Power System Analysis

Chapter 11 Semidefinite relaxations: BFM

Steven Low Caltech (Dec 13, 2024)

Outline

- 1. SOCP relaxation
- 2. Exactness condition: inactive injection lower bounds
- 3. Exactness condition: inactive voltage upper bounds

Outline

- 1. SOCP relaxation
 - SOCP relaxation
 - Equivalence
- 2. Exactness condition: inactive injection lower bounds
- 3. Exactness condition: inactive voltage upper bounds

Radial network Assumptions: DistFlow model

Radial network

• BFM most useful for modeling distribution systems which are mostly radial (and unbalanced)

$$z_{jk}^s = z_{kj}^s$$
 or equivalently $y_{jk}^s = y_{kj}^s$

- Does not apply to 3-phase transformers in ΔY or $Y\Delta$ configuration or their per-phase equivalent with complex gains

 $y_{jk}^m = y_{kj}^m = 0$

• Reasonable assumption for distribution line where $|y_{jk}^m|, |y_{kj}^m| \ll |y_{jk}^s|$

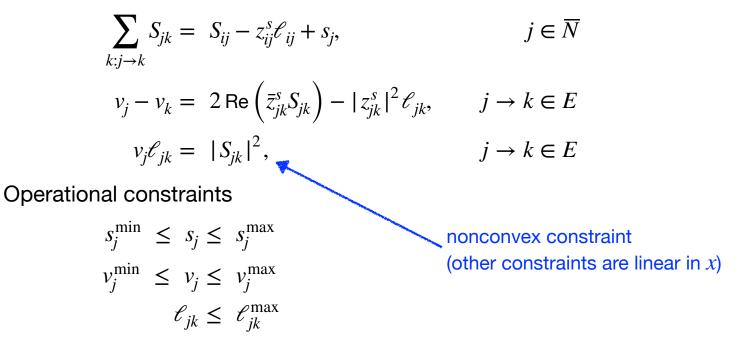
Includes only voltage sources and power sources

- Optimization variables are voltages (squared magnitudes) v_i and power injections s_i respectively
- Can include current sources or an impedances with additional vars and constraints.

DistFlow model

Power flow equations

• All lines point away from bus 0 (root)



Single-phase OPF DistFlow model

Feasible set

 $\mathbb{X}_{df} := \left\{ x := (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies PF equations & operational constraints} \right\}$

OPF in BFM

 $\min_{x} C(x) \qquad \text{s.t.} \qquad x \in \mathbb{X}_{df}$

Single-phase OPF Equivalence

Recall for BIM:

- Feasible set: $\mathbb{V} := \{ V \in \mathbb{C}^{N+1} \mid V \text{ satisfies operational constraints} \}$
- $\bullet \text{ OPF:} \quad \min_{V \in \mathbb{V}} \ C(V)$

OPF in BFM is equivalent to OPF in BIM:

- Feasible sets X_{df} and V are equivalent (Ch 5)
- ... provided cost functions C(x) and C(V) are the same

SOCP relaxation

Power flow equations

• All lines point towards bus 0 (root)

$$S_{jk} = \sum_{i:i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j, \qquad j \in \overline{N}$$

$$v_j - v_k = 2 \operatorname{Re} \left(z_{jk}^{\mathsf{H}} S_{jk} \right) - |z_{jk}|^2 \ell_{jk}, \qquad j \to k \in E$$

$$v_j \ell_{jk} \geq |S_{jk}|^2, \qquad j \to k \in E$$
Operational constraints
$$s_j^{\min} \leq s_j \leq s_j^{\max}$$

$$v_j^{\min} \leq v_j \leq v_j^{\max}$$

$$\ell_{jk} \leq \ell_{jk}^{\max}$$

SOCP relaxation

Feasible set

$$\mathbb{X}_{df}^{+} := \left\{ x := (s, v, \ell, S) \in \mathbb{R}^{6N+3} \mid x \text{ satisfies } v_{j}\ell_{jk} \ge |S_{jk}|^{2} \text{ & other constraints} \right\}$$

SOCP relaxation in BFM

 $\min_{x} C(x) \qquad \text{s.t.} \qquad x \in \mathbb{X}^+_{\mathsf{df}}$

Exactness

Definition (Strong exactness)

SOCP relaxation is exact if every optimal solution x^{opt} of SOCP relaxation attains equality:

$$v_j^{\text{opt}} \mathscr{C}_{jk}^{\text{opt}} = \left| S_{jk}^{\text{opt}} \right|^2, \quad j \to k \in E$$

- Convenient because any algorithm that solves an exact relaxation produces an optimal solution for original OFP
- Not necessary: under sufficient conditions for radial networks, can always recover an optimal solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not exact

Exactness implies uniqueness

Theorem

Suppose network graph *G* is tree and the cost function C(x) is convex. If SOCP relaxation in DistFlow model is exact, then its optimal solution is unique

Outline

1. SOCP relaxation

- SOCP relaxation
- Equivalence
- 2. Exactness condition: inactive injection lower bounds
- 3. Exactness condition: inactive voltage upper bounds

OPF in BIM Recall

$$\begin{split} & \underset{V \in \mathbb{C}^{N+1}}{\min} \quad V^{\mathsf{H}} C_0 V \\ & \text{s.t.} \quad p_j^{\min} \, \leq \, \operatorname{tr} \left(\Phi_j V V^{\mathsf{H}} \right) \, \leq \, p_j^{\max}, \qquad j \in \overline{N} \\ & \quad q_j^{\min} \, \leq \, \operatorname{tr} \left(\Psi_j V V^{\mathsf{H}} \right) \, \leq \, q_j^{\max}, \qquad j \in \overline{N} \\ & \quad v_j^{\min} \, \leq \, \operatorname{tr} \left(E_j V V^{\mathsf{H}} \right) \, \leq \, v_j^{\max}, \qquad j \in \overline{N} \\ & \quad \operatorname{tr} \left(\hat{Y}_{jk} V V^{\mathsf{H}} \right) \, \leq \, \overline{I}_{jk}^{\max}, \qquad (j,k) \in E \\ & \quad \operatorname{tr} \left(\hat{Y}_{kj} V V^{\mathsf{H}} \right) \, \leq \, \overline{I}_{kj}^{\max}, \qquad (j,k) \in E \end{split}$$

SOCP relaxation in BIM

Given $V \in \mathbb{C}^{N+1}$, define partial matrix W_G by

$$\begin{split} & [W_G]_{jj} := |V_j|^2, \qquad j \in \overline{N} \\ & \left[W_G\right]_{jk} := V_j V_k^{\mathsf{H}} =: [W_G]_{kj}^{\mathsf{H}}, \qquad (j,k) \in E \end{split}$$

Constraints in terms of W_G

$$\begin{split} s_{j}^{\min} &\leq \sum_{k:j \sim k} \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right) \leq s_{j}^{\max}, \qquad j \in \overline{N} \\ v_{j}^{\min} &\leq [W_{G}]_{jj} \leq v_{j}^{\max}, \qquad j \in \overline{N} \\ y_{jk}^{s} \Big|^{2} \left([W_{G}]_{jj} + [W_{G}]_{kk} - [W_{G}]_{jk} - [W_{G}]_{kj} \right) \leq \ell_{jk}^{\max}, \qquad j \to k \in E \end{split}$$

abbreviated as: tr $\left(C_{l}W_{G}\right) \leq b_{l}, \ l=1,\ldots,L$

SOCP relaxation in BIM

OPF as QCQP

 $\min_{V} C(V) \quad \text{s.t.} \quad \text{tr} \left(C_l V V^{\mathsf{H}} \right) \le b_l, \ l = 1, \dots, L$ SOCP relaxations

Equivalence

SOCP relaxation in BFM

$$\min_{x} C(x) \quad \text{s.t.} \quad x \in \mathbb{X}_{df}^{+} := \left\{ x \mid x \text{ satisfies } v_{j} \mathcal{C}_{jk} \ge |S_{jk}|^{2} \text{ & other constraints} \right\}$$

SOCP relaxation in BIM

 $\min_{W_G} C(W_G) \quad \text{s.t.} \quad W_G \in \mathbb{W}_G^+ := \left\{ W_G \mid W_G \text{ satisfies constraints} \right\}$

Theorem

Implication: The two problems are equivalent in the sense that \exists bijection $g: \mathbb{W}_{G}^{+} \longrightarrow \mathbb{X}_{df}^{+}$ s.t. W_{G}^{opt} is optimal in BIM iff $x^{opt} := g\left(W_{G}^{opt}\right)$ is optimal in BFM

Equivalence

SOCP relaxation in BFM

$$\min_{x} C(x) \quad \text{s.t.} \quad x \in \mathbb{X}_{df}^{+} := \left\{ x \mid x \text{ satisfies } v_{j} \mathcal{C}_{jk} \ge |S_{jk}|^{2} \text{ & other constraints} \right\}$$

SOCP relaxation in BIM

 $\min_{W_G} C(W_G) \quad \text{s.t.} \quad W_G \in \mathbb{W}_G^+ := \left\{ W_G \mid W_G \text{ satisfies constraints} \right\}$

Theorem

 $\mathbb{X}_{df}^+ \equiv \mathbb{W}_G^+$

Generalization: Extends to general radial networks without assuming $z_{jk}^s = z_{kj}^s$, $y_{jk}^m = y_{kj}^m = 0$

Motivated by $W = VV^{\mathsf{H}}$ of psd rank-1 completion W of psd rank-1 W_{G} , define $g : \mathbb{W}_{G}^{+} \to \mathbb{X}_{df}^{+}$:

$$\begin{split} s_{j} &:= \sum_{i:i \to j} \bar{y}_{ij}^{s} \left([W_{G}]_{jj} - [W_{G}]_{ji} \right) + \sum_{k:j \to k} \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right), \qquad j \in \overline{N} \\ v_{j} &:= [W_{G}]_{jj}, \qquad \qquad j \in \overline{N} \\ \ell_{jk} &:= |y_{jk}^{s}|^{2} \left([W_{G}]_{jj} + [W_{G}]_{kk} - [W_{G}]_{jk} - [W_{G}]_{kj} \right), \qquad \qquad j \to k \in E \\ S_{jk} &:= \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right), \qquad \qquad j \to k \in E \end{split}$$

and $g^{-1} : \mathbb{X}_{df}^{+} \to \mathbb{W}_{G}^{+} :$ $[W_{G}]_{jj} := v_{j}, \qquad j \in \overline{N}$ $[W_{G}]_{jk} := v_{j} - \overline{z}_{jk}^{s} S_{jk} = [W_{G}]_{kj}^{H}, \qquad j \to k \in E$

Will prove

- 1. $x := g(W_G) \in \mathbb{X}^+_{df}$ for every $W_G \in \mathbb{W}^+_G$
- 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Will prove

- 1. $x := g(W_G) \in \mathbb{X}^+_{df}$ for every $W_G \in \mathbb{W}^+_G$
- 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Step 1:

Clearly *x* satisfies operational constraints since W_G does For power balance:

$$\begin{split} \sum_{i:i \to j} \left(S_{ij} - z_{ij} \ell_{ij} \right) + s_j &= \sum_{i:i \to j} \left(\bar{y}_{ij} \left([W_G]_{ii} - [W_G]_{ij} \right) - \bar{y}_{ij} \left([W_G]_{ii} + [W_G]_{jj} - [W_G]_{ij} - [W_G]_{ji} \right) \right) + s_j \\ &= \sum_{i:i \to j} \left(-\bar{y}_{ij} \left([W_G]_{jj} - [W_G]_{ji} \right) \right) + \sum_{i:i \to j} \bar{y}_{ji} \left([W_G]_{jj} - [W_G]_{ji} \right) + \sum_{k:j \to k} \bar{y}_{jk} \left([W_G]_{jj} - [W_G]_{jk} \right) \\ &= \sum_{k:j \to k} S_{jk} \end{split}$$

Will prove

- 1. $x := g(W_G) \in \mathbb{X}_{df}^+$ for every $W_G \in \mathbb{W}_G^+$ 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Step 1:

For voltage equation:

$$2 \operatorname{Re} \left(\bar{z}_{jk} S_{jk} \right) - |z_{jk}|^2 \ell_{jk} = 2 \operatorname{Re} \left([W_G]_{jj} - [W_G]_{jk} \right) - \left([W_G]_{jj} + [W_G]_{kk} - [W_G]_{jk} - [W_G]_{kj} \right)$$
$$= \left([W_G]_{jj} - [W_G]_{kk} \right) - [W_G]_{jk}^{\mathsf{H}} + [W_G]_{kj}$$
$$= v_j - v_k$$

Will prove

- 1. $x := g(W_G) \in \mathbb{X}_{df}^+$ for every $W_G \in \mathbb{W}_G^+$ 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Step 1:

For SOC constraint: $[W_G]_{jj}[W_G]_{kk} \ge |[W_G]_{jk}|^2$ implies

$$\begin{aligned} v_{j}\ell_{jk} &= \left| y_{jk} \right|^{2} \left[W_{G} \right]_{jj} \left([W_{G}]_{jj} + [W_{G}]_{kk} - [W_{G}]_{jk} - [W_{G}]_{kj} \right) \\ &\geq \left| y_{jk} \right|^{2} \left([W_{G}]_{jj}^{2} + \left| [W_{G}]_{jk} \right|^{2} - [W_{G}]_{jj} [W_{G}]_{jk} - [W_{G}]_{jj} [W_{G}]_{jk} \right) \\ &= \left| S_{jk} \right|^{2} \end{aligned}$$

Will prove

1. $x := g(W_G) \in \mathbb{X}_{df}^+$ for every $W_G \in \mathbb{W}_G^+$ 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$ 3. g and g^{-1} are indeed inverses of each other

Step 2: Need to prove:

$$\begin{split} s_{j}^{\min} &\leq \sum_{k:j \sim k} \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right) \leq s_{j}^{\max}, \qquad j \in \overline{N} \\ v_{j}^{\min} &\leq [W_{G}]_{jj} \leq v_{j}^{\max}, \qquad j \in \overline{N} \\ \left| y_{jk}^{s} \right|^{2} \left([W_{G}]_{jj} + [W_{G}]_{kk} - [W_{G}]_{jk} - [W_{G}]_{kj} \right) \leq \ell_{jk}^{\max}, \qquad j \rightarrow k \in E \\ W_{G}(j,k) \geq 0, \qquad (j,k) \in E \end{split}$$

Will prove

1. $x := g(W_G) \in \mathbb{X}_{df}^+$ for every $W_G \in \mathbb{W}_G^+$ 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$ 3. g and g^{-1} are indeed inverses of each other

Step 2:

For injection limits:

$$\sum_{k:(j,k)\in E} \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right) = \sum_{i:i \to j} \bar{y}_{ji}^{s} \left([W_{G}]_{jj} - [W_{G}]_{ji} \right) + \sum_{k:j \to k} \bar{y}_{jk}^{s} \left([W_{G}]_{jj} - [W_{G}]_{jk} \right)$$

$$= \sum_{i:i \to j} \bar{y}_{ij}^{s} \left(v_{j} - \left(v_{i} - \bar{z}_{ij}^{s} S_{ij} \right)^{\mathsf{H}} \right) + \sum_{k:j \to k} \bar{y}_{jk}^{s} \left(v_{j} - \left(v_{j} - \bar{z}_{jk}^{s} S_{jk} \right) \right)$$

$$= \sum_{k:j \to k} S_{jk} - \sum_{i:i \to j} \bar{y}_{ij}^{s} \left(2\operatorname{Re}(\bar{z}_{ij}^{s} S_{ij}) - \left| z_{ij}^{s} \right|^{2} \ell_{ij} - z_{ij}^{s} S_{ij}^{\mathsf{H}} \right)$$

Will prove

1. $x := g(W_G) \in \mathbb{X}_{df}^+$ for every $W_G \in \mathbb{W}_G^+$ 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$ 3. g and g^{-1} are indeed inverses of each other

But

$$\left(2\operatorname{Re}(\bar{z}_{ij}^{s}S_{ij}) - z_{ij}^{s}S_{ij}^{\mathsf{H}}\right) = \left(\bar{z}_{ij}^{s}S_{ij} + z_{ij}^{s}S_{ij}^{\mathsf{H}}\right) - z_{ij}^{s}S_{ij}^{\mathsf{H}} = \bar{z}_{ij}^{s}S_{ij}$$
Hence

$$\sum_{k:(j,k)\in E} \bar{y}_{jk}^s \left([W_G]_{jj} - [W_G]_{jk} \right) = \sum_{k:j\to k} S_{jk} - \sum_{i:i\to j} \left(S_{ij} - z_{ij}^s \mathcal{C}_{ij} \right) = s_j$$

Will prove

- 1. $x := g(W_G) \in \mathbb{X}^+_{df}$ for every $W_G \in \mathbb{W}^+_G$
- 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Step 2:

The voltage limits are clearly satisfied. For line limits:

$$|y_{jk}|^{2} \left([W_{G}]_{jj} + [W_{G}]_{kk} - [W_{G}]_{jk} - [W_{G}]_{kj} \right) = |y_{jk}|^{2} \left(v_{j} + v_{k} - \left(v_{j} - \bar{z}_{jk}^{s} S_{jk} \right) - \left(v_{j} - \bar{z}_{jk}^{s} S_{jk} \right)^{\mathsf{H}} \right)$$
$$= |y_{jk}|^{2} \left(-v_{j} + v_{k} + \bar{z}_{jk}^{s} S_{jk} + z_{jk}^{s} S_{jk}^{\mathsf{H}} \right) = \ell_{jk}$$

Hence line limits on ℓ_{jk} implies the limit limits on W_G

Will prove

- 1. $x := g(W_G) \in \mathbb{X}^+_{df}$ for every $W_G \in \mathbb{W}^+_G$ 2. $W_G := g^{-1}(x) \in \mathbb{W}^+_G$ for every $x \in \mathbb{X}^+_{df}$
- 3. g and g^{-1} are indeed inverses of each other

Step 2:

For psd constraints: we have $[W_G]_{jk} = [W_G]_{kj}^{\mathsf{H}}, [W_G]_{jj} > 0, [W_G]_{kk} > 0$ and $[W_G]_{jj}[W_G]_{kk} - |[W_G]_{jk}|^2 = v_j v_k - |v_j - \bar{z}_{jk}^s S_{jk}|^2 = v_j v_k - (v_j^2 + |z_{jk}^s|^2 |S_{jk}|^2 - 2v_j \operatorname{Re}(\bar{z}_{jk}^s S_{jk}))$ $= v_j (v_k - v_j + 2 \operatorname{Re}(\bar{z}_{jk}^s S_{jk})) - |z_{jk}^s|^2 |S_{jk}|^2$ $= |z_{jk}^s|^2 (v_j \ell_{jk} - |S_{jk}|^2) \ge 0$

Will prove

- 1. $x := g(W_G) \in \mathbb{X}^+_{df}$ for every $W_G \in \mathbb{W}^+_G$
- 2. $W_G := g^{-1}(x) \in \mathbb{W}_G^+$ for every $x \in \mathbb{X}_{df}^+$
- 3. g and g^{-1} are indeed inverses of each other

Step 3:

Similar argument shows $g(g^{-1}(x)) = x$ and $g^{-1}(g(W_G)) = W_G$

Outline

- 1. SOCP relaxation
- 2. Exactness condition: inactive injection lower bounds
- 3. Exactness condition: inactive voltage upper bounds

DistFlow model OPF and SOCP relaxation

DistFlow model

- Radial network
- $z_{jk}^s = z_{kj}^s$ or equivalently $y_{jk}^s = y_{kj}^s$
- $y_{jk}^m = y_{kj}^m = 0$
- Does not apply to 3-phase transformers in ΔY or $Y\Delta$ configuration or their per-phase equivalents

OPF in BFM

 $\min_{x} C(x) \qquad \text{s.t.} \qquad x \in \mathbb{X}_{\mathsf{df}} := \left\{ x \in \mathbb{R}^{6N+3} : x \text{ satisfies DF equations & constraints} \right\}$

SOCP relaxation in BFM

$$\min_{x} C(x) \quad \text{s.t.} \quad x \in \mathbb{X}_{df}^{+} := \left\{ x \in \mathbb{R}^{6N+3} : x \text{ satisfies } v_{j} \mathcal{C}_{jk} \ge |S_{jk}|^{2} \text{ & constraints} \right\}$$

Exactness: injection lower bounds

Assume:

- 1. Cost function $C(x) := C(p, q, v, \ell)$ is independent of branch flow S = (P, Q) and nondecreasing in (p, q, ℓ) . Moreover it is strictly increasing in every component of $\ell := (\ell_{jk}, j \to k \in E)$, or in every component of $p := (p_j, j \in \overline{N})$, or in every component of $q := (q_j, j \in \overline{N})$
- 2. No injection lower bounds: $s_j^{\min} = -\infty i\infty$

Theorem

Suppose network graph *G* is tree and conditions 1 and 2 hold. Then SOCP relaxation is exact, i.e., every optimal solution x^{opt} of SOCP relaxation is optimal for OPF

Remark: When C(x) is only nondecreasing in (p, q, ℓ) , the SOCP relaxation may not be exact, but an optimal solution of OPF can always be recovered from any solution of SOCP relaxation

Exactness: injection lower bounds

Assume:

- 1. Cost function $C(x) := C(p, q, v, \ell)$ is independent of branch flow S = (P, Q) and nondecreasing in (p, q, ℓ) . Moreover it is strictly increasing in every component of $\ell := (\ell_{jk}, j \to k \in E)$, or in every component of $p := (p_j, j \in \overline{N})$, or in every component of $q := (q_j, j \in \overline{N})$
- 2. No injection lower bounds: $s_j^{\min} = -\infty i\infty$

Theorem

Suppose network graph *G* is tree and conditions 1 and 2 hold. Then SOCP relaxation is exact, i.e., every optimal solution x^{opt} of SOCP relaxation is optimal for OPF

Remark: Theorem can be extended to general radial network without assuming $z_{jk}^s = z_{kj}^s$ nor $y_{jk}^m = y_{kj}^m = 0$ (see PSA book)

Fix any optimal solution $x := (s, v, \ell, S)$ of SOCP relaxation of OPF. Since *G* is a tree, we only need to show that $v_j \ell_{jk} \ge |S_{jk}|^2$ holds with equality for every line $j \to k \in E$

Suppose $v_j \ell_{jk} > |S_{jk}|^2$ on line $j \to k \in E$. Will construct \tilde{x} that is feasible for SOCP relaxation and attains a strictly lower cost, contradicting optimality of x

For an $\epsilon > 0$ to be determined, obtain \tilde{x} by modifying only (ℓ_{jk}, S_{jk}) on the single line $j \to k$ and (s_i, s_k) at two ends of $j \to k$ (all other vars remain unchanged):

$$\tilde{\ell}_{jk} := \ell_{jk} - \epsilon$$

$$\tilde{S}_{jk} := S_{jk} - z_{jk}\epsilon/2$$

$$\tilde{s}_j := s_j - z_{jk}\epsilon/2$$

$$\tilde{s}_k := s_k - z_{kj}\epsilon/2$$

Assumption 1 implies that \tilde{x} has a strictly lower cost than x. It hence suffices to show that $\exists \epsilon > 0$ s.t. \tilde{x} is feasible for SOCP relaxation

Assumption 2 implies operational constraints are satisfied since $z_{jk} > 0$ and $\epsilon > 0$. We only need to show that \tilde{x} satisfies: power balance at buses j, k, voltage and SOC constraints at line $j \to k$

For power balance at *j*:

$$\tilde{S}_{jk} = S_{jk} - z_{jk}\frac{\epsilon}{2} = \sum_{i:i \to j} \left(S_{ij} - z_{ij}\ell_{ij} \right) + s_j - z_{jk}\frac{\epsilon}{2} = \sum_{i:i \to j} \left(\tilde{S}_{ij} - z_{ij}\tilde{\ell}_{ij} \right) + \tilde{s}_j$$

For power balance at k:

$$\begin{split} \tilde{S}_{kl} &= S_{kl} = \left(S_{jk} - z_{jk} \ell_{jk} \right) + \sum_{i \neq j: i \to k} \left(S_{ik} - z_{ik} \ell_{ik} \right) + s_k \\ &= \left(\tilde{S}_{jk} - z_{jk} \tilde{\ell}_{jk} - z_{jk} \frac{\epsilon}{2} \right) + \sum_{i \neq j: i \to k} \left(\tilde{S}_{ik} - z_{ik} \tilde{\ell}_{ik} \right) + s_k = \sum_{i: i \to k} \left(\tilde{S}_{ik} - z_{ik} \tilde{\ell}_{ik} \right) + \tilde{s}_k \end{split}$$

Assumption 2 implies operational constraints are satisfied since $z_{jk} > 0$ and $\epsilon > 0$. We only need to show that \tilde{x} satisfies: power balance at buses j, k, voltage and SOC constraints at line $j \to k$

For voltage equation at $j \rightarrow k$:

$$\tilde{v}_{j} - \tilde{v}_{k} = v_{j} - v_{k} = 2 \operatorname{Re}\left(z_{jk}^{\mathsf{H}}S_{jk}\right) - |z_{jk}|^{2} \mathscr{\ell}_{jk} = 2 \operatorname{Re}\left(z_{jk}^{\mathsf{H}}\tilde{S}_{jk}\right) - |z_{jk}|^{2} \tilde{\mathscr{\ell}}_{jk}$$

For SOC constraint at $j \rightarrow k$:

$$\tilde{v}_{j}\tilde{\ell}_{jk} - \left|\tilde{S}_{jk}\right|^{2} = -\frac{\left|z_{jk}\right|^{2}}{4}\epsilon^{2} - \left(v_{j} - \operatorname{Re}\left(z_{jk}^{\mathsf{H}}S_{jk}\right)\right)\epsilon + \left(v_{j}\ell_{jk} - \left|S_{jk}\right|^{2}\right)$$
Hence $v_{j}\ell_{jk} > |S_{jk}|^{2}$ implies that $\exists \epsilon > 0$ s.t. $\tilde{v}_{j}\tilde{\ell}_{jk} = \left|\tilde{S}_{jk}\right|^{2}$

Outline

- 1. SOCP relaxation
- 2. Exactness condition: inactive injection lower bounds
- 3. Exactness condition: inactive voltage upper bounds

Draft: EE 135 Notes February 7, 2023

Exactness: voltage upper bounds (Geometric Insight). Consider bus 0 and bus 1 connected by

Geometric insight: 2-bus example loss of generality, let the direction of the line be from bus 1 to end squared current magnitude from buses 1 to 0 (recall that $S_{01} := 0$ in (14 loss of generality that $v_0 = 1$ pu. The model in (14.1) reduces to (Exercise 14 Power flow solution $x := (p_0, q_0, v_1, \ell)$ satisfies: $x := p_0 (p_0, q_0, v_1, \ell)$ $p_0 - r(p_0, q_0) = p_1, \quad \frac{\ell}{q_0 - x\ell} = -q_1, \quad \frac{q_0^2 p_1^2}{p_1^2 p_1^2} = q_0^2 p_1^2 p_1^2$ $v_1 - v_0 =$ $-p_{1}$ $q_0 - x\ell = -q_1$ Suppose s_1 is given (e.g., a constant riables are $-q_1 \quad p_0^2 + q_0^2 = \ell$ 20nstraints feasible set consists of solutions of (14 $\ell = v_1 - v_0 = 2(rp_1 + xq_1) - (r^2 + x^2)\ell$ $\ell = p_0^2 + q_0^2$ p_{c} $2(rp_1 + xq_1) - (r^2 + x^2)\ell$ q_0 $p_0 - r\ell = -p_1$ low v $q_0 - x\ell = -q_1$ q_0 power flow so high v p_0

Figure 14.1: Feasible set of OPF for a two-bus network without any constration points of intersection of the line with the convex surface (without the interior)

Draft: EE 135 Notes February 7, 2023

Exactness: voltage upper bounds (Geometric Insight). Consider bus 0 and bus 1 connected by

Geometric insight: 2-bus example loss of generality, let the direction of the line be from bus 1 to end squared current magnitude from buses 1 to 0 (recall that $S_{01} := 0$ in (14 loss of generality that $v_0 = 1$ pu. The model in (14.1) reduces to (Exercise 14 Feasible set (without voltage constraints) $p_0 - r(p_0, q_0) = p_1, \quad \neq q_0 - x\ell = -q_1, \quad \neq p_0^2(p_1, q_0) = 0$ x = ORP 0, 210 tersection points }, nonconvex $v_1 - v_0 =$ • SOCP relaxation : line segment, convex $-p_{1}$ Cost function C(x) increasing in ℓ riables are Suppose s_1 is given (e.g., a constant $-q_{1}$ 20nstraints feasible set consists of solutions of (14 • Optimal solution x^{opt} has high v_1 SOCP relaxation is exact

$$2(rp_1 + xq_1) - (r^2 + x^2)\ell$$

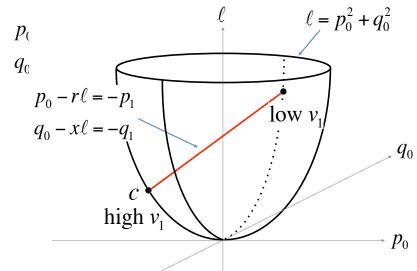


Figure 14.1: Feasible set of OPF for a two-bus network without any constration points of intersection of the line with the convex surface (without the interior)

Draft: EE 135 Notes February 7, 2023

Exactness: voltage upper bounds (Geometric Insight). Consider bus 0 and bus 1 connected by

Example: geometric insight i.e. Without loss of generality, let the direction of the line be from bus 1 to end squared current magnitude from buses 1 to 0 (recall that $S_{01} := 0$ in (14 loss of generality that $v_0 = 1$ pu. The model in (14.1) reduces tov(Exercise 14

Voltage constraints $x := (p_0, q_0, v_1, \ell)$

$$= (p_0, q_0, v_1, \ell) = \frac{1}{|z|^2} (a - v_1^{\text{max}}) \le \ell \le \frac{1}{|z|^2} (a - v_1^{\text{min}}) = p_0 - r(p_0, q_0) = \frac{p_1 - \ell}{|z|^2} (a - v_1^{\text{min}}) = \frac{p_0 - r(p_0, q_0)}{|z|^2} = \frac{p_1 - \ell}{|z|^2} (a - v_1^{\text{min}}) = \frac{p_0 - r(p_0, q_0)}{|z|^2} = \frac{p_1 - \ell}{|z|^2} = \frac{p_0 - \ell}{|z$$

- q_1 • $\therefore v_1^{\min}$ leads to upper bound on \mathcal{E} and will not teasible set consists of solutions of (14 affect exactness

riables are constraints

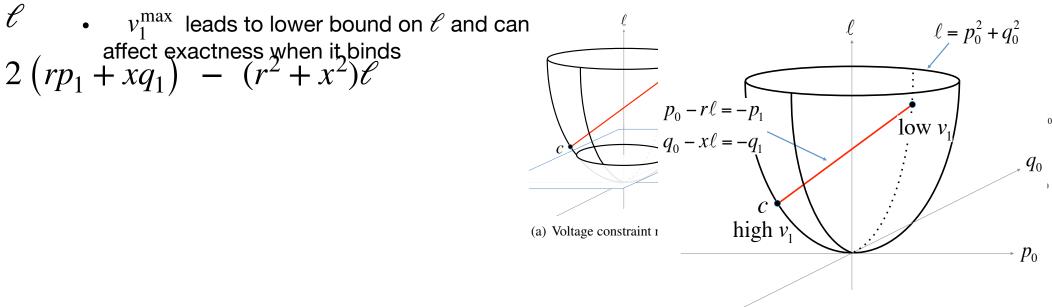


Figure 14.1: Feasible set of OPF for a two-bus network without any constration points of intersection of the line with the convex surface (without the interior)

 $-p_{1}$

Exactness: voltage upper bounds

Assume:

- 3. Cost function $C(x) := \sum_{j} C_j(p_j)$ with $C_0(p_0)$ strictly increasing in p_0 . There is no constraint on s_0
- 4. $\hat{v}_j^{\text{lin}}(s) \le v_j^{\text{max}}, \ j \in N$
- 5. Technical condition: small change in a line power affects all upstream line powers in the same direction

Theorem

Suppose network graph *G* is tree and Assumptions 3-5 hold. Then SOCP relaxation is exact, i.e., every optimal solution x^{opt} of SOCP relaxation is optimal for OPF

Remark: If $C_0(p_0)$ is nondecreasing in p_0 , the SOCP relaxation may not be exact, but an optimal solution of OPF can always be recovered from any solution of SOCP relaxation