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Dealing with nonconvexity

OPF is nonconvex and NP-hard
* There are 3 common ways to deal with nonconvexity

1. Linear approximation
« e.g. DC OPF is widely used for electricity market applications

2. Local algorithms, e.g., Newton-Raphson, interior-point
* Optimality conditions studied earlier for convex problems not applicable
* Lyapunov-like condition guarantees that, if local algorithm computes a local optimum, it is global optimum

3. Convex relaxation, e.g., semidefinite relaxation
* Lyapunov-like condition also guarantees exactness of any convex relaxation
» Optimality conditions studied earlier apply to convex relaxations

Unlike approximations, convex relaxation has 3 advantages
* We can easily check if a solution of relaxation is a global optimum
* If not, it provides a lower bound on optimal value
» If relaxation is infeasible, then the nonconvex problem is infeasible



QCQP

Quadratically constrained quadratic program:

min  x"Cyx
xeC"

s.t. XHCl.x S bl’ [ = 1,...,L

« (C;:n X n Hermitian matrix

i bl = R

» Homogeneous QCQP : all monomials are of degree 2
* OPF can be formulated as (nonconvex) QCQP



QCQP

Equivalent problem

Using x"Cpx = tr (ClxxH), this is equivalent to:

' X
e (Y
s.t. tr(CX) < b, I=1,.,L

X = xxH

« Any psd rank-1 matrix X € S"”*" has a spectral decomposition X = xxH for some x € C”
: . H
« X is unigue up to a rotation, i.e., x satisfies X = (xe’g) (xele) forany @ € R

 Therefore can eliminate x



QCQP

Equivalent problem
Eliminating x = minimization over psd matrices X:

)I’(IélgIlli tr (COX )

st.  tr(CX) < b, [=1,..,L
X >0, rank(X) = 1

. tr (CZX) < b;islinearin X
« X >0isconvexinX
e rank(X) = 1 is nonconvex in X Removing rank constraint yields SDP relaxation



SDP relaxation

SDP relaxation of QCQP

)I(Iélgl}i tr (COX )

s.t. tr(Cl ) < b [=1,..,L
> 0

* This is a standard semidefinite program which is a convex problem
« Solution strategy:

» Solve SDP for an optimal solution XOPt
H
i rank(XOpt> = 1, then x°Pt € C" from spectral decomposition from X°Pt = xOPt (xOpt>

. If rank<X°pt) > 1, then, in general, no feasible solution of QCQP can be directly obtained



SDP relaxation

SDP relaxation of QCQP

)r(r:ggl tr (CO )

s.t. tr(Cl ) < b [=1,..,L
> 0

« Even though SDP is convex, for large networks, it is still computationally impractical
* How to exploit sparsity of large networks to reduce computational burden?

Ans: partial matrices and completions !



Partial matrices

A QCQP instance specified by (Cy, C;, b;, [ = 1,..., L) induces graph F := (N, E)
« N:nnodes (where C; € C™)
.« ECNXN:mlinks (j,k) € E iff 31 € (0,1,...,L} st [Cly=[CI;# 0

A partial matrix Xy is a set of n + 2m complex numbers defined on F' = (N, E)
Xp = { D1y Xelo [Xely  JEN.GR € E |

« X[ can be interpreted as matrix with entries partially specified, or a partial matrix

« If F'is complete graph, then X is a full n X n matrix

A completion X of X is a full n X n matrix that agrees with X on graph F:
[X]j' — [XF]J”, [X]jk — [XF]jk, [X]kj — [XF]kj



Partial matrices

If g is clique (fully connected subgraph) of F with k nodes, then X(g) is a fully specified k X k
principal submatrix of X, on g :

[XF(Q)]]'J' = [XF]J", [XF(Q)]jk = [XF]jk, [XF(Q)]kj = [Xp]kj,



Hermitian, psd, rank-1, trace

Partial matrix

Definition A partial matrix Xy is

o Hermitian (X = X;') if [Xply; = [XF;,'C
 psd (Xp > 0) if X is Hermitian and X (q) > O for all cliques g of F’ (a set of psd constraints)

« rank-1 if rank (XF(q)) = 1 for all cliques g of F’ (a set of psd constraints)



Hermitian, psd, rank-1, trace

Partial matrix

Definition A partial matrix Xy is

o Hermitian (X = X;') if [Xply; = [XF;,'C

psd (Xp > 0) if Xpis Hermitian and X (g) > O for all cliques g of F' (a set of psd constraints)

rank-1 if rank (XF(q)) = 1 for all cliques g of F’ (a set of psd constraints)

2 X2 psd if Xp(j,k)ispsdforall (j,k) € E 2X2psd: X > 0, [Xply = 0

“ 2
! [XX]]][XX]/\/( > ‘[XF]]/\|

2 X 2 rank-1 if Xg(j, k) is rank-1forall (j,k) € E

2
2 X 2 rank-1: [(Xx il Xyl = ‘ [XF].ik|

[Xel;  [XF) jk]

where Xp(j, k) := [[XF]kj [XFl i



Hermitian, psd, rank-1, trace
Partial matrix

For partial matrix Xp

tr (CXp) = Z LG [ XEL; + Z <[Cl]jk [Xrly + LGy [XF]jk>
JEN j<k (jk)eE

If both C; and X are Hermitian, then tr (CIXF) is real:

w(CXe) = Y ICLX + 2 Y Re(IGL X y)
jeN i<k,(jk)EE



Chordal graph & extensions

Fis a chordal graph if

 Either I has no cycles, or
« All minimal cycles (ones without chords) are of length 3

A chordal extension c(F’) of F'is a chordal graph that contains F

« X, is achordal extension of Xr

Every graph has a (generally nonunique) chordal extension
« Complete supergraph of F'is a c(F’)

Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is
chordal

*  We will extend this to psd rank-1 partial matrices



Partial matrix & chordal extensions

Example

<t

X X2 X3 -xu X2 X3 - —xn X2 X3 -

X1 Xy X5 Xor| Koo Xog Xoy  Xps Xo1| X Xog X5

Wp = | X3 X33 Xag Werry = | X1 X3y X3 X3y Xas || Wey = | Xar| Xap | X33 X3y | Xss
Xyz Xag Xys Xyp Xgz Xyg Kys X4z Xag Xys

| Xso Xy Xss | | X5y Xs3 Xsq Xss| | | xsz@ Xsy | Xss| |

2 cliques WC(F)((]) 3 cliques Wc(F)((I)



Rank-1 characterization

Equivalent conditions

C1: X > 0, rank(X) = 1
C2: XC(F) z O, I’ank(Xc(F)) = 1
C3: Xi(j, k) = 0, rank(Xz(j, k) = 1, (j,k) e E
Z Z[Xply = 0 mod 27 cycle condition
(j,k)ec
Theorem

Suppose F'is connected and ij > 0, [XC(F)] > 0, [XF] > 0. Then C1 < C2 < Ca3.
Jj
Moreover, given X that satisfies C3, there is a unique completion X



Rank-1 characterization

Proof

C1: X > 0, rank(X) = 1

c2: Xz 0, rank(X,p) = 1

cs: X,k > 0,  rankXp(Lk) = 1, (LK EE Cl1 = C2 = C3 = C1

Y ZXdp=0  mod 2z
(j.k)ec

X psd rank-1 = all its principal submatrices are psd rank-1: C1 = C2 = first part of C3

C2 = C3: Suffices to prove cycle condition, by induction on size kof ¢

k
Induction hypothesis: for all cycles ¢ := (j;, ..., j;), 3 < k < n, Z L[XF] =0 mod 2z
Jili+1
i=1

Base case: ¢ := (n, n,, n3) is a clique. Hence the principal submatrix of XC(F)

[XC(F)]nlnl [XC(F)]n1n2 [XC(F)]n1n3
X (o, m3) = [ Xemlun, Xemlnn, Xelnn, | is psd rank-1

[XC(F )] nmn; [XC(F )] nn, [XC(F )] n3n |



Rank-1 characterization

Proof

C1: X > 0, rank(X) = 1

C2: X = 0, rank(X.p) = 1

Ca: XG0 > 0,  rank(Xz(.k) = 1, Lk EE Cl1=>C2 = (C3 = (C1

D> ZIXpy=0  mod2z
(k)ec

k
Induction hypothesis: for all cycles ¢ := (ji, ...,J;), 3 < k < n, Z L[XF] . =0 mod 2z
Jili+1
i=1
Base case: ¢ := (ny, ny, n3) is a clique. Hence X (1, 1y, n13) = xx™ and

3
Z A[Xp]jiji+1 = L(xlsz) + L(xzxg') + L(xycf) = 0 mod 27
i=1



Rank-1 characterization

Proof
C1: X > 0, rank(X) = 1
C2: X = 0, rank(X.p) = 1
C3: XG0 = 0,  rank(Xs(,k) = 1, (k) €EE Cl=>C2 = C3 = (C1
D> ZIXpy=0  mod2z
(ke
Induction hypothesis: for all cycles ¢ := (ji, ...,J;), 3 < k < n, Z A[XF = 0 mod 2z

.]Jz+l
=1

For any cycle ¢ := (ji, ...,J;.1). Take achord (j;,/ ) that breaks c into 2 cycles:
J1 Jk+1 J15Jm

k+1 1
ZI‘ L[XF]J}J}'H <g: L JlJz+1 [XF]jmjl) T < XF]]1],71+Z 4 JJi+1> =0

I=m



Rank-1 characterization

Proof

C1: X > 0, rank(X) = 1

C2: X = 0, rank(X.p) = 1

c3: XG> 0, rank(X:(Lk) = 1, (LW EE Cl = (C2 = (C3 = (C1

D> ZIXpy=0  mod2z
(J,k)ec

Construct completion X from X by constructing vector x € C" s.t. X = xxH

Use method for solution recovery:

o= K o= = Y 2x],

(i,k)EPj

Cycle condition ensures any spanning tree yields the same angles £X;



Rank-1 characterization

Proof

C1: X > 0, rank(X) = 1

c2: X = 0, rank(X,q) = 1

cs: X,k > 0,  rank((h k) = 1, (LK EE Cl = C2 = C3 = C1

Y Xy =0  mod2x
(j.k)ec

Finally, to show X is unique, suppose X = xx™ and X = 3%

Then
5= I, = 151 g-a= 4], = 6-4,

Cj(é — 6) = 0 where C is bus-by-line incidence matrix. Cycle condition ensures there is a solution
for @ — @ even if F'is not a tree.

" are two distinct rank-1 completion of Xy

F connected = null(CT) = span(1) = 0 =0 + 1 = %=xe”

Hence X = " = (xeiy) (xeiy)H = X
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Feasible sets

Feasible set of QCQP
V= {xeC |xHClx <b,l=1,...,L}

psd rank-1 matrices X

X = { X e §" | Xsatisfies tr(C;X) < b, C1 }
psd rank-1 chordal extensions X,

Xer = { Xyp | Xy satisfies tr (CZXC(F)> < b, C2 }

psd rank-1 partial matrices X

Xp = { Xp | Xy satisfies tr (CIXF) <b, C3}



Feasible sets
Equivalence

Corollary

Fix any connected F. Any partial matrix X,z € X ) or Xp € X has a unique psd rank-1
completion X € X

Definition: Two sets A and B are equivalent (A = B) if there is a bijection between them
Theorem

V=X=Xpm = Xp

Implication: A feasible x € V can be recovered from any partial matrix Xz € X ) or

X € X through spectral decomposition (but there is a simpler way to compute x € V than
completion)



Equivalent problems

QCQP

min  x"Cyx subject to xevV
xeC"

is equivalent to min over matrices and partial matrices:

min tr (COX) subject to X e X
X

A

where X € {x,xc(F),xF}

Implications:
Instead of solving for X € X, solve for Xy € X ) or Xp € Xy which are much smaller

for large sparse networks



Equivalent problems

QCQP

min  x"Cyx subject to xevV
xeC"

is equivalent to min over matrices and partial matrices:

min tr (COX) subject to X e X
X

A

where X € {x,xc(F),xF}

Computational challenge remains:
X, Xy Xp are all nonconvex



Semidefinite relaxations

Convex supersets
Xt = {XeS"| Xsatisfies tr(C;,X) < b;, X > 0}

XTI = {Xp) | X satisfies tr <CZXC(F)> < b, X.r =0}

X} = {Xp | Xpsatisfies tr (C;Xz) < b, Xp(j,k) > 0, (j, k) € E}

Semidefinite relaxations:

QCQP-sdp : min C (XF> s.t. X e Xt most complex
X

QCQP-ch : }rp:z C (XF) s.t. Xor) € X:(F)

QCQP-socp : min C (XF) s.t. Xr € X;; simplest



Semidefinite relaxations

Solution recovery

If a feasible / optimal solution of semidefinite relaxation lies in X, XC(F), or X, then can recover
feasible / optimal x € V of QCQP

Recovery procedure: given X, € X, pick an arbitrary spanning tree

1. Set | x| := [XF]II and Zx; to arbitrary value

2. Forj=2,...,n,

gl o= ] = - Y 2[x],

(i,k)eP;

P; : path from bus 1 to bus j in an arbitrary spanning tree rooted at bus 1

Cycle condition ensures any spanning tree yields the same angles £X;



Tightness

Definition

1. A is an effective subset of B(A E B) if givenanya € A, 4 b € B with same cost
Cala) = Cp(b)

2. Aissimilarto BA ~B)ifAC BandBLC A
Theorem [Tightness]

1. VE X* =~ X¥ 5 E XF

2. If Fisatree, then VL X" o~ X7 p) = XF

Corollary [Optimal values]
1. c9cap > Csdp _ Cch > (SOCp

2. If Fis atree, then CI¢AP > (SdP — cch — (socp



Semidefinite relaxations

Implications
1. Radial networks: Solve QCQP-socp
« Simplest computationally
» Same tightness as QCQP-ch and QCQP-SDP

2. Meshed networks: Solve QCQP-ch or QCQP-socp
» QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp

« QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse
networks

 QCQP-ch is as complex as QCQP-sdp in the worst case
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Chordal relaxations

C(F). (X | X (F)sat|sf|estr(ClX(F)><bl, «r = 0}

X, = 0 : multiple constraints, one for each maximal clique g of chordal extension c(F)
1. List all maximal cliques g, of c(F), k= 1,..., K

2. Derive appropriate Hermitian matrices X,

Then X = Ois shorthand for: X; > 0, k=1,....K

Explain each step next



Chordal relaxations

Xar = Xey | X, satisfies ”(CZX (F)> < b, Xery Z 0}

1. List all maximal cliques g, of c(F), k =1,...,K

Computing all maximal cliques of general graph is NP-hard, but can be done efficiently for
chordal graph

2. Derive appropriate Hermitian matrices X,

lllustrate using example

Then X, ) = Ois shorthand for: X; > 0, k=1,...,K



Chordal relaxations

Example

1. Two cliques: ¢, := (1,2,3) and ¢, := (2,3,4,5) ﬁ /Q
(F) @\
3—

—————{ N

2. ¢, and g, share node 2 = principal submatrices of X.

overlap in 4 entries, requiring 4 decoupling vars and
constraints:

SN
AN
S
>
N
e ~
e SN
’ ~
’ ~

xll x12 x13 -xn X2 X3 ] -xn X A3
X/ = X u u X o — X32 X33 X34 x35 Xo1 Xy Xas Xo1| Xap Koz Xog  Xog
1 -~ 21 22 221> 2 X X X X = W,y =
42 43 44 45 Wr = | X3 X33 X3y c(F) X3p| Xap Xag X3y Ass
x31 l/t32 l/l33 X X X X Xyz Xyg Xys Xap Xy Xyy Xys
| 52 53 54 55_ L Xsp Xsq Xss | X5y Xs3 Xsq Xss) |

Up = X forj, k = 2,3

8. ThenX = 0is: X; >0, X,>=0




Chordal relaxations

Example
X o]

Let X := [0 X, @ﬁ—j} /@fﬁr

1
Chordal relaxation is equivalent to SDP in standard form 3) (3 Q\@_@
min  tr(CyX')

X'es’
s.t. tr(Cl’X’) < bl’ | = 1,. ., L ETE T ] (X, X, X,
- X Xy X5 Xo1| Xap Koz Xog  Xog
tr(CrX) — O, r = 1,2,3 ,4 Wp = | X X33 X Wery = | X31| X35 Xz X34 Xss

Xy3 Xyy Xys Xap Xy Xyy Xys

X/ 2 0 | X Xsq Xss |
for appropriate C;

X5y Xs3 Xsq Xss) |
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OPF as QCQP

Recall
min ~ VHC,V
VECN+1

st P < (@)

qjmm < tr (‘PjVVH>

tr (f/-kVVH> <

J

(7)<

i <t (BVWH) <y

IA
.

IA
8

Tmax

jEN
jEN
jeEN
(j,k) EE

(j,k) e E

abbreviated as:
tr(CVVH) <b,l=1,..,L



Constraints

Given V € CN*!, define partial matrix W,; by
(Wl = |Vj|2, jEN
Wl = Vi = Welyp,  GbEE
Constraints in terms of W,

%
=
IA

/-‘\
€
S

N—
IA
&5‘
5

abbreviated as:

IA

<
=
=

IA
~
3
&

~
-
Ve
&.>
=
Q
N—— e N’
IA
~
=B
o
b



OPF and relaxations

OPF as QCQP

min Cy(V) st tr(CVV")<h, [=1,..,L
%

Semidefinite relaxations:

OPF-sdp : min  Cy(Wy)
W€§N+l

OPF-ch : min Cy(Wy;)
WC(G)

OPF-socp : min Cy(W;;)
WG

s.t.

s.t.

s.t.

tr(CW) < b, 1

IA

r(CW)) < by |

tr(CWg) < by, 1

I,..

'7L’

W >0
WC(G)EO

We(, k) = 0, (k) € E



Exact relaxation

Definition
1. OPF-sdp is exact if every optimal solution WSdp of OPF-sdp is psd rank-1

2. OPF-ch is exact if every optimal solution Wf(?;) of OPF-ch is psd rank-1

3. OPF-socp is exact if every optimal solution WSOCp of OPF-socp
« is2 X 2 psd rank-1, i.e., W(S;OCp(j, k) are psd rank-1 for all (j, k) € E, and

satisfies cycle condition, i.e., Z A[Wgoc’p]jk = 0 mod 2rx
(J:k)Ec

Remarks

1. Any optimal solution returned by optimization algorithm will work under this strong sense of
exactness

2. Under sufficient exactness condition, optimal solution of OPF can be recovered even under weak
sense of exactness (see below)



Outline
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QCQP and SOCP relaxation

QCQP:

min  x"Cyx
xeC"

s.t. XHClx S bl’ [ = 1,...,L

SOCP relaxation:

II)l(lGIl tr (COXG)

Xo(i,k) = 0, Gk €EE

« (;:n X nHermitian matrix, b, € R



Sufficient condition

a;+ ] forall=0,...,L

C1: For every (j, k) € E, Jay s.t. L[Cl]jk € oy,

C2: C, is positive definite

Theorem

Suppose G is a tree and C1 holds. Then
1 Copt — ('Socp

2. An optimal solution xPPt € CNV+1of QCQP can be recovered from every optimal solution
X(S;OCp of its SOCP relaxation

Xgpt may not be 2 X 2 rank-1 (i.e., SOCP may not be exact)
when optimal solutions of SOCP relaxation are nonunique



Sufficient condition

C1: For every (j,k) € E, Jay st. L[Cl]jk € [a, a; + x] foralll=0,...,L

ij9
C2: C, is positive definite

Corollary

Suppose G is a tree and both C1 and C2 hold. Then SOCP relaxation is exact, i.e., every
optimal solution X(S;OCp is 2 X 2 psd rank-1

Cycle condition is vacuous since G is a tree



Application to OPF
Recall OPF as QCQP

min VG,V
Veq:N+1
s.t. pjmin < ftr <(DjVVH> < p", jEN
qjmm < tr (‘PJ-VVH> < qjmax, jEN

i< (BYV) <o jeN

abbreviated as:
tr(CGVVH) <b,1=1,...,L



Application to OPF

Exactness condition

Corollary

Suppose G is a tree and both C1 and
the diagram hold.

Then SOCP relaxation is exact

lower bounds

-l@)], ON P24 Pisds

upper bounds

on p.,q;,Pr- Y9 [q)k]jk




Sufficient condition

a;+ ] forall=0,...,L

C1: For every (j, k) € E, Jay s.t. L[Cl]jk € oy,

C2: C, is positive definite

Theorem

Suppose G is a tree and C1 holds. Then
1 Copt — ('Socp

2. An optimal solution xPPt € CNV+1of QCQP can be recovered from every optimal solution
X(S;OCp of its SOCP relaxation

Xgpt may not be 2 X 2 rank-1 (i.e., SOCP may not be exact)
when optimal solutions of SOCP relaxation are nonunique



Sufficient condition

Proof

Fix any partial matrix X that is feasible for SOCP. Suffices to construct construct x € C" s.t.
XHCZX < ftr CZXG’ l=0,1,...,L

l.e., x is feasible for QCQP and has an equal or low cost

Case 1: X is 2 X 2 psd rank-1. Let £x; := 0 and

5] = \/ [XG]]-J-’ L% = = Z L[XG],-/( (P; : path from bus 1 to bus j)

(i.k)eP;

Since [XG]J-J-[XG]kk = | [XG]jk |2 we have (since X is Hermitian):

Mox = Y [Clpal'n = Y [ClilxlIxle
Jk Jk

i (ka — £X;

) = 2. [Cly ‘[XG]jk‘ el = tr (CXg)
J.k



Sufficient condition
Proof

Fix any partial matrix X that is feasible for SOCP. Suffices to construct construct x € C" s.t.
XHCZX < ftr CZXG’ l=0,1,...,L

l.e., x is feasible for QCQP and has an equal or low cost

Case 2: X is not 2 X 2 psd rank-1. Suppose [X] XG> | [Xclix |2. We will

1. Construct )A(G that is 2 X 2 psd rank-1
2. Show that tr Cl)A(G < tr (X

Then can construct x € C” from X, as in Case 1.



Sufficient condition
Proof
Case 2: X is not 2 X 2 psd rank-1. Suppose [ Xl XG> | [Xcli |2. We will

1. Construct X,; that is 2 X 2 psd rank-1
2. Show that condition C1 implies: tr Cl)A(G < tr (X
Then can construct x € C" from )A(G as in Case 1.

1. Construction of )A(C

Relii= Kely  [Relg o= Ky + re (E7%)

with ry > 0 chosen to ensure )A(G is psd rank-1, i.e., to ensure
2

A ~ R 2 s
Hall¥ehe = ‘[XG]Jk‘ = | Xl + rye (%)

(2 _ o 2
where b = Re <[XG]]-kel<7 J">> and c¢ = [XG]]-J-[XG]kk— ‘[XG]jk‘

2
S rypt+2brp—c

> ()

0



Sufficient condition
Proof
Case 2: X is not 2 X 2 psd rank-1. Suppose [Xgl [ Xgl > | [Xcli %, We will

1. Construct X; that is 2 X 2 psd rank-1
2. Show that condition C1 implies: tr C;X; < tr CX;
Then can construct x € C" from )A(G as in Case 1.

1. Construction of )A(C

[XG]]']' = [XG]]’ [XG]]k = [XG]]k + ’,.jke_l<7 _ajk>
Therefore

)A(G is psd rank-1 < [)A(G]jk = [Xgly + rjke_l<7_aj"> with 7y 1= b>’+c—b>0



Sufficient condition
Proof
Case 2: X is not 2 X 2 psd rank-1. Suppose [ X6l X6l > | [ X6l |2. We will

1. Construct X; that is 2 X 2 psd rank-1
2. Show that condition C1 implies: tr C,X; < tr C,X,
Then can construct x € C" from XG as in Case 1.

2. )A(C is feasible for SOCP with lower or equal cost

tr (Cl (XG — XG>> = Z [Cl]jk<[XG]jk - [XG]jk>H

(J.k)EE
=2 Z Re <[Cl]jk : ,fj.kei<%—“jk)>
Jj<k,(j,k)EE
T
j<k

(j,k) € E



Sufficient condition

Proof
Finally, if condition C2 holds as well, SOCP has a unique optimal solution X,;.
If X is 2 X 2 psd but not 2 X 2 rank-1, i.e., [Xgl[Xclu > [ [Xcli |* for some (j, k)

then proof above constructs )A(G that is feasible for SOCP with lower or equal cost, contradicting
uniqueness of X;. Hence X; must be 2 X 2 rank-1.



Outline

4. Exactness condition: small angle difference
« Sufficient condition
« 2-bus example



Assumptions

Assume
1. Series admittances are symmetric ny}c = y,;. and shunt admittances are zero yﬁ;‘ = y,’;? =0

2. Voltage magnitudes | V| := 1 pu are fixed

3. Reactive powers are ignored

Use polar form power flow equations

.". Optimization over (s, v) reduces to optimization over (p, &)



OPF formulation

min  C(p)
p,P,0
s.t. pjmin <p; < pmaX jEN
OR" < 0, < 07, (k) EE
p] = Z ij’ ] S N
k:k~j

Py = 8y — 8x €08 Oy — by sin Oy,

constraints on line flows, line losses, or stability

(j,k) e E

where V; = | V;| ¢4 with | V;| := 1 and 0, := 6, — 6,

Eliminate Pj and 0

nodal power balance

power flow equation (polar form)



OPF formulation

Define injection region

-

N

peER" | pi= Z (gjk_ gjx COs 6 — bijinejk>, gjrl?in < 0y < gjll?ax
k:k~j

L

P,:= {peR"|p™ <p, <p™™,jEN)

OPF: min  C(p) s.t. pePNP,
p

SOCP relaxation: min C(p) s.t. p € conv (IP’@) NP,
p

Definition: SOCP relaxation is exact if every optimal solution lies in Py N [P,




Pareto front

P.

J

Definitions

A pointx € A C R" is a Pareto optimal point in
A if there does not exist another X" € A such that

e« x' < x, and

« X; < x; for at least one j

Ty The Pareto front of A:
min O(A) := {all Parento optimal points}

Pareto front



Sufficient condition

. Voie 1 b by < 0
Cl:forevery (j,k) € E, tan™ — < QJ.I,?m < ejrl?ax < tan~ ik < 8jik
8jk 8jk

C2: C(p) is strictly increasing in each p;

Theorem
Suppose G is a tree and C1, C2 hold. Then
1. PonP, = O(conv(Py) N Pp) feasible set is Pareto front of its relaxation

2. SOCP relaxation is exact



Geometric insight

2-bus network

For each line (j, k) € E, line flows P := (ij, Pk]-> and angle differences ij = 9] — 0, satisfy

cos 6 —8jik ~Dj
P—gyl = A . ’ where A = ! !
sin 0y, -8 b

1. P traces out an ellipse in R? as ij ranges over [—, 7].
Hence feasible set (subset of ellipse) is noncovex.

2. CH1 restricts [P, to lower half of ellipse




Geometric insight

2-bus network

For each line (j, k) € E, line flows P := (ij, ij) and angle differences 0;

cos 0, — g
P—gy1 = Al . / where A = /
sin 0 —8jk

1. P traces out an ellipse in R? as ij ranges over [—, 7x].
Hence feasible set (subset of ellipse) is noncovex.

2. C1 restricts P, to lower half of ellipse
3. C2 implies Pareto front of relaxed feasible set coincides
with feasible set, i.e., relaxation is exact

Pareto front ‘

(2,2

(a) Exact relaxation with constrain

= 0; — 0, satisfy

(b) Inexact relaxation with constrai

nt



