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Radial network
Assumptions: DistFlow model 
Radial network


• BFM most useful for modeling distribution systems which are mostly radial (and unbalanced)


  or equivalently  

• Does not apply to 3-phase transformers in  or  configuration or their per-phase equivalent with 

complex gains


  


• Reasonable assumption for distribution line where 


Includes only voltage sources and power sources 

• Optimization variables are voltages (squared magnitudes)  and power injections  respectively

• Can include current sources or an impedances with additional vars and constraints.

zs
jk = zs

kj ys
jk = ys

kj
ΔY YΔ

ym
jk = ym

kj = 0
|ym

jk | , |ym
kj | ≪ |ys

jk |

vj sj



DistFlow model
Power flow equations


• All lines point away from bus 0 (root)





Operational constraints


∑
k:j→k

Sjk = Sij − zs
ijℓij + sj, j ∈ N

vj − vk = 2 Re (z̄s
jkSjk) − |zs

jk |2 ℓjk, j → k ∈ E

vjℓjk = |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ ℓmax
jk

nonconvex constraint

(other constraints are linear in )x



Single-phase OPF

Feasible set





OPF in BFM


𝕏df := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies PF equations & operational constraints}

min
x

C(x) s.t. x ∈ 𝕏df

DistFlow model



Single-phase OPF
Equivalence
Recall for BIM:


• Feasible set:   


• OPF:      


OPF in BFM is equivalent to OPF in BIM:

• Feasible sets  and  are equivalent (Ch 5)

• … provided cost functions  and  are the same

𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}
min
V∈𝕍

C(V)

𝕏df 𝕍
C(x) C(V)



SOCP relaxation
Power flow equations


• All lines point towards bus 0 (root)





Operational constraints


Sjk = ∑
i:i→j

(Sij − zijℓij) + sj, j ∈ N

vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk, j → k ∈ E

vjℓjk ≥ |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ ℓmax
jk

second-order cone



SOCP relaxation
Feasible set





SOCP relaxation in BFM


𝕏+
df := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies vjℓjk ≥ |Sjk |2  & other constraints}

min
x

C(x) s.t. x ∈ 𝕏+
df



Exactness
Definition (Strong exactness) 

SOCP relaxation is exact if every optimal solution  of SOCP relaxation attains equality:
xopt

vopt
j ℓopt

jk = Sopt
jk

2
, j → k ∈ E

• Convenient because any algorithm that solves an exact relaxation produces an optimal 
solution for original OFP


• Not necessary: under sufficient conditions for radial networks, can always recover an optimal 
solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not 
exact



Exactness implies uniqueness
Theorem 

Suppose network graph  is tree and the cost function  is convex.  If SOCP relaxation 
in DistFlow model is exact, then its optimal solution is unique

G C(x)
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OPF in BIM
Recall

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ tr (ΦjVV𝖧) ≤ pmax

j , j ∈ N

qmin
j ≤ tr (ΨjVV𝖧) ≤ qmax

j , j ∈ N

vmin
j ≤ tr (EjVV𝖧) ≤ vmax

j , j ∈ N

tr ( ̂YjkVV𝖧) ≤ Imax
jk , ( j, k) ∈ E

tr ( ̂YkjVV𝖧) ≤ Imax
kj , ( j, k) ∈ E

abbreviated as:

tr (ClVV𝖧) ≤ bl, l = 1,…, L



SOCP relaxation in BIM
Given , define partial matrix  by





Constraints in terms of 


V ∈ ℂN+1 WG

[WG]jj := |Vj |
2 , j ∈ N

[WG]jk
:= VjV𝖧

k =: [WG]𝖧
kj, ( j, k) ∈ E

WG

smin
j ≤ ∑

k:j∼k

ȳs
jk ([WG]jj − [WG]jk) ≤ smax

j , j ∈ N

vmin
j ≤ [WG]jj ≤ vmax

j , j ∈ N

ys
jk

2

([WG]jj + [WG]kk − [WG]jk − [WG]kj) ≤ ℓmax
jk , j → k ∈ E

abbreviated as:  tr (ClWG) ≤ bl, l = 1,…, L



SOCP relaxation in BIM
OPF as QCQP





SOCP relaxations


min
V

C(V) s.t. tr (ClVV𝖧) ≤ bl, l = 1,…, L

OPF-socp : min
WG

C(WG) s.t. tr (ClWG) ≤ bl, l = 1,…, L,

WG( j, k) ⪰ 0, ( j, k) ∈ E



Equivalence
SOCP relaxation in BFM





SOCP relaxation in BIM


min
x

C(x) s.t. x ∈ 𝕏+
df := {x | x satisfies vjℓjk ≥ |Sjk |2  & other constraints}

min
WG

C(WG) s.t. WG ∈ 𝕎+
G := {WG | WG satisfies constraints}

Theorem 

𝕏+
df ≡ 𝕎+

G
Implication: The two problems are equivalent in the sense that  bijection


  s.t.    is optimal in BIM  iff    is 

optimal in BFM

∃
g : 𝕎+

G ⟶ 𝕏+
df Wopt

G xopt := g (Wopt
G )



Equivalence
SOCP relaxation in BFM





SOCP relaxation in BIM


min
x

C(x) s.t. x ∈ 𝕏+
df := {x | x satisfies vjℓjk ≥ |Sjk |2  & other constraints}

min
WG

C(WG) s.t. WG ∈ 𝕎+
G := {WG | WG satisfies constraints}

Theorem 

𝕏+
df ≡ 𝕎+

G
Generalization: 

Extends to general radial networks without assuming

zs
jk = zs

kj, ym
jk = ym

kj = 0



Proof
Motivated by  of psd rank-1 completion  of psd rank-1 , define  :





and  :


W = VV𝖧 W WG g : 𝕎+
G → 𝕏+

df

sj := ∑
i:i→j

ȳs
ij ([WG]jj − [WG]ji) + ∑

k:j→k

ȳs
jk ([WG]jj − [WG]jk), j ∈ N

vj := [WG]jj, j ∈ N

ℓjk := |ys
jk |2 ([WG]jj + [WG]kk − [WG]jk − [WG]kj), j → k ∈ E

Sjk := ȳs
jk ([WG]jj − [WG]jk), j → k ∈ E

g−1 : 𝕏+
df → 𝕎+

G

[WG]jj := vj, j ∈ N

[WG]jk
:= vj − z̄s

jkSjk = [WG]𝖧
kj

, j → k ∈ E



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 1:

Clearly  satisfies operational constraints since  does

For power balance:


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

x WG

∑
i:i→j

(Sij − zijℓij) + sj = ∑
i:i→j

(ȳij ([WG]ii − [WG]ij) − ȳij ([WG]ii + [WG]jj − [WG]ij − [WG]ji)) + sj

= ∑
i:i→j

(−ȳij ([WG]jj − [WG]ji)) + ∑
i:i→j

ȳji ([WG]jj − [WG]ji) + ∑
k:j→k

ȳjk ([WG]jj − [WG]jk)
= ∑

k:j→k

Sjk



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 1:

For voltage equation:


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

2 Re (z̄jkSjk) − |zjk |2 ℓjk = 2 Re ([WG]jj − [WG]jk) − ([WG]jj + [WG]kk − [WG]jk − [WG]kj)
= ([WG]jj − [WG]kk) − [WG]𝖧

jk + [WG]kj

= vj − vk



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 1: 

For SOC constraint:  implies


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

[WG]jj[WG]kk ≥ | [WG]jk |2

vjℓjk = yjk
2

[WG]jj([WG]jj + [WG]kk − [WG]jk − [WG]kj)
≥ yjk

2 ([WG]2
jj + [WG]jk

2
− [WG]jj[WG]jk − [WG]jj[WG]𝖧

jk)
= |Sjk |2



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 2: 

Need to prove:





x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

smin
j ≤ ∑

k:j∼k

ȳs
jk ([WG]jj − [WG]jk) ≤ smax

j , j ∈ N

vmin
j ≤ [WG]jj ≤ vmax

j , j ∈ N

ys
jk

2

([WG]jj + [WG]kk − [WG]jk − [WG]kj) ≤ ℓmax
jk , j → k ∈ E

WG( j, k) ⪰ 0, ( j, k) ∈ E



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 2: 

For injection limits:





x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

∑
k:( j,k)∈E

ȳs
jk ([WG]jj − [WG]jk) = ∑

i:i→j

ȳs
ji ([WG]jj − [WG]ji) + ∑

k:j→k

ȳs
jk ([WG]jj − [WG]jk)

= ∑
i:i→j

ȳs
ij (vj − (vi − z̄s

ijSij)
𝖧) + ∑

k:j→k

ȳs
jk (vj − (vj − z̄s

jkSjk))
= ∑

k:j→k

Sjk − ∑
i:i→j

ȳs
ij (vi − vj − zs

ijS
𝖧
ij )

= ∑
k:j→k

Sjk − ∑
i:i→j

ȳs
ij (2 Re(z̄s

ijSij) − zs
ij

2
ℓij − zs

ijS
𝖧
ij )



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 2: 

But





Hence


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

(2 Re(z̄s
ijSij) − zs

ijS
𝖧
ij ) = (z̄s

ijSij + zs
ijS

𝖧
ij ) − zs

ijS
𝖧
ij = z̄s

ijSij

∑
k:( j,k)∈E

ȳs
jk ([WG]jj − [WG]jk) = ∑

k:j→k

Sjk − ∑
i:i→j

(Sij − zs
ijℓij) = sj



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 2: 

The voltage limits are clearly satisfied.

For line limits:





Hence line limits on  implies the limit limits on 

x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

|yjk |2 ([WG]jj + [WG]kk − [WG]jk − [WG]kj) = |yjk |2 (vj + vk − (vj − z̄s
jkSjk) − (vj − z̄s

jkSjk)
𝖧)

= |yjk |2 (−vj + vk + z̄s
jkSjk + zs

jkS
𝖧
jk) = ℓjk

ℓjk WG



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 2: 

For psd constraints: we have   and


x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

[WG]jk = [WG]𝖧
kj, [WG]jj > 0, [WG]kk > 0

[WG]jj[WG]kk − [WG]jk
2

= vjvk − vj − z̄s
jkSjk

2
= vjvk − (v2

j + zs
jk

2
Sjk

2
− 2vj Re (z̄s

jkSjk))
= vj (vk − vj + 2 Re (z̄s

jkSjk)) − zs
jk

2
Sjk

2

= zs
jk

2

(vjℓjk − Sjk
2) ≥ 0



Proof
Will prove 

1.   for every 


2.   for every 


3.  and  are indeed inverses of each other


Step 3: 

Similar argument shows   and  

x := g(WG) ∈ 𝕏+
df WG ∈ 𝕎+

G

WG := g−1(x) ∈ 𝕎+
G x ∈ 𝕏+

df
g g−1

g(g−1(x)) = x g−1(g(WG)) = WG
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DistFlow model
OPF and SOCP relaxation
DistFlow model


• Radial network


•   or equivalently  


• 


• Does not apply to 3-phase transformers in  or  configuration or their per-phase equivalents


OPF in BFM




SOCP relaxation in BFM





 

zs
jk = zs

kj ys
jk = ys

kj

ym
jk = ym

kj = 0
ΔY YΔ

min
x

C(x) s.t. x ∈ 𝕏df := {x ∈ ℝ6N+3 : x satisfies DF equations & constraints}

min
x

C(x) s.t. x ∈ 𝕏+
df := {x ∈ ℝ6N+3 : x satisfies vjℓjk ≥ |Sjk |2  & constraints}



Exactness: injection lower bounds
Assume:


1. Cost function  is independent of branch flow  and nondecreasing in 
.  Moreover it is strictly increasing in every component of , or in every 

component of , or in every component of 


2. No injection lower bounds: 

C(x) := C(p, q, v, ℓ) S = (P, Q)
(p, q, ℓ) ℓ := (ℓjk, j → k ∈ E)

p := (pj, j ∈ N) q := (qj, j ∈ N)

smin
j = − ∞ − i∞

Theorem 

Suppose network graph  is tree and conditions 1 and 2 hold.  Then SOCP relaxation is 
exact, i.e., every optimal solution  of SOCP relaxation is optimal for OPF

G
xopt

Remark: When  is only nondecreasing in , the SOCP relaxation may not be exact, but an optimal 

solution of OPF can always be recovered from any solution of SOCP relaxation

C(x) (p, q, ℓ)



Exactness: injection lower bounds
Assume:


1. Cost function  is independent of branch flow  and nondecreasing in 
.  Moreover it is strictly increasing in every component of , or in every 

component of , or in every component of 


2. No injection lower bounds: 

C(x) := C(p, q, v, ℓ) S = (P, Q)
(p, q, ℓ) ℓ := (ℓjk, j → k ∈ E)

p := (pj, j ∈ N) q := (qj, j ∈ N)

smin
j = − ∞ − i∞

Theorem 

Suppose network graph  is tree and conditions 1 and 2 hold.  Then SOCP relaxation is 
exact, i.e., every optimal solution  of SOCP relaxation is optimal for OPF

G
xopt

Remark: Theorem can be extended to general radial network without assuming  nor  
(see PSA book) 

zs
jk = zs

kj ym
jk = ym

kj = 0



Proof
Fix any optimal solution  of SOCP relaxation of OPF.  Since  is a tree, we only need 
to show that    holds with equality for every line 


Suppose  on line .   Will construct  that is feasible for SOCP relaxation and 
attains a strictly lower cost, contradicting optimality of 


For an  to be determined, obtain  by modifying only  on the single line  and 
 at two ends of   (all other vars remain unchanged):





Assumption 1 implies that  has a strictly lower cost than .  It hence suffices to show that  
s.t.  is feasible for SOCP relaxation

x := (s, v, ℓ, S) G
vjℓjk ≥ |Sjk |2 j → k ∈ E

vjℓjk > |Sjk |2 j → k ∈ E x̃
x

ϵ > 0 x̃ (ℓjk, Sjk) j → k
(sj, sk) j → k

ℓ̃jk := ℓjk − ϵ

S̃jk := Sjk − zjkϵ/2
s̃j := sj − zjkϵ/2
s̃k := sk − zkjϵ/2

x̃ x ∃ϵ > 0
x̃



Proof
Assumption 2 implies operational constraints are satisfied since  and .  We only need 
to show that  satisfies: power balance at buses , voltage and SOC constraints at line 


For power balance at :





For power balance at :


zjk > 0 ϵ > 0
x̃ j, k j → k

j

S̃jk = Sjk − zjk
ϵ
2

= ∑
i:i→j

(Sij − zijℓij) + sj − zjk
ϵ
2

= ∑
i:i→j

(S̃ij − zijℓ̃ij) + s̃j

k

S̃kl = Skl = (Sjk − zjkℓjk) + ∑
i≠j:i→k

(Sik − zikℓik) + sk

= (S̃jk − zjkℓ̃jk − zjk
ϵ
2 ) + ∑

i≠j:i→k
(S̃ik − zikℓ̃ik) + sk = ∑

i:i→k
(S̃ik − zikℓ̃ik) + s̃k



Proof
Assumption 2 implies operational constraints are satisfied since  and .  We only need 
to show that  satisfies: power balance at buses , voltage and SOC constraints at line 


For voltage equation at :





For SOC constraint at :





Hence  implies that  s.t. 


zjk > 0 ϵ > 0
x̃ j, k j → k

j → k

ṽj − ṽk = vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk = 2 Re (z𝖧

jkS̃jk) − |zjk |2 ℓ̃jk

j → k

ṽjℓ̃jk − S̃jk
2

= −
zjk

2

4
ϵ2 − (vj − Re (z𝖧

jkSjk)) ϵ + (vjℓjk − Sjk
2)

vjℓjk > |Sjk |2 ∃ϵ > 0 ṽjℓ̃jk = S̃jk
2



Outline
1. SOCP relaxation
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3. Exactness condition: inactive voltage upper bounds



Exactness: voltage upper bounds
Geometric insight: 2-bus example
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Example 14.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with impedance z :=
r + ix. Without loss of generality, let the direction of the line be from bus 1 to bus 0. Let ` be the sending-
end squared current magnitude from buses 1 to 0 (recall that S01 := 0 in (14.1a)). Suppose also without
loss of generality that v0 = 1 pu. The model in (14.1) reduces to (Exercise 14.1):

p0 � r` = �p1, q0 � x` = �q1, p2
0 +q2

0 = ` (14.16a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (14.16b)

Suppose s1 is given (e.g., a constant power load). Then the variables are w := (p0,q0,v1,`) and the
feasible set consists of solutions of (14.16). subject to additional constraints on w. The case without any

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 14.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over
the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2

⇣
2rp1 +2xq1 +1� vmin

1

⌘

Power flow solution  satisfies:


  

x := (p0, q0, v1, ℓ)
p0 − rℓ = − p1

q0 − xℓ = − q1

p2
0 + q2

0 = ℓ

v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

power flow solutions (feasible set) : { 2 intersection points }

Exactness: voltage upper bounds
Geometric insight: 2-bus example

Steven Low     SDR      Single-phase OPF

given v0

(p0, q0)
given 


(p1, q1)

v1

ℓ
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the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:

1
|z|2 (2rp1 +2xq1 +1� vmax

1 )  `  1
|z|2

⇣
2rp1 +2xq1 +1� vmin

1

⌘

Power flow solution  satisfies:


  

x := (p0, q0, v1, ℓ)
p0 − rℓ = − p1
q0 − xℓ = − q1

p2
0 + q2

0 = ℓ
v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

power flow solutions (feasible set) : { 2 intersection points }
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Cost function  increasing in 
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• SOCP relaxation is exact
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Example 14.1 (Geometric insight). Consider bus 0 and bus 1 connected by a line with impedance z :=
r + ix. Without loss of generality, let the direction of the line be from bus 1 to bus 0. Let ` be the sending-
end squared current magnitude from buses 1 to 0 (recall that S01 := 0 in (14.1a)). Suppose also without
loss of generality that v0 = 1 pu. The model in (14.1) reduces to (Exercise 14.1):

p0 � r` = �p1, q0 � x` = �q1, p2
0 +q2

0 = ` (14.16a)
v1 � v0 = 2(rp1 + xq1) � (r2 + x2)` (14.16b)

Suppose s1 is given (e.g., a constant power load). Then the variables are w := (p0,q0,v1,`) and the
feasible set consists of solutions of (14.16). subject to additional constraints on w. The case without any
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Figure 14.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over
the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:
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Figure 14.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over
the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.
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Power flow solution  satisfies:


  

x := (p0, q0, v1, ℓ)
p0 − rℓ = − p1
q0 − xℓ = − q1

p2
0 + q2

0 = ℓ
v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

power flow solutions (feasible set) : { 2 intersection points }
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Voltage constraints


• 


•     leads to upper bound on  and will not 
affect exactness


•       leads to lower bound on  and can 
affect exactness when it binds

1
|z |2 (a − vmax

1 ) ≤ ℓ ≤
1

|z |2 (a − vmin
1 )

∴ vmin
1 ℓ

vmax
1 ℓ
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Figure 14.1 shows that the lower bound vmin
1 (corresponding to an upper bound on `) does not affect the

exactness of SOCP relaxation. The effect of upper bound vmax
1 (corresponding to a lower bound on `) is

illustrated in Figure 14.2. As explained in the caption of the figure SOCP relaxation is exact if the upper
bound vmax

1 does not exclude the high-voltage solution c and is not exact otherwise.



p0

q0

c

(a) Voltage constraint not binding

op2mal)solu2on)of)SOCP))
(infeasible)for)OPF))



p0

q0

c

(b) Voltage constraint binding

Figure 14.2: Impact of voltage upper bound vmax
1 on exactness. (a) When vmax

1 (corresponding to a lower
bound on `) is not binding, the power flow solution c is in the feasible set of SOCP and hence the relaxation
is exact. (b) When vmax

1 excludes c from the feasible set of SOCP, the optimal solution is infeasible for
OPF and the relaxation is not exact.

See Exercises 14.2 and 14.3 for details of feasibility and exactness of OPF-socp.

To state the exactness condition for a general radial network, recall the linear approximation of BFM
studied in Chapter 6.5.1, obtained by setting ` jk = 0 in (14.1). Given v0 and the injections ŝ := (p̂, q̂) :=
(p j,q j, j 2 N) at non-root buses, the line flow vector Slin(s) :=

⇣
Slin

jk ,( j,k) 2 E
⌘

and the voltage vector

v̂lin(s) := (vlin
j , j 2 N) at non-root buses in the linearized model are explicitly given by (from Theorem

6.3):

Slin(s) = Ĉ�1ŝ, v̂lin(s) = v0 1 + 2(Rp̂ + Xq̂) (14.17)

for some given invertible matrices Ĉ, R and X . The key property we will use is, from Corollary 6.4:

S jk  Slin
jk (s) and v j  vlin

j (s), j 2 N (14.18)

Define the 2⇥2 matrix function

A jk(S jk,v j) := I2 � 2
v j

z jk
�
S jk

�T (14.19)

where I2 is the identity matrix of size 2, z jk := [r jk x jk]
T is the column vector of line impedance and

S jk := [Pjk Q jk]
T is the column vector of branch power flows, so that z jk

�
S jk

�T is a 2 ⇥ 2 matrix with
rank less or equal to 1. The matrices A jk(S jk,v j) describe how changes in branch power flows propagate
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feasible set consists of solutions of (14.16). subject to additional constraints on w. The case without any

  = p0
2 + q0

2

p0 − r = −p1
q0 − x = −q1

c

p0

q0

high v1

low v1

Figure 14.1: Feasible set of OPF for a two-bus network without any constraint. It consists of the (two)
points of intersection of the line with the convex surface (without the interior), and hence is nonconvex.
SOCP relaxation includes the interior of the convex surface and enlarges the feasible set to the line segment
joining these two points. If the cost function C is increasing in ` or (p0,q0) then the optimal point over
the SOCP feasible set (line segment) is the lower feasible point c, and hence the relaxation is exact. No
constraint on ` or (p0,q0) will destroy exactness as long as the resulting feasible set contains c.

constraint is instructive and shown in Figure 14.1 (see explanation in the caption). The point c in the figure
corresponds to a power flow solution with a large v1 (normal operation) whereas the other intersection
corresponds to a solution with a small v1 (fault condition). As explained in the caption, SOCP relaxation
is exact if there is no voltage constraint and as long as constraints on (p0,q0,`) do not remove the high-
voltage solution c. Only when the system is stressed to a point where the high-voltage solution becomes
infeasible will relaxation lose exactness. This agrees with conventional wisdom that power systems under
normal operations are well behaved.

Consider now the voltage constraint vmin
1  v1  vmax

1 . We have from (14.16b) and v0 = 1

v1 = (1+2rp1 +2xq1)� |z|2`

translating the constraint on v1 into a box constraint on `:
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Power flow solution  satisfies:


  

x := (p0, q0, v1, ℓ)
p0 − rℓ = − p1
q0 − xℓ = − q1

p2
0 + q2

0 = ℓ
v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

power flow solutions (feasible set) : { 2 intersection points }



Exactness: voltage upper bounds
Assume:


3. Cost function   with    strictly increasing in .  There is no constraint on 


4. 


5. Technical condition: small change in a line power affects all upstream line powers in the same direction

C(x) := ∑
j

Cj(pj) C0(p0) p0 s0

̂vlin
j (s) ≤ vmax

j , j ∈ N

Theorem 

Suppose network graph  is tree and Assumptions 3-5 hold.  Then SOCP relaxation is 
exact, i.e., every optimal solution  of SOCP relaxation is optimal for OPF

G
xopt

Remark: If  is nondecreasing in , the SOCP relaxation may not be exact, but an optimal solution of OPF 

can always be recovered from any solution of SOCP relaxation

C0(p0) p0


