### Course info: EE/CS/EST 135

#### Text:

#### **Power System Analysis**

Analytical tools and structural properties

STEVEN H. LOW

California Institute of Technology slow@caltech.edu

Draft at: https://netlab.caltech.edu/book\_reg/

Units: (lecture-lab-prep) = (3-3-3), letter or P/F

Lectures: Tue/Thur 10:30-11:55am, Rm 314 ANB

Instructor: Steven Low, slow@caltech.edu, Rm 219 ANB

Office hour: Just email me any time to arrange

Grading: attendance/participation, homework, project

### Course info

Course Al Policy: based on honor code

Use Al tools if and only if it is net help to your learning of course material

#### Implications:

- You should learn not just power system knowledge, but also how to think about power system problems If it replaces your thinking through the materials, it impedes your learning
- One size cannot fit all: It is impossible to formulate precise rules that fit all situations, so use your discretion to interpret "net", "help", "learning", "material" in each situation

Pace: You drive the pace

- Default plan: Part I of PSA (mostly)
- I will adapt to your speed
- Let me know how the course can be made useful to your goals!

## Why take this course

- 1. The topic is important?
- 2. The topic is interesting?
- 3. I want to pursue PhD in energy transition?
- 4. I want to pursue entrepreneurship in energy transition?
- 5. I want to work in energy industry (e.g. utilities)?
- 6. Others: \_\_\_\_\_

## Power System Analysis

**Chapter 1 Basic concepts** 

### Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
- 3. Complex power

### Outline

- 1. Single-phase systems
  - Phasor representation
  - Single-phase devices
  - Linear circuit analysis
  - One-line diagram and equivalent circuit
- 2. Balanced three-phase systems
- 3. Complex power

## Voltage and current phasors

#### Steady state behavior

Quantities of interest in power systems

- Voltage v(t) at a point: energy required to move a unit of charge from an (arbitrary but fixed) reference point to that point (Volt, V)
- Current i(t) at a point: flow rate of electric charge through that point (Ampere, A)
- Instantaneous power p(t) := v(t)i(t): rate of energy transfer when a unit of charge is moved through a voltage (potential difference) between two points (Watt, W)

In an AC (alternating current) system, they are sinusoidal functions of time with frequency  $\omega$  (Hz)

- Voltage  $v(t) = V_{\text{max}} \cos(\omega t + \theta_V)$
- Current  $i(t) = I_{\text{max}} \cos(\omega t + \theta_I)$
- Power p(t) := v(t)i(t)

Steady state = frequency  $\omega$  is fixed (constant over time) and the same everywhere in the system

- The voltage v(t) and current i(t) are completely specified by their amplitude and (phase) angle
- Nominal frequency: 60 Hz in US, 50 Hz in Europe, China

## Voltage phasor

- 1. Voltage:  $v(t) = V_{\max} \cos(\omega t + \theta_V) = \text{Re}\left\{V_{\max} e^{i\theta_V} \cdot e^{i\omega t}\right\}$ 
  - $\omega$ : nominal system frequency
  - $V_{\text{max}}$ : amplitude
  - $\theta_V$ : phase angle
- 2. Phasor:  $V := \frac{V_{\text{max}}}{\sqrt{2}} e^{i\theta_V}$  volt (V)
- 3. Relationship:  $v(t) = \text{Re}\{\sqrt{2}V \cdot e^{i\omega t}\}$
- 4. Voltage magnitude |V|: the root-mean-square (RMS) value

$$|V| = \sqrt{\frac{1}{T} \int_0^{\mathsf{T}} v^2(t) dt} = \sqrt{\frac{1}{T} \int_0^{\mathsf{T}} V_{\mathsf{max}}^2 \cos^2(\omega t + \theta_V) dt}$$

## Current phasor

- 1. Voltage:  $i(t) = I_{\max} \cos(\omega t + \theta_I) = \text{Re} \{I_{\max} e^{i\theta_I} \cdot e^{i\omega t}\}$ 
  - $\omega$ : nominal system frequency
  - $I_{\text{max}}$ : amplitude
  - $\theta_I$ : phase angle
- 2. Phasor:  $I:=\frac{I_{\max}}{\sqrt{2}} e^{i\theta_I}$  ampere (A)
- 3. Relationship:  $i(t) = \text{Re}\{\sqrt{2}I \cdot e^{i\omega t}\}$
- 4. Current magnitude |I|: the root-mean-square (RMS) value

$$|I| = \sqrt{\frac{1}{T} \int_0^{\mathsf{T}} i^2(t) dt} = \sqrt{\frac{1}{T} \int_0^{\mathsf{T}} I_{\mathsf{max}}^2 \cos^2(\omega t + \theta_I) dt}$$

## Single-phase devices

#### Impedance z

Resistor: v(t) = ri(t) (Ohm's law)

Inductor: 
$$v(t) = l \frac{di(t)}{dt}$$

Capacitor: 
$$i(t) = c \frac{dv(t)}{dt}$$







these are basic circuit elements to model the grid

## Single-phase devices

#### Impedance z

Resistor: v(t) = ri(t) (Ohm's law)

- . Hence  $\operatorname{Re}\left(\sqrt{2}\left|V\right|\cdot e^{i(\omega t+\theta_{V})}\right)=\operatorname{Re}\left\{rI\cdot\sqrt{2}e^{i\omega t}\right\}$
- In phasor domain: V = rI

Inductor: 
$$v(t) = l \frac{di(t)}{dt}$$

- . Hence  $\operatorname{Re}\left(\sqrt{2}\left|V\right|\cdot e^{i(\omega t+\theta_{V})}\right)=\operatorname{Re}\left\{i\omega lI\cdot\sqrt{2}e^{i\omega t}\right\}$
- In phasor domain:  $V = (i\omega l)I$

Capacitor: 
$$i(t) = c \frac{dv(t)}{dt}$$

- . Hence  $\operatorname{Re}\left\{I\cdot\sqrt{2}e^{i\omega t}\right\} = \operatorname{Re}\left(i\omega c\,|\,V|\sqrt{2}\cdot e^{i(\omega t + \theta_V)}\right)$
- In phasor domain:  $V = (i\omega c)^{-1}I$







these are basic circuit elements to model the grid

## Single-phase devices

#### Impedance z

Impedance or admittance: V = zI, I = yV

. resistor:  $z_r := r$ , inductor:  $z_l := i\omega l$ , capacitor:  $z_c := \frac{1}{i\omega c}$ 

In general, impedance z = r + ix

- r: resistance  $\Omega$
- x: reactance  $\Omega$

Admittance  $y = z^{-1} = g + ib$ 

- $g := r/(r^2 + x^2)$ : conductance  $\Omega^{-1}$
- $b := -x/(r^2 + x^2)$ : susceptance  $\Omega^{-1}$



(a) Time domain



(b) Phasor domain

# Single-phase devices Sources

#### Voltage source (E, z)

- Internal variables: internal voltage E; series impedance z
- Terminal variables: terminal voltage V; terminal current I
- External model: V = E zI

#### Current source (J, y)

- Internal variables: internal current J; shunt admittance y
- Terminal variables: terminal voltage V; terminal current I
- External model: I = J yV



Voltage source (E,z) and current source (J,y) are equivalent (same external model) if

$$J = \frac{E}{z}, \qquad y = \frac{1}{z}$$

Ideal sources: z = 0, y = 0

### Devices are models

Circuit elements commonly used for modeling generators, loads, lines and transformers

| Device                          | Circuit model                                                                                                                                                                   |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generator Load Line Transformer | Voltage source, current source, power source<br>Impedance, current source, voltage source, power source<br>Impedance (Chapter 2)<br>Impedance, voltage/current gain (Chapter 3) |

### Outline

- 1. Single-phase systems
  - Phasor representation
  - Single-phase devices
  - Linear circuit analysis
  - One-line diagram and equivalent circuit
- 2. Balanced three-phase systems
- 3. Complex power

#### **Phasor domain**



## Circuit analysis: review

A brief review of circuit analysis for EE students

Mathematical background required

• Basic algebraic graph theory (see Appendix: Linear algebra preliminaries)

#### Circuit model

A circuit is represented by a directed graph  $\hat{G}:=(\hat{N},\hat{E})$  with arbitrary orientation

- $\hat{N} := \{\text{nodes/buses}\}$
- $\hat{E} := \{\text{lines/links/branches/edges}\} \subseteq \hat{N} \times \hat{N}$

links denoted by (j, k) or  $j \rightarrow k$ 

• There can be multiple links between two nodes, e.g.,  $l_1 = j \rightarrow k$ ,  $l_2 = k \rightarrow j$ 

Associated with each link  $l = j \rightarrow k$  are two vars

- $U_l$ : branch voltage across link l in direction of l
- $J_l$ : branch current from j to k

#### Each link l represents one device

- Impedance  $z_l$ :  $U_l = z_l J_l$  (Ohm's law)
- (Ideal) voltage source  $u_l$ :  $U_l = u_l$  given
- (Ideal) current source  $j_l$ :  $J_l = j_l$  given

#### Example



**Figure 1.4** A circuit represented as a directed graph  $\hat{G}$  where each link l is either an impedance  $z_l$ , a voltage source  $U_l$ , or a current source  $J_l$ . The voltage source  $U_{l_5} = u_5$  and current source  $J_{l_6} = -j_6$  are given. Its incidence matrix  $\hat{C}$  is partitioned into  $\hat{C}_1, \hat{C}_2, \hat{C}_3$  corresponding to the impedances, the voltage source, and the current source respectively.

Kirchhoff's current law (KCL): incident currents at any node j sum to zero

At all nodes 
$$j$$
: 
$$-\sum_{i:i\to j\in \hat{E}}J_{ij}+\sum_{k:j\to k\in \hat{E}}J_{jk}=0$$

• Example: at node 2,  $-J_{l_1} + J_{l_2} + J_{l_3} + J_{l_4} = 0$ 



Kirchhoff's current law (KCL): incident currents at any node *j* sum to zero

At all nodes 
$$j$$
: 
$$-\sum_{i:i\to j\in \hat{E}}J_{ij}+\sum_{k:j\to k\in \hat{E}}J_{jk}=0$$

• Example: at node 2,  $-J_{l_1} + J_{l_2} + J_{l_3} + J_{l_4} = 0$ 

Kirchhoff's voltage law (KCL): voltage drops around any cycle c sum to zero

. Around all cycles 
$$c$$
: 
$$\sum_{l \in c} U_l - \sum_{-l \in c} U_l = 0$$

• Example:  $U_{l_1} + U_{l_3} - U_{l_5} = 0$ 



Can represent KCL, KVL compactly in vector form

Let  $\hat{C} \in \{-1,0,1\}^{|\hat{N}|\times |\hat{E}|}$  be the node-by-link incidence matrix

$$\hat{C}_{jl} \ := \ \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \ , \qquad j \in \hat{N}, \ l \in \hat{E} \\ 0 & \text{otherwise} \end{cases}$$



Can represent KCL, KVL compactly in vector form

Let  $\hat{C} \in \{-1,0,1\}^{|\hat{N}|\times |\hat{E}|}$  be the node-by-link incidence matrix

$$\hat{C}_{jl} := \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \text{ , } j \in \hat{N}, \ l \in \hat{E} \\ 0 & \text{otherwise} \end{cases}$$

Then

 $KCL: \hat{C}J = 0$ 

KVL:  $U = \hat{C}^{\mathsf{T}}V$  for some nodal voltage  $V \in \mathbb{C}^{|\hat{N}|}$  (wrt reference node)

Arbitrary reference: WLOG let  $\hat{N}$  be reference node, i.e.,  $V_{\hat{N}} := 0$ 

#### **Problem formulation**

**Given**: Circuit represented by  $|\hat{N}| \times |\hat{E}|$  incidence matrix  $\hat{C}$ 

- For every link  $l \in \hat{E}$ 
  - Impedance  $z_l$ :  $U_l = z_l J_l$  (Ohm's law)
  - (Ideal) voltage source  $u_l$ :  $U_l = u_l$  given
  - (Ideal) current source  $j_1$ :  $J_1 = j_1$  given
- KCL:  $\hat{C}J = 0$
- KVL:  $U = \hat{C}^{\mathsf{T}}V$
- Reference voltage:  $V_{\hat{N}} := 0$

Solve for: (V, J, U)

•  $|\hat{N}|+2|\hat{E}|+1$  (complex) equations in  $|\hat{N}|+2|\hat{E}|$  unknowns, at most  $|\hat{N}|+2|\hat{E}|$  are linearly independent

#### **Problem formulation**

Partition lines into  $\hat{E}=:\hat{E}_1\cup\hat{E}_2\cup\hat{E}_3$  with

- $\hat{E}_1$ : impedances
- $\hat{E}_2$ : voltage sources
- $\hat{E}_3$ : current sources

#### **Problem formulation**

Solve for: (V, J, U)

$$\begin{vmatrix} 0 & \hat{C} & 0 \\ 0 & -Z & \mathbb{I}_{|\hat{E}_{1}|} \\ 0 & 0 & \mathbb{I}_{|\hat{E}_{2}|} \\ 0 & \mathbb{I}_{|\hat{E}_{3}|} & 0 \\ \hat{C}^{\mathsf{T}} & 0 & -\mathbb{I}_{|\hat{E}|} \\ e_{|\hat{N}|}^{\mathsf{T}} & 0 & 0 \end{vmatrix} \begin{bmatrix} V \\ J \\ U \end{bmatrix} = \begin{bmatrix} 0_{|\hat{N}|} \\ 0_{|\hat{E}_{1}|} \\ u \\ j \\ 0_{|\hat{E}|} \\ 0_{1} \end{bmatrix}$$

where 
$$Z:=\operatorname{Diag}\left(z_{l},l\in\hat{E}\right)$$

## Circuit analysis Solution

Partition lines into  $\hat{E}=:\hat{E}_1\cup\hat{E}_2\cup\hat{E}_3$  with

- $\hat{E}_1$ : impedances
- $\hat{E}_2$ : voltage sources
- $\hat{E}_3$ : current sources

Let  $(|\hat{N}|-1) \times |\hat{E}|$  reduced incidence matrix C without reference row  $|\hat{N}|$  and  $C =: \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix}$  according to lines in  $\hat{E}_1, \hat{E}_2, \hat{E}_3$ 

Partition variables in the same order

$$U:=\begin{bmatrix}U_1\\u\\U_3\end{bmatrix}, \qquad J:=\begin{bmatrix}J_1\\J_2\\j\end{bmatrix} \qquad \text{ideal current sources (given)}$$
 ideal current sources (given)

## Circuit analysis Solution

Then problem becomes

$$\underbrace{\begin{bmatrix} 0 & C_1 & C_2 & 0 \\ C_1^\mathsf{T} & -Z & 0 & 0 \\ C_2^\mathsf{T} & 0 & 0 & 0 \\ C_3^\mathsf{T} & 0 & 0 & -\mathbb{I}_{|\hat{E}_3|} \end{bmatrix}}_{M} \begin{bmatrix} V_{-\hat{N}} \\ J_1 \\ J_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} -C_3 j \\ 0 \\ u \\ 0 \end{bmatrix} \text{ where } Z := \mathsf{Diag} \left( z_l, l \in \hat{E} \right)$$

#### **Theorem**

Suppose graph  $\hat{G}$  is connected. M is invertible if

- $Y_1:=C_1Z^{-1}C_1^\mathsf{T}$  is invertible; and  $|\hat{N}|-1$  admittance matrix of subgraph induced by impedances
- $C_2^{\mathsf{T}}Y_1^{-1}C_2$  is invertible  $|\hat{E}_2| \times |\hat{E}_2|$  matrix corresponding to voltage sources

# Circuit analysis Solution

**Theorem** [existence & uniqueness of solution]

Suppose graph  $\hat{G}$  is connected. M is invertible if

- $Y_1 := C_1 Z^{-1} C_1^\mathsf{T}$  is invertible; and
- $C_2^\mathsf{T} Y_1^{-1} C_2$  is invertible

 $|\hat{N}| - 1$  admittance matrix of subgraph induced by impedances

 $|\hat{E}_2| \times |\hat{E}_2|$  matrix corresponding to voltage sources

#### Conditions imply:

- Subgraph with all non-reference nodes induced by impedances is connected (Then,  $Y_1$  is always invertible if Z is real, i.e., resistive subnetwork)
- Current sources in  $\hat{E}_3$  do not contain a cut set; hence j cannot violate KCL (currents on any cut sum to 0)
- $C_2$  is of full column rank, i.e., no voltage sources in  $\hat{E}_2$  form a cycle; hence u cannot violate KVL
- These conditions are "almost" sufficient

## Tellegen's theorem

Tellegen's theorem is consequence of 3 facts

- .  $\hat{C}^{|\hat{E}|} = \text{null}(\hat{C}) \oplus \text{range}(\hat{C}^{\mathsf{T}})$  is direct sum
- KCL:  $\hat{C}J = 0$ , i.e.,  $J \in \text{null}(\hat{C})$
- . KVL:  $U = \hat{C}^{\mathsf{T}}V$ , i.e.,  $U \in \mathrm{range}\left(\hat{C}^{\mathsf{T}}\right)$

Therefore branch currents J and branch voltages U are orthogonal:

•  $J^{H}U = 0$  (Tellegen's theorem)

J and U can be from different networks as long as they have the same incidence matrix  $\hat{C}$  (topology) !

### Outline

- 1. Single-phase systems
  - Phasor representation
  - Single-phase devices
  - Linear circuit analysis
  - One-line diagram and equivalent circuit
- 2. Balanced three-phase systems
- 3. Complex power

## One-line diagram

A power system is often specified by a one-line diagram, not as a circuit

• The behavior of a one-line diagram is defined by its equivalent circuit We formally define a one-line diagram and its equivalent circuit

#### **Definition** [One-line diagram]

A one-line diagram is a pair (G, Y) where

- $G := (\overline{N}, E)$  is a graph
- $\mathbb{Y} := \left( y_{jk}^s, y_{jk}^m, y_{kj}^m, \ l = (j, k) \in E \right)$  is a set of line admittances
- $y_{jk}^s \in \mathbb{C}$ : series admittance;  $(y_{jk}^m, y_{kj}^m) \in \mathbb{C}^2$ : shunt admittances

Can accommodate transformers with 
$$\mathbb{Y} := \left( (y_{jk}^s, y_{jk}^m), (y_{kj}^s, y_{kj}^m), \ l = (j, k) \in E \right)$$

## Equivalent circuit

#### **Nodal devices**

Associated with each node  $j \in \overline{N}$  are two variables

- $V_i \in \mathbb{C}$  : nodal voltage wrt common reference point (e.g., the ground)
- $I_i \in \mathbb{C}$  : nodal (net) current injection (from node j to rest of network)



$$Y := (y_{12}^s, y_{12}^m, y_{21}^m),$$

$$(y_{23}^s, y_{23}^m, y_{32}^m),$$

$$(y_{31}^s, y_{31}^m, y_{13}^m))$$

(b) Line parameters \mathbb{Y}

## Equivalent circuit

#### **Nodal devices**

Associated with each node  $j \in \overline{N}$  are two variables

- $V_i \in \mathbb{C}$ : nodal voltage wrt common reference point (e.g., the ground)
- $I_i \in \mathbb{C}$ : nodal (net) current injection (from node j to rest of network)
- Interpretation: a nodal device(s) is connected between node j and the common voltage reference point
  - ► Impedance  $z_i$ :  $V_i = z_i I_i$
  - ► Ideal voltage source  $v_i$ :  $V_i = v_i$
  - Ideal current source  $i_i$ :  $I_i = i_i$



(a) Graph 
$$G = (\overline{N}, E)$$

$$Y := (y_{12}^s, y_{12}^m, y_{21}^m),$$
$$(y_{23}^s, y_{23}^m, y_{32}^m),$$
$$(y_{31}^s, y_{31}^m, y_{13}^m))$$

(b) Line parameters \mathbb{Y}

## Equivalent circuit

Single line  $(y_{jk}^s, y_{jk}^m, y_{kj}^m)$ 

Behavior of one-line diagram is defined by its equivalent circuit

 Equivalent circuit of entire diagram is determined by equivalent circuit of single line  $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ 



One-line diagram (single line)



Equivalent circuit of  $\left(y_{jk}^s, y_{jk}^m, y_{kj}^m\right)$ • Includes reference point (i.e., eq circuit has  $|\hat{N}|:=|\overline{N}|+1$  nodes)

- Nodal injection  $I_j$  from reference point (node 3) to node j
- Suppose an ideal current source  $I_i$  is between node j and ref node 3

## Equivalent circuit of single line

#### Circuit analysis

Let directed graph  $\hat{G}:=(\hat{N},\hat{E})$  represent the equivalent circuit

• 
$$\hat{N} := \{1,2,3\}, \qquad \hat{E} := \{l_1 := 1 \to 2, l_2 := 1 \to 3, l_3 := 2 \to 3, l_4 := 1 \to 3, l_5 := 2 \to 3\} \qquad \hat{C} := \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & -1 & -1 \end{bmatrix}$$

- Links  $l_1:\ J_{l_1}=y_{12}^sU_{l_1}, \qquad l_2:\ J_{l_2}=y_{12}^mU_{l_2}, \qquad l_3:\ J_{l_3}=y_{21}^mU_{l_3}$
- Nodal devices :  $l_4$  :  $J_{l_4}=-I_1$ ,  $l_5$  :  $J_{l_5}=-I_2$
- KCL:  $\hat{C}J=0$ , KVL:  $\exists~V:=(V_1,V_2,V_3)$  s.t.  $U=\hat{C}^\mathsf{T}V$



Eliminate branch vars (U,J) relates nodal vars (I,V)

$$I = YV$$

where the admittance matrix is

$$Y := \begin{bmatrix} y_{12}^s + y_{12}^m & -y_{12}^s \\ -y_{12}^s & y_{12}^s + y_{21}^m \end{bmatrix}$$

# Equivalent circuit

### One-line diagram (G, Y)

Equivalent circuit represented by directed graph  $\hat{G} := (\hat{N}, \hat{E})$  constructed from  $G := (\overline{N}, E)$ 

- $\hat{N}:=\overline{N}\cup\{\,|\overline{N}|+1\}$  with node  $\hat{N}:=|\overline{N}|+1$  as reference point  $(V_{\hat{N}}:=0)$
- Each  $j\in \overline{N}$  in one-line diagram G gives rise to a link  $l:=j\to \hat{N}$  in equivalent circuit  $\hat{G}$
- Each line  $(j,k) \in E$  in one-line diagram G gives rise to 3 links  $\left(l_{jk},l_{j\hat{N}},l_{k\hat{N}}\right)$  in equivalent circuit  $\hat{G}$
- $\hat{E}:=E\cup\hat{E}_{\hat{N}}$  where  $\hat{E}_{\hat{N}}:=\{\mathrm{links}\ j\to\hat{N}\}$

Same analysis relates nodal vars (I, V): I = YV where Y is admittance matrix





Equivalent circuit  $\hat{G} := (\hat{N}, \hat{E})$ 

# Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
  - Internal and terminal vars
  - Balanced vectors and conversion matrices  $\Gamma, \Gamma^{\mathsf{T}}$
  - Balanced systems in Y configurations
  - Balanced systems in  $\Delta$  configurations
  - Per-phase analysis
- 3. Complex power

3 single-phase system:

single 3-phase system:





# Internal variables

### Y configuration

Each single-phase device can be

• Voltage source, current source, impedance, ideal or not

Internal (line-to-neutral or phase) voltage, current, power:

$$V^Y := egin{bmatrix} V^{an} \ V^{bn} \ V^{cn} \end{bmatrix}, \ I^Y := egin{bmatrix} I^{an} \ I^{bn} \ I^{cn} \end{bmatrix}, \ s^Y := egin{bmatrix} s^{an} \ s^{bn} \ s^{cn} \end{bmatrix} := egin{bmatrix} V^{an} \overline{I}^{an} \ V^{bn} \overline{I}^{bn} \ V^{cn} \overline{I}^{cn} \end{bmatrix}$$



neutral voltage (wrt common reference pt)  $V^n \in \mathbb{C}$  neutral current (away from neutral)  $I^n \in \mathbb{C}$ 

Device may or may not be grounded, and neutral impedance  $z^n$  may or may not be zero

# Internal variables

### $\Delta$ configuration

Internal (line-to-line or phase-to-phase) voltage, current, power:

$$V^{\Delta} := egin{bmatrix} V^{ab} \ V^{bc} \ V^{ca} \end{bmatrix}, \ I^{\Delta} := egin{bmatrix} I^{ab} \ I^{bc} \ I^{ca} \end{bmatrix}, \ s^{\Delta} := egin{bmatrix} s^{ab} \ s^{bc} \ s^{ca} \end{bmatrix} := egin{bmatrix} V^{ab} ar{I}^{ab} \ V^{bc} ar{I}^{bc} \ V^{ca} ar{I}^{ca} \end{bmatrix}$$



# Terminal variables

Terminal voltage, current, power (for both Y and  $\Delta$ ):

$$V := egin{bmatrix} V^a \ V^b \ V^c \end{bmatrix}$$
 ,  $I := egin{bmatrix} I^a \ I^b \ I^c \end{bmatrix}$  ,  $s := egin{bmatrix} S^a \ S^b \ S^c \end{bmatrix}$   $:= egin{bmatrix} V^a ar{I}^a \ V^b ar{I}^b \ V^c ar{I}^c \end{bmatrix}$ 

- V is with respect to an arbitrary common reference point, e.g. the ground
- I and s are in the direction out of the device





# Conversion rules

Y-configured device

$$V = V^Y + V^n$$
1,  $I = -I^Y$ 

•  $V = V^Y$  if  $V^n = 0$ , i.e., if neutral is directly grounded and ground is voltage reference



#### $\Delta$ -configured device

$$\begin{bmatrix} V^{ab} \\ V^{bc} \\ V^{ca} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -10 \\ 0 & 1-1 \\ -1 & 01 \end{bmatrix}}_{\Gamma} \begin{bmatrix} V^a \\ V^b \\ V^c \end{bmatrix}, \quad \begin{bmatrix} I^a \\ I^b \\ I^c \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0-1 \\ -1 & 10 \\ 0 & -11 \end{bmatrix}}_{\Gamma^{\mathsf{T}}} \begin{bmatrix} I^{ab} \\ I^{bc} \\ I^{ca} \end{bmatrix}$$



# Internal vs external model

- 1. Internal model depends only on type of single-phase devices
  - Internal model: relation between  $\left(V^{Y/\Delta}, I^{Y/\Delta}, s^{Y/\Delta}\right)$
  - Voltage/current/power source, impedance
  - Independent of Y or  $\Delta$  configuration
- 2. Conversion rule depends only on type of configuration
  - Converts between internal and terminal variables
  - Depends only on Y or  $\Delta$  configuration
  - Independent of type of single-phase devices
- 3. External model = Internal model + Conversion rule
  - External model: relation between (V, I, s)
  - Devices interact over network only through their terminal variables





# Conversion matrices

$$\Gamma := \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}, \qquad \Gamma^{\mathsf{T}} := \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Incidence matrices for:





# Conversion matrices

Convert between internal vars and terminal vars

$$\begin{bmatrix} V^{ab} \\ V^{bc} \\ V^{ca} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}}_{\Gamma} \begin{bmatrix} V^a \\ V^b \\ V^c \end{bmatrix}, \quad \begin{bmatrix} I^a \\ I^b \\ I^c \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}}_{\Gamma^{\mathsf{T}}} \begin{bmatrix} I^{ab} \\ I^{bc} \\ I^{ca} \end{bmatrix}$$

# Conversion matrices

Convert between internal vars and terminal vars

$$\begin{bmatrix} V^{ab} \\ V^{bc} \\ V^{ca} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} V^a \\ V^b \\ V^c \end{bmatrix}, \quad \begin{bmatrix} I^a \\ I^b \\ I^c \end{bmatrix} = - \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} I^{ab} \\ I^{bc} \\ I^{ca} \end{bmatrix}$$

In vector form



# **Balanced vector**

#### **Definition**

A vector  $x := (x_1, x_2, x_3)$  with  $x_j = |x_j| e^{i\theta_j} \in \mathbb{C}$  is called balanced if

$$|x_1| = |x_2| = |x_3|$$

. Either 
$$\theta_2-\theta_1=-\frac{2\pi}{3} \quad \text{and} \quad \theta_3-\theta_1=\frac{2\pi}{3} \quad \text{(positive sequence)}$$

or 
$$\theta_2 - \theta_1 = \frac{2\pi}{3}$$
 and  $\theta_3 - \theta_1 = -\frac{2\pi}{3}$  (negative sequence)

# Spectral properties of $\Gamma$ , $\Gamma^{\mathsf{T}}$

#### Let

1. 
$$\alpha := e^{-i2\pi/3}$$

2. Positive and negative sequence vectors:

$$lpha_{+} := \begin{bmatrix} 1 \\ \alpha \\ \alpha^{2} \end{bmatrix}, \qquad lpha_{-} := \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$$

Balanced vectors in positive and negative seq:  $x = a\alpha_+$ ,  $y = b\alpha_-$  for  $a, b \in \mathbb{C}$ 

Balanced system: all voltages and currents are in span( $\alpha_+$ ) WLOG



$$F := \frac{1}{\sqrt{3}} \begin{bmatrix} \mathbf{1} & \alpha_{+} & \alpha_{-} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha \end{bmatrix}$$

Symmetrical components are similarity transformation using matrix F



# Spectral decomposition of $\Gamma$ , $\Gamma^{\mathsf{T}}$

#### **Theorem**

1. 
$$F^{-1} = F^{H} = \bar{F} = \frac{1}{\sqrt{3}} \begin{bmatrix} \mathbf{1} & \alpha_{-} & \alpha_{+} \end{bmatrix}$$

2. Eigenvectors and eigenvalues are given by the spectral decomposition:

$$\Gamma = F \begin{bmatrix} 0 \\ 1 - \alpha \\ 1 - \alpha^2 \end{bmatrix} \bar{F}, \qquad \Gamma^{\mathsf{T}} = \bar{F} \begin{bmatrix} 0 \\ 1 - \alpha \\ 1 - \alpha^2 \end{bmatrix} F$$

where 
$$1-\alpha=\sqrt{3}e^{\mathrm{i}\pi/6}$$
 and  $1-\alpha^2=\sqrt{3}e^{-\mathrm{i}\pi/6}$ 

Transformation of balanced vectors by  $(\Gamma, \Gamma^T)$ 

$$\Gamma \mathbf{1} = 0, \qquad \Gamma \alpha_{+} = (1 - \alpha)\alpha_{+}, \qquad \Gamma \alpha_{-} = (1 - \alpha^{2})\alpha_{-}$$
 $\Gamma^{\mathsf{T}} \mathbf{1} = 0, \qquad \Gamma^{\mathsf{T}} \alpha_{-} = (1 - \alpha)\alpha_{-}, \qquad \Gamma^{\mathsf{T}} \alpha_{+} = (1 - \alpha^{2})\alpha_{+}$ 

# Spectral decomposition of $\Gamma$ , $\Gamma^{\mathsf{T}}$

#### Corollary

For any balanced vector (positive seq)  $x \in \text{span}(\alpha_+)$  and  $\gamma \in \mathbb{C}$ 

1. 
$$\Gamma(x + \gamma \mathbf{1}) = (1 - \alpha)x$$

2. 
$$\Gamma^{T}(x + \gamma \mathbf{1}) = (1 - \alpha^{2})x$$

3. 
$$\Gamma \Gamma^{\mathsf{T}}(x + \gamma \mathbf{1}) = \Gamma^{\mathsf{T}}\Gamma(x + \gamma \mathbf{1}) = 3x$$

# Spectral properties of $\Gamma$ , $\Gamma^{\mathsf{T}}$

Almost all properties of balanced 3-phase systems originate from properties of  $(\alpha_+, \alpha_-)$  and their transformation under  $(\Gamma, \Gamma^T)$ 

- 1. Transformation by  $(\Gamma, \Gamma^T)$  preserve balanced nature of a vector, ensuring that all voltages and currents are balanced in a symmetric network driven by balanced sources
- 2. This is because balanced sources are in  $span(\alpha_+)$  (or  $span(\alpha_-)$  for negative-seq systems), and  $(\alpha_+, \alpha_-)$  are eigenvectors of  $(\Gamma, \Gamma^T)$ ; see Theorem
- 3. For unbalanced systems, sources have a mix of components in  $\operatorname{span}(\alpha_+)$ ,  $\operatorname{span}(\alpha_-)$ ,  $\operatorname{span}(1)$  and hence transformation by  $(\Gamma, \Gamma^T)$  maintains the mix

# Balanced systems

#### **Implications**

- 1. Informally, a balanced system is one in which all voltages and currents are in  $\mathrm{span}(lpha_+)$  (WLOG)
- 2. Balanced voltage and current sources are in span  $(\alpha_{+})$
- 3. Voltages and currents at every point in a network can be written as linear combination of transformed source voltages and source currents, transformed by  $(\Gamma, \Gamma^T)$
- 4. But  $\alpha_+$  are eigenvectors of  $(\Gamma, \Gamma^T) \Longrightarrow$  transformation by  $(\Gamma, \Gamma^T)$  reduces to scaling by  $1 \alpha$  and  $1 \alpha^2$  respectively (provided impedances & lines are balanced)
- 5.  $\Longrightarrow$  all voltages and currents remain in span $(\alpha_{+})$

Formal statement and proof need to wait till Part III where we study unbalanced systems

# Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
  - Internal and terminal vars
  - Balanced vectors and conversion matrices  $\Gamma, \Gamma^{\mathsf{T}}$
  - Balanced systems in Y configurations
  - Balanced systems in  $\Delta$  configurations
  - Per-phase analysis
- 3. Complex power

### Y configuration







(a) Voltage source  $E^Y$ 

(b) Current source  $J^Y$ 

(c) Impedance  $z^Y$ 

Balanced voltage source if internal voltage  $E^{Y}$  is a balanced vector and  $z^{Y} := z^{an} \mathbb{I}$ 

positive sequence:

$$E^{an} = 1 \angle \theta$$
,  $E^{bn} =$ 

$$E^{an} = 1 \angle \theta$$
,  $E^{bn} = 1 \angle \theta - 120^{\circ}$ ,  $E^{cn} = 1 \angle \theta + 120^{\circ}$ 

$$E^Y \in \operatorname{span}(\alpha_+)$$

• negative sequence: 
$$E^{an}=1\angle\theta, \quad E^{bn}=1\angle\theta+120^\circ, \quad E^{cn}=1\angle\theta-120^\circ$$

$$E^{cn} = 1 \angle \theta - 120^{\circ}$$

$$E^Y \in \operatorname{span}(\alpha_-)$$

Balanced current source if  $J^Y := (J^{an}, J^{bn}, J^{cn}) \in \operatorname{apan}(\alpha_+)$  and  $y^Y := y^{an} \mathbb{I}$ 

Ideal sources: 
$$z = 0$$
,  $y = 0$ 

Balanced impedance if impedances are identical, i.e.,  $z^Y := z^{an} \mathbb{I}$ 

### Y configuration



#### Corollary implies:

1. Sum to zero: 
$$E^{an}+E^{bn}+E^{cn}=0$$
 and  $J^{an}+J^{bn}+J^{cn}=0$  becasuse  $E^Y=E^{an}\alpha_+ \Rightarrow \mathbf{1}^{\mathsf{T}}E^Y=E^{an}\left(\mathbf{1}^{\mathsf{T}}\alpha_+\right)=0$ 

### Y configuration



#### Corollary implies:

2. Ideal voltage source ( $z^Y := 0$ ): line voltage  $V^{\text{line}}$  is balanced:

$$V = E^Y + V^n \mathbf{1} = E^{an} \alpha_+ + V^n \mathbf{1} \quad \Rightarrow \quad V^{\text{line}} := \Gamma V = E^{an} (\Gamma \alpha_+) \quad = \quad (1 - \alpha) E^Y$$

phases are decoupled

### Y configuration



#### Corollary implies:

3. Ideal current source  $(y^Y := 0)$ : terminal current I is balanced:

$$I = -J^{Y}$$

phases are decoupled

# Phase decoupling

### Example



(a) Balanced three-phase system

Given balanced ideal voltage source and impedance in Y configuration, show that

- 1. Neutral-to-neutral voltage  $V_{nn'} = 0$
- 2. Internal voltages and currents across impedances are balanced
- 3. Passes are decoupled

#### **Solution**

Internal vars  $E^Y := \left(E^{an}, E^{bn}, E^{cn}\right), \ V^Y := \left(V^{a'n'}, V^{b'n'}, V^{c'n'}\right), \ I^Y := \left(I^{a'n'}, I^{b'n'}, I^{c'n'}\right), \ V^n, V^{n'}$  neutral voltages Terminal voltages  $V := \left(V^a, V^b, V^c\right)$ 

KVL, KCL, Ohm's law: 
$$E^Y = V - V^n \mathbf{1}$$
,  $V^Y = V - V^{n'} \mathbf{1}$ ,  $V^Y = zI^Y$ ,  $\mathbf{1}^{\mathsf{T}}I^Y = 0$   
Hence  $E^Y - V^Y = \left(V^{n'} - V^n\right) \mathbf{1}$  and  $\mathbf{1}^{\mathsf{T}} \left(E^Y - V^Y\right) = 3 \left(V^{n'} - V^n\right) \Longrightarrow 3 \left(V^{n'} - V^n\right) = -z \left(\mathbf{1}^{\mathsf{T}}I^Y\right) = 0$  i.e.,  $V_{nn'} = 0$ 

$$\implies V^{'Y} = E^Y + (V^n - V^{n'})$$
 **1** =  $E^Y$ ,  $I^{'Y} = yV^{'Y} = yE^Y$ , i.e.,  $V^{'Y}$  and  $I^{Y}$  are balanced and phase-decoupled

# Phase decoupling

### Example





(a) Balanced three-phase system

(b) Equivalent per-phase system

Given balanced ideal voltage source and impedance in Y configuration, show that

- 1. Neutral-to-neutral voltage  $V_{nn'} = 0$
- 2. Internal voltages and currents across impedances are balanced

#### Solution [per-phase analysis]

Balanced and phase-decoupled voltages and currents lead to equivalent per-phase system and per-phase analysis

- Since  $V_{nn'} = 0$ , can assume a neutral line between n and n' (same potential)
- Analyze phase a equivalent circuit
- Variables in phases b and c are obtained from phase-a variables and rotating by 120°

# Phase decoupling

### Example



#### Show:

- 1.  $V^{n_0n_1} = V^{n_1n_2} = 0$
- 2. All currents and voltages are balanced positive sequence sets
- 3. Phases are decoupled, i.e.,

$$E_0^{an} = V^{a_0 a_1} + V_1^{an}$$

$$V_1^{an} = V^{a_1 a_2} + V_2^{an}$$

Solution: see PSA Ch 1

# Phase decoupling Example



#### Show:

1. 
$$V^{n_0n_1} = V^{n_1n_2} = 0$$

#### **Implications:**

- Zero currents on neutral lines even if present ⇒ can assume neutrals are connected or not for analysis
- No physical wires necessary for return currents, saving materials

# Phase decoupling Example



Phase *a* equivalent circuit:

1. 
$$V^{n_0n_1} = V^{n_1n_2} = 0$$



# Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
  - Internal and terminal vars
  - Balanced vectors and conversion matrices  $\Gamma$ ,  $\Gamma^{\mathsf{T}}$
  - Balanced systems in Y configurations
  - Balanced systems in  $\Delta$  configurations
  - Per-phase analysis
- 3. Complex power

### $\Delta$ configuration



(a) Voltage source  $E^{\Delta}$ 

(b) Current source  $J^{\Delta}$ 

(c) Impedance  $z^{\Delta}$ 

Balanced voltage source if internal voltage  $E^{\Delta}$  is a balanced vector and  $z^{\Delta} := z^{ab} \mathbb{I}$ 

• positive sequence: 
$$E^{ab}=1\angle\theta, \quad E^{bc}=1\angle\theta-120^\circ, \quad E^{ca}=1\angle\theta+120^\circ$$

• negative sequence: 
$$E^{ab}=1\angle\theta, \quad E^{bc}=1\angle\theta+120^\circ, \quad E^{ca}=1\angle\theta-120^\circ$$

Balanced current source if  $J^\Delta:=(J^{ab},J^{bc},J^{ca})\in \mathrm{apan}(\alpha_+)$  and  $y^\Delta:=y^{ab}\mathbb{I}$ 

Balanced impedance if impedances are identical, i.e.,  $z^{\Delta} := z^{ab} \mathbb{I}$ 

$$E^{\Delta} \in \operatorname{span}(\alpha_+)$$

$$E^{\Delta} \in \operatorname{span}(\alpha_{-})$$

Ideal sources: z = 0, y = 0

### $\Delta$ configuration



#### Corollary implies:

1. Sum to zero:  $\mathbf{1}^{\mathsf{T}}E^{\Delta}=0$  and  $\mathbf{1}^{\mathsf{T}}I=0$  because  $E^{\Delta}=E^{ab}\alpha_{+}$  and  $I=-\Gamma^{\mathsf{T}}I^{\Delta} \Rightarrow \mathbf{1}^{\mathsf{T}}I=-\mathbf{1}^{\mathsf{T}}\Gamma^{\mathsf{T}}I^{\Delta}=0$ 

### $\Delta$ configuration



#### Corollary implies:

- 2. Ideal voltage source ( $z^{\Delta} := 0$ ): line voltage  $V^{\text{line}} = V^{\Delta}$  is balanced
- 3. Ideal current source  $(y^{\Delta} := 0)$ : terminal current  $I = -\Gamma^{\mathsf{T}}J^{\Delta} = -(1-\alpha^2)J^{\Delta}$  since  $J^{\Delta} \in \mathrm{apan}(\alpha_+)$

Phases are decoupled, but what is a per-phase equivalent circuit?

# Balanced 3-phase systems Example



Analysis shows: if  $E^{\Delta} \in \operatorname{span}(\alpha_{+})$  then

• Terminal current  $I:=(I^{a_0a_1},I^{b_0b_1},I^{c_0c_1})$ , voltage drop across line  $V:=(V^{a_0a_1},V^{b_0b_1},V^{c_0c_1})$ , and load voltage  $U^{\Delta}:=(V^{a_1b_1},V^{b_1c_1},V^{c_1a_1})$  are balanced

Phases are decoupled, but what is a per-phase equivalent circuit?

### Voltage and current sources

Given:  $\Delta$  device (e.g., voltage source) with internal voltage and current  $(V^{\Delta}, I^{\Delta})$ 

Equivalent Y-configured device: one with internal voltage and current  $\left(V_{\mathsf{eq}}^Y, I_{\mathsf{eq}}^Y\right)$  that

has an equivalent external behavior:

identical line-to-line voltage: 
$$\Gamma V_{ extsf{eq}}^{Y} = V^{\Delta}$$

identical line current: 
$$I_{\text{eq}}^{Y} = \Gamma^{\text{T}} I^{\Delta}$$

zero neutral voltage 
$$V_{\text{eq}}^n := 0$$
 s.t.  $I_{\text{eq}}^n = \mathbf{1}^{\text{T}} I_{\text{eq}}^Y = 0$ 

Balanced system: all voltages and currents are in span( $\alpha_+$ )

Hence

$$V_{\mathsf{eq}}^Y = \frac{V^\Delta}{1-lpha}, \qquad I_{\mathsf{eq}}^Y = (1-lpha^2)I^\Delta, \qquad V_{\mathsf{eq}}^n := 0$$





## Voltage and current sources

#### **Example**

- 1. Voltage source (ideal)  $E^{\Delta}$ : Y-equivalent is  $E^{Y}:=(1-\alpha)^{-1}E^{\Delta}=\frac{E^{\Delta}}{\sqrt{3}e^{i\pi/6}}$ 2. Current source (ideal)  $J^{\Delta}$ : Y-equivalent is  $J^{Y}:=(1-\alpha^{2})J^{\Delta}=\sqrt{3}e^{-i\pi/6}J^{\Delta}$

Balanced system: all voltages and currents are in span( $\alpha_{+}$ )

Hence

$$V_{\text{eq}}^{Y} = \frac{V^{\Delta}}{1 - \alpha}, \qquad I_{\text{eq}}^{Y} = (1 - \alpha^{2})I^{\Delta}, \qquad V_{\text{eq}}^{n} := 0$$

### Impedance

Given: balanced impedance  $Z^{\Delta} := \text{Diag}\left(z^{\Delta}, z^{\Delta}, z^{\Delta}\right)$ 

Y-eq: balanced impedance  $Z^Y := \text{Diag}\left(z^Y, z^Y, z^Y\right)$  with equivalent external behavior  $V^{\text{line}} \% I$ :

componentwise division

### Impedance

Given: balanced impedance  $Z^{\Delta} := \text{Diag}(z^{\Delta}, z^{\Delta}, z^{\Delta})$ 

componentwise

division

Y-eq: balanced impedance  $Z^Y := \text{Diag}(z^Y, z^Y, z^Y)$  with equivalent external behavior  $V^{\text{line}} \% I$ :

 $Z^{\Delta}$ : balanced imp

 $V^{\Delta} = Z^{\Delta}I^{\Delta}$ 

 $Z^{Y}: Y$ -equilent  $V^Y = Z^Y I^Y$ 

internal model

line-to-line voltage  $V^{\text{line}}$ 

terminal current I

 $V^{\mathsf{line}} \% I$ 

### $\Delta \rightarrow Y$ transformation

#### Impedance

Given: balanced impedance  $Z^{\Delta} := \text{Diag}(z^{\Delta}, z^{\Delta}, z^{\Delta})$ 

componentwise

division

Y-eq: balanced impedance  $Z^Y := \text{Diag}\left(z^Y, z^Y, z^Y\right)$  with equivalent external behavior  $V^{\text{line}} \% I$ :

internal model

line-to-line voltage  $V^{\text{line}}$ 

terminal current I

 $V^{\text{line}} \% I$ 

 $Z^{\Delta}$ : balanced imp

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$-\Gamma^{\mathsf{T}}I^{\Delta} = -(1-\alpha^2)I^{\Delta}$$

phase-
$$a = -z^{\Delta}/(1 - \alpha^2)$$

 $Z^{Y}: Y$ -equilent

$$V^Y = Z^Y I^Y$$

### $\Delta \rightarrow Y$ transformation

#### Impedance

Given: balanced impedance  $Z^{\Delta} := \text{Diag}(z^{\Delta}, z^{\Delta}, z^{\Delta})$ 

componentwise

division

Y-eq: balanced impedance  $Z^Y := \text{Diag}\left(z^Y, z^Y, z^Y\right)$  with equivalent external behavior  $V^{\text{line}} \% I$ :

internal model

line-to-line voltage  $V^{\text{line}}$ 

terminal current I

 $V^{\mathsf{line}} \% I$ 

 $Z^{\Delta}$ : balanced imp

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$-\Gamma^{\mathsf{T}}I^{\Delta} = -(1-\alpha^2)I^{\Delta}$$

phase-
$$a = -z^{\Delta}/(1 - \alpha^2)$$

 $Z^{Y}: Y$ -equilent

$$V^Y = Z^Y I^Y$$

$$\Gamma V^Y = (1 - \alpha)Z^Y I^Y$$

$$I = -I^{Y}$$

phase-
$$a = -(1 - \alpha)z^{Y}$$

### $\Delta \rightarrow Y$ transformation

#### Impedance

Given: balanced impedance  $Z^{\Delta}:=$  Diag  $\left(z^{\Delta},z^{\Delta},z^{\Delta}\right)$ 

componentwise division

Y-eq: balanced impedance  $Z^Y := \text{Diag}\left(z^Y, z^Y, z^Y\right)$  with equivalent external behavior  $V^{\text{line}} \% I$ :

internal model

line-to-line voltage  $V^{\text{line}}$ 

terminal current I

 $V^{\mathsf{line}} \, \% \, I$ 

 $Z^{\Delta}$ : balanced imp

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$V^{\Delta} = Z^{\Delta}I^{\Delta}$$

$$-\Gamma^{\mathsf{T}}I^{\Delta} = -(1-\alpha^2)I^{\Delta}$$

phase-
$$a = -z^{\Delta}/(1 - \alpha^2)$$

 $Z^Y$ : Y-equilent

$$V^Y = Z^Y I^Y$$

$$\Gamma V^Y = (1 - \alpha)Z^Y I^Y$$

$$I = -I^{Y}$$

phase-
$$a = -(1 - \alpha)z^{Y}$$

Equivalent external behavior 
$$V^{\text{line}} \% I \implies z^Y = \frac{z^{\Delta}}{(1-\alpha)(1-\alpha^2)} = \frac{z^{\Delta}}{3}$$

*Y*-equivalent admittance  $y^Y = 3y^{\Delta}$ 

### Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
  - Internal and terminal vars
  - Balanced vectors and conversion matrices  $\Gamma$ ,  $\Gamma^{\mathsf{T}}$
  - Balanced systems in Y configurations
  - Balanced systems in  $\Delta$  configurations
  - Per-phase analysis
- 3. Complex power

- 1. Convert all voltage sources, current sources, impedances in  $\Delta$  configuration into their Y -equivalents
- 2. Solve for phase a vars using equivalent phase a circuit with all neutrals directly connected
- 3. If all sources are in positive-sequence sets, phase b and c vars are determined by subtracting  $120^\circ$  and  $240^\circ$  respectively from corresponding phase a vars. (If all sources are negative-sequence, add  $120^\circ$  and  $240^\circ$  instead.)
- 4. If vars in the internal of a  $\Delta$  configuration are desired, drive them from original circuit.

### Example



Find:  $i_1(t)$  and  $v_2(t)$ 

### Example



#### Example





Find:  $i_1(t)$  and  $v_2(t)$ 

#### Solution:

1. Using per-phase circuit, solve for  $V^{a_1n_1}$  and  $V^{a_2n_2}$ 

2. 
$$v_2(t) = \sqrt{2} |V^{a_2 n_2}| \cos(\omega t + \angle V^{a_2 n_2})$$

3. 
$$i_1(t) = \sqrt{2} |I^{a_1c_1}| \cos(\omega t + \angle I^{a_1c_1})$$

4. To calculate  $I^{a_1c_1}$ , obtain  $V^{a_1b_1}=\sqrt{3}e^{i\pi/6}V^{a_1n_1}$ 

5. Obtain 
$$I^{a_1b_1} = l_1V^{a_1b_1} = \sqrt{3}l_1e^{i\pi/6}V^{a_1n_1}$$

6. Obtain 
$$I^{a_1c_1} = -I^{a_1b_1}e^{i2\pi/3} = 3\sqrt{3}e^{-i\pi/6}l_1V^{a_1n_1}$$

- 1. Convert all voltage sources, current sources, impedances in  $\Delta$  configuration into their Y -equivalents
- 2. Solve for phase a vars using equivalent phase a circuit with all neutrals directly connected
- 3. If all sources are in positive-sequence sets, phase b and c vars are determined by subtracting  $120^\circ$  and  $240^\circ$  respectively from corresponding phase a vars. (If all sources are negative-sequence, add  $120^\circ$  and  $240^\circ$  instead.)
- 4. If vars in the internal of a  $\Delta$  configuration are desired, drive them from original circuit.

Can this approach be formally justified for general networks? Yes, see Part III on Unbalanced three-phase networks

### Outline

- 1. Single-phase systems
- 2. Balanced three-phase systems
- 3. Complex power
  - Single-phase power
  - Three-phase power
  - Advantages of  $3\phi$  systems

## Single-phase power

Instantaneous power:

$$\begin{split} p(t) &:= v(t)i(t) \\ &= \frac{V_{\text{max}}I_{\text{max}}}{2} \left( \cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I) \right) \end{split}$$

Average power:

$$\frac{1}{T} \int_0^T p(t)dt = \frac{V \max^I \max}{2} \cos(\theta_V - \theta_I)$$

 $\phi := \theta_V - \theta_I$ : power factor angle

## Single-phase power

Complex power:

$$S := V\overline{I} = \frac{V_{\text{max}}I_{\text{max}}}{2} e^{i(\theta_V - \theta_I)} = |V| |I| e^{i\phi}$$

Active and reactive power:

$$P:= |V||I|\cos\phi$$
 kW  $Q:=|V||I|\sin\phi$  var

Apparent power:

$$|S| = |V||I| = \sqrt{P^2 + Q^2}$$
 VA

## Instantaneous and complex power

Relationship:

$$p(t) = P + P\cos 2(\omega t + \theta_I) - Q\sin 2(\omega t + \theta_I)$$

Average power:

$$P = \frac{1}{T} \int_0^T p(t) dt$$

## Power delivered to impedance

Voltage and current across impedance are related

$$V = zI$$

Complex power

$$S = |z| |I|^2 e^{i\phi}, \qquad \phi := \angle z = \theta_V - \theta_I$$

$$\phi := \angle z = \theta_V - \theta_I$$

|                                           |                   | $\phi = \angle z$ | P        | Q                       |
|-------------------------------------------|-------------------|-------------------|----------|-------------------------|
| Resistor $z = r$                          | r                 | 0                 | $r I ^2$ | 0                       |
| Inductor $z = \mathbf{i}\omega l$         | $\omega l$        | $\pi/2$           | 0        | $\omega l  I ^2$        |
| Capacitor $z = (\mathbf{i}\omega c)^{-1}$ | $(\omega c)^{-1}$ | $-\pi/2$          | 0        | $-(\omega c)^{-1} I ^2$ |

Table 1.2 Power delivered to RLC elements.

purely real power purely reactive power purely reactive power

## Power delivered to impedance

```
Instantaneous power delivered to resistor r: p(t) = P\left(1 + \cos 2\left(\omega t + \theta_I\right)\right) inductor i\omega l: p(t) = -Q\sin 2\left(\omega t + \theta_I\right) capacitor (i\omega c)^{-1}: p(t) = Q\sin 2\left(\omega t + \theta_V\right)
```

## Three-phase power

#### Complex power

Per-phase power: 
$$S:=V_{an}\bar{I}_{an}$$
 Three-phase power:  $S_{3\phi}:=V_{an}\bar{I}_{an}+V_{bn}\bar{I}_{bn}+V_{cn}\bar{I}_{cn}=3S$  because  $V^Y:=V^{an}\alpha_+$  and  $I^Y:=I^{an}\alpha_+$ , and hence 
$$S_{3\phi}=I^{YH}V^Y=V^{an}\bar{I}^{an}(\alpha_+^H\alpha_+)=3S \qquad (\alpha_+^H\alpha_+=3)$$

## Three-phase power

#### Instantaneous power

Instantaneous  $3\phi$  power is constant

$$p_{3\phi}(t) := v_a(t)i_a(t) + v_b(t)i_b(t) + v_c(t)i_c(t) = 3P$$

Implications:  $3\phi$  motor receives constant torque

More generally, a balanced K-based system has a total instantaneous power

$$p_{K\phi}(t) = KP \text{ for } K \ge 3$$

In constrast, instantaneous  $1\phi$  power is sinusoidal

$$p(t) = P + P\cos 2(\omega t + \theta_I) - Q\sin 2(\omega t + \theta_I)$$

## Three-phase power

#### Instantaneous power

Instantaneous  $3\phi$  power is constant

$$\begin{split} p_{3\phi}(t) &:= v_a(t)i_a(t) + v_b(t)i_b(t) + v_c(t)i_c(t) \\ &= |V_a| |I_a| \left(\cos\phi + \cos(2\omega t + \theta_V + \theta_I)\right) \\ &+ |V_a| |I_a| \left(\cos\phi + \cos(2\omega t + (\theta_V - 2\pi/3) + (\theta_I - 2\pi/3))\right) \\ &+ |V_a| |I_a| \left(\cos\phi + \cos(2\omega t + (\theta_V + 2\pi/3) + (\theta_I + 2\pi/3))\right) \\ &= 3|V_a| |I_a| \cos\phi + |V_a| |I_a| \left(\cos\theta(t) + \cos(\theta(t) - 4\pi/3) + \cos(\theta(t) + 4\pi/3)\right) \end{split}$$

= 0

= 3P

## Savings from $3\phi$ system

#### Example



#### Spec:

Supply load with power |S| at voltage |V|

Distance between generator & load: d

Line impedance z = r + ix ohm/meter

Resistance / unit length  $r = \frac{\rho}{\text{area}}$ 

Line current  $\leq \delta$  area

#### Savings:

Material required:  $m_{3\phi} = \frac{1}{2}m_{1\phi}$ 

Active power loss:  $l_{3\phi} = \frac{1}{2}l_{1\phi}$ 

## Summary

#### 1. Single-phase systems

- Steady-state behavior of power systems can be described by voltage and current phasors
- Component models: single-phase devices (PSA Ch1), line (PSA Ch 2), transformer (PSA Ch 3)
- Phasors satisfy Kirchhoff's and Ohm's laws, as do corresponding time-domain quantities
- A one-line diagram is defined by its equivalent circuit

#### 2. Three-phase systems

- A three-phase device can be in Y or  $\Delta$  configuration
- In a balanced system, all  $\Delta$ -configured devices have Y-equivalents
- All voltages and currents in a balanced three-phase system are in  $span(\alpha_+)$  and phase-decoupled
- This enables per-phase analysis using an equivalent per-phase circuit

#### 3. Complex power

- Single-phase complex power is  $S_{1\phi}:=V^a\bar{I}^a$ ; instantaneous power is  $p^a(t):=v^a(t)i^a(t)$ .
- Three-phase complex power is  $S_{3\phi}:=\mathbf{1}^{\mathsf{T}}VI^{\mathsf{H}}=3S_{1\phi}$
- Three-phase instantaneous power  $p_{3\phi}(t) := \sum_{t} p^{\phi}(t) = 3P$