Power System Analysis

Chapter 10 Semidefinite relaxations: BIM

Steven Low Caltech (Dec 13, 2024)

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Outline

- 1. Relaxations of QCQP
 - SDP relaxation
 - Partial matrices and rank-1 characterization
 - Feasible sets
 - Semidefinite relaxations and solution recovery
 - Tightness of relaxations
 - Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Dealing with nonconvexity

OPF is nonconvex and NP-hard

- There are 3 common ways to deal with nonconvexity
- 1. Linear approximation
 - e.g. DC OPF is widely used for electricity market applications
- 2. Local algorithms, e.g., Newton-Raphson, interior-point
 - Optimality conditions studied earlier for convex problems not applicable
 - Lyapunov-like condition guarantees that, if local algorithm computes a local optimum, it is global optimum
- 3. Convex relaxation, e.g., semidefinite relaxation
 - Lyapunov-like condition also guarantees exactness of any convex relaxation
 - Optimality conditions studied earlier apply to convex relaxations

Unlike approximations, convex relaxation has 3 advantages

- We can easily check if a solution of relaxation is a global optimum
- If not, it provides a lower bound on optimal value
- If relaxation is infeasible, then the nonconvex problem is infeasible

QCQP

Quadratically constrained quadratic program:

- $\min_{x \in \mathbb{C}^n} \quad x^{\mathsf{H}} C_0 x \\ \text{s.t.} \quad x^{\mathsf{H}} C_l x \leq b_l, \qquad l = 1, \dots, L$
- $C_l: n \times n$ Hermitian matrix
- $b_l \in \mathbb{R}$
- Homogeneous QCQP : all monomials are of degree 2
- OPF can be formulated as (nonconvex) QCQP

QCQP Equivalent problem

Using $x^{H}C_{l}x = tr(C_{l}xx^{H})$, this is equivalent to:

 $\min_{X \in \mathbb{S}^{n}, x \in \mathbb{C}^{n} } \operatorname{tr} (C_{0}X)$ s.t. $\operatorname{tr} (C_{l}X) \leq b_{l}, \quad l = 1, \dots, L$ $X = xx^{\mathsf{H}}$

- Any psd rank-1 matrix $X \in \mathbb{S}^{n \times n}_+$ has a spectral decomposition $X = xx^H$ for some $x \in \mathbb{C}^n$
- *x* is unique up to a rotation, i.e., *x* satisfies $X = (xe^{i\theta}) (xe^{i\theta})^{H}$ for any $\theta \in \mathbb{R}$
- Therefore can eliminate *x*

QCQP Equivalent problem

Eliminating $x \implies$ minimization over psd matrices X:

$$\begin{split} \min_{X\in\mathbb{S}^n} & \mathrm{tr}\left(C_0X\right) \\ \mathrm{s.t.} & \mathrm{tr}\left(C_lX\right) \leq b_l, \quad l=1,\ldots,L \\ & X \geq 0, \quad \mathrm{rank}(X) = 1 \end{split}$$

- tr $(C_l X) \leq b_l$ is linear in X
- $X \succeq 0$ is convex in X
- rank(X) = 1 is nonconvex in X Removing rank constraint yields SDP relaxation

SDP relaxation

SDP relaxation of QCQP

 $\min_{X \in \mathbb{S}^n} \quad \text{tr} (C_0 X)$ s.t. $\operatorname{tr} (C_l X) \leq b_l, \quad l = 1, \dots, L$ $X \geq 0$

- This is a standard semidefinite program which is a convex problem
- Solution strategy:
 - Solve SDP for an optimal solution X^{opt}
 - If rank $(X^{\text{opt}}) = 1$, then $x^{\text{opt}} \in \mathbb{C}^n$ from spectral decomposition from $X^{\text{opt}} = x^{\text{opt}} (x^{\text{opt}})^{\mathsf{H}}$
- If rank $(X^{opt}) > 1$, then, in general, no feasible solution of QCQP can be directly obtained

SDP relaxation

SDP relaxation of QCQP

$$\begin{split} \min_{X \in \mathbb{S}^n} & \text{tr}\left(C_0 X\right) \\ \text{s.t.} & \text{tr}\left(C_l X\right) \leq b_l, \quad l = 1, \dots, L \\ & X \geq 0 \end{split}$$

- Even though SDP is convex, for large networks, it is still computationally impractical
- How to exploit sparsity of large networks to reduce computational burden?

Ans: partial matrices and completions !

Partial matrices

A QCQP instance specified by $(C_0, C_l, b_l, l = 1, ..., L)$ induces graph F := (N, E)

- N: n nodes (where $C_l \in \mathbb{C}^{n \times n}$)
- $E \subseteq N \times N$: *m* links $(j,k) \in E$ iff $\exists l \in \{0,1,...,L\}$ s.t. $[C_l]_{jk} = [C_l]_{kj}^{H} \neq 0$

A partial matrix X_F is a set of n + 2m complex numbers defined on F = (N, E)

$$X_F := \left\{ [X_F]_{jj}, [X_F]_{jk}, [X_F]_{kj} : j \in N, (j,k) \in E \right\}$$

- X_F can be interpreted as matrix with entries partially specified, or a partial matrix
- If *F* is complete graph, then X_F is a full $n \times n$ matrix

A completion X of X_F is a full $n \times n$ matrix that agrees with X_F on graph F:

$$[X]_{jj} = [X_F]_{jj}, \qquad [X]_{jk} = [X_F]_{jk}, \qquad [X]_{kj} = [X_F]_{kj}$$

Partial matrices

If *q* is clique (fully connected subgraph) of *F* with *k* nodes, then $X_F(q)$ is a fully specified $k \times k$ principal submatrix of X_F on *q*:

 $[X_F(q)]_{jj} := [X_F]_{jj}, \qquad [X_F(q)]_{jk} := [X_F]_{jk}, \qquad [X_F(q)]_{kj} := [X_F]_{kj},$

Hermitian, psd, rank-1, trace Partial matrix

Definition A partial matrix X_F is

- Hermitian $(X_F = X_F^{\mathsf{H}})$ if $[X_F]_{kj} = [X_F]_{jk}^{\mathsf{H}}$
- psd ($X_F \ge 0$) if X_F is Hermitian and $X_F(q) \ge 0$ for all cliques q of F (a set of psd constraints)
- rank-1 if rank $(X_F(q)) = 1$ for all cliques q of F (a set of psd constraints)

Hermitian, psd, rank-1, trace Partial matrix

<u>Definition</u> A partial matrix X_F is

- Hermitian $(X_F = X_F^{\mathsf{H}})$ if $[X_F]_{kj} = [X_F]_{jk}^{\mathsf{H}}$
- psd ($X_F \ge 0$) if X_F is Hermitian and $X_F(q) \ge 0$ for all cliques q of F (a set of psd constraints)
- rank-1 if rank $(X_F(q)) = 1$ for all cliques q of F (a set of psd constraints)
- $2 \times 2 \text{ psd}$ if $X_F(j,k)$ is psd for all $(j,k) \in E$
- 2×2 rank-1 if $X_F(j,k)$ is rank-1 for all $(j,k) \in E$

where
$$X_F(j,k) := \begin{bmatrix} [X_F]_{jj} & [X_F]_{jk} \\ [X_F]_{kj} & [X_F]_{kk} \end{bmatrix}$$

$2 \times 2 \text{ psd}$:	$[X_F]_{jj} \geq 0, [X_F]_{kk} \geq 0$
	$[X_X]_{jj}[X_X]_{kk} \geq \left[[X_F]_{jk} \right]^2$
2×2 rank-1 :	$[X_X]_{jj}[X_X]_{kk} = \left [X_F]_{jk} \right ^2$

Hermitian, psd, rank-1, trace Partial matrix

For partial matrix X_F

$$\operatorname{tr}\left(C_{l}X_{F}\right) := \sum_{j \in N} [C_{l}]_{jj} [X_{F}]_{jj} + \sum_{j < k, (j,k) \in E} \left([C_{l}]_{jk} [X_{F}]_{kj} + [C_{l}]_{kj} [X_{F}]_{jk} \right)$$

If both C_l and X_F are Hermitian, then tr $(C_l X_F)$ is real:

$$\operatorname{tr}\left(C_{l}X_{F}\right) = \sum_{j \in \mathbb{N}} [C_{l}]_{jj} [X_{F}]_{jj} + 2 \sum_{j < k, (j,k) \in E} \operatorname{Re}\left([C_{l}]_{jk} [X_{F}]_{kj}\right)$$

Chordal graph & extensions

F is a chordal graph if

- Either *F* has no cycles, or
- All minimal cycles (ones without chords) are of length 3

A chordal extension c(F) of F is a chordal graph that contains F

• $X_{c(F)}$ is a chordal extension of X_F

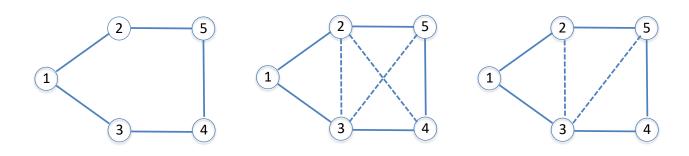
Every graph has a (generally nonunique) chordal extension

• Complete supergraph of F is a c(F)

Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is chordal

• We will extend this to psd rank-1 partial matrices

Partial matrix & chordal extensions Example



$$W_{F} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & & \\ x_{21} & x_{22} & & x_{25} \\ x_{31} & & x_{33} & x_{34} & \\ & & x_{43} & x_{44} & x_{45} \\ & & x_{52} & & x_{54} & x_{55} \end{bmatrix} W_{c(F)} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & & \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ & & x_{42} & x_{43} & x_{44} & x_{45} \\ & & & x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix} W_{c(F)} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & & \\ x_{21} & x_{22} & x_{23} & & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ & & & x_{42} & x_{43} & x_{44} & x_{45} \\ & & & & x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix}$$

2 cliques $W_{c(F)}(q)$ 3 cliques $W_{c(F)}(q)$

Equivalent conditions

Theorem

Suppose *F* is connected and $X_{jj} > 0$, $\left[X_{c(F)}\right]_{jj} > 0$, $\left[X_F\right]_{jj} > 0$. Then C1 \iff C2 \iff C3.

Moreover, given X_F that satisfies C3, there is a unique completion X

$$C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1$$

X psd rank-1 \implies all its principal submatrices are psd rank-1 : C1 \Rightarrow C2 \Rightarrow first part of C3 C2 \Rightarrow C3 : Suffices to prove cycle condition, by induction on size *k* of *c*

Induction hypothesis: for all cycles $c := (j_1, \dots, j_k), 3 \le k \le n, \sum_{i=1}^k \angle [X_F]_{j_i j_{i+1}} = 0 \mod 2\pi$

Base case: $c := (n_1, n_2, n_3)$ is a clique. Hence the principal submatrix of $X_{c(F)}$

$$X_{c(F)}(n_1, n_2, n_3) := \begin{bmatrix} [X_{c(F)}]_{n_1n_1} & [X_{c(F)}]_{n_1n_2} & [X_{c(F)}]_{n_1n_3} \\ [X_{c(F)}]_{n_2n_1} & [X_{c(F)}]_{n_2n_2} & [X_{c(F)}]_{n_2n_3} \\ [X_{c(F)}]_{n_3n_1} & [X_{c(F)}]_{n_3n_2} & [X_{c(F)}]_{n_3n_3} \end{bmatrix}$$
 is psd rank-t

C1: $X \ge 0$, $\operatorname{rank}(X) = 1$ C2: $X_{c(F)} \ge 0$, $\operatorname{rank}(X_{c(F)}) = 1$ C3: $X_F(j,k) \ge 0$, $\operatorname{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum_{\substack{(j,k) \in c}} \angle [X_F]_{jk} = 0 \mod 2\pi$ C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1

Induction hypothesis: for all cycles $c := (j_1, ..., j_k), 3 \le k \le n, \sum_{i=1}^k \angle [X_F]_{j_i j_{i+1}} = 0 \mod 2\pi$ Base case: $c := (n_1, n_2, n_3)$ is a clique. Hence $X_{c(F)}(n_1, n_2, n_3) = xx^H$ and $\sum_{i=1}^3 \angle [X_F]_{j_i j_{i+1}} = \angle (x_1 x_2^H) + \angle (x_2 x_3^H) + \angle (x_3 x_1^H) = 0 \mod 2\pi$

C1: $X \ge 0$, $\operatorname{rank}(X) = 1$ C2: $X_{c(F)} \ge 0$, $\operatorname{rank}(X_{c(F)}) = 1$ C3: $X_F(j,k) \ge 0$, $\operatorname{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum_{(j,k)\in c} \angle [X_F]_{jk} = 0 \mod 2\pi$ C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1

Induction hypothesis: for all cycles $c := (j_1, \dots, j_k), 3 \le k \le n, \sum_{i=1}^k \angle [X_F]_{j_i j_{i+1}} = 0 \mod 2\pi$

For any cycle $c := (j_1, ..., j_{k+1})$. Take a chord (j_1, j_m) that breaks c into 2 cycles:

$$\sum_{i=1}^{k+1} \angle [X_F]_{j_i j_{i+1}} = \left(\sum_{i=1}^{m-1} \angle [X_F]_{j_i j_{i+1}} + \angle [X_F]_{j_m j_1} \right) + \left(\angle [X_F]_{j_1 j_m} + \sum_{i=m}^{k+1} \angle [X_F]_{j_i j_{i+1}} \right) = 0$$

C1: $X \ge 0$, $\operatorname{rank}(X) = 1$ C2: $X_{c(F)} \ge 0$, $\operatorname{rank}(X_{c(F)}) = 1$ C3: $X_F(j,k) \ge 0$, $\operatorname{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum_{(j,k)\in c} \angle [X_F]_{jk} = 0 \mod 2\pi$ C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1

Construct completion X from X_F by constructing vector $x \in \mathbb{C}^n$ s.t. $X = xx^H$ Use method for solution recovery:

$$|x_j| := \sqrt{[X_F]_{jj}}, \qquad \angle x_j := \angle x_1 - \sum_{(i,k)\in\mathsf{P}_j} \angle [X_F]_{ik}$$

Cycle condition ensures any spanning tree yields the same angles $\angle x_j$

C1: $X \ge 0$, $\operatorname{rank}(X) = 1$ C2: $X_{c(F)} \ge 0$, $\operatorname{rank}(X_{c(F)}) = 1$ C3: $X_F(j,k) \ge 0$, $\operatorname{rank}(X_F(j,k)) = 1$, $(j,k) \in E$ $\sum_{(i,k)\in c} \angle [X_F]_{jk} = 0 \mod 2\pi$

$$C1 \Rightarrow C2 \Rightarrow C3 \Rightarrow C1$$

Finally, to show X is unique, suppose $X = xx^{H}$ and $\hat{X} = \hat{x}\hat{x}^{H}$ are two distinct rank-1 completion of X_{F} Then

$$|x_j| = \sqrt{[X_F]_{jj}} = |\hat{x}_j|, \qquad \theta_j - \theta_k = \angle [X_F]_{ik} = \hat{\theta}_j - \hat{\theta}_k$$

 $\therefore C^{\mathsf{T}}(\hat{\theta} - \theta) = 0$ where *C* is bus-by-line incidence matrix. Cycle condition ensures there is a solution for $\hat{\theta} - \theta$ even if *F* is not a tree.

 $F \text{ connected} \Rightarrow \text{null}(C^{\mathsf{T}}) = \text{span}(\mathbf{1}) \Rightarrow \hat{\theta} = \theta + \gamma \mathbf{1} \Rightarrow \hat{x} = xe^{i\gamma}$

Hence $\hat{X} = \hat{x}\hat{x}^{\mathsf{H}} = (xe^{i\gamma})(xe^{i\gamma})^{\mathsf{H}} = X$

Outline

1. Relaxations of QCQP

- SDP relaxation
- Partial matrices and rank-1 characterization
- Feasible sets
- Semidefinite relaxations and solution recovery
- Tightness of relaxations
- Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Feasible sets

Feasible set of QCQP

$$\mathbb{V} := \{ x \in \mathbb{C}^n \, | \, x^{\mathsf{H}} C_l x \le b_l, \, l = 1, \dots, L \}$$

psd rank-1 matrices X

 $\mathbb{X} := \{ X \in \mathbb{S}^n \mid X \text{ satisfies } \operatorname{tr}(C_l X) \leq b_l, \operatorname{C1} \}$

psd rank-1 chordal extensions $X_{c(F)}$

$$\mathbb{X}_{c(F)} := \{ X_{c(F)} \mid X_{c(F)} \text{ satisfies tr} \left(C_l X_{c(F)} \right) \le b_l, \text{ C2 } \}$$

psd rank-1 partial matrices X_F

 $X_F := \{ X_F \mid X_F \text{ satisfies tr} (C_l X_F) \leq b_l, C3 \}$

Feasible sets Equivalence

Corollary

Fix any connected *F*. Any partial matrix $X_{c(F)} \in X_{c(F)}$ or $X_F \in X_F$ has a unique psd rank-1 completion $X \in X$

Definition: Two sets A and B are equivalent ($A \equiv B$) if there is a bijection between them

Theorem

 $\mathbb{V}\equiv\mathbb{X}\equiv\mathbb{X}_{c(F)}\equiv\mathbb{X}_{F}$

Implication: A feasible $x \in \mathbb{V}$ can be recovered from any partial matrix $X_{c(F)} \in \mathbb{X}_{c(F)}$ or $X_F \in \mathbb{X}_F$ through spectral decomposition (but there is a simpler way to compute $x \in \mathbb{V}$ than completion)

Equivalent problems

QCQP

 $\min_{x \in \mathbb{C}^n} x^{\mathsf{H}} C_0 x \qquad \text{subject to} \qquad x \in \mathbb{V}$

is equivalent to min over matrices and partial matrices:

 $\begin{array}{ll} \min_{X} \ \mathrm{tr}\left(C_{0}X\right) & \mathrm{subject \ to} & X \in \hat{\mathbb{X}} \\ \\ \mathrm{where} \ \hat{\mathbb{X}} \ \in \ \left\{\mathbb{X}, \mathbb{X}_{c(F)}, \mathbb{X}_{F}\right\} \end{array}$

Implications:

Instead of solving for $X \in X$, solve for $X_{c(F)} \in X_{c(F)}$ or $X_F \in X_F$ which are much smaller for large sparse networks

Equivalent problems

QCQP

 $\min_{x \in \mathbb{C}^n} x^{\mathsf{H}} C_0 x \qquad \text{subject to} \qquad x \in \mathbb{V}$

is equivalent to min over matrices and partial matrices:

 $\begin{array}{ll} \min_{X} \ \mathrm{tr}\left(C_{0}X\right) & \mathrm{subject \ to} & X \in \hat{\mathbb{X}} \\ \\ \mathrm{where} \ \hat{\mathbb{X}} \ \in \ \left\{\mathbb{X}, \mathbb{X}_{c(F)}, \mathbb{X}_{F}\right\} \end{array}$

Computational challenge remains: $X, X_{c(F)}, X_F$ are all nonconvex

Semidefinite relaxations

Convex supersets

$$\begin{split} \mathbb{X}^{+} &:= \{ X \in \mathbb{S}^{n} \mid X \text{ satisfies } \operatorname{tr}(C_{l}X) \leq b_{l}, X \geq 0 \} \\ \mathbb{X}^{+}_{c(F)} &:= \{ X_{c(F)} \mid X_{c(F)} \text{ satisfies } \operatorname{tr}\left(C_{l}X_{c(F)}\right) \leq b_{l}, X_{c(F)} \geq 0 \} \\ \mathbb{X}^{+}_{F} &:= \{ X_{F} \mid X_{F} \text{ satisfies } \operatorname{tr}\left(C_{l}X_{F}\right) \leq b_{l}, X_{F}(j,k) \geq 0, (j,k) \in E \} \end{split}$$

Semidefinite relaxations:

QCQP-sdp:	$\min_X C$	(X_F)	s.t.	$X \in \mathbb{X}^+$	most complex
QCQP-ch :	$\min_{X_{c(F)}} C$	(X_F)	s.t.	$X_{c(F)} \in \mathbb{X}^+_{c(F)}$	
QCQP-socp:	$\min_{X_F} C$	(X_F)	s.t.	$X_F \in \mathbb{X}_F^+$	simplest

Semidefinite relaxations Solution recovery

If a feasible / optimal solution of semidefinite relaxation lies in X, $X_{c(F)}$, or X_F , then can recover feasible / optimal $x \in V$ of QCQP

Recovery procedure: given $X_F \in X_F$, pick an arbitrary spanning tree

1. Set $|x_1| := \sqrt{[X_F]_{11}}$ and $\angle x_1$ to arbitrary value

2. For j = 2, ..., n,

$$|x_j| := \sqrt{[X_F]_{jj}}, \qquad \angle x_j := \angle x_1 - \sum_{(i,k)\in\mathsf{P}_j} \angle [X_F]_{ik}$$

 P_i : path from bus 1 to bus j in an arbitrary spanning tree rooted at bus 1

Cycle condition ensures any spanning tree yields the same angles $\angle x_i$

Tightness

Definition

- 1. *A* is an effective subset of *B* ($A \sqsubseteq B$) if given any $a \in A$, $\exists b \in B$ with same cost $C_A(a) = C_B(b)$
- 2. A is similar to B ($A \simeq B$) if $A \sqsubseteq B$ and $B \sqsubseteq A$

Theorem [Tightness]

- 1. $\mathbb{V} \sqsubseteq \mathbb{X}^+ \simeq \mathbb{X}^+_{c(F)} \sqsubseteq \mathbb{X}^+_F$
- 2. If *F* is a tree, then $\mathbb{V} \sqsubseteq \mathbb{X}^+ \simeq \mathbb{X}^+_{c(F)} \simeq \mathbb{X}^+_F$

Corollary [Optimal values]

- 1. $C^{\text{qcqp}} \ge C^{\text{sdp}} = C^{\text{ch}} \ge C^{\text{socp}}$
- 2. If *F* is a tree, then $C^{\text{qcqp}} \ge C^{\text{sdp}} = C^{\text{ch}} = C^{\text{socp}}$

Semidefinite relaxations

Implications

- 1. Radial networks: Solve QCQP-socp
 - Simplest computationally
 - Same tightness as QCQP-ch and QCQP-SDP
- 2. Meshed networks: Solve QCQP-ch or QCQP-socp
 - QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp
 - QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse networks
 - QCQP-ch is as complex as QCQP-sdp in the worst case

Outline

1. Relaxations of QCQP

- SDP relaxation
- Partial matrices and rank-1 characterization
- Feasible sets
- Semidefinite relaxations and solution recovery
- Tightness of relaxations
- Chordal relaxation
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

Chordal relaxations

$$\mathbb{X}_{c(F)}^{+} := \{X_{c(F)} \mid X_{c(F)} \text{ satisfies tr} \left(C_{l}X_{c(F)}\right) \leq b_{l}, X_{c(F)} \geq 0\}$$

 $X_{c(F)} \geq 0$: multiple constraints, one for each maximal clique q of chordal extension c(F)

- 1. List all maximal cliques q_k of c(F), k = 1, ..., K
- 2. Derive appropriate Hermitian matrices X_k

Then $X_{c(F)} \geq 0$ is shorthand for: $X_k \geq 0, k = 1, ..., K$ Explain each step next

Chordal relaxations

$$\mathbb{X}_{c(F)}^{+} := \{X_{c(F)} \mid X_{c(F)} \text{ satisfies tr} \left(C_{l}X_{c(F)}\right) \leq b_{l}, X_{c(F)} \geq 0\}$$

1. List all maximal cliques q_k of c(F), k = 1, ..., K

Computing all maximal cliques of general graph is NP-hard, but can be done efficiently for chordal graph

2. Derive appropriate Hermitian matrices X_k

Illustrate using example

Then $X_{c(F)} \geq 0$ is shorthand for: $X_k \geq 0, k = 1, ..., K$

Chordal relaxations Example

1. Two cliques: $q_1 := (1,2,3)$ and $q_2 := (2,3,4,5)$

2. q_1 and q_2 share node 2 \implies principal submatrices of $X_{c(F)}$ overlap in 4 entries, requiring 4 decoupling vars and constraints:

$$X'_{1} := \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & u_{22} & u_{22} \\ x_{31} & u_{32} & u_{33} \end{bmatrix}, \quad X_{2} := \begin{bmatrix} x_{22} & x_{23} & x_{24} & x_{25} \\ x_{32} & x_{33} & x_{34} & x_{35} \\ x_{42} & x_{43} & x_{44} & x_{45} \\ x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix}$$
$$u_{jk} = x_{jk} \quad \text{for } j, k = 2,3$$

1	3	-4			3	4
$W_F =$	$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} \\ x_{31} & & x_{33} \end{bmatrix}$	x ₂₅	$W_{c(F)} =$	<i>x</i> ₂₁		$\begin{array}{c c} x_{24} & x_{25} \\ x_{34} & x_{35} \end{array}$
	x ₄₃	$\begin{bmatrix} x_{34} & x_{45} \\ x_{54} & x_{55} \end{bmatrix}$		31	$x_{42} x_{43}$	$\begin{array}{c} x_{34} & x_{35} \\ x_{44} & x_{45} \\ x_{54} & x_{55} \end{array}$

2

5

5

 $(\mathbf{2})$

3. Then $X_{c(F)} \geq 0$ is: $X'_1 \geq 0$, $X_2 \geq 0$

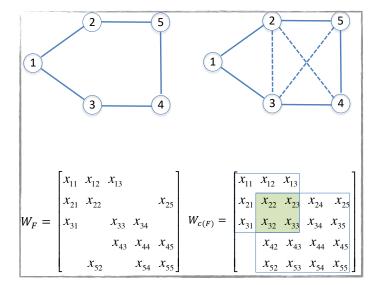
Chordal relaxations Example

Let
$$X' := \begin{bmatrix} X'_1 & 0 \\ 0 & X_2 \end{bmatrix}$$

Chordal relaxation is equivalent to SDP in standard form

 $\min_{\substack{X' \in \mathbb{S}^7 \\ \text{s.t.}}} \operatorname{tr}(C'_0 X') \\ \operatorname{s.t.} \operatorname{tr}(C'_l X') \leq b_l, \qquad l = 1, \dots, L \\ \operatorname{tr}(C'_r X') = 0, \qquad r = 1, 2, 3, 4 \\ X' \geq 0$

for appropriate C'_l



Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
 - Semidefinte relaxation
 - Exact relaxation: definition
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference

OPF as QCQP Recall

$$\begin{split} & \underset{V \in \mathbb{C}^{N+1}}{\min} \quad V^{\mathsf{H}} C_{0} V \\ & \text{s.t.} \quad p_{j}^{\min} \, \leq \, \operatorname{tr} \left(\Phi_{j} V V^{\mathsf{H}} \right) \, \leq \, p_{j}^{\max}, \qquad j \in \overline{N} \\ & \quad q_{j}^{\min} \, \leq \, \operatorname{tr} \left(\Psi_{j} V V^{\mathsf{H}} \right) \, \leq \, q_{j}^{\max}, \qquad j \in \overline{N} \\ & \quad v_{j}^{\min} \, \leq \, \operatorname{tr} \left(E_{j} V V^{\mathsf{H}} \right) \, \leq \, v_{j}^{\max}, \qquad j \in \overline{N} \\ & \quad \operatorname{tr} \left(\hat{Y}_{jk} V V^{\mathsf{H}} \right) \, \leq \, \overline{I}_{jk}^{\max}, \qquad (j,k) \in E \\ & \quad \operatorname{tr} \left(\hat{Y}_{kj} V V^{\mathsf{H}} \right) \, \leq \, \overline{I}_{kj}^{\max}, \qquad (j,k) \in E \end{split}$$

Constraints

Given $V \in \mathbb{C}^{N+1}$, define partial matrix W_G by $\begin{bmatrix} W_G \end{bmatrix}_{jj} := \|V_j\|^2, \qquad j \in \overline{N}$ $\begin{bmatrix} W_G \end{bmatrix}_{jk} := \|V_j V_k^{\mathsf{H}}\| =: \|W_G \end{bmatrix}_{kj}^{\mathsf{H}}, \qquad (j,k) \in E$

Constraints in terms of W_G

$$p_{j}^{\min} \leq \operatorname{tr} \left(\Phi_{j} W_{G} \right) \leq p_{j}^{\max}$$

$$q_{j}^{\min} \leq \operatorname{tr} \left(\Psi_{j} W_{G} \right) \leq q_{j}^{\max}$$

$$v_{j}^{\min} \leq \operatorname{tr} \left(E_{j} W_{G} \right) \leq v_{j}^{\max}$$

$$\operatorname{tr} \left(\hat{Y}_{jk} W_{G} \right) \leq I_{jk}^{\max}$$

$$\operatorname{tr} \left(\hat{Y}_{kj} W_{G} \right) \leq I_{kj}^{\max}$$

abbreviated as: $\mathrm{tr}\left(C_{l}W_{G}\right)\leq b_{l},\ l=1,\ldots,L$

OPF and relaxations

OPF as QCQP

$$\min_{V} C_0(V) \qquad \text{s.t.} \quad \text{tr}\left(C_l V V^{\mathsf{H}}\right) \le b_l, \ l = 1, \dots, L$$

Semidefinite relaxations:

OPF-sdp:	$\min_{W\in \mathbb{S}^{N+1}} \ C_0(W_G)$	s.t.	$\operatorname{tr}\left(C_{l}W\right) \leq b_{l}, \ l = 1, \dots, L,$	$W \geq 0$
OPF-ch :	$\min_{W_{c(G)}} C_0(W_G)$	s.t.	$\operatorname{tr}\left(C_{l}W_{c(G)}\right) \leq b_{l}, \ l = 1, \dots, L,$	$W_{c(G)} \geq 0$
OPF-socp:	$\min_{W_G} C_0(W_G)$	s.t.	$\operatorname{tr}\left(C_{l}W_{G}\right) \leq b_{l}, \ l = 1, \dots, L,$	$W_G(j,k) \geq 0, \ (j,k) \in E$

Exact relaxation

Definition

- 1. OPF-sdp is exact if every optimal solution W^{sdp} of OPF-sdp is psd rank-1
- 2. OPF-ch is exact if every optimal solution $W_{c(G)}^{ch}$ of OPF-ch is psd rank-1
- 3. OPF-socp is exact if every optimal solution W_G^{SOCP} of OPF-socp
 - is 2×2 psd rank-1, i.e., $W_G^{\text{socp}}(j,k)$ are psd rank-1 for all $(j,k) \in E$, and

• satisfies cycle condition, i.e.,
$$\sum_{(j,k)\in c} \angle [W_G^{\text{socp}}]_{jk} = 0 \mod 2\pi$$

Remarks

- 1. Any optimal solution returned by optimization algorithm will work under this strong sense of exactness
- 2. Under sufficient exactness condition, optimal solution of OPF can be recovered even under weak sense of exactness (see below)

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
 - Sufficient condition for QCQP
 - Application to OPF
 - Proof
- 4. Exactness condition: small angle difference

QCQP and **SOCP** relaxation

QCQP:

 $\min_{x \in \mathbb{C}^n} \quad x^{\mathsf{H}} C_0 x \\ \text{s.t.} \quad x^{\mathsf{H}} C_l x \leq b_l, \qquad l = 1, \dots, L$

SOCP relaxation:

 $\begin{array}{ll} \min_{X_G} & \mbox{tr} \left(C_0 X_G \right) \\ \mbox{s.t.} & \mbox{tr} \left(C_l X_G \right) \ \leq \ b_l, \quad l=1,\ldots,L \\ & X_G(j,k) \ \geq \ 0, \quad (j,k) \in E \end{array}$

• $C_l: n \times n$ Hermitian matrix, $b_l \in \mathbb{R}$

Sufficient condition

C1: For every $(j, k) \in E$, $\exists \alpha_{jk} \text{ s.t. } \angle [C_l]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all l = 0, ..., L

C2: C_0 is positive definite

Theorem

Suppose G is a tree and C1 holds. Then

- 1. $C^{\text{opt}} = C^{\text{socp}}$
- 2. An optimal solution $x^{opt} \in \mathbb{C}^{N+1}$ of QCQP can be recovered from every optimal solution X_G^{socp} of its SOCP relaxation

 X_G^{opt} may not be 2 × 2 rank-1 (i.e., SOCP may not be exact) when optimal solutions of SOCP relaxation are nonunique

Sufficient condition

C1: For every $(j, k) \in E$, $\exists \alpha_{jk} \text{ s.t. } \angle [C_l]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all l = 0, ..., L

C2: C_0 is positive definite

Corollary

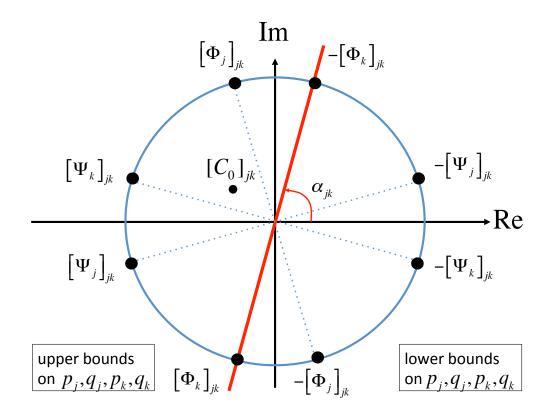
Suppose *G* is a tree and both C1 and C2 hold. Then SOCP relaxation is exact, i.e., every optimal solution X_G^{socp} is 2×2 psd rank-1

Cycle condition is vacuous since G is a tree

Application to OPF Recall OPF as QCQP

$$\begin{split} & \min_{V \in \mathbb{C}^{N+1}} \quad V^{\mathsf{H}} C_0 V \\ & \text{s.t.} \quad p_j^{\min} \; \leq \; \mathrm{tr} \left(\Phi_j V V^{\mathsf{H}} \right) \; \leq \; p_j^{\max}, \qquad j \in \overline{N} \\ & \quad q_j^{\min} \; \leq \; \mathrm{tr} \left(\Psi_j V V^{\mathsf{H}} \right) \; \leq \; q_j^{\max}, \qquad j \in \overline{N} \\ & \quad v_j^{\min} \; \leq \; \mathrm{tr} \left(E_j V V^{\mathsf{H}} \right) \; \leq \; v_j^{\max}, \qquad j \in \overline{N} \end{split}$$

Application to OPF Exactness condition



Corollary

Suppose G is a tree and both C1 and the diagram hold.

Then SOCP relaxation is exact

Sufficient condition

C1: For every $(j, k) \in E$, $\exists \alpha_{jk} \text{ s.t. } \angle [C_l]_{jk} \in [\alpha_{ij}, \alpha_{ij} + \pi]$ for all l = 0, ..., L

C2: C_0 is positive definite

Theorem

Suppose G is a tree and C1 holds. Then

- 1. $C^{\text{opt}} = C^{\text{socp}}$
- 2. An optimal solution $x^{opt} \in \mathbb{C}^{N+1}$ of QCQP can be recovered from every optimal solution X_G^{socp} of its SOCP relaxation

 X_G^{opt} may not be 2 × 2 rank-1 (i.e., SOCP may not be exact) when optimal solutions of SOCP relaxation are nonunique

Fix any partial matrix X_G that is feasible for SOCP. Suffices to construct construct $x \in \mathbb{C}^n$ s.t.

$$x^{\mathsf{H}}C_{l}x \leq \text{tr } C_{l}X_{G}, \qquad l = 0, 1, ..., L$$

i.e., x is feasible for QCQP and has an equal or low cost

Case 1:
$$X_G$$
 is 2×2 psd rank-1. Let $\angle x_1 := 0$ and
 $|x_j| := \sqrt{[X_G]_{jj}}, \quad \angle x_j := -\sum_{(i,k)\in \mathsf{P}_j} \angle [X_G]_{ik} \quad (\mathsf{P}_j : \mathsf{path from bus 1 to bus } j)$

Since $[X_G]_{jj}[X_G]_{kk} = |[X_G]_{jk}|^2$ we have (since X_G is Hermitian): $x^{H}C_l x = \sum_{j,k} [C_l]_{jk} x_j^{H} x_k = \sum_{j,k} [C_l]_{jk} |x_j| |x_k| e^{i(\angle x_k - \angle x_j)} = \sum_{j,k} [C_l]_{jk} |[X_G]_{jk}| e^{-i\angle [X_G]_{jk}} = \text{tr}(C_l X_G)$

Fix any partial matrix X_G that is feasible for SOCP. Suffices to construct construct $x \in \mathbb{C}^n$ s.t.

 $x^{\mathsf{H}}C_l x \leq \operatorname{tr} C_l X_G, \qquad l = 0, 1, \dots, L$

i.e., *x* is feasible for QCQP and has an equal or low cost

<u>Case 2: X_G is not 2×2 psd rank-1</u>. Suppose $[X_G]_{ii}[X_G]_{kk} > |[X_G]_{ik}|^2$. We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that tr $C_l \hat{X}_G \leq \text{tr } C_l X_G$

Then can construct $x \in \mathbb{C}^n$ from \hat{X}_G as in Case 1.

<u>Case 2: X_G is not 2×2 psd rank-1</u>. Suppose $[X_G]_{jj}[X_G]_{kk} > |[X_G]_{jk}|^2$. We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l \hat{X}_G \leq \text{tr } C_l X_G$

Then can construct $x \in \mathbb{C}^n$ from \hat{X}_G as in Case 1.

<u>1. Construction of \hat{X}_G </u>

$$[\hat{X}_G]_{jj} := [X_G]_{jj}, \qquad [\hat{X}_G]_{jk} := [X_G]_{jk} + r_{jk}e^{-i\left(\frac{\pi}{2} - \alpha_{jk}\right)}$$

with $r_{ik} > 0$ chosen to ensure \hat{X}_G is psd rank-1, i.e., to ensure

$$[\hat{X}_G]_{jj} [\hat{X}_G]_{kk} = \left| [\hat{X}_G]_{jk} \right|^2 = \left| [X_G]_{jk} + r_{jk} e^{-i\left(\frac{\pi}{2} - \alpha_{jk}\right)} \right|^2 \Leftrightarrow r_{jk}^2 + 2b r_{jk} - c = 0$$

where $b := \operatorname{Re}\left([X_G]_{jk} e^{i\left(\frac{\pi}{2} - \alpha_{jk}\right)} \right) \text{ and } c := [X_G]_{jj} [X_G]_{kk} - \left| [X_G]_{jk} \right|^2 > 0$

<u>Case 2: X_G is not 2×2 psd rank-1</u>. Suppose $[X_G]_{jj}[X_G]_{kk} > |[X_G]_{jk}|^2$. We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l \hat{X}_G \leq \text{tr } C_l X_G$

Then can construct $x \in \mathbb{C}^n$ from \hat{X}_G as in Case 1.

<u>1. Construction of \hat{X}_G </u>

$$[\hat{X}_G]_{jj} := [X_G]_{jj}, \qquad [\hat{X}_G]_{jk} := [X_G]_{jk} + r_{jk}e^{-i\left(\frac{\pi}{2} - \alpha_{jk}\right)}$$

Therefore

$$\hat{X}_G \text{ is psd rank-1} \iff [\hat{X}_G]_{jk} := [X_G]_{jk} + r_{jk}e^{-i\left(\frac{\pi}{2} - \alpha_{jk}\right)} \text{ with } r_{jk} := \sqrt{b^2 + c} - b > 0$$

<u>Case 2: X_G is not 2×2 psd rank-1</u>. Suppose $[X_G]_{jj}[X_G]_{kk} > |[X_G]_{jk}|^2$. We will

- 1. Construct \hat{X}_G that is 2×2 psd rank-1
- 2. Show that condition C1 implies: tr $C_l \hat{X}_G \leq \text{tr } C_l X_G$

Then can construct $x \in \mathbb{C}^n$ from \hat{X}_G as in Case 1.

2. \hat{X}_G is feasible for SOCP with lower or equal cost

$$\operatorname{tr}\left(C_{l}\left(\hat{X}_{G}-X_{G}\right)\right) = \sum_{(j,k)\in E} [C_{l}]_{jk} \left([\hat{X}_{G}]_{jk}-[X_{G}]_{jk}\right)^{\mathsf{H}}$$
$$= 2 \sum_{j< k, (j,k)\in E} \operatorname{Re}\left([C_{l}]_{jk}\cdot r_{jk} e^{i\left(\frac{\pi}{2}-\alpha_{jk}\right)}\right)$$
$$= 2 \sum_{\substack{j< k \\ (j,k)\in E}} \left|[C_{l}]_{jk}\right| r_{jk} \cos\left(\angle[C_{l}]_{jk}+\frac{\pi}{2}-\alpha_{jk}\right) \leq 0$$

Finally, if condition C2 holds as well, SOCP has a unique optimal solution X_G .

If X_G is 2×2 psd but not 2×2 rank-1, i.e., $[X_G]_{jj}[X_G]_{kk} > |[X_G]_{jk}|^2$ for some (j, k)

then proof above constructs \hat{X}_G that is feasible for SOCP with lower or equal cost, contradicting uniqueness of X_G . Hence X_G must be 2 × 2 rank-1.

Outline

- 1. Relaxations of QCQP
- 2. Application to OPF
- 3. Exactness condition: linear separability
- 4. Exactness condition: small angle difference
 - Sufficient condition
 - 2-bus example

Assumptions

Assume

- 1. Series admittances are symmetric $y_{jk}^s = y_{kj}^s$ and shunt admittances are zero $y_{jk}^m = y_{kj}^m := 0$
- 2. Voltage magnitudes $|V_j| := 1$ pu are fixed
- 3. Reactive powers are ignored

Use polar form power flow equations

 \therefore Optimization over (s, v) reduces to optimization over (p, θ)

OPF formulation

 $\begin{array}{ll} \min_{p,P,\theta} & C(p) \\ \text{s.t.} & p_j^{\min} \leq p_j \leq p_j^{\max}, \quad j \in \overline{N} \\ & \theta_{jk}^{\min} \leq \theta_{jk} \leq \theta_{jk}^{\max}, \quad (j,k) \in E \\ & p_j = \sum_{k:k\sim j} P_{jk}, \quad j \in \overline{N} \\ & P_{jk} = g_{jk} - g_{jk} \cos \theta_{jk} - b_{jk} \sin \theta_{jk}, \quad (j,k) \in E \\ & power flow equation (polar form) \end{array}$

where $V_j = |V_j| e^{i\theta_j}$ with $|V_j| := 1$ and $\theta_{jk} := \theta_j - \theta_k$

Eliminate P_{jk} and θ_{jk}

OPF formulation

Define injection region

$$\mathbb{P}_{\theta} := \left\{ p \in \mathbb{R}^{n} \middle| p_{j} = \sum_{k:k \sim j} \left(g_{jk} - g_{jk} \cos \theta_{jk} - b_{jk} \sin \theta_{jk} \right), \quad \theta_{jk}^{\min} \leq \theta_{jk} \leq \theta_{jk}^{\max} \right\}$$

$$\mathbb{P}_{p} := \left\{ p \in \mathbb{R}^{n} \middle| p_{j}^{\min} \leq p_{j} \leq p_{j}^{\max}, j \in N \right\}$$

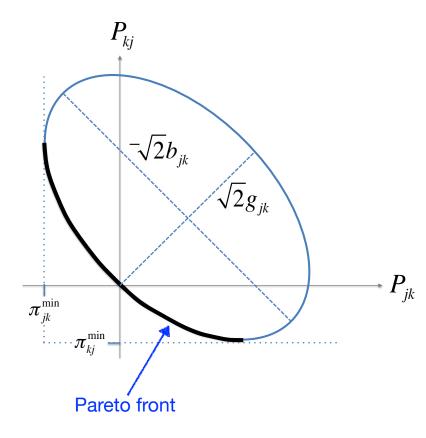
$$OPF: \qquad \min_{p} C(p) \quad \text{s.t.} \quad p \in \mathbb{P}_{\theta} \cap \mathbb{P}_{p}$$

$$SOCP \text{ relaxation:} \quad \min C(p) \quad \text{s.t.} \quad p \in \text{conv} \left(\mathbb{P}_{\theta}\right) \cap \mathbb{P}_{p}$$

Definition: SOCP relaxation is exact if every optimal solution lies in $\mathbb{P}_{\theta} \cap \mathbb{P}_{p}$

р

Pareto front



Definitions

A point $x \in A \subseteq \mathbb{R}^n$ is a Pareto optimal point in A if there does not exist another $x' \in A$ such that

- $x' \leq x$, and
- $x'_j < x_j$ for at least one j

The Pareto front of A: $\mathbb{O}(A) := \{ all Parento optimal points \} \}$

Sufficient condition

C1: for every
$$(j,k) \in E$$
, $\tan^{-1} \frac{b_{jk}}{g_{jk}} < \theta_{jk}^{\min} \le \theta_{jk}^{\max} < \tan^{-1} \frac{-b_{jk}}{g_{jk}}$ $b_{jk} < 0 < g_{jk}$

C2: C(p) is strictly increasing in each p_j

Theorem

Suppose G is a tree and C1, C2 hold. Then

- 1. $\mathbb{P}_{\theta} \cap \mathbb{P}_{p} = \mathbb{O}(\operatorname{conv}(\mathbb{P}_{\theta}) \cap \mathbb{P}_{p})$
- 2. SOCP relaxation is exact

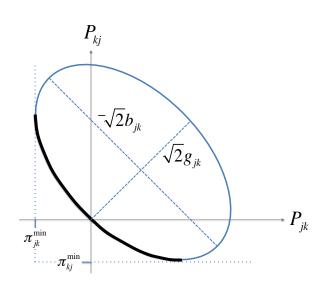
feasible set is Pareto front of its relaxation

Geometric insight 2-bus network

For each line $(j, k) \in E$, line flows $P := (P_{jk}, P_{kj})$ and angle differences $\theta_{jk} := \theta_j - \theta_k$ satisfy

$$P - g_{jk} \mathbf{1} = A \begin{bmatrix} \cos \theta_{jk} \\ \sin \theta_{jk} \end{bmatrix} \quad \text{where} \quad A := \begin{bmatrix} -g_{jk} & -b_{jk} \\ -g_{jk} & b_{jk} \end{bmatrix}$$

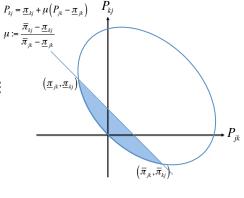
- 1. *P* traces out an ellipse in \mathbb{R}^2 as θ_{jk} ranges over $[-\pi, \pi]$. Hence feasible set (subset of ellipse) is noncovex.
- 2. C1 restricts \mathbb{P}_{θ} to lower half of ellipse



Geometric insight 2-bus network

For each line $(j, k) \in E$, line flows $P := (P_{jk}, P_{kj})$ and angle difference

$$P - g_{jk} \mathbf{1} = A \begin{bmatrix} \cos \theta_{jk} \\ \sin \theta_{jk} \end{bmatrix} \quad \text{where} \quad A := \begin{bmatrix} -g_{jk} & -b_{jk} \\ -g_{jk} & b_{jk} \end{bmatrix}$$



- 1. *P* traces out an ellipse in \mathbb{R}^2 as θ_{jk} ranges over $[-\pi, \pi]$. Hence feasible set (subset of ellipse) is noncovex.
- 2. C1 restricts \mathbb{P}_{θ} to lower half of ellipse
- 3. C2 implies Pareto front of relaxed feasible set coincides with feasible set, i.e., relaxation is exact

