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Radial network

Assumptions: DistFlow model

Radial network
« BFM most useful for modeling distribution systems which are mostly radial (and unbalanced)

S — S5S ; S — 1,8
Zyy = g, orequivalently y, =y

« Does not apply to 3-phase transformers in AY or YA configuration or their per-phase equivalent with
complex gains

Ve =Yg =0

« Reasonable assumption for distribution line where |y}}j , |y,?j1| < |yj§€|

Includes only voltage sources and power sources
« Optimization variables are voltages (squared magnitudes) Vj and power injections S; respectively
« Can include current sources or an impedances with additional vars and constraints.



DistFlow model

Power flow equations
» All lines point away from bus 0 (root)

k:j—k
V=V = 2Re<zjs,k5’].k>_|z]§k|2fjk, j—okeE
Vil = 1Sxl%, JokeE

Operational constraints

st < s < st nonconvex constraint
pmin &y, < max (other constraints are linear in x)
J = =
max
Oy < €y



Single-phase OPF

DistFlow model

Feasible set

Xqgf = {x = (s,v,7,S) € RON*3 | x satisfies PF equations & operational constraints}

OPF in BFM

min  C(x) s.t. X € Xgf
X



Single-phase OPF
Equivalence
Recall for BIM:

» Feasible set: V:= {VE CN*! | V satisfies operational constraints}

. OPF:  min C(V)
vev

OPF in BFM is equivalent to OPF in BIM:

« Feasible sets Xg4f and V are equivalent (Ch 5)
e ... provided cost functions C(x) and C(V) are the same



SOCP relaxation

Power flow equations
» All lines point towards bus 0 (root)

ii—j
o) )
Vj -V, = 2 Re (Z]|]_<|Sk) - |ij| l/ﬂjk, J ke E
vl = 1Sl J—okeE

Operational constraints

S mll’l < S max

A
IA

J — J J second-order cone
mln < . < max
VJ < V< vj
max
O < €



SOCP relaxation

Feasible set

ng 1= {x = (s,v,7,S) € RON3 | x satisfies Vit 2 | Sy |” & other constraints}

SOCP relaxation in BFM
min C(x) s.t. X E Xa'f
X



Exactness

Definition (Strong exactness)

SOCP relaxation is exact if every optimal solution xPPt of SOCP relaxation attains equality:
2
yOPtpOPt — | goPtl i ke E
Jo ok Jk

« Convenient because any algorithm that solves an exact relaxation produces an optimal
solution for original OFP

* Not necessary: under sufficient conditions for radial networks, can always recover an optimal
solution of OPF from any solution of SOCP relaxation, even when SOCP relaxation is not
exact



Exactness implies uniqueness

Theorem

Suppose network graph G is tree and the cost function C(x) is convex. If SOCP relaxation
in DistFlow model is exact, then its optimal solution is unique
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OPF in BIM

Recall

min ~ VHC,V
VECN+1

st P < (@)

qjmm < tr (‘PjVVH>

jEN
jEN
jeEN
(j,k) EE

(j,k) e E

abbreviated as:
tr(CVVH) <b,l=1,..,L



SOCP relaxation in BIM

Given V € CN*!1, define partial matrix W by
[Wol; = VI, jeN
W], = VWi = Wl GREE
Constraints in terms of W
Sjmin < Z Vi <[WG]J'J' - [WG]J'k> < 5 JEN

kij~k

vjmi“ < [Wgly; £ v, jEN

A

2
Yik <[WG]J-J' + (Wl — Wl — [Wg]kj) < Y j—>keE

abbreviated as: tr (CZWG) <b,l=1,..,L



SOCP relaxation in BIM

OPF as QCQP

min C(V) st tr(CVVH)<b, I=1,.,L
Vv

SOCP relaxations
OPF-socp : min C(W,,) s.t. tr(ClWG) < b, I =1,.., L,

We

We(i,k) = 0, (j,k) €E



Equivalence
SOCP relaxation in BFM
min C(x) st x€ Xarf = {x | x satisfies v,£' > |Sjk|2 & other constraints}

X

SOCP relaxation in BIM
min C(Wy) st W;e WL = {WG | W, satisfies constraints}

WG
Theorem
Xt = Wt Implication: The two problems are equivalent in the sense that 3 bijection
df — ¢ g: Wi — X sit. ngt is optimal in BIM iff x°Pt:= ¢ <ngt> is

optimal in BFM



Equivalence
SOCP relaxation in BFM
min C(x) st x€ Xarf = {x | x satisfies v,£' > |Sjk|2 & other constraints}

X

SOCP relaxation in BIM
min C(Wy) st W;e WL = {WG | W, satisfies constraints}

WG
Theorem
Xt = W Generalization:
df G Extends to general radial networks without assuming

S — =S m __ m __
G =% Vi = Vg =



Proof
Motivated by W = VV" of psd rank-1 completion W of psd rank-1 W, define g : W¢ — ng :

Sj = Z ?,SJ ([W(;]jj - [WG]ji> + 2 )‘/jk ([WG]jj - [WG]jk>? ] eN

i:i—j kij—k
vi = [Wely, jEN
Ok = |yﬁ<|2 <[WG]]j + Weli — [Weli — [Wg]kJ-), jokeE
Sik = y;k <[WG]J'J‘ - [WG]jk)a j—okeE

and g~ ! : Xarf - W

[WG]]'J' =V JEN

[WG]jk = V=S = [WG] ;, j—= keE



Proof

Will prove
1. x:=g(Wy) € ng for every W; € WE

-1
2. Wg:i=g""(x) € W[, foreveryx € ng

3. g and g_1 are indeed inverses of each other



Proof

Will prove

1. x:=g(Wy) € X::Irf for every W; € WE
-1

2. Wg:i=g""(x) € W[, foreveryx € ng

1

3. gand g  are indeed inverses of each other

Step T
Clearly x satisfies operational constraints since W; does
For power balance:

) (Sij—z,,f,-j) ty= <)_)ij<[WG]ii_[WG]ij> —&,-J-([Wg]iﬁ[WG]J-j—[WG],-J-—[WG]J.Z.)> + 5

iii—j ii—j
= Z <_)_}ij <[WG]jj - [WG]ji>> + Z Vi <[WG]jj - [WG]ji) + Z Yik <[WG]jj - [WG]jk>
ii—j iii—j kij—k

= 2 S

kij—k



Proof

Will prove

1. x:=g(Wy) € X::Irf for every W; € WE
-1

2. Wg:i=g""(x) € W[, foreveryx € ng

1

3. gand g  are indeed inverses of each other

Step T
For voltage equation:

2 Re (ijSjk> - |ij|2fjk = 2Re ([WG]J'J' - [WG]jk) - ([Wg]jj + [WG]kk — [WG]jk — [WG]kj)

= ([WG]J-J' - [WG]kk> - [WG]J'I_/L + [Wely



Proof

Will prove

1. x:=g(Wy) € X::Irf for every W; € WE
-1
2. Wg:i=g""(x) € W[, foreveryx € ng

3. gand g~

Step

1:

1

are indeed inverses of each other

For SOC constraint: [Wi1, [ Wil 2 | [(Weli |2 implies

Vi ik

>

Yik
Yik

Sik

2

2
([WG]; + Wl ]

2
|

2

[WG]J'J([WG]]'J' + Welw — [Weliy — [WG]kj>

— [Wgl {Wly - [WG]J-J-[WG];>



Proof

Will prove
1. x:=g(Wy) € X::Irf for every W; € WE

-1
2. Wg:i=g""(x) € W[, foreveryx € ng

3. gand g~

1 are indeed inverses of each other

Step 2.
Need to prove:

S

Yik

Sjmin < Z yjk <[WG]]'J' - [WG]jk>
kij~k
vt < Wl
2
([WG]jj + [Weli — [WG]jk — [WG]kj)

WG(.] ’ k)

IA

IA

ieN
ieN

j—okeE
(J.k) € E



Proof

Will prove
1. x:=g(Wy) € Xarf for every W € W,

2. We=g ') € WE for every x € Xé’f

-1

3. gand g are indeed inverses of each other

Step 2:
For injection limits:

> w (Wely=Wal) = D3 (Wely = Wal) + % 5% (IWely— Wely)

k:(j,k)EE ii—j kij—k
H
- 5 (v-(-35)) + T (v (4-38))
iii—j kij—k
_ . H
= XS X5 (v-y-asy)
kij—k iii—j

2 gH
S
Rt

= D> S - D\ <2Re(ZSU)—

kij—k ii—j



Proof

Will prove

1. x:=g(Wy) € X::Irf for every W; € WE
-1

2. Wg:i=g""(x) € W[, foreveryx € ng

1

3. gand g  are indeed inverses of each other

Step 2.
But

- HY _ (= H H _ =
(2re@sy —=is) = (@, +48) -8 = a5,
Hence

if
Z yfk <[WG]]j_ [WG]jk) Z Sk — Z <Sij_zij'fij> = 9

k:(j,k)eE k:j—k i[i—j



Proof

Will prove
1. x:=g(Wy) € X::Irf for every W; € WE

-1
2. Wg:i=g""(x) € W[, foreveryx € ng

1

3. gand g  are indeed inverses of each other

Step 2.

The voltage limits are clearly satisfied.
For line limits:

H
5l (Il + Wl = Wl = 0l ) = Dl (4= (5= 335) - (- 3154) )
= [yu | <_Vj TVt Zt}s‘Wijk + Zﬁﬁ;) = O

J

Hence line limits on fjk implies the limit limits on W



Proof

Will prove
~1

3. gand g

Step 2:

for every W; € WE
2. Wo:i=g l(x) € WE for every x € ng

For psd constraints: we have [Ws]; =

(Wely Wl — | (Wl

‘ 2

Vjvk

Vi

are indeed inverses of each other

= (Wl [Wgl; > 0, [Wgly > 0 and

- ZkS]k

vj< — v+ 2Re (55 )> -

s
k

5

2

2
5(7) = ¢

2
= ViVg — v +

‘Sjk‘ — 2v. Re(JkS]k>>



Proof

Will prove
1. x:=g(Wy) € X::Irf for every W; € WE

-1
2. Wg:i=g""(x) € W[, foreveryx € ng

3. g and g_1 are indeed inverses of each other

Step 3:
Similar argument shows g(g~!(x)) = x and g_l(g(WG)) =W,
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DistFlow model
OPF and SOCP relaxation

DistFlow model
* Radial network

. f;c = z,fj or equivalently yﬁ( = y;:j
* J{}? =) 1?; =0
« Does not apply to 3-phase transformers in AY or YA configuration or their per-phase equivalents
OPF in BFM
min C(x) s.t. x € Xgf = {x e ROV*3 . x satisfies DF equations & constraints}
X

SOCP relaxation in BFM

min C(x) s.t. X E ng = {x e ROV*3 . x satisfies Vil > |S]-k|2 &constraints}
X



Exactness: injection lower bounds

Assume:

1. Cost function C(x) := C(p, g, v, ) is independent of branch flow § = (P, Q) and nondecreasing in
(p,q, ). Moreover it is strictly increasing in every component of £ := (fjk,j — k € E), orin every

component of p := (p;,j € N), or in every component of ¢ := (g;,j € N)

2. No injection lower bounds: Sjmm = — 00— I00

Theorem

Suppose network graph G is tree and conditions 1 and 2 hold. Then SOCP relaxation is
exact, i.e., every optimal solution xOpt of SOCP relaxation is optimal for OPF

Remark: When C(x) is only nondecreasing in (p, g, ), the SOCP relaxation may not be exact, but an optimal
solution of OPF can always be recovered from any solution of SOCP relaxation



Exactness: injection lower bounds

Assume:

1. Cost function C(x) := C(p, g, v, ) is independent of branch flow § = (P, Q) and nondecreasing in
(p,q, ). Moreover it is strictly increasing in every component of £ := (fjk,j — k € E), orin every

component of p := (p;,j € N), or in every component of ¢ := (g;,j € N)

2. No injection lower bounds: sjmm = — 00— I00

Theorem

Suppose network graph G is tree and conditions 1 and 2 hold. Then SOCP relaxation is
exact, i.e., every optimal solution xOpt of SOCP relaxation is optimal for OPF

Remark: Theorem can be extended to general radial network without assuming zjf}( = z,;. nor yj’};‘ = y,gfl =0
(see PSA book)



Proof

Fix any optimal solution x := (s, v, , S) of SOCP relaxation of OPF. Since G is a tree, we only need
to show that vjf |Sjk| holds with equality for every linej — k € E

Suppose V£’ > | Sy 1 on linej — k € E. Will construct X that is feasible for SOCP relaxation and
attains a strictly lower cost, contradicting optimality of x

For an ¢ > 0 to be determined, obtain X by modifying only (£ it -k) on the single line j — k and
(s S, S¢) at two ends of j — k (all other vars remain unchanged):

l

l

ik = Sip — Z€l2
§; 1= 8, — zypel2
S;k = k—Zk]€/2

Assumption 1 implies that X has a strictly lower cost than x. It hence suffices to show that de > 0
s.t. X is feasible for SOCP relaxation



Proof

Assumption 2 implies operational constraints are satisfied since z;; > 0 and € > 0. We only need
to show that X satisfies: power balance at buses j, k, voltage and SOC constraints at linej — k

For power balance at J:
3 - ¢ i §. —7.7.) + 5
Sk = Sk~ iy = > (S,-j—z,-j u) TS T iy = > (Sij_zlli ij> + 5
Li—j i:i—j
For power balance at k:

Sp= Su = <Sjk_ j/fjk) + Z (Sik—Zikfik> + 5
ijiik

~ ~ € ~ ~ ~ - ~
= (Sjk— jk’fjk—zjq) + <Sik_zikf ik) t5o= ) (Sik—zikf ik) + %

i#ji—k ii—k



Proof

Assumption 2 implies operational constraints are satisfied since z;; > 0 and € > 0. We only need
to show that X satisfies: power balance at buses j, k, voltage and SOC constraints at linej — k

For voltage equation at j — k:
S = _ H 2 _ HG 27
For SOC constraint at j — k:

. - 12 ‘ij ) ’ 2

‘ 2

~

2. -~ >
Hence v;¢' > | S|~ implies that e > 0 s.t. 1,¢ = ‘Sjk



Outline
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Exactness: voltage upper bounds

Geometric insight: 2-bus example

given v, Vi
Power flow solution x := (py, gy, vy, ) satisfies: y given
po . I"Lﬂ — _p1 (Po> 90) =| —> |‘ (P1>q1)
qo— X = —q,
2 2
pytas =7

Vi—Vvy= 2 (rpl +xq1) — (PP +xH¢

power flow solutions (feasible set) : { 2 intersection points }



Exactness: voltage upper bounds
Geometric insight: 2-bus example

given v,

Feasible set (without voltage constraints) | qiven
* OPF : { 2 intersection points }, nonconvex (Po: 9o) o I° (P1-q1)

« SOCP relaxation : line segment, convex

Cost function C(x) increasing in

opt

» Optimal solution x has high v,

 SOCP relaxation is exact




Exactness: voltage upper bounds

Example: geometric insight

given v, Vi

Voltage constraints .
| A given

1 (d o V{nax) S Z”ﬂ S : > (Cl - V{nin) (Po-do) :l — (P1-q1)
|z

A

. 2
|z
« .. """ leads to upper bound on ¢ and will not

affect exactness

v{nax leads to lower bound on #Z and can ¢ ¢
affect exactness when it binds

optimal solution of SOCP
(infeasible for OPF)

Po Do

9 4

(a) Voltage constraint not binding (b) Voltage constraint binding



Exactness: voltage upper bounds

Assume:

3. Cost function C(x) := Z Cj(pj) with Cy(py) strictly increasing in p,. There is no constraint on s,
J

4. f/Jl.in(s) < vjmax, JEN

5. Technical condition: small change in a line power affects all upstream line powers in the same direction

Theorem

Suppose network graph G is tree and Assumptions 3-5 hold. Then SOCP relaxation is
exact, i.e., every optimal solution xOpt of SOCP relaxation is optimal for OPF

Remark: If C(p,) is nondecreasing in p,,, the SOCP relaxation may not be exact, but an optimal solution of OPF
can always be recovered from any solution of SOCP relaxation



