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Course info

Course Al Policy: based on honor code
Use Al tools if and only if it is net help to your learning of course material

Implications:

* You should learn not just power system knowledge, but also how to think about power system problems
—> If it replaces your thinking through the materials, it impedes your learning

* One size cannot fit all: It is impossible to formulate precise rules that fit all situations, so use your

discretion to interpret “net”, “help”, “learning”, “material” in each situation

Pace: You drive the pace

 Default plan: Part | of PSA (mostly)

* | will adapt to your speed

 Let me know how the course can be made useful to your goals!



Why take this course

The topic is important?
The topic is interesting?
| want to pursue PhD in energy transition?

| want to work in energy industry (e.g. utilities)?

1.
2
3
4. | want to pursue entrepreneurship in energy transition?
5
6. Others:




Power System Analysis

Chapter 1 Basic concepts

Steven Low Caltech (Oct 3, 2025)
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Outline

1. Single-phase systems
 Phasor representation
* Single-phase devices
* Linear circuit analysis
* One-line diagram and equivalent circuit

2. Balanced three-phase systems
3. Complex power



Voltage and current phasors

Steady state behavior

Quantities of interest in power systems

« Voltage v(?) at a point: energy required to move a unit of charge from an (arbitrary but fixed) reference point to
that point (Volt, V)

« Current i(?) at a point: flow rate of electric charge through that point (Ampere, A)

* Instantaneous power p(?) := v(¢)i(?) : rate of energy transfer when a unit of charge is moved through a
voltage (potential difference) between two points (Watt, W)

In an AC (alternating current) system, they are sinusoidal functions of time with frequency w (Hz)
» Voltage v(¢) = Vg COS(w? + 0Oy))
 Current i(f) = Inax COS(@f + ;)
« Power p(?) := v(2)i(7)

Steady state = frequency w is fixed (constant over time) and the same everywhere in the system

e The voltage v(#) and current i(#) are completely specified by their amplitude and (phase) angle
 Nominal frequency: 60 Hz in US, 50 Hz in Europe, China



Voltage phasor

1. Voltage: v(f) = VmaxCos(wt+0y) = Re {VmaxeieV- eiwt}
. nominal system frequency
e Vimax : amplitude

0, : phase angle

Vimax
9 Phasor: V = '™

2

3. Relationship: v(f) = Re{\/zv,eia)t}

volt (V)

4. \oltage magnitude | V|: the root-mean-square (RMS) value

1 (' 1 ("
V| = \/?J' v (Ddt = \/?J V2 oy cos*(wt + 0))dt
0 0




Current phasor

1. Voltage: i(f) = Ipnaxcos(wt+0;,) = Re {Imaxeiel : eiwt}
*  :nominal system frequency
* Imax : amplitude

@, : phase angle

/ .
I ¢ — max elel

V2

3. Relationship: i(7) = Re{ﬁl,eia)t}

2. Phasor: ampere (A)

4. Current magnitude |/|: the root-mean-square (RMS) value

1 (" 1 ("
0 0




Single-phase devices

Impedance

Resistor: v(¢) = ri(f) (Ohm’s law)

di(t)
dt

Inductor: v(t) = [

dv(t)
dt

Capacitor: i(t) = ¢

these are basic
circuit elements
to model the grid



Single-phase devices

Impedance

Resistor: v(¢) = ri(f) (Ohm’s law)

. . N
. Hence Re <\/§ E e’(w”ev)) = Re {r] V2™ } \\\\i\\\
Vel
* In phasor domain: V = r/
di(t) N
Inductor: v(t) = [ N\
NN =

» Hence Re (ﬁ V] - ei(a)t+9V)> = Re {ia)ll- \/zeia”} - ) N

* In phasor domain: V = (iwl)]

dv(t)

Capacitor: i(f) = ¢ &
\ N\
\

dt
. Hence Re {I- \/Eeiwf} = Re (ia)c\ V\\/E : ei(wf+9v)>

« In phasor domain: V = (iwc)~ 1

these are basic
circuit elements
to model the grid




Single-phase devices

Impedance

Impedance or admittance: V =zI[, [ = yV

(1)

r,l,c

(a) Time domain

1
>

4o
. resistor: z.:=r, inductor: z; := iwl, capacitor: z.:= L
lC w(7)
In general, impedance 7z = r + ix
1 :resistance €2 -0
e X :reactance €2
Admittance y = z7! = g 4+ ib
. g:=r/(r* + x*) : conductance Q! o
e b:=—x/(r*+ x?) : susceptance Q! y

r,iwl, (iwc)™!

(b) Phasor domain



Single-phase devices

Sources

Voltage source (E, 7)

 Internal variables: internal voltage E; series impedance z

« Terminal variables: terminal voltage V; terminal current /

e Externalmodel: V=FE — 7/

Current source (J, y)

« Internal variables: internal current J; shunt admittance y

« Terminal variables: terminal voltage V; terminal current /

« External model: [ =J —yV

Voltage source (£, z) and current source (J, y) are equivalent (same external model) if

E 1
]:—, y = —
Z Z

Ideal sources: z =0, y =0

\ 4

O +

\ 4

O +




Devices are models

Circuit elements commonly used for modeling generators, loads, lines and transformers

Device Circuit model

Generator Voltage source, current source, power source

LLoad Impedance, current source, voltage source, power source
Line Impedance (Chapter 2)

Transtormer Impedance, voltage/current gain (Chapter 3)




Outline

1. Single-phase systems

* Linear circuit analysis
* One-line diagram and equivalent circuit

2. Balanced three-phase systems
3. Complex power



Circuit analysis

Phasor domain

physical system ., Etlilr}lllsew(?(irlsgs S analysis/sim S results
(W(?), i(?), p(?)) KC/VL, Ohm’s) (time domain) (time domain)
phasor physical laws analysis/sim results
representation » (phasor domain (phaso}ll’ domain) > (phasor domain)
(V,L,S) KC/VL, Ohm’s)




Circuit analysis: review

A brief review of circuit analysis for EE students

Mathematical background required

* Basic algebraic graph theory (see Appendix: Linear algebra preliminaries)



Circuit analysis

Circuit model

A circult is represented by a directed graph G = (N, E) with arbitrary orientation

Va\

« N := {nodes/buses}
. F = {lines/links/branches/edges} C Nx N links denoted by (j, k) orj — k

o There can be multiple links between two nodes, e.g., [, =j = k, [, =k =

Associated with each link [ = j — k are two vars

U, : branch voltage across link [ in direction of /

» J;: branch current from j to k

Each link [ represents one device
 Impedance z;: U; = zJ; (Ohm’s law)
» (Ideal) voltage source u; : U, = u; given

e (Ideal) current source J; : J; = J; given



Circuit analysis

Example
+ U, - + U, -
1 I 2 7 3
fz 8 ! & J; bbbl
vJ. YJ., Y J, 1] 1 f 1
+ + + + 2.1 111
(]15 = Us @ l]l3 Zl3 l]l4 Zl4 (]16 <T> Jl6 — _.]6 C — 3 _1 i 1
| -1 —1 -1 -1
A N 5 P
T ¢ ¢ G
(a) Circuit (b) Incidence matrix

Figure 1.4 A circuit represented as a directed graph G where each link / is either an impedance
77, a voltage source Uy, or a current source J;. The voltage source U s = U5 and current source
Ji, = —Je are given. Its incidence matrix C is partitioned 1nto Ci,Co, CA’3 corresponding to the
impedances, the voltage source, and the current source respectively.



Circuit analysis
KCL, KVL

Kirchhoff’s current law (KCL): incident currents at any node j sum to zero

_ Atall nodes j: Z Jii + Z

iii—jek kij—keE
- Example:atnode 2, -J;, +J;, +J, +J;, =0




Circuit analysis
KCL, KVL

Kirchhoff’s current law (KCL): incident currents at any node j sum to zero

_ Atall nodes j: Z Jii + Z

iii—jek kij—keE
- Example:atnode 2, -J;, +J;, +J, +J;, =0

Kirchhoff’s voltage law (KCL): voltage drops around any cycle ¢ sum to zero
Around all cycles c: Z U, — Z U =

lec —ZEC + Ul —

o Example: Ull -+ Ul3 — UZS — O o, 2, lz
Iy




Circuit analysis
KCL, KVL

Can represent KCL, KVL compactly in vector form
Let C € {—1,0,1 }W‘X‘E‘ be the node-by-link incidence matrix
1 ifl=j — kforsomebusk
éjl = 9 —1 ifl=1— jforsomebusi, jEN,lEE

0 otherwise

.>—J>— Y Ly [—>— [, [ [3 [ [s e
1 B _

qu
Il
83
(?)
N4
| L,?Q +
I
| EQ
I
| @NQ +
AN
-
o?k‘
Il
.
@)
Il
=~ (OS] (\®) o
|
| —_

1 él é2 63

(a) Circuit (b) Incidence matrix



Circuit analysis
KCL, KVL

Can represent KCL, KVL compactly in vector form
Let C € {—1,0,1 }W‘X‘E‘ be the node-by-link incidence matrix

1 ifl=j — kforsomebusk

N\ N\

CA,“]-Z = 3 —1 ifl=1— jforsomebusi, JEN,l€E

0 otherwise

Then
KCL: CJ = 0
KVL: U = C'V for some nodal voltage V & C'N | (wrt reference node)

Arbitrary reference: WLOG let N be reference node, i.e., Vi =



Circuit analysis

Problem formulation

Given: Circuit represented by | N| X | E| incidence matrix C

. Foreverylinkl € E
 Impedance z;: U; = z;J; (Ohm’s law)
« (Ideal) voltage source u; : U; = u; given
» (Ideal) current source J; : J; = J; given

+ KCL: CJ = 0

« KVLU = CTV

» Reference voltage: Vy 1=

Solve for: (V,J, U)

+ |N|+2|E]| + 1 (complex) equationsin |N| + 2| E| unknowns, at most |N| + 2| E| are linearly
independent



Circuit analysis

Problem formulation

Partition lines into £ =: £, U E, U E; with
. El : Impedances
. l:fz . voltage sources
. E3 . current sources



Circuit analysis

Problem formulation
Solve for: (V,J, U)

0 C 0 0.
0 -Z I N
£y
0 0 I U
|E2‘ V U
J —
0 lg O ’ i
CT 0 —ly Oj
00 0

where Z := Diag (zl,l S E)



Circuit analysis

Solution

Partition lines into £ =: E; U E, U E; with
. El : Impedances
. l:fz . voltage sources
. E3 . current sources

Let (|N| = 1) X | E| reduced incidence matrix C without reference row | N| and
. C = [Cl G, C3] according to lines in £, E,, E,

Partition variables in the same order

J | 4— ideal current sources (given)

“ideal current sources (given)



Circuit analysis

Solution

Then problem becomes

O Cl Cz O V A

—N _C ;
c/l -Z 0 0 J, 03J | )
T 0 0 0 J, = . where Z := Diag (zl,l S E)
M
Theorem

Suppose graph G is connected. M is invertible if
e« ¥ 1= CIZ_ICI IS Invertible; and | N| — 1 admittance matrix of subgraph induced by impedances

o C;Yl_lcz is invertible |E2\ X \Ez\ matrix corresponding to voltage sources



Circuit analysis
Solution

Theorem [existence & uniqueness of solution]

Suppose graph G is connected. M is invertible if

o Yl — CIZ_IC;_ is invertible: and | N| — 1 admittance matrix of subgraph induced by impedances

— e i : E X E matrix corresponding to voltage sources
. C, Y7!C, is invertible B[ X By ponding g

Conditions imply:

« Subgraph with all non-reference nodes induced by impedances is connected (Then, Y is always
invertible if Z is real, i.e., resistive subnetwork)

« Current sources in £ do not contain a cut set; hence j cannot violate KCL (currents on any cut sum to 0)

. C2 Is of full column rank, i.e., no voltage sources in E2 form a cycle; hence u cannot violate KVL
* These conditions are “almost” sufficient



Tellegen’s theorem

Tellegen’s theorem is consequence of 3 facts
o CIEl = nuII(CA’) @ range (CA’T> is direct sum
.« KCL: CJ =0,i.e.,J € nul(C)
. KVL: U = éTV, i.e., U € range (éT)

Therefore branch currents J and branch voltages U are orthogonal:

- JOU = 0 (Tellegen’s theorem)

J and U can be from different networks as long as they have the same incidence matrix C (topology) !



Outline

1. Single-phase systems

* One-line diagram and equivalent circuit
2. Balanced three-phase systems
3. Complex power



One-line diagram

A power system is often specified by a one-line diagram, not as a circuit
* The behavior of a one-line diagram is defined by its equivalent circuit

We formally define a one-line diagram and its equivalent circuit

Definition [One-line diagram]
A one-line diagram is a pair (G, Y) where

e G:=(N,E)is agraph

e Y = (y?}{, yjf}’j, y,’{f’}, [ = (], k) € E) is a set of line admittances

o yJ:‘)}c e C : series admittance; (yjf}';‘, yg]?) e C? : shunt admittances

Can accommodate transformers with Y := <(y]t§<, y]?/,’;‘), (y];., y,’g]?), [=(j,k) e E )



Equivalent circuit

Nodal devices
Associated with each node j € N are two variables

. V] € C : nodal voltage wrt common reference point (e.g., the ground)

. I] € C : nodal (net) current injection (from node j to rest of network)

Y o= <(yf2,yf12,y§”‘1),
(9330 Y55 V35 )
v, v, (30:3%1913) )

(a) Graph G = (N, E) (b) Line parameters Y




Equivalent circuit

Nodal devices
Associated with each node j € N are two variables

o V] € C : nodal voltage wrt common reference point (e.g., the ground)
. I] € C : nodal (net) current injection (from node j to rest of network)

e Interpretation: a nodal device(s) is connected between node j and the common voltage
reference point

V.= 7] I
» Impedance z].V] zJIJ | )
1
» Ideal voltage source v;: V. = v,
Jr T .
. . Vo= (v 3080
» |deal current source lj:]j= l o
(y23, Y235 y32) ’
I, 1
S m m
V, v, (y31,y31,y13))

(a) Graph G = (N, E) (b) Line parameters Y



Equivalent circuit
Single line <y]?}€,y;}’§,y,?]f‘>
Behavior of one-line diagram is defined by its equivalent circuit

* Equivalent circuit of entire diagram is determined by equivalent circuit of single line

(o3 %)

7 L1, One-line diagram (single line)

+ U, -
L Ix 2
- Equivalent circuit of { y:,, v, v/
Y, lflz L, 9 q y]ka y]k9 yk]
* + + + Includes reference point (i.e., eq circuit has | N| := | N| + 1 nodes)
U,=V <T> 1 iz | Uy V3 | U L <T> Us=V>

. . . « Nodal injection I] from reference point (node 3) to node J

« Suppose an ideal current source I] is between node j and ref node 3




Equivalent circuit of single line

Circuit analysis
et directed graph G = (N, E) represent the equivalent circuit

1 1 0 1 0]
-1 0 1 0 1
L0 -1 -1 -1 —1.

e N := {1,2,31, E = L=1-2L=1-3:=2-3,l,:=1-3,:=2 > 3} C :

e Links ll . Jll :yfoll’ 12 . le :yianlz, l3 . Jl3 :yénlU%

- Nodal devices : I : J, =—1, s : Ji.=—1,

A Vo N

« KCL: CJ =0, KvL: 3V:=(V,V,,Vy) st. U= C'V

+ Ull -~
1 Uh - 2
l L Eliminate branch vars (U, J) relates nodal vars (I, V)
V‘]14 le Y ‘]l3 Y st I — YV
U,= V1+<T I, i (;12 o (23 LU, =7, where the admittance matrix is
\)

_ _ : v [Pty v
=Y Yt mL




Equivalent circuit
One-line diagram (G, Y)
Equivalent circuit represented by directed graph G = (N, E) constructed from G := (N, E)

+ N := NU{|N|+ 1} withnode N := | N| + 1 as reference point (V := 0)
 Eachj € N in one-line diagram G gives rise to a link [ := j — Nin equivalent circuit G

» Each line (j, k) € E in one-line diagram G gives rise to 3 links (ljk, lﬂQ,, lkN) in equivalent circuit G

A\

| = EUEN Wherel:fﬁzz {Iinksj—>]<7}

Same analysis relates nodal vars (I, V) : I =YV where Y is admittance matrix

Equivalent circuit G := (N, E)

(a) Graph G = (N, E)

*3




Outline

1. Single-phase systems

2. Balanced three-phase systems
* Internal and terminal vars
. Balanced vectors and conversion matrices I',I""
« Balanced systems in Y configurations

« Balanced systems in A configurations
 Per-phase analysis

3. Complex power



Balanced 3-phase system

3 single-phase system: single 3-phase system:
* | . ; I I a'
E 5‘ oL > T
B | | 7/

>

il I |
- \ | . C
| 1 \ g

| 1
E i L ]
"




Internal variables

Y configuration

Each single-phase device can be 4 oy

* \/oltage source, current source, impedance, ideal or not ;

Internal (line-to-neutral or phase) voltage, current, power:

I/
— : > oV/?P
Van Ian Scm Vanldn : C .
VY L= Vbn , IY = Ibn : SY s Sbn e Vbl’ljbn ............................................. ! oV
Vcn I cn K\ cn Vcnicn n' I» =1 oy

neutral voltage (wrt common reference pt) V"' € C
neutral current (away from neutral) I" € C

Device may or may not be grounded, and neutral impedance z" may or may not be zero



Internal variables

A configuration

Internal (line-to-line or phase-to-phase) voltage, current, power:

Vab Iab Sab Vabjab
VA .= Vbc : IA = Ibc , SA = Sbc = Vbcibc
yed [ gcd Vcajca




Terminal variables

Terminal voltage, current, power (for both Y and A):

Va Ia Sa Vaia
V= Vb , [ = Ib , § .= Sb .= Vbib
VC IC SC VCTC

« Vs with respect to an arbitrary common reference point,
e.g. the ground

« [ and s are in the direction out of the device

----------------------------------------------

----------------------------------------------



Conversion rules

Y_Conﬁgured device S o I
Vv=v'+vm,  I=-1 EEELE

. V=VYif V" =0, i.e., if neutral is directly grounded and ground is voltage
reference

A-configured device

----------------------------------------------

yab 1 —10 Ve I 1
veel =1 0 -1 |vel, |72l =-1|-1 10 Jbe
yca —1 01 Ve I€ 0

----------------------------------------------



Internal vs external model

1. Internal model depends only on type of single-phase devices r —ov
+ Internal model: relation between (V4,14 s¥/2) : -
* \oltage/current/power source, impedance G
 Independent of Y or A configuration p: b j Sy

T

2. Conversion rule depends only on type of configuration e ’
 Converts between internal and terminal variables " o
. Depends only on Y or A configuration e — PRV
* |ndependent of type of single-phase devices : :

3. External model = Internal model + Conversion rule 3 : Q -
 External model: relation between (V, I, s) , . b oy
* Devices interact over network only through their terminal variables v (R




Conversion matrices

1 -1 0

1 0 1

Incidence matrices for:

(a) I

(b) T'T



Conversion matrices

Convert between internal vars and terminal vars

yab 1 -1 01 | V¢
VbC — 0 ] —1] Vb ]
yca —1 0 14 | ye

r




Conversion matrices

Convert between internal vars and terminal vars

Vab 1 —1 0 Ve
VbC — () 1 _1 Vb ]
L —1 0 1
1: 5
In vector form
= TV, I =
Internal terminal terminal
voltage voltage current

Internal
current

I 0 -1

1 0

0 -1 1
[T J



Balanced vector

Definition

A vector x (= (xl,xz, xg) with x; = \xj | e'’ € C is called balanced if

s x| = Il =[x
| 2T T -
. Either 0, — 0, = 3 and 0, —0, = 3 (positive sequence)
T 27 |
or 0, — 0, = 3 and 0, —0, = 3 (negative sequence)



Spectral properties of I, "'

| et
1. o .« — e—i2ﬂ/3

2. Positive and negative sequence vectors:

1 1
a, = | af, a_ = | 2
0{2 0

Balanced vectors in positive and negative seq: x = aa,, y = ba_ fora,b € C

Balanced system: all voltages and currents are in span(a,) WLOG

3. Fortescue matrix

1 1 1
1 1
F = —— [1 a, 0{_] = — |] « az

\/§ \/glaza

Symmetrical components are similarity transformation using matrix F

J3

Re



Spectral decomposition of ', I’

Theorem

1F_1:FH:F:\/§[1 a_ a_|_]

2. Elgenvectors and eigenvalues are given by the spectral decomposition:
[ = F 1 —a F, ' = F 1 —a

where 1 —a = \/§eiﬂ/6 and 1 — a2 — \/ge—iyz/6

Transformation of balanced vectors by (I, T'")
[1= 0, l'a, = (1 —a)a,, Fa_ = (1 —ad)a_

' =0, N = (1-a)a_, FTa+ = (1 -— 052)05+




Spectral decomposition of ', I’

Corollary

For any balanced vector (positive seq) x € span(« +) andy € C
1.1'x+9y1) = (1 —a)x

2. TTx+y1) = (1 —a’)x

3. I'T'x+9y1) = T'T'(x+y1) = 3x

For balanced 3-phase systems, this result is enough.
For unbalanced systems, we need to study pseudo-inverses of (I, ")



Spectral properties of I, "'

Almost all properties of balanced 3-phase systems originate from properties of (« 4 a_) and their
transformation under (F, FT)

1. Transformation by (F, FT) preserve balanced nature of a vector, ensuring that all voltages and
currents are balanced in a symmetric network driven by balanced sources

2. This is because balanced sources are in span(c, ) (or span(a_) for negative-seq systems), and
(., a_) are eigenvectors of (F I T); see Theorem

3. For unbalanced systems, sources have a mix of components in span(a, ), span(a_), span(1)
and hence transformation by (F, FT) maintains the mix



Balanced systems

Implications

1. Informally, a balanced system is one in which all voltages and currents are in span(a +) (WLOG)

2. Balanced voltage and current sources are in span (a )

3. Voltages and currents at every point in a network can be written as linear combination of
transformed source voltages and source currents, transformed by (F, FT)

4. But a_ are eigenvectors of (F, FT) —> transformation by (F, FT) reduces to scaling by

2

] — aand 1 — a“ respectively (provided impedances & lines are balanced)

5. = all voltages and currents remain in span(a +)

Formal statement and proof need to walit till Part lll where we study unbalanced systems



Outline

1. Single-phase systems
2. Balanced three-phase systems

« Balanced systems in Y configurations

« Balanced systems in A configurations
 Per-phase analysis

3. Complex power



Balanced 3-phase systems

Y configuration
............................................... Ia ceessececesessscesessscssssssstsssssssseset o e I Ceeececescecesstsssesessssssesetsssesstsse e e te I
| > oVy¢ > oVy¢ > oV
< ]
+ s Z
E -
po_ V' g Vi g 4
P ST . elel
v/ @ I> oV’ n v]” ]> oV’ v/ I> oV’
z" z" Z
I I ) I
............................................... > OVC P R R I > OV R R mImnmmnnIInnnmnnnmnInnnrn > OVC
1 I" , 1 I , 1 I ,
n > oy”" n > oy”" n > oy”"

(a) Voltage source E Y (b) Current source JY (¢) Impedance z¥
p

Balanced voltage source if internal voltage E is a balanced vector and z* := 7l

« positive sequence: E =146, E"™=120-120°, E" =140+ 120 E' span(a,.)
 negative sequence: E™m=1,0, E"=1.0+ 120",

E" =140 — 120°

EY € span(a.)
Balanced current source if J¥ := (J%, Jb" JM) € apan(a, ) and yt =y

Ideal sources: z=0, y =0
Balanced impedance if impedances are identical, i.e., 7! := 7l



Balanced 3-phase systems

Y configuration
............................................... Ia Ia I
| > V > oy¢
zv : 1
= s Z
E V' E oy v
Proije Foak: e,
I @ ] % n Y @ oy I N
z" z" Z
I I ) 1
............................................... > V D > OV S T
1" v I , I
n > 1% n V n

(a) Voltage source E Y (b) Current source JY (¢) Impedance zY

Corollary implies:

1. Sumto zero: E” + EP" + E" = (0 and J¥ + JP" + J" = ()

becasuse E' = E”a, = 1TEY =E" (17a,) =0



Balanced 3-phase systems

Y configuration
............................................... Ia I I
| > oVy¢ > oy¢ > V
< : ]
- e :
E V' E il v
Prejje e, ele.
v/ @ I> V4 n v]" @ ]> oV’ v/ I> oV’
7" z" <
[° Il . Il
............................................... > OVC P R R I > OV R R mImnmmnnIInnnmnnnmnInnnrn > OVC
7 1" v I | 7 I |
n B V n > oy" n > oy"

(a) Voltage source E Y (b) Current source JY (¢) Impedance zY

Corollary implies:

2. ldeal voltage source (ZY := 0): line voltage V“ne IS balanced.:

V=E"+V"=E", -

-V = VI .=TV=E"Ta,) = (1 -a)E"

phases are decoupled



Balanced 3-phase systems

Y configuration
............................................... Ia I I
| > oVy¢ > oy¢ > V
< : 1
= s Z
£ V'_ o V" b 1%
DT . BTE ..  ehel .
1 @ ]’ % n \E @ ]> oV’ v/ I> VP
7" z" <
I : I ) I
> OVC ............................................... > OV ............................................... > OVC
1" v I | I |
n B V n > oy" n > oy"

(a) Voltage source EY (b) Current source JY (¢) Impedance zY
g

Corollary implies:

3. ldeal current source (yY := 0): terminal current [ is balanced:

[=-JY

phases are decoupled



Phase decoupling

Example

Given balanced ideal voltage source and
impedance in Y configuration, show that

1. Neutral-to-neutral voltage V, ., = 0

” 2. Internal voltages and currents across
Impedances are balanced

3. Passes are decoupled

(a) Balanced three-phase system

Solution

Internal vars E¥ := (E“”, E™ EC”), VY= (V“'”/, Vo VC/”’), 1Y = (I“'”’, P IC'”'), V", V" neutral voltages

Terminal voltages V := (V“, %3 VC)

KVL, KCL, Ohm'slaw: EY = V—v™, VY = v—-v™1, V! = ¥, 171" = 0

Hence EY — VY = (V”’— V”) 1and 1! (EY— V/Y) =3 (V”’— V”) —> 3 (V”’— V”) = —7 (1TI'Y) = 0
e, V. =0

— VY=FEY ¢ (V” — V”’) 1=E", Y = yV’Y = yEY, i.e., V¥and I'Y are balanced and phase-decoupled



Phase decoupling

Example
: ] Given balanced ideal voltage source and
: r ‘ impedance in Y configuration, show that
O : 1. Neutral-to-neutral voltage V, , =
) Y : ot 2. Internal voltages and currents across

Impedances are balanced

(a) Balanced three-phase system (b) Equivalent per-phase system

Solution [per-phase analysis]

Balanced and phase-decoupled voltages and currents lead to equivalent per-phase system and per-phase
analysis

» Since V, = 0, can assume a neutral line between n and n’ (same potential)
* Analyze phase a equivalent circuit
» Variables in phases b and c are obtained from phase-a variables and rotating by 120°



Phase decoupling

Example

f | ’ | Show:

| 1. VWi = ymm = ()

l l , l 2. All currents and voltages are balanced
¢ b c b, positive sequence sets

: — 3. Phases are decoupled, I.e.,

t t E" = V4 4 v

One line diagram: an — alaz an
Vi Vas + vy

@)
i
i

Solution: see PSA Ch 1



Phase decoupling

Example

> t ¢ A

D t A

One line diagram:

B '@

«—

Show:
1. Vi = Y =

Implications:

e /ero currents on neutral lines even |if

present = can assume neutrals are
connected or not for analysis

» No physical wires necessary for return |
_currents, saving materials |



Phase decoupling

Example
A : T : ] Phase a equivalent circuit:
E | | 1. Vo = yim = ()

> 5 4 +
E“( ) [
One line diagram:

@)
L
L




Outline

1. Single-phase systems
2. Balanced three-phase systems

« Balanced systems in A configurations
 Per-phase analysis

3. Complex power



Balanced 3-phase systems

A configuration

I’ &
> oy 7 > oy
I I°
> OVC G0 0000000000000 0000000000000000000000000000000s > OVC
(a) Voltage source E A (b) Current source J2 (¢) Impedance 74
Balanced voltage source if internal voltage E A is a balanced vector and z2 := z%I
« positive sequence: E® =140, E"=120-120°, E“ =140+ 120° EA € span(a,.)
» negative sequence: E® =140, E" =120+ 120°, E“ =146 — 120" EA span(a_)
Balanced current source if J* := (J%, JP¢, J¢%) & apan(a, ) and yA 1= y¥| Ideal sources: z=0, y =0

Balanced impedance if impedances are identical, i.e., ZA — z“bI]



Balanced 3-phase systems

A configuration

T8 &
> oy¢ >
I’ I’
> o’ z >
LI L
> oy¢ >
(a) Voltage source E A (b) Current source J2 (¢) Impedance 74

Corollary implies:
1. Sumtozero:1TE2A =0 and 1'T7=0

because E2 = E"ba+ and I=—-T"12 = 1T[=—-1TTT/2A =0



Balanced 3-phase systems

A configuration

1
o P 7" > oy?
I
OVC 0000000000000 00000000000000000000000000000000s > OVC
(a) Voltage source E A (b) Current source J2 (¢) Impedance 74
Corollary implies:
A ()1 line _ y/A .
2. ldeal voltage source (z= := 0): line voltage V'"™® = V= is balanced
3. Ideal current source (y* := 0): terminal current I = — T''J2 = — (1 — a?)J? since JA € apan(a, )

Phases are decoupled, but what is a per-phase equivalent circuit ?



Balanced 3-phase systems

Example

- +
E €09 E 0o

> 5

> 5

Analysis shows: if E2 € span(a,) then

« Terminal current [ := (/%%, [ooh1, [€0°1), voltage drop across line V := (V%“, Vhobi, V1), and load voltage
U~ .= (V@b yhia yad) gre balanced

Phases are decoupled, but what is a per-phase equivalent circuit ?



A — Y transformation

Voltage and current sources

Given: A device (e.g., voltage source) with internal voltage and current (V2, I?)

Y IY

Equivalent Y-configured device: one with internal voltage and current ( eq Leq

has an equivalent external behavior:
identical line-to-line voltage: Fng =

. . . ] Y _
identical line current: qu —

zero neutral voltage ng =0 s.t. ng

Balanced system: all voltages and currents are in span(a,. )

Hence
VA

Veq = . g = (1=a)I%, Vi,

l —«a

VA

A
17/q =0

0

) that




A — Y transformation

Voltage and current sources

Example
EA

\/_em/6

2. Current source (ideal) J2 : Y-equivalentis J¥ = (1 —a?)J? = \/_e_”%JA

1. Voltage source (ideal) E2 : Y-equivalentis E¥ = (1 — ) 'EA

Balanced system: all voltages and currents are in span(a,,. )

Hence
VA

Veq = — Igg = I—a)I*,  Vig =0




A — Y transformation

Impedance

Given: balanced impedance Z2 := Diag (ZA, z5, ZA) componentwise

Y-eq: balanced impedance Z' := Diag (ZY, z”, ZY) with equivalent external behavior yine g,



A — Y transformation

Impedance
Given: balanced impedance Z2 := Diag (ZA, 78, ZA) componentwise
Y-eq: balanced impedance Z' := Diag (ZY, z”, ZY) with equivalent external behavior yine g,
Z* : balanced imp Z" . Y-equilent
internal model VA = ZAA vi=2z"T1"

line-to-line voltage yline

terminal current /

Vline %I



A — Y transformation

Impedance
Given: balanced impedance Z2 := Diag (ZA, 78, ZA) componentwise
Y-eq: balanced impedance Z' := Diag (ZY, z”, ZY) with equivalent external behavior yine g,
Z* : balanced imp Z" . Y-equilent
internal model VA = ZA[A vt =2z"1"
line-to-line voltage yline VA = ZAA
terminal current / —T'IA=—-(1-a?I?

yine g | phase-a = — z2/(1 — a?)



A — Y transformation

Impedance
Given: balanced impedance Z2 := Diag (ZA, 78, ZA) componentwise
Y-eq: balanced impedance Z' := Diag (ZY, z”, ZY) with equivalent external behavior yine g,
Z* : balanced imp Z" . Y-equilent
internal model VA = ZA[A vt =2z"1"
line-to-line voltage yline VA = ZA[A rvi=Q1-a)Z'I1"
terminal current / T2 =—(1 = ad)I? [=-1"

yiine o 1 ohase-a = — z2/(1 —a?)  phase-a = — (1 — )z



A — Y transformation

Impedance
Given: balanced impedance Z* := Diag (ZA, 78, ZA) componentwise
Y-eq: balanced impedance Z' := Diag (ZY, z”, ZY) with equivalent external behavior yine g,
Z* : balanced imp Z" . Y-equilent
internal model VA = ZAIA vt=27"T1"
line-to-line voltage yline VA = ZAA rvi=1-a)Z'I"
terminal current / T2 =—(1 = ad)I? [=-1"
yine g | phase-a = — z2/(1 — a?) phase-a = — (1 — a)z"
A A
Equivalent external behavior vineg 1 — ;Y= . _
(1 —a)(1 — a?) 3

Y-equivalent admittance yY - 3yA



Outline

1. Single-phase systems
2. Balanced three-phase systems

 Per-phase analysis

3. Complex power



Per-phase analysis

1. Convert all voltage sources, current sources, impedances in A configuration into their Y
-equivalents

2. Solve for phase a vars using equivalent phase a circuit with all neutrals directly connected

3. If all sources are in positive-sequence sets, phase b and ¢ vars are determined by

subtracting 120° and 240° respectively from corresponding phase a vars. (If all sources are
negative-sequence, add 120° and 240° instead.)

4. If vars in the internal of a A configuration are desired, drive them from original circuit.



Per-phase analysis

Example

1 1, 5 ) Find: ll(t) and Vz(t)

[, | va(2)

@)
i
s



Per-phase analysis

Example

a,
a, 5
tl 2
ao — 31,
—_— n,
+ v P . s
/ /\ b
b C .
4R | |
Co N
t -
> tl 2
L b A — Y transformation n
1
One line diagram: l
I
(—] i h al
ay .
[
% — 3l )
Ean
n,
I\ bt
ny




Per-phase analysis

Ao ; a ; a,

N
Ean S 3l l

’/;0 n1 n

t 4 t
[, | vy(2)
1, (7)
E®=\3e/"F [
O b H b b

Find: {,(?) and v,(?)

Solution:

1. Using per-phase circuit, solve for V4" and V%™
3. () = \/5 11} cos (a)t+ 4["101)

4. To calculate [, obtain V4?1 = \/gei%V“l”l
5. Obtain [“?1 = ZIValbl — \/glleiﬂmvaml

6. Obtain %€ — _IalbleiZﬂB — 3 3e—i7t/6llva1n1



Per-phase analysis

1. Convert all voltage sources, current sources, impedances in A configuration into their Y
-equivalents

2. Solve for phase a vars using equivalent phase a circuit with all neutrals directly connected

3. If all sources are in positive-sequence sets, phase b and ¢ vars are determined by

subtracting 120° and 240° respectively from corresponding phase a vars. (If all sources are
negative-sequence, add 120° and 240° instead.)

4. If vars in the internal of a A configuration are desired, drive them from original circuit.

' Can this approach be formally justified for general networks ?
| Yes, see Part lll on Unbalanced three-phase networks



Outline

1. Single-phase systems
2. Balanced three-phase systems

3. Complex power
* Single-phase power
 Three-phase power

» Advantages of 3¢ systems



Single-phase power

Instantaneous power:

p(t) = v(@)i(1)

Vinax!
— ma; max (cos(é’v — 0;) + cos(Qwt + 6, + 6’1))
Average power:
%IOT p(Hdt = Vmaélmax cos(6y — 6y)

¢ :=0,— 0, : power factor angle



Single-phase power

Complex power:

— V ) : :
S = VI = ma>;max e W0 = |V||I|e"?

Active and reactive power:
P := |V||I|cos¢p kW Q= |V||I|sin¢g var

Apparent power:

S| = |V||I]| = \/P2+Q2 VA



Instantaneous and complex power

Relationship:
p(t) = P + Pcos2(wt+ 60, — Qsin2(wt + 0))

Average power:
1 ¢T
P = ?jo p(1)dt



Power delivered to impedance

Voltage and current across impedance are related
V=z

Complex power
S = |z||[I]Pe”, ¢ :=s12=6,-6

k4 p=Lz P 0
Resistor z =r r 0 r|I]? 0
Inductor z = iwl wl /2 0 wl|1)?
Capacitor z = (iwe)™!  (we)™V  =n/2 0 —(we)~ Y1)

Table 1.2 Power delivered to RLC elements.

purely real power
purely reactive power

purely reactive power



Power delivered to impedance

Instantaneous power delivered to
resistor r : p(1) P él + cos 2 (a)t + 91) )
inductor iw! : p(?) sin 2 (a)t + 91)
capacitor (ia)c)_1 . p(1) (O sin 2 (a)t + HV)



Three-phase power
Complex power

Per-phase power: S =V 1

an-dan

Three-phase power: 53, = V[ +Vv, I, +V. I = 38

an—an cncn

because V¥ := V¥q, and I' := [“"a,, and hence

Sy = I'MVY = V" "(ala,) = 3S (@a, =3)




Three-phase power

Instantaneous power

Instantaneous 3¢ power is constant

P31 = v, (Di () + v, i (D) +v.(Di(t) = 3P
Implications: 3¢ motor receives constant torque

More generally, a balanced K-based system has a total instantaneous power

In constrast, instantaneous 1¢ power is sinusoidal

p(t) = P + Pcos2(wt+ 0, — Qsin2(wt+ 0))



Three-phase power

Instantaneous power

Instantaneous 3¢ power is constant

v ()i (1) 4+ vi,(Di, (1) + v.(0)i ()

RAAA (cos ¢ + cosQLwt + 0y, + «9,))

+ |V, |I1,](cos¢ + cosQawt + (0, — 2x/3) + (6, — 27/3)))

+ |V, |11, | (cos ¢ + cosQut + (6, + 27/3) + (6, + 27/3)))

31V, |1, lcosp + |V,|IL](cosO@) + cos(0(t) — 4n/3) + cos(0(t) + 47/3))

P3p(1) 1=

3P

\ -

_—

=0



Savings from 3¢ system

Example

—

Z=1r++jx

ﬂ

Zg =zor0

N

@

Spec:
Supply load with power | S| at voltage | V|
Distance between generator & load: d
Line impedance z = r + ix ohm/meter

Resistance / unit length r = .
area
Line current < o area
Savings:
Material required: mj3, = %mlqb

Active power loss: 15, = %llqb



Summary

1. Single-phase systems
« Steady-state behavior of power systems can be described by voltage and current phasors
« Component models: single-phase devices (PSA Ch1), line (PSA Ch 2), transformer (PSA Ch 3)
 Phasors satisfy Kirchhoff’s and Ohm’s laws, as do corresponding time-domain quantities
A one-line diagram is defined by its equivalent circuit

2. Three-phase systems
* A three-phase device can be in Y or A configuration
 In a balanced system, all A-configured devices have Y-equivalents

- All voltages and currents in a balanced three-phase system are in span(a,.) and phase-decoupled
* This enables per-phase analysis using an equivalent per-phase circuit

3. Complex power
- Single-phase complex power is S}, := V4% instantaneous power is p%(t) := v(1)i%(t).
« Three-phase complex power is S3¢ = 1TV = 3Sl¢

Three-phase instantaneous power p3¢(t) = Z p?(t) =3P
¢



