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Dealing with nonconvexity
OPF is nonconvex and NP-hard 


• There are 3 common ways to deal with nonconvexity


1. Linear approximation

• e.g. DC OPF is widely used for electricity market applications


2. Local algorithms, e.g., Newton-Raphson, interior-point

• Optimality conditions studied earlier for convex problems not applicable

• Lyapunov-like condition guarantees that, if local algorithm computes a local optimum, it is global optimum


3. Convex relaxation, e.g., semidefinite relaxation

• Lyapunov-like condition also guarantees exactness of any convex relaxation

• Optimality conditions studied earlier apply to convex relaxations


Unlike approximations, convex relaxation has 3 advantages

• We can easily check if a solution of relaxation is a global optimum

• If not, it provides a lower bound on optimal value

• If relaxation is infeasible, then the nonconvex problem is infeasible



QCQP
Quadratically constrained quadratic program:





•  :  Hermitian matrix 

• 

• Homogeneous QCQP : all monomials are of degree 2

• OPF can be formulated as (nonconvex) QCQP

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n
bl ∈ ℝ



QCQP
Equivalent problem
Using , this is equivalent to:





• Any psd rank-1 matrix  has a spectral decomposition  for some 


•  is unique up to a rotation, i.e.,  satisfies  for any 


• Therefore can eliminate 

x𝖧Clx = tr (Clxx𝖧)
min

X∈𝕊n,x∈ℂn
tr (C0X)

s.t. tr (ClX) ≤ bl, l = 1,…, L

X = xx𝖧

X ∈ 𝕊n×n
+ X = xx𝖧 x ∈ ℂn

x x X = (xeiθ) (xeiθ)𝖧 θ ∈ ℝ
x



QCQP
Equivalent problem
Eliminating     minimization over psd matrices :





•  is linear in 


•  is convex in 

• rank  is nonconvex in 

x ⟹ X
min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0, rank(X) = 1

tr (ClX) ≤ bl X
X ⪰ 0 X

(X) = 1 X Removing rank constraint yields SDP relaxation



SDP relaxation
SDP relaxation of QCQP





• This is a standard semidefinite program which is a convex problem

• Solution strategy:


• Solve SDP for an optimal solution 


• If rank , then  from spectral decomposition from 


• If rank , then, in general, no feasible solution of QCQP can be directly obtained

min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0

Xopt

(Xopt) = 1 xopt ∈ ℂn Xopt = xopt (xopt)
𝖧

(Xopt) > 1



SDP relaxation
SDP relaxation of QCQP





• Even though SDP is convex, for large networks, it is still computationally impractical 

• How to exploit sparsity of large networks to reduce computational burden?

min
X∈𝕊n

tr (C0X)
s.t. tr (ClX) ≤ bl, l = 1,…, L

X ⪰ 0

Ans: partial matrices and completions !



Partial matrices

A QCQP instance specified by  induces graph 

•  :  nodes (where )


•  :  links    iff    s.t.  


A partial matrix  is a set of  complex numbers defined on 





•  can be interpreted as matrix with entries partially specified, or a partial matrix

• If  is complete graph, then  is a full  matrix 


A completion  of  is a full  matrix that agrees with  on graph :


(C0, Cl, bl, l = 1,…, L) F := (N, E)
N n Cl ∈ ℂn×n

E ⊆ N × N m ( j, k) ∈ E ∃l ∈ {0,1,…, L} [Cl]jk = [Cl]𝖧
kj ≠ 0

XF n + 2m F = (N, E)
XF := { [XF]jj, [XF]jk, [XF]kj : j ∈ N, ( j, k) ∈ E }

XF
F XF n × n

X XF n × n XF F
[X]jj = [XF]jj, [X]jk = [XF]jk, [X]kj = [XF]kj



Partial matrices

If  is clique (fully connected subgraph) of  with  nodes, then  is a fully specified 
principal submatrix of  on  :





q F k XF(q) k × k
XF q

[XF(q)]jj := [XF]jj, [XF(q)]jk := [XF]jk, [XF(q)]kj := [XF]kj,



Hermitian, psd, rank-1, trace
Partial matrix
Definition  A partial matrix  is


• Hermitian ( )  if 


• psd ( )  if  is Hermitian and  for all cliques  of  (a set of psd constraints)


• rank-1  if  for all cliques  of  (a set of psd constraints)


•  psd  if   is psd for all 


•  rank-1  if   is rank-1 for all 


where  

XF

XF = X𝖧
F [XF]kj = [XF]𝖧

jk

XF ⪰ 0 XF XF(q) ⪰ 0 q F

rank (XF(q)) = 1 q F

2 × 2 XF( j, k) ( j, k) ∈ E

2 × 2 XF( j, k) ( j, k) ∈ E

XF( j, k) := [
[XF]jj [XF]jk

[XF]kj [XF]kk]



Hermitian, psd, rank-1, trace
Partial matrix
Definition  A partial matrix  is


• Hermitian ( )  if 


• psd ( )  if  is Hermitian and  for all cliques  of  (a set of psd constraints)


• rank-1  if  for all cliques  of  (a set of psd constraints)


•  psd  if   is psd for all 


•  rank-1  if   is rank-1 for all 


where  

XF

XF = X𝖧
F [XF]kj = [XF]𝖧

jk

XF ⪰ 0 XF XF(q) ⪰ 0 q F

rank (XF(q)) = 1 q F

2 × 2 XF( j, k) ( j, k) ∈ E

2 × 2 XF( j, k) ( j, k) ∈ E

XF( j, k) := [
[XF]jj [XF]jk

[XF]kj [XF]kk]

2 × 2 psd : [XF]jj ≥ 0, [XF]kk ≥ 0

[XX]jj[XX]kk ≥ [XF]jk
2

2 × 2 rank-1 : [XX]jj[XX]kk = [XF]jk
2



Hermitian, psd, rank-1, trace
Partial matrix
For partial matrix  





If both  and  are Hermitian, then  is real:


XF

tr (ClXF) := ∑
j∈N

[Cl]jj [XF]jj + ∑
j < k, ( j, k) ∈ E

([Cl]jk [XF]kj + [Cl]kj [XF]jk)
Cl XF tr (ClXF)

tr (ClXF) = ∑
j∈N

[Cl]jj [XF]jj + 2 ∑
j<k,( j,k)∈E

Re ([Cl]jk [XF]kj)



Chordal graph & extensions
 is a chordal graph if

• Either  has no cycles, or

• All minimal cycles (ones without chords) are of length 3


A chordal extension  of  is a chordal graph that contains 


•  is a chordal extension of 


Every graph has a (generally nonunique) chordal extension

• Complete supergraph of  is a 


Theorem [Grone et al 1984]: every psd partial matrix has a psd completion iff underlying graph is 
chordal


• We will extend this to psd rank-1 partial matrices


F
F

c(F) F F
Xc(F) XF

F c(F)



Partial matrix & chordal extensions
Example
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Figure 13.1: Example 13.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques.

2 cliques Wc(F)(q) 3 cliques Wc(F)(q)



Rank-1 characterization
Equivalent conditions





Theorem 

Suppose  is connected and .   Then  C1  C2  C3.


Moreover, given  that satisfies C3, there is a unique completion 

C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

F Xjj > 0, [Xc(F)]jj
> 0, [XF]jj

> 0 ⟺ ⟺

XF X

cycle condition



Rank-1 characterization
Proof

                                               


 psd rank-1    all its principal submatrices are psd rank-1 : 


C2  C3 : Suffices to prove cycle condition, by induction on size of 


Induction hypothesis: for all cycles , , 


Base case:  is a clique.  Hence the principal submatrix of 


  is psd rank-1

C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

C1 ⇒ C2 ⇒ C3 ⇒ C1

X ⟹ C1 ⇒ C2 ⇒ first part of C3

⇒ k c

c := ( j1, …, jk) 3 ≤ k ≤ n
k

∑
i=1

∠[XF]ji ji+1
= 0 mod 2π

c := (n1, n2, n3) Xc(F)

Xc(F)(n1, n2, n3) :=

[Xc(F)]n1n1
[Xc(F)]n1n2

[Xc(F)]n1n3

[Xc(F)]n2n1
[Xc(F)]n2n2

[Xc(F)]n2n3

[Xc(F)]n3n1
[Xc(F)]n3n2

[Xc(F)]n3n3



Rank-1 characterization
Proof

                                        


Induction hypothesis: for all cycles , , 


Base case:  is a clique.  Hence   and 


C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

C1 ⇒ C2 ⇒ C3 ⇒ C1

c := ( j1, …, jk) 3 ≤ k ≤ n
k

∑
i=1

∠[XF]ji ji+1
= 0 mod 2π

c := (n1, n2, n3) Xc(F)(n1, n2, n3) = xx𝖧

3

∑
i=1

∠[XF]ji ji+1
= ∠(x1x𝖧

2 ) + ∠(x2x𝖧
3 ) + ∠(x3x𝖧

1 ) = 0 mod 2π



Rank-1 characterization
Proof

                                        


Induction hypothesis: for all cycles , , 


For any cycle .  Take a chord  that breaks  into 2 cycles:


C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

C1 ⇒ C2 ⇒ C3 ⇒ C1

c := ( j1, …, jk) 3 ≤ k ≤ n
k

∑
i=1

∠[XF]ji ji+1
= 0 mod 2π

c := (j1, …, jk+1) ( j1, jm) c
k+1

∑
i=1

∠[XF]ji ji+1
= (

m−1

∑
i=1

∠[XF]ji ji+1
+∠[XF]jm j1) + (∠[XF]j1jm

+
k+1

∑
i=m

∠[XF]ji ji+1) = 0



Rank-1 characterization
Proof

                                        


Construct completion  from  by constructing vector   s.t.  

Use method for solution recovery:





Cycle condition ensures any spanning tree yields the same angles 

C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

C1 ⇒ C2 ⇒ C3 ⇒ C1

X XF x ∈ ℂn X = xx𝖧

|xj | := [XF]jj
, ∠xj := ∠x1 − ∑

(i,k)∈Pj

∠[XF]ik

∠xj



Rank-1 characterization
Proof

                                        


Finally, to show  is unique, suppose  and  are two distinct rank-1 completion of  
Then





   where  is bus-by-line incidence matrix.   Cycle condition ensures there is a solution 
for  even if  is not a tree.  


 connected  null    


Hence 

C1: X ⪰ 0, rank(X) = 1
C2: Xc(F) ⪰ 0, rank(Xc(F)) = 1
C3: XF( j, k) ⪰ 0, rank(XF( j, k)) = 1, ( j, k) ∈ E

∑
( j,k)∈c

∠[XF]jk = 0 mod 2π

C1 ⇒ C2 ⇒ C3 ⇒ C1

X X = xx𝖧 X̂ = ̂x ̂x𝖧 XF

|xj | = [XF]jj
= | ̂xj | , θj − θk = ∠[XF]ik

= ̂θj − ̂θk

∴ C𝖳( ̂θ − θ) = 0 C
̂θ − θ F

F ⇒ (C𝖳) = span(1) ⇒ ̂θ = θ + γ1 ⇒ ̂x = xeiγ

X̂ = ̂x ̂x𝖧 = (xeiγ) (xeiγ)𝖧 = X
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Feasible sets
Feasible set of QCQP





psd rank-1 matrices 





psd rank-1 chordal extensions 





psd rank-1 partial matrices 


𝕍 := {x ∈ ℂn | x𝖧Clx ≤ bl, l = 1,…, L}

X

𝕏 := { X ∈ 𝕊n | X satisfies tr(ClX) ≤ bl, C1 }

Xc(F)

𝕏c(F) := { Xc(F) | Xc(F) satisfies tr (ClXc(F)) ≤ bl, C2 }

XF

𝕏F := { XF | XF satisfies tr (ClXF) ≤ bl, C3 }



Feasible sets
Equivalence
Corollary 
Fix any connected .  Any partial matrix   or   has a unique psd rank-1 
completion 


Definition: Two sets  and  are equivalent ( ) if there is a bijection between them


Theorem 



Implication: A feasible  can be recovered from any partial matrix   or  
 through spectral decomposition (but there is a simpler way to compute  than 

completion)

F Xc(F) ∈ 𝕏c(F) XF ∈ 𝕏F
X ∈ 𝕏

A B A ≡ B

𝕍 ≡ 𝕏 ≡ 𝕏c(F) ≡ 𝕏F

x ∈ 𝕍 Xc(F) ∈ 𝕏c(F)
XF ∈ 𝕏F x ∈ 𝕍



Equivalent problems
QCQP 





is equivalent to min over matrices and partial matrices:





where  


min
x∈ℂn

x𝖧C0x subject to x ∈ 𝕍

min
X

tr (C0X) subject to X ∈ �̂�

�̂� ∈ {𝕏, 𝕏c(F), 𝕏F}
Implications:

Instead of solving for , solve for  or  which are much smaller 

for large sparse networks 

X ∈ 𝕏 Xc(F) ∈ 𝕏c(F) XF ∈ 𝕏F



Equivalent problems
QCQP 





is equivalent to min over matrices and partial matrices:





where  


min
x∈ℂn

x𝖧C0x subject to x ∈ 𝕍

min
X

tr (C0X) subject to X ∈ �̂�

�̂� ∈ {𝕏, 𝕏c(F), 𝕏F}
Computational challenge remains:


  are all nonconvex𝕏, 𝕏c(F), 𝕏F



Semidefinite relaxations
Convex supersets





Semidefinite relaxations:


𝕏+ := {X ∈ 𝕊n | X satisfies tr(ClX) ≤ bl, X ⪰ 0}

𝕏+
c(F) := {Xc(F) | Xc(F) satisfies tr (ClXc(F)) ≤ bl, Xc(F) ⪰ 0}

𝕏+
F := {XF | XF satisfies tr (ClXF) ≤ bl, XF( j, k) ⪰ 0, ( j, k) ∈ E}

QCQP-sdp : min
X

C (XF) s.t. X ∈ 𝕏+

QCQP-ch : min
Xc(F)

C (XF) s.t. Xc(F) ∈ 𝕏+
c(F)

QCQP-socp : min
XF

C (XF) s.t. XF ∈ 𝕏+
F

most complex

simplest



Semidefinite relaxations
Solution recovery
If a feasible / optimal solution of semidefinite relaxation lies in  , then can recover 
feasible / optimal  of QCQP


Recovery procedure:  given  , pick an arbitrary spanning tree 

1. Set   and   to arbitrary value


2. For ,


 


   : path from bus 1 to bus  in an arbitrary spanning tree rooted at bus 1


Cycle condition ensures any spanning tree yields the same angles 

𝕏, 𝕏c(F), or 𝕏F
x ∈ 𝕍

XF ∈ 𝕏F

|x1 | := [XF]11
∠x1

j = 2,…, n

|xj | := [XF]jj
, ∠xj := ∠x1 − ∑

(i,k)∈Pj

∠[XF]ik

Pj j

∠xj



Tightness
Definition  
1.  is an effective subset of  ( ) if given any ,  with same cost 




2.  is similar to  ( ) if  and 


Theorem [Tightness]

1. 


2. If  is a tree, then 


Corollary [Optimal values]


1. 


2. If  is a tree, then 

A B A ⊑ B a ∈ A ∃ b ∈ B
CA(a) = CB(b)
A B A ≃ B A ⊑ B B ⊑ A

𝕍 ⊑ 𝕏+ ≃ 𝕏+
c(F) ⊑ 𝕏+

F

F 𝕍 ⊑ 𝕏+ ≃ 𝕏+
c(F) ≃ 𝕏+

F

Cqcqp ≥ Csdp = Cch ≥ Csocp

F Cqcqp ≥ Csdp = Cch = Csocp



Semidefinite relaxations
Implications   
1. Radial networks:  Solve QCQP-socp


• Simplest computationally

• Same tightness as QCQP-ch and QCQP-SDP


2. Meshed networks:  Solve QCQP-ch or QCQP-socp

• QCQP-ch strictly tighter than QCQP-socp, and same tightness as QCQP-sdp

• QCQP-ch can be orders of magnitude simpler computationally than QCQP-sdp for large sparse 

networks

• QCQP-ch is as complex as QCQP-sdp in the worst case
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Chordal relaxations



 : multiple constraints, one for each maximal clique  of chordal extension 


1. List all maximal cliques  of , 


2. Derive appropriate Hermitian matrices 


Then  is shorthand for:   


Explain each step next


𝕏+
c(F) := {Xc(F) | Xc(F) satisfies tr (ClXc(F)) ≤ bl, Xc(F) ⪰ 0}

Xc(F) ⪰ 0 q c(F)
qk c(F) k = 1,…, K

Xk

Xc(F) ⪰ 0 Xk ⪰ 0, k = 1,…, K



Chordal relaxations



1. List all maximal cliques  of , 

Computing all maximal cliques of general graph is NP-hard, but can be done efficiently for 
chordal graph


2. Derive appropriate Hermitian matrices 

Illustrate using example


Then  is shorthand for:   


𝕏+
c(F) := {Xc(F) | Xc(F) satisfies tr (ClXc(F)) ≤ bl, Xc(F) ⪰ 0}

qk c(F) k = 1,…, K

Xk

Xc(F) ⪰ 0 Xk ⪰ 0, k = 1,…, K



Chordal relaxations
Example
1. Two cliques:  and 


2.  and  share node    principal submatrices of  
overlap in 4 entries, requiring 4 decoupling vars and 
constraints:








3. Then  is:     

q1 := (1,2,3) q2 := (2,3,4,5)
q1 q2 2 ⟹ Xc(F)

X′ 1 :=
x11 x12 x13
x21 u22 u22
x31 u32 u33

, X2 :=

x22 x23 x24 x25
x32 x33 x34 x35
x42 x43 x44 x45
x52 x53 x54 x55

ujk = xjk for j, k = 2,3

Xc(F) ⪰ 0 X′ 1 ⪰ 0, X2 ⪰ 0
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Figure 13.1: Example 13.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques.



Chordal relaxations
Example

Let       


Chordal relaxation is equivalent to SDP in standard form





for appropriate 


X′ := [X′ 1 0
0 X2]

min
X′ ∈𝕊7

tr(C′ 0X′ )

s.t. tr(C′ lX′ ) ≤ bl, l = 1,…, L
tr(C′ rX′ ) = 0, r = 1,2,3,4
X′ ⪰ 0

C′ l
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Figure 13.1: Example 13.1: (a) Partial matrix XF . (b)(c) Two chordal extensions Xc(F) and their overlap-
ping maximal cliques.



Outline
1. Relaxations of QCQP

2. Application to OPF


• Semidefinte relaxation

• Exact relaxation: definition


3. Exactness condition: linear separability

4. Exactness condition: small angle difference



OPF as QCQP
Recall

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (EjVV𝖧) ≤ vmax

j , j ∈ N

tr ( ̂YjkVV𝖧) ≤ Imax
jk , ( j, k) ∈ E

tr ( ̂YkjVV𝖧) ≤ Imax
kj , ( j, k) ∈ E

abbreviated as:

tr (ClVV𝖧) ≤ bl, l = 1,…, L



Constraints
Given , define partial matrix  by





Constraints in terms of 


V ∈ ℂN+1 WG

[WG]jj := |Vj |
2 , j ∈ N

[WG]jk
:= VjV𝖧

k =: [WG]𝖧
kj, ( j, k) ∈ E

WG

pmin
j ≤ tr (ΦjWG) ≤ pmax

j

qmin
j ≤ tr (ΨjWG) ≤ qmax

j

vmin
j ≤ tr (EjWG) ≤ vmax

j

tr ( ̂YjkWG) ≤ Imax
jk

tr ( ̂YkjWG) ≤ Imax
kj

abbreviated as:

tr (ClWG) ≤ bl, l = 1,…, L



OPF and relaxations
OPF as QCQP





Semidefinite relaxations:


min
V

C0(V) s.t. tr (ClVV𝖧) ≤ bl, l = 1,…, L

OPF-sdp : min
W∈𝕊N+1

C0(WG) s.t. tr (ClW) ≤ bl, l = 1,…, L, W ⪰ 0

OPF-ch : min
Wc(G)

C0(WG) s.t. tr (ClWc(G)) ≤ bl, l = 1,…, L, Wc(G) ⪰ 0

OPF-socp : min
WG

C0(WG) s.t. tr (ClWG) ≤ bl, l = 1,…, L, WG( j, k) ⪰ 0, ( j, k) ∈ E



Exact relaxation
Definition  

1. OPF-sdp is exact if every optimal solution  of OPF-sdp is psd rank-1


2. OPF-ch is exact if every optimal solution  of OPF-ch is psd rank-1


3. OPF-socp is exact if every optimal solution  of OPF-socp


• is  psd rank-1, i.e.,  are psd rank-1 for all , and 


• satisfies cycle condition, i.e., 


Remarks 
1. Any optimal solution returned by optimization algorithm will work under this strong sense of 

exactness

2. Under sufficient exactness condition, optimal solution of OPF can be recovered even under weak 

sense of exactness (see below)

Wsdp

Wch
c(G)

Wsocp
G

2 × 2 Wsocp
G ( j, k) ( j, k) ∈ E

∑
( j,k)∈c

∠[Wsocp
G ]jk = 0 mod 2π



Outline
1. Relaxations of QCQP

2. Application to OPF

3. Exactness condition: linear separability


• Sufficient condition for QCQP

• Application to OPF

• Proof


4. Exactness condition: small angle difference



QCQP and SOCP relaxation
QCQP:





SOCP relaxation:





•  :  Hermitian matrix,  

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

min
XG

tr (C0XG)
s.t. tr (ClXG) ≤ bl, l = 1,…, L

XG( j, k) ⪰ 0, ( j, k) ∈ E

Cl n × n bl ∈ ℝ



Sufficient condition
C1: For every ,  s.t.   for all 


C2:  is positive definite


Theorem 
Suppose  is a tree and C1 holds.  Then


1. 


2. An optimal solution of QCQP can be recovered from every optimal solution 
 of its SOCP relaxation

( j, k) ∈ E ∃αjk ∠[Cl]jk
∈ [αij, αij + π] l = 0,…, L

C0

G
Copt = Csocp

xopt ∈ ℂN+1

Xsocp
G

 may not be  rank-1 (i.e., SOCP may not be exact) 

when optimal solutions of SOCP relaxation are nonunique
Xopt

G 2 × 2



Sufficient condition
C1: For every ,  s.t.   for all 


C2:  is positive definite


Corollary 
Suppose  is a tree and both C1 and C2 hold.  Then SOCP relaxation is exact, i.e., every 
optimal solution  is  psd rank-1 

( j, k) ∈ E ∃αjk ∠[Cl]jk
∈ [αij, αij + π] l = 0,…, L

C0

G
Xsocp

G 2 × 2

Cycle condition is vacuous since  is a tree
G



Application to OPF
Recall OPF as QCQP

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (EjVV𝖧) ≤ vmax

j , j ∈ N

abbreviated as:

tr (ClVV𝖧) ≤ bl, l = 1,…, L



Application to OPF
Exactness condition
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for some Hermitian matrices C0,F j,Y j,Jj where j 2 N. Condition C13.2 depends only on the off-
diagonal entries of C0, F j, Y j (Jj are diagonal matrices). It implies a simple pattern on the power
injection constraints (13.21a)(13.21b). Write the series admittances in terms of its real and imaginary
parts ys

jk =: gs
jk + ibs

jk with gs
jk > 0,bs

jk < 0. (Note that C13.2 does not depend on the shunt admittances⇣
ym

jk,y
m
k j

⌘
.) Then we have

[Fk]i j =

8
><

>:

1
2Yi j = �1

2(gs
i j + ibs

i j) if k = i
1
2YH

i j = �1
2(gs

i j � ibs
i j) if k = j

0 if k 62 {i, j}

[Yk]i j =

8
><

>:

�1
2i Yi j = 1

2(bs
i j � igs

i j) if k = i
1
2iY

H
i j = 1

2(bs
i j + igs

i j) if k = j
0 if k 62 {i, j}

Hence for each line ( j,k) 2 E the relevant angles for C13.2 are those of [C0] jk and

⇥
F j

⇤
jk = �1

2

⇣
gs

jk + ibs
jk

⌘
, [Fk] jk = �1

2

⇣
gs

jk � ibs
jk

⌘

⇥
Y j

⇤
jk =

1
2

⇣
bs

jk � igs
jk

⌘
, [Yk] jk =

1
2

⇣
bs

jk + igs
jk

⌘

as well as the angles of �[F j] jk,�[Fk] jk and �[Y j] jk,�[Yk] jk. These quantities are shown in Figure 13.3
with their magnitudes normalized to a common value and explained in the caption of the figure.

Φ j
"# $% jk

Re

Im

− Φ j
#$ %& jk

Φk[ ] jk

− Φk[ ] jk

Ψ j
"# $% jk − Ψ k[ ] jk

Ψ k[ ] jk − Ψ j
#$ %& jk

lower)bounds)
on))pj,qj, pk,qk

α jk

[C0 ] jk

upper)bounds)
on))pj,qj, pk,qk

Figure 13.3: Condition C13.2’ for OPF on a line ( j,k) 2 E. The quantities ([F j] jk, [Fk] jk, [Y j] jk, [Yk] jk)
on the left-half plane correspond to finite upper bounds on (p j, pk,q j,qk) in (13.21a)(13.21b);
(�[F j] jk,�[Fk] jk,�[Y j] jk,�[Yk] jk) on the right-half plane correspond to finite lower bounds on
(p j, pk,q j,qk).

Condition C13.2 applied to OPF (13.21) takes the following form (see Figure 13.3):

Corollary 
Suppose  is a tree and both C1 and 
the diagram hold.  

Then SOCP relaxation is exact

G



Sufficient condition
C1: For every ,  s.t.   for all 


C2:  is positive definite


Theorem 
Suppose  is a tree and C1 holds.  Then


1. 


2. An optimal solution of QCQP can be recovered from every optimal solution 
 of its SOCP relaxation

( j, k) ∈ E ∃αjk ∠[Cl]jk
∈ [αij, αij + π] l = 0,…, L

C0

G
Copt = Csocp

xopt ∈ ℂN+1

Xsocp
G

 may not be  rank-1 (i.e., SOCP may not be exact) 

when optimal solutions of SOCP relaxation are nonunique
Xopt

G 2 × 2



Sufficient condition
Proof
Fix any partial matrix  that is feasible for SOCP.  Suffices to construct construct  s.t.





i.e.,  is feasible for QCQP and has an equal or low cost


Case 1:  is  psd rank-1.  Let    and 


         (  : path from bus 1 to bus )


Since  we have (since  is Hermitian):


XG x ∈ ℂn

x𝖧Clx ≤ tr ClXG, l = 0,1,…, L
x

XG 2 × 2 ∠x1 := 0

|xj | := [XG]jj
, ∠xj := − ∑

(i,k)∈Pj

∠[XG]ik Pj j

[XG]jj[XG]kk = | [XG]jk |2 XG

x𝖧Clx = ∑
j,k

[Cl]jk x𝖧
j xk = ∑

j,k

[Cl]jk |xj | |xk | ei(∠xk − ∠xj) = ∑
j,k

[Cl]jk [XG]jk e−i∠[XG]jk = tr (ClXG)



Sufficient condition
Proof
Fix any partial matrix  that is feasible for SOCP.  Suffices to construct construct  s.t.





i.e.,  is feasible for QCQP and has an equal or low cost


Case 2:  is not  psd rank-1.  Suppose .  We will


1. Construct  that is  psd rank-1


2. Show that 


Then can construct  from  as in Case 1.  


XG x ∈ ℂn

x𝖧Clx ≤ tr ClXG, l = 0,1,…, L
x

XG 2 × 2 [XG]jj[XG]kk > | [XG]jk |2

X̂G 2 × 2
tr ClX̂G ≤ tr ClXG

x ∈ ℂn X̂G



Sufficient condition
Proof
Case 2:  is not  psd rank-1.  Suppose .  We will


1. Construct  that is  psd rank-1


2. Show that condition C1 implies: 


Then can construct  from  as in Case 1.  


1. Construction of 





with  chosen to ensure  is psd rank-1, i.e., to ensure 


       


where 

XG 2 × 2 [XG]jj[XG]kk > | [XG]jk |2

X̂G 2 × 2
tr ClX̂G ≤ tr ClXG

x ∈ ℂn X̂G

X̂G

[X̂G]jj := [XG]jj, [X̂G]jk := [XG]jk + rjke
−i( π

2 − αjk)
rjk > 0 X̂G

[X̂G]jj[X̂G]kk = [X̂G]jk
2

= [XG]jk + rjke
−i( π

2 − αjk)
2

⇔ r2
jk + 2b rjk − c = 0

b := Re ([XG]jk e i( π
2 − αjk))  and  c := [XG]jj [XG]kk − [XG]jk

2
> 0



Sufficient condition
Proof
Case 2:  is not  psd rank-1.  Suppose .  We will


1. Construct  that is  psd rank-1


2. Show that condition C1 implies: 


Then can construct  from  as in Case 1.  


1. Construction of 





Therefore


 is psd rank-1    with  

XG 2 × 2 [XG]jj[XG]kk > | [XG]jk |2

X̂G 2 × 2
tr ClX̂G ≤ tr ClXG

x ∈ ℂn X̂G

X̂G

[X̂G]jj := [XG]jj, [X̂G]jk := [XG]jk + rjke
−i( π

2 − αjk)

X̂G ⇔ [X̂G]jk := [XG]jk + rjke
−i( π

2 − αjk) rjk := b2 + c − b > 0



Sufficient condition
Proof
Case 2:  is not  psd rank-1.  Suppose .  We will


1. Construct  that is  psd rank-1


2. Show that condition C1 implies: 


Then can construct  from  as in Case 1.  


2.  is feasible for SOCP with lower or equal cost


XG 2 × 2 [XG]jj[XG]kk > | [XG]jk |2

X̂G 2 × 2
tr ClX̂G ≤ tr ClXG

x ∈ ℂn X̂G

X̂G

tr (Cl (X̂G − XG)) = ∑
( j,k)∈E

[Cl]jk([X̂G]jk − [XG]jk)
𝖧

= 2 ∑
j<k,( j,k)∈E

Re ([Cl]jk ⋅ rjk ei( π
2 − αjk))

= 2 ∑
j < k

( j, k) ∈ E

[Cl]jk rjk cos (∠[Cl]jk +
π
2

− αjk) ≤ 0



Sufficient condition
Proof
Finally, if condition C2 holds as well, SOCP has a unique optimal solution .  


If  is  psd but not  rank-1, i.e.,  for some 


then proof above constructs  that is feasible for SOCP with lower or equal cost, contradicting 
uniqueness of .   Hence  must be  rank-1.

XG

XG 2 × 2 2 × 2 [XG]jj[XG]kk > | [XG]jk |2 ( j, k)

X̂G
XG XG 2 × 2



Outline
1. Relaxations of QCQP

2. Application to OPF

3. Exactness condition: linear separability

4. Exactness condition: small angle difference


• Sufficient condition 

• 2-bus example



Assumptions
Assume  
1. Series admittances are symmetric  and shunt admittances are zero 


2. Voltage magnitudes  pu are fixed


3. Reactive powers are ignored


Use polar form power flow equations

 Optimization over  reduces to optimization over 

ys
jk = ys

kj ym
jk = ym

kj := 0

|Vj | := 1

∴ (s, v) (p, θ)



OPF formulation




where   with  and 

min
p,P,θ

C(p)

s.t. pmin
j ≤ pj ≤ pmax

j , j ∈ N

θmin
jk ≤ θjk ≤ θmax

jk , ( j, k) ∈ E

pj = ∑
k:k∼j

Pjk, j ∈ N

Pjk = gjk − gjk cos θjk − bjk sin θjk, ( j, k) ∈ E

Vj = |Vj | eiθj |Vj | := 1 θjk := θj − θk

Eliminate  and Pjk θjk

constraints on line flows, line losses, or stability 

power flow equation (polar form)

nodal power balance



OPF formulation
Define injection region





OPF:                                


SOCP relaxation:             


Definition: SOCP relaxation is exact if every optimal solution lies in 

ℙθ := p ∈ ℝn pj = ∑
k:k∼j

(gjk − gjk cos θjk − bjk sin θjk), θmin
jk ≤ θjk ≤ θmax

jk

ℙp := {p ∈ ℝn | pmin
j ≤ pj ≤ pmax

j , j ∈ N}

min
p

C(p) s.t. p ∈ ℙθ ∩ ℙp

min
p

C(p) s.t. p ∈ conv (ℙθ) ∩ ℙp

ℙθ ∩ ℙp



Pareto front

Definitions 

A point  is a Pareto optimal point in 
 if there does not exist another  such that 


• , and


•  for at least one 


The Pareto front of :

x ∈ A ⊆ ℝn

A x′ ∈ A

x′ ≤ x
x′ j < xj j

A
𝕆(A) := {all Parento optimal points}
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1. We show that P traces out an ellipse in R
2 as q jk ranges over [�p,p]. Since the feasible set is a

subset of ellipse, it is nonconvex.

2. We show that condition C13.4 restricts the feasible set to the lower half of the ellipse.

3. We show that condition C13.3 implies that the Pareto front of the feasible set of the relaxed problem
(13.25) coincides with the feasible set. This implies that the relaxation is exact.

4. Finally we show that the relaxation (13.25) is an SOCP.

Step 1: P that satisfies (13.26) is an ellipse. In general the set of points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M (see Exercise 13.4). To see that P describes an
ellipse, write v := [cosq jk sinq jk]

T = A�1 �
P�g jk1

�
. Hence kvk2

2 = 1, yielding

(P�g jk1)T
⇣

AAT

⌘�1
(P�g jk1) = 1 (13.27)

Hence P is an ellipse centered at g jk1. From (13.26), the ellipse P passes through the origin when q jk = 0,
as shown in Figures 13.4. (SL: Unify caption, brief vs detailed.) Since the feasible set is a subset of the

Pjk

Pkj

π kj
min

π jk
min

2gjk

2bjk−

Figure 13.4: The feasible set of OPF (13.24) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (13.25) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin

k j when q jk = q min
k j .

ellipse P (without the interior), it is nonconvex.

Pareto front



Sufficient condition
C1: for every ,  


C2:  is strictly increasing in each 


Theorem 
Suppose  is a tree and C1, C2 hold.  Then


1. 


2. SOCP relaxation is exact 

( j, k) ∈ E tan−1
bjk

gjk
< θmin

jk ≤ θmax
jk < tan−1

−bjk

gjk

C(p) pj

G
ℙθ ∩ ℙp = 𝕆(conv(ℙθ) ∩ ℙp) feasible set is Pareto front of its relaxation

bjk < 0 < gjk



Geometric insight
2-bus network
For each line , line flows  and angle differences  satisfy 


       where    


1.  traces out an ellipse in  as  ranges over .  


Hence feasible set (subset of ellipse) is noncovex.

2. C1 restricts  to lower half of ellipse


( j, k) ∈ E P := (Pjk, Pkj) θjk := θj − θk

P − gjk1 = A [
cos θjk

sin θjk] A := [
−gjk −bjk

−gjk bjk ]
P ℝ2 θjk [−π, π]

ℙθ
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1. We show that P traces out an ellipse in R
2 as q jk ranges over [�p,p]. Since the feasible set is a

subset of ellipse, it is nonconvex.

2. We show that condition C13.4 restricts the feasible set to the lower half of the ellipse.

3. We show that condition C13.3 implies that the Pareto front of the feasible set of the relaxed problem
(13.25) coincides with the feasible set. This implies that the relaxation is exact.

4. Finally we show that the relaxation (13.25) is an SOCP.

Step 1: P that satisfies (13.26) is an ellipse. In general the set of points x 2 R
k that satisfy

(x� c)TM(x� c) =
���M1/2(x� c)

���
2

2
= 1

is an ellipse if c 2 R
n and M � 0 is a real (symmetric) positive definite matrix. The center of the ellipsoid

is c and the k principal axes are the k eigenvectors of M (see Exercise 13.4). To see that P describes an
ellipse, write v := [cosq jk sinq jk]

T = A�1 �
P�g jk1

�
. Hence kvk2

2 = 1, yielding

(P�g jk1)T
⇣

AAT

⌘�1
(P�g jk1) = 1 (13.27)

Hence P is an ellipse centered at g jk1. From (13.26), the ellipse P passes through the origin when q jk = 0,
as shown in Figures 13.4. (SL: Unify caption, brief vs detailed.) Since the feasible set is a subset of the

Pjk

Pkj

π kj
min

π jk
min

2gjk

2bjk−

Figure 13.4: The feasible set of OPF (13.24) for the two-bus network is a subset of an ellipse without
the interior, hence nonconvex. OPF-socp (13.25) includes the interior of the ellipse and is hence convex.
If the cost function C is strictly increasing in (Pjk,Pk j) then the Pareto front of the SOCP feasible set
will lie on the lower part of the ellipse, O(Pq ) = Pq , and hence OPF-socp is exact. The points P :=
(Pjk(q jk),Pk j(qk j)) = 0 when q jk = 0, Pjk = pmin

jk when q jk = q min
jk , and Pk j = pmin

k j when q jk = q min
k j .

ellipse P (without the interior), it is nonconvex.



Geometric insight
2-bus network
For each line , line flows  and angle differences  satisfy 


       where    


1.  traces out an ellipse in  as  ranges over .  


Hence feasible set (subset of ellipse) is noncovex.

2. C1 restricts  to lower half of ellipse

3. C2 implies Pareto front of relaxed feasible set coincides


with feasible set, i.e., relaxation is exact


( j, k) ∈ E P := (Pjk, Pkj) θjk := θj − θk

P − gjk1 = A [
cos θjk

sin θjk] A := [
−gjk −bjk

−gjk bjk ]
P ℝ2 θjk [−π, π]

ℙθ
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Pjk

Pkj

π jk,π kj( )

π jk,π kj( )

Pkj = π kj +µ Pjk −π jk( )

µ :=
π kj −π kj

π jk −π jk

Figure 13.6: The set conv(Pq ) is the intersection of the ellipse, including its interior, and a half-space.

2. If there are no constraints on the injections p, then SOCP relaxation (13.25) is exact under condition
C13.3 due to Pq = O(conv Pq ) in (13.28). As illustrated in Figure 13.7, upper bounds p on power
injections p do not affect exactness whereas lower bounds p do. (SL: Unify caption, brief vs

p
j
, p

k( )

Pareto)front)

(a) Exact relaxation with constraint

p
j
, p

k( )

Pareto)front)

(b) Inexact relaxation with constraint

Figure 13.7: With lower bounds p on power injections, the feasible set of OPF-socp (13.25) is the shaded
region. (a) When the feasible set of OPF (13.24) is restricted to the lower half of the ellipse (small |q jk|),
the Pareto front remains on the ellipse itself, Pq \ Pp = O(conv(Pq ) \ Pp), and hence the relaxation is
exact. (b) When the feasible set of OPF includes upper half of the ellipse (large |q jk|), the Pareto front
may not lie on the ellipse if p is large, making the relaxation not exact.

detailed.) The purpose of condition C13.4 is to restrict the angle q jk in order to eliminate the upper
half of the ellipse from Pq .

Remark 13.5 (Tree topology). The tree topology allows the extension of the argument for a single line to
a radial network with multiple lines, in two ways. First let F

jk
q denotes the set of branch power flows on


