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Course info
Course AI Policy: based on honor code

Use AI tools if and only if it is net help to your learning of course material


Implications:

• You should learn not just power system knowledge, but also how to think about power system problems 

 If it replaces your thinking through the materials, it impedes your learning

• One size cannot fit all: It is impossible to formulate precise rules that fit all situations, so use your 

discretion to interpret “net”, “help”, “learning”, “material” in each situation


Pace: You drive the pace

• Default plan: Part I of PSA (mostly)

• I will adapt to your speed

• Let me know how the course can be made useful to your goals!

⟹



Why take this course
1. The topic is important?

2. The topic is interesting?

3. I want to pursue PhD in energy transition?

4. I want to pursue entrepreneurship in energy transition?

5. I want to work in energy industry (e.g. utilities)?

6. Others: __________________________



Steven Low        Caltech    (Oct 3, 2025)

Power System Analysis
Chapter 1  Basic concepts
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Outline
1. Single-phase systems


• Phasor representation 

• Single-phase devices

• Linear circuit analysis

• One-line diagram and equivalent circuit


2. Balanced three-phase systems

3. Complex power



Voltage and current phasors
Steady state behavior
Quantities of interest in power systems


• Voltage  at a point: energy required to move a unit of charge from an (arbitrary but fixed) reference point to 
that point (Volt, V)


• Current  at a point: flow rate of electric charge through that point (Ampere, A)

• Instantaneous power  : rate of energy transfer when a unit of charge is moved through a 

voltage (potential difference) between two points (Watt, W)


In an AC (alternating current) system, they are sinusoidal functions of time with frequency  (Hz)

• Voltage 


• Current 

• Power 


Steady state = frequency  is fixed (constant over time) and the same everywhere in the system

• The voltage  and current  are completely specified by their amplitude and (phase) angle

• Nominal frequency: 60 Hz in US, 50 Hz in Europe, China

v(t)

i(t)
p(t) := v(t)i(t)

ω
v(t) = Vmax cos(ωt + θV)
i(t) = Imax cos(ωt + θI)

p(t) := v(t)i(t)

ω
v(t) i(t)



Voltage phasor

1. Voltage:      


•  : nominal system frequency


•  : amplitude 


•  : phase angle


2. Phasor:      


3. Relationship:    


4. Voltage magnitude : the root-mean-square (RMS) value


v(t) = Vmax cos(ωt + θV) = Re {VmaxeiθV ⋅ eiωt}
ω
Vmax
θV

V :=
Vmax

2
eiθV volt (V)

v(t) = Re{ 2V ⋅ eiωt}

|V |

|V | =
1
T ∫

𝖳

0
v2(t)dt =

1
T ∫

𝖳

0
V2

max cos2(ωt + θV)dt



Current phasor

1. Voltage:      


•  : nominal system frequency


•  : amplitude 


•  : phase angle


2. Phasor:      


3. Relationship:    


4. Current magnitude : the root-mean-square (RMS) value


i(t) = Imax cos(ωt + θI) = Re {ImaxeiθI ⋅ eiωt}
ω
Imax
θI

I :=
Imax

2
eiθI ampere (A)

i(t) = Re{ 2I ⋅ eiωt}

| I |

| I | =
1
T ∫

𝖳

0
i2(t)dt =

1
T ∫

𝖳

0
I2
max cos2(ωt + θI)dt



Single-phase devices
Impedance z
Resistor:   (Ohm’s law)


• Hence 


• In phasor domain: 


Inductor:   


• Hence 


• In phasor domain: 


Capacitor:   


• Hence 


• In phasor domain: 

v(t) = ri(t)
Re ( 2 |V | ⋅ ei(ωt+θV)) = Re {rI ⋅ 2eiωt}

V = rI

v(t) = l
di(t)
dt

Re ( 2 |V | ⋅ ei(ωt+θV)) = Re {iωlI ⋅ 2eiωt}
V = (iωl)I

i(t) = c
dv(t)

dt
Re {I ⋅ 2eiωt} = Re (iωc |V | 2 ⋅ ei(ωt+θV))

V = (iωc)−1I

these are basic 
circuit elements 

to model the grid
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Single-phase devices
Impedance z

Impedance or admittance:  


• 


In general, impedance 

•  : resistance 

•  : reactance 


Admittance 

•  : conductance 

•  : susceptance 


V = zI, I = yV
resistor: zr := r, inductor: zl := iωl, capacitor: zc :=

1
iωc

z = r + ix
r Ω
x Ω

y = z−1 = g + ib
g := r/(r2 + x2) Ω−1

b := − x/(r2 + x2) Ω−1

14 Basic concepts

i(t)

v(t) r , l ,c

(a) Time domain

i(t)

v(t) r , l ,c

(b) Phasor domain

Figure 1.2 The voltage and current across a linear circuit element A, ;,2 are related by Ohm’s
law in both time and phasor domains. (Aug 29, 2025: Add phasor domain representation in (b)
with E(C) !+ , 8(C) ! �, and A , ;,2 ! A , il;,1/il2.)

The current across a resistor is called in phase with the voltage.

An ideal inductor ; is characterized by

E(C) = ;

38(C)
3C

Substituting (1.1) and

38(C)
3C

= �l�max sin(lC + \� ) = l�max cos(lC + \� + c/2)

we have

Re
n
+ ·

p
24ilC

o
= Re

n
il;� ·

p
24ilC

o
or in the phasor domain:

+ = (il;) �

The current across an inductor is said to lag the voltage by c/2 radian.

Similarly an ideal capacitor 2 is characterized by

8(C) = 2

3E(C)
3C

Substituting (1.2) and

3E(C)
3 (C) = �l+max sin(lC + \+ ) = l+max cos(lC + \+ + c/2)

we have

Re
n
� ·
p

24ilC

o
= Re

n
il2+ ·

p
24ilC

o
or in the phasor domain:

+ =
1

il2
�

The current across a capacitor is said to lead the voltage by c/2 radian.
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I

r, iωl, (iωc)−1V



Single-phase devices
Sources 
Voltage source  


• Internal variables: internal voltage ;  series impedance 


• Terminal variables: terminal voltage ;  terminal current 


• External model: 


Current source 

• Internal variables: internal current ;  shunt admittance 


• Terminal variables: terminal voltage ;  terminal current 


• External model: 


Voltage source  and current source  are equivalent (same external model) if 





(E, z)
E z

V I
V = E − zI

(J, y)
J y

V I
I = J − yV

(E, z) (J, y)

J =
E
z

, y =
1
z

1.1 Single-phase systems 15

In summary we define the impedances of these elements, a resistor A, an ideal
inductor ;, and an ideal capacitor 2 in the phasor domain as respectively (Figure 1.2):

IA := A, I; := il;, I2 :=
1

il2

Instead of impedance I, sometimes it is convenient to use its inverse, called the
admittance H := I

�1. The voltage + across an impedance I (or admittance H) and the
current � through it are related in the phasor domain by

+ = I�, � = H+

An important advantage of phasor representation of an AC circuit is that circuit analysis
involves only algebraic operations rather than di�erential equations in the time domain.

Example 1.1. A voltage E(C) is applied to a resistor A and an inductor ; in series
and the current through these devices is 8(C). Derive the dynamic equation that relates
(E(C), 8(C)) in the time domain and the corresponding equation that relates their phasors
(+ , �).

Solution. Let E1 (C) = A8(C) denote the voltage drop across the resistor and E2 (C) the
voltage drop across the inductor that satisfies E2 (C) = ;

3

3C
8(C). Then the relation between

(E(C), 8(C)) is given by KVL: E(C) = E1 (C) + E2 (C) or

E(C) = A8(C) + ; 3
3C

8(C)

Noting that E(C) = Re
np

2+4ilC

o
and 8(C) = Re

np
2�4ilC

o
, we multiply both sides of

the equation above by 4
ilC to get
p

2+ 4
ilC = A

p
2�4ilC + ;

⇣
il

p
2�4ilC

⌘
+ = (A + il;)�

Hence the resistor and inductor in series can be modeled in the phasor domain by an
impedance I := A + il;. ⇤

Voltage source (⇢ , I).
In the phasor domain, a voltage source is a circuit model with a constant internal voltage
⇢ in series with an impedance I, as shown in Figure 1.3(a). Its external behavior is

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3 A voltage source (⇢ , I) and a current source (�, H).

1.1 Single-phase systems 15

In summary we define the impedances of these elements, a resistor A, an ideal
inductor ;, and an ideal capacitor 2 in the phasor domain as respectively (Figure 1.2):

IA := A, I; := il;, I2 :=
1

il2

Instead of impedance I, sometimes it is convenient to use its inverse, called the
admittance H := I

�1. The voltage + across an impedance I (or admittance H) and the
current � through it are related in the phasor domain by

+ = I�, � = H+

An important advantage of phasor representation of an AC circuit is that circuit analysis
involves only algebraic operations rather than di�erential equations in the time domain.

Example 1.1. A voltage E(C) is applied to a resistor A and an inductor ; in series
and the current through these devices is 8(C). Derive the dynamic equation that relates
(E(C), 8(C)) in the time domain and the corresponding equation that relates their phasors
(+ , �).

Solution. Let E1 (C) = A8(C) denote the voltage drop across the resistor and E2 (C) the
voltage drop across the inductor that satisfies E2 (C) = ;

3

3C
8(C). Then the relation between

(E(C), 8(C)) is given by KVL: E(C) = E1 (C) + E2 (C) or

E(C) = A8(C) + ; 3
3C

8(C)

Noting that E(C) = Re
np

2+4ilC

o
and 8(C) = Re

np
2�4ilC

o
, we multiply both sides of

the equation above by 4
ilC to get
p

2+ 4
ilC = A

p
2�4ilC + ;

⇣
il

p
2�4ilC

⌘
+ = (A + il;)�

Hence the resistor and inductor in series can be modeled in the phasor domain by an
impedance I := A + il;. ⇤

Voltage source (⇢ , I).
In the phasor domain, a voltage source is a circuit model with a constant internal voltage
⇢ in series with an impedance I, as shown in Figure 1.3(a). Its external behavior is

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3 A voltage source (⇢ , I) and a current source (�, H).

Ideal sources: z = 0, y = 0



Devices are models
1.1 Single-phase systems 17

Device Circuit model

Generator Voltage source, current source, power source
Load Impedance, current source, voltage source, power source
Line Impedance (Chapter 2)
Transformer Impedance, voltage/current gain (Chapter 3)

Table 1.1 Circuit elements commonly used for modeling generators, loads, lines, and
transformers.

depends on the voltage magnitude |+ | across the load, see Exercise 1.1. This book
develops techniques for analyzing power system models constructed from these circuit
elements.

1.1.3 KVL, KCL, Ohm’s Law, Tellegen’s theorem

(Revision note: XCh 1.1.3; Feb 8, 2025) Consider a circuit consisting of an intercon-
nection of resistors, inductors, capacitors, and voltage and current sources. An ideal
voltage source between two points enforces a given voltage between these two points.
An ideal current source between two points enforces a given current between them. We
now describe Kirchho�’s current law (KCL), Kirchho�’s voltage law (KVL), Ohm’s
law for a general circuit and derive a result called Tellegen’s theorem.

We represent a circuit by a connected directed graph ⌧̂ := (#̂ , ⇢̂) with an arbitrary
orientation where #̂ is a set of nodes and ⇢̂ ✓ #̂ ⇥ #̂ is a set of links. We sometimes
abuse notation and use #̂ to denote both the set of nodes and the number of nodes
in #̂ when the meaning should be clear from the context. We allow multiple links
between two nodes 9 and : (see Figure 1.4). A link ; that points from node 9 to node
: is represented by ; = ( 9 , :) or ; = 9 ! : . Multiple links ;1, . . . , ;: between nodes
9 and : may have di�erent orientations, e.g., ;1 = 9 ! : and ;2 = : ! 9 . There are
two variables associated with each link ; = ( 9 , :) between nodes 9 and : . The voltage
across link ; is denoted by *; in the direction of ; and the branch current over link ;

from 9 to : is denoted by �; .

A link ; represents either an impedance, a voltage source, or a current source. If
link ; represents an impedance then its value I; is given and the voltage *; and branch
current �; across link ; satisfies *; = I;�; (Ohm’s law). If link ; represents a voltage
source then *; = D; is given, and if it represents a current source then �; = 9; is given.
These notations are illustrated in Figure 1.4a.

Circuit elements commonly used for modeling generators, loads, lines and transformers



Outline
1. Single-phase systems


• Phasor representation 

• Single-phase devices

• Linear circuit analysis

• One-line diagram and equivalent circuit


2. Balanced three-phase systems
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Circuit analysis
Phasor domain

12 Basic concepts

physical system
(v(t), i(t), p(t))

analysis/sim
(time domain)

results
(time domain)

physical laws
(time domain

KC/VL, Ohm’s)

phasor
representation

(V, L, S )

analysis/sim
(phasor domain)

results
(phasor domain)

physical laws
(phasor domain
KC/VL, Ohm’s)

Figure 1.1 Phasor representation and analysis.

1.1.1 Voltage and current phasors

The quantities of interest, voltage E(C), current 8(C), and power ?(C), are physical and
can be empirically measured. The potential energy gained in moving a unit of charge
from point : to point 9 is called the voltage, or electric potential di�erence, between
9 and : , denoted by E 9: . Its SI unit (International Systems of Units) is volt (V),
or equivalently, joule/coulomb. Usually we arbitrarily fix a reference point 0 for all
voltages in the system under study. In that case we refer to the voltage at point 9 with
respect to the reference point simply as the voltage at 9 and denote E 90 simply by E 9 .
Then the voltage between two points 9 and : is E 9: := E 9 � E: . While E 9: represents
the energy required to move a unit of charge from point : to point 9 , E 9 represents the
energy to move a unit of charge from the reference point to 9 . The flow rate of electric
charge through a point is called the current through that point. Its SI unit is ampere
(A), or equivalently, coulomb/second. The rate of energy transfer when a unit of charge
is moved through an electric potential di�erence (voltage) between two points is called
electric power. Its SI unit is watt (W), or equivalently, joule/second. It is equal to the
product of voltage and current between these two points.

A sinusoidal voltage function is

E(C) = +max cos(lC + \+ ) = Re
�
+max4

i\+ · 4ilC
 

where +max is the amplitude (i.e., maximum magnitude) of the voltage E(C), l is the
steady-state frequency in radian, and \+ is the phase angle. In steady state,l is assumed
fixed systemwide, and hence a voltage function is fully specified by two parameters
(+max,\+ ). This motivates the definition of voltage phasor

+ :=
+maxp

2
4

i\+ volt (V)

such that

E(C) = Re
⇣p

2|+ | · 4i(lC+\+ )
⌘

(1.1)

The period of E(C) is ) := 2c/l. The magnitude of the voltage phasor

|+ | :=
+maxp

2



Circuit analysis: review
A brief review of circuit analysis for EE students


Mathematical background required

• Basic algebraic graph theory (see Appendix: Linear algebra preliminaries)




Circuit analysis
Circuit model
A circuit is represented by a directed graph  with arbitrary orientation


•  


• 


• There can be multiple links between two nodes, e.g., , 


Associated with each link  are two vars


•  : branch voltage across link  in direction of 


•  : branch current from  to 


Each link  represents one device

• Impedance  :  (Ohm’s law)


• (Ideal) voltage source  :  given


• (Ideal) current source  :  given

Ĝ := (N̂, ̂E)
N̂ := {nodes/buses}

̂E := {lines/links/branches/edges} ⊆ N̂ × N̂
l1 = j → k l2 = k → j

l = j → k
Ul l l
Jl j k

l
zl Ul = zlJl

ul Ul = ul

jl Jl = jl

links denoted by  or ( j, k) j → k



Circuit analysis
Example

18 Basic concepts

zl1

zl3 zl4

zl2

Jl4

Jl2

Jl6 = – j6

Jl1
Jl5 Jl3

Ul3Ul5 = u5 Ul4 Ul6

Ul1 Ul2
1 2

4

3

(a) Circuit

11

2

3

4

−1 1 1 1

1

1−1

−1 −1 −1 −1

Ĉ =

l1 l2 l3 l4 l5 l6

Ĉ1 Ĉ2 Ĉ3

(b) Incidence matrix

Figure 1.4 A circuit represented as a directed graph ⌧̂ where each link ; is either an impedance
I
;
, a voltage source *

;
, or a current source �

;
. The voltage source *

;5 = D5 and current source
�
;6 = � 96 are given. Its incidence matrix ⇠̂ is partitioned into ⇠̂1,⇠̂2,⇠̂3 corresponding to the

impedances, the voltage source, and the current source respectively.

KCL, KVL.

Kirchho�’s current law (KCL) states that the incident currents at any node 9 sum to
zero:

�
’

8:8! 92⇢̂
�8 9 +

’
:: 9!:2⇢̂

� 9: = 0 (1.3a)

For the example in Figure 1.4 this means ��;1 + �;2 + �;3 + �;4 = 0 at node 2. Kirchho�’s
voltage law (KVL) states that voltage drops around any cycle 2 sum to zero. Consider
a cycle 2 in the graph with an arbitrary orientation, say, clockwise. A link ; in the cycle
that is in the same direction as 2 is denoted by ; 2 2 and a link ; that is in the opposite
direction to 2 is denoted by �; 2 2. Then KVL states that the voltage drops around any
cycle 2 sum to zero: ’

;22
*; �

’
�;22

*; = 0 (1.3b)

For the cycle indicated in Figure 1.4(a) we have *;1 +*;3 �*;5 = 0.

We can represent (1.3) compactly in vector notation. Let * :=
�
*; , ; 2 ⇢̂

�
and � :=�

�; , ; 2 ⇢̂

�
denote the vectors of voltages and currents respectively across these lines.

Let ⇠̂ 2 {�1,0,1} |#̂ |⇥ |⇢̂ | be the node-by-link incidence matrix defined by:

⇠̂ 9; :=

8>><
>>:

1 if ; = 9 ! : for some bus :
�1 if ; = 8 ! 9 for some bus 8

0 otherwise
, 9 2 #̂ , ; 2 ⇢̂

See Figure 1.4 (properties of general incidence matrices are summarized in Appendix
A.11). Then Kirchho�’s current law (1.3a) states that

KCL: ⇠̂� = 0 (1.4a)

Kirchho�’s voltage law is equivalent to the condition that there exist nodal voltages



Circuit analysis
KCL, KVL

Kirchhoff’s current law (KCL): incident currents at any node  sum to zero


• At all nodes :      


• Example: at node 2, 


Kirchhoff’s voltage law (KCL): voltage drops around any cycle  sum to zero


• Around all cycles :      


• Example:      


j
j − ∑

i:i→j∈ ̂E

Jij + ∑
k:j→k∈ ̂E

Jjk = 0

−Jl1 + Jl2 + Jl3 + Jl4 = 0

c
c ∑

l∈c

Ul − ∑
−l∈c

Ul = 0

Ul1 + Ul3 − Ul5 = 0
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Circuit analysis
KCL, KVL

Kirchhoff’s current law (KCL): incident currents at any node  sum to zero


• At all nodes :      


• Example: at node 2, 


Kirchhoff’s voltage law (KCL): voltage drops around any cycle  sum to zero


• Around all cycles :      


• Example:      


j
j − ∑

i:i→j∈ ̂E

Jij + ∑
k:j→k∈ ̂E

Jjk = 0

−Jl1 + Jl2 + Jl3 + Jl4 = 0

c
c ∑

l∈c

Ul − ∑
−l∈c

Ul = 0

Ul1 + Ul3 − Ul5 = 0
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Figure 1.4 A circuit represented as a directed graph ⌧̂ where each link ; is either an impedance
I
;
, a voltage source *

;
, or a current source �

;
. The voltage source *

;5 = D5 and current source
�
;6 = � 96 are given. Its incidence matrix ⇠̂ is partitioned into ⇠̂1,⇠̂2,⇠̂3 corresponding to the

impedances, the voltage source, and the current source respectively.

KCL, KVL.

Kirchho�’s current law (KCL) states that the incident currents at any node 9 sum to
zero:

�
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�8 9 +

’
:: 9!:2⇢̂
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that is in the same direction as 2 is denoted by ; 2 2 and a link ; that is in the opposite
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For the cycle indicated in Figure 1.4(a) we have *;1 +*;3 �*;5 = 0.
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A.11). Then Kirchho�’s current law (1.3a) states that

KCL: ⇠̂� = 0 (1.4a)

Kirchho�’s voltage law is equivalent to the condition that there exist nodal voltages



Circuit analysis
KCL, KVL
Can represent KCL, KVL compactly in vector form


Let  be the node-by-link incidence matrix





Then

KCL:  


KVL:    for some nodal voltage  (wrt reference node)


Arbitrary reference:  WLOG let  be reference node, i.e., 

Ĉ ∈ {−1,0,1}|N̂|×| ̂E|

Ĉjl :=
1  if l = j → k for some bus k

−1  if l = i → j for some bus i
0  otherwise

, j ∈ N̂, l ∈ ̂E

ĈJ = 0
U = Ĉ𝖳V V ∈ ℂ|N̂|

N̂ VN̂ := 0
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Circuit analysis
KCL, KVL
Can represent KCL, KVL compactly in vector form


Let  be the node-by-link incidence matrix





Then

KCL:  


KVL:    for some nodal voltage  (wrt reference node)


Arbitrary reference:  WLOG let  be reference node, i.e., 

Ĉ ∈ {−1,0,1}|N̂|×| ̂E|

Ĉjl :=
1  if l = j → k for some bus k

−1  if l = i → j for some bus i
0  otherwise

, j ∈ N̂, l ∈ ̂E

ĈJ = 0
U = Ĉ𝖳V V ∈ ℂ|N̂|

N̂ VN̂ := 0



Circuit analysis
Problem formulation
Given: Circuit represented by  incidence matrix 


• For every link 

• Impedance  :  (Ohm’s law)


• (Ideal) voltage source  :  given


• (Ideal) current source  :  given


• KCL: 


• KVL: 


• Reference voltage: 


Solve for: 

•  (complex) equations in  unknowns, at most  are linearly 

independent

| N̂ | × | ̂E | Ĉ
l ∈ ̂E

zl Ul = zlJl

ul Ul = ul

jl Jl = jl
ĈJ = 0
U = Ĉ𝖳V

VN̂ := 0

(V, J, U)
| N̂ | + 2 | ̂E | + 1 | N̂ | + 2 | ̂E | | N̂ | + 2 | ̂E |



Circuit analysis
Problem formulation
Partition lines into   with


•  : impedances

•  : voltage sources

•  : current sources


Let  reduced incidence matrix  without reference row  and

•  according to lines in 


Partition variables in the same order


•
 

̂E =: ̂E1 ∪ ̂E2 ∪ ̂E3
̂E1
̂E2
̂E3

( | N̂ | − 1) × | ̂E | C | N̂ |
C =: [C1 C2 C3] ̂E1, ̂E2, ̂E3

U :=
U1

u
U3

, J :=
J1
J2
j ideal current sources (given)

ideal current sources (given)



Circuit analysis
Problem formulation
Solve for: 





where  

(V, J, U)

0 Ĉ 0
0 −Z 𝕀| ̂E1|

0 0 𝕀| ̂E2|

0 𝕀| ̂E3| 0

Ĉ𝖳 0 −𝕀| ̂E|

e𝖳
|N̂| 0 0

[
V
J
U] =

0|N̂|

0| ̂E1|
u
j

0| ̂E|

01

Z := Diag (zl, l ∈ ̂E)



Circuit analysis
Solution
Partition lines into   with


•  : impedances

•  : voltage sources

•  : current sources


Let  reduced incidence matrix  without reference row  and

•  according to lines in 


Partition variables in the same order


•
 

̂E =: ̂E1 ∪ ̂E2 ∪ ̂E3
̂E1
̂E2
̂E3

( | N̂ | − 1) × | ̂E | C | N̂ |
C =: [C1 C2 C3] ̂E1, ̂E2, ̂E3

U :=
U1

u
U3

, J :=
J1
J2
j ideal current sources (given)

ideal current sources (given)



Circuit analysis
Solution
Then problem becomes


  where  


Theorem 

Suppose graph  is connected.   is invertible if 


•  is invertible; and


•  is invertible

0 C1 C2 0
C𝖳

1 −Z 0 0
C𝖳

2 0 0 0
C𝖳

3 0 0 −𝕀| ̂E3|

M

V−N̂

J1
J2
U3

=

−C3 j
0
u
0

Z := Diag (zl, l ∈ ̂E)

Ĝ M
Y1 := C1Z−1C𝖳

1

C𝖳
2 Y−1

1 C2

 admittance matrix of subgraph induced by impedances| N̂ | − 1

 matrix corresponding to voltage sources| ̂E2 | × | ̂E2 |



Circuit analysis
Solution
Theorem [existence & uniqueness of solution]


Suppose graph  is connected.   is invertible if 


•  is invertible; and


•  is invertible


Conditions imply:

• Subgraph with all non-reference nodes induced by impedances is connected (Then,  is always 

invertible if  is real, i.e., resistive subnetwork)


• Current sources in  do not contain a cut set; hence  cannot violate KCL


•  is of full column rank, i.e., no voltage sources in  form a cycle; hence  cannot violate KVL

• These conditions are “almost” sufficient

Ĝ M
Y1 := C1Z−1C𝖳

1

C𝖳
2 Y−1

1 C2

Y1
Z

̂E3 j
C2

̂E2 u

 admittance matrix of subgraph induced by impedances| N̂ | − 1

 matrix corresponding to voltage sources| ̂E2 | × | ̂E2 |

(currents on any cut sum to 0)



Tellegen’s theorem
Tellegen’s theorem is consequence of 3 facts


•  is direct sum


• KCL:  , i.e., 


• KVL:  , i.e., 


Therefore branch currents  and branch voltages  are orthogonal:


•     (Tellegen’s theorem)


Ĉ| ̂E| = null(Ĉ) ⊕ range (Ĉ𝖳)
ĈJ = 0 J ∈ null(Ĉ)

U = Ĉ𝖳V U ∈ range (Ĉ𝖳)
J U

J𝖧U = 0

 and  can be from different networks as long as they have the same incidence matrix  (topology) !J U Ĉ



Outline
1. Single-phase systems


• Phasor representation 

• Single-phase devices

• Linear circuit analysis

• One-line diagram and equivalent circuit


2. Balanced three-phase systems

3. Complex power



One-line diagram
A power system is often specified by a one-line diagram, not as a circuit

• The behavior of a one-line diagram is defined by its equivalent circuit

We formally define a one-line diagram and its equivalent circuit


Definition [One-line diagram]


A one-line diagram is a pair  where


•  is a graph


•  is a set of line admittances


•  : series admittance;   : shunt admittances

(G, 𝕐 )
G := (N, E)

𝕐 := (ys
jk, ym

jk , ym
kj , l = ( j, k) ∈ E)

ys
jk ∈ ℂ (ym

jk , ym
kj) ∈ ℂ2

Can accommodate transformers with  𝕐 := ((ys
jk, ym

jk), (ys
kj, ym

kj), l = ( j, k) ∈ E)



Equivalent circuit
Nodal devices
Associated with each node  are two variables


•  : nodal voltage wrt common reference point (e.g., the ground)


•  : nodal (net) current injection (from node  to rest of network)


• Interpretation: a nodal device(s) is connected between node  and the common voltage 
reference point


‣ Impedance  : 


‣ Ideal voltage source  : 


‣ Ideal current source  : 

j ∈ N
Vj ∈ ℂ

Ij ∈ ℂ j

j

zj Vj = zjIj

vj Vj = vj

ij Ij = ij

24 Basic concepts

into three links in the equivalent circuit. In this subsection we formally define one-
line diagram and derive its equivalent circuit. A one-line diagram can be analyzed by
applying the method of Chapter 1.1.3 to its equivalent circuit.

One-line diagram.

A one-line diagram specifies a network topology and admittance parameters associated
with the lines; see an example in Figure 1.5 for a three-bus network. Formally we
define a one-line diagram as a pair (⌧,Y) where ⌧ := (# ,⇢) is a graph and Y :=⇣
H
B

9:
, H<

9:
, H<

: 9
, ; = ( 9 , :) 2 ⇢

⌘
is a set of line parameters for every line ; 2 ⇢ (we

assume here a single-phase system and H
B

9:
= H

B

: 9
). Each node 9 2 # represents a bus

in the power system. We will therefore refer to 9 as a bus or a node interchangeably.
Each link ; 2 ⇢ represents a transmission or distribution line or a transformer. We will
therefore refer to ; as a line, a link or a branch interchangeably. The line parameter

H
B

9:
2 C is called the series admittance associated with line ( 9 , :) and

⇣
H
<

9:
, H<

: 9

⌘
2 C2

is called its shunt admittances. We will see below how these parameters determine the
equivalent circuit of the line. There can be multiple lines between two buses, though
for notational simplicity we assume, unless otherwise specified, there is a single line
between each pair of buses in which case a line ; between buses 9 and : can be
identified by ( 9 , :).

I1

I2 I3
V2

V1

V3
(a) Graph ⌧ = (# ,⇢)

Figure 1.5(b)
Separable constraints

� := ((ys12, ym12, ym21),
(ys23, ym23, ym32),
(ys31, ym31, ym13))

(b) Line parameters Y

Figure 1.5 One-line diagram for a three-bus network (⌧,Y). It is not a circuit but has an
equivalent ⇧-circuit model.

There can be a nodal device at each node 9 2 # . The device can be an impedance
I 9 , an ideal voltage source E 9 , or an ideal current source 8 9 . The interpretation is that
these devices are connected between node 9 and the common voltage reference point
and behave according to (1.5). (We will introduce later the nodal device called a power
source.)

The behavior of the network specified by a one-line diagram is described in terms
of its equivalent circuit.
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these devices are connected between node 9 and the common voltage reference point
and behave according to (1.5). (We will introduce later the nodal device called a power
source.)

The behavior of the network specified by a one-line diagram is described in terms
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Equivalent circuit
Single line (ys

jk, ym
jk , ym

kj)
Behavior of one-line diagram is defined by its equivalent circuit

• Equivalent circuit of entire diagram is determined by equivalent circuit of single line 

(ys
jk, ym

jk , ym
kj)

1.1 Single-phase systems 25

Equivalent circuit.

Associated with each node 9 are a nodal voltage + 9 2 C with respect to an arbitrary
but common reference point and a nodal current injection � 9 2 C from the common
reference point. Our goal is to derive the relation between the nodal voltage vector
+ 2 C# and nodal current vector � 2 C# . We will first derive an equivalent circuit of
the one-line diagram and then apply the method of Chapter 1.1.3 to the circuit.

We illustrate this with a simple 2-bus network. The method and the conclusion
extend directly to general networks.

Example 1.3 (Equivalent ⇧ circuit of a single line). Figure 1.6(a) specifies a one-line
diagram (⌧,Y) for a network consisting of two nodes 1 and 2 connected by a line
; = (1,2). Suppose there is an ideal current source at each node with given current
injections (�1, �2). The nodal voltages are (+1,+2). The line parameter

�
H
B

12, H<12, H<21

�

( ys12 , y
m
12 , y

m
21 )

V2V1

I1 I2

(a) One-line diagram (⌧,Y)

ys12

ym12 ym21

Jl3 Jl5

Ul5 = V2

Jl4 Jl2

Ul2Ul4 = V1 Ul3

Ul1
1

3

2

I1 I2

Jl1

(b) Equivalent ⇧ circuit

Figure 1.6 One-line diagram (⌧,Y) with two nodes 1,2 connected by a line ; = (1,2) and its
equivalent ⇧ circuit. The nodal current injections (�1, �2) and the nodal voltages (+1,+2) in the
one-line diagram become current sources and branch voltages respectively between nodes 1,2
and the reference node 3 in the ⇧ circuit.

defines the equivalent circuit in Figure 1.6(b) called the ⇧ circuit of line ; = (1,2).1
Apply KVL, KCL, and Ohm’s law on the ⇧ circuit to derive a relation between (�1, �2)
and (+1,+2).

1 We will explain the origin of the equivalent circuit in Chapter 2.
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defines the equivalent circuit in Figure 1.6(b) called the ⇧ circuit of line ; = (1,2).1
Apply KVL, KCL, and Ohm’s law on the ⇧ circuit to derive a relation between (�1, �2)
and (+1,+2).

1 We will explain the origin of the equivalent circuit in Chapter 2.

Equivalent circuit of 


• Includes reference point (i.e., eq circuit has  nodes)


• Nodal injection  from reference point (node 3) to node  


• Suppose an ideal current source  is between node  and ref node 3

(ys
jk, ym

jk , ym
kj)

| N̂ | := |N | + 1
Ij j

Ij j

One-line diagram (single line)



Equivalent circuit of single line
Circuit analysis
Let directed graph  represent the equivalent circuit


• 


• Links 


• Nodal devices : 


•

Ĝ := (N̂, ̂E)
N̂ := {1,2,3}, ̂E := {l1 := 1 → 2, l2 := 1 → 3, l3 := 2 → 3, l4 := 1 → 3, l5 := 2 → 3}

l1 : Jl1 = ys
12Ul1, l2 : Jl2 = ym

12Ul2, l3 : Jl3 = ym
21Ul3

l4 : Jl4 = − I1, l5 : Jl5 = − I2

KCL: ĈJ = 0, KVL: ∃ V := (V1, V2, V3)  s.t.  U = Ĉ𝖳V

1.1 Single-phase systems 25

Equivalent circuit.

Associated with each node 9 are a nodal voltage + 9 2 C with respect to an arbitrary
but common reference point and a nodal current injection � 9 2 C from the common
reference point. Our goal is to derive the relation between the nodal voltage vector
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Eliminate branch vars  relates nodal vars 




where the admittance matrix is


(U, J) (I, V)
I = YV

Y := [ys
12 + ym

12 −ys
12

−ys
12 ys

12 + ym
21]

Ĉ := [
1 1 0 1 0

−1 0 1 0 1
0 −1 −1 −1 −1]



Equivalent circuit
One-line diagram (G, 𝕐 )
Equivalent circuit represented by directed graph  constructed from 


•  with node  as reference point 


• Each  in one-line diagram  gives rise to a link  in equivalent circuit 


• Each line  in one-line diagram  gives rise to 3 links  in equivalent circuit 


•   where 


Same analysis relates nodal vars      where  is admittance matrix

Ĝ := (N̂, ̂E) G := (N, E)
N̂ := N ∪ { |N | + 1} N̂ := |N | + 1 (VN̂ := 0)

j ∈ N G l := j → N̂ Ĝ

( j, k) ∈ E G (ljk, ljN̂, lkN̂) Ĝ
̂E := E ∪ ̂EN̂

̂EN̂ := {links j → N̂}

(I, V) : I = YV Y
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Solution

⇤

Exercise 1.6 (Circuit analysis). (Revision note: XAug 31, 2025) For the three-bus
network in Figure 1.5, derive the current balance equation (1.10) by analyzing the
equivalent circuit using KCL, KVL, and Ohm’s law, as explained in Chapter 1.1.4.
Draw the equivalent circuit.

Solution
The equivalent circuit of the one-line diagram for the three-bus network in Figure 1.5
is shown in Figure 1.24. One can apply KCL, KVL, and Ohm’s law to this equivalent

1

4

2 3

I1

I2 I3

V1

V2 V3

ys12

ys23

ys31

Figure 1.24 Phasor representation and analysis.

circuit to relate the nodal injections � and nodal voltages + by � = .+ where . is the
3⇥3 admittance matrix:

. :=
266664
H
B

12 + HB31 + H<12 + H<13 �HB12 �HB31
�HB12 H

B

12 + HB23 + H<21 + H<23 �HB23
�HB31 �HB23 H

B

31 + HB23 + H<31 + H<32

377775
⇤

Exercise 1.7 (One-line diagram and ⇧ circuit). (Revision note: XAug 31, 2025)
Derive (1.10) � = .+ from the one-line diagram of a general network by analyzing its
equivalent circuit.

Solution
Referring to the equivalent circuit constructed in Chapter 1.1.4. Let ⇠̂ denote the
|#̂ |⇥ |⇢̂ | incidence matrix of the equivalent circuit and ⇠ denote the |# |⇥ |⇢̂ | reduced
incidence matrix obtained from ⇠̂ by removing the last row corresponding to the
reference node #̂ . We can always order the links in ⇢̂ so that ⇠̂ and⇠ can be partitioned
according to links in ⇢̂1, ⇢̂2, ⇢ :

⇠̂ =:
⇥
⇠̂1 ⇠̂2 ⇠̂1line

⇤
, ⇠ =:

⇥
⇠1 ⇠2 ⇠1line

⇤
Here ⇠1 is |# |⇥ |# | corresponding to the nodal current sources (current injections � 2

24 Basic concepts

into three links in the equivalent circuit. In this subsection we formally define one-
line diagram and derive its equivalent circuit. A one-line diagram can be analyzed by
applying the method of Chapter 1.1.3 to its equivalent circuit.

One-line diagram.

A one-line diagram specifies a network topology and admittance parameters associated
with the lines; see an example in Figure 1.5 for a three-bus network. Formally we
define a one-line diagram as a pair (⌧,Y) where ⌧ := (# ,⇢) is a graph and Y :=⇣
H
B

9:
, H<

9:
, H<

: 9
, ; = ( 9 , :) 2 ⇢

⌘
is a set of line parameters for every line ; 2 ⇢ (we

assume here a single-phase system and H
B

9:
= H

B

: 9
). Each node 9 2 # represents a bus

in the power system. We will therefore refer to 9 as a bus or a node interchangeably.
Each link ; 2 ⇢ represents a transmission or distribution line or a transformer. We will
therefore refer to ; as a line, a link or a branch interchangeably. The line parameter

H
B

9:
2 C is called the series admittance associated with line ( 9 , :) and

⇣
H
<

9:
, H<

: 9

⌘
2 C2

is called its shunt admittances. We will see below how these parameters determine the
equivalent circuit of the line. There can be multiple lines between two buses, though
for notational simplicity we assume, unless otherwise specified, there is a single line
between each pair of buses in which case a line ; between buses 9 and : can be
identified by ( 9 , :).

I1

I2 I3
V2

V1

V3
(a) Graph ⌧ = (# ,⇢)

Figure 1.5(b)
Separable constraints

� := ((ys12, ym12, ym21),
(ys23, ym23, ym32),
(ys31, ym31, ym13))

(b) Line parameters Y

Figure 1.5 One-line diagram for a three-bus network (⌧,Y). It is not a circuit but has an
equivalent ⇧-circuit model.

There can be a nodal device at each node 9 2 # . The device can be an impedance
I 9 , an ideal voltage source E 9 , or an ideal current source 8 9 . The interpretation is that
these devices are connected between node 9 and the common voltage reference point
and behave according to (1.5). (We will introduce later the nodal device called a power
source.)

The behavior of the network specified by a one-line diagram is described in terms
of its equivalent circuit.

Equivalent circuit  Ĝ := (N̂, ̂E)
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Balanced 3-phase system



Internal variables
 configurationY

Each single-phase device can be

• Voltage source, current source, impedance, ideal or not


Internal (line-to-neutral or phase) voltage, current, power:


 ,  ,  
VY :=
Van

Vbn

Vcn
IY :=

Ian

Ibn

Icn
sY :=

san

sbn

scn
:=

VanIan

VbnIbn

VcnIcn

neutral voltage (wrt common reference pt) 

neutral current (away from neutral) 


Device may or may not be grounded, and neutral impedance  may or may not be zero

Vn ∈ ℂ
In ∈ ℂ

zn

14.1 Motivation and overview 901

Consider now an unbalanced three-phase system shown in Figure 14.2(b)
where three such power sources f

�
9

:= (f01 ,f12 ,f20) and current sources �
�
:

:=
(�01

:
, �12

:
, �20

:
) are arranged in � configuration and connected to each other by a three-

phase line with the admittance matrix H
B

9:
2 C3⇥3. Let+8 := (+0

8
,+1

8
,+2

8
) for 8 = 9 , : and

� 9: := (�0
9:

, �1
9:

, �2
9:
) denote the terminal voltages and currents as before. It is important

to note that the terminal variables (+ 9 ,+: , � 9: ) are not directly controllable, only the
controllable devices (f�

9
, ��

:
) are, as in the single-phase system. The terminal variables

(+ 9 ,+: , � 9: ) still satisfy (14.1a), but their relation with the internal device variables
(f�

9
, ��

:
) is more complicated than (14.1b). ⇤

The basic idea in modeling a three-phase component (voltage/current/power source,
impedance, transformer) is to explicitly separate its model into an internal model that
specifies the characteristics of the constituent single-phase components in terms of
internal variables, and a conversion rule that maps its internal variables to its terminal
variables. The internal model depends only on the type of components (non-ideal
voltage sources, ZIP loads, or di�erent single-phase transformer models) regardless
of their configurations. The conversion rule depends only on their configurations
regardless of the type of components. They determines an external model which is a
relation between the terminal variables, obtained by eliminating the internal variables
from the set of equations describing the internal model and the conversion rule. We
next describe this procedure in detail.

14.1.1 Internal and terminal variables
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Figure 14.3 Internal and external variables associated with a single-terminal device in . and �
configurations.

The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:



Internal variables
 configurationΔ

Internal (line-to-line or phase-to-phase) voltage, current, power:


,  ,  VΔ :=
Vab

Vbc

Vca
IΔ :=

Iab

Ibc

Ica
sΔ :=

sab

sbc

sca
:=

VabIab

VbcIbc

VcaIca
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The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:



Terminal variables

Terminal voltage, current, power (for both  and ):


 ,  ,  


•  is with respect to an arbitrary common reference point, 
e.g. the ground


•  and  are in the direction out of the device

Y Δ

V :=
Va

Vb

Vc
I :=

Ia

Ib

Ic
s :=

sa

sb

sc
:=

VaIa

VbIb

VcIc

V

I s
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The internal variables of a generic single-terminal device are shown in Figure 14.3
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The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:



Conversion rules
-configured device


 


•  if , i.e., if neutral is directly grounded and ground is voltage 
reference


-configured device


Y

V = VY + Vn1, I = − IY

V = VY Vn = 0

Δ

Vab

Vbc

Vca
= [

1 −10
0 1−1

−1 01 ]
Γ

Va

Vb

Vc
,

Ia

Ib

Ic
= − [

1 0−1
−1 10

0 −11 ]
Γ𝖳

Iab

Ibc

Ica

14.1 Motivation and overview 901

Consider now an unbalanced three-phase system shown in Figure 14.2(b)
where three such power sources f

�
9

:= (f01 ,f12 ,f20) and current sources �
�
:

:=
(�01

:
, �12

:
, �20

:
) are arranged in � configuration and connected to each other by a three-

phase line with the admittance matrix H
B

9:
2 C3⇥3. Let+8 := (+0

8
,+1

8
,+2

8
) for 8 = 9 , : and

� 9: := (�0
9:

, �1
9:

, �2
9:
) denote the terminal voltages and currents as before. It is important

to note that the terminal variables (+ 9 ,+: , � 9: ) are not directly controllable, only the
controllable devices (f�

9
, ��

:
) are, as in the single-phase system. The terminal variables

(+ 9 ,+: , � 9: ) still satisfy (14.1a), but their relation with the internal device variables
(f�

9
, ��

:
) is more complicated than (14.1b). ⇤

The basic idea in modeling a three-phase component (voltage/current/power source,
impedance, transformer) is to explicitly separate its model into an internal model that
specifies the characteristics of the constituent single-phase components in terms of
internal variables, and a conversion rule that maps its internal variables to its terminal
variables. The internal model depends only on the type of components (non-ideal
voltage sources, ZIP loads, or di�erent single-phase transformer models) regardless
of their configurations. The conversion rule depends only on their configurations
regardless of the type of components. They determines an external model which is a
relation between the terminal variables, obtained by eliminating the internal variables
from the set of equations describing the internal model and the conversion rule. We
next describe this procedure in detail.

14.1.1 Internal and terminal variables

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n'

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 14.3 Internal and external variables associated with a single-terminal device in . and �
configurations.

The internal variables of a generic single-terminal device are shown in Figure 14.3
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The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:



Internal vs external model

1. Internal model depends only on type of single-phase devices


• Internal model: relation between 


• Voltage/current/power source, impedance


• Independent of  or  configuration


2. Conversion rule depends only on type of configuration

• Converts between internal and terminal variables


• Depends only on  or  configuration

• Independent of type of single-phase devices


3. External model   =   Internal model + Conversion rule

• External model: relation between 

• Devices interact over network only through their terminal variables

(VY/Δ, IY/Δ, sY/Δ)

Y Δ

Y Δ

(V, I, s)
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regardless of the type of components. They determines an external model which is a
relation between the terminal variables, obtained by eliminating the internal variables
from the set of equations describing the internal model and the conversion rule. We
next describe this procedure in detail.

14.1.1 Internal and terminal variables
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Figure 14.3 Internal and external variables associated with a single-terminal device in . and �
configurations.

The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:



Conversion matrices




Incidence matrices for:

Γ := [
1 −1 0
0 1 −1

−1 0 1], Γ𝖳 := [
1 0 −1

−1 1 0
0 −1 1]

30 Basic concepts

neutrals of all . -configured devices are at the same voltage and therefore can serve as
the common reference point. This is not necessarily the case for an unbalanced system,
which we will study in Part III of this book.

Hence, for . configuration, the terminal voltage and current (+ , �) are determined
by the internal voltage and current

�
+
. , �.

�
according to (when the common reference

point for + is the neutral so that += := 0):

+ = +
. , � = ��. (1.11)

When the common reference is not the neutral of this device, we have+ =
�
+
. ++=

1
�
.

Instead of the terminal voltage + it is also common to describe the behavior of the
three-phase device in terms of its line-to-line or line voltage + line :=

�
+
01 ,+12 ,+20

�
.

To relate + line to + or to +
. , define the matrices � and its transpose �T:

� :=
266664

1 �1 0
0 1 �1
�1 0 1

377775
, �T :=

266664
1 0 �1
�1 1 0
0 �1 1

377775
(1.12)

We call � and �T conversion matrices. They can be interpreted as the bus-by-line
incidence matrices of the directed graphs shown in Figure 1.9. Then

1

3 2

(a) �

1

3 2

(b) �T

Figure 1.9 Directed graphs of which � and �T are incidence matrices.

266664
+
01

+
12

+
20

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0

+
1

+
2

377775
=

266664
1 �1 0
0 1 �1
�1 0 1

377775|              {z              }
�

266664
+
0=

+
1=

+
2=

377775

or in vector form:

+
line = �+ = �+. (1.13)

This holds for both . and � configurations and whether or not the common reference
point for + is the neutral of a . configured device (since �1 = 0).

� configuration.

For the � configuration in Figure 1.8(b), the internal voltage (vector) is the line-to-line
voltage +

� := (+01 ,+12 ,+20) = +
line, and the internal current �

� := (�01 , �12 , �20)



Conversion matrices

Convert between internal vars and terminal vars


Vab

Vbc

Vca
= [

1 −1 0
0 1 −1

−1 0 1]
Γ

Va

Vb

Vc
,

Ia

Ib

Ic
= − [

1 0 −1
−1 1 0

0 −1 1]
Γ𝖳

Iab

Ibc

Ica



Conversion matrices

In vector form


VΔ = ΓV, I = − Γ𝖳IΔ

internal

voltage

terminal

voltage

terminal

current

internal

current

Convert between internal vars and terminal vars


Vab

Vbc

Vca
= [

1 −1 0
0 1 −1

−1 0 1]
Γ

Va

Vb

Vc
,

Ia

Ib

Ic
= − [

1 0 −1
−1 1 0

0 −1 1]
Γ𝖳

Iab

Ibc

Ica



Balanced vector

Definition 

A vector  with  is called balanced if 


• 


• Either                  (positive sequence)     

or                       (negative sequence)

x := (x1, x2, x3) xj = |xj |eiθj ∈ ℂ

|x1 | = |x2 | = |x3 |

θ2 − θ1 = −
2π
3

 and  θ3 − θ1 =
2π
3

θ2 − θ1 =
2π
3

 and  θ3 − θ1 = −
2π
3



Spectral properties of Γ, Γ𝖳

Let


1. 


2. Positive and negative sequence vectors:





Balanced vectors in positive and negative seq:   for 


Balanced system: all voltages and currents are in span  WLOG


3. Fortescue matrix





Symmetrical components are similarity transformation using matrix 

α := e−i2π/3

α+ := [
1
α

α2], α− := [
1

α2

α]
x = aα+, y = bα− a, b ∈ ℂ

(α+)

F :=
1

3
[1 α+ α−] =

1

3

1 1 1
1 α α2

1 α2 α
F
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and either

q2 �q1 = �2p
3

and q3 �q1 =
2p
3

(positive sequence) (1.12a)

or

q2 �q1 =
2p
3

and q3 �q1 = �2p
3

(negative sequence) (1.12b)

In this chapter we focus on single-phase equivalent circuits of balanced systems. In Part II of this
book we study unbalanced systems and generalize the definition of balance to allow a nonzero bias (see
Definition 8.1), i.e., we will call x̂ a (generalized) balanced vector if it is of the form x̂ = x + g1 and x is
balanced according to Definition 1.1, for some possibly nonzero g 2 C. The bias g may models a common
reference voltage or the internal loop flow in a D configuration. We assume g = 0 in this chapter which
amounts to the assumption that loop flows are zero and that all neutrals are grounded directly and voltages
are defined with respect to the ground.

A balanced vector x is said to be in a positive sequence if x satisfies (1.12a) and in a negative sequence
set if x satisfies (1.12b). Let

a := e�i2p/3

Clearly a2 = ei2p/3, a3 = 1; see Figure 1.8. (Also see Exercise 1.4 for more properties of a .) Define the

3

30!

α 2

α

1

Im#

Re#

3

3

Figure 1.8: Phase shift a := e�i2p/3 in Theorem 1.1.

vectors

a+ :=

2

4
1
a
a2

3

5 , a� :=

2

4
1

a2

a

3

5 (1.13a)

Then a+ is a balanced vector in a positive sequence and a� is a balanced vector in a negative sequence.
Moreover the set of all balanced positive-sequence vectors is span(a+) and the set of all balanced negative-
sequence vectors is span(a�), i.e., x is a balanced vector in a positive sequence and y a balanced vector in
a negative sequence if and only if

x = x1a+, y = y1a�, x1, y1 2 C (1.13b)



Spectral decomposition of Γ, Γ𝖳

Theorem 

1. 


2. Eigenvectors and eigenvalues are given by the spectral decomposition:


    


where  

F−1 = F𝖧 = F̄ =
1

3
[1 α− α+]

Γ = F
0

1 − α
1 − α2

F̄, Γ𝖳 = F̄
0

1 − α
1 − α2

F

1 − α = 3eiπ/6 and 1 − α2 = 3e−iπ/6

Transformation of balanced vectors by 
(Γ, Γ𝖳)
Γ1 = 0, Γα+ = (1 − α)α+, Γα− = (1 − α2)α−

Γ𝖳1 = 0, Γ𝖳α− = (1 − α)α−, Γ𝖳α+ = (1 − α2)α+



Spectral decomposition of Γ, Γ𝖳

Corollary 
For any balanced vector (positive seq)  and 


1. 


2. 


3.

x ∈ span(α+) γ ∈ ℂ

Γ (x + γ1) = (1 − α)x

Γ𝖳(x + γ1) = (1 − α2)x

Γ Γ𝖳(x + γ1) = Γ𝖳Γ (x + γ1) = 3x

For balanced 3-phase systems, this result is enough.

For unbalanced systems, we need to study pseudo-inverses of (Γ, Γ𝖳)



Spectral properties of Γ, Γ𝖳

Almost all properties of balanced 3-phase systems originate from properties of  and their 
transformation under 


1. Transformation by  preserve balanced nature of a vector, ensuring that all voltages and 
currents are balanced in a symmetric network driven by balanced sources


2. This is because balanced sources are in span  (or span  for negative-seq systems), and 
 are eigenvectors of ; see Theorem


3. For unbalanced systems, sources have a mix of components in span , span , span  
and hence transformation by  maintains the mix


(α+, α−)
(Γ, Γ𝖳)
(Γ, Γ𝖳)

(α+) (α−)
(α+, α−) (Γ, Γ𝖳)

(α+) (α−) (1)
(Γ, Γ𝖳)



Balanced systems
Implications
1. Informally, a balanced system is one in which all voltages and currents are in span   (WLOG)


2. Balanced voltage and current sources are in span 


3. Voltages and currents at every point in a network can be written as linear combination of 
transformed source voltages and source currents, transformed by 


4. But  are eigenvectors of      transformation by  reduces to scaling by 
 and  respectively (provided impedances & lines are balanced)


5.   all voltages and currents remain in span

(α+)
(α+)

(Γ, Γ𝖳)
α+ (Γ, Γ𝖳) ⟹ (Γ, Γ𝖳)

1 − α 1 − α2

⟹ (α+)

Formal statement and proof need to wait till Part III where we study unbalanced systems



Outline
1. Single-phase systems

2. Balanced three-phase systems


• Internal and terminal vars

• Balanced vectors and conversion matrices 

• Balanced systems in  configurations

• Balanced systems in  configurations

• Per-phase analysis


3. Complex power

Γ, Γ𝖳

Y
Δ
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Figure 1.11 Ideal and balanced three-phase devices in . configuration. (Aug 30, 2025: (a)
Remove (I0=, I1=, I2=) and entire neutral line (�=, I=, =0, +=

0
etc). (b) Remove (H0=, H1=, H2=)

and entire neutral line (�=, I=, =0, +=
0
etc). (c) Remove entire neutral line (�=, I=, =0, +=

0
etc).

I
0= ! I, I1= ! I, I2= ! I. (abc) Shorten lines �0 ,+0 , �1 ,+1 , �2 ,+2 ; bigger font?)

a positive sequence and the voltages
�
⇢
0=,⇢1=,⇢2=

 
a (balanced) positive-sequence

set. Whether a voltage source is in a positive or negative sequence depends only on how
one labels the wires. Therefore, unless otherwise specified, we will always consider
012 to be a positive sequence. If there are multiple three-phase sources connected to
the same network their phase sequences must be the same.

Similarly, the ideal current source �. := (�0=, �1=, �2=) is called balanced if �. is a
balanced vector. The impedance I

. := Diag(I, I, I) = II, where I is the identity matrix
of size 3, is called balanced when its constituent impedances are equal.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age and current sources:

1 Sum to zero: The internal (phase) voltages ⇢
0= +⇢1= +⇢2= = 0 and the internal

currents �
0= + �

1= + �
2= = 0. This is because ⇢

. = U+⇢0= and hence 1
T
⇢
. =⇣

1
T
U+

⌘
⇢
0= = 0; similarly for �. .

2 Line voltage +
line and terminal current � are balanced: This is because U+ is an

eigenvector of �,�T. Specifically the line voltage is ⇢
line = �⇢. from (1.13) and

hence Corollary 1.3 implies

⇢
line = �⇢. = (1�U)⇢.

Therefore ⇢
01 =

p
34ic/6

⇢
0=, ⇢12 =

p
34ic/6

⇢
1= and ⇢

20 =
p

34ic/6
⇢
2=. This is

illustrated in Figure 1.10. From (1.11), the terminal current � = ��. is clearly a
balanced vector.

In fact all voltages and currents in a balanced network driven by balanced voltage and
current sources are in a balanced positive sequence, i.e., all are in span(U+). The phases
are therefore decoupled, i.e., the variables in each phase depend on quantities only in
that phase, and can be analyzed separately. A full understanding of phase decoupling

Balanced voltage source if internal voltage  is a balanced vector and 


• 


• 


Balanced current source if  and 


Balanced impedance if impedances are identical, i.e.,  

EY zY := zan𝕀
positive sequence: Ean = 1∠θ, Ebn = 1∠θ − 120∘, Ecn = 1∠θ + 120∘

negative sequence: Ean = 1∠θ, Ebn = 1∠θ + 120∘, Ecn = 1∠θ − 120∘

JY := (Jan, Jbn, Jcn) ∈ apan(α+) yY := yan𝕀

zY := zan𝕀

EY ∈ span(α+)

EY ∈ span(α−)

Ideal sources: z = 0, y = 0
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Remove (I0=, I1=, I2=) and entire neutral line (�=, I=, =0, +=

0
etc). (b) Remove (H0=, H1=, H2=)

and entire neutral line (�=, I=, =0, +=
0
etc). (c) Remove entire neutral line (�=, I=, =0, +=

0
etc).

I
0= ! I, I1= ! I, I2= ! I. (abc) Shorten lines �0 ,+0 , �1 ,+1 , �2 ,+2 ; bigger font?)

a positive sequence and the voltages
�
⇢
0=,⇢1=,⇢2=

 
a (balanced) positive-sequence

set. Whether a voltage source is in a positive or negative sequence depends only on how
one labels the wires. Therefore, unless otherwise specified, we will always consider
012 to be a positive sequence. If there are multiple three-phase sources connected to
the same network their phase sequences must be the same.

Similarly, the ideal current source �. := (�0=, �1=, �2=) is called balanced if �. is a
balanced vector. The impedance I

. := Diag(I, I, I) = II, where I is the identity matrix
of size 3, is called balanced when its constituent impedances are equal.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age and current sources:

1 Sum to zero: The internal (phase) voltages ⇢
0= +⇢1= +⇢2= = 0 and the internal

currents �
0= + �

1= + �
2= = 0. This is because ⇢

. = U+⇢0= and hence 1
T
⇢
. =⇣

1
T
U+

⌘
⇢
0= = 0; similarly for �. .

2 Line voltage +
line and terminal current � are balanced: This is because U+ is an

eigenvector of �,�T. Specifically the line voltage is ⇢
line = �⇢. from (1.13) and

hence Corollary 1.3 implies

⇢
line = �⇢. = (1�U)⇢.

Therefore ⇢
01 =

p
34ic/6

⇢
0=, ⇢12 =

p
34ic/6

⇢
1= and ⇢

20 =
p

34ic/6
⇢
2=. This is

illustrated in Figure 1.10. From (1.11), the terminal current � = ��. is clearly a
balanced vector.

In fact all voltages and currents in a balanced network driven by balanced voltage and
current sources are in a balanced positive sequence, i.e., all are in span(U+). The phases
are therefore decoupled, i.e., the variables in each phase depend on quantities only in
that phase, and can be analyzed separately. A full understanding of phase decoupling

Corollary implies:


1. Sum to zero:   and     


becasuse  

Ean + Ebn + Ecn = 0 Jan + Jbn + Jcn = 0

EY = Eanα+ ⇒ 1𝖳EY = Ean (1𝖳α+) = 0
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and entire neutral line (�=, I=, =0, +=
0
etc). (c) Remove entire neutral line (�=, I=, =0, +=

0
etc).
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a positive sequence and the voltages
�
⇢
0=,⇢1=,⇢2=

 
a (balanced) positive-sequence

set. Whether a voltage source is in a positive or negative sequence depends only on how
one labels the wires. Therefore, unless otherwise specified, we will always consider
012 to be a positive sequence. If there are multiple three-phase sources connected to
the same network their phase sequences must be the same.

Similarly, the ideal current source �. := (�0=, �1=, �2=) is called balanced if �. is a
balanced vector. The impedance I

. := Diag(I, I, I) = II, where I is the identity matrix
of size 3, is called balanced when its constituent impedances are equal.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age and current sources:

1 Sum to zero: The internal (phase) voltages ⇢
0= +⇢1= +⇢2= = 0 and the internal

currents �
0= + �

1= + �
2= = 0. This is because ⇢

. = U+⇢0= and hence 1
T
⇢
. =⇣

1
T
U+

⌘
⇢
0= = 0; similarly for �. .

2 Line voltage +
line and terminal current � are balanced: This is because U+ is an

eigenvector of �,�T. Specifically the line voltage is ⇢
line = �⇢. from (1.13) and

hence Corollary 1.3 implies

⇢
line = �⇢. = (1�U)⇢.

Therefore ⇢
01 =

p
34ic/6

⇢
0=, ⇢12 =

p
34ic/6

⇢
1= and ⇢

20 =
p

34ic/6
⇢
2=. This is

illustrated in Figure 1.10. From (1.11), the terminal current � = ��. is clearly a
balanced vector.

In fact all voltages and currents in a balanced network driven by balanced voltage and
current sources are in a balanced positive sequence, i.e., all are in span(U+). The phases
are therefore decoupled, i.e., the variables in each phase depend on quantities only in
that phase, and can be analyzed separately. A full understanding of phase decoupling

Corollary implies:


2. Ideal voltage source ( ): line voltage  is balanced:   
zY := 0 Vline

V = EY + Vn1 = Eanα+ + Vn1 ⇒ Vline := ΓV = Ean(Γα+) = (1 − α)EY

phases are decoupled
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a positive sequence and the voltages
�
⇢
0=,⇢1=,⇢2=

 
a (balanced) positive-sequence

set. Whether a voltage source is in a positive or negative sequence depends only on how
one labels the wires. Therefore, unless otherwise specified, we will always consider
012 to be a positive sequence. If there are multiple three-phase sources connected to
the same network their phase sequences must be the same.

Similarly, the ideal current source �. := (�0=, �1=, �2=) is called balanced if �. is a
balanced vector. The impedance I

. := Diag(I, I, I) = II, where I is the identity matrix
of size 3, is called balanced when its constituent impedances are equal.

Theorem 1.2 implies the following properties of a balanced positive-sequence volt-
age and current sources:

1 Sum to zero: The internal (phase) voltages ⇢
0= +⇢1= +⇢2= = 0 and the internal

currents �
0= + �

1= + �
2= = 0. This is because ⇢

. = U+⇢0= and hence 1
T
⇢
. =⇣

1
T
U+

⌘
⇢
0= = 0; similarly for �. .

2 Line voltage +
line and terminal current � are balanced: This is because U+ is an

eigenvector of �,�T. Specifically the line voltage is ⇢
line = �⇢. from (1.13) and

hence Corollary 1.3 implies

⇢
line = �⇢. = (1�U)⇢.

Therefore ⇢
01 =

p
34ic/6

⇢
0=, ⇢12 =

p
34ic/6

⇢
1= and ⇢

20 =
p

34ic/6
⇢
2=. This is

illustrated in Figure 1.10. From (1.11), the terminal current � = ��. is clearly a
balanced vector.

In fact all voltages and currents in a balanced network driven by balanced voltage and
current sources are in a balanced positive sequence, i.e., all are in span(U+). The phases
are therefore decoupled, i.e., the variables in each phase depend on quantities only in
that phase, and can be analyzed separately. A full understanding of phase decoupling

Corollary implies:


3. Ideal current source ( ): terminal current  is balanced:   
yY := 0 I

I = − JY

phases are decoupled



Phase decoupling
Example

Solution 
Internal vars , , ,  neutral voltages

Terminal voltages 

KVL, KCL, Ohm’s law:  

Hence  and     

i.e., 


   ,  i.e.,  are balanced and phase-decoupled   

EY := (Ean, Ebn, Ecn) V′￼Y := (Va′￼n′￼, Vb′￼n′￼, Vc′￼n′￼) I′￼Y := (Ia′￼n′￼, Ib′￼n′￼, Ic′￼n′￼) Vn, Vn′￼

V := (Va, Vb, Vc)
EY = V − Vn1, V′￼Y = V − Vn′￼1, V′￼Y = zI′￼Y, 1𝖳I′￼Y = 0

EY − V′￼Y = (Vn′￼− Vn) 1 1𝖳 (EY − V′￼Y) = 3 (Vn′￼− Vn) ⟹ 3 (Vn′￼− Vn) = − z (1𝖳I′￼Y) = 0
Vnn′￼

= 0
⟹ V′￼Y = EY + (Vn − Vn′￼) 1 = EY, I′￼Y = yV′￼Y = yEY V′￼Y and I′￼𝖸
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and per-phase analysis is postponed till Chapter 16 (Theorem 16.5) in Part III of the
book. In the following we will illustrate this property with simple examples.

Example 1.4 (Balanced . -configured system and phase decoupling). Consider the
circuit in Figure 1.12(a) when a balanced three-phase impedance is connected to a
balanced three-phase positive-sequence voltage source in . configuration. Show that

1 The neutral-to-neutral voltage is zero, +==
0 = 0.

2 The internal voltage and current across the impedances are in a balanced positive
sequence.

a'a

c b c' b'

z

zz

Ean

Ecn Ebn
n n'

Ia

Ib

Ic

(a) Balanced three-phase system

zEan

Ia a'a

n n'

(b) Equivalent per-phase system

Figure 1.12 Balanced three-phase system in . configuration and its per-phase model.

Solution. Referring to Figure 1.12(a) let

• ⇢
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0=,⇢1=,⇢2=

�
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0. :=
�
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0
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0
=
0
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=
0 �

denote the internal voltages
from terminals to neutrals, and �

0. :=
�
�
0
0
=
0
, �1

0
=
0
, �2

0
=
0 �

denote the internal current
between the terminals 00,10,20 and the neutral =0 across the impedances I.

• + :=
�
+
0,+1 ,+2

�
denote the terminal voltage (vector), with respect to an arbitrary

and common reference point, not necessarily the neutral = or =0;
• +

= and +
=
0
denote the neutral voltages with respect to the common reference point.

Given the balanced positive-sequence voltage ⇢
. and balanced impedance I

. = II

where I denote the identity matrix of size 3, we wish to show that += = +
=
0
, that

+
0. , � 0. are in a balanced positive sequence, and that phases are decoupled.

KVL, KCL, and Ohm’s law imply

⇢
. = + �+=

1, +
0. = + �+=
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0. = I�
0. , 1

T
�
0. = 0 (1.22)
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. �+
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�
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T �
⇢
. �+ 0. � = 3
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Given balanced ideal voltage source and 
impedance in  configuration, show that 

1. Neutral-to-neutral voltage 

2. Internal voltages and currents across 

impedances are balanced

3. Passes are decoupled

Y
Vnn′￼

= 0



Phase decoupling
Example

Solution [per-phase analysis]

Balanced and phase-decoupled voltages and currents lead to equivalent per-phase system and per-phase 
analysis


• Since , can assume a neutral line between  and  (same potential) 

• Analyze phase  equivalent circuit

• Variables in phases  and  are obtained from phase-  variables and rotating by 120 


Vnn′￼
= 0 n n′￼

a
b c a ∘
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Show:

1. 

2. All currents and voltages are balanced 

positive sequence sets

3. Phases are decoupled, i.e.,


                


Solution: see PSA Ch 1

Vn0n1 = Vn1n2 = 0

Ean
0 = Va0a1 + Van

1

Van
1 = Va1a2 + Van

2

38 Basic concepts

showing that the voltage across the neutrals +==
0 = 0. Substituting it into (1.22) yields

(denoting H := I
�1)

+
0. = ⇢

. +
⇣
+
= �+=

0
⌘
1 = ⇢

. , �
0. = H+

0. = H⇢
.

Hence both +
0. and �

0. are in a balanced positive sequence. Moreover the phases are
decoupled in that +q=

0 and �q=0 , q = 0
0,10,20, depend only on ⇢q= but not on voltages

in other phases. ⇤

Remark 1.4. 1 Since +==
0 = 0, even if = and =

0 are connected, the current on that
wire will be zero. We can therefore either assume = and =

0 are connected or
disconnected in our analysis, whichever is more convenient.

2 Since the currents are balanced, �
0 + �

1 + �
2 = 0 or 8

0 (C) + 81 (C) + 82 (C) = 0 at
all times C, the currents flow from and return to the sources only via the wires
connecting the sources to the loads, and no additional physical wires are necessary
for return currents. This halves the amount of required wire compared with three
separate single-phase circuits; see Chapter 1.3.3. ⇤

As a consequence, each phase of the balanced system is decoupled and equivalent
to the circuit in Figure 1.12(b). We can therefore analyze the phase 0 equivalent circuit
(see Chapter 1.2.5). The voltages and currents in phase 1 and phase 2 circuits will be
the corresponding phase 0 quantities shifted by �120� and 120� respectively, assuming
the source is of positive sequence.

Example 1.5 (Balanced . -configured system and phase decoupling). Figure 1.13
shows a balanced three-phase source ⇢

.

0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ) of positive sequence
supplying two sets of balanced three-phase loads in parallel through balanced trans-
mission lines. The transmission lines have a common admittance C and all loads have
a constant admittance ;, as shown in the figure. Suppose the neutrals are connected by
lines with a common admittance H < 0 and C = H/`, ; = H/`2 for some real number
` < 0.

a1 a2a0

c0 b0 c1 b1 c2 b2

l l

t t

t

yy

t

t t

l l l l

Ean

Ecn Ebn
n0 n1 n2

One line diagram: 

Figure 1.13 Balanced three-phase system in Y configuration (Example 1.5). (Aug 30, 2025:
Thicker or darker lines?)
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Show:

1. 

2. All currents and voltages are balanced 

positive sequence sets

3. Phases are decoupled, i.e.,


                


Solution: see PSA Ch 1

Vn0n1 = Vn1n2 = 0

Ean
0 = Va0a1 + Van

1

Van
1 = Va1a2 + Van

2

Implications: 
• Zero currents on neutral lines even if 

present   can assume neutrals are 
connected or not for analysis


• No physical wires necessary for return 
currents, saving materials

⇒
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the corresponding phase 0 quantities shifted by �120� and 120� respectively, assuming
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0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ) of positive sequence
supplying two sets of balanced three-phase loads in parallel through balanced trans-
mission lines. The transmission lines have a common admittance C and all loads have
a constant admittance ;, as shown in the figure. Suppose the neutrals are connected by
lines with a common admittance H < 0 and C = H/`, ; = H/`2 for some real number
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Phase  equivalent circuit:

1. 

2. All currents and voltages are balanced 

positive sequence sets

3. Phases are decoupled, i.e.,


                


Solution: see PSA Ch 1

a
Vn0n1 = Vn1n2 = 0

Ean
0 = Va0a1 + Van

1

Van
1 = Va1a2 + Van

2
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Denote the internal voltages and currents in stage : = 1,2, by +
.

:
:=

(+0:=: ,+1:=: ,+2:=: ) and �
.

:
:= (�0:=: , �0:=: , �0:=: ) respectively. Denote the voltages

and currents from stage : �1 to stage : , : = 1,2, by +: := (+0:�10: ,+1:�11: ,+2:�12: )
and �: := (�0:�10: , �1:�11: , �2:�12: ) respectively. Show that

1 +
=0=1 =+

=1=2 = 0.
2 For : = 1,2, +.

:
,+: , �.

:
, �: are balanced positive-sequence sets.

3 The phases are decoupled, i.e., ⇢.

0 =+1 ++.

1 and +
.

1 =+2 ++.

2 .

This implies that the three phases of the balanced system in Figure 1.13 are decoupled
and can be studied by analyzing the per-phase circuit shown in Figure 1.14 where the
line admittances connecting the neutrals are set to zero.

l zEan

a0 a2a1

n0 n2n1

t t

Figure 1.14 The per-phase equivalent circuit of the balanced system in Figure 1.13.

Solution.

1 We will apply Ohm’s law and Kirchho�’s current and voltage laws (KCL and KVL)
to derive two linear equations in (+=0=1 ,+=1=2 ) and show that +=0=1 = +=1=2 = 0 is
the only solution to these equations. By Ohm’s law across each admittance, the
currents are in terms of voltages:

�
.

:
= ;+

.

:
, �: = C+: , : = 1,2 (1.23)

This allows us to eliminate currents �
.

:
, �: and express KCL and KVL in terms

only of voltages +.

:
,+: .

Making use of (1.23), apply KCL at node (01,11,21) to obtain

C+
0001 = ;+

01=1 + C+0102 , C+
1011 = ;+

11=1 + C+1112 , C+
2021 = ;+

21=1 + C+2122

and similarly for KCL at nodes (02,12,22). This in vector form is

C+1 = ;+
.

1 + C+2, C+2 = ;+
.

2 (1.24)

Apply KCL at nodes (=0,=1,=2) to obtain

C

⇣
1

T
+1

⌘
+ H+=0=1 = 0, ;

⇣
1

T
+
.

1

⌘
+ H+=0=1 = H+

=1=2 , ;

⇣
1

T
+
.

2

⌘
+ H+=1=2 = 0

where 1 := (1,1,1) is the column vector of all 1’s. Hence, since H/C = ` and
H/; = `

2, we have

1
T
+1 = �`+=0=1 , 1

T
+
.

1 = �`2
+
=0=1 + `

2
+
=1=2 , 1

T
+
.

2 = �`2
+
=1=2 (1.25)
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2 = 0 or 8
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all times C, the currents flow from and return to the sources only via the wires
connecting the sources to the loads, and no additional physical wires are necessary
for return currents. This halves the amount of required wire compared with three
separate single-phase circuits; see Chapter 1.3.3. ⇤

As a consequence, each phase of the balanced system is decoupled and equivalent
to the circuit in Figure 1.12(b). We can therefore analyze the phase 0 equivalent circuit
(see Chapter 1.2.5). The voltages and currents in phase 1 and phase 2 circuits will be
the corresponding phase 0 quantities shifted by �120� and 120� respectively, assuming
the source is of positive sequence.

Example 1.5 (Balanced . -configured system and phase decoupling). Figure 1.13
shows a balanced three-phase source ⇢

.

0 := (⇢00=0 ,⇢10=0 ,⇢20=0 ) of positive sequence
supplying two sets of balanced three-phase loads in parallel through balanced trans-
mission lines. The transmission lines have a common admittance C and all loads have
a constant admittance ;, as shown in the figure. Suppose the neutrals are connected by
lines with a common admittance H < 0 and C = H/`, ; = H/`2 for some real number
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Balanced voltage source if internal voltage  is a balanced vector and 


• 


• 


Balanced current source if  and 


Balanced impedance if impedances are identical, i.e.,  

EΔ zΔ := zab𝕀
positive sequence: Eab = 1∠θ, Ebc = 1∠θ − 120∘, Eca = 1∠θ + 120∘

negative sequence: Eab = 1∠θ, Ebc = 1∠θ + 120∘, Eca = 1∠θ − 120∘

JΔ := (Jab, Jbc, Jca) ∈ apan(α+) yΔ := yab𝕀

zΔ := zab𝕀

1.2 Balanced three-phase systems 41

3 To show that the phases are decoupled, substitute +
=0=1 = +

=1=2 = 0 in
(1.26a)(1.26b). ⇤

Remark 1.5 (Phase-decoupling of lines). 1 A key enabling property that allows the
balanced nature of voltages and currents to propagate from one node to the next is
the assumption that three-phase lines are phase-decoupled (see Example 1.5 and
Exercise 1.13). This assumption is valid only if the lines are symmetric and the
sources and loads are balanced such that currents and charges both sum to zero in
these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase
model of transmission lines should be used; see Part III of this book.

2 If the lines are symmetric but the sources or loads are unbalanced then variables of
di�erent phases are coupled. A similarity transformation can be used to transform
the system to a so called sequence coordinate in which the lines become decoupled
and single-phase analysis can then be applied in the sequence coordinate; see
Chapter 16 in Part III of this book. ⇤

1.2.4 Balanced systems in � configuration

Figure 1.15 shows an ideal three-phase voltage source ⇢
� := (⇢01 ,⇢12 ,⇢20), current

source �
� := (�01 , �12 , �20) and impedance I

� := Diag(I, I, I) in � configuration. As

V aI a

I b

I c

V b

V c

Eab

Eca

Ebc

zab

zbc
zca

(a) Voltage source ⇢
�

yca
J ca Jab

V a
I a

I b

I c
V b

V cJbc

ybc

yab

(b) Current source �
�

zca

V a
I a

I b

I c
V b

V c

zbc

zab

(c) Impedance I
�

Figure 1.15 Ideal and balanced three-phase devices in � configuration. (Aug 30, 2025: (a)
Remove (I01 , I12 , I20). (b) Remove (H01 , H12 , H20). (c) I01 ! I, I12 ! I, I2= ! I. (abc)
Shorten lines �0 ,+0 , �1 ,+1 , �2 ,+2 ; bigger font?)

for . configuraiton, the ideal voltage source is balanced if ⇢
� is a balanced vector

according to Definition 1.1, i.e., assuming positive sequence:

⇢
12 = 4

�i2c/3
⇢
01 , ⇢

20 = 4
i2c/3

⇢
01

The ideal current source is balanced if �� is a balanced vector. The impedance I
� = II

is balanced when its constituent impedances are equal.

A balanced three-phase system in � configuration enjoys the same properties as
such a system in . configuration. In particular the line voltages and the line currents

EΔ ∈ span(α+)

EΔ ∈ span(α−)

Ideal sources: z = 0, y = 0
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Corollary implies:


1. Sum to zero:   and     


because   and   

1𝖳EΔ = 0 1𝖳I = 0

EΔ = Eabα+ I = − Γ𝖳IΔ ⇒ 1𝖳I = − 1𝖳Γ𝖳IΔ = 0

1.2 Balanced three-phase systems 41

3 To show that the phases are decoupled, substitute +
=0=1 = +

=1=2 = 0 in
(1.26a)(1.26b). ⇤

Remark 1.5 (Phase-decoupling of lines). 1 A key enabling property that allows the
balanced nature of voltages and currents to propagate from one node to the next is
the assumption that three-phase lines are phase-decoupled (see Example 1.5 and
Exercise 1.13). This assumption is valid only if the lines are symmetric and the
sources and loads are balanced such that currents and charges both sum to zero in
these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase
model of transmission lines should be used; see Part III of this book.

2 If the lines are symmetric but the sources or loads are unbalanced then variables of
di�erent phases are coupled. A similarity transformation can be used to transform
the system to a so called sequence coordinate in which the lines become decoupled
and single-phase analysis can then be applied in the sequence coordinate; see
Chapter 16 in Part III of this book. ⇤

1.2.4 Balanced systems in � configuration

Figure 1.15 shows an ideal three-phase voltage source ⇢
� := (⇢01 ,⇢12 ,⇢20), current

source �
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for . configuraiton, the ideal voltage source is balanced if ⇢
� is a balanced vector

according to Definition 1.1, i.e., assuming positive sequence:

⇢
12 = 4

�i2c/3
⇢
01 , ⇢

20 = 4
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01

The ideal current source is balanced if �� is a balanced vector. The impedance I
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is balanced when its constituent impedances are equal.

A balanced three-phase system in � configuration enjoys the same properties as
such a system in . configuration. In particular the line voltages and the line currents
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Corollary implies:


2. Ideal voltage source ( ): line voltage  is balanced


3. Ideal current source ( ): terminal current   since 

zΔ := 0 Vline = VΔ

yΔ := 0 I = − Γ𝖳JΔ = − (1 − α2)JΔ JΔ ∈ apan(α+)

1.2 Balanced three-phase systems 41

3 To show that the phases are decoupled, substitute +
=0=1 = +

=1=2 = 0 in
(1.26a)(1.26b). ⇤

Remark 1.5 (Phase-decoupling of lines). 1 A key enabling property that allows the
balanced nature of voltages and currents to propagate from one node to the next is
the assumption that three-phase lines are phase-decoupled (see Example 1.5 and
Exercise 1.13). This assumption is valid only if the lines are symmetric and the
sources and loads are balanced such that currents and charges both sum to zero in
these lines across phases; see Chapter 2.1.4. Otherwise an unbalanced three-phase
model of transmission lines should be used; see Part III of this book.

2 If the lines are symmetric but the sources or loads are unbalanced then variables of
di�erent phases are coupled. A similarity transformation can be used to transform
the system to a so called sequence coordinate in which the lines become decoupled
and single-phase analysis can then be applied in the sequence coordinate; see
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Remove (I01 , I12 , I20). (b) Remove (H01 , H12 , H20). (c) I01 ! I, I12 ! I, I2= ! I. (abc)
Shorten lines �0 ,+0 , �1 ,+1 , �2 ,+2 ; bigger font?)

for . configuraiton, the ideal voltage source is balanced if ⇢
� is a balanced vector

according to Definition 1.1, i.e., assuming positive sequence:

⇢
12 = 4

�i2c/3
⇢
01 , ⇢

20 = 4
i2c/3

⇢
01

The ideal current source is balanced if �� is a balanced vector. The impedance I
� = II

is balanced when its constituent impedances are equal.

A balanced three-phase system in � configuration enjoys the same properties as
such a system in . configuration. In particular the line voltages and the line currents

Phases are decoupled, but what is a per-phase equivalent circuit ?



Balanced 3-phase systems
Example

Analysis shows: if  then

• Terminal current , voltage drop across line , and load voltage 

 are balanced

EΔ ∈ span(α+)
I := (Ia0a1, Ib0b1, Ic0c1) V := (Va0a1, Vb0b1, Vc0c1)

UΔ := (Va1b1, Vb1c1, Vc1a1)

42 Basic concepts

sum to zero (from (1.14)):

⇢
01 +⇢12 +⇢20 = 1

T (�+) = 0, �
0 + �1 + �2 = 1

T (��T
�
�) = 0

Moreover all voltages and currents in a balanced system driven by balanced three-phase
positive-sequence�-configured sources are balanced positive sequences. Moreover the
phases are decoupled. We illustrate this in the next example.

Example 1.6 (Balanced �-configured system and phase decoupling). Figure 1.16
shows a balanced three-phase source ⇢

� := (⇢0010 ,⇢1020 ,⇢2000 ) positive sequence
supplying a balanced three-phase load through balanced transmission lines in � con-
figuration. The transmission lines have identical admittance C < 0 and the loads are
of constant admittance ; < 0. Denote the terminal current by � := (�0001 , �1011 , �2021 ),

a1a0

c0 b0 c1 b1
Eb0c0

Ec0a0 Ea0b0

t

t

t

l

l l

Figure 1.16 Example 1.6.

the voltage across the transmission line by + := (+0001 ,+1011 ,+2021 ), and the line-to-
line voltage by *

� := (+0111 ,+1121 ,+2101 ). Show that �,+ ,*� are in balanced positive
sequences, provided the ratio ` := C/; < �3.

Solution. Apply KCL at nodes 01,11,21 to get (from (1.14)):

� = ;�T
*

� = C+ (1.29)

Apply KVL to get

⇢
� =*

� + �+ (1.30)

where � is defined in (1.12). Eliminate + from (1.29) and (1.30) to get

⇢
� =

1
`

⇣
`I + ��T

⌘
*

� =
1
`

266664
`+2 �1 �1
�1 `+2 �1
�1 �1 `+2

377775
*

� (1.31)

where ` := C/; and I is the identity matrix of size 3. The matrix `I + ��T has a
determinant of `(` + 3)2 and hence is nonsingular provided ` < 0,�3. Since ⇢

� :=
⇢
01
U+ is a balanced positive-sequence matrix we have⇣

`I+��T
⌘
*

� = `⇢
01

U+

Phases are decoupled, but what is a per-phase equivalent circuit ?



 transformationΔ → Y
Voltage and current sources

Balanced system: all voltages and currents are in span 


Hence


(α+)

VY
eq =

VΔ

1 − α
, IY

eq = (1 − α2)IΔ, Vn
eq := 0

Given:  device (e.g., voltage source) with internal voltage and current 


Equivalent -configured device: one with internal voltage and current  that 
has an equivalent external behavior:





zero neutral voltage   s.t.   

Δ (VΔ, IΔ)
Y (VY

eq, IY
eq)

identical line-to-line voltage: ΓVY
eq = VΔ

identical line current: IY
eq = Γ𝖳IΔ

Vn
eq := 0 In

eq = 1𝖳IY
eq = 0

14.1 Motivation and overview 901

Consider now an unbalanced three-phase system shown in Figure 14.2(b)
where three such power sources f

�
9

:= (f01 ,f12 ,f20) and current sources �
�
:

:=
(�01

:
, �12

:
, �20

:
) are arranged in � configuration and connected to each other by a three-

phase line with the admittance matrix H
B

9:
2 C3⇥3. Let+8 := (+0

8
,+1

8
,+2

8
) for 8 = 9 , : and

� 9: := (�0
9:

, �1
9:

, �2
9:
) denote the terminal voltages and currents as before. It is important

to note that the terminal variables (+ 9 ,+: , � 9: ) are not directly controllable, only the
controllable devices (f�

9
, ��

:
) are, as in the single-phase system. The terminal variables

(+ 9 ,+: , � 9: ) still satisfy (14.1a), but their relation with the internal device variables
(f�

9
, ��

:
) is more complicated than (14.1b). ⇤

The basic idea in modeling a three-phase component (voltage/current/power source,
impedance, transformer) is to explicitly separate its model into an internal model that
specifies the characteristics of the constituent single-phase components in terms of
internal variables, and a conversion rule that maps its internal variables to its terminal
variables. The internal model depends only on the type of components (non-ideal
voltage sources, ZIP loads, or di�erent single-phase transformer models) regardless
of their configurations. The conversion rule depends only on their configurations
regardless of the type of components. They determines an external model which is a
relation between the terminal variables, obtained by eliminating the internal variables
from the set of equations describing the internal model and the conversion rule. We
next describe this procedure in detail.

14.1.1 Internal and terminal variables

V a
Ia

V n

V bn

V an

V cn

I n

I an

I bnI cn
zn

I b

I c
V b

V c

n'

n

a

b

c

In'= I n
V n'

(a) . configuration

V a
Ia

I ab

I bc

I ca

I b

I c
V b

V c
V bc

V ca

V ab

a

b

c

(b) � configuration

Figure 14.3 Internal and external variables associated with a single-terminal device in . and �
configurations.

The internal variables of a generic single-terminal device are shown in Figure 14.3
and defined as follows:
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 transformationΔ → Y
Voltage and current sources

Balanced system: all voltages and currents are in span 


Hence


(α+)

VY
eq =

VΔ

1 − α
, IY

eq = (1 − α2)IΔ, Vn
eq := 0

Example 

1. Voltage source (ideal)  : -equivalent is  


2. Current source (ideal)  : -equivalent is  


EΔ Y EY := (1 − α)−1EΔ =
EΔ

3eiπ/6

JΔ Y JY := (1 − α2)JΔ = 3e−iπ/6JΔ



 transformationΔ → Y
Impedance
Given: balanced impedance  


-eq: balanced impedance  with equivalent external behavior  :





Equivalent external behavior 

ZΔ := Diag (zΔ, zΔ, zΔ)
Y ZY := Diag (zY, zY, zY) Vline % I

ZΔ : balanced imp ZY : Y-equilent

internal model VΔ = ZΔIΔ VY = ZYIY

line-to-line voltage Vline VΔ = ZΔIΔ ΓVY = (1 − α)ZYIY

terminal current I −Γ𝖳IΔ = − (1 − α2)IΔ I = − IY

Vline % I phase-a = − zΔ/(1 − α2) phase-a = − (1 − α)zY

Vline % I ⟹ zY =
zΔ

(1 − α)(1 − α2)
=

zΔ

3

componentwise

division
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3

componentwise

division

-equivalent admittance Y yY = 3yΔ



Outline
1. Single-phase systems

2. Balanced three-phase systems


• Internal and terminal vars

• Balanced vectors and conversion matrices 

• Balanced systems in  configurations

• Balanced systems in  configurations

• Per-phase analysis


3. Complex power

Γ, Γ𝖳

Y
Δ



Per-phase analysis 
1. Convert all voltage sources, current sources, impedances in  configuration into their 

-equivalents

2. Solve for phase  vars using equivalent phase  circuit with all neutrals directly connected


3. If all sources are in positive-sequence sets, phase  and  vars are determined by 
subtracting  and  respectively from corresponding phase  vars.   (If all sources are 
negative-sequence, add  and  instead.)


4. If vars in the internal of a  configuration are desired, drive them from original circuit.


Δ Y

a a
b c

120∘ 240∘ a
120∘ 240∘

Δ



Per-phase analysis 
Example 1.2 Balanced three-phase systems 47
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n2
Eab = √3̄e j�/6Ean
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One line diagram: 

(a) Balanced three-phase system
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(b) Equivalent per-phase system

Figure 1.18 Balanced three-phase system and its per-phase equivalent circuit. (Aug 31, 2025:
(a) ”One line diagram" ! “One-line diagram”. Is the font size consistent (seems a bit small
compared with circuit labels)?)

where +1 is given by (1.32). Substituting �
0121 into (1.33) yields 81 (C). ⇤

Find:  and i1(t) v2(t)
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Per-phase analysis 
Example

Find:  and 


Solution:

1. Using per-phase circuit, solve for  and 


2. 


3. 


4. To calculate , obtain 


5. Obtain 


6. Obtain 

i1(t) v2(t)

Va1n1 Va2n2

v2(t) = 2 Va2n2 cos (ωt + ∠Va2n2)
i1(t) = 2 Ia1c1 cos (ωt + ∠Ia1c1)

Ia1c1 Va1b1 = 3eiπ/6Va1n1

Ia1b1 = l1Va1b1 = 3l1eiπ/6Va1n1

Ia1c1 = − Ia1b1ei2π/3 = 3 3e−iπ/6l1Va1n1

1.2 Balanced three-phase systems 47
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Per-phase analysis 
1. Convert all voltage sources, current sources, impedances in  configuration into their 

-equivalents

2. Solve for phase  vars using equivalent phase  circuit with all neutrals directly connected


3. If all sources are in positive-sequence sets, phase  and  vars are determined by 
subtracting  and  respectively from corresponding phase  vars.   (If all sources are 
negative-sequence, add  and  instead.)


4. If vars in the internal of a  configuration are desired, drive them from original circuit.


Δ Y

a a
b c

120∘ 240∘ a
120∘ 240∘

Δ

Can this approach be formally justified for general networks ?
Yes, see Part III on Unbalanced three-phase networks



Outline
1. Single-phase systems

2. Balanced three-phase systems

3. Complex power


• Single-phase power

• Three-phase power

• Advantages of  systems3ϕ



Single-phase power
Instantaneous power:


 
p(t) := v(t)i(t)

=
VmaxImax

2 (cos(θV − θI) + cos(2ωt + θV + θI))
Average power:


 1
T ∫ T

0
p(t)dt =

VmaxImax
2 cos(θV − θI)

ϕ := θV − θI : power factor angle



Single-phase power
Complex power:


 S := VĪ =
VmaxImax

2 ei(θV−θI) = |V | | I |eiϕ

Active and reactive power:


 P := |V | | I |cos ϕ kW Q := |V | | I |sin ϕ var

Apparent power:


 |S | = |V | | I | = P2 + Q2 VA



Instantaneous and complex power
Relationship:


 p(t) = P + P cos 2(ωt + θI) − Q sin 2(ωt + θI)

Average power:


 
P = 1
T ∫ T

0
p(t)dt



Power delivered to impedance
Voltage and current across impedance are related


 V = zI

Complex power 

 S = |z | | I |2 eiϕ, ϕ := ∠z = θV − θI

1.3 Complex power 53

|I | q = \I % &

Resistor I = A A 0 A |� |2 0

Inductor I = il; l; c/2 0 l; |� |2

Capacitor I = (il2)�1 (l2)�1 �c/2 0 �(l2)�1 |� |2

Table 1.2 Power delivered to RLC elements.

which is (1.37). The complex power delivered to an inductor or a capacitor is reactive
(% = 0). Substituting into (1.37), the instantaneous power ?(C) to a purely reactive load
depends only on the reactive power &:

?(C) =
⇢
�& sin2(lC + \� ) for inductor I = 9l;

& sin2(lC + \+ ) for capacitor I = ( 9l2)�1

i.e., the instantaneous power is sinusoidal with twice the frequency and has an amplitude
&, and hence the average power delivered to a reactive load is zero.

Example 1.8. Suppose I = 9l; (inductance) or I = ( 9l2)�1 (capacitance). Prove
directly in the time domain that the average delivered power is 0 and the amplitude of
the instantaneous power is &.

Solution. Suppose power is delivered to an inductor I = 9l;. Let the current be 8(C) =
�max cos(lC + \� ). Then the voltage E(C) across the inductor is given by

E(C) = ;

38

3C

(C) = �l;�max sin(lC + \� )

and therefore

?(C) = E(C)8(C) = �l;�2
max sin(lC + \� ) cos(lC + \� )

= �l; �
2
max

2
sin2(lC + \� ) = �l; |� |2 sin2(lC + \� )

= �& sin2(lC + \� )

where the last equality follows from& = |I | |� |2 sin\I =l; |� |2 since \I = c/2. Moreover
the average power delivered is

% =
1
)

π T

0
?(C)3C = 0

The case of capacitor load I = ( 9l2)�1 is similar and omitted (see Exercise 1.16). ⇤

1.3.2 Three-phase power

Under balanced three-phase operation, the total instantaneous power delivered is con-
stant and the total complex power is 3 times the per-phase complex power.

purely real power

purely reactive power

purely reactive power



Power delivered to impedance
Instantaneous power delivered to


resistor  :                  

inductor  :             

capacitor  :     

r p(t) = P (1 + cos 2 (ωt + θI))
iωl p(t) = − Q sin 2 (ωt + θI)
(iωc)−1 p(t) = Q sin 2 (ωt + θV)



Three-phase power
Complex power

Per-phase power:         S := VanĪan

Three-phase power:   


because  and  , and hence


S3ϕ := VanĪan + VbnĪbn + VcnĪcn = 3S

VY := Vanα+ IY := Ianα+

S3ϕ = IY𝖧VY = VanĪan(α𝖧
+α+) = 3S ( )α𝖧

+α+ = 3



Three-phase power
Instantaneous power
Instantaneous 3  power is constant    


   

Implications: 3  motor receives constant torque


More generally, a balanced -based system has a total instantaneous power 


 for 


In constrast, instantaneous 1  power is sinusoidal 


ϕ
p3ϕ(t) := va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t) = 3P

ϕ

K
pKϕ(t) = KP K ≥ 3

ϕ
p(t) = P + P cos 2(ωt + θI) − Q sin 2(ωt + θI)



Three-phase power
Instantaneous power
Instantaneous 3  power is constant    





ϕ
p3ϕ(t) := va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t)

= |Va | | Ia |(cos ϕ + cos(2ωt + θV + θI))
+ |Va | | Ia |(cos ϕ + cos(2ωt + (θV − 2π/3) + (θI − 2π/3)))
+ |Va | | Ia |(cos ϕ + cos(2ωt + (θV + 2π/3) + (θI + 2π/3)))

= 3 |Va | | Ia |cos ϕ + |Va | | Ia |(cos θ(t) + cos(θ(t) − 4π/3) + cos(θ(t) + 4π/3))
= 0

= 3P



Savings from 3  systemϕ
Example 
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neutral line carries unbalanced current during asymmetrical conditions, e.g., due to line faults, and reduces
voltage transients during line switching or lightning events. Since the unbalanced current is much smaller
than the phase currents, the neutral line is typically much smaller in size and ampacity and therefore much
cheaper.

The following example illustrates the savings of a balanced three-phase system in materials and ther-
mal loss. Unlike in the case above the single-phase system in Example 1.5 consists of a single circuit
instead of three subcircuits. This example also explains why high voltages are used in the grid to reduce
thermal loss.

Example 1.5 (Single-phase vs three-phase systems). Consider two systems that deliver a specified ap-
parent power |S| at a specified voltage magnitude |V | to a constant power load, as shown in Figure 1.18.
The distance between the generation and the load is d. The first system is single-phased and the second
system is balanced three-phased. Compare the required amount of wire and thermal loss in the line in
these systems.

The line has an impedance z := r+ jx per unit length where the resistance r per unit length is inversely
proportional to the area of the line with proportionality constant r . The current density limit of the line is
d in ampere per unit area.

+

−

,
+

−

-

. = / + 12

.3 = .	or	0

!

Figure 1.18: A system that delivers power |S| to a load at voltage |V |. The distance between the generation
and the load is d. The line has an impedance z := r + jx per unit length.

Solution. A single-phase system requires two cables, one for return current, each carrying a current of
magnitude |I1f | = |S|/|V |. This is illustrated in Figure 1.18 with z0 = z. A balanced three-phase sys-
tem requires three cables, each carrying a per-phase apparent power of |S|/3 and a per-phase current of
magnitude |I3f | = |S|/(3|V |). The per-phase equivalent circuit is illustrated in Figure 1.18 with z0 = 0.

For the single-phase system the required cross-sectional area of the cable is

A1f :=
|I1f |

d
=

|S|
d |V |

Hence the amount of material (volume of the cable) required is

m1f := 2A1f d = 2
d|S|
d |V |

Spec:

Supply load with power  at voltage 

Distance between generator & load: 

Line impedance    ohm/meter  

Resistance / unit length  

Line current 

|S | |V |
d

z = r + ix
r = ρ

area
≤ δ area

Savings:

Material required:    


Active power loss:     


m3ϕ = 1
2 m1ϕ

l3ϕ = 1
2 l1ϕ



Summary
1. Single-phase systems


• Steady-state behavior of power systems can be described by voltage and current phasors

• Component models: single-phase devices (PSA Ch1), line (PSA Ch 2), transformer (PSA Ch 3)

• Phasors satisfy Kirchhoff’s and Ohm’s laws, as do corresponding time-domain quantities

• A one-line diagram is defined by its equivalent circuit


2. Three-phase systems

• A three-phase device can be in  or  configuration

• In a balanced system, all -configured devices have -equivalents

• All voltages and currents in a balanced three-phase system are in span  and phase-decoupled

• This enables per-phase analysis using an equivalent per-phase circuit


3. Complex power

• Single-phase complex power is ; instantaneous power is .


• Three-phase complex power is 


• Three-phase instantaneous power 

Y Δ
Δ Y

(α+)

S1ϕ := VaĪa pa(t) := va(t)ia(t)
S3ϕ := 1𝖳VI𝖧 = 3S1ϕ

p3ϕ(t) := ∑
ϕ

pϕ(t) = 3P


