (18.14d), "

⇣
E 9 ,-�9 ,✓�

9

⌘
⌫ 0, 9 2 #�

?
(18.33b)

(18.29a)(18.29b)(18.30), "

�
E 9 ,( 9: ,✓ 9:

�
⌫ 0, 9 ! : 2 ⇢ (18.33c)

E0 = +0+
H
0 (18.33d)

where +0 2 C3 is given. Like OPF (18.31), its semidefinite relaxation (18.33) assumes
C17.1 and hence is not suitable for transformers.

Let
�
D

opt,Gopt� denote an optimal solution of the SDP relaxation (18.33). We say
(18.33) is exact if the psd matrices in (18.33b)(18.33c) are of rank 1 for every optimal
solution

�
D

opt,Gopt� , i.e.,

rank
⇣
"

⇣
E

opt
9

,-�opt
9

,✓�opt
9

⌘⌘
= 1, 9 2 #�

?
(18.34a)

rank
⇣
"

⇣
E

opt
9

,(opt
9:

,✓opt
9:

⌘⌘
= 1, 9 ! : 2 ⇢ (18.34b)

This means that
�
D

opt,Gopt� is feasible and therefore optimal for the original OPF
(18.31).

Suppose the nodal voltage satisfies rank
⇣
E

opt
9

⌘
= 1 for all 9 2 # . As explained

in Theorem 18.1, "
⇣
E

opt
9

,-�opt
9

,✓�opt
9

⌘
and "

⇣
E

opt
9

,(opt
9:

,✓opt
9:

⌘
may not be of rank 1

because ✓�opt
9

and ✓opt
9:

respectively may not be rank-1. In that case, even though the
SDP relaxation (18.33) is not exact, Theorem 18.1 nonetheless shows how to recover an
optimal solution of OPF (18.31) from an optimal solution

�
D

opt,Gopt� of its relaxation,
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provided that the cost function ⇠ is independent of ✓�
9

or ✓ 9: (though the method in

the proof of Theorem 18.1 may be fragile to numerical issues).2

18.3 Example applications

In this section we illustrate three-phase OPF through two planning applications on dis-
tribution systems: the deployment of batteries for voltage stabilization and optimization
of photovoltaic hosting capacity.

Assumptions. Consider a distribution system represented by an unbalanced three-
phase branch flow model on a radial network⌧ := (# ,⇢) with # +1 buses and " := #
lines. We assume C17.1 of Chapter 17.1.4 reproduced here: for every line ( 9 , :) 2 ⇢ ,

• The series admittance matrices satisfy HB
9:
= HB

: 9
.

• The shunt admittance matrices are zero, H<
9:
= H<

: 9
= 0.

• The series admittance HB
9:

matrices are nonsingular.

These assumptions mean that the model is suitable for distribution lines but not for
nonideal transformers (see Table 17.1). We will represent each line 9! : by its series
impedance by IB

9:
:= (HB

9:
)�1. To simplify notation, we assume all devices are power

sources in � configuration (i.e., # = #�
?
); it is straightforward to incorporate other

devices. We will use the device model (18.11) that includes full internal variables⇣
B
�
9
,-�

9
,✓�
9

⌘
(see Table 18.2), though additional device variables will be needed to

model our applications, as we will see.

18.3.1 Voltage control using batteries

At each bus 9 is a three-phase load modeled as a given constant power source in
� configuration with internal power f�

9
(C) 2 C3 at time C := 1, . . . ,) . Our goal is to

determine how much batteries to install in the network and where to install them so as
to stabilize voltages under the given load profile f�

9
(C). Let ⌫�

9
� 0 denote the energy

capacity (in kWh) of battery 9 to be installed in � configuration at bus 9 and 1�
9
(C)

denote the state of charge (in kWh) of battery 9 . Let A�
9
(C) denote the discharging rate

(if A�
9
(C) > 0) or charging rate (if A�

9
(C) < 0) at time C (in kWh per discrete time). Let

A
�max
9

denote the power capacity of battery 9 . Then the evolution of the state of charge

2 Since the network is radial, (18.33) is a chordal relaxation studied in Chapter 10.1.6 because
semidefinite constraints are imposed only on maximal cliques of the single-phase equivalent circuit of
the radial network. The application of Theorem 18.1 makes use of this fact.
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1 9 (C) is modeled by:

1
�
9
(C +1) = 1

�
9
(C)� A�

9
(C) (18.35a)

n 9  1
�
9
(C)  (1� n 9 )⌫�9 , �A�max

9
 A

�
9
(C)  A

�max
9

(18.35b)

where n 9 2 (0,1), e.g., n 9 := 20% if it is desirable to maintain the state of charge to
within 20� 80% of its energy capacity. We impose a maximum energy capacity on
battery 9 :

0  ⌫
�
9
 ⌫�max

9
(18.35c)

In particular if no battery can be installed at bus 9 then ⌫
�max
9

:= 0. Hence opti-

mal battery placement is represented by ⌫�
9
> 0 at optimality. Each of the variables

A
�
9
(C),1�

9
(C),⌫�

9
and their bounds A�max

9
,⌫�max

9
are in R3. Let the internal power at bus

9 be

B
�
9
(C) := �f�

9
(C) + (A�

9
(C) + i0) 2 C3 (18.36)

Let (-�
9
(C),✓�

9
(C)) denote the 3⇥ 3 matrices associated with bus 9 so that B�

9
(C) =

diag(�-�
9
(C)). Let B 9 (C) 2 C3 denote the terminal power and E 9 (C) 2 C3⇥3 the voltage

matrix. Then the conversion rule (18.11d)(18.11e)(18.11f) is

B 9 (C) = �diag
⇣
-
�
9
(C)�

⌘
, B

�
9
(C) = diag

⇣
�-�

9
(C)

⌘
(18.37a)

0 �
"
E 9 (C) -

�
9
(C)

-
�H
9

(C) ✓
�
9
(C)

#
, 1 = rank

"
E 9 (C) -

�
9
(C)

-
�H
9

(C) ✓
�
9
(C)

#
(18.37b)

Denote the device variables by

D(C) := (B�
9
(C),-�

9
(C),✓�

9
(C),A�

9
(C),1�

9
(C), 9 2 #), ⌫

� := (⌫�
9
, 9 2 #) (18.38)

For each line 9! : 2 ⇢ , let (✓ 9: (C),( 9: (C)) 2 C3⇥3⇥C3⇥3 denote the branch current
matrix and complex power matrix respectively. Denote the network variables by

G(C) := (B 9 (C),E 9 (C),✓ 9: (C),( 9: (C), 9 2 # , 9 ! : 2 ⇢) (18.39)

They satisfy the branch flow equations (from (18.29) of Chapter 18.2.1):’
:: 9!:

diag(( 9: (C)) =
’
8:8! 9

diag
⇣
(8 9 (C)� IB8 9✓8 9 (C)

⌘
+ B 9 (C), 9 2 # (18.40a)

E 9 (C)� E: (C) =
⇣
I
B

9:
(

H
9:
(C) + ( 9: (C)IBH

9:

⌘
� IB

9:
✓ 9: (C)IBH

9:
, 9 ! : 2 ⇢ (18.40b)"

E 9 (C) ( 9: (C)
(

H
9:
(C) ✓ 9: (C)

#
⌫ 0, rank

"
E 9 (C) ( 9: (C)
(

H
9:
(C) ✓ 9: (C)

#
= 1, 9 ! : 2 ⇢ (18.40c)

where +0 2 C3 is given, as well as the operational constraints (from (18.30)):

injection limits: B
min
9
 B 9 (C)  B

max
9

, 9 2 # (18.40d)

voltage limits: E
min
9
 diag

�
E 9 (C)

�
 E

max
9

, 9 2 # (18.40e)

line limits: diag
�
✓ 9: (C)

�
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.40f)
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Finally suppose the cost to install a battery of capacity ⌫�
9

at bus 9 is 2 9 (⌫�
9
) and

the objective is to choose battery locations and capacities to minimize the capital cost.
Then the corresponding OPF is:

min
(D (C) ,G (C) ,8C) ,⌫�

’
9

2 9 (⌫�9 ) s.t. (18.35)(18.36)(18.37)(18.40) (18.41)

where the variables (D(C),G(C),8C) and ⌫
� are defined in (18.38)(18.39). Here

(18.35)(18.36) (18.37) are the device model and (18.40) is the network model. The
formulation (18.41) says that an optimal planning decision ⌫

�⇤ assumes that, once
installed, these batteries will be operated optimally according to an optimal charg-
ing/discharging schedule (A⇤

9
(C), 9 2 # , C = 1, . . . ,)). Moreover the resulting rate and

SOC (A⇤
9
(C),1⇤

9
(C), 9 2 #) and the network variable G⇤ (C) will satisfy the operational

constraints (18.35b) and (18.40d)–(18.40f).

18.3.2 Robust PV hosting capacity

Consider the same network as that in Chapter 18.3.1, but without batteries (nor time
index). Instead of battery optimization, we wish to maximize the amount of photovoltaic
(PV) capacity that can be installed on the network without violating voltage and line
limits. Our focus is on the handling of uncertainties in this planning application.

Robust formulation. At each non-reference bus 9 < 0 is a three-phase load modeled
as a given constant power source in � configuration with internal power f�

9
2 C3 in

the time period of interest. The injection f�0 at bus 0 is a variable whose value is
determined by power flow equations. Suppose (the customer at) bus 9 installs a PV
system of capacity Z�

9
2 R3 (in kW) which has a capacity factor of l�

9
2 [0,1]3 so that

the PV generation is the column vector

Diag(l�
9
)Z�
9
=

⇣
l
01

9
Z
01

9
, l12

9
Z
12

9
, l20

9
Z
20

9

⌘
in KW

The capacity factor l�
9

depends on the location (bus 9), time of the day (e.g., l�
9
= 0

at night), and weather conditions, etc., and is uncertain. Then the internal power at bus
9 is

B
�
9

:= �f�
9
+

⇣
Diag(l�

9
)Z�
9
+ i0

⌘
2 C3, 9 2 #

Let (-�
9
,✓�
9
) denote the 3⇥3 matrices so that B�

9
= diag(�-�

9
). Let B 9 2 C3 denote the

terminal power and E 9 2 C3⇥3 the voltage matrix. Then the conversion rule is (18.37)
without the time index C. For each line 9 ! : 2 ⇢ , let (✓ 9: ,( 9: ) 2 C3⇥3⇥C3⇥3 denote
the branch current matrix and complex power matrix respectively. Denote the network
variables by

G := (B,E,✓,() := (B 9 ,E 9 ,✓ 9: ,( 9: , 9 2 # , 9 ! : 2 ⇢)
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They satisfy the branch flow equations (18.40a)–(18.40c) without the time index C. In
order to ensure that G also satisfies the operational constraints (18.40d)–(18.40f), the
distribution utility company imposes a regulated capacity A�

9
2 R3 (in kW) at each bus

9 and (the customer at) bus 9 can install any amount Z�
9

of PV up to the regulated

capacity, i.e., 0  Z�
9
 A�

9
. We di�erentiate between two types of device variables: the

regulated capacity A� that the utility explicitly chooses and the internal state D that
results, where

A
� := (A�

9
, 9 2 #) 2 R3(#+1) , D := (B�

9
,-�

9
,✓�
9
, 9 2 #)

We now explain how to handle uncertainty. Let Z� := (Z�
9
, 9 2 #) 2 R3(#+1) denote

the vector of customer installed capacities. Since the utility cannot dictate how much
PV a customer installs, Z� is uncertain. Let l� := (l�

9
, 9 2 #) 2 R3(#+1) denote the

vector of capacity factors which is uncertain due to random weather conditions. Let
⌦ := {l� (:) 2 R3(#+1) : : = 1, . . . , } denote  samples of the random capacity factor
l
�. We will choose the regulated capacity A� so that the resulting state (D,G) satisfies

the operational constraints (18.40d)–(18.40f) for any PV capacity Z� 2 [0,A�] and for
all the  samples of capacity factor l� 2 ⌦.

Specifically, fix any regulated capacity A�. This uniquely determines the internal
powers at each bus 9 , indexed by the uncertain parameters (Z�,l�):

B
�
9
(Z�
9
,l�

9
) := �f�

9
+

⇣
Diag(l�

9
)Z�
9
+ i0

⌘
, Z

�
9
2 [0,A�

9
], l�

9
2 ⌦ 9 (18.42)

where⌦ 9 := {l�
9
(:) 2 R3 : : = 1, . . . , }. It is important to remember that (Z�

9
,l�

9
) are

not optimization variables but uncertain parameters. They index a family of internal
powers B�

9
(Z�
9
,l�

9
) each of which is a constant, i.e., independent of the optimization

variable A�
9
. The optimization variable A� a�ects B� (Z�,l�) only through the uncer-

tainty set [0,A�] for Z�, i.e., a control decision A� determines a family of internal
powers B� (Z�,l�) for Z� 2 [0,A�], which then determines a family of terminal powers
B 9 (Z�,l�) through (18.37a). As we will see in (18.43a) below, these terminal powers
B 9 (Z�,l�) must satisfy certain network constraints.

Similarly, for each control decision A� and the associated family of internal powers
B
� (Z�,l�), let D(Z�,l�) and G(Z�,l�) denote any solution of the device equation

(18.37) and the network equations (18.40a)–(18.40c), without the time index C, when
the internal power B�

9
in (18.37a) is given by B�

9
(Z�
9
,l�

9
) in (18.42). Then the robust

maximization of PV hosting capacity is the following problem:

max
A
�

’
9

A
�
9

s.t. B
min
9
 B 9

⇣
Z
�,l�

⌘
 B

max
9

, 9 2 # (18.43a)

E
min
9
 diag

⇣
E 9

⇣
Z
�,l�

⌘⌘
 E

max
9

, 9 2 # (18.43b)

diag
⇣
✓ 9:

⇣
Z
�
, l

�
⌘⌘
 ✓

max
9:

, ( 9 , :) 2 ⇢ (18.43c)

for all Z
� 2 [0,A�], l� 2 ⌦ (18.43d)
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where E0 := +0+
H
0 and +0 is given. An important feature of the semi-infinite problem

(18.43) is that the family of internal states D(Z�,l�) and network states G(Z�,l�),
indexed by the uncertain parameters (Z�,l�), are independent of the optimization
variable A� (except through the uncertainty set [0,A�]). This feature is the key to an
approximate tractable reformulation, as we now explain.

Linear approximation. The robust program (18.43) is semi-infinite, nonlinear and
generally intractable. We now use the linear device model of Chapter 17.5.1 and the
linear network model of Chapter 17.5.2 to approximate (18.43). Denote the internal
powers, terminal powers, voltage matrices, and branch flows respectively by

B
�
9
2 C3, B 9 2 C3, E 9 2 C3⇥3, (̃ 9: 2 C3, 9 2 # , 9 ! : 2 ⇢

Let

B
� := (B�

9
, 9 2 #), B := (B 9 , 9 2 #), E 9 := (E 9 , 9 2 #), (̃ := ((̃ 9: , 9 ! : 2 ⇢)

Then a linear approximation of the device model (18.37) and the network model
(18.40a)–(18.40c) is (from (17.45) and (17.46) respectively):

B 9 = �
1

1�Udiag
⇣
U+U

H
+Diag(B�

9
)�

⌘
, 9 2 # (18.44a)’

:: 9!:
(̃ 9: = (̃8 9 + B 9 , 9 2 # (18.44b)

E 9 � E: = IB
9:

⇣
U+U

H
+Diag

�
(̃ 9:

� ⌘H
+

⇣
U+U

H
+Diag

�
(̃ 9:

� ⌘
I
BH
9:

, 9 ! : 2 ⇢ (18.44c)

where 8 := 8( 9) is the unique parent node of 9 assuming a graph orientation where all
lines point away from the root bus 0, Diag((̃ 9: ) is a diagonal matrix whose diagonal
is the vector (̃ 9: , and

U := 4
�i2c/3, U+ :=

266664
1
U

U
2

377775
, U+U

H
+ =

266664
1 U

2
U

U 1 U
2

U
2

U 1

377775
(18.44d)

Again let the family of internal powers B� (Z�,l�) be given by (18.42), indexed by
the uncertain parameters (Z�,l�). Given an B� (Z�,l�), let B(Z�,l�), E(Z�,l�), and
(̃(Z�,l�) denote the unique solution of (18.44).

Specifically, in terms of the internal power B� (Z�,l�), the terminal power is (from
(18.44a):

B 9 (Z�,l�) = � 1
1�Udiag

⇣
U+U

H
+Diag

⇣
B
�
9
(Z�,l�)

⌘
�
⌘
, 9 2 # (18.45a)

Denote the vector of squared voltage magnitudes only at non-reference buses by (recall
that the squared voltage magnitude Ẽ0 := diag(E0) at bus 0 is given):

Ẽ 9 := diag(E 9 ) 2 C3, Ẽ := (Ẽ 9 , 9 2 #) 2 C3#

Then the vector Ẽ that satisfies the linear model (18.44) is derived in Chapter 17.5.3
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and given by (from (17.53b)):

Ẽ(Z�,l�) = 2Re
⇣
/̄
0
B̂(Z�,l�)

⌘
+ (1# ⌦ Ẽ0) (18.45b)

where / 0 is defined in terms of the block-diagonal matrix /:

/ := Diag
⇣
Diag(Ū+)IB

9:
Diag(U+), 9 ! : 2 ⇢

⌘
(18.45c)

/
0 :=

⇣
⇠̂
�T ⌦ I

⌘
/

⇣
⇠̂
�1 ⌦ I

⌘
(18.45d)

and /̄ 0 is the componentwise complex conjugate of / 0, B̂ := (B 9 , 9 2 #) denotes the
terminal powers at non-reference buses, and ⇠̂ denotes the reduced incidence matrix
with the 0th row removed. Here IB

9:
is 3⇥ 3 and diagonal, / is 3# ⇥ 3# and block-

diagonal, 1# is the vector of all 1s of size # , and I is the identity matrix of size 3.

Then, in terms of the linear solution
�
B(Z�,l�), Ẽ(Z�,l�)

�
in (18.45), a linear

approximation of the robust program (18.43) is:

max
A
�

’
9

A
�
9

s.t. B
min
9
 B 9 (Z�,l�)  B

max
9

, 9 2 # (18.46a)

E
min
9
 Ẽ 9 (Z�,l�)  E

max
9

, 9 2 # (18.46b)

for all Z
� 2 [0,A�], l� 2 ⌦ (18.46c)

This is a semi-infinite linear program. As pointed out earlier, the feature that the family
of network states B(Z�,l�) and Ẽ(Z�,l�) are independent of the optimization variable
A
� (except through the uncertainty set [0,A�]) allows us to reformulate (18.46) into a

(finite) linear program, as we now explain.

Linear program reformulation. We write all quantities and equations in (18.46) in
the real domain. The internal power B�

9
(Z�,l�) in (18.42) takes the form: for each

sample l�
9
(:) indexed by : = 1, . . . , ,

Re
⇣
B
�
9
(Z�
9
,l�

9
(:))

⌘
= � 9: Z�9 + 1 9 , Im

⇣
B
�
9
(Z�
9
,l�

9
(:))

⌘
= �0

9:
Z
�
9
+ 10

9
, 9 2 #

for some matrices � 9: , �0
9:
2 R3⇥3 and vectors 1 9 ,10

9
2 R3 that depend on l�

9
(:). This

implies that the terminal power B(Z�,l�) and squared voltage magnitude Ẽ(Z�,l�)
given by (18.45) are also a�ne functions of Z�, given the samples in ⌦ := {l� (:),
: = 1, . . . , }. The vector Z� := (Z01

=
, Z12
=

, Z 20
=

,= 2 #) is a 3(# +1)-dimensional column
vector. To simplify notation we will denote it by ^ := Z� and index its entries by
9 2 � := {=q : = 2 # ,q 2 {01,12,20}}, i.e., for 9 = =q 2 �, ^ 9 = Z q= . Fix a ^ = Z�. For
all  samples l� (:), : = 1, . . . , , the constraints in (18.46) consist of 4(3(# +1)) 
a�ne constraints of the form �^  1 for some � 2R12(#+1) ⇥3(#+1) and 1 2R12(#+1) 

that depend on ⌦.

Then A� 2 R3(#+1) is feasible for the semi-infinite program (18.46) if and only if

max
^2 [0,A� ]

�^  1
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For each row 8, write
Õ
9
�8 9^ 9  18 as

Õ
9
(�8 9/18)^ 9  1 and hence A� 2 R3(#+1) is

feasible for the semi-infinite program (18.46) if and only if

max
8

max
^2 [0,A� ]

’
9

(�8 9/18)^ 9 = max
8

’
9

(�8 9/18)+A�9  1

where (0)+ :=max{0,0}. In summary the semi-infinite program (18.46) takes the form

max
A
�

’
9

A
�
9

s.t. max
^2 [0,A� ]

�^  1

It can be equivalently reformulated into a (finite) linear program:

max
A
�

’
9

A
�
9

s.t. ⌫A
�  1

where ⌫8 9 := (�8 9/18)+ and 1 here denotes a vector of all 1s of appropriate size.

18.4 Chapter summary

1. A system model consists of a device model and a network model. The OPF problem
(18.6) can be reformulated as rank constrained semidefinite optimization (18.12)
and (18.15), as summarized in Table (18.1). Ignoring the rank constraint yields an
SDP relaxation (18.17) of OPF. An optimal solution of the OPF can in principle
be recovered from a solution of its relaxation when the optimal voltage matrix
,

opt is of rank 1, even if the relaxation is not exact. Finally OPF is also equivalent
to a nonconvex quadratically constrained quadratic program (18.28).

2. OPF (18.31) is formulated in the branch flow model for radial networks, using
rank and semidefinite constraints for both the device model and the network
model. Omitting the rank constraints yields an SDP relaxation (18.33). Since the
network is radial, if all voltage matrices Eopt

9
are of rank 1, an optimal solution of

OPF (18.31) can always be recovered from an optimal solution of its relaxation
even if it is not exact.

3. These models are illustrated in two distribution system planning applications.

18.5 Bibliographical notes

See the bibliographical notes in Chapter 9.7.

18.6 Problems

Chapter 18.1
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Exercise 18.1 (3-phase OPF as QCQP: line limit). Derive the line limit (18.25d) in
three-phase OPF.

Exercise 18.2 (3-phase OPF as QCQP: current source). Derive the conversion rule
(18.27c)(18.27d) for a current source D 9 := �. /�

9
.

Exercise 18.3 (3-phase OPF as QCQP: power source). Derive the conversion rule

(18.27e)(18.27f) for a power source D 9 := (D 91,D 92) :=
⇣
B
. /�
9

, �. /�
9

⌘
.

Exercise 18.4 (3-phase OPF as QCQP: impedance). Derive the conversion rule

(18.27g)(18.27h) for an impedance
⇣
I
.

9
,+=
9

⌘
or I�

9
.

Exercise 18.5 (3-phase OPF as QCQP: power source). For a power source, we use

D 9 :=
⇣
B
. /�
9

, �. /�
9

⌘
as the internal variable. This exercise shows that this approach is

simpler for a. -configured power source than if the optimization variable is taken to be
D 9 := B.

9
instead. Consider a . -configured ideal power source where the optimization

variable is the internal power (only) D 9 := B.
9

and its neutral voltage +=
9

is given. If
+
=

9
= 0 then B 9 = �B.

9
. Suppose +=

9
< 0.

1. Show that D 9 is related to the terminal voltage and current
�
+ 9 , B 9

�
as:

B 9 = �Diag

 
+
q

9

+
q

9
�+=

9

,q = 0,1,2

!
D 9

2. . configuration: Show that the conversion rule in part 1 is equivalent to the

following set of inhomogeneous quadratic forms in
⇣
+ ,D 9 ,F

q

9
,q 2 {0,1,2}

⌘
2

C
12(#+1)+3: for each 9 2 # ,

+
H
⇣
+
=

9
.
qH
9

⌘
+ = D̄

H
9

⇣
4
q

4
qH
9

⌘
+ + FqH

9

⇣
.
qH
9

⌘
+ , q 2 {0,1,2}

4
iH
:
F
q

9
= +

H
⇣
4
q

9
4
iH
:

⌘
+ , q,i 2 {0,1,2}, : 2 #

where Fq
9
2 C3(#+1) is an auxiliary variable, one for each q 2 {0,1,2}. For each

9 2 # , this is a set of 9(# +1) +3 quadratic equations in
⇣
+ ,D 9 ,F

q

9
,q 2 {0,1,2}

⌘
.

Exercise 18.6 (Three-phase SDP relaxation). A simplified but equivalent version
of OPF (18.12) can be obtained by removing the variables (,.

9
,,�

9
) for all voltage

sources 9 2 #.
E
[#�

E
and their corresponding device constraints (18.11a) and (18.11b),

and replacing their voltage limits (18.11c) by

E
(. /�)min
9

 diag
⇣
, 9 9 or �, 9 9�T

⌘
 E

(. /�)max
9

, 9 2 #.
E
[#�

E
(18.47)

Denote by (D̃, B,,) the variable of the simplified OPF, which is the projection of
(D, B,,) in (18.12) onto the coordinates without (,.

9
,,�

9
, 9 2 #.

E
[#�

E
) for voltage

sources. Clearly the cost function 2(D, B,,) can be expressed in terms of (D̃, B,,) so
that the simplified OPF and (18.12) have the same cost.
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1. Show that the simplified OPF is equivalent to (18.12) in the sense that given a
feasible (or an optimal) (D̃, B,,) of the simplified OPF, there is a (D, B,,) that
is feasible (or optimal) for (18.12), i.e., we can recover a feasible (or optimal)
(,.

9
,,�

9
, 9 2 #.

E
[#�

E
) for voltage sources.

2. Denote by simplified SDP the semidefinite relaxation of the simplified OPF by
omitting the rank-1 constraints in (18.10) due to the network equation and in
(18.11f) due to �-configured power sources. Show that the simplified SDP is exact
if and only if the SDP relaxation (18.17) of OPF is exact.

Exercise 18.7 (Three-phase SDP relaxation). Let " (�,⌫,⇡) :=

� ⌫

⌫
H

⇡

�
. Suppose

" (�,⌫,⇡) is psd and � is of rank 1. Can ⇡ = 0? Can ⌫ = 0 but ⇡ is of rank 1?

Exercise 18.8 (Radial network). If three-phase network is radial, show that the semidef-
inite relaxation is equivalent to a chordal relaxation because the single-phase equivalent
of the network is a chordal graph. Specifically, consider a special case of OPF (18.15)
that contains no �-configured power sources and all entries of the series admittances
(HB
9:

, HB
: 9
) and total admittances (HB

9:
+ H<

9:
, HB
: 9
+ H<

: 9
) are nonzero.3

1. Derive its semidefinite relaxation under the simplifying assumptions.
2. Explain why the single-phase equivalent network is a chordal graph.
3. Derive the chordal relaxation of OPF.

3 This can be relaxed to the condition that the graphs underlying these 3⇥3 matrices are chordal.





Appendix Linear algebra preliminaries

In this chapter we review some basic concepts in linear algebra and algebraic graph
theory that we have used in this book. There are many excellent books on these topics
and our goal is not to be comprehensive or systematic in coverage, but to collect
concepts and properties used in this book in one place for the convenience of the
readers who have already had exposures to these topics.

A.1 Vector spaces, basis, rank, nullity

A.1.1 Vector spaces, subspaces, span

This subsection mostly follows [20, Chapter 0]. We restrict ourselves mostly to finite
vector spaces. Underlying a vector space is its field �, which is a set of scalars that
is closed under two binary operations, called “addition” (0 + 1) and “multiplication”
(01). Most often, � =R orC for us, but in general � can be the set of rational numbers,
or a set of integers modulo a specified prime number, etc. The two operations must
be associative and commutative, and each must have an identity element in the set;
inverses must exist in the set for all elements under addition and for all elements except
the additive identity under multiplication; multiplication must distribute over addition.

Definition A.1 (Vector space). A vector space + , or linear space, over a field � is a
set + of objects, called vectors, that is closed under two binary operations:

• vector addition + :+ ⇥+ !+ denoted by G + H;
• scalar multiplication · : � ⇥+ !+ denoted by 0 · G =: 0G;

and satisfies the following properties: for all G, H, I 2 + and 0,1 2 �,

1. Associativity of vector addition: G + (H + I) = (G + H) + I.
2. Commutativity of vector addition: G + H = H + G.
3. Identity element of vector addition: There exists 0 2 + , called the zero vector, such

that G +0 = G.
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4. Inverse elements of vector addition: There exists�G 2+ , called the additive inverse
of G, such that G + (�G) = 0.

5. Associativity of scalar multiplication: 0(1G) = (01)G.
6. Identity element of scalar multiplication: There exists 1 2 �, called the multiplica-

tive identity in � such that 1G = G.
7. Distributivity of scalar multiplication over vector addition: 0(G + H) = 0G + 1H.
8. Distributivity of scalar multiplication over field addition: (0 + 1)G = 0G + 1G.

A subspace of a vector space + over a field � is a subset of + that is itself a vector
space over � with the same binary operations as in + . ⇤

If � = R then + is called a real vector space. If � = C then + is called a complex
vector space. Given � and an integer = the set + := �= of =-tuples with components
from � forms a vector space over � where the vector addition “+” is defined by
componentwise addition: [G + H]8 = G8 + H8 . The vector space �= is important because
any finite dimensional vector space can be identified with �= for some integer = (see
Example A.1 and the next subsection for a formal definition). Note that R= is a real
vector space (+ = R= over � = R) while C= is both a real vector space (+ = C= over
� = R) and a complex vector space (+ = C= over � = C).

A vector space+ is however not restricted to+ = �=. An important finite dimensional
vector space over � is the set "<,= (�) of < ⇥ = matrices whose entries ["]8 9 2 �
for any finite < and =. We can vectorize � 2 "<,= (�) and treat � as a vector in
+ = �<=, but we will mostly treat � as an array of scalars in + = �<⇥=. Note that
matrix multiplication is not involved in the definition of+ = �<⇥= as a vector space (it
can be treated as a composition of linear transformations when a matrix is viewed as a
linear transformation from �

= to �<; see below). If < = = we abbreviate "<,= (�) to
"< (�). If � = ⇠ we abbreviate "<,= (⇠) to "<,=.

The components G8 of vectors G 2+ may not be from �. Possibly infinite dimensional
examples include: the set of polynomials with real or with complex coe�cients (of
up to a specified degree or of arbitrary degree) is a real or complex vector space
respectively; the set of real-valued or complex-valued functions on subsets of R or C
is a real or complex vector space respectively.

If ( ✓ + is a nonempty subset of the vector space+ over a field � then span(() is the
intersection of all subspaces of + that contain (. It consists of all linear combinations
of finitely many vectors in (:

span(() = {01G1 + · · · + 0:G: : G1, . . . ,G: 2 (, 01, . . . ,0: 2 �, : = 1,2, . . . }

It can be checked that span(() is always a subspace whether or not ( is a subspace. (
is said to span + if span(() = + . Let (1 and (2 be subspaces of a vector space over a
field �. The sum of (1 and (2 is the subspace

(1 + (2 := span{(1[ (2} = {G + H : G 2 (1, H 2 (2}
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If (1 \ (2 = {0} then (1 + (2 is called a direct sum and we write it as (1 � (2. Every
vector I 2 (1 � (2 can be uniquely written as I = G + H with G 2 (1 and H 2 (2.

Example A.1. Consider ( := {1, C, C2, . . . , C=�1}. Even though ( is not a vector space
its span

span(() = {00 + 01C + · · · + 0=�1C
=�1 : 00, . . . ,0=�1 2 �}

is an =-dimensional vector space+ that can be identified with �= where G 2+ is defined
by G8 = 08 , 8 = 0, . . . ,=�1. ⇤

A.1.2 Basis, dimension, rank and nullity

A finite set of vectors G1, . . . ,G: in a vector space+ over a field � is linearly dependent
if and only if there are scalars 01, . . . ,0: 2 �, not all zero, such that 01G1 + · · · +0:G: =
0 2+ . The vectors G1, . . . ,G: are linearly independent if they are not linearly dependent.
A linearly independent set ⌫ := {E1,E2, . . . , } ✓ + of vectors that spans the vector space
+ is called a basis. Any vector G 2+ can be uniquely expressed as a linear combination
of the basis, i.e., G =

Õ
8
08E8 for a unique set of scalars 08 2 �, 8 = 1,2, . . . . If there is a

positive integer = such that ⌫ := {E1, . . . ,E=} is a basis of + , then all bases of + consist
of exactly = vectors and = is the dimension of + , denoted by dim(+). This is because
adding any vector to a basis will render it linearly dependent and removing any vector
from the basis will prevent it from spanning+ . In this case+ is finite dimensional. If no
such integer = exists then + is infinite dimensional. For an infinite dimensional vector
space, there is a one-to-one correspondence between the vectors in any two bases. A
subspace of a (finite) =-dimensional vector space has dimension no more than =; it is
a proper subspace if its dimension is strictly less than =.

The real vector space R= has dimension =. The complex vector space ⇠= has
dimension = over the field � = C but dimension 2= over the field � = R. A basis of
a vector space �= is a set of vectors {E1, · · · ,E=} such that any vector G 2 �= can
be expressed as a linear combination of vectors in the basis, i.e., G = ⌫U for some
U 2 �= where the columns of ⌫ are the vectors {E1, · · · ,E=}. If the basis vectors are
orthogonal, i.e., EH

8
E 9 = 0 for 8 < 9 , then the basis is called an orthogonal basis. If the

basis vectors are both orthogonal and of unit Euclidean norm (kE8 k2 = 1 for all 8), then
the basis is called an orthonormal basis. The basis {41, · · · ,4=} of �= in which the
=-vector 48 has a 1 in its 8th entry and 0s elsewhere is called the standard basis, the
unit basis or the unit vector. It is an orthonormal basis. Two vector spaces * and +
over the same filed � is called isomorphic if there is an invertible function 5 :*!+

such that 5 (0G + 1H) = 0 5 (G) + 1 5 (H) for all G, H 2 * and 0,1 2 �. Then 5 is called
an isomorphism. Any =-dimensional real vector space is isomorphic to R= and any
=-dimensional complex vector space is isomorphic to C=.

Let + be a finite-dimensional vector space and let (1,(2 be two given subspaces of
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+ . Then

dim((1\ (2) + dim((1 + (2) = dim((1) + dim((2)
Hence

dim((1\ (2) � dim((1) + dim((2) � dim(+)
since (1 + (2 := span{(1 [ (2} ✓ + . By induction we have dim((1 \ · · · \ (: ) �
dim((1) + · · · + dim((: ) � (: � 1)dim(+). If X := dim((1) + · · · + dim((: ) � (: �
1)dim(+) � 1 then (1 \ · · · \ (: contains at least X � 1 linearly independent vec-
tors. For example, for the vector space + := R3 and subspaces (1,(2 defined by two
non-parallel planes, their intersection (1\(2 is a line in+ and has a dimension at least
2+ 2� 3 = 1. In fact its dimension is exactly 1 because (1 + (2 = + . If (3 is a plane
that is not parallel to (1 or (2, dim((1\ (2\ (3) � 2+2+2� (2) (3) = 0. It is exactly
0 (their intersection is a point) because (1 + (2 + (3 =+ .

We can view a matrix "<,= (�) as a vector in the vector space �<=, or an array of
scalars � in the vector space �<⇥=. A third perspective is to view a matrix � 2 "<,= (�)
as a linear transformation � : �=! �

< mapping G to �G. Then

• The domain of � is �=.
• The range of � is the subspace range(�) := {�G 2 �< : G 2 �=} ✓ �<. The dimen-

sion of range(�) is called the rank of �, denoted by rank(�).
• The null space of � is the subspace null(�) := {G 2 �= : �G = 0} ✓ �=. The

dimension of null(�) is called the nullity of �, denoted by nullity(�).

The span range(�) is also called the column space of �. Similarly {HT
� : H 2 �<} is

called the row space of �. The rank-nullity theorem states that

rank(�) + nullity(�) = = = rank
⇣
�

H
⌘
+ nullity(�) (A.1)

where the last equality holds if � =C or R and follows since rank(�) = rank
�
�

H�
. Note

that range
�
�

H�
✓ �= whereas range(�) ✓ �<.

Henceforth we use "<,= := "<,= (C) to denote the set of < ⇥ = matrices whose
elements are in C. We abbreviate them to "= := "= (C) if < = = and use " := " (C)
when < and = are arbitrary. Similarly for "<,= (R), "= (R) and " (R) for matrices
whose elements are inR. We often write � 2 C<⇥= (or � 2 R<⇥=) and call � a complex
(or real) matrix to mean a matrix � in " (or " (R)) of size <⇥=.

A.2 Polyhedral set and extreme point

We follow [56, Chapter 2] and define a polyhedral set - ✓ R= as a nonempty set
specified by a finite number of a�ne inequalities:

- := {G 2 R= : �G  1}



A.2 Polyhedral set and extreme point 985

for a given � 2 R<⇥= and 1 2 R<. Hence a polyhedral set is nonempty closed and
convex. An important characterization of a polyhedral set is the following result e.g.
[56, Proposition 2.3.3, p.106].

Theorem A.1 (Minkowski-Weyl representation). A set - ✓R= is polyhedral if and only
if there is a finite set {E1, . . . ,E<} and a finitely generated cone  := cone(01, . . . ,0: )
such that

- = conv(E1, . . . ,E<) + cone(01, . . . ,0: )

i.e.

- =

(
G 2 R= : G =

<’
8=1

U8E8 + H, U8 � 0,
’
8

U8 = 1, H 2  
)

⇤

Given a nonempty convex set - ✓ R= a vector G 2 - is an extreme point if there
does not exist H < G, I < G, and U 2 (0,1) such that G = UI + (1�U)H, i.e., if G is not
a convex combination of other vectors in - that are distinct from G. Several facts are
useful. An interior point cannot be an extreme point and an open set has no extreme
points. A cone may have at most one extreme point, the origin. A polyhedral set has at
most finitely many extreme points, and the minimum of a linear program is attained at
an extreme point of its polyhedral feasible set. A polyhedral set may not possess any
extreme points e.g. - = {(G1,G2) : G1 = G2}. The following result from [56, Propositions
2.1.5, p.98] provides an exact characterization of the existence of extreme points for
polyhedral sets.

Lemma A.2. Let - := {G 2 R= : �G  1} be a polyhedral set for some � 2 R<⇥= and
1 2 R<. Then - has an extreme point if and only if � has = linearly independent rows,
i.e., rank(�) = =. ⇤

A convex set that is compact is the convex hull of its extreme points; see e.g.
[155, Theorem 2.3.4, p.111]. Carathéodory theorem then implies that every vector is a
convex combination of at most =+1 extreme points. These constituent extreme points,
however, may be di�erent for di�erent vectors.

Lemma A.3. Let - ✓ R= be convex and compact. Then

1. - = conv{extreme points of -}.
2. If G 2 - then G =

Õ
=+1
8=1 U8E8 for some extreme points E8 of - (that may depend on

G), and some U8 2 [0,1] with
Õ
8
U8 = 1. ⇤



986 Linear algebra preliminaries

A.3 Schur complement and matrix inversion formula

A.3.1 Schur complement

Let " 2 C=⇥= and partition it into blocks:

" =

� ⌫

⇡ ⇠

�

such that ⇠ 2 C:⇥: , : < =, is invertible and the other submatrices are of appropriate
dimensions. The (= � :) ⇥ (= � :) matrix "/⇠ := � � ⌫⇠�1

⇡ is called the Schur
complement of block ⇠ of matrix " . If � is invertible then the : ⇥ : matrix "/� :=
⇠ �⇡��1

⌫ is called the Schur complement of block � of matrix " .

Example A.2 (Gaussian elimination). Schur complement arises from applying Gaus-
sian elimination to a system of linear equations such as:

� ⌫

⇡ ⇠

� 
G

H

�
=


11

12

�
,


�G +⌫H
⇡G +⇠H

�
=


11

12

�

When ⇠ is invertible, Gaussian elimination expresses H in terms of G by multiplying
the second equation by ⌫⇠�1 and subtracting the result from the first equation. This
corresponds to multiplying the equations on the left by a block lower-triangular matrix:


I=�: �⌫⇠�1

0 ⇠
�1

� 
� ⌫

⇡ ⇠

� 
G

H

�
=


��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

� 
G

H

�
=


1̂1

1̂2

�
(A.2a)

where 
1̂1

1̂2

�
:=


11�⌫⇠�1

12

⇠
�1
12

�

If the Schur complement of ⇠ is invertible then the solutions for (G, H) can be read o�
equation (A.2a) as

G =
⇣
��⌫⇠�1

⇡

⌘�1
1̂1 = ("/⇠)�1

1̂1

H = �⇠�1
⇡G + 1̂2 = �⇠�1

⇡ ("/⇠)�1
1̂1 + 1̂2

This means that 
��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

�
(A.2b)

⇤

Gaussian elimination can be represented as
I=�: �⌫⇠�1

0 I:

� 
� ⌫

⇡ ⇠

� 
I=�: 0
�⇠�1

⇡ I:

�
=


��⌫⇠�1

⇡ 0
0 ⇠

�
(A.3)
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This equation implies (since det("1"2) = det("1) det("2))

det(") = det(⇠) det("/⇠)
rank(") = rank(⇠) + rank("/⇠)

Theorem A.4 (Schur complement). Let " 2 C=⇥= be partitioned as above with non-
singular ⇠. Let "/⇠ := �� ⌫⇠�1

⇡ be the Schur complement of ⇠ of matrix " .

1. " is nonsingular if and only if "/⇠ is nonsingular (given ⇠ is nonsingular).
2. det(") = det(⇠) det("/⇠).
3. rank(") = rank(⇠) + rank("/⇠).
4. Suppose " is symmetric. Then

(a) " is positive definite if and only if ⇠ and "/⇠ are positive definite.
(b) Suppose ⇠ is positive semidefinite (not just nonsingular). " is positive

semidefinite if and only if "/⇠ is positive semidefinite.
5. If " and ⇠ are invertible, then "/⇠ is invertible and

"
�1 =


("/⇠)�1 � ("/⇠)�1

⌫⇠
�1

�⇠�1
⇡ ("/⇠)�1

⇠
�1 +⇠�1

⇡ ("/⇠)�1
⌫⇠
�1

�

6. If " and � are invertible, then "/� := ⇠ �⇡��1
⌫ is invertible and

"
�1 =


�
�1 + ��1

⌫("/�)�1
⇡�
�1 ���1

⌫("/�)�1

�("/�)�1
⇡�
�1 ("/�)�1

�

Proof Assertions 1, 2, 3 follow from (A.3). Example A.2 shows that (from (A.2a)):
I=�: �⌫⇠�1

0 ⇠
�1

� 
� ⌫

⇡ ⇠

�
=


��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

�
(A.4)

" is singular if and only if there exists a nonzero vector (G, H) in null("), i.e.,
��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

� 
G

H

�
= 0 , (��⌫⇠�1

⇡)G = 0, H = �⇠�1
⇡G

Hence " is singular if and only if � � ⌫⇠�1
⇡ is singular. Applying

det("1"2) = det("1)det("2) to (A.4) we have det(") = det(⇠)det(�� ⌫⇠�1
⇡) =

det(⇠)det("/⇠).

For 4, �,⇠ are symmetric and ⇡
T = ⌫. Hence (A.3) becomes �"�

T =
diag("/⇠,⇠) where � is nonsingular with

� :=

I=�: �⌫⇠�1

0 I:

�
, �

�1 =

I=�: ⌫⇠

�1

0 I:

�

Then

G
T
"G =

⇣
�
�T
G

⌘T
diag("/⇠,⇠)

⇣
�
�T
G

⌘
= H

T
1 ("/⇠)H1 + HT

2⇠H2 (A.5a)
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where 
H1

H2

�
:= �

�T
G =


I=�: 0
⇠
�1
⌫

T
I:

� 
G1

G2

�
=


G1

⇠
�1
⌫

T
G1 + G2

�
(A.5b)

If⇠ and"/⇠ are positive definite, then for any G := (G1,G2) < 0, GT
"G = HT

1 ("/⇠)H1+
H

T
2⇠H2 > 0, i.e., " is positive definite. Conversely suppose " is positive definite, so

that HT
1 ("/⇠)H1 + HT

2⇠H2 > 0 for any (H1, H2) < 0. If HT
1 ("/⇠)H1  0 for any H1 < 0,

then choose G1 = H1 and G2 = �⇠�1
⌫

T
G1 so that H1 < 0 but H2 = 0. We have from (A.5)

that GT
"G = HT

1 ("/⇠)H1  0, contradicting that " is positive definite. Similarly if
H

T
2⇠H2  0 for any H2 < 0, then choose G1 = 0 and G2 = H2, yielding GT

"G = HT
2⇠H2  0,

a contradiction. Therefore both "/⇠ and ⇠ are positive definite.

If⇠ is nonsingular and positive semidefinite, then⇠ must be positive definite. Then
(A.5) implies that " is psd (and not pd) if and only if "/⇠ is psd (and not pd, setting
H2 = 0).

To prove 5, we have from (A.2)
� ⌫

⇡ ⇠

��1 
I=�: �⌫⇠�1

0 ⇠
�1

��1

=

��⌫⇠�1

⇡ 0
⇠
�1
⇡ I:

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

�

Hence 
� ⌫

⇡ ⇠

��1

=


("/⇠)�1 0
�⇠�1

⇡ ("/⇠)�1
I:

� 
I=�: �⌫⇠�1

0 ⇠
�1

�

=


("/⇠)�1 � ("/⇠)�1
⌫⇠
�1

�⇠�1
⇡ ("/⇠)�1

⇠
�1
⇡ ("/⇠)�1

⌫⇠
�1 +⇠�1

�

The last assertion can be proved in the same way by eliminating G instead of H in
Example A.2; see Exercise A.3. ⇤

Let � := {81, . . . , 8: } ✓ {1, . . . ,=}, � := { 91, . . . , 9;} ✓ {1, . . . ,=}, and �� � denote the
submatrix obtained from deleting rows not in � and columns not in �.

• If : = ;, i.e., �� � is square, then the minor "� � of � is the determinant of the
submatrix �� � .

• If � = �, then �� � is called a principal submatrix and "� � a principal minor of �.
• If � = � = {1, . . . , :} with :  =, then �� � is called a leading principal submatrix

of order : and "� � a leading principal minor of order : .

Theorem A.5 (Slyvester’s criterion). Suppose � is Hermitian. Then

1. � is positive definite if and only if all its leading principal minors are positive.
This involves = determinants: those of the upper left 1⇥1 matrix, upper left 2⇥2
matrix, . . . , det(�).

2. � is positive semidefinite if and only if all its principal minors are nonnegative.

This involves
✓
=

1

◆
+

✓
=

2

◆
+ · · · +

✓
=

=

◆
determinants.
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⇤

A.3.2 Matrix inversion lemma

A useful identity is the matrix inversion lemma or Sherman-Morrison-Woodbury
formula. Let � 2 C=⇥=, ⌫ 2 C=⇥: ,⇠ 2 C:⇥: and ⇡ 2 C:⇥=. Suppose �,⇠ and the : ⇥ :
matrix

⇠̂ := ⇠�1 +⇡��1
⌫ (A.6a)

are invertible. Then

(�+⌫⇠⇡)�1 = ��1 � �
�1

⇣
⌫⇠̂
�1
⇡

⌘
�
�1 (A.6b)

An important case is when : ⌧ =. Then the : ⇥ : matrix ⇠ is much smaller than �
and the multiplication of ⇠ by ⌫ and ⇡ on the left and right respectively produces an
=⇥=matrix ⌫⇠⇡ of the right size for addition with �. Similarly reversing the order of
multiplication produces a much smaller : ⇥ : matrix ⇡��1

⌫ for addition with ⇠�1 to
produce the matrix ⇠̂ in (A.6a). We can thus view the role of (⌫,⇡) as transforming
between sizes = and : to simplify the inversion of large matrices. In many applications
⌫⇠⇡ represents a low-rank update of � in a dynamical system or an additive noise to
a transmitted signal � so that �+ ⌫⇠⇡ is the received signal. Suppose ��1 has been
precomputed. Then ⇠̂ is much smaller and easier to invert than �+⌫⇠⇡. The matrix
inversion formula allows us to compute the inverse of the updated or noisy matrix
�+⌫⇠⇡ in terms of ��1 and ⇠̂�1 when they exist.

Many special cases are useful. For instance when � = I= and ⇠ = I: we have:

(I= +⌫⇡)�1 = I= � ⌫ (I: +⇡⌫)�1
⇡

Note that ⌫⇡ is =⇥= while ⇡⌫ is : ⇥ : and hence the inverse on the right-hand side
can be much easier to compute than that on the left-hand side. Using the push-through
identity (see Exercise A.4) this is equivalent to:

(I= +⌫⇡)�1 = I= � (I= +⌫⇡)�1
⌫⇡ = I= � ⌫⇡ (I= +⌫⇡)�1

When : = = and ⌫ = ⇡ = I= we have the inversion formula for sum of two matrices:

(�+⇠)�1 = ��1 � �
�1

⇣
⇠
�1 + ��1

⌘�1
�
�1

Merging ��1 �
⇠
�1 + ��1��1

�
�1 we have Hua’s identity:

(�+⇠)�1 = ��1 �
⇣
�+ �⇠�1

�

⌘�1
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A.4 Change of basis, diagonalizability, Jordan form

Recall that we can interpret any <⇥= complex matrix � as a linear transformation that
maps a vector G 2 C= to a vector H = �G 2 C<, where the basis in the domain C= is the
standard basis consisting of the columns of the =⇥= identity matrix I= and the basis in
the range C< is the standard basis consisting of the columns of I<. Suppose we want
to change the basis of the domain to (the columns of) an =⇥ = nonsingular matrix +
and the basis of the range to (the columns of) an <⇥< nonsingular matrix*. What is
the new matrix �̃ that represents the same linear map with respect to the new bases?

A.4.1 Similarity transformation

Since+ and* are bases of C= and C< respectively we can express any G 2 C= in terms
of + and any vector H 2 C< in terms of* as

G = + G̃ and H = * H̃

Hence a linear transformation � that maps any vector G 2 C= to a vector H = �G 2 C<
with respect to the standard bases implies

* H̃ = H = �G = �+ G̃

Hence

H̃ =*�1
�+|  {z  }
�̃

G̃

This means that any vector G̃ in the domain C= with respect to the new basis + is
mapped to the (same) vector H̃ in the range C< with respect to the new basis * by the
matrix (see Figure A.1)

�̃ := *
�1
�+ or � = *�̃+

�1

For the special case where = = < and the new bases for the domain and the range
are the same,* =+ ,

�̃ =+�1
�+ (A.7)

i.e., the new matrix �̃ represents the linear transformation under the new basis + . The
mapping of � to +�1

�+ is called a similarity transformation of � by the nonsingular
similarity matrix + .
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A

V U

Figure A.1 Change of bases. The new matrix �̃ is similar to � when = = < and* =+ .

A.4.2 Diagonalizabilty and Jordan form

For the case where = =< and* =+ , if the basis+ in (A.7) is such that �̃ =⇤ is diagonal
then the diagonal entries _8 of ⇤ are the eigenvalues of � with the 8th columns E8 of +
as the corresponding eigenvectors, since

�+ = +⇤ or �E8 = _8E8 , 8 = 1, . . . ,=

� is said to be diagonalizable in this case, i.e., by definition, � is diagonalizable if it
is similar to a diagonal matrix ⇤.

Not all =⇥= matrix � over the complex field is diagonalizable through a similarity
transformation. We see above that � is diagonalizable if � has = linearly independent
eigenvectors. Indeed having = linearly independent eigenvectors is also necessary for
�’s diagonalizability.1 When � has fewer than = linearly independent eigenvectors, �
is not similar to a diagonal matrix, but to a Jordan form, i.e., there exists an invertible
matrix + such that

+
�1
�+ = � :=

2666664

�1
. . .

�<

3777775
where �8 , 8 = 1, . . . ,<, are Jordan blocks of �:

�8 :=

2666666664

_8 1

_8

. . .

. . . 1
_8

3777777775
To compute the columns of + , consider Jordan block �8 and suppose without loss of

1 A square matrix � 2 C=⇥= is said to be unitarily diagonalizable if + �1 = + H in (A.7). A matrix � is
unitarily diagonalizable if and only if it is normal (��H = �H

�); see Chapter A.6.
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generality that it corresponds to columns 1,2, . . . , :8 . Equate these :8 columns on both
sides of �+ =+� to get

�

266664
| | |
E1 E2 · · · E:8

| | |

377775
=

266664
| | |
E1 E2 · · · E:8

| | |

377775

2666666664

_8 1

_8

. . .

. . . 1
_8

3777777775
Therefore E1 is the eigenvector corresponding to the eigenvalue _8 and can be computed
from

(��_8 �=)E1 = 0 (A.8a)

The other columns E2, . . . ,E:8 are not eigenvectors. They satisfy �E 9 = E 9�1 +_8E 9 ,
9 = 2, . . . , :8 , and can be computed from

(��_8 �=)E 9 = E 9�1, 9 = 2, . . . , :8 (A.8b)

Multiplying both sides by ��_8 �= yields (��_8 �=)2
E 9 = E 9�2. Repeated multiplica-

tions then imply that the columns E1, . . . ,E:8 satisfy:

(��_8 �=)E1 = 0 (E1is eigenvector)
(��_8 �=)2

E2 = 0 (E 9 are generalized eigenvectors, 9 = 2, . . . , :8)
...

(��_8 �=):8E:8 = 0

The characteristic polynomial ?(G) := det(GI= � �) of � can be expressed in terms of
the eigenvalues _8:

?(G) := det(GI= �+�+�1) = det
⇣
+ (GI= � �)+�1

⌘
= det(GI= � �) =

<÷
8=1

det(GI:8 � �8)

where �8 is the 8th Jordan block of size :8 ⇥ :8 , and I:8 is the identity matrix of the
same size. Since a Jordan block is upper triangular we have

det(GI:8 � �8) = (G�_8):8

and hence

?(G) =
<÷
8=1

(G�_8):8

There can be more than one Jordan block whose diagonal entries are the repeated
eigenvalue _8 . Let @ be the number of distinct eigenvalues _ 9 , 9 = 1, . . . ,@, and let < 9

be the number of Jordan blocks corresponding to the distinct eigenvalue _ 9 , so that
< =

Õ
@

9=1 < 9 . Then the characteristic polynomial can also be expressed in terms of
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distinct eigenvalues as:

?(G) =
<÷
8=1

(G�_8):8 =
@÷
9=1

< 9÷
8=1

(G�_ 9 ):8

For each distinct eigenvalue _ 9 , there are two quantities of interest:

1. geometric multiplicity< 9 of _ 9 : This is the number of Jordan blocks corresponding
to _ 9 . It is the dimension of the null space of ��_ 9 I= since each such block yields
a single eigenvector of �.

2. algebraic multiplicity
Õ< 9

8=1 :8 of _ 9 : This is the sum of the sizes :8 of all these
Jordan blocks. It is the maximum degree of the factor G �_ 9 in the characteristic
polynomial ?(G) of " .

Hence for each distinct eigenvalue _ 9

algebraic multiplicity
< 9’
8=1

:8 � geometric multiplicity < 9

We summarize implications of algebraic and geometric multiplicities on the diagonal-
izability of � in the following theorem.

Theorem A.6. With the notations above,

1. For each distinct eigenvalue _ 9 , algebraic multiplicity = geometric multiplicity =
< 9 if and only if all Jordan blocks corresponding to _ 9 have sizes :8 = 1. In this
case, there are< 9 eigenvectors corresponding to _ 9 , they are linearly independent,
and the null space of ��_ 9 �= has dimension < 9 .

2. � is diagonalizable if and only if algebraic multiplicity = geometric multiplicity
for all eigenvalues, if and only if all Jordan blocks have sizes 1 and hence all super-
diagonal entries are zero, if and only if � has = linearly independent eigenvectors.

3. As a special case, � is diagonalizable if � has = distinct eigenvalues (and
hence all Jordan blocks are of size 1, < 9 = :8 = 1 = algebraic multiplicity =
geometric multiplicity).

A.5 Special matrices

Definition A.2 (Square matrices). 1. A real or complex matrix � 2 F=⇥=, with � =R
or C, is symmetric if �T = �, skew-symmetric if �T = ��, and orthogonal if
�

T = ��1.
2. A complex matrix � 2 C=⇥= is Hermitian if �H = �, skew-Hermitian if �H = ��,

and unitary if �H = ��1.
3. A complex matrix � 2 C=⇥= is normal if ��H = �H

�. If � is real, this reduces to
��

T = �T
�.
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4. Positive semidefiniteness.
• A complex matrix � 2 C=⇥= is positive semidefinite (psd) (or positive definite

(pd)) if GH
�G is real and nonnegative (or real and positive) for all G 2 C=.

• A real symmetric matrix � 2 R=⇥= is positive semidefinite (psd) (or positive
definite (pd)) if GT

�G � 0 (or GT
�G > 0) for all G 2 R=.

• A complex or real matrix � is negative semidefinite (nsd) (or negative definite
(nd)) if �� is psd (or pd). It is indefinite if there are vectors H, I 2 F 2 {C,R}
such that HH

�H < 0 < I
H
�I.

⇤

Remark A.1. 1. A real orthogonal matrix or a unitary matrix has columns (or rows)
that are orthonormal basis of R= or C=. A complex orthogonal matrix however is
generally not unitary and their columns (or rows) are generally not orthonormal.

2. All Hermitian (symmetric), skew-Hermitian (skew-symmetric), or unitary com-
plex matrices are normal, but the converse is not generally true. A real symmetric
matrix is normal, but a complex symmetric matrix may or may not be normal (see
Chapter A.6.4). If � is both triangular and normal, then � is diagonal.

3. A complex Hermitian (skew-Hermitian) matrix behaves like a real symmetric
(skew-symmetric) matrix, e.g., they have real eigenvalues and are normal matrices.
It therefore has a spectral decomposition according to Theorem A.13. A complex
Hermitian matrix has real diagonal entries.

4. A complex symmetric matrix may or may not be normal. It therefore may or may
not have a spectral decomposition. It always has a singular value decomposition
(Theorem A.11) and a Takagi decomposition (Theorem A.17), and these are
generally di�erent decompositions.

5. Our definition of psd (or pd) requires symmetry for real matrices, but does not
require Hermitian for complex matrices. This is because, for a complex matrix
� 2 C=⇥=, � is psd (or pd) if and only if � is Hermitian and its eigenvalues are
nonnegative (or positive), so our Definition A.2 for complex matrices implies
Hermitian. For a real matrix � 2 R=⇥=, on the other hand, � can satisfy GT

�G � 0
for all G 2R= but not be symmetric (as long as its symmetric component (�+�T)/2
is psd or pd). Following [20, Definition 4.1.11, p. 231], we therefore restrict our
definition to real symmetric matrices. Then � is psd (or pd) if and only if all its
eigenvalues are nonnegative (or positive) [20, Theorem 4.1.10, p.231].

⇤

Theorem A.7 (Eigenvalues). 1. A matrix �, real or complex, is invertible if and only
if all its eigenvalues are nonzero.

2. If a matrix � is real symmetric or complex Hermitian, then all its eigenvalues are
real.

3. A matrix �, real or complex, is psd (pd) if and only if �H = � and all its eigenvalues
are real and nonnegative (positive).

⇤
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Definition A.3 (Diagonal dominance). A matrix � 2 C=⇥= is diagonally dominant if

|�88 | �
’
9: 9<8

|�8 9 | for all rows 8

� is strictly diagonally dominant if the inequalities are strict for all rows 8.

The Ger�gorin disc theorem states that all eigenvalues of a matrix � 2 C=⇥= lie in
the union of = discs

[=
8=1

(
I 2 C= : |I� �88 | 

’
9: 9<8

|�8 9 |
)

If � is strictly diagonally dominant then the origin is outside Ger�gorin discs, i.e., all
eigenvalues of � are nonzero. The geometry of the Ger�gorin discs also implies the
following property.

Theorem A.8. 1. A strictly diagonally dominant matrix is invertible (but not neces-
sarily positive definite).

2. Suppose � 2 C=⇥= is Hermitian with (real) nonnegative diagonal entries �88 � 0.
• If � is diagonally dominant then it is positive semidefinite.
• If � is strictly diagonally dominant then it is positive definite and invertible.

Proof Part 1 follows from the Ger�gorin disc theorem. For part 2, for any G 2 C= we
have

G
H
�G =

’
8, 9

�8 9G
H
8
G 9 =

’
8

 
�88 |G8 |2 +

’
9: 9<8

�8 9 G
H
8
G 9

!

Substitute �88 �
Õ
9: 9<8 |�8 9 | (diagonal dominance) to get

G
H
�G �

’
8

’
9: 9<8

⇣
|�8 9 | |G8 |2 + �8 9 G

H
8
G 9

⌘

=
’

(8, 9):8< 9

⇣
|�8 9 | |G8 |2 + |� 98 | |G 9 |2 + �8 9 G

H
8
G 9 + � 98 GH

9
G8

⌘

Since � 98 = �H
8 9

(� is Hermitian) we have

G
H
�G �

’
(8, 9):8< 9

|�8 9 |
⇣
|G8 |2 + |G 9 |2� |GH

8
| |G 9 |� |GH

9
| |G8 |

⌘
=

’
(8, 9):8< 9

|�8 9 |
�
|G8 |� |G 9 |

�2 � 0

If � is strictly diagonally dominant then the inequality is strict and therefore � is
positive definite. ⇤

Unitary matrices have the following properties (e.g. [20, Theorem 2.1.4, p.84]).

Lemma A.9. Consider a complex matrix* 2 "= := "= (C). The following are equiv-
alent:

• * is unitary.
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• *H
* = I.

• The columns of* are orthornormal.
• *H is unitary.
• **H = I.
• The rows of* are orthornormal.
• k*Gk2 = kGk2 for all G 2 C= where k · k2 is the Euclidean norm.

A unitary matrix can be interpreted as a rotation operator, i.e., the product*G rotates
the vector G without expanding its Euclidean norm, k*Gk22 = GH (*H

*)G = GH
G = kGk22.

In fact, the Euclidean norm is the only vector norm that is unitarily invariant, i.e.,
k*Gk = kGk for all G 2 C= and all unitary matrices* with k48 k = 1; see Chapter A.8.1.

Recall that a unitary matrix is normal because**H =*H
* = I, and hence unitarily

diagonalizable (Theorem A.13). If it is also symmetric then the unitary matrix is real
orthogonal according to the following result [20, Corollary 2.5.18, p.139].

Lemma A.10. Suppose* 2 "= := "= (C) is unitary and symmetric. Then

1. If* = diag (01, · · · ,0=) then 0 9 = 4i\ 9 for some \ 9 2 R=.
2. Spectral decomposition. There exist real orthogonal matrix & 2 R=⇥= and real
\1, · · · ,\= in [0,2c) such that

* = & diag
⇣
4

i\1 , · · · ,4i\=

⌘
|                   {z                   }

⇤

&
T =: &⇤&T

where _ 9 := 4i\ 9 are the eigenvalues of* and the columns of& are an orthonormal
set of corresponding (real) eigenvectors of*.

A.6 SVD, spectral decompositions, complex symmetric matrices

In this subsection we review the various matrix decompositions and their relationship,
as shown in Figure A.2.

A.6.1 Singular value decomposition for any matrix

Consider a complex matrix � 2 C<⇥=. Suppose there exists a real value f � 0 and
nonzero vectors E 2 C<, F 2 C= such that

�F = fE (A.9)

In this case, (f,E,F) are called respectively a singular value, associated left singular
vector and right singular vector of �. The next result says that every matrix � has
< orthonormal left singular vectors E1, . . . ,E< 2 C<, = orthonormal right singular
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All: A

Figure A.2 Matrix decompositions. Singular value decomposition (Thm A.11),
Diagonalizability (Thm A.6), Spectral theorems (Thms A.13, A.15, A.16), Takagi’s
decomposition (Thm A.17).

vectors F1, . . . ,F= 2 C=, and at most @ := min{<,=} strictly positive singular values
f1, . . . ,f@ . Like eigenvalues the singular values f8 are unique. Like eigenvectors, left
and right singular vectors (E8 ,F8) are generally not unique. As we will see below,
they are eigenvectors of ��H and �H

� respectively; but the converse may not hold,
i.e., not every eigenvector of ��H and that of �H

� may satisfy (A.9). For example,
if (E8 ,F8) are singular vectors of unit Euclidean norm, so are (4i\

E8 , 4i\
F8) for any

\ 2 R. Moreover the matrix � can be factorized as follows [20, Theorem 2.6.3, p.150].

Consider an < ⇥ = matrix ⌃ and a diagonal matrix ⌃@ = diag(f1, · · · ,f@) of size
@ := min{<,=}. We will abuse notation and call ⌃ diagonal, even if < < =, if ⌃ is of
the form:

⌃ =

8>>>><
>>>>:

⌃@ if < = =⇥
⌃@ 0

⇤
if = > < = @

⌃@
0

�
if < > = = @

(A.10)

Theorem A.11 (Singular value decomposition). For any matrix � 2 C<⇥=, there exists
unitary matrices + 2 C<⇥< and, 2 C=⇥=, and a real diagonal matrix ⌃ 2 R<⇥= of the
form in (A.10) with

f1 � f2 · · · � f@ � 0
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such that

�, = +⌃ or � = +⌃,H (A.11)

with +�1 =+H and,�1 =,H. Moreover

1. The nonzero singular values of � are the positive square roots of the eigenvalues
of ��H (or equivalently of �H

�):

f8 = +
p
_8 (��H) = +

p
_8 (�H

�), 8 = 1, . . . ,@

2. If A  @ of the @ singular values f8 are positive, then � is of rank A and

� =
A’
8=1

f8 E8F
H
8

3. If + and, are unitary matrices such that � =+⌃,H then
• the columns of + are an orthonormal set of eigenvectors of ��H because
��

H =+⌃2
+

H, and
• the columns of , are an orthonormal set of eigenvectors of �H

� because
�

H
� =,⌃2

,
H;

but the converse does not necessarily hold.

If � is real then + and, can be taken as real orthogonal matrices. ⇤

The rank of � is the number its positive singular values, which is no less than
(and can be greater than) the number of its nonzero eigenvalues of �. As we will see
below (Theorem A.13) rank(�) is equal to the number of nonzero (generally complex)
eigenvalues if � is normal.

Theorem A.11 does not provide a method to compute the unitary factors (+ ,,) in
the singular value decomposition (A.11). This is because not every pair of orthonormal
sets of eigenvectors of ��H and �H

� respectively may be the unitary factors (+ ,,)
in (A.11) when the eigenvalues associated with ��H or with �H

� are not distinct. We
describe how to compute unitary factors (+ ,,) in (A.11) when � is square (< = =)
(see [20, Theorem 2.6.3, p.150] for details). When � is not normal, ��H and �H

� are
not equal, but they are unitarily similar since they have the same eigenvalues, i.e., there
exists a unitary matrix . such that �H

� = . (��H).H. Moreover . � is normal and
hence it has a spectral decomposition according to Theorem A.13, . � = -⇤-H where
⇤ := diag (_1, · · · ,_=) consists of the eigenvalues of . � and the columns of - are an
arbitrary orthonormal set of corresponding eigenvectors of . �. Let _8 = |_8 |4i\8 ,
⌃@ := diag (|_1 |, · · · , |_= |), ⇡ := diag

�
4

i\1 , · · · ,4i\=
�

so that ⇤ = ⌃@⇡. Then, since
. � = -⌃@⇡-H, we have

� =
⇣
.

H
-

⌘
| {z }
+

⌃@
⇣
⇡-

H
⌘

|  {z  }
,

H

(A.12)

i.e., + := .H
- and, := -⇡H. We illustrate this in the next example.
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Example A.3. Consider � :=

0 1
1 0

�
. Show that

1. Not arbitrary orthonormal sets of eigenvectors of ��H and �H
� can be the unitary

matrices (+ ,,) in the SVD (A.11).
2. Compute (+ ,,) according to the prescription (A.12). (Since � is real symmetric

and hence normal, an alternative way to compute a (possibly di�erent) pair (+ ,,)
is given in Theorem A.16; see Example A.4.)

Solution. The matrices ��H and �H
� are

��
H = �

H
� = �

2 =

1 0
0 1

�
= �

Therefore the eigenvalues of ��H and those of �H
� are 1 and ⌃ = �. Moreover every

vector G is an eigenvector of ��H and of �H
�, but not arbitrary orthonormal sets of

eigenvectors can be (+ ,,) in SVD (A.11). For instance, if & is any unitary matrix
(and hence its columns are an orthonormal set of eigenvectors of ��H and of �H

�),
+ =, =& does not satisfy (A.11):

&⌃&H = &&
H = � < �

It is therefore necessary that + and, are di�erent matrices in (A.11).

To compute (+ ,,) using (A.12), we choose . = � to be the identity matrix that
relates ��H and �H

� through unitary similarity, i.e., �H
� = � = . (��H).H. Next we

compute the spectral decomposition of . �: the eigenvalues of . � = � are _1 := 1,
_2 := �1 with corresponding orthonormal set of eigenvectors (unique up to a rotation)

G1 :=
1p
2


1
1

�
, G2 :=

1p
2


1
�1

�

Hence

. � = � = -⇤-H =
1
2


1 1
1 �1

� 
1 0
0 �1

� 
1 1
1 �1

�
=


0 1
1 0

�

Then ⇡ := diag
�
4

i\1 ,4i\2
�
= diag(1,�1) and hence

⌃@ := diag ( |_1 |, |_2 |) = �, + := .
H
- =

1p
2


1 1
1 �1

�
, , := -⇡

H =
1p
2


1 �1
1 1

�

It can be verified that indeed � =+⌃@,H. ⇤

Suppose <  = but rank(�) =: A < <. For a given + in the theorem, even though
� = +⌃,H, , defined by ,

H := ⌃†+H
� generally does not satisfy the singular

value decomposition (A.11) because in that case +⌃,H = +⌃
�
⌃†+H

�

�
< � because

+⌃⌃†+H < �<; see Exercise A.7. Here ⌃† is obtained from ⌃ by replacing its positive
singular values f8 by 1/f8 and taking the transpose.
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The set of singular values making up ⌃ is unique. The unitary factors (+ ,,) is non-
unique, but given a pair, all possible pairs can be related, according to the following
result from [20, Theorem 2.6.5, p.152].

Theorem A.12 (Uniqueness of (+ ,,)). Let � 2 C<⇥= have a singular value decom-
position � =+⌃,H as in Theorem A.11. Then

1. � = +̂⌃,̂ for some unitary matrices (+̂ ,,̂) if and only if there are unitary block-
diagonal matrices +̃ and ,̃ such that

+̂ = ++̃ , ,̂ = ,,̃

2. If � is square (< = =) and nonsingular then +̃ = ,̃ .

⇤

Properties of singular values.

1. Matrix transpose and conjugate: f8 (�) = f8 (�T) = f8 (�H) = f8 (�).
2. Unitary transformation: for any unitary matrices* and + , f8 (�) = f8 (*�+). In

particular f8 (�) = f8 (*�) = f8 (�+) (setting + = � or* = �).
3. Interlacing properties:

• If ⌫ denote � with one of its rows or columns deleted, then

f8+1 (�)  f8 (⌫)  f8 (�)

• If ⌫ denote � with one of its rows and columns deleted, then

f8+2 (�)  f8 (⌫)  f8 (�)

• If ⌫ denote any (<� :)⇥ (=� ;) submatrix of �, then

f8+:+; (�)  f8 (⌫)  f8 (�)

4. Singular values of �+⌫: for any �,⌫ 2 C<⇥=
•

Õ
:

8=1 f8 (�+⌫) 
Õ
:

8=1 (f8 (�) +f8 (⌫)), : = min{<,=}.
• f8+ 9�1 (�+⌫)  f8 (�) +f9 (⌫), 8 + 9 �1  min{<,=}.

5. Singular values of �⌫: for any �,⌫ 2 C<⇥=
• f= (�)f8 (⌫)  f8 (�⌫)  f1 (�)f8 (⌫).
•

Œ
:

8=1 f8 (�⌫) 
Œ
:

8=1 f8 (�)f8 (⌫).
6. Singular value and eigenvalues: For any matrix � 2 C=⇥=

• If � is normal, then f8 (�) = |_8 (�) |, 8 = 1, . . . ,=. (Note that _8 (�) 2 C.)
Proof: Spectral theorem gives � =*⇤*H; hence ��H =*⇤⇤*H =* |⇤|2*H.
Hence |_8 (�) |2 are eigenvalues of ��

H, implying f8 (�) =
p
_8 (��H) =

|_8 (�) |.
• Weyl’s theorem: Assume eigenvalues satisfy |_1 (�) | � · · · � |_= (�) |. Then

:÷
8=1

|_8 (�) | 
:÷
8=1

f8 (�), : = 1, . . . ,=
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Consider the set of complex square matrices, i.e., < = =. Every square matrix
� 2 C=⇥= is similar to a Jordan form �, i.e., there exists an invertible matrix % 2 C=⇥=
such that

� = %�%�1

� is said to be diagonalizable if its Jordan form � =: ⇤ is diagonal. Therefore � is
diagonalizable if and only if � has = linearly independent eigenvectors; see Theorem
A.6. In that case the columns of % are these eigenvectors, ⇤ has the corresponding
eigenvalues on its diagonal, and �% = %⇤.

A.6.2 Spectral decomposition for normal matrices

Recall that � is normal if ��H = �
H
� and that all unitary, Hermitian, or skew-

Hermitian matrices are normal (the converse is not generally true). For any matrices
�,⌫ 2 C=⇥=, if ⌫� = � then ⌫ is unique and ⌫ = �

�1. This is because � being
nonsingular means that �G = 1 and GT

� = 1T has a unique solution G for any 1 2 C=;
take 1 to be each column of �.

Normal matrices are exactly those that are unitarily diagonalizable to which the
spectral theorem applies [20, Theorem 2.5.3, p.133].

Theorem A.13 (Spectral theorem for normal matrices). A complex square matrix
� 2 C=⇥= is normal if and only if it is unitarily diagonalizable, i.e., there exists a
unitary matrix* 2 C=⇥= and a complex diagonal matrix ⇤ 2 C=⇥= with

� =*⇤*H =
=’
8=1

_8D8D
H
8

(A.13)

where

1. the diagonal entries of ⇤ = diag(_1, . . . ,_=) are eigenvalues of � (generally com-
plex);

2. the columns of* are an arbitrary orthonormal set of corresponding eigenvectors
of �.

Hence if � is normal, then rank � = number of nonzero eigenvalues and the sum in
(A.13) becomes

� =*⇤*H =
rank �’
8=1

_8D8D
H
8

⇤

Hence while � is diagonalizable if and only if it has = linearly independent eigen-
vectors, � is unitarily diagonalizable (or equivalently normal) if and only if it has an
orthonormal set of = eigenvectors.
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The eigenvalues⇤ of � in Theorem A.13 are unique, but the eigenspace of � always
has more than one orthonromal basis. Since two basis * and + can always be related
by a unitary matrix, we have the following uniqueness result from [20, Theorem 2.5.4,
p.134].

Theorem A.14 (Uniqueness of unitary *). Let � 2 C=⇥= be normal with spectral
decomposition � =*⇤*H where * is unitary and ⇤ is diagonal matrix consisting of
the eigenvalues of �. Then

1. � = +⇤+H for a unitary matrix + if and only if there is a block-diagonal unitary
matrix, such that* =+, .

2. In particular, if � has = distinct eigenvalues then , is a diagonal unitary matrix
of the form, = diag

�
4

i\1 , · · · ,4i\=
�
.

3. Two normal matrices � and ⌫ are unitarily similar, i.e., � =,⌫,H for some
unitary matrix, , if and only if they have the same eigenvalues.

⇤

For a normal matrix � the eigenvalues _8 are complex in general. A normal matrix
� is Hermitian if and only if all its eigenvalues are real [207, Theorem 4.1.5, p.171].

Theorem A.15 (Spectral theorem for Hermitian matrices). A complex square matrix
� 2 C=⇥= is Hermitian if and only if it is unitarily diagonalizable with real eigenvalues,
i.e., there exist a unitary matrices* 2 C=⇥= and a real diagonal matrix ⇤ 2 R=⇥= with

� =*⇤*H =
=’
8=1

_8D8D
H
8

(A.14)

where

1. ⇤ =diag(_1, . . . ,_=) is real and consists of the eigenvalues of �;
2. the columns of* are an arbitrary orthonormal set of corresponding eigenvectors

of �.

Hence if � is Hermitian, then rank � = number of nonzero eigenvalues and the sum in
(A.14) becomes

� =*⇤*H =
rank �’
8=1

_8D8D
H
8

Moreover, if � is real and symmetric then* above can be taken as real and orthogonal.
⇤

To explain the last statement let � be a real symmetric matrix. First a Hermitian
matrix � has real eigvenvalues _ because if E are the corresponding eivenvectors, then
�E = _E and hence EH

�E = _kEk2. Taking Hermitian transpose shows EH
�

H
E = EH

�E =
_̄kEk2 where _̄ denotes the complex conjugate of _. Therefore _̄ = _, i.e., _ is real. Next
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for eigenvector E, take the Hermitian transpose of �E = _E we have EH
�

H = EH
� = _EH

since _ is real. If � is real symmetric then taking the transpose we have �Ē = _Ē where
Ē is the componentwise complex conjugate of E. Therefore if E is an eigenvector of a
real symmetric matrix � corresponding to _, then so is its complex conjugate Ē as well
as the real vector E + Ē, i.e., the eigenvector of � can be taken to be real.

For general matrices, about the only characterization of its eigenvalues is that they
are roots of the characteristic polynomial (see the discussion leading up to Theorem
A.6). For Hermitian matrices, however, the spectral theorem leads to a variational
characterization of eigenvalues [207, Theorem 4.2.2, p.176]. If � 2 C=⇥= is Hermitian
then

_min 
G

H
�G

G
H
G

 _max, 8G 2 C= (A.15a)

and

_min = min
G<0

G
H
�G

G
H
G

, _max = max
G<0

G
H
�G

G
H
G

(A.15b)

Theorem A.15 implies that � is positive semidefinite if and only if � is Hermitian
and all its eigenvalues are (real and) nonnegative, and that � is positive definite if and
only if � is Hermitian and all its eigenvalues are (real and) positive.

A.6.3 SVD and unitary diagonalization

Consider a normal matrix � 2 C=⇥=. Since ��H = �H
�, they have the same eigenvec-

tors. This does not mean, in general, that , = + in a singular value decomposition
� =+⌃,H. Indeed, if, =+ then it is necessary that � =+⌃+H is positive semidefinite,
but a normal � may not be positive semidefinite. The eigenvalues of a normal matrix
are complex, those of a Hermitian matrix are real, and those of a positive semedefinite
matrix are real and nonnegative. The following relationship between singular value de-
composition of a normal matrix � and its unitary diagonalization is proved in Exercise
A.9.

Theorem A.16 (SVD and unitary diagonalization). Consider a normal matrix � 2
C
=⇥= and let � =*⇤*H be a unitary diagonalization of � described in Theorem A.13

where⇤ := diag(_8) has the eigenvalues _8 2 C of � on its diagonal and the columns of
* are an arbitrary orthonormal set of corresponding eigenvectors. Write _8 = |_8 | 48 \8
for some \8 2 R; set \8 = 0 if _8 = 0. Let ⇡ := diag (4i\1 , . . . ,4i\< ). Then

1. + :=*,⌃ := |⇤|,, :=*⇡H form a singular value decomposition � =+⌃,H of �.
2. The pseudo-inverse of � is �† :=*⇤†

*
H where the diagonal matrix⇤† is obtained

from ⇤ by replacing nonzero _8 2 C by 1/_8 .
3. � is Hermitian if and only if ⇡ in, is a real matrix, i.e., 4i\8 = 1 or �1.
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4. � is positive semidefinite if and only if + =, :=* and ⌃ := ⇤ forms a singular
value decomposition � = +⌃,H =*⇤*H, i.e., SVD and unitary diagonalization
of � coincide.

The theorem also prescribes a way to compute a singular value decomposition
� = +⌃, when � is normal. In this case we can take the columns of + to be an
arbitrary orthonormal set of eigenvectors of � (which will also be eigenvectors of
��
⇤). This may not be the case if � is not normal and the more general method

prescribed by (A.12) is needed to compute SVD (see Example A.3). The theorem is
illustrated in the following example.

Example A.4. Use Theorem A.16 to compute the SVD of the normal matrix � in
Example A.3.

Solution. Clearly � = �H = �T = �̄ and � is real symmetric and hence normal. Its
eigenvalues are _8 = ±1 with corresponding eigenvectors in the columns of * in the
unitary diagonalization:

� =*⇤*H :=
1p
2


1 1
1 �1

� 
1
�1

� 
1 1
1 �1

�
1p
2

Note that � is not positive semidefinite and therefore , < * in the singular value
decomposition of �. According to Theorem A.16, the angle matrix ⇡ = diag(1,�1)
and the unitary factors (+ ,,) in the SVD � =+⌃,H are given by

⌃ := |⇤| = �, + := * =
1p
2


1 1
1 �1

�
, , := *⇡

H =
1p
2


1 �1
1 1

�

which agrees with those computed in Example A.3. (The decomposition in these two
examples agree because the matrix . in Example A.3 has been chosen to be . = � so
that . � = �.) ⇤

A.6.4 Complex symmetric matrices

Consider a complex symmetric matrix � 2 C=⇥= with � = �T. Then �H = �̄ where �̄ is
the matrix obtained from � by taking its complex conjugate componentwise. � is not
Hermitian unless � is a real matrix. The following result, from [20, Corollary 2.6.6,
p.153], is called the Takagi’s factorization for complex symmetric matrices.

Theorem A.17 (Takagi’s decomposition). A complex matrix � 2 C=⇥= is symmetric
� = �T if and only if there is a unitary matrix* 2 C=⇥= and a real nonnegative diagonal
matrix ⌃ := Diag(f1, . . . ,f=) such that

� =*⌃*T (A.16)

where ⌃ consists of the nonnegative square roots of the eigenvalues of ��̄. ⇤
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The columns of the unitary matrix * in (A.16) are generally neither the singular
vectors nor the eigenvectors of �; see the proof below. A Takagi decomposition of a
complex symmetric matrix � is therefore generally di�erent from its singular value
decomposition. A Takagi decomposition of a real symmetric matrix may not have real
factors. In contrast, its spectral decomposition in terms of its eigenvalues, rather than
singular values, can always use real orthogonal factors according to Theorem A.15.

We provide a sketch of the proof from [20, Corollary 2.6.6, p.153].

Proof sketch of Theorem A.17 Let a singular value decomposition of � be � =+⌃,H

according to Theorem A.11. Since � = �T we have � =+⌃,H = ,̄⌃+̄H where (+̄ ,,̄)
are componentwise complex conjugate of (+ ,,). The uniqueness Theorem A.12 then
implies the existence of unitary block-diagonal matrices (+̃ ,,̃) such that

+̄ = ,+̃ , ,̄ = +,̃ (A.17a)

Indeed, according to Autonne’s uniqueness theorem ([20, Theorem 2.6.5, p.152]), +̃
and ,̃ can be taken to have identical blocks except the last block corresponding to the
diagonal zero-block in (A.10). Specifically suppose � has rank A and 3 distinct positive
singular values B1 > B2 > · · · > B3 > 0 with (algebraic) multiplicities =1, · · · ,=3 . Then
A :=

Õ
3

8=1 =8  =. We can separate the diagonal of the =⇥= matrix ⌃ into 3 +1 diagonal
blocks of diagonal submatrices B8 �=8 and 0=�A :

⌃ = diag
�
B1�=1 , · · · , B3 �=3 ,0=�A

�
(A.17b)

where �: denotes the identity matrix of size : and 0: denotes the : ⇥ : zero matrix. (If
� is of full rank A = = then the zero block 0=�A is absent.) Then Autonne’s uniqueness
theorem ([20, Theorem 2.6.5, p.152]) implies that � = +⌃,H = ,̄⌃+̄H if and only if
there are unitary matrices +8 of sizes =8 and +3+1,,3+1 of size =� A such that

+̃ = diag (+1, · · · ,+3 ,+3+1) , ,̃ = diag (+1, · · · ,+3 ,,3+1) (A.17c)

and +̄ =,+̃ , ,̄ = +,̃ . But +̃ = ,H
+̄ =

�
+

H
,̄

�T = ,̃T and hence +8 = +T
8

are sym-
metric matrices for 8 = 1, . . . ,3.

Lemma A.10 then implies that there exist unitary symmetric matrices '8 2 C=8⇥=8
such that +8 = '2

8
for 8 = 1, · · · ,3. Substitute this and (A.17) into � = ,̄⌃+̄H, we have

� = ,̄⌃+T =+,̃⌃+T. But (taking,3+1 := �=�A )

,̃⌃ = diag
⇣
'

2
1, · · · ,'2

3
, �=�A

⌘
·diag

�
B1�=1 , . . . , B3 �=3 ,0=�A

�
=: '⌃'

where ' := diag ('1, · · · ,'3 , �=�A ). Hence

� = + (,̃⌃)+T = + ('⌃')+T = (+')|{z}
*

⌃ (+')T| {z }
*

T

where the last equality uses the symmetry of '. This completes the proof. ⇤

A complex symmetric matrix � 2 C=⇥= may or may not be normal. Complex
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symmetric matrices are useful for power systems because the admittance matrix .
(see Chapter 4.3.1) are complex symmetric, and generally not Hermitian. See Exercise
16.21 for a complex symmetric matrix that is not diagonalizable (and hence not
normal). See Exercise 16.22 for a complex symmetric matrix that is normal and hence
unitarily diagonalizable, and Exercise 4.10 for characterizations of symmetric and
normal matrices.

A.7 Pseudo-inverse

Consider a matrix � 2 C<⇥=. Let null(�) denote the null space (also called kernel)
of �, i.e., null(�) := {G 2 C= : �G = 0}. Let range(�) denote the range space (also
called column space) of �, i.e., range(�) := {H 2 C< : H = �G for some G 2 C=}. In this
subsection we treat � as a mapping from C= to C< and �H a mapping from C< to C=.
Then null(�) and range(�H) are linear spaces and they are orthogonal complements
of each other because, if G1 2 null(�) and G2 2 range(�H) so that G2 = �H

H for some
H, then

G
H
2 G1 = HH

�G1 = 0

We denote this fact by the notation C= = range(�H) � null(�), as shown in the upper
panel of Figure A.3(a). This implies

dim(range(�H)) + dim(null(�)) = = (A.18)

range
(AH )

range
(A)

null(A) null(AH)

Cn Cm

AH

A
x' =A

H (Ax)
y =Ax

(a) Orthogonal decomposition of C= and C<

A†

A

range
(AH )

x =A
† (Ax)

range
(A)

y =Ax

(b) � and �† are inverses between range(�H) and range(�)

Figure A.3 Orthogonal decomposition of C= and C< and pseudo-inverse �†. For any
G 2 range(�� ), G = �†(�G) which is generally di�erent from G

0 = �H (�G).

The rank of a matrix � 2 C<⇥=, denoted rank �, is the largest number of linearly
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independent columns of �, or equivalently the largest number of linearly independent
rows of �. By definition rank � = dim(range(�)). A square matrix � 2 C=⇥= is called
nonsingular if rank � = =; it is called singular if rank � < =. Some simple facts are
collected in the following.

Theorem A.18. 1. For any � 2 C<⇥=, rank � = rank �H = rank �T = rank �̄.
2. For any � 2 C<⇥=, rank �  min{<,=}.
3. If � 2 C<⇥< and ⇠ 2 C=⇥= are nonsingular, then for any ⌫ 2 C<⇥=, rank ⌫ = rank
�⌫⇠, i.e., left or/and right multiplication by a nonsingular matrix does not change
rank.

4. For any � 2 C<⇥=, rank � + dim(null(�)) = =. This follows from substituting
rank �H = rank � into (A.18).

If we consider the matrix � 2 C<⇥= as a mapping from C= to C< and restrict it
to � : range(�H)! range(�), then � is surjective and injective (see Exercise A.10).
Hence an inverse always exists from range(�) ! range(�H). We will denote this
inverse by �†; see Figure A.3(b). Let � = +⌃,H be its singular value decomposition
and let rank � = A  min{<,=}. We will show that

�
† =,⌃†+H (A.19)

where ⌃† is a real diagonal =⇥< matrix of rank A obtained from the < ⇥ = diagonal
matrix⌃ by replacing the (positive) singular valuesf8 by 1/f8 and taking the transpose.

When A = < = =, ⌃† =diag
⇣

1
f1

, . . . , 1
f=

⌘
= ⌃�1 so that �† = ��1 since

�
†
� =

⇣
,⌃�1

+
H
⌘ ⇣
+⌃,H

⌘
= I=

If G 2 range(�H) then �†(�G) =, (⌃†⌃),H
G = G since �† is the inverse of � between

range(�H) and range(�). In contrast �H (�G) = , (⌃T⌃),H
G = G 0 which is also in

range(�H) but generally di�erent from G; see Figure A.3(b).

For a general G 2 R=, �†
� < I= but the next result shows that �†

� equals I= plus
null(�). Specifically, let � 2 C<⇥= with rank � = A  min{<,=}. Let � =+⌃,H be its
singular value decomposition. Decompose the various matrices such that

⌃ =

266666664

2666664

f1
. . .

fA

3777775
0

0 0

377777775
=:


⌃A 0
0 0

�
, + =:

⇥
+A +<�A

⇤
, , =:

⇥
,A ,=�A

⇤

where ⌃A is A ⇥ A diagonal matrix, the matrices +A 2 C<⇥A and ,A 2 C=⇥A consist of
the first A columns of + and , respectively, and the matrices +<�A 2 C<⇥(<�A ) and
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,=�A 2 C=⇥(=�A ) consist of the remaining columns of + and, respectively. Then

� =
⇥
+A +<�A

⇤ 
⌃A 0
0 0

� 
,

H
A

,
H
=�A

�
= +A⌃A,H

A

�
† =

⇥
,A ,=�A

⇤ 
⌃�1
A

0
0 0

� 
+

H
A

+
H
<�A

�
= ,A⌃�1

A
+

H
A

and �H =,A⌃A+H
A

. Hence the range spaces of �, �†, �H depend only on the nonzero
singular values and the first A columns of+ and, . The remaining columns+<�A ,,=�A
span their null spaces and can be interpreted as a measure of how di�erent the pseudo-
inverse �† is from an inverse, as the following theorem shows. The theorem is illustrated
in Figures A.4.

xA†Ax

(In

Figure A.4 Orthogonal decomposition of C= and C< using singular value decomposition of �.

Theorem A.19. With the notations above,

1. �† :=,⌃†+H satisfies (I= denotes the =⇥= identity matrix)

�
†
� = I= � ,=�A,H

=�A = ,A,
H
A

��
† = I< � +<�A+H

<�A = +A+
H
A

2. null(�) = range(,=�A ) and range(�H) = range(,A ).
3. null(�H) = range(+<�A ) = null(�†) and range(�) = range(+A ).
4. �†

� is the orthogonal projection of G 2 C= onto range(�H). I= � �†
� is the

orthogonal projection of G 2 C= onto null(�).
5. Similarly ��† is the orthogonal projection of H 2 C< on to range(�) and I<� ��†

is the orthogonal projection of H 2 C< onto null(�H).
6. ��†

� = �, �†
��

† = �†, and �H
��

† = �H.

Proof We have

�
†
� =

⇥
,A ,=�A

⇤ 
⌃�1
A

0
0 0

� 
+

H
A

+
H
=�A

�
·
⇥
+A +=�A

⇤ 
⌃A 0
0 0

� 
,

H
A

,
H
=�A

�

=
⇥
,A ,=�A

⇤ 
�A 0
0 0

� 
,

H
A

,
H
=�A

�
= ,A,

H
A



A.7 Pseudo-inverse 1009

Even though ,H =,�1, ,H
A

is not the inverse of ,A (unless A = = < <) since ,A is
not even square. Since

,,
H =

⇥
,A ,=�A

⇤ 
,

H
A

,
H
=�A

�
= ,A,

H
A

+ ,=�A,H
=�A = I=

we have

�
†
� = I= � ,=�A,H

=�A

Similarly ��† = I< � +<�A+H
<�A .

To show that null(�) = range(,=�A ) consider any G 2 C=. Since columns of, are
an orthonormal basis of C= we can write G =

Õ
9
1 9F 9 for some 1 9 2 C where F 9 are

columns of, . Then

�G =+⌃,H
’
9

1 9F 9 = +⌃
’
9

1 9

2666664

F
H
1F 9
...

F
H
=
F 9

3777775
= +⌃

2666664

11
...
1=

3777775
= +

266666664

f111
...

fA1A

0=�A

377777775
where 0=�A is the zero vector of size =� A. Since + is nonsingular and f9 > 0, �G = 0
if and only if 11 = · · · = 1A = 0. Hence null(�) = range(,=�A ) if and only if G 2
range(,=�A ). That range(�H) = range(,A ) follows from �

H = ,⌃T
+

H = ,A⌃A+H
A

.

The proof of null(�†) = range(+<�A ) follows the same argument and is presented
in the matrix notation as follows. Any H 2 C< can be written in terms of the columns
of + , i.e., H =+A1A ++<�A1<�A for some 1A ,1<�A . Then

�
†
H =,A⌃�1

A
+

H
A
(+A1A ++<�A1<�A ) = ,A⌃�1

A
+

H
A
+A1A

since+H
A
+<�A = 0

A⇥(<�A ) . Hence �†
H = 0 if and only if 1A = 0 and H =+<�A1<�A . This

means null(�†) = range(+<�A ). Since �H =,A⌃A+H
A

the same argument shows that
null(�H) = range(+<�A ).

The remaining assertions follow from parts 1, 2, 3. For example

��
†
� = �

⇣
I= � ,=�A,H

=�A
⌘

= � � �,=�A,
H
=�A = �

Similarly �†
��

† = �†, and �H
��

† = �H. ⇤

We remark on some implications of Theorem A.19.

Remark A.2 (�G = 1). 1. Theorem A.19.1 says that I= = �†
�+,=�A,H

=�A and hence
for any G 2 R=,

G = �
†
�G|{z}

projection onto range(�H)

+ ,=�A
⇣
,

H
=�AG

⌘
|            {z            }

projection onto range(,=�A )

(A.20)
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See Figure A.4. Similarly for H = �G 2 R<. Therefore

R
= = �

† (�R=) + range(,=�A ) (A.21a)

R
< = �

⇣
�
†
R
<

⌘
+ range(+<�A ) (A.21b)

2. The theorem implies that �† in (A.19) and � are inverses of each other when
restricted to range(�H) and range(�) (see Exercise A.11). Therefore, even though
(+ ,,) in the singular value decomposition are generally not unique, �† is uniquely
defined. Treated as a mapping from C< to C=, �† is called a pseudo-inverse of �.

3. There is a solution G for �G = 1 if and only if 1 is in range(�) or equivalently 1 is
orthogonal to null (�H), in which case the set of solutions is given by

G = �†
1 + F, F 2 null(�) = range(,=�A )

Moreover �†
1 is the solution to �G = 1 with the smallest Euclidean norm kGk2 =

k�†
1k2 + kFk2.

4. Consider �G = 1 when 1 is not in range(�) and therefore there is no G that
satisfies this equation. The theorem says that Ĝ = �†

1 is a ‘best estimate’ of G
from 1 in that �Ĝ equals the projection of 1 onto range(�) and the estimation
error 1� �Ĝ = (I<� ��†)1 is the projection of 1 onto null(�H). This achieves the
minimum estimation error under the Euclidan norm; see Exercise A.14.

5. Theorem A.19.6 is easy to understand given Theorems A.19.4 and A.19.5. Con-
sider any vector H 2 C<. The operation ��† removes H’s component in the null
space of �H, i.e., ��†

H projects H to range(�). It is then mapped under �† into C=

to �†(��†
H). Since ��†

H is already in range(�) over which �† is an inverse of
�, this operation should be the same as �†, i.e., �†

��
†
H = �†

H for all H. Similarly
the projection operation �†

� to range(�H) followed by the mapping � is the same
operation as the mapping �.

For general matrix � 2 C<⇥=, its pseudo-inverse is given in terms of its singular
value decomposition by (A.19). For special matrices the next result provide some
explicit formulae.

Corollary A.20. Consider a matrix � 2 C<⇥= with rank � = A  min{<,=}. Let
� =+⌃,H be its singular value decomposition and �† =,⌃†+H be its pseudo-inverse.

1. If < = = and � is positive semidefinite then �++=�A+H
=�A is invertible and

�
† =

⇣
�++=�A+H

=�A
⌘�1
�+=�A+H

=�A

2. If A = <  = then �† = �H �
��

H��1.

3. If A = =  < then �† =
�
�

H
�

��1
�

H.
4. If A = < = = then �† = ��1.
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Proof Since � is positive semidefinite its singular value decomposition coincides
with its spectral decomposition according to Theorem A.16.3, so

� =+⌃,H = +⇤+H = +A⇤A+H
A

where + is a unitary matrix whose columns are orthonormal eigenvectors of �, ⇤ :=
diag(_8) is the diagonal matrix of eigenvalues

_1 � · · · � _A > 0 = _A+1 = · · · = _=

and matrices are decomposed as before:

⇤ =:

⇤A 0
0 0

�
, + =:

⇥
+A +=�A

⇤
, G =:


GA

G=�A

�
2 C=

To show that � ++=�A+H
=�A is invertible consider any G 2 C= in the null space of �

expressed in terms of the basis + as G =+0 =:+A0A ++=�A0=�A . We have

(�++=�A+H
=�A ) G =

⇣
+A⇤A+H

A
++=�A+H

=�A
⌘
(+A0A ++=�A0=�A ) = +A⇤A0A + +=�A0=�A

where we have used +H
A
+=�A = 0. Hence

(�++=�A+H
=�A ) G =

⇥
+A +=�A

⇤ 
⇤A0A
0=�A

�
= +


⇤A0A
0=�A

�

Since + and ⇤A are nonsingular, (�++=�A+H
=�A )G = 0 if and only if 0 = 0, proving the

nonsingularity of �++=�A+H
=�A .

To show that �† =
�
�++=�A+H

=�A
��1 �+=�A+H

=�A we will prove that �† ++=�A+H
=�A

is the inverse of �++=�A+H
=�A . We have (using again +A+H

=�A = 0)⇣
�
† ++=�A+H

=�A
⌘ ⇣
�++=�A+H

=�A
⌘
=

⇣
+A⇤�1

A
+

H
A
++=�A+H

=�A
⌘ ⇣
+A⇤A+H

A
++=�A+H

=�A
⌘

=+A+H
A

+ +=�A+H
=�A = ++

H = I=

as desired.

If If A = <  = then +A =+ and

⌃ =:
⇥
⌃A 0

⇤
, , =:

⇥
,A ,=�A

⇤
Then � =+⌃,H =+⌃A,H

A
and hence ��H =

�
+⌃A,H

A

� �
,A⌃A+H�

=+⌃2
A
+

H is invert-

ible since,H
A
,A = �A . Since + is unitary we have

�
��

H��1 =+⌃�2
A
+

H. Hence

�
H
⇣
��

H
⌘�1

=
⇣
,A⌃A+H

⌘ ⇣
+⌃�2

A
+

H
⌘

= ,A⌃�1
A
+

H = ,⌃†+H = �
†

The case of A = =  < is similarly proved in Exercise A.12. If A = < = = then ⌃† = ⌃�1

so that �† = ��1 since �†
� =

�
,⌃�1

+
H� �

+⌃,H�
= I=.

⇤
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Consider a partitioned matrix � = [⌫ ⇠]. In general �† <

⌫
†

⇠
†

�
. 2 Several expres-

sions for �† in terms of ⌫† and ⇠† are derived in [208] under various necessary and
su�cient conditions. The particularly simple case is the following result from [208,
Corollary 1.4].

Lemma A.21. Suppose � = [⌫ ⇠]. Then

�
† =


⌫
†

⇠
†

�

if and only if (I�⌫⌫†)⇠ = ⇠ (i.e., if and only if ⇠ is orthogonal to null(⌫H)).

A.8 Norms and inequalities

A.8.1 Vector norms

This subsection mostly follows [20, Chapter 5].

Definition A.4 (Normed linear space). Let + be a vector space over the field � with
� = R or C. A function k · k :+! R is a norm, or vector norm, on + if, for all G, H 2 +
and all 2 2 �,

1. Positivity: kGk � 0 and kG | = 0 if and only if G = 0.
2. Homogeneity: k2Gk = |2 | kGk.
3. Triangular inequality: kG + Hk  kGk + kHk.

The real or complex vector space together with a norm (+ , k · k) is called a normed
linear space or normed vector space. ⇤

Examples of vector norms on + = C= include: for any G 2 C=,

• Sum norm (;1 norm): kGk1 :=
Õ
8
|G8 |.

• Euclidean norm (;2 norm): kGk2 :=
pÕ

8
|G8 |2.

• Max norm (;1 norm):kGk1 := max8 |G8 |.
• ;? norm: kGk ? := (Õ

8
|G8 |?)1/? , ? � 1.

2 Let the singular value decompositions of ⌫ and ⇠ be ⌫ = +1⌃1,
H

1 and ⇠ = +2⌃, H
2 . We can write

� =
⇥
+1 +2

⇤ 
⌃1 0
0 ⌃2

� 
,

H
1 0

0 ,
H

2

�

However
�
+ ",

H�† =,"
†
+

H only if + and, are unitary [208, Lemma 1]. The matrix [+1 +2 ]
is not unitary.
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It can be shown that kGk1 = lim?!1 kGk ? for all G 2 C=. We therefore often define
;? norms for ? 2 [1,1]. The Euclidean norm, and positive scalar multiples of the
Euclidean norm, are the only norms on C= that are unitarily invariant: k*Gk2 = kGk2
for any G 2 C= and any unitary matrix * 2 C=⇥= (Exercise A.17). The unit balls
⌫ := {G 2 R2 : kGk  1} for ;1, ;2 and ;1 norms are shown in Figure A.5.

x2

x1

||x ||1= 1

||x ||2= 1

||x ||

Figure A.5 The boundaries of unit balls for ;1, ;2 and ;1 norms.

An example of infinite dimensional normed vector spaces is the set ⇠ [0,1] of all
continuous real or complex-valued functions 5 : [0,1]! R or 5 : [0,1]! C on the
real interval [0,1]. The !? norms on ⇠ [0,1] are

• !1 norm: k 5 k1 :=
Ø
1

0

| 5 (C) |3C.

• !2 norm: k 5 k2 :=
qØ

1

0

| 5 (C) |23C.

• !? norm: k 5 k ? :=
⇣Ø

1

0

| 5 (C) |?3C
⌘1/?

, ? � 1.

• !1 norm: k 5 k1 := max {| 5 (G) | : G 2 [0,1]}.

There are two important properties of finite dimensional real or complex vector
spaces + (i.e., � = R or C) that do not necessarily hold for infinite dimensional vector
spaces. First all norms are equivalent in the sense that, given two norms k · kU and
k · kV on a finite dimensional vector space + , there exist 2<,2" such that (e.g., [20,
Corollary 5.4.5, p.327])

2< kGkU  kGkV  2" kGkU, G 2 + (A.22)

This means that if a sequence {G8} ✓ + converges in some norm, it converges in all
norms. For ;? norms the best bounds are [20, Problem 5.4.P3, p.333]: for 1  ?1 <

?2 <1,

kGk ?2  kGk ?1  =

⇣
1
?1
� 1
?2

⌘
kGk ?2

For example kGk2  kGk1 
p
=kGk2, kGk1  kGk1  =kGk1, kGk1  kGk2 

p
=kGk1

(see Figure A.5). In contrast, for an infinite dimensional vector space such as ⇠ [0,1],
a sequence { 5: } of functions in ⇠ [0,1] may converge under the !1 norm, remains
bounded under !2 norm, but diverge under the !1 norm (unbounded k 5: k1).



1014 Linear algebra preliminaries

Second a sequence {G8} ✓ + converges to a vector in a finite dimensional vector
space + if and only if it is a Cauchy sequence, i.e., for any n > 0 there exists a positive
integer # (n) such that kG8 � G 9 k  n for any 8, 9 � # (n). A normed linear space +
is said to be complete with respect to its norm k · k if every sequence in + that is a
Cauchy sequence with respect to k · k converges to a point in + . Therefore all finite
dimensional real or complex vector spaces are complete with respect to any norm, but
infinite dimensional normed vector spaces, such as ⇠ [0,1] with the !1 norm, may not
be complete.

Definition A.5 (Inner product space). Let+ be a (finite or infinite dimensional) vector
space over the field � with � = R or C. A function h·, ·i :+ ⇥+! F is an inner product
if, for all G, H, I 2 + and all 2 2 �,

1. Positivity: hG,Gi � 0 and hG,Gi = 0 if and only if G = 0.
2. Additivity: hG + H, Ii = hG, Ii + hH, Ii.
3. Homogeneity: h2G, Hi = 2hG, Hi.
4. Hermitian property: hG, Hi = hG, Hi.

where 0 denotes the complex conjugate of 0 2 �. The real or complex vector space
together with an inner product (+ , h·, ·i) is called an inner product space. ⇤

Note that regardless of � =R orC, a norm in Definition A.4 takes value inRwhereas
an inner product in Definition A.5 takes value in �. Implicit in the nonnegativity
property is that, while hG, Hi 2 �, hG,Gi 2 R. The function defined on C= by hG, Hi :=
G

H
H 2 � := C is an inner product called the Euclidean inner product. Let " 2 F=⇥= be

a positive definite matrix and define the function hG, Hi" := HH
"G. Then h·, ·i" is also

an inner product.

If h·, ·i is an inner product on a real or complex vector space + , then the function
k · k : + ! [0,1) defined by kGk := hG,Gi1/2 is a norm on + . Such a norm is said to
be derived from an inner product. The Euclidean norm k · k2 is a norm derived from
the Euclidean inner product. An inner product space is therefore also a normed linear
space with its derived norm. Not all norms are derived from an inner product, e.g.,
k · k1, k · k1 are not derived norms.

Inner products are defined for infinite dimensional vector spaces as well. For example
an inner product on the vector space ⇠ [0,1] of all continuous real or complex-valued
functions on the real interval [0,1] is

h 5 ,6i :=
π

1

0

5 (C)6(C)3C, 5 ,6 2 ⇠ [0,1]

The !2 norm k 5 k2 :=
qØ

1

0

| 5 (C) |23C defined above is derived from the inner product
h 5 , 5 i.
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A.8.2 Cauchy-Schwarz inequality, Hölder’s inequality, dual norm

We now present an extremely useful inequality, the Cauchy-Schwarz inequality, and
two generalizations.

Cauchy-Schwarz and Hölder’s inequalities. The Cauchy-Schwarz inequality is an
important property of all inner products on any finite or infinite dimensional vector
space. The inequality holds regardless of whether the norm on the vector space is
derived from the inner product. Hence hG,Gi, hH, Hi on the right-hand side of (A.23)
may not be the squared norms on + .

Theorem A.22 (Cauchy-Schwarz inequality). Let (+ , h·, ·i) be an inner product space
over a field � with � = R or C. Then

|hG, Hi |2  hG,Gi hH, Hi, G, H 2 + (A.23)

with equality if and only if G = 0H for some 0 2 � (i.e., G and H are linearly dependent).

Proof To prove the Cauchy-Schwarz inequality suppose without loss of generality
H < 0 (the inequality holds if G = H = 0). Let I := hH, HiG� hG, HiH. Then, since h01D1 +
02D2,11E1 + 12E2i = 0111hD1,E1i + 0112hD1,E2i + 0211hD2,E1i + 0212hD2,E2i,

0  hI, Ii = hhH, HiG� hG, HiH, hH, HiG� hG, HiHi

= hH, Hi2hG,Gi � hG, HihH, HihH,Gi = hH, Hi
⇣
hG,GihH, Hi � |hG, Hi |2

⌘

which implies the inequality since hH, Hi > 0. ⇤

Cauchy-Schwarz inequality has numerous applications. One example is the follow-
ing bounds on samples in terms of their sample mean and standard deviation. Let
G1, . . . ,G= be = given real numbers with sample mean ` and sample standard deviation
f defined by:

` :=
1
=

’
8

G8 , f :=

 
1
=

’
8

(G8 � `)2

!1/2

It can then be shown that (Exercise A.18)

` � f
p
=�1  G8  ` + f

p
=�1, 8 = 1, . . . ,=

with equality for some 8 if and only if G? = G@ for all ?,@ < 8.

Hölder’s inequalities. A generalization of the Cauchy-Schwarz inequality is
Hölder’s inequality. Hölder’s inequality holds for general ! ? spaces (the vector space
of measurable functions 5 for which its !? norm is finite), but we will restrict ourselves
to + = R= or C= with ;? norms.

Theorem A.23 (Hölder’s inequality). Consider the vector space + = �= with � = R
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or C with ;? norms, ? 2 [1,1]. Then for any ?,@ � 1 such that 1
?
+ 1
@
= 1 (with the

interpretation that if ? = 1 then @ =1)
=’
8=1

|G8H8 |  kGk ? kHk@ , G, H 2 + (A.24)

with equality if and only if G? := (G?
8

, 8 = 1, . . . ,=) and H@ := (H@
8
, 8 = 1, . . . ,=) are linearly

dependent, i.e., G? = 0H@ for some scalar 0 2 �.

The theorem can be proved by applying the following property to the convex function
5 (G) = G? for ? > 1: for all U8 � 0,

Õ
=

8=1U8 = 1, for all G8 ,

5

 
=’
8=1

U8G8

!


=’
8=1

U8 5 (G8)

Setting ? = @ = 2 leads to the Cauchy-Schwarz inequality

��
G

H
H

��  =’
8=1

|G8H8 | 
 
=’
8=1

G
2
8

!1/2  
=’
8=1

H
2
8

!1/2

= kGk2 kHk2, G, H 2 +

with equality if and only if the vectors G and H are linearly dependent (G? = 0H@ ,
G = 01/?

H
@/?). Note that this inequality is weaker than Hölder’s inequality, though the

Cauchy-Schwarz inequality holds for general inner products on arbitrary vector spaces
with arbitrary norms.

Dual norm. Another generalization of the Cauchy-Schwarz inequality holds with
dual norm, as we define now. Consider any norm k · k on the vector space + = �= with
� = R or C. Define its dual norm k · k⇤ by: for any G 2 �=

kGk⇤ := max
H:kH k=1

ReGH
H = max

H:kH k=1

��
G

H
H

�� (A.25)

The maximization is attained since inner product is continuous and the feasible set is
compact. (If we think of GH as an 1⇥ = matrix then kGk⇤ is the matrix norm induced
by the general vector norm k · k on F=; see below.)

A very useful inequality is

ReGH
H 

��
G

H
H

��  kGk kHk⇤ 8G, H 2 F= (A.26)

which follows directly from the definition of the dual norm. It says that the absolute
inner product of any two vectors are upper bounded by the product of the norm of one
of the vectors and its dual norm of the other vector. For the Euclidean norm k · k2 this
is the Cauchy-Schwarz inequality, but (A.26) holds for any norm. Comparing this with
Hölder’s inequality (A.24), the left-hand side of (A.26) is smaller than that of (A.24),��
G

H
H

��  Õ
8
|G8H8 |. The norms on the right-hand side of (A.26) are not restricted to ;?

norms as those in (A.24) are. Indeed we now use Hölder’s inequality to show that ;?
and ;@ norms are the dual of each other if 1/? +1/@ = 1, and hence kGk kHk⇤ reduces
to the norms in Hölder’s inequality if k · k is an ;? norm.
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To simplify exposition we allow ?,@ with 1/? + 1/@ = 1 to take values in [1,1]
with the interpretation that if ? = 1 then @ :=1.

Lemma A.24. Let ?,@ 2 [1,1] and 1/? +1/@ = 1. The ;? norm and the ;@ norm are
dual of each other.

Proof We prove the case of 1 < ? <1; the case of ? = 1 or ? =1 follows a similar
idea. Fix a pair 1 < ?,@ < 1 with 1/? + 1/@ = 1. Hölder’s inequality implies, for all
G 2 �=,

kGk@ � max
H:kH k?=1

’
8

|G8H8 | � max
H:kH k?=1

��
G

H
H

�� = kGk⇤

Therefore kGk@ � kGk⇤, the dual norm of k · k ? . To prove the reverse inequality we
have from (A.26)

kGk⇤ �
�
kHk ?

��1 ��
G

H
H

�� =

 ’
8

|H8 |?
!�1/? �����

’
8

G8H8

����� , 8H 2 F=

Choose

H8 := |G8 |@/?
G8

|G8 |
so that the inequality becomes (using @ = 1+ @

?
)

kGk⇤ �
 ’
8

|G8 |@
!�1/?’

8

|G8 |1+@/? =

 ’
8

|G8 |@
! 1
@

= kGk@

Hence kGk⇤ = kGk@ when k · k = k · k ? . ⇤

In light of Lemma A.24, examples of (A.26) include:��
G

H
H

��  kGk ? kHk@ ⇣
?
�1 + @�1 = 1

⌘
��
G

H
H

��  kGk2 kHk2 (? = @ = 2, Cauchy-Schwarz inequality)

kGk22  kGk1 kGk1 (H := G, ? = 1,@ =1)

A crucial fact for the vector space+ = R= or C= is that the dual of a dual norm is the
original norm, i.e., k · k⇤⇤ = k · k for an arbitrary norm k · k on+ (see [20, Theorem 5.5.9,
p.338]). For the special case of ;? norms, this is implied by Lemma A.24. Moreover
the only ;? norm that is its own dual is the Euclidean norm k · k2 ([20, Theorem 5.4.17,
p.331]). This fact and a remarkable property of dual norm specialized to R= are used
in Chapter A.10 to prove a mean value theorem for vector-valued functions (Lemma
A.34). Specifically, for the vector space+ = R=, it is shown in Chapter A.10 that, given
any G 2 R=, there is a normalized H⇤ (G) 2 R= with kH⇤ (G)k⇤ = 1 such that the norm kGk
is attained by their inner product, kGk = GT

H⇤ (G). Similarly, there exists an H(G) with
kH(G)k = 1 such that kGk⇤ = GT

H(G). This is remarkable because it says that any norm
k · k and its dual norm are always attained by the Euclidean inner product even if k · k
may not be a derived norm, e.g., k · k1, k · k1.
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A.8.3 Matrix norms

This subsection mostly follows [20, Chapter 5.6]. The set "<,= :="<,= (C) of all<⇥=
complex matrices is a vector space whether we view an element � 2 "<= as a vector
in + = C<= over field � = C or R or an array of numbers in + = C<⇥= over � = C or R.
A matrix norm on "<= therefore follows the same definition as in Definition A.4.

Definition A.6 (Matrix norm). A function k · k : "<,=!R is a matrix norm, or simply
a norm, if, for all complex matrices �,⌫ 2 "<,=, 2 2 C,

1. Positivity: k�k � 0 and k�k = 0 if and only if � = 0.
2. Homogeneity: k2�k = |2 | k�k.
3. Triangular inequality: k�+⌫k  k�k + k⌫k.

⇤

A key di�erence between the vector spaces C<= and C<⇥= is that matrix multipli-
cation is defined for elements �,⌫ of C<⇥=. We would therefore like to estimate the
‘size’ of a matrix product �⌫ in terms of the ‘sizes’ of � and ⌫. This is done by matrix
norms k · k that also satisfies a fourth property:

4. Submultiplicativity: k�⌫k  k�k k⌫k when � and ⌫ have compatible sizes (e.g.,
< = =) and the norms are properly defined for �⌫, � and ⌫.

Not all matrix norms are submultiplicative. Some authors include submultiplicativity
in the definition of matrix norm when restricted to square matrices (< = =), e.g., [20,
Chapter 5.6]. In the following we first discuss a special class of matrix norms, called
induced norms, that are not only submultiplicative, but also have a certain minimality
property. Then we discuss vector norms that are ;? norms on the vector space ⇠=

2
.

They may or may not be submultiplicative.

Induced norms. A widely used matrix norm k · k<,= on"<,= (C) is an induced norm,
induced by any vector norms k · k= and k · k< on ⇠= and ⇠< respectively, defined by:
for � 2 "<,=,

k�k<,= := max
G:kG k==1

k�Gk< = max
G:G<0

k�Gk<
kGk=

(A.27)

It is sometimes called an operator norm. Every induced norm is submultiplicative:
for � 2 C<⇥=, ⌫ 2 C=⇥: with arbitrary norms k · k<, k · k=, k · k: on C<, C=, C:

respectively,

k�⌫k<,: = max
G:G<0
k⌫G k<0

k�⌫Gk<
kGk:

= max
G:G<0
k⌫G k<0

k�⌫Gk<
k⌫Gk=

k⌫Gk=
kGk:

 max
H:H<0

k�Hk<
kHk=

max
G:G<0

k⌫Gk=
kGk:

= k�k<,= k⌫k=,:

It also satisfies the additional properties:
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1. k� k<,= = 1 for the identity matrix �.
2. k�Gk<  k�k<,=kGk= for any � 2 C<⇥= and any G 2 C= (follows from submulti-

plicativity).
3. k�k<,= = max{|HH

�G | : kGk = kHk⇤ = 1, G 2 C=, H 2 C<}.

Examples of induced norms on "<,= are norms induced by the ;? norm on both C=

and C<:

k�k ? := max
G:kG k?=1

k�Gk ? = max
G:G<0

k�Gk ?
kGk ?

Theorem A.25. Let � 2 "<,= a <⇥= complex matrix. Then the induced norms k · k1,
k · k2 and k · k1 satisfy:

1. Max column sum (induced by ;1 norm): k�k1 = max 9
Õ
8
|�8 9 |.

2. Max row sum (induced by ;1 norm):k�k1 = max8
Õ
9
|�8 9 |.

3. Spectral norm (induced by ;2 norm): k�k2 = fmax (�) =
q
_max

�
�

H
�

�
where

fmax (�) is the largest singular value of � and _max
�
�

H
�

�
� 0 is the largest

eigenvalue of the positive semidefinite matrix �H
�.

4. If � is square and nonsingular then k��1k2 = 1/fmin (�), the reciprocal of the
smallest singular value of �.

5. k�H
�k2 = k��Hk2 = k�k22.

6. k�k2 = max{|HH
�G | : kGk2 = kHk2 = 1, G 2 C=, H 2 C<}.

A norm k · k is unitarily invariant if k�k = k*�+ k for all � 2 "= and for all unitary
matrices *,+ 2 "=. It is self-adjoint if k�k = k�Hk for all � 2 "=. The following
result shows that the spectral norm is the only induced norm that is unitarily invariant
and self-adjoint [20, Theorems 5.6.34, 5.6.35].

Lemma A.26. Let k · k be a submultiplicative matrix norm on "=. The following are
equivalent:

1. k · k is the spectral norm.
2. k · k is an induced norm that is unitarily invariant, i.e., k�k = k*�+ k for all � 2 "=

and for all unitary matrices*,+ 2 "=.
3. k · k is an induced norm that is self-adjoint, i.e., k�k = k�Hk for all � 2 "=.

Other matrix norms. We can also view a complex matrix � 2 "<,= as a vector in
C
<= and treat the ;? norms on C<= as matrix norms on "<,=. We sometimes refer

these norms as vector norms on "<,=. Examples include

• ;1 norm: k�ksum :=
Õ
8, 9 |�8 9 |.

• ;2 or Frobenius norm: k�k� :=
⇣Õ

8, 9 |�8 9 |2
⌘1/2

.

• ;1 norm: k�kmax := max8, 9 |�8 9 |.
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The Frobenius inner product on complex matrices in "<,= is defined to be

h�,⌫i� := tr ⌫H
� =

<’
8=1

=’
9=1

⌫8 9�8 9

It is simply the Euclidean inner product when we view a matrix � 2 "<,= as a
vector in C<=. The Forbenius norm is then derived from the Frobenius inner product,
k�k� :=

p
h�, �i� .

They satisfy the following properties

Theorem A.27. Let � 2 "= be a =⇥= complex matrix.

1. k · ksum and k · k� are submultiplicative matrix norms, but k · kmax is a matrix norm
that is not submultiplicative.

2. The Frobenius norm is given by

k�k� =
���tr ⇣��H

⌘���1/2 =
s’

8

f
2
8
(�) =

s’
8

_8

�
��

H�

where f8 (�) denote the singular values of � and _8 (��H) denote the eigenvalues
of the positive semidefinite matrix ��H.

3. k�k� = k�Hk� = k*�+ k� for any unitary matrices *,+ 2 "= (unitarily invari-
ant).

Hence while the spectral norm k · k2 is the only unitarily invariant and the only
self-adjoint induced norm (Lemma A.26), the Frobenius norm k · k� is a unitarily
invariant and self-adjoint norm that is not induced by a vector norm on C=.

Since "= is a finite dimensional vector space over field � = C or R, all matrix
norms, whether or not they are submultiplicative, are equivalent in the sense of (A.22)
and therefore have the same convergence sequences. In particular a matrix norm that
is not submultiplicative is equivalent to every submultiplicative matrix norm, and vice
versa. Moreover any vector norm on "= becomes a submultiplicative matrix norm
when scaled up su�ciently [20, Theorems 5.7.8, 5.7.11, pp. 372].

Lemma A.28. 1. Given any matrix norm # (·) (e.g., a vector norm) on "= and any
submultiplicative matrix norm k · k on "=, there exists finite positive constants
2<,2" such that

2<k�k  # (�)  2" k�k, � 2 "= (A.28)

2. Let # (·) be a vector norm on "= and 2(#) := max
# (�)=1=# (⌫) # (�⌫). Then

W# (·) is a submultiplicative matrix norm on "= if and only if W � 2(#)

Spectral radius, matrix norm and convergence. Induced norms have a certain
minimality property among matrix norms. This can be useful, e.g., in analyzing iterative
algorithms of the form G(C +1) = �G(C). We now describe the relationship between the
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spectral radius d(�) of a matrix �, its matrix k�k, and convergence properties of �:

and
Õ
9: �

9 .

Theorem A.29 (Spectral radius, singular values, norms). Let k · k be a submultiplica-
tive matrix norm on "= and � 2 "=. Let _8 and f8 be the eigenvalues and singular
values of � respectively with

|_1 | � · · · � |_= |, f1 � · · · � f=

Let d(�) := |_1 | denote the spectral radius of �.

1. |_1 |  f1 and |_= | � f= > 0, i.e., |_8 | 2 [f=,f1].
2. For all 8, 1/k��1k  |_8 |  d(�)  k�k if � is nonsingular.
3. Given any n > 0 there is a submultiplicative matrix norm k · k such that d(�) 
k�k  d(�) + n . Moreover

d(�) = inf{k�k : k · k is an induced norm}

In Theorem A.29, 1 is proved in [20, Theorem 5.6.9], 2 follows from 1 by taking k · k
to be the spectral norm, and 3 is proved in [20, Lemma 5.6.10, p.347]. See Exercise
A.22 for details.

As mentioned above "= is a finite dimensional vector space over field � = C or R,
convergence of matrices is defined in the same way as the convergence of elements in
any normed vector space (+ , k · k), i.e., a sequence {G: } ✓ + converges to a limit G 2 +
if kG: � Gk ! 0 as :!1.

Definition A.7 (Matrix convergence). We say a sequence {�: } ✓ "= (or a power
series {Õ

9: �
9 } ✓ "=) converges if there exists a matrix � 2 "= such that �: ! �

(or
Õ
9: �

9 ! �) as : !1 with respect to the underlying matrix norm k · k, i.e., if
lim:!1 k�: � �k = 0 (or lim:!1 k

Õ
9: �

9 � �k = 0).

All matrix norms, whether or not they are submultiplicative, are norms on "= and
therefore equivalent in the sense of (A.22). Hence if �: converges under a norm, it
converges under all norms.

Theorem A.30 (Sequence convergence). Let k · k be a submultiplicative matrix norm
on "= and � 2 "=. Let d(�) denote the spectral radius of �.

1. If k�k < 1 then lim:!1 �: = 0, i.e.,
��[�: ]8 9 ��! 0 as :!1 for all 8, 9 .

2. d(�) < 1 if and only if lim:!1 �: = 0.
3. Gelfand formula: d(�) = lim:!1 k�: k1/: .

In Theorem A.30, 1 is proved in [20, Lemma 5.6.11] and uses the fact that if
�
: converges then it converges under the vector norm k�kmax := max8, 9 |�8 9 |, and

2 is proved in [20, Lemma 5.6.12] and says that, unlike k�k < 1, d(�) < 1 is both
necessary and su�cient for the convergence of lim:!1 �: . Theorem A.30.3 holds not
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only for multiplicative matrix norms, but also for any matrix norm, including vector
norms [20, Corollary 5.6.14, Theorem 5.7.10]. It follows from the fact that, under a
submultiplicative matrix norm, �̃ := (d(�) +n)�1

� has spectral radius strictly less than
1 and converges for any n > 0, implying that k�: k1/:  d(�) + n for su�ciently large
: . On the other hand d(�)  k�: k1/: and hence d(�) = lim:!1 k�: k1/: . Extension
to norms that are no submultiplicative makes use of (A.28).

Remark A.3. We often want to establish k�k < 1 for some matrix norm in order to
prove convergence of sequences or power series of �. We are therefore interested in
a minimal matrix norm k · k, i.e., a submultiplicative norm on "= such that the only
submultiplicative norm # (·) on "= with # (�)  k�k for all � 2 "= is # (·) = k · k. It
can be shown that a submultiplicative matrix norm on "= is minimal if and only if it
is an induced norm [20, Theorem 5.6.32, p.356]. ⇤

The sum (: :=
Õ
:

9=0 0 9 of a finitely many complex numbers 0 9 2 C does not depend
on the order in which 0 9 are summed. An infinite series ( := lim:!1 (: =

Õ1
9=0 0 9

may, e.g., ( := 1�1+1�1+ · · · where the partial sums (: oscillate between 1 and �1.
This motivates a stronger notion of convergence. Specifically an infinite sum

Õ1
9=0 0 9

of complex numbers 0 9 2 C is said to converge absolutely if lim:!1
Õ
:

9=0 |0 9 | = 0 for
some real number 0 2 R.

Definition A.8 (Series convergence). Considered a norm vector space ("=, k · k). We
say a power series {Õ

9: �
9 } ✓ "=

1. converges if there exists a matrix � 2 "= such that
Õ
9: �

9 ! � as :!1, i.e.,
if lim:!1 k

Õ
9: �

9 � �k = 0.
2. converges absolutely if there exists a matrix � 2 "= such that

Õ
9: �

9 ! �) as
:!1with respect to the underlying matrix norm k · k, i.e., if lim:!1 k

Õ
9: �

9 �
�k = 0.

For a complex power series ((I) := lim:!1
Õ
:

9=0 0 9 I
9 , it is known that there is

a radius of convergence ' � 0, possibly 1, such that the power series converges
absolutely for |I | < ', diverges if |I | > ', and may converge or diverge if |I | = '. For
any complex =⇥= matrix � 2 "= and any submultiplicative matrix norm k · k we have�����

’
:

0:�
:

����� 
’
:

|0: | k�: k 
’
:

|0: | k�k:

where the first inequality is due to the triangular inequality and the second due to
submultiplicativity. This means that a matrix power series

Õ1
:=0 0:�

: converges abso-
lutely if there exists a matrix norm k · k such that k�k < ', the radius of convergence
for

Õ
:
0: I

: , i.e., see Exercise A.24. Such a norm exists if and only if d(�) < '

because, given any n > 0, there exists a (submultiplicative) matrix norm k · k with
d(�)  k�k  d(�) + n [20, Lemma 5.6.10, p.347]. This fact and some corollaries are
summarized in the next result [20, pp.350-351].
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Theorem A.31 (Series convergence). Let � 2 "=.

1. Let ' be the radius of convergence of a scalar power series
Õ1
:=0 0: I

: . The matrix
power series

Õ1
:=0 0:�

: converges if d(�) < ', which holds if there exists a
multiplicative matrix norm k · k on "= such that k�k < '.

Let k · k be a submultiplicative matrix norm on "=.

2. If k� � �k < 1 then � is nonsingular and

�
�1 =

1’
:=0

(� � �):

3. If k�k < 1 then � � � is nonsingular and

(� � �)�1 =
1’
:=0

�
:

4. If k� k = 1 (e.g., if k · k is an induced norm) and k�k < 1 then

1
1+ k�k  k (� � �)

�1k  1
1� k�k

The theorem is proved in Exercise ??.

A.9 Di�erentiability, complex di�erentiability, analyticity

Di�erentiability of real-valued functions. A real-valued function 5 : R! R is said
to be di�erentiable at G 2 R if the limit

5
0(G) := lim

⌘2R
⌘!0

5 (G + ⌘)� 5 (G)
⌘

(A.29)

exists. If 5 0(G) exists, it is called the gradient or derivative of 5 at G 2 R. If 5 is
di�erentiable at every G 2 - ✓ R then 5 is called di�erentiable on - . The straight line
{⌘ 2 R : 5 (G) + 5 0(G)⌘} can be interpreted as a linear approximation of 5 at G in the
sense that the error n (⌘) is smaller than linear, i.e.,

lim
⌘!0

n (⌘)
⌘

:= lim
⌘!0

5 (G + ⌘)� ( 5 (G) + 5 0(G)⌘)
⌘

= 0

We use this to generalize di�erentiability to R=: a real-valued function 5 : R=! R is
said to be di�erentiable at G 2 R= if there exists a vector < 2 R= such that

lim
⌘2R=
⌘!0

5 (G + ⌘)� 5 (G)�<T
⌘

k⌘k = 0
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When this holds, < is called the gradient or derivative of 5 at G 2 R= and denoted
r 5 (G). If 5 is di�erentiable at every G 2 - ✓ R= then 5 is called di�erentiable on - . If
5 is di�erentiable with respect to G 9 2 R, when all other G: , : < 9 are held fixed, then
it is called partially di�erentiable at G 2 R= with respect to G 9 . The derivative is called
the partial derivative of 5 at G with respect to G 9 and denoted m 5

mG 9

(G):

m 5

mG 9

(G) := lim
C 2R
C!0

5 (G + C4 9 )� 5 (G)
C

where 4 9 2 R= is the unit vector with 1 in the 9 position and 0 elsewhere. The row
vector of partial derivatives of 5 at G 2 R= is

m 5

mG

(G) :=
h
m 5

mG1
(G) · · · m 5

mG=

(G)
i

The partial derivative m 5

mG
(G) describes the behavior of 5 at G only along the coordinate

axes whereas the derivative r 5 (G) describes its behavior in all directions. If 5 is
di�erentiable then it is partially di�erentiable, but the converse does not generally
hold.

Theorem A.32. If 5 :R=!R is di�erentiable at G 2R= then it is partially di�erentiable
at G (i.e., m 5

mG
(G) exists). Moreover its gradient r 5 (G) is given by

r 5 (G) =

m 5

mG

(G)
�T

The following example shows that the converse may not hold.

Example A.5. Consider 5 : R2! R defined by:

5 (G, H) :=
⇢

0 if GH = 0
1 if G < 0 or H < 0

i.e., 5 = 0 on the G and H-axes and 5 = 1 everywhere else. It is partially di�erentiable
overR2. It is discontinuous at every point on the axes and hence cannot be di�erentiable
at those points. ⇤

The partial derivative m 5

mG
(G) in Example A.5 exists, but not continuous, on the axes.

If 5 : -! R is partially di�erentiable on an open set - ✓ R= and m 5

mG
(G) is continuous

on - (i.e., the partial derivative m 5

mG
(G) exists and is continuous at every G 2 -), then 5

is called continuously di�erentiable on - .

Theorem A.33. If 5 : - ! R is continuously di�erentiable on an open set - ✓ R=,
then it is di�erentiable on - .

Complex di�erentiability of complex-valued functions. A complex-valued func-
tion 5 : C! C is complex di�erentiable at I 2 C if

5
0(I) := lim

⌘2C
⌘!0

5 (I+ ⌘)� 5 (I)
⌘

(A.30)
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exists. When 5
0(I) exists we will call it the complex derivative or derivative of 5 at

I 2 C. Note that 5 0(I) is generally a complex number. If 5 is complex di�erentiable at
every I 2 / ✓ C then 5 is called holomorphic on / .

Even though complex di�erentiability in (A.30) looks similar to di�erentiability in
(A.29), (A.30) is a much stronger notion because ⌘must approach 0 from all directions
in the complex plane. To see this we can reformulate a complex-valued function and
complex di�erentiability in R2 where 5 : C! C is written in terms of its real and
imaginary parts, 5 (G, H) =: 5A (G, H) + i 58 (G, H) where G, H 2 R and 5A , 58 2 R. Then
(A.30) implies, taking ⌘ = C (1+ i0) and ⌘ = C (0+ i) respectively,

5
0(G, H) = lim

C 2R
C!0

5 (G + C, H)� 5 (G, H)
C (1+ i0) = lim

C 2R
C!0

✓
5A (G + C, H)� 5A (G, H)

C

+ i
58 (G + C, H)� 58 (G, H)

C

◆

5
0(G, H) = lim

C 2R
C!0

5 (G, H + C)� 5 (G, H)
C (0+ i1) = lim

C 2R
C!0

✓
5A (G, H + C)� 5A (G, H)

iC
+ i

58 (G, H + C)� 58 (G, H)
iC

◆

Hence if 5 =: 5A + i 58 is holomorphic on / then it must satisfy

m 5A

mG

=
m 58

mH

,
m 58

mG

= �m 5A
mH

on / . These equations are called the Cauchy-Riemann equations.

Analyticity. A real-valued function 5 : - ! R on an open set - ✓ R is said to be
real analytic on - if at every point G0 2 - there is an open neighborhood ⌫X (G0) :=
{G 2 - : |G� G0 | < X} around G0 such that

5 (G) =
1’
:=0

0: (G� G0): , G 2 ⌫X (G0) (A.31a)

Equivalently 5 is real analytic on - if it is infinitely di�erentiable so that the Taylor
series around every point G0 2 - converges to 5 (G) for all G 2 ⌫X (G0), i.e.,

5 (G) =
1’
:=0

5
(:) (G0)
:!

(G� G0): , G 2 ⌫X (G0) (A.31b)

with 0: := 5
(:) (G0)/:!. The neighborhood ⌫X (I0) is called the region of convergence

for (A.31). A function 5 defined on a subset of R is said to be real analytic at G 2 R if
there is a neighborhood ⌫X (G) of G on which 5 is real analytic.

A complex-valued function 5 : / ! C on an open set / ✓ C is said to be complex
analytic on / or analytic on / if at every point I0 2 / there is a neighborhood
⌫X (I0) := {I 2 / : |I� I0 | < X} around I0 such that

5 (I) =
1’
:=0

0: (I� I0): , I 2 ⌫X (I0) (A.32a)

Equivalently 5 is analytic on / if it is infinitely complex di�erentiable so that the
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Taylor series around every point I0 2 / converges to 5 (I) for all I 2 ⌫X (I0), i.e.,

5 (I) =
1’
:=0

5
(:) (I0)
:!

(I� I0): , I 2 ⌫X (I0) (A.32b)

with 0: := 5
(:) (G0)/:!. A function 5 defined on a subset of C is said to be analytic at

I 2 C if there is a neighborhood ⌫X (I) of I on which 5 is analytic.

An important property of holomorphic function is: 5 : C! ⇠ is holomorphic on
an open set / ✓ C if and only if it is complex analytic on / .

A.10 Mean value theorems

When restricted to the vector space R= endowed with any norm k · k, the definition of
dual norm k · k⇤ in (A.25) reduces to: for any G 2 R=,

kGk⇤ := max
H:kH k=1

G
T
H = max

H:kH k=1

��
G

T
H

�� (A.33)

The maximization is attained since inner product is continuous and the feasible set is
compact. Hence there is a normalized H(G) 2 R= that satisfies

G
T
H(G) = kGk⇤ and kH(G)k = 1 (A.34a)

Recall a crucial fact that, for the vector space + = R= or C=, the dual of a dual norm is
the original norm, i.e., k · k⇤⇤ = k · k for an arbitrary norm k · k on + (see [20, Theorem
5.5.9, p.338]). Therefore, given any G 2 R=, there exists an H⇤ (G) 2 R= such that

G
T
H⇤ (G) = kGk and kH⇤ (G)k⇤ = 1 (A.34b)

because

kGk = kGk⇤⇤ = max
H:kH k⇤=1

G
T
H = G

T
H⇤ (G)

where H⇤ (G) is a maximizer (which clearly exists).3 Remarkably, for R=, (A.34) says
that both the norm and its dual norm of any vector can be attained by the inner product
of the vector with another vector, for any norm that may not be derived from an inner
product, e.g., k · k1, k · k1.

We now use (A.26) and (A.34b) to prove the mean value theorem for vector-valued
functions.

3 For the ?-norm the dual is the @-norm with ?�1 +@�1 = 1 (see Lemma A.24) and

(H (G))
8

:=
G
?�1
8

kG k?�1
?

sign ( (G8) ?)

so that GT
H (G) = kG k? and kH (G) k@ = 1.
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Lemma A.34 (MVT for vector-valued function). Consider a continuously di�eren-
tiable function 5 : R=! R<. Given any G, H,F in R= we have

F
T ( 5 (H)� 5 (G)) = FT m 5

mG

(I) (H� G) (A.35a)

k 5 (H)� 5 (G)k 
����m 5
mG

(I)
���� kH� Gk (A.35b)

where I := UG+ (1�U)H for some U 2 [0,1], k · k is any norm, and for matrix, it denotes
the induced norm. If we take F = 48 we obtain the usual mean value theorem for a
scalar valued function: 58 (H)� 58 (G) = m 58

mG
(I) (H� G).

Proof of Lemma A.34. Fix any G, H,F in R=. Let I(U) := (1�U)G +UH for U 2 [0,1]
so that I(0) = G and I(1) = H, and I(U) traces the straight path from G to H. Define the
function

6(U) := 6F (U) := FT
5 (I(U))

as a function of U 2 [0,1]. Since 6 is from R to R the standard mean value theorem
implies that

6(1)�6(0) = 60(V)

for some V 2 [0,1] that depends on F. Since 6(0) = FT
5 (G) and 6(1) = FT

5 (H) this
becomes (using chain rule)

F
T ( 5 (H)� 5 (G)) = FT m 5

mG

(I(V)) (H� G)

proving (A.35a).

To prove (A.35b), use (A.34b) to choose F 2 R= such that4

F
T ( 5 (H)� 5 (G)) = k 5 (H)� 5 (G)k and kFk⇤ = 1

Substituting this F into (A.35a) yields

k 5 (H)� 5 (G)k = FT ( 5 (H)� 5 (G)) = F
T m 5

mG

(I(V)) (H� G)

 kFk⇤ ·
����m 5
mG

(I(V)) (G� H)
����


����m 5
mG

(I(V))
���� · kG� Hk

4 If the norm k · k is Euclidean then the argument below simplifies to: setting F := 5 (H) � 5 (G) in
(A.35a) yields

k 5 (H) � 5 (G) k22 = ( 5 (H) � 5 (G))T m 5

mG

(I (V)) (H� G)

 k 5 (H) � 5 (G) k2 ·
����m 5
mG

(I (V))
����

2
kH� G k2

proving (A.35b). This is done in [209].
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proving (A.35b). In the above, the first inequality follows from (A.26) and the second
inequality follows from the definition of the induced norm of m 5

mG
. This completes the

proof of Lemma A.34. ⇤

A.11 Algebraic graph theory

Consider a graph ⌧ = (# ,⇢) with # := {1, . . . ,=} and ⇢ ✓ # ⇥ # . ⌧ can either be
undirected or directed with an arbitrary orientation. An element of # is called a node;
it is also called a vertex or a bus (in power system context). An element of ⇢ is called
an edge; it is also called a link, a branch or a line (in power system context). Two nodes
9 and : are adjacent if ( 9 , :) 2 ⇢ . If ⌧ is directed we may write 9! : 2 ⇢ in place of
( 9 , :) 2 ⇢ . In general there can be multiple edges between two nodes 9 and : , and for
a directed graph, they can have di�erent orientations, e.g., ;1 = 9 ! : and ;2 = :! 9 .
A complete graph is one where every pair of nodes is adjacent. A subgraph of ⌧ is a
graph � = (# 0,⇢ 0) with # 0 ✓ # and ⇢ 0 ✓ ⇢ . A clique of ⌧ is a complete subgraph of
⌧. A maximal clique of ⌧ is a clique that is not a subgraph of another clique of ⌧.

By a path connecting nodes 9 and : we mean either a set of distinct nodes
( 9 ,=1, . . . ,=8 , :) such that ( 9 ,=1), (=1,=2), . . . , (=8 , :) are edges in ⇢ or this set of edges,
depending on the context. A cycle (=1, . . . ,=8) is a path such that (=1,=2), . . . , (=8 ,=1)
are edges in ⇢ . By convention we exclude a pair of adjacent nodes ( 9 , :) as a cycle. ⌧
is connected if there is a path between every pair of nodes. ⌧ is :-vertex connected or
:-connected, : = 1, . . . ,=, if it remains connected after removing fewer than : nodes.
⌧ is :-edge-connected, : = 1, . . . ,=, if it remains connected after removing fewer
than : edges. Hence if ⌧ is :-connected (:-edge-connected) then it is 9-connected
( 9-edge-connected), 9  : . A connected component of ⌧ is a subgraph of ⌧ that is
connected.

A cycle in ⌧ that has no chord (an edge connecting two nodes that are non-adjacent
in the cycle) is called a minimal cycle. ⌧ is chordal if all its minimal cycles are of
length 3 (recall that an edge ( 9 , :) is not considered a cycle). A chordal extension of ⌧
is a chordal graph on the same set of nodes as ⌧ that contains ⌧ as a subgraph. Every
graph has a chordal extension; e.g. the complete graph on the same set of nodes is a
trivial chordal extension.

Suppose now the graph ⌧ = (# ,⇢) is directed with an arbitrary orientation. Let
= := |# | and < := |⇢ |. Let ⇠ denote the =⇥< incidence matrix defined by:

⇠ 9; =

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8! 9 for some bus 8
0 otherwise

Let the (=�1)⇥< matrix ⇠̂ denote the reduced incidence matrix of ⌧ obtained from
⇠ by removing its first row. If ⌧ has 2 connected components, then rank(⇠) = =� 2. In
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particular if ⌧ is connected then rank(⇠) = =�1. Indeed ⇠ can be written as a block
diagonal matrix with the :th diagonal block ⇠: being the incident matrix of the :th
connected component that has =: nodes. It can be proved that rank(⇠: ) = =: � 1, as
follows.

We take R= as the node space of ⌧ and it has a simple structure. The null space
null

�
⇠

T� consists of all \ 2 R= such that ⇠T
\ = 0. This implies that \8 = \ 9 if (8, 9) 2 ⇢

is an edge, i.e., a vector \ is in null
�
⇠

T� if and only if \8 takes the same value at every
node in the same connected component. This shows that null(⇠T) is of rank 2 if it has
2 connected components and therefore rank(⇠) = =� 2 since rank(⇠) +null(⇠T) = =.
In particular, if ⌧ is connected, then null

�
⇠

T� is span(1) and therefore its orthogonal
complement range(⇠) has dimension =�1 and consists of all vectors ? 2 R= such that
1

T
? = 0. See Figure A.6.

We takeR< as the edge space of⌧. Since rank
�
⇠

T� = rank(⇠) = =�1 for a connected
⌧, dim(null(⇠)) = <� =+1; see Figure A.6. We will construct a useful basis for the
orthogonal complements null(⇠) and range(⇠T), as follows.

1. A cycle in ⌧ is a set of edges in ⇢ that forms a cycle subgraph. Given a cycle f in
⌧, pick an orientation for f, say, clockwise. Define the indicator function (vector)
I(f) as

I; (f) =

8>>><
>>>:

+1 if edge ; is in f and has the same orientation as f

�1 if edge ; is in f and has the opposite orientation as f

0 otherwise

We write ; 2 f if ; is in f and has the same orientation as f and �; 2 f if ; is in
f and has the opposite orientation as f. It is clear that

⇠I(f) =
’
;2f

2; �
’
�;2f

2; = 0, 8 cycles f in ⌧ (A.36)

because each column 2; of ⇠ has exactly one 1, one �1, and =� 2 zeros. This
means that the cycle indicators I(f) 2 {0,1,�1}< are in null(⇠) for all cycles f.

2. Partition # into two nonempty disjoint subsets #1 and #2. A cut in ⌧ is a set of
edges in ⇢ each of which has one endpoint in #1 and the other endpoint in #2.
Given a cut ^ in ⌧, pick an orientation, say, from #1 to #2. Define the indicator
function (vector) I(^) as

I; (^) =

8>>><
>>>:

+1 if edge ; is in ^ and has the same orientation as ^ (#1! #2)
�1 if edge ; is in ^ and has the opposite orientation as ^ (#2! #1)
0 otherwise

(We use I to denote an indicator function of both a cyclef and a cut ^; the meaning
should be clear from the context.) The indicator function I(^) of the cut can be
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expressed as

I(^) :=
1
2

 ’
82#1

A8 �
’
82#2

A8

!
, 8 cuts ^ in ⌧ (A.37a)

where AT
8

are the 8th rows of⇠. This means that the cut indicators I(^) 2 {0,1,�1}<
are in range(⇠T) for all cuts ^, and hence are orthogonal to null⇠, i.e.,

I
T (^) Ĩ = 0, 8Ĩ 2 null(⇠) and cuts ^ in ⌧ (A.37b)

We call the null space of ⇠ the cycle subspace of ⌧ and its orthogonal complement
the cut subspace of ⌧; see Figure A.6. For an application of (A.36) and (A.37), see

C

C T

RnRm

range(C T) : dim = n

Figure A.6 The edge space R< = null(⇠) � range(⇠T) and the vertex space
R
= = null(⇠T) � range(⇠). (The dimensions are for a connected graph.)

Exercises 1.4 and 1.5.

Both the vectors I(f) and I(^) are in {0,1,�1}<. In general the total number of
cycles f and cuts ^ can be greater than <. We can choose < linearly independent
vectors among {I(f), I(^) : 8f, ^ in ⌧} as a basis of R<, as follows. Fix any spanning
tree ) of ⌧. For each edge ; of ⌧ not in ) , there is a unique cycle consisting of ;
and only edges in ) ; denote this cycle by cyc() , ;). For each edge ; of ) , there is a
unique cut consisting of ; and only edges not in ) ; denotes this cut by cut() , ;). Give
cyc() , ;) and cut() , ;) the orientations that coincide with the orientation of ; in ⌧.
These definitions are illustrated in Figure A.7. The following properties of the edge
space of ⌧ are illustrated in Figure A.6.

Theorem A.35 (Edge space R< of ⌧). 1. The cycle subspace null(⇠) is a vector
space of dimension <�=+1; I(f) 2 null(⇠) for any cycle f.
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1

2

4

3 5

T

(a) ⌧ and spanning
tree )

l̂ = 4

T

(b) dim(null(⇠)) = 2

l = 3

T

(c) dim(range(⇠T)) =
3

Figure A.7 A connected graph with a spanning tree ) , with cycle subspace null(⇠) and cut
subspace range(⇠T). The cycle subspace has dim 2 with a basis vector for each ;̂ 8 ) , e.g.,
I(cyc() , ;̂)) = (0,�1,1,1,0). The cut subspace has dim 3 with a basis vector for each ; 2 ) ,
e.g., I(cut() , ;)) = (0,0,1,�1,0).

2. Given a spanning tree ) , the set {I(cyc() , ;)) : ; 2 ⌧ \)} forms a basis that spans
null(⇠).

3. The cut subspace range
�
⇠

T� is a vector space of dimension =�1; I(^) 2 range
�
⇠

T�
for any cut ^.

4. Given a spanning tree ) , the set {I(cut() , ;)) : ; 2 )} forms a basis that spans
range

�
⇠

T� .
5. The edge space of ⌧ is the orthogonal direct sum of its cycle subspace and cut

subspace, i.e., R< = null(⇠) � range
�
⇠

T� and IT
f
I^ = 0 for any If 2 null(⇠) and

I^ 2 range
�
⇠

T� .
Theorem A.36. 1. (Poincaré 1901) Any square submatrix of the incidence matrix

⇠ of a graph ⌧ has determinant equal to 0,+1, or �1.
2. Let � ✓ ⇢ with |� | = =�1. Let⇠� be an (=�1)⇥ (=�1) submatrix of⇠, consisting

of the intersection of those =� 1 columns of ⇠ corresponding to the =� 1 edges
in � and any =� 1 rows of ⇠. Then ⇠� is invertible if and only if the subgraph
induced by � is a spanning tree of ⌧.

3. (Inverse of ⇠) ) Let ) be a spanning tree of ⌧. Let ⇠) denote the corresponding
(=�1)⇥ (=�1) submatrix. Then

⇥
⇠
�1
)

⇤
;8
= ±1 if edge ; is in the unique path in )

joining node 8 and the reference node 0 corresponding to the row excluded from
⇠) . Otherwise

⇥
⇠
�1
)

⇤
;8
= 0.

A basis for the cycle subspace null(⇠) and that of the cut subspaces range
�
⇠

T� can
be explicitly determined in terms of the incidence matrix ⇠, as follows. Partition ⇠
such that columns 1, . . . ,# are the edges of a spanning tree) of⌧. Partition⇠ as (node
0 is the reference bus):

⇠ =

⇠̂) ⇠̂�)
30) 3�0)

�
(A.38a)

By Theorem A.36, ⇠̂) is invertible and its = � 1 rows form a basis since ) is a
spanning tree of ⌧. Let /f denote the <⇥ (<�=+1) matrix whose columns are the
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basis {I(cyc() , ;)) | ; 2 ⌧\)} of the cycle subspace null(⇠), written as (possibly after
rearranging the columns):

/f =

/)

I<�=+1

�
(A.38b)

The lower submatrix of /f is I<�=+1 because these rows correspond to edges not in
the spanning tree ) and the orientations of the cycles have been chosen so that they
coincide with the orientation of these edges. By the definition of /f we have the
important topological relation ⇠ /f = 0. Using (A.38) we therefore have

/) = �⇠̂�1
)
⇠̂�)

From Theorem A.36.3, each column of /) corresponds to a directed edge 8! 9 not
in the spanning tree ) , and its nonzero entries correspond to edges on the unique path
between node 8 and node 9 in ) . Hence a basis for the cycle subspace is given by the
columns of

/f =

�⇠̂�1

)
⇠̂�)

I<�=+1

�
(A.39a)

Note that Theorem A.36 implies that ⇠̂�1
)

has integral entries, so / also has integral
entries. Similarly, we can explicitly determine the cut matrix. Let /^ denote the<⇥=�1
matrix whose columns are the basis {I(cut() , ;)) | ; 2 )} of the cut subspace range

�
⇠

T� ,
written as (possibly after rearranging the columns):

/^ =

�=�1

/�)

�

Since every column of /^ belongs to the orthogonal complement of null(⇠), we have
/

T
f
/^ = 0. Hence

/�) = ⇠̂T
�) ⇠̂

�T
)

where ��) := (��1)T = (�T)�1 for any invertible matrix � and the basis for the cut
space is

/^ =

I=�1

⇠̂
T
�) ⇠̂

�T
)

�
(A.39b)

Since /) = �⇠̂�1
)
⇠̂�) in /f and /�) = ⇠̂T

�) ⇠̂
�T
)

in /^ , we have /
T
)
+ /�) =

0(<�=+1)⇥=�1. This implies for ; 2 ) and ;̂ 2 ⌧\) that

; 2 cyc() , ;̂), ;̂ 2 cut() , ;)

Example A.6. For the graph in Figure A.7 we have

/f =

26666666664

0 1
�1 �1
1 0
1 0
0 1

37777777775
and /^ =

26666666664

1 0 0
0 1 0
0 0 1
0 1 �1
�1 1 0

37777777775
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One can verify that, indeed, /T
)
+ /�) = 02⇥3

This structure can be used to understand loop flows in the DC power flow model. We
call a line flow vector % a loop flow if it satisfies power balance with zero injections,
i.e., ⇠% = 0. Hence %f is a loop flow if and only if it is in the cycle subspace null(⇠)
of⌧, i.e., %f = /fU for some vector U 2 R<�=+1. Given any balanced injection vector
? with

Õ
9
? 9 = 0, the line flows % that satisfy ? = ⇠% are not unique. If % satisfies

? = ⇠%, so does %+%f for any loop flow %f . See Remark 4.7.

A matrix is called totally unimodular if any square submtrix has determinant equal
to 0,+1, or �1. Hence Theorem A.36.1 implies that the incidence matrix ⇠ of any
directed graph ⌧ is totally unimodular.

Theorem A.37. Given any (directed) graph ⌧,

1. The incidence matrix ⇠ of any directed graph ⌧ is totally unimodular.
2. If � is a totally unimodular matrix and 1 is an integral vector, then, for any 2, the

solution of the linear program

min
G

2
T
G subject to �G  1

has an optimal solution which is integral, provided a finite solution exists.

The significance of the theorem is that many optimization problem on graphs have
LP formulations where � is the incidence matrix or its variant, e.g. max flow, shortest
path problems.

A.12 Bibliographical notes

There are many excellent texts on linear algebra. Most of the materials in Chapter A.6
can be found in [207, Chapter 7.3] for singular value decomposition and properties
of singular values, in [207, Chapters 2.5, 4.1] for spectral theorems for normal and
Hermitian matrices, and [207, Chapter 4.4.] for complex symmetric matrices. The
basic notions of algebraic graph theory in Chapter A.11 mostly follow [210].

There are many classic texts on nonsmooth convex analysis and optimization (e.g.
Rockafellar, Clarke, ...). The materials in Section ?? mostly follow [56, Chapter 5],
[155]. Books on nonsmooth analysis include [158, 155, 159] with [158] focuses more
on control theory for applications of nonsmooth analysis and [155, 159] more on
nonsmooth convex optimization. The emphasis of [155] is on R= whereas that of [159]
is on infinite dimensional vector spaces.
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A.13 Problems

Chapters A.3–A.6.

Exercise A.1 (Matrix sum and product). Let �,⌫ 2 C=⇥=.

1. Show that if �,⌫ are nonsingular then �⌫ is nonsingular but �+⌫ can be singular.
2. Suppose � � 0 and ⌫ � 0. Show that �+⌫ � 0 but �⌫may not be positive definite.

Show that if �⌫ = ⌫� or if � and ⌫ have the same set of eigenvectors then �⌫ � 0.
(Hint: �⌫ = ⌫� if and only if � and ⌫ are simultaneously diagonalizable.)

3. Give an example of � � 0 and ⌫ � 0 that share the same set of eigenvectors and
hence �⌫ � 0.

4. Given an example where � � 0 and ⌫ � 0 but �⌫ ⌥ 0.

Exercise A.2 (Invertibility of complex symmetric matrix). Let " = � + i⌫ where
�,⌫ 2 R=⇥= and U = d + in where d,n 2 R=. Show that, if " is (complex) symmetric,
then

U
H
"U = (dT

�d + nT
�n) + i(dT

⌫d + nT
⌫n)

Show that, if " is (complex) symmetric, then

1. If � � 0 then "�1 exists and Re("�1) � 0.
2. If ⌫ � 0 then "�1 exists and Im("�1) � 0.

Exercise A.3 (Schur complement). Let " 2 C=⇥= and partition it into blocks:

" =

� ⌫

⇡ ⇠

�

such that � 2 C(=�:)⇥(=�:) , : < =, and the other submatrices are of appropriate dimen-
sions. If " and � are invertible, show that

"
�1 =


�
�1 + ��1

⌫("/�)�1
⇡�
�1 ���1

⌫("/�)�1

�("/�)�1
⇡�
�1 ("/�)�1

�

where "/� := ⇠ �⇡��1
⌫ is the Schur complement of � of matrix " .

Exercise A.4 (Push-through identities). Let � 2 C=⇥=, ⌫ 2 C=⇥: and ⇠ 2 C:⇥=. Then

1. (I= +⌫⇠)�1
⌫ = ⌫(I: +⇠⌫)�1 provided the inverses exist.

2. (�+⌫⇠)�1
⌫ = ⌫(�+⇠⌫)�1 provided = = : , �⌫ = ⌫� and the inverses exist.

Note that when : ⌧ =, I: +⇠⌫ can be much easier to invert than I= +⌫⇠.
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Exercise A.5. Find the singular value decomposition, pseudo-inverse �
†, null(�),

range(�), null(�) ) and range(�) ) of the following:

1. � =

0

1

�
.

2. � = [1 2].
3. � =


1 1
0 0

�
.

4. � =

1 1
1 1

�
.

Discuss the existence and uniqueness of solutions to �G = 1 given 1.

Exercise A.6. Consider � =

1 1
1 �2

�
. Let ⌫ :=


1
1

�
and ⇠ :=


1
�2

�
so that � = [⌫ ⇠].

Show that �† = ��1 <

⌫
†

⇠
†

�
.

Exercise A.7 (Singular value decomposition). On the uniqueness of the unitary matrix
, in Theorem A.11, suppose rank(�) =: A < <  =. For a given + given in Theorem
A.11, show that , defined by ,H := ⌃†+H

� generally does not satisfy the singular
value decomposition (A.11). Here ⌃† is obtained from ⌃ by replacing its positive
singular values f8 by 1/f8 and taking the transpose.

Exercise A.8 (Singular value decomposition). Let G 2 C= be an =⇥1 matrix. Compute
a singular value decomposition of G.

Exercise A.9 (SVD and unitary diagonalization). Prove Theorem A.16.

Chapter A.7.

Exercise A.10 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= as a mapping
� : C=! C< and its Hermitian transpose �H : C<! C=. Show that the mapping �
restricted from range(�H) to range(�) is surjective and injective. This means that an
inverse, denoted �† : range(�)! range(�H), always exists for any matrix �.

Exercise A.11 (Pseudo-inverse of �). For the mapping � in Exercise A.10, show that
�
† =,⌃†+H, i.e., � and �† are inverse of each other when restricted to range(�H)

and range(�).



1036 Linear algebra preliminaries

Exercise A.12 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= with rank � = A 
min{<,=}. Let � = +⌃,H be its singular value decomposition and �† =,⌃†+H be
its pseudo-inverse. Prove (Corollary A.20.3): If A = =  < then �† =

�
�

H
�

��1
�

H.

Exercise A.13 (Pseudo-inverse of �). Consider a matrix � 2 C<⇥= with rank � = A 
min{<,=}. Instead of using the formula �† =,⌃†+H, use the fact that �† and � are
inverse of each other when restricted to range(�H) and range(�) to prove:

1. If A = <  = then �† = �H �
��

H��1.

2. If A = =  < then �† =
�
�

H
�

��1
�

H.

Exercise A.14 (Pseudo-inverse and norm minimization). Consider a matrix � 2 R<⇥=
with rank � = <  =. Show that the pseudo-inverse solution �

†
1 of �G = 1 is the

optimal solution of the quadratic program

min
G2R=

1
2
kGk22 s.t. �G = 1

Optimization problems often have multiple equivalent formulations that involve
di�erent variables and constraints. The next two exercises explore the relationship be-
tween these equivalent constraints and their Lagrange multipliers when the constraints
are a�ne. See also Exercise ?? on equivalent formulations of economic dispatch with
reduced model.

Exercise A.15 (Equivalent constraints). Consider the equations �1G = 11 and �2G = 12

with G 2 R=, �1 2 R<⇥=, �2 2 R:⇥=, 11 2 R<, 12 2 R: , and < may not be equal to : .
Suppose

• Feasibility: 11 2 range(�1) and 12 2 range(�2) so solutions for these equations
always exist.

• Equivalence: G satisfies �1G = 11 if and only if it satisfies �2G = 12.

Remark A.2 implies that the solution set of �1G = 11 is given by

-1 := {G : G = �
†
111 +F1, F1 2 null(�1)}

and the solution set of �2G = 12 is given by

-2 := {G : G = �
†
212 +F2, F2 2 null(�2)}

Show that -1 = -2.
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Exercise A.16 (Equivalent constraints). Consider the setup in Exercise A.15 and the
equivalent problems

min
G

5 (G) subject to �1G = 11 [_1] (A.40)

min
G

5 (G) subject to �2G = 12 [_2] (A.41)

with Lagrange multipliers _1,_2 respectively. Suppose 5 is di�erentiable (not neces-
sarily convex). Let (G⇤,_⇤1) be a primal-dual optimal point with zero duality gap for
(A.40) and (G⇤,_⇤2) be a primal-dual optimal point with zero duality gap for (A.41).
Show that �)1 _

⇤
1 = �

)

2 _
⇤
2.

Chapter A.8.

Exercise A.17 (Euclidean norm). Show that the Euclidean norm k · k2 on C= is the
only unitarily invariant norm with k48 k = 1. Positive scalar multiples of Euclidean
norms are also unitarily invariant with k48 k not necessarily 1.

Exercise A.18 (Cauchy-Schwarz inequality). Let G1, . . . ,G= be = given real numbers
with sample mean ` and sample standard deviation f defined by:

` :=
1
=

’
8

G8 , f :=

 
1
=

’
8

(G8 � `)2

!1/2

It can then be shown that (Exercise A.18)

` � f
p
=�1  G8  ` + f

p
=�1, 8 = 1, . . . ,=

with equality for some 8 if and only if G? = G@ for all ?,@ < 8.

Exercise A.19 (Hölder’s inequality). Prove Theorem A.23 on the vector space+ =⇠=

or R= with ;? norms (Hölder’s inequality): For any ?,@ � 1 such that 1
?
+ 1
@
= 1

=’
8=1

|G8H8 |  kGk ? kHk@ , G, H 2 +

with equality if and only if G? := (G?
8

, 8 = 1, . . . ,=) and H@ := (H@
8
, 8 = 1, . . . ,=) are linearly

dependent, i.e., G? = 0H@ for some scalar 0 2 �.

Exercise A.20 (Induced norms). Let � 2 "<,= be a < ⇥ = complex matrix. Prove
Theorem A.25:

1. Max column sum (induced by ;1 norm): k�k1 = max 9
Õ
8
|�8 9 |.

2. Max row sum (induced by ;1 norm):k�k1 = max8
Õ
9
|�8 9 |.
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3. Spectral norm (induced by ;2 norm): k�k2 = fmax (�) =
q
_max

�
�

H
�

�
where

fmax (�) is the largest singular value of � and _max
�
�

H
�

�
� 0 is the largest

eigenvalue of the positive semidefinite matrix �H
�.

4. If � is square and nonsingular then k��1k2 = 1/fmin (�), the reciprocal of the
smallest singular value of �.

5. k�H
�k2 = k��Hk2 = k�k22.

6. k�k2 = max{|HH
�G | : kGk2 = kHk2 = 1, G 2 C=, H 2 C<}.

Exercise A.21 (Vector norms on matrices). Prove Theorem A.27: Let � 2 "= be a
=⇥= complex matrix.

1. k · ksum and k · k� are submultiplicative matrix norms, but k · kmax is a matrix norm
that is not submultiplicative.

2. The Frobenius norm is given by

k�k� =
���tr ⇣��H

⌘���1/2 =
s’

8

f
2
8
(�) =

s’
8

_8

�
��

H�

where f8 (�) denote the singular values of � and _8 (��H) denote the eigenvalues
of the positive semidefinite matrix ��H.

3. k�k� = k�Hk� = k*�+ k� for any unitary matrices *,+ 2 "= (unitarily invari-
ant).

Exercise A.22 (Spectral radius, singular values, norms). Let � 2 "=. Let k · k be a
submultiplicative matrix norm on "= and � 2 "=. Let _8 and f8 be the eigenvalues
and singular values of � respectively with

|_1 | � · · · � |_= |, f1 � · · · � f=

Let d(�) := |_1 | denote the spectral radius of �. Prove Theorem A.29:

1. |_1 |  f1 and |_= | � f= > 0, i.e., |_8 | 2 [f=,f1].
2. For all 8, 1/k��1k  |_8 |  d(�)  k�k if � is nonsingular.
3. Given any n > 0 there is a submultiplicative matrix norm k · k such that d(�) 
k�k  d(�) + n . Moreover

d(�) = inf{k�k : k · k is an induced norm}

Exercise A.23 (Sequence convergence). Let k · k be a submultiplicative matrix norm
on "= and � 2 "=. Let d(�) denote the spectral radius of �. Prove Theorem A.30:

1. If k�k < 1 then lim:!1 �: = 0, i.e.,
��[�: ]8 9 ��! 0 as :!1 for all 8, 9 .

2. d(�) < 1 if and only if lim:!1 �: = 0.
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3. Gelfand formula: d(�) = lim:!1 k�: k1/: .

Exercise A.24 (Series convergence). Suppose there exists a matrix norm k · k such
that k�k < ' where ' is the radius of convergence for the power series

Õ
:
0: I

: . Show
that the matrix power series

Õ
:
0:�

: converges absolutely, i.e., lim:!1 |0: |k�: k

Chapter ??.
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