Power System Analysis

Chapter 10 Semidefinite relaxations: BIM

Steven Low Caltech (Dec 13, 2024)

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Outline

- 1. Relaxations of QCQP
	- SDP relaxation
	- Partial matrices and rank-1 characterization
	- Feasible sets
	- Semidefinite relaxations and solution recovery
	- Tightness of relaxations
	- Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Dealing with nonconvexity

OPF is nonconvex and NP-hard

- There are 3 common ways to deal with nonconvexity
- 1. Linear approximation
	- e.g. DC OPF is widely used for electricity market applications
- 2. Local algorithms, e.g., Newton-Raphson, interior-point
	- Optimality conditions studied earlier for convex problems not applicable
	- Lyapunov-like condition guarantees that, if local algorithm computes a local optimum, it is global optimum
- 3. Convex relaxation, e.g., semidefinite relaxation
	- Lyapunov-like condition also guarantees exactness of any convex relaxation
	- Optimality conditions studied earlier apply to convex relaxations

Unlike approximations, convex relaxation has 3 advantages

- We can easily check if a solution of relaxation is a global optimum
- If not, it provides a lower bound on optimal value
- If relaxation is infeasible, then the nonconvex problem is infeasible

QCQP

Quadratically constrained quadratic program:

min *x*∈ℂ*ⁿ* $x^{\text{H}}C_0x$

- s.t. $x^{\text{H}}C_{l}x \leq b_{l}$, $l = 1,..., L$
- $C_l: n \times n$ Hermitian matrix
- $b_l \in \mathbb{R}$
- Homogeneous QCQP : all monomials are of degree 2
- OPF can be formulated as (nonconvex) QCQP

QCQP Equivalent problem

Using $x^{\mathsf{H}} C_l x = \text{tr} (C_l x x^{\mathsf{H}})$, this is equivalent to:

 $\min_{\mathbb{S}^n \cup \mathbb{S}^n}$ tr (C_0X) *X*∈Sⁿ,*x*∈Cⁿ s.t. tr $(C_l X) \leq b_l, \quad l = 1,...,L$ $X = xx^H$

- Any psd rank-1 matrix $X \in \mathbb{S}^{n \times n}_+$ has a spectral decomposition $X = xx^\mathsf{H}$ for some $x \in \mathbb{C}^n$
- x is unique up to a rotation, i.e., x satisfies $X = \left(x e^{i\theta}\right) \left(x e^{i\theta}\right)^\mathsf{T}$ for any $\theta \in \mathbb{R}$
- Therefore can eliminate *x*

QCQP Equivalent problem

Eliminating $x \implies$ minimization over psd matrices X :

min *X*∈ *ⁿ* tr $\left(C_{0}X\right)$ s.t. tr $(C_l X) \leq b_l, \quad l = 1,...,L$ $X \geq 0$, rank $(X) = 1$

- + \quad tr $(C_l X) \leq b_l$ is linear in X
- $X \geq 0$ is convex in X
- rank $(X) = 1$ is nonconvex in X (*X*) = 1 *X* Removing rank constraint yields SDP relaxation

SDP relaxation

SDP relaxation of QCQP

min *X*∈ *ⁿ* tr $\left(C_{0}X\right)$ s.t. tr $(C_l X) \leq b_l, \quad l = 1,...,L$ $X \geq 0$

- This is a standard semidefinite program which is a convex problem
- Solution strategy:
	- Solve SDP for an optimal solution $X^{\textsf{opt}}$
	- For $X^{\text{opt}}(X^{\text{opt}}) = 1$, then $x^{\text{opt}} \in \mathbb{C}^n$ from spectral decomposition from $X^{\text{opt}} = x^{\text{opt}}(x^{\text{opt}})$
- \textbf{I} If rank $\left(X^{\text{opt}}\right) > 1$, then, in general, no feasible solution of QCQP can be directly obtained

SDP relaxation

SDP relaxation of QCQP

 $\min_{X \subset \mathbb{S}^n}$ tr $(C_0 X)$ *X*∈^{*n*} s.t. tr $(C_l X) \leq b_l, \quad l = 1,...,L$ $X \geq 0$

- Even though SDP is convex, for large networks, it is still computationally impractical
- How to exploit sparsity of large networks to reduce computational burden?

Ans: partial matrices and completions !

Partial matrices

A QCQP instance specified by $(C_0, C_l, b_l, l = 1,..., L)$ induces graph $F:=(N,E)$

- $N: n$ nodes (where $C_l \in \mathbb{C}^{n \times n}$)
- $E \subseteq N \times N$: *m* links $(j, k) \in E$ iff $\exists l \in \{0, 1, ..., L\}$ s.t. $[C_l]_{jk} = [C_l]_{kj}^H \neq 0$

A partial matrix X_F is a set of $n + 2m$ complex numbers defined on $F = (N, E)$

$$
X_F := \left\{ [X_F]_{jj}, [X_F]_{jk}, [X_F]_{kj} : j \in N, (j, k) \in E \right\}
$$

- $\;X_{F}$ can be interpreted as matrix with entries partially specified, or a partial matrix
- If F is complete graph, then X_F is a full $n \times n$ matrix

A completion X of X_F is a full $n\times n$ matrix that agrees with X_F on graph F :

$$
[X]_{jj} = [X_F]_{jj}, \t [X]_{jk} = [X_F]_{jk}, \t [X]_{kj} = [X_F]_{kj}
$$

Partial matrices

If q is clique (fully connected subgraph) of F with k nodes, then $X_F(q)$ is a fully specified $k\times k$ principal submatrix of X_F on q :

 $[X_F(q)]_{jj} := [X_F]_{jj}, \qquad [X_F(q)]_{jk} := [X_F]_{jk}, \qquad [X_F(q)]_{kj} := [X_F]_{kj}$

Hermitian, psd, rank-1, trace Partial matrix

 $\bm{\mathsf{Definition}}$ A partial matrix X_F is

- Hermitian ($X_F = X_F^{\mathsf{H}}$) if $[X_F]_{kj} = [X_F]^{\mathsf{H}}_{jk}$
- psd $(X_F \geq 0)$ if X_F is Hermitian and $X_F(q) \geq 0$ for all cliques q of F (a set of psd constraints)
- rank-1 if rank $(X_F(q)) = 1$ for all cliques q of F (a set of psd constraints)

Hermitian, psd, rank-1, trace Partial matrix

 $\bm{\mathsf{Definition}}$ A partial matrix X_F is

- Hermitian ($X_F = X_F^{\mathsf{H}}$) if $[X_F]_{kj} = [X_F]^{\mathsf{H}}_{jk}$
- psd $(X_F \geq 0)$ if X_F is Hermitian and $X_F(q) \geq 0$ for all cliques q of F (a set of psd constraints)
- rank-1 if rank $(X_F(q)) = 1$ for all cliques q of F (a set of psd constraints)
- 2×2 *psd* if $X_F(j, k)$ is psd for all $(j, k) \in E$
- 2×2 *rank-1* if $X_F(j, k)$ is rank-1 for all $(j, k) \in E$

where
$$
X_F(j,k) := \begin{bmatrix} [X_F]_{jj} & [X_F]_{jk} \\ [X_F]_{kj} & [X_F]_{kk} \end{bmatrix}
$$

Hermitian, psd, rank-1, trace Partial matrix

For partial matrix $X_{\!\!F}$

$$
\text{tr}\left(C_l X_F\right) := \sum_{j \in N} \left[C_l\right]_{jj} \left[X_F\right]_{jj} + \sum_{j < k, (j,k) \in E} \left(\left[C_l\right]_{jk} \left[X_F\right]_{kj} + \left[C_l\right]_{kj} \left[X_F\right]_{jk}\right)
$$

If both C_l and X_F are Hermitian, then tr $\left(C_lX_F\right)$ is real:

$$
\mathrm{tr}\left(C_l X_F\right) = \sum_{j \in N} \left[C_l\right]_{jj} \left[X_F\right]_{jj} + 2 \sum_{j < k, (j,k) \in E} \mathrm{Re}\left(\left[C_l\right]_{jk} \left[X_F\right]_{kj}\right)
$$

Chordal graph & extensions

\emph{F} is a chordal graph if

- Either F has no cycles, or
- All minimal cycles (ones without chords) are of length 3

A chordal extension $c(F)$ of F is a chordal graph that contains F

• $\ X_{c(F)}$ is a chordal extension of X_F

Every graph has a (generally nonunique) chordal extension

• Complete supergraph of F is a $c(F)$

Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is chordal

• We will extend this to psd rank-1 partial matrices

Partial matrix & chordal extensions Example

$$
W_F = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{33} & x_{34} \\ x_{43} & x_{44} & x_{45} \\ x_{52} & x_{54} & x_{55} \end{bmatrix} \quad W_{c(F)} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{42} & x_{43} & x_{44} & x_{45} \\ x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix} \quad W_{c(F)} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{42} & x_{43} & x_{44} & x_{45} \\ x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix}
$$

2 cliques $W_{c(F)}(q)$ (q) 3 cliques $W_{c(F)}(q)$

Equivalent conditions

C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ C3: $X_F(j,k) \ge 0$, rank $(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum \angle [X_F]_{jk} = 0 \quad \text{mod } 2\pi$ cycle condition $(i,k)∈c$

Theorem

Suppose F is connected and $X_{jj} > 0, \ \left[X_{c(F)} \right]_{jj} > 0, \ \left[X_F \right]_{jj} > 0$. Then C1 \Longleftrightarrow C2 \Longleftrightarrow C3.

Moreover, given X_F that satisfies C3, there is a unique completion X

C3: $X_F(j,k) \geq 0$, $\text{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ $\sum \angle [X_F]_{jk} = 0 \quad \text{mod } 2\pi$ (*j*,*k*)∈*c*

$$
C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1
$$

 X psd rank-1 \implies all its principal submatrices are psd rank-1 : C1 \Rightarrow C2 \Rightarrow first part of C3 C2 \Rightarrow C3 : Suffices to prove cycle condition, by induction on size k of c

Induction hypothesis: for all cycles $c := (j_1, ..., j_k)$, $3 \le k \le n$, *k* \sum_{j} ∠[X_F]_{jij_{i+1}} = 0 mod 2 π *i*=1

Base case: $c := (n_1, n_2, n_3)$ is a clique. Hence the principal submatrix of $X_{c(F)}$

$$
X_{c(F)}(n_1, n_2, n_3) := \begin{bmatrix} [X_{c(F)}]_{n_1n_1} & [X_{c(F)}]_{n_1n_2} & [X_{c(F)}]_{n_1n_3} \\ [X_{c(F)}]_{n_2n_1} & [X_{c(F)}]_{n_2n_2} & [X_{c(F)}]_{n_2n_3} \\ [X_{c(F)}]_{n_3n_1} & [X_{c(F)}]_{n_3n_2} & [X_{c(F)}]_{n_3n_3} \end{bmatrix}
$$
 is psd rank-1

C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ C3: $X_F(j,k) \geq 0$, $\text{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ ∑ (*j*,*k*)∈*c* $\angle [X_F]_{jk} = 0$ mod 2π $C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1$

Induction hypothesis: for all cycles
$$
c := (j_1, ..., j_k)
$$
, $3 \le k \le n$, $\sum_{i=1}^k \angle [X_F]_{j_i j_{i+1}} = 0 \mod 2\pi$
Base case: $c := (n_1, n_2, n_3)$ is a clique. Hence $X_{c(F)}(n_1, n_2, n_3) = xx^H$ and
$$
\sum_{i=1}^3 \angle [X_F]_{j_i j_{i+1}} = \angle (x_1 x_2^H) + \angle (x_2 x_3^H) + \angle (x_3 x_1^H) = 0 \mod 2\pi
$$

C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ C3: $X_F(j,k) \geq 0$, $\text{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum \angle [X_F]_{jk} = 0 \quad \text{mod } 2\pi$ (*j*,*k*)∈*c* $C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1$

k Induction hypothesis: for all cycles $c := (j_1, ..., j_k)$, $3 \leq k \leq n$, $\sum_{j} Z[X_F]_{j_i j_{i+1}} = 0 \mod 2\pi$ $i=1$ For any cycle $c := (j_1, ..., j_{k+1})$. Take a chord (j_1, j_m) that breaks c into 2 cycles: Δ

$$
\sum_{i=1}^{k+1} \angle [X_F]_{j_i j_{i+1}} = \left(\sum_{i=1}^{m-1} \angle [X_F]_{j_i j_{i+1}} + \angle [X_F]_{j_m j_1} \right) + \left(\angle [X_F]_{j_i j_m} + \sum_{i=m}^{k+1} \angle [X_F]_{j_i j_{i+1}} \right) = 0
$$

C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ C3: $X_F(j,k) \geq 0$, $\text{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum \angle [X_F]_{jk} = 0 \quad \text{mod } 2\pi$ $(i,k)∈c$ $C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1$

Construct completion X from X_F by constructing vector $x \in \mathbb{C}^n$ s.t. $X = xx$ Use method for solution recovery:

$$
|x_j| \; := \; \sqrt{\left[X_F\right]_{jj}}, \qquad \angle x_j \; := \; \angle x_1 \; - \; \sum_{(i,k)\in \mathsf{P}_j} \angle \left[X_F\right]_{ik}
$$

Cycle condition ensures any spanning tree yields the same angles $\angle x_j$

C3: $X_F(j,k) \geq 0$, $\text{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ C1: $X \geq 0$, rank $(X) = 1$ C2: $X_{c(F)} \geq 0$, rank $(X_{c(F)}) = 1$ ∑ (*j*,*k*)∈*c* $\angle [X_F]_{jk} = 0$ mod 2π

$$
C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1
$$

Finally, to show X is unique, suppose $X = xx^\mathsf{H}$ and $\hat X = \hat x \hat x^\mathsf{H}$ are two distinct rank-1 completion of X_F Then

$$
|x_j| = \sqrt{\left[X_F\right]_{jj}} = |\hat{x}_j|, \qquad \theta_j - \theta_k = \angle \left[X_F\right]_{ik} = \hat{\theta}_j - \hat{\theta}_k
$$

 $\therefore C^{\mathsf{T}}(\hat{\theta} - \theta) = 0$ where *C* is bus-by-line incidence matrix. Cycle condition ensures there is a solution for $\hat{\theta} - \theta$ even if *F* is not a tree. for $\hat{\theta} - \theta$ even if F is not a tree.

 F connected \Rightarrow null (C^{T}) = span $(\mathbf{1})$ \Rightarrow $\hat{\theta} = \theta + \gamma \mathbf{1}$ \Rightarrow $\hat{x} = xe^{i\gamma}$

 $\text{Hence } \hat{X} \; = \; \hat{x}\hat{x}^{\textsf{H}} \; = \; \left(x e^{i\gamma}\right) \left(x e^{i\gamma}\right)^{\textsf{H}} \; = \; X$

Outline

1. Relaxations of QCQP

- SDP relaxation
- Partial matrices and rank-1 characterization
- Feasible sets
- Semidefinite relaxations and solution recovery
- Tightness of relaxations
- Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Feasible sets

Feasible set of QCQP

$$
\mathbb{V} := \{ x \in \mathbb{C}^n \mid x^H C_l x \le b_l, \ l = 1, ..., L \}
$$

psd rank-1 matrices *X*

:= { *X* ∈ \mathbb{S}^n | *X* satisfies tr(*C_lX*) ≤ *b*_l, C1 }

psd rank-1 chordal extensions $X_{c(F)}$

$$
\mathbb{X}_{c(F)} \ := \ \{ \ X_{c(F)} \mid X_{c(F)} \text{ satisfies tr}\left(C_l X_{c(F)}\right) \leq b_l, \text{ C2 } \}
$$

psd rank-1 partial matrices $X_{\!\!F}$

$$
\mathbb{X}_F \ := \ \{ \ X_F \mid X_F \text{ satisfies tr } (C_l X_F) \le b_l \text{, C3 } \}
$$

Feasible sets Equivalence

Corollary

Fix any connected F . Any partial matrix $X_{c(F)} \in \mathbb{X}_{c(F)}$ or $\,_K \in \mathbb{X}_F$ has a unique psd rank-1 completion *X* ∈

Definition: Two sets A and B are equivalent ($A \equiv B$) if there is a bijection between them

Theorem

 $V \equiv X \equiv X_{c(F)} \equiv X_F$

Implication: A feasible $x \in \mathbb{V}$ can be recovered from any partial matrix $X_{c(F)} \in \mathbb{X}_{c(F)}$ or $X_F \in \mathbb{X}_F$ through spectral decomposition (but there is a simpler way to compute $x \in \mathbb{V}$ than X_F completion)

Equivalent problems

QCQP

min *x*∈ℂ*ⁿ* $x^{\text{H}}C_0x$ subject to $x \in$

is equivalent to min over matrices and partial matrices:

where $\hat{\mathbb{X}} \in \left\{ \mathbb{X}, \mathbb{X}_{c(F)}, \mathbb{X}_F \right\}$ min *X* $\mathsf{tr} \left(\, C_{0}X \right)$ subject to $X \in \hat{\mathbb{X}}$

Implications:

Instead of solving for $X\in\mathbb{X}$, solve for $X_{c(F)}\in\mathbb{X}_{c(F)}$ or $X_F\in\mathbb{X}_F$ which are much smaller for large sparse networks

Equivalent problems

QCQP

min *x*∈ℂ*ⁿ* $x^{\text{H}}C_0x$ subject to $x \in$

is equivalent to min over matrices and partial matrices:

where $\hat{\mathbb{X}} \in \left\{ \mathbb{X}, \mathbb{X}_{c(F)}, \mathbb{X}_F \right\}$ min *X* $\mathsf{tr} \left(\, C_{0}X \right)$ subject to $X \in \hat{\mathbb{X}}$

Computational challenge remains: , $\mathbb{X}_{c(F)},$ \mathbb{X}_F are all nonconvex

Semidefinite relaxations

Convex supersets

$$
\mathbb{X}^+ := \{ X \in \mathbb{S}^n \mid X \text{ satisfies tr}(C_l X) \le b_l, X \ge 0 \}
$$

$$
\mathbb{X}_{c(F)}^+ := \{ X_{c(F)} \mid X_{c(F)} \text{ satisfies tr}\left(C_l X_{c(F)}\right) \le b_l, X_{c(F)} \ge 0 \}
$$

$$
\mathbb{X}_F^+ := \{ X_F \mid X_F \text{ satisfies tr}\left(C_l X_F\right) \le b_l, X_F(j, k) \ge 0, (j, k) \in E \}
$$

Semidefinite relaxations:

Semidefinite relaxations Solution recovery

If a feasible / optimal solution of semidefinite relaxation lies in $\mathbb{X},$ $\mathbb{X}_{c(F)},$ or \mathbb{X}_F , then can recover feasible / optimal $x\in\mathbb{V}$ of QCQP

Recovery procedure: given $X_F \in \mathbb{X}_F$, pick an arbitrary spanning tree

1. Set $|x_1| := \sqrt{|X_F|}_{11}$ and $\angle x_1$ to arbitrary value

2. For $j = 2, ..., n$,

$$
|x_j| \; := \; \sqrt{\left[X_F\right]_{jj}}, \qquad \angle x_j \; := \; \angle x_1 \; - \; \sum_{(i,k)\in \mathsf{P}_j} \angle \left[X_F\right]_{ik}
$$

 P_j : path from bus 1 to bus j in an arbitrary spanning tree rooted at bus 1

Cycle condition ensures any spanning tree yields the same angles $\angle x_j$

Tightness

Definition

- 1. A is an effective subset of B ($A \sqsubseteq B$) if given any $a \in A$, $\exists b \in B$ with same cost $C_A(a) = C_B(b)$
- 2. A is similar to B ($A\simeq B$) if $A\sqsubseteq B$ and $B\sqsubseteq A$

Theorem [Tightness]

- 1. $\mathbb{V} \sqsubseteq \mathbb{X}^+ \simeq \mathbb{X}^+_{c(F)} \sqsubseteq \mathbb{X}^+_{F}$
- 2. If F is a tree, then $\mathbb{V} \sqsubseteq \mathbb{X}^+ \simeq \mathbb{X}^+_{c(F)} \simeq \mathbb{X}^+_{F}$

Corollary [Optimal values]

- 1. $C^{qcap} \geq C^{sdp} = C^{ch} \geq C^{socp}$
- 2. If F is a tree, then $C^\mathsf{qqq} \geq C^\mathsf{sdp} = C^\mathsf{ch} = C^\mathsf{socp}$

Semidefinite relaxations

Implications

- 1. Radial networks: Solve QCQP-socp
	- Simplest computationally
	- Same tightness as QCQP-ch and QCQP-SDP
- 2. Meshed networks: Solve QCQP-ch or QCQP-socp
	- QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp
	- QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse networks
	- QCQP-ch is as complex as QCQP-sdp in the worst case

Outline

1. Relaxations of QCQP

- SDP relaxation
- Partial matrices and rank-1 characterization
- Feasible sets
- Semidefinite relaxations and solution recovery
- Tightness of relaxations
- Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Chordal relaxations

$$
\mathbb{X}^+_{c(F)} := \{ X_{c(F)} \mid X_{c(F)} \text{ satisfies tr}\left(C_l X_{c(F)}\right) \le b_l, X_{c(F)} \ge 0 \}
$$

 $X_{c(F)} \geq 0$: multiple constraints, one for each maximal clique q of chordal extension $c(F)$

- 1. List all maximal cliques q_k of $c(F)$, $k = 1, ..., K$
- 2. Derive appropriate Hermitian matrices $X_{\!k}$

Then $X_{c(F)} \geq 0$ is shorthand for: $X_k \geq 0, \, k = 1,...,K$ Explain each step next

Chordal relaxations

$$
\mathbb{X}^+_{c(F)} := \{ X_{c(F)} \mid X_{c(F)} \text{ satisfies tr}\left(C_l X_{c(F)}\right) \le b_l, X_{c(F)} \ge 0 \}
$$

1. List all maximal cliques q_k of $c(F)$, $k = 1, ..., K$

Computing all maximal cliques of general graph is NP-hard, but can be done efficiently for chordal graph

2. Derive appropriate Hermitian matrices $X_{\!k}$

Illustrate using example

Then $X_{c(F)} \geq 0$ is shorthand for: $X_k \geq 0, \, k = 1,...,K$

Chordal relaxations Example

1. Two cliques: $q_1 := (1,2,3)$ and $q_2 := (2,3,4,5)$

2. $\ q_1$ and q_2 share node $2 \implies$ principal submatrices of $X_{c(F)}$ overlap in 4 entries, requiring 4 decoupling vars and constraints:

$$
X'_{1} := \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & u_{22} & u_{22} \\ x_{31} & u_{32} & u_{33} \end{bmatrix}, \quad X_{2} := \begin{bmatrix} x_{22} & x_{23} & x_{24} & x_{25} \\ x_{32} & x_{33} & x_{34} & x_{35} \\ x_{42} & x_{43} & x_{44} & x_{45} \\ x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix}
$$

 $u_{jk} = x_{jk}$ for $j, k = 2,3$

 $\begin{array}{c} \n\begin{array}{c}\n\end{array} \\
\hline\n\end{array}$

 Ω

3. Then $X_{c(F)} \ge 0$ is: $X'_1 \ge 0$, $X_2 \ge 0$

Chordal relaxations Example

$$
\text{Let } \quad X' \ := \ \begin{bmatrix} X'_1 & 0 \\ 0 & X_2 \end{bmatrix}
$$

Chordal relaxation is equivalent to SDP in standard form

min $X' \in \mathbb{S}^7$ tr (C'_0X') s.t. $tr(C'_l X') \leq b_l, \qquad l = 1,...,L$ $tr(C'_r X') = 0,$ $r = 1,2,3,4$ $X' \geq 0$

 $3 \rightarrow 4$ (1) $3 \rightarrow 4$ x_{11} x_{12} x_{13} x_{21} x_{22} x_{25} x_{31} x_{33} x_{34} x_{43} x_{44} x_{45} x_{52} x_{54} x_{55} [l $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \mathbf{I} I \mathbb{I} $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ & $W_F = \begin{vmatrix} x_{31} & x_{33} & x_{34} \end{vmatrix}$ $W_{c(F)} =$ $\overline{x_{11} \quad x_{12} \quad x_{13}}$ x_{21} x_{22} x_{23} x_{24} x_{25} x_{31} x_{32} x_{33} x_{34} x_{35} x_{42} x_{43} x_{44} x_{45} x_{52} x_{53} x_{54} x_{55} ! l $\mathsf I$ $\mathsf I$ $\mathsf I$ # $\mathsf I$ I 1 \rfloor $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $W_{c(F)} = |x_{31}| x_{32} x_{33} x_{34} x_{35}$

2 \rightarrow 5

 $\left(1\right)$

 $V_F =$

 $\overline{\text{2}}$ 5

for appropriate C_l'

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
	- Semidefinte relaxation
	- Exact relaxation: definition
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

OPF as QCQP Recall

min *V*∈ℂ*N*+1 $V^{\mathsf{H}}C_0V$ s.t. p_{j}^{\min} \leq tr $\left(\Phi_{j}VV^{\mathsf{H}}\right)$ \leq p_{j}^{\max} $j \in \overline{N}$ $q_j^{\min} \leq \text{tr}\left(\Psi_j VV^{\text{H}}\right) \leq q_j^{\max}$ $j \in \overline{N}$ $v_j^{\min} \leq \text{tr}\left(E_j V V^{\text{H}}\right) \leq v_j^{\max}, \qquad j \in \overline{N}$ $\textsf{tr}\left(\,\hat{Y}_{jk}VV^{\sf H}\,\right) \,\,\leq\,\, \bar{I}^{\max}_{jk}$ $(j, k) \in E$ $\mathrm{tr}\left(\,\hat{Y}_{kj}VV^{\mathsf{H}}\,\right) \,\,\leq\,\, \bar{I}_{kj}^{\max}$ $(j, k) \in E$ abbreviated as: $\mathsf{tr}\left(C_lVV^{\mathsf{H}}\right) \leq b_l, \ l=1,...,L$

Constraints

Given $V\in \mathbb{C}^{N+1}$, define partial matrix W_G by $[W_G]_{jj} := |V_j|^2$, $j \in \overline{N}$ $[W_G]_{jk} := V_j V_k^{\mathsf{H}} =: [W_G]_{kj}^{\mathsf{H}}, \quad (j,k) \in E$

Constraints in terms of $W_{\!G}$

$$
p_j^{\min} \leq \text{tr} \left(\Phi_j W_G \right) \leq p_j^{\max}
$$

\n
$$
q_j^{\min} \leq \text{tr} \left(\Psi_j W_G \right) \leq q_j^{\max}
$$

\n
$$
v_j^{\min} \leq \text{tr} \left(E_j W_G \right) \leq v_j^{\max}
$$

\n
$$
\text{tr} \left(\hat{Y}_{jk} W_G \right) \leq I_{jk}^{\max}
$$

\n
$$
\text{tr} \left(\hat{Y}_{kj} W_G \right) \leq I_{kj}^{\max}
$$

abbreviated as: $\text{tr}\left(C_lW_G\right)\leq b_l,\ l=1,...,L$

OPF and relaxations

OPF as QCQP

$$
\min_{V} C_0(V) \qquad \text{s.t.} \quad \text{tr}\left(C_l V V^{\text{H}}\right) \le b_l, \ \ l = 1,...,L
$$

Semidefinite relaxations:

Exact relaxation

Definition

- 1. OPF-sdp is exact if every optimal solution $W^{\textsf{sdp}}$ of OPF-sdp is psd rank-1
- 2. OPF-ch is $\overline{\mathsf{exact}}$ if every optimal solution $W_{c(G)}^{\mathsf{ch}}$ of OPF-ch is psd rank-1
- 3. OPF-socp is <mark>exact</mark> if every optimal solution $W_G^{\textbf{SOCP}}$ of OPF-socp
	- is 2×2 psd rank-1, i.e., $W_G^{\text{SOCP}}(j, k)$ are psd rank-1 for all $(j, k) \in E$, and

satisfies cycle condition, i.e., $\sum_{i \in \mathbb{N}} \mathbb{1} \$ (*j*,*k*)∈*c*

Remarks

- 1. Any optimal solution returned by optimization algorithm will work under this strong sense of exactness
- 2. Under sufficient exactness condition, optimal solution of OPF can be recovered even under weak sense of exactness (see below)

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
	- Sufficient condition for QCQP
	- Application to OPF
	- Proof
- 4. Exactness condition: small angle difference

QCQP and SOCP relaxation

QCQP:

min *x*∈ℂ*ⁿ* $x^{\text{H}}C_0x$ s.t. $x^{\text{H}}C_{l}x \leq b_{l}$, $l = 1,..., L$

SOCP relaxation:

 $\min_{\mathbf{y}}$ tr (C_0X_G) X_G s.t. tr $(C_l X_G) \leq b_l, \quad l = 1,...,L$ *X*_{*G*}(*j*, *k*) ≥ 0, (*j*, *k*) ∈ *E*

• $C_l: n \times n$ Hermitian matrix, $b_l \in \mathbb{R}$

Sufficient condition

 C 1: For every $(j,k) \in E$, $\exists \alpha_{jk}$ s.t. $\angle \big[C_l\big]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all $l = 0,..., L$

C2: C_0 is positive definite

Theorem

Suppose G is a tree and C1 holds. Then

- 1. $C^{opt} = C^{score}$
- 2. An optimal solution $x^{opt} \in \mathbb{C}^{N+1}$ of QCQP can be recovered from every optimal solution X_G^{SOCP} of its SOCP relaxation

 $X_G^{\textsf{opt}}$ may not be 2×2 rank-1 (i.e., SOCP may not be exact) when optimal solutions of SOCP relaxation are nonunique

Sufficient condition

 C 1: For every $(j,k) \in E$, $\exists \alpha_{jk}$ s.t. $\angle \big[C_l\big]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all $l = 0,..., L$

C2: C_0 is positive definite

Corollary

Suppose G is a tree and both C1 and C2 hold. Then SOCP relaxation is exact, i.e., every optimal solution X_C^{SUCP} is 2×2 psd rank-1 *G* X_G^{SOCP} is 2×2

Cycle condition is vacuous since *G* is a tree

Application to OPF Recall OPF as QCQP

$$
\begin{aligned}\n\min_{V \in \mathbb{C}^{N+1}} \quad & V^{\mathsf{H}} C_0 V \\
\text{s.t.} \quad & p_j^{\min} \le \text{ tr} \left(\Phi_j V V^{\mathsf{H}} \right) \le p_j^{\max}, \qquad j \in \overline{N} \\
& q_j^{\min} \le \text{ tr} \left(\Psi_j V V^{\mathsf{H}} \right) \le q_j^{\max}, \qquad j \in \overline{N} \qquad \text{ \text{ \textit{abbreviated as:} } } \\
& v_j^{\min} \le \text{ tr} \left(E_j V V^{\mathsf{H}} \right) \le v_j^{\max}, \qquad j \in \overline{N}\n\end{aligned}
$$

Application to OPF **Exactness condition** *jk* ⁼ ¹ *,* [Y*k*] *jk* ⁼ ¹ as well as the angles of [F*j*] *jk,*[F*k*] *jk* and [Y*j*] *jk,*[Y*k*] *jk*. These quantities are shown in Figure 13.3

Corollary

Suppose G is a tree and both C1 and the diagram hold.

Then SOCP relaxation is exact

Sufficient condition

 C 1: For every $(j,k) \in E$, $\exists \alpha_{jk}$ s.t. $\angle \big[C_l\big]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all $l = 0,..., L$

C2: C_0 is positive definite

Theorem

Suppose G is a tree and C1 holds. Then

- 1. $C^{opt} = C^{score}$
- 2. An optimal solution $x^{opt} \in \mathbb{C}^{N+1}$ of QCQP can be recovered from every optimal solution X_G^{SOCP} of its SOCP relaxation

 $X_G^{\textsf{opt}}$ may not be 2×2 rank-1 (i.e., SOCP may not be exact) when optimal solutions of SOCP relaxation are nonunique

Fix any partial matrix X_G that is feasible for SOCP. Suffices to construct construct $x\in\mathbb{C}^n$ s.t.

$$
x^H C_l x \le \text{tr } C_l X_G, \qquad l = 0, 1, \dots, L
$$

i.e., x is feasible for QCQP and has an equal or low cost

Case 1:
$$
X_G
$$
 is 2×2 psd rank-1. Let $\angle x_1 := 0$ and
\n $|x_j| := \sqrt{[X_G]}_{jj}$, $\angle x_j := - \sum_{(i,k) \in P_j} \angle [X_G]_{ik}$ (P_j: path from bus 1 to bus *j*)

Since $[X_G]_{jj} [X_G]_{kk} = |\left[X_G\right]_{jk}|^2$ we have (since X_G is Hermitian): $x^H C_l x = \sum [C_l]_{jk} x_j^H x_k = \sum [C_l]_{jk} |x_j| |x_k| e^{i(\angle x_k - \angle x_j)} = \sum [C_l]_{jk} |X_G|_{jk} | e^{-i\angle [X_G]_{jk}} = \text{tr}(C_l X_G)$ *j*,*k j*,*k j*,*k*

Fix any partial matrix X_G that is feasible for SOCP. Suffices to construct construct $x\in\mathbb{C}^n$ s.t.

 $x^{\text{H}}C_{l}x \leq \text{tr } C_{l}X_{G}, \qquad l = 0, 1, ..., L$

i.e., x is feasible for QCQP and has an equal or low cost

 $\frac{1}{2}$ *Case 2:* X_G *is not* 2×2 *psd rank-1*. Suppose $[X_G]_{jj} [X_G]_{kk} > | \left[X_G \right]_{jk} |^2.$ We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that tr $C_l\hat{X}_G \ \leq\ {\sf tr}\ C_lX_G$

Then can construct $x\in\mathbb{C}^n$ from $\hat X_G$ as in Case 1.

 $\frac{1}{2}$ *Case 2:* X_G *is not 2* \times *2 psd rank-1*. Suppose $[X_G]_{jj} [X_G]_{kk} > |\left[X_G\right]_{jk}|^2$. We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l\hat{X}_G \ \leq\ {\sf tr}\ C_lX_G$

Then can construct $x\in\mathbb{C}^n$ from $\hat X_G$ as in Case 1.

<u>1. Construction of \hat{X}_G </u>

$$
[\hat{X}_G]_{jj} := [X_G]_{jj}, \qquad [\hat{X}_G]_{jk} := [X_G]_{jk} + r_{jk} e^{-i(\frac{\pi}{2} - \alpha_{jk})}
$$

with $r_{jk} > 0$ chosen to ensure \hat{X}_G is psd rank-1, i.e., to ensure

$$
[\hat{X}_{G}]_{jj}[\hat{X}_{G}]_{kk} = |[\hat{X}_{G}]_{jk}|^{2} = |[X_{G}]_{jk} + r_{jk}e^{-i(\frac{\pi}{2} - \alpha_{jk})}|^{2} \Leftrightarrow r_{jk}^{2} + 2b r_{jk} - c = 0
$$

where $b := \text{Re}([X_{G}]_{jk}e^{i(\frac{\pi}{2} - \alpha_{jk})})$ and $c := [X_{G}]_{jj}[X_{G}]_{kk} - |[X_{G}]_{jk}|^{2} > 0$

 $\frac{1}{2}$ *Case 2:* X_G *is not* 2×2 *psd rank-1*. Suppose $[X_G]_{jj} [X_G]_{kk} > |\left[X_G\right]_{jk}|^2.$ We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l\hat{X}_G \ \leq\ {\sf tr}\ C_lX_G$

Then can construct $x\in\mathbb{C}^n$ from $\hat X_G$ as in Case 1.

<u>1. Construction of \hat{X}_G </u>

$$
[\hat{X}_G]_{jj} := [X_G]_{jj}, \qquad [\hat{X}_G]_{jk} := [X_G]_{jk} + r_{jk}e^{-i(\frac{\pi}{2} - \alpha_{jk})}
$$

Therefore

$$
\hat{X}_G \text{ is psd rank-1} \quad \Leftrightarrow \quad [\hat{X}_G]_{jk} := [X_G]_{jk} \, + \, r_{jk} e^{-i\left(\frac{\pi}{2} - \alpha_{jk}\right)} \text{ with } \, r_{jk} := \sqrt{b^2 + c} - b > 0
$$

 $\frac{1}{2}$ *Case 2:* X_G *is not* 2×2 *psd rank-1*. Suppose $[X_G]_{jj} [X_G]_{kk} > | \left[X_G \right]_{jk} |^2.$ We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l\hat{X}_G \ \leq\ {\sf tr}\ C_lX_G$

Then can construct $x\in\mathbb{C}^n$ from $\hat X_G$ as in Case 1.

<u>2. \hat{X}_{G} is feasible for SOCP with lower or equal cost</u>

$$
\operatorname{tr}\left(C_l\left(\hat{X}_G - X_G\right)\right) = \sum_{(j,k)\in E} [C_l]_{jk} \left([\hat{X}_G]_{jk} - [X_G]_{jk} \right)^{\mathsf{H}}
$$

$$
= 2 \sum_{j < k, (j,k)\in E} \operatorname{Re}\left([C_l]_{jk} \cdot r_{jk} e^{i\left(\frac{\pi}{2} - \alpha_{jk}\right)}\right)
$$

$$
= 2 \sum_{\substack{j < k \\ (j,k)\in E}} \left| [C_l]_{jk} \right| r_{jk} \cos\left(\angle [C_l]_{jk} + \frac{\pi}{2} - \alpha_{jk}\right) \leq 0
$$

Finally, if condition C2 holds as well, SOCP has a unique optimal solution $X_{\overline{G}}.$

If X_G is 2×2 psd but not 2×2 rank-1, i.e., $[X_G]_{jj} [X_G]_{kk} > |\left[X_G\right]_{jk}|^2$ for some (j,k)

then proof above constructs $\hat X_G$ that is feasible for SOCP with lower or equal cost, contradicting uniqueness of X_G . Hence X_G must be 2×2 rank-1.

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference
	- Sufficient condition
	- 2-bus example

Assumptions

Assume

- 1. Series admittances are symmetric $y_{jk}^s = y_{kj}^s$ and shunt admittances are zero $y_{jk}^m = y_{kj}^m := 0$
- 2. Voltage magnitudes $\mid V_j\mid := 1$ pu are fixed
- 3. Reactive powers are ignored

Use polar form power flow equations

 $\boldsymbol{\cdot}$: Optimization over (s, v) reduces to optimization over (p, θ)

OPF formulation

min p *,* P *,* θ *C*(*p*) s.t. $p_j^{\min} \leq p_j \leq p_j^{\max}, \qquad j \in \overline{N}$ $\theta_{jk}^{\min} \leq \theta_{jk} \leq \theta_{jk}^{\max}, \quad (j, k) \in E$ $p_j = \sum P_{jk}$, $j \in N$ *k*:*k*∼*j* $P_{ik} = g_{ik} - g_{ik} \cos \theta_{ik} - b_{ik} \sin \theta_{ik}, \quad (j, k) \in E$ constraints on line flows, line losses, or stability power flow equation (polar form) nodal power balance

where $V_j = |V_j| \, e^{i \theta_j}$ with $|V_j| := 1$ and $\theta_{jk} := \theta_j - \theta_k$

Eliminate P_{jk} and θ_{jk}

OPF formulation

Define injection region

$$
\mathbb{P}_{\theta} := \left\{ p \in \mathbb{R}^{n} \middle| p_{j} = \sum_{k:k \sim j} \left(g_{jk} - g_{jk} \cos \theta_{jk} - b_{jk} \sin \theta_{jk} \right), \quad \theta_{jk}^{\min} \leq \theta_{jk} \leq \theta_{jk}^{\max} \right\}
$$

$$
\mathbb{P}_{p} := \left\{ p \in \mathbb{R}^{n} \middle| p_{j}^{\min} \leq p_{j} \leq p_{j}^{\max}, j \in N \right\}
$$

OPF:

$$
\min_{p} C(p) \quad \text{s.t.} \quad p \in \mathbb{P}_{\theta} \cap \mathbb{P}_{p}
$$

SOCP relaxation:

$$
\min_{p} C(p) \quad \text{s.t.} \quad p \in \text{conv}(\mathbb{P}_{\theta}) \cap \mathbb{P}_{p}
$$

Definition: SOCP relaxation is <mark>exact</mark> if every optimal solution lies in $\mathbb{P}_{\theta} \cap \mathbb{P}_p$

Pareto front Pareto front

Definitions

A point $x \in A \subseteq \mathbb{R}^n$ is a Pareto optimal point in A if there does not exist another $x'\in A$ such that

- $x' \leq x$, and
- $x'_j < x_j$ for at least one j

The Pareto front of A : $\mathbb{O}(A) := \{$ all Parento optimal points $\}$

Sufficient condition

C1: for every
$$
(j, k) \in E
$$
, $\tan^{-1} \frac{b_{jk}}{g_{jk}} < \theta_{jk}^{\min} \le \theta_{jk}^{\max} < \tan^{-1} \frac{-b_{jk}}{g_{jk}}$ $b_{jk} < 0 < g_{jk}$

C2: $C(p)$ is strictly increasing in each p_j

Theorem

Suppose G is a tree and C1, C2 hold. Then

- 1. ℙ*^θ* ∩ ℙ*^p*
- 2. SOCP relaxation is exact

feasible set is Pareto front of its relaxation

Geometric insight 2-bus network

For each line $(j,k)\in E$, line flows $P:=\left(\,P_{jk},P_{kj}\,\right)$ and angle differences $\theta_{jk}:=\theta_j-\theta_k$ satisfy and angle differences $\theta_{\cdot\cdot} := \theta_{\cdot} - \theta_{\cdot}$ satisfy $\overline{1}$

$$
P - g_{jk}\mathbf{1} = A \begin{bmatrix} \cos \theta_{jk} \\ \sin \theta_{jk} \end{bmatrix} \text{ where } A := \begin{bmatrix} -g_{jk} & -b_{jk} \\ -g_{jk} & b_{jk} \end{bmatrix}
$$

- 1. P traces out an ellipse in \mathbb{R}^2 as θ_{jk} ranges over $[-\pi,\pi].$ Hence feasible set (subset of ellipse) is noncovex.
- 2. $\,$ C1 restricts \mathbb{P}_{θ} to lower half of ellipse

Geometric insight 2-bus network

 $\textsf{For each line } (j, k) \in E,$ line flows $P := \left(\mathit{P}_{jk}, \mathit{P}_{kj}\right)$ and angle difference $\left(\mathbb{E}_{j_k}, \mathbb{E}_{j_k}\right)$

$$
P - g_{jk}\mathbf{1} = A \begin{bmatrix} \cos \theta_{jk} \\ \sin \theta_{jk} \end{bmatrix} \text{ where } A := \begin{bmatrix} -g_{jk} & -b_{jk} \\ -g_{jk} & b_{jk} \end{bmatrix}
$$

- 1. P traces out an ellipse in \mathbb{R}^2 as θ_{jk} ranges over $[-\pi, \pi].$ Hence feasible set (subset of ellipse) is noncovex.
- 2. $\,$ C1 restricts \mathbb{P}_{θ} to lower half of ellipse
- 3. C2 implies Pareto front of relaxed feasible set coincides with feasible set, i.e., relaxation is exact

