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Power System Analysis
Chapter 12  Nonsmooth convex optimization



Motivation
Consider 





where  is convex function and  is convex set


Develop basic theory to answer:

1. How to characterize optimal solutions?


• Saddle point theorem, KKT theorem


2. When will optimal solutions exist and when will it be unique?

• Primal optimality, Slater theorem


min
x∈ℝn

f(x)  s.t.  x ∈ X

f : ℝn → ℝ X ⊆ ℝn



Motivation
Generalization of smooth convex optimization theory (Ch 7.3) to nonsmooth setting:


• Cost or constraint functions may not be differentiable


• Cost or constraint functions may take  values

• But cost and constraint functions are convex (hence subdifferentiable & continuous in ri(effective 

domain))


Nonsmoothness arises in:


• Dual problem:    


• Robust optimization:      


• Two-stage optimization with recourse:


  

±∞

min
λ,μ

d(λ, μ) s.t.  μ ≥ 0

min
x∈ℝn

f(x) s.t.  h̄(x) := max
ζ∈Z

h(x, ζ) ≤ 0

inf
x

f1(x) + Q(x)  s.t.  h1(x) ≤ 0

Q(x) := Eω ( inf
y(ω)

{f2(x, y(ω)) : h2(x, y(ω)) ≤ 0})

nonsmooth d(λ, μ)

nonsmooth h̄(x)

nonsmooth Q(x)



Motivation
For convex opt, optimality conditions are based on linear approximations of cost function and 
feasible set, e.g.





i.e.  is minimizer iff negative gradient  points away from linear approximation of feasible 
set at , defined by gradients  of constraint functions


For nonsmooth setting, how to generalize:

1. Linear approximation of feasible set


• Tangent cone  or equivalently normal cone 


2. Smooth real-valued functions

• Extended real-valued CPC functions


3. Gradients

• Subgradients  which always exist for convex (extended real-valued) functions

−∇f(x*) = ∇g(x*)λ* + ∇h(x*)μ*
x* −∇f(x*)

x* ∇g(x*), ∇h(x*)

TX(x*) NX(x*)

∂f(x), ∂g(x), ∂h(x)



Motivation
Turns out smoothness is unimportant for structural properties (important for computation) 


• Fundamental property is convexity of cost and constraint functions


To generalize structural results to nonsmooth setting

• Generalize: linear approximations of feasible set, CPC functions, subgradients

• Express optimality conditions in terms of cost subgradient and normal cone

• Nonsmooth perspective is more abstract, but simpler, geometric and unifying  




Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point = pd optimality + strong duality


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Outline
1. Normal cones of feasible sets


• Polar cone

• Normal cone and tangent cone

• Affine transformation

• Second-order cones and SOC constraints

• Proofs


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Polar cone
Definition 
Let  be a nonempty set


1. The polar cone of  is 


2. The dual cone of  is 


3. A cone  is called self-dual if 


Remarks

•  is the set of points “most opposite to/away from” 

•  is the set of points “most aligned with/cloest to” 

• Dual cone  is used to define the dual problem of a conic program where the nonlinear 

constraint is  for a closed convex cone 

X ⊆ ℝn

X X∘ := {y ∈ ℝn : y𝖳x ≤ 0 ∀x ∈ X}
X X* := − X∘ = {y ∈ ℝn : y𝖳x ≥ 0 ∀x ∈ X}

K K* = K

X∘ X
X* X

K*
x ∈ K K



Polar cone
Examples 

i
i
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12.1 Normal cones of feasible sets 645

Definition 12.1 (Polar cone and dual cone). Let - ✓ R= be a nonempty set.

1. The polar cone of - is -� := {H 2 R= : HT
G  0 8G 2 -}.

2. The dual cone of - is -⇤ := �-� = {H 2 R= : HT
G � 0 8G 2 -}.

3. A cone  is called self-dual if  ⇤ =  . ⇤

It is clear that -� and -⇤ are indeed cones for arbitrary - , i.e., if H is in -� or -⇤,
so is WG for any W > 0. Informally, the polar cone of - is the set of points that is “most
opposite to the entire set -” or “most away from the entire set -”. The dual cone of
- is the set that is “most aligned with the entire set -” or “closest to the entire set
-”. The dual cone is used to define the dual problem of a conic program where the
nonlinear constraint is specified abstractly by G 2  for a general closed convex cone
 ; see Chapter 12.8.4. These cones are illustrated in Figure 12.1. The examples in the
figure show that -⇤ can be a subset or a superset of - or equal to - . Some properties

X °

X °

X X X

X ° X °

X

(a) Polar cones -� of -

X*

X*X X X*=X
X

X*

(b) Dual cones -⇤ = �-� of -

Figure 12.1 Polar cones and dual cones of - ✓ R=. For the leftmost set - which is nonconvex,
both its polar cone and dual cone contain only the origin. The other three sets - are closed
convex cones and therefore (-�)� = - . Note that (-�)� < �-� = -⇤ unless - is self-dual.

of polar cones are given in the following result (see e.g. (74, Proposition 2.2.1, p.100)).

Proposition 12.1. Let - ✓ R= be a nonempty set.

1. Its polar cone -� is a closed convex cone.
2. -� = [cl(-)]� = [conv(-)]� = [cone(-)]�.
3. If - ✓ . then .� ✓ -�.
4. If - is a nonempty cone then (-�)� = cl(conv(-)). If - is a closed convex cone

then (-�)� = - .

⇤

i
i
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646 Nonsmooth convex optimization

whose closure cl(-) does not contain the origin, its polar cone -
� is the same as the

polar cone of cone(-) according to Proposition 12.1, as illustrated in Figure 12.2.

X °

cone (X)

X

Figure 12.2 Polar cone -
� = cone� (-) according to Proposition 12.1. (The sets - in this figure

and Fig 12.1 are too light when printed in B&W.)

Example 12.1. Fix an Ḡ 2 -
�. By definition Ḡ

T
G  0 for all G 2 - . Can there be an

G 2 -
� such that ḠT

G  0?

Solution. Yes if -�
* - . Consider - := {G 2 R2 : G1 > 0,G2 = 0}. Then -

� = {G 2 R2 :
G1  0}. An example is Ḡ := (0,�1) 2 -

� and G := (0,1) 2 -
�. ⇤

12.1.2 Normal cone and tangent cone

Let Ḡ 2 - ✓ R=. The cone of feasible directions of - at Ḡ (or the radial cone) is, from
Definition 7.4,

cone(- � Ḡ) :=
�Õ

<

8=1U8 (G8 � Ḡ) : G8 2 - ,U8 � 0, integers < > 0
 

1 It is the set of directions G � Ḡ and their convex combinations along which an
infinitesimal step from Ḡ will stay in - . It is closed if and only if - is closed. The closure
of cone(- � Ḡ) can be interpreted as a “linear approximation” of the set - at the point
Ḡ 2 - in that it is the smallest convex cone that contains all the feasible directions G� Ḡ at
Ḡ. For a smooth function 5 , the first-order Taylor expansion 5̂ (G) := 5 (Ḡ) + m 5

mG
(Ḡ) (G� Ḡ)

approximates 5 locally at Ḡ by a supporting hyperplane. For a “smooth” set - , the closed
convex cone cl(cone(- � Ḡ)), called a tangent cone, approximates the set - locally at Ḡ
by a halfspace associated with the supporting hyperplane at Ḡ (see Figure 12.4 below).

The notion of normal cone and tangent cone is fundamental to nonsmooth opti-
mization. It su�ces for our purposes to adopt the following definition.

Definition 12.2. Let - ✓ R= be a nonempty set and Ḡ 2 - .

1. The tangent cone of - at Ḡ is the closure of the feasible direction cone of - at Ḡ:

)- (Ḡ) := cl (cone(- � Ḡ))

1 (Dec 20, 2023: Definition of feasible direction cone is changed to the definition above from the
definition cone(- � Ḡ) := {W (G� Ḡ) : G 2 - ,W � 0} so that it is convex and follows from Definition 7.4
of cone(- ) . Remove this comment if everything checks out with the definition above. )

0 ∉ X
X∘ = (cone(X))∘



Polar cone
Proposition 
Let  be a nonempty set


1.  is a closed convex cone


2. 


3. If  then 


4. If  is a cone then 


X ⊆ ℝn

X∘

X∘ = [cl(X)]∘ = [conv(X)]∘ = [cone(X)]∘

X ⊆ Y Y∘ ⊆ X∘

X (X∘)∘ = cl(conv(X))



Normal cone and tangent cone
Let .  The feasible direction cone of  at  is 





Remarks 

•  is set of directions and their convex combinations along which an infinitesimal step 

from  will stay in 

•  is closed if and only if  is closed

•  is a linear approximation of  at  : it is the smallest closed convex cone 

containing all feasible directions  at 

• The feasible direction cone is sometimes defined as 

x̄ ∈ X ⊆ ℝn X x̄

cone(X − x̄) := {
m

∑
i=1

αi(xi − x̄) : xi ∈ X, αi ≥ 0, integers m > 0}
cone(X − x̄)

x̄ X
cone(X − x̄) X
cl(cone(X − x̄)) X x̄ ∈ X

x − x̄ x̄
cone(X − x̄) := {γ(x − x̄) : x ∈ X, γ ≥ 0}



Normal cone and tangent cone
Definition 
Let  be a nonempty set and 


1. The tangent cone of  at  is 


2. The normal cone of  at  is 





Proposition 

Let  be a nonempty set and 


1.  are closed convex cones


2.   and  


3. If  then  and 

X ⊆ ℝn x̄ ∈ X
X x̄ TX(x̄) := cl(cone(X − x̄))

X x̄
NX(x̄) := (cone(X − x̄))∘ = (X − x̄)∘ = {y ∈ ℝn : y𝖳(x − x̄) ≤ 0 ∀x ∈ X}

X ⊆ ℝn x̄ ∈ X
X∘, X*, TX(x̄), NX(x̄)
(TX(x̄))∘ = NX(x̄) TX(x̄) = (NX(x̄))∘

x̄ ∈ int(X) NX(x̄) = {0} TX(x̄) = ℝn If , then  in generalx̄ ∈ ri(X) NX(x̄) ⊋ {0}



Normal cone and tangent cone
Examples

• While  is a set,  and  are (set-
valued) functions of , i.e., they depend on 


• If , then  and 

X∘ NK(x̄) TX(x̄)
x̄ x̄

0 ∈ X X∘ = NX(0)
TX(x̄) = (X∘)∘ = cl(conv(X))

i
i
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K °

x̄

NK(x̄)

TK(x̄)=half-space

K

(a) Pointed cone

K °

K

NK(0)=K °

TK(0)=K

(b) Pointed cone: Ḡ := 0

NK(x̄) K

TK(x̄)=R2K °

x̄

(c) Non-pointed nonconvex cone

NK(x̄)=K °
K °

TK(x̄)=K
K

x̄

(d) Non-pointed convex cone

Figure 12.3 Normal and tangent cones of closed cones  ✓ R2 at a boundary point Ḡ (see
Exercise 12.2 for derivation).

cone #- (Ḡ) = ()- (Ḡ))�, specifies the directions G� Ḡ that are “most opposite to” or
“most away from” the linear approximation )- (Ḡ).

2. If - is “smooth” at Ḡ then )- (Ḡ) is a halfspace associated with the supporting
hyperplane at Ḡ and #- (Ḡ) is a singleton; see Figure 12.4.

3. For convex constrained optimization, the first order optimality condition says that G⇤

is a minimizer if and only if the direction of cost reduction aligns with #- (G⇤), i.e.,
�r 5 (G⇤) 2 #- (G⇤). In a smooth setting, this takes the form �r 5 (G⇤) = r6(G⇤)_⇤ +
r⌘(G⇤)`⇤, with the right-hand side being the singleton #- (G⇤). We generalize this
to the nonsmooth setting in Theorem 12.21 of Chapter 12.5. ⇤

Figure 12.4 The tangent cones )- (Ḡ) = cl (cone(- � Ḡ)) and the normal cones
#- (Ḡ) = cone� (- � Ḡ) of - at Ḡ. At Ḡ where the boundary of - is “smooth”, the left panel
illustrates the importance of “cl” in the definition of )- (Ḡ) and why #- (Ḡ) is a singleton.



Linear approximation & optimality
•  is a linear approximation of  at   


‣ Smallest closed convex cone containing feasible directions at 


•  is “most opposite” to  at   

‣ If  is smooth at , then  is a halfspace (supporting hyperplane) and  is singleton


• Optimality condition:  is optimal if direction of cost reduction at  aligns with , i.e., 



‣ In smooth setting (KKT): 

TX(x̄) X x̄ ∈ X
x̄

NX(x̄) TX(x̄) x̄
X x̄ TX(x̄) NX(x̄)

x* x* NX(x*)
−∇f(x*) ∈ NX(x*)

−∇f(x*) = ∇g(x*)λ* + ∇h(x*)μ*

i
i
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648 Nonsmooth convex optimization

(a) Pointed cone (b) Pointed cone: Ḡ := 0

(c) Non-pointed nonconvex cone (d) Non-pointed convex cone

Figure 12.3 Normal and tangent cones of closed cones  ✓ R2 at a boundary point Ḡ (see
Exercise 12.2 for derivation).

cone #- (Ḡ) = ()- (Ḡ))�, specifies the directions G� Ḡ that are “most opposite to” or
“most away from” the linear approximation )- (Ḡ).

2. If - is “smooth” at Ḡ then )- (Ḡ) is a halfspace associated with the supporting
hyperplane at Ḡ and #- (Ḡ) is a singleton; see Figure 12.4.

3. For convex constrained optimization, the first order optimality condition says that G⇤

is a minimizer if and only if the direction of cost reduction aligns with #- (G⇤), i.e.,
�r 5 (G⇤) 2 #- (G⇤). In a smooth setting, this takes the form �r 5 (G⇤) = r6(G⇤)_⇤ +
r⌘(G⇤)`⇤, with the right-hand side being the singleton #- (G⇤). We generalize this
to the nonsmooth setting in Theorem 12.21 of Chapter 12.5. ⇤

NK(x̄)

TK(x̄)

x̄

NK(x̄)

TK(x̄)

X
Xx̄

Figure 12.4 The tangent cones )- (Ḡ) = cl (cone(- � Ḡ)) and the normal cones
#- (Ḡ) = cone� (- � Ḡ) of - at Ḡ. At Ḡ where the boundary of - is “smooth”, the left panel
illustrates the importance of “cl” in the definition of )- (Ḡ) and why #- (Ḡ) is a singleton.



Normal cones

 


Theorem 

1. 


2. 


3. 


4.

hyperplane: H1 := {x ∈ ℝn : Ax = b}
polyhedron: H2 := {x ∈ ℝn : Ax ≤ b}
nonnegative cone: K+ := {x ∈ ℝn : x ≥ 0}
convex cone: K ⊆ ℝn

NH1
(x̄) = range(A𝖳) = {A𝖳λ ∈ ℝn : λ ∈ ℝm}

NH2
(x̄) = cone (A𝖳

I ) = {A𝖳λ ∈ ℝn : λ ∈ ℝm
+, λ𝖳(Ax̄ − b)}

NK+
(x̄) = {y ∈ ℝn : y ≤ 0, y𝖳x̄ = 0}

NK(x̄) = {y ∈ K∘ : y𝖳x̄ = 0}

Derivation of  uses Farkas Lemma (or Separating Hyperplane Thm)NH2
(x̄)

I := I(x̄) := {i : a𝖳
i x̄ = bi}



Normal cone NC(x̄)
 


• Farkas Lemma-type proof for  inadequate


‣ Due to second-order term in Taylor expansion of  around 

• Need constraint qualification


LICQ (linear independence CQ): 




where  is the set of active constraints

convex set (non-polyhedral): C := {x ∈ ℝn : h(x) ≤ 0} with convex h

NH2
(x̄)

h(x) x̄

columns of ∇hI(x̄) ∈ ℝn×|I| are linearly independent

I := I(x̄) := {i : hi(x̄) = 0}



Normal cone NC(x̄)
 


Let 


Theorem 

Suppose  is real-valued twice continuously differentiable function that is convex 
on .  If  satisfies LICQ, then


1. 


2. For every , there exists unique  such that 


Remarks 

• Constraint qualification is sufficient, but not necessary, for existence of 

• LICQ in constrained optimization ensures existence and uniqueness of dual optimal solution

• Proof uses: Farkas Lemma (or Separating Hyperplane Thm), LP duality, LICQ

convex set (non-polyhedral): C := {x ∈ ℝn : h(x) ≤ 0} with convex h
I := I(x̄) := {i : hi(x̄) = 0}

h : ℝn → ℝm

ℝn x̄ ∈ C
NC(x̄) = cone (∇hI(x̄)) = {∇h(x̄)λ ∈ ℝn : λ ∈ ℝm

+, λ𝖳h(x̄) = 0}
y ∈ NC(x̄) λI ∈ ℝ|I|

+ y = ∇hI(x̄)λI

λ



Normal cone NX(x̄)
 


Note:  is nonconvex unless  is affine


Theorem 

Suppose  is real-valued twice continuously differentiable function that is convex 
on .  If  satisfies LICQ, then


1. 


2. For every , there exists unique  such that 


Remark 

• Proof: write  as , and use previous theorem


equality constrained: X := {x ∈ ℝn : g(x) = 0} with convex g
X g

g : ℝn → ℝm

ℝn x̄ ∈ X
NX(x̄) = range (∇g(x̄)) = {∇g(x̄)λ ∈ ℝn : λ ∈ ℝm}

y ∈ NX(x̄) λ y = ∇g(x̄)λ

g(x) = 0 g(x) ≤ 0, − g(x) ≤ 0



Set intersection
Multiple constraints
Let  be

• polyhedral sets  for 

• convex sets  for 


Let 


Theorem 


If     then


Ci ⊆ ℝn

Ci := {x : Aix ≤ bi} i = 1,…, m̄
(e.g. Ci := {x : h(x) ≤ 0} for convex h) i = m̄ + 1,…, m

C :=
m

⋂
i=1

Ci

Slater-type CQ:  ( ∩m̄
i=1 Ci) ⋂ ( ∩m

i=m̄+1 ri(Ci))) ≠ ∅

NC(x̄) = ∑
i

NCi
(x̄), ∀x̄ ∈ C



Summary

• KKT conditions in (smooth) convex optimization most encountered in applications are 
consequence of these results (more later): 


• Multiple constraints: 

−∇f(x*) ∈ NX(x*)
−∇f(x*) ∈ ∑

i

NCi
(x*) = ∇g(x*)λ* + ∇h(x*)μ*

i
i
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12.1 Normal cones of feasible sets 657

useful in deriving the normal cone of multiple constraints in an optimization problem
from the normal cones of individual constraints.

Theorem 12.5 (Normal cone of set intersection). Consider polyhedral sets ⇠8 ✓ R=,
8 = 1, . . . , <̄, and convex sets ⇠8 ✓ R=, 8 = <̄ +1, . . . ,<, and let ⇠ :=

—
<

8=1⇠8 . If
�
\<̄

8=1⇠8

� Ÿ �
\<

8=<̄+1 ri(⇠8))
�
< ;

then

#⇠ (Ḡ) =
’
8

#⇠8
(Ḡ), 8G 2 ⇠

Summary. Theorems 12.3 and 12.4 and Example 12.4 are summarized in Table 12.1
(see Exercise 12.4 for derivation of the tangent cones). We will use these results together

Set - ✓ R= Normal cone #- (Ḡ) ✓ R= Tangent cone )- (Ḡ) ✓ R=

{G : �G = 1} range(�T) := {�T
_ : _ 2 R<} null(�) := {H : �H = 0}

{G : convex ⌘(G) = 0} range(r⌘(Ḡ)) := {r⌘(Ḡ)_ : _ 2 R<} null(rT
⌘(Ḡ)) := {H : rT

⌘(Ḡ)H = 0}
{G : �G  1} cone

⇣
�

T
�

⌘
= {�T

_ 2 R= : _ 2 R<+ , _T (�Ḡ� 1)} {H : �� H  0}
{G : convex ⌘(G)  0} cone(r⌘� (Ḡ)) := {r⌘(Ḡ)_ : _ 2 R<+ , _T

⌘(Ḡ) = 0} {y: rT
⌘� (Ḡ)H  0}

cone {G : G � 0} {H  0 : HT
Ḡ = 0} {H : Ḡ8 = 0 ) H8 � 0}

cone  {H 2  � : HT
Ḡ = 0} cl{Õ

8
U8 (G8 � Ḡ) : G8 2  , U8 � 0}

Table 12.1 The tangent cones and normal cones of common sets. The function ⌘ is assumed to
be twice continuously di�erentiable and convex and constraint qualification is satisfied at Ḡ 2 - .

with Theorem 12.5 to derive KKT conditions in Chapter 12.8 for convex optimization
problems widely used in applications. The intuition is explained in Remark 12.1: G⇤

is a minimizer if the negative cost gradient �r 5 (G⇤) is in the normal cone #- (G⇤)
of the feasible set - at G⇤. If the feasible set - := \8⇠8 is specified by multiple
constraints ⇠8 , the optimality condition takes the form �r 5 (G⇤) 2 Õ

8
#⇠8

(G⇤) (as in
(12.1): �r 5 (G⇤) = r6(G⇤)_⇤ +r⌘(G⇤)`⇤). The condition HT

Ḡ = 0 in Table 12.1 give
rise to complementary slackness in KKT conditions, as we will see in Chapter 12.8.
Theorem 12.4 underlies the need for constraint qualification and the uniqueness of the
dual optimal solution under LICQ.

12.1.3 A�ne transformation

We have derived the normal cones of common sets. In this subsection we study how the
normal cones are transformed when these sets undergo a�ne transformations. They
will be applied in Chapter 12.1.4 to derive the normal cones of SOC constraints.

 may be nonconvex{x : h(x) = 0}



Outline
1. Normal cones of feasible sets


• Polar cone

• Normal cone and tangent cone

• Affine transformation

• Second-order cones and SOC constraints

• Proofs


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point 


5. Characterization: KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Linear transformation
Image
Given a nonempty set , its image under  is





Let  and 


Theorem 

1. The normal cone  is pre-image of  under :





  Hence 


2. If  (full column rank), then 

X ⊆ ℝn A ∈ ℝm×n

Y := AX := {Ax ∈ ℝm : x ∈ X}
x̄ ∈ X ȳ = Ax̄ ∈ Y

NY(ȳ) NX(x̄) A𝖳

NY(ȳ) = {y ∈ ℝm : A𝖳y ∈ NX(x̄)}
A𝖳NY(ȳ) ⊆ NX(x̄)

rank(A) = n A𝖳NY(ȳ) = NX(x̄)

This result is used to derive normal cone of rotated second-order cone from that of standard SoC



Linear transformation
Image
Given a nonempty set , its image under  is





Let  and 


Example:  

X ⊆ ℝn A ∈ ℝm×n

Y := AX := {Ax ∈ ℝm : x ∈ X}
x̄ ∈ X ȳ = Ax̄ ∈ Y

A𝖳NY(ȳ) = NX(x̄)

i
i
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X °

AT

X A
Y

Y °

Figure 12.6 Theorem 12.6 when rank(�) = = : linear transformation . of a convex cone - and
their polar cones .� = #. (0) and -

� = #- (0) respectively.

that #- (Ḡ) ✓ �
T
#. ( H̄) unless rank(�) = =, but if - is the pre-image of a given set

. then #- (Ḡ) = �
T
#. ( H̄) for arbitrary �, as Theorem 12.7 shows. This is because

the pre-image - always contains null(�) whereas a given - may overlap with null(�)
but not contain it (unless rank(�) = = in which case null(�) = {0}). The next example
illustrates this di�erence; see also (12.12) below.

Example 12.5 (Image vs pre-image). Let � :=

1 1
1 1

�
be a singular matrix. We give

a set - whose image . = �- satisfies �
T
#. ( H̄) ( #- (Ḡ) at Ḡ = 0, and another set .

whose pre-image - satisfies �
T
#. ( H̄) = #- (Ḡ) at all Ḡ 2 - and H̄ = �Ḡ 2 . .

1. Consider the set - and its image . under �:

- := {G 2 R2 : G � 0}, . := �- = {�G : G � 0} =
⇢
U


1
1

�
: U � 0

�

The polar cone of - is -
� = {G 2 R2 : G  0}. From Theorem 12.6 the polar cone

.
� is the pre-image of -� under �T:

.
� = {H 2 R2 : �T

H 2 -
�} = {H 2 R2 : H1 + H2  0}

We hence have

�
T
#. (0) = �

T
.
� = {�T

H : H 2 .�} =
⇢
U


1
1

�
: U  0

�
( -

� = #- (0)

as proved in Theorem 12.6. These sets are illustrated in Figure 12.7(a).
2. Consider the set . and its pre-image - under �:

. := {H 2 R2 : H � 0}, - := {G 2 R2 : �G � 0} = {G : G1 + G2 � 0}

Note that �- = {�G : G1 +G2 � 0} = {U(1,1) : U � 0} ( . . We have.� = {H : H  0}
and

-
� := {G : G̃1 + G̃2 � 0 ) G1G̃1 + G2G̃2  0} = {G : G1 = G2, G  0}



Linear transformation
Example: A𝖳Y∘ ⊊ X∘

Given ,  is image 
•   and  

•  singular:  

X Y = AX
NX(0) = X∘ NY(0) = Y∘

A A𝖳Y∘ ⊊ X∘

i
i
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Y °

Y
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X °
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x1

y2

y1

ATY °⊊X °

x2+x1= 0

(a) Image of -

(b) Pre-image of .

Figure 12.7 Example 12.5. Since � is singular, (a) �T
.
�
( -

�; (b) �T
.
� = -

�; moreover
�

T
#. ( H̄) = #- (Ḡ).

Hence, even though � is singular, �T
.
� = {�T

H : H  0} = {U(1,1) : U  0} = -
�;

see Figure 12.7(b).
Moreover all boundary points Ḡ of - , defined by G1 + G2 = 0, are mapped to H̄ =

�Ḡ = 0 which is the unique boundary point of . . For this pair of (Ḡ, H̄), �T
#. ( H̄) =

�
T
.
� = -

� = #- (Ḡ) from Theorem 12.3. On the other hand, any non-boundary
point Ḡ with G1 + G2 > 0 is in int(-) and the corresponding H̄ = �Ḡ > 0 is in int(. ),
and hence �

T
#. ( H̄) = #- (Ḡ) = {0}. Therefore �

T
#. ( H̄) = #- (Ḡ) at any Ḡ 2 - and

H̄ = �Ḡ (including Ḡ = 0). ⇤

Part 2 of Example 12.5 shows �T
#. ( H̄) = #- (Ḡ) for a specific �. Exercise 12.7 gives

another example for arbitrary � but for the cone . = {H 2 R< : H  0}, proved using
the Farkas Lemma (Theorem 7.10). The next theorem shows that �T

#. ( H̄) = #- (Ḡ)
holds for an arbitrary set . and arbitrary �. It is proved using the following property
of the pseudo-inverse �

† from Theorem A.19 of Appendix A.1.7.

Consider an arbitrary real matrix � 2 R<⇥= and let its singular value decomposition
be � = +⌃,T = +A⌃A,

T
A

where rank(�) = A , + 2 R<⇥< and , 2 R=⇥= are unitary
matrices partitioned so that their first A columns correspond to the A positive singular
values of � (see Appendix A.1.7 for details)

+ =
⇥
+A +<�A

⇤
, ⌃ =


⌃A 0
0 0

�
, , =

⇥
,A ,=�A

⇤

Its pseudo-inverse is the real matrix �
† :=,⌃†

+
T =,A⌃�1

A
+

T
A

. Given an arbitrary set
- ✓ R=, let . := �- ✓ R< be its image under �. Since the columns of , form an
orthonormal basis of R=, G =,A

�
,

T
A
G

�
+,=�A

�
,

T
=�AG

�
. This implies that every G 2 -



Linear transformation
Pre-image
Given a nonempty set , its pre-image under  is





Let  and 


Y ⊆ ℝm A ∈ ℝm×n

X := {x ∈ ℝn : Ax ∈ Y}
x̄ ∈ X ȳ = Ax̄ ∈ Y



Linear transformation
Image vs pre-image

Given ,  is image 
•   and  

•  singular:  

X Y = AX
NX(0) = X∘ NY(0) = Y∘

A A𝖳Y∘ ⊊ X∘

i
i
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(b) Pre-image of .

Figure 12.7 Example 12.5. Since � is singular, (a) �T
.
�
( -

�; (b) �T
.
� = -

�; moreover
�

T
#. ( H̄) = #- (Ḡ).

Hence, even though � is singular, �T
.
� = {�T

H : H  0} = {U(1,1) : U  0} = -
�;

see Figure 12.7(b).
Moreover all boundary points Ḡ of - , defined by G1 + G2 = 0, are mapped to H̄ =

�Ḡ = 0 which is the unique boundary point of . . For this pair of (Ḡ, H̄), �T
#. ( H̄) =

�
T
.
� = -

� = #- (Ḡ) from Theorem 12.3. On the other hand, any non-boundary
point Ḡ with G1 + G2 > 0 is in int(-) and the corresponding H̄ = �Ḡ > 0 is in int(. ),
and hence �

T
#. ( H̄) = #- (Ḡ) = {0}. Therefore �

T
#. ( H̄) = #- (Ḡ) at any Ḡ 2 - and

H̄ = �Ḡ (including Ḡ = 0). ⇤

Part 2 of Example 12.5 shows �T
#. ( H̄) = #- (Ḡ) for a specific �. Exercise 12.7 gives

another example for arbitrary � but for the cone . = {H 2 R< : H  0}, proved using
the Farkas Lemma (Theorem 7.10). The next theorem shows that �T

#. ( H̄) = #- (Ḡ)
holds for an arbitrary set . and arbitrary �. It is proved using the following property
of the pseudo-inverse �

† from Theorem A.19 of Appendix A.1.7.

Consider an arbitrary real matrix � 2 R<⇥= and let its singular value decomposition
be � = +⌃,T = +A⌃A,

T
A

where rank(�) = A , + 2 R<⇥< and , 2 R=⇥= are unitary
matrices partitioned so that their first A columns correspond to the A positive singular
values of � (see Appendix A.1.7 for details)

+ =
⇥
+A +<�A

⇤
, ⌃ =


⌃A 0
0 0

�
, , =

⇥
,A ,=�A

⇤

Its pseudo-inverse is the real matrix �
† :=,⌃†

+
T =,A⌃�1

A
+

T
A

. Given an arbitrary set
- ✓ R=, let . := �- ✓ R< be its image under �. Since the columns of , form an
orthonormal basis of R=, G =,A

�
,

T
A
G

�
+,=�A

�
,

T
=�AG

�
. This implies that every G 2 -
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(a) Image of -

X °=ATY °
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AX

Y °

y2
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x1

X

(b) Pre-image of .

Figure 12.7 Example 12.5. Since � is singular, (a) �T
.
�
( -

�; (b) �T
.
� = -

�; moreover
�

T
#. ( H̄) = #- (Ḡ).

Hence, even though � is singular, �T
.
� = {�T

H : H  0} = {U(1,1) : U  0} = -
�;

see Figure 12.7(b).
Moreover all boundary points Ḡ of - , defined by G1 + G2 = 0, are mapped to H̄ =

�Ḡ = 0 which is the unique boundary point of . . For this pair of (Ḡ, H̄), �T
#. ( H̄) =

�
T
.
� = -

� = #- (Ḡ) from Theorem 12.3. On the other hand, any non-boundary
point Ḡ with G1 + G2 > 0 is in int(-) and the corresponding H̄ = �Ḡ > 0 is in int(. ),
and hence �

T
#. ( H̄) = #- (Ḡ) = {0}. Therefore �

T
#. ( H̄) = #- (Ḡ) at any Ḡ 2 - and

H̄ = �Ḡ (including Ḡ = 0). ⇤

Part 2 of Example 12.5 shows �T
#. ( H̄) = #- (Ḡ) for a specific �. Exercise 12.7 gives

another example for arbitrary � but for the cone . = {H 2 R< : H  0}, proved using
the Farkas Lemma (Theorem 7.10). The next theorem shows that �T

#. ( H̄) = #- (Ḡ)
holds for an arbitrary set . and arbitrary �. It is proved using the following property
of the pseudo-inverse �

† from Theorem A.19 of Appendix A.1.7.

Consider an arbitrary real matrix � 2 R<⇥= and let its singular value decomposition
be � = +⌃,T = +A⌃A,

T
A

where rank(�) = A , + 2 R<⇥< and , 2 R=⇥= are unitary
matrices partitioned so that their first A columns correspond to the A positive singular
values of � (see Appendix A.1.7 for details)

+ =
⇥
+A +<�A

⇤
, ⌃ =


⌃A 0
0 0

�
, , =

⇥
,A ,=�A

⇤

Its pseudo-inverse is the real matrix �
† :=,⌃†

+
T =,A⌃�1

A
+

T
A

. Given an arbitrary set
- ✓ R=, let . := �- ✓ R< be its image under �. Since the columns of , form an
orthonormal basis of R=, G =,A

�
,

T
A
G

�
+,=�A

�
,

T
=�AG

�
. This implies that every G 2 -

Given ,  is pre-image 
•   and  

•  (despite singular )

• 


Y X := {x : Ax ∈ Y}
NX(0) = X∘ NY(0) = Y∘

A𝖳Y∘ = X∘ A
X ⊃ null(A) = {x : x1 + x2 = 0}



Linear transformation
Pre-image
Given a nonempty set , its pre-image under  is





Let  and 


Theorem 


Y ⊆ ℝm A ∈ ℝm×n

X := {x ∈ ℝn : Ax ∈ Y}
x̄ ∈ X ȳ = Ax̄ ∈ Y

A𝖳NY(ȳ) = NX(x̄)



Affine transformation
Image
Affine transformation: 


Given a nonempty set , its image under  is




Let 


Theorem 

1. The normal cone  is pre-image of  under  and is independent of :





  Hence 


2. If  (full column rank), then 

f(x) = Ax + b
X ⊆ ℝn f

Yb := AX + b ⊆ ℝm

ȳb = Ax̄ + b ∈ Y

NYb
(ȳb) NX(x̄) A𝖳 b

NYb
(ȳb) = NAX(Ax̄) = {y ∈ ℝm : A𝖳y ∈ NX(x̄)}

A𝖳NYb
(ȳb) ⊆ NX(x̄)

rank(A) = n A𝖳NYb
(ȳb) = NX(x̄)



Affine transformation
Pre-image
Given a nonempty set , its pre-image under  is




Let   and  


Theorem 


Y ⊆ ℝm f
Xb := {x ∈ ℝn : Ax + b ∈ Y}

x̄ ∈ Xb ȳb = Ax̄ + b ∈ Y

A𝖳NY(ȳb) = NXb
(x̄)



Outline
1. Normal cones of feasible sets


• Polar cone

• Normal cone and tangent cone

• Affine transformation

• Second-order cones and SOC constraints

• Proofs


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point 


5. Characterization: KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Second-order cone
Standard K
Standard second-order cone is 





Theorem 

1.  is closed convex cone


2. Polar cone is 

3. Normal cone is


K := {(x, s) ∈ ℝn+1 : ∥x∥2 ≤ s}

K
K∘ = {(y, t) ∈ ℝn+1 : ∥y∥2 ≤ − t}

NK(x̄, s̄) =

K∘ if (x̄, s̄) = (0,0)
{(0,0) ∈ ℝn+1} if ∥x̄∥2 < s̄

{μ(x̄, − s̄) ∈ ℝn+1 : μ ≥ 0} if ∥x̄∥2 = s̄ > 0

i
i
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3. Its normal cone # (Ḡ, B̄) at an (Ḡ, B̄) 2  is

# (Ḡ, B̄) =

8>><
>>:
 

� if (Ḡ, B̄) = (0,0)
{(0,0) 2 R=+1} if kḠk2 < B̄�
`(Ḡ,�B̄) 2 R=+1 : ` � 0

 
if kḠk2 = B̄ > 0

Proof Part 1 is left as Exercise 7.4. To verify that  � = {(H, C) 2 R=+1 : kHk2  �C},
take any (G, B) 2  and (H, C) such that kHk2  �C. Then

G
T
H + BC  kGk2 kHk2 + BC  B(�C) + BC = 0 (12.15)

where the first inequality follows from the Cauchy-Schwarz inequality and the second
inequality follows from definition of  . Hence (H, C) 2  �. This shows that  � ◆
{(H, C) 2 R=+1 : kHk2  �C}. Conversely let (H, C) 2  �, i.e., GT

H+ BC  0 for all kGk2  B.
Clearly (0,0) 2  � since  � is a closed convex cone, so let B � kGk2 > 0. Then
G

T
H + kGk2C  0 and hence

G
T

kGk2
H + C  0

Since this holds for all G (because there always exists some B > 0 such that (G, B) 2  ),
we can take G = H to conclude kHk2 + C  0. This proves part 2. Indeed  is the “upper”
cone in Figure 7.9(b) and  � is the “lower” cone.

For part 3, application of Theorem 12.3 to part 2 yields

# ((Ḡ, B̄)) = {(H, C) 2 R=+1 : kHk2  �C, ḠT
H + B̄C = 0} (12.16)

Hence if (Ḡ, B̄) = (0,0) then # ((Ḡ, B̄)) =  �. If kḠk2 < B̄ then (Ḡ, B̄) is in the interior of
 and hence # (Ḡ, B̄) = {(0,0) 2 R=+1}. Consider then kḠk2 = B̄ < 0. The requirement
that ḠT

H + B̄C = 0 means that the two inequalities in (12.15) must hold with equality
which is possible if and only if

H = `Ḡ for any ` 2 R+, kGk2 = B̄, kHk2 = �C

Hence �C = kHk2 = `kḠk2 = `B̄. This proves (H, C) = `(Ḡ,�B̄). This is illustrated in
Figure 12.11. ⇤

Figure 12.11 Theorem 12.10: The normal cone # ((Ḡ, B̄)) is the line segment on the boundary
of the lower cone  � in the direction of Ḡ.

We know from Theorem 12.3 that the normal cone # (Ḡ, B̄) of a convex cone  



Second-order cone
Rotated Kr
Rotated second-order cone is





where 


Theorem 

1.  is closed convex cone


2.  where 


Kr := {x ∈ ℝn+2 : ∥xn∥2 ≤ xn+1xn+2, xn+1 ≥ 0, xn+2 ≥ 0}
xm := (x1, …, xm)

Kr

K = AKr A =
2𝕀n 0n 0n

0𝖳
n 1 −1

0𝖳
n 1 1



Second-order cone
Rotated Kr
Rotated second-order cone is





where 


Theorem 

3. Polar cone is 


4. Normal cone is  is


Kr := {x ∈ ℝn+2 : ∥xn∥2 ≤ xn+1xn+2, xn+1 ≥ 0, xn+2 ≥ 0}
xm := (x1, …, xm)

K∘
r = A𝖳K∘ = {A𝖳x ∈ ℝn+2 : ∥xn+1∥2 ≤ − xn+2}
NKr

(x̄) = A𝖳NK(Ax̄)

NKr
(x̄) =

A𝖳K∘ if Ax̄ = 0
{(0,0) ∈ ℝn+2} if ∥[Ax̄]n+1∥2 < [Ax̄]n+2

{μ ([Ax̄]n+1, − [Ax̄]n+2) ∈ ℝn+2 : μ ≥ 0} if ∥[Ax̄]n+1∥2 = [Ax̄]n+2 > 0



SOC constraint
Convex set  defined by SOC constraint:





Hence  is pre-image of standard second-order cone  under affine transformation:





•  standard second-order cone if  


•  may not be a cone, e.g.,  is a hyperplane if 


Theorem 

  where   is standard second-order cone

C
C := {x ∈ ℝn : (Ax + b, c𝖳x + d) ∈ K} = {x ∈ ℝn : ∥Ax + b∥2 ≤ c𝖳x + d}

C K

C := {x ∈ ℝn : Ãx + b̃ ∈ K} where Ã := [ A
c𝖳], b̃ := [b

d]
C = K A = [𝕀n−1 0

0 0], c = en, b = 0, d = 0

C C A = 0

NC(x̄) = Ã𝖳NK(ȳ) K



Summary
First-order optimality condition for convex opt: 


 is minimizer   points away from linear approximation of feasible set at  


(in smooth setting: )

 
Generalization to nonsmooth setting:

1. Linear approximation of feasible set


• Tangent cone 


2. Vectors most opposite to linear approximation

• Normal cone 


3. We have derived  for:

• Feasible sets widely encountered in applications (hyperplanes, polyhedrons, cones, convex sets) 

• Affine transformation of these basic sets

• Second-order cones, SOC constraints

x* ⇔ −∇f(x*) x*
−∇f(x*) = ∇g(x*)λ* + ∇h(x*)μ*

TX(x*)

NX(x*)

NX(x̄)



Proofs



Normal cone NC(x̄)
 


Let 


Theorem 

Suppose  is real-valued twice continuously differentiable function that is convex 
on .  If  satisfies LICQ, then


1. 


2. For every , there exists unique  such that 


Proof uses: Farkas Lemma (or Separating Hyperplane Thm), LP duality, LICQ

convex set (non-polyhedral): C := {x ∈ ℝn : h(x) ≤ 0} with convex h
I := I(x̄) := {i : hi(x̄) = 0}

h : ℝn → ℝm

ℝn x̄ ∈ C
NC(x̄) = cone (∇hI(x̄)) = {∇h(x̄)λ ∈ ℝn : λ ∈ ℝm

+, λ𝖳h(x̄) = 0}
y ∈ NC(x̄) λI ∈ ℝ|I|

+ y = ∇hI(x̄)λI



Normal cone NC(x̄)
Proof
Let 





Suppose  :  easy (use convexity of )


Suppose  :  If , then  and hence .


Hence suppose  but .


Will construct  such that 

• , 

• contradicting , proving 


in 3 steps

NC(x̄) := {y ∈ ℝn : y𝖳(x − x̄) ≤ 0 ∀x s.t. h(x) ≤ 0}
Y(x̄) := cone (∇hI(x̄)) = {∇h(x̄)λ ∈ ℝn : λ ∈ ℝm

+, λ𝖳h(x̄) = 0}

y ∈ Y(x̄) h
y ∈ NC(x̄) I(x̄) = ∅ x̄ ∈ int(C) NC(x̄) = Y(x̄) = {0}

I(x̄) ≠ ∅ y ∉ Y(x̄)
x(t) := x̄ + tΔx

h(x(t)) ≤ 0 ty𝖳Δx > 0
y ∈ NC(x̄) y ∈ Y(x̄)



Normal cone NC(x̄)
Proof
Step 1:

Farkas lemma implies that, if  convex cone, then there exists nonzero  with





Step 2:

For each ,





for some .   The second-order term can be upper bounded by





which is finite (because  are twice continuously differentiable and  is in ), and independent of .

Hence 


y ∉ Y(x̄) c ∈ ℝn

c𝖳 ∇hi(x̄) ≤ 0 < c𝖳y, ∀i ∈ I

i = 1,…, m

hi(x(t)) = hi(x̄ + tΔx) = hi(x̄) + t
∂hi

∂x
(x̄)Δx +

t2

2
Δx𝖳 ∂2hi

∂x2
(x(si))Δx

si ∈ [0,t]

αi(x̄, Δx) := max
si∈[0,1]

Δx𝖳 ∂2hi

∂x2
(x(si))Δx

hi si [0,1] t

hi(x(t)) ≤ hi(x̄) + t ( ∂hi

∂x
(x̄)Δx +

t
2

αi(x̄, Δx))  for t ∈ [0,1]



Normal cone NC(x̄)
Proof
Step 2:

Hence we need to find  such that


1.   for all 


2. 


Then 1  there exists small enough  s.t.


•  :   


•  :   


Hence, for each ,





1 and 2  , a contradiction

Δx
∂hi

∂x
(x̄)Δx < 0 i ∈ I

y𝖳(x(t) − x̄) = ty𝖳Δx > 0
⇒ t > 0

i ∈ I
∂hi

∂x
(x̄)Δx +

t
2

αi(x̄, Δx) ≤ 0

i ∉ I hi(x̄) + t ( ∂hi

∂x
(x̄)Δx +

t
2

αi(x̄, Δx)) ≤ 0

i = 1,…, m

hi(x(t)) ≤ hi(x̄) + t ( ∂hi

∂x
(x̄)Δx +

t
2

αi(x̄, Δx)) ≤ 0

⇒ y ∉ NC(x̄)



Normal cone NC(x̄)
Proof
Step 3:

Consider LP (  to be chosen):





Then  satisfies 1 and 2  if and only if  for some ,  is optimal for LP with 

ϵ > 0
z*(ϵ) := min

(Δx,z)∈ℝn+1
z

s.t.
∂hi

∂x
(x̄)Δx ≤ z, i = 1,…, m

y𝖳Δx ≥ ϵ

Δx* ϵ > 0 (Δx*, z*(ϵ))
z*(ϵ) < 0



Normal cone NC(x̄)
Proof
Step 3:


• LP is feasible for sufficiently small , because





 is a feasible point

• Its dual is infeasible, because





 Suppose  is feasible.  Then .  


 LICQ (  has linearly independent columns) implies .  Hence 


,   contradicting 

ϵ > 0

Δx := c, z := max
i∈I

∂hi

∂x
(x̄)c

d*(ϵ) := max
(λ,μ)≥0

ϵμ

s.t. 1𝖳λ = 1, ∇hI(x̄)λ = μy
(λ, μ) ≥ 0 λ ≠ 0

∇hI(x̄) μ > 0

y = ∑
i∈I

λi

μ
∇hi(x̄) y ∉ Y(x̄)



Normal cone NC(x̄)
Proof
Step 3:


• Feasible primal, infeasible dual, LP duality  .


• Therefore there exists finite  that satisfies 1 and 2


This completes the construction of  such that 

• , 

• contradicting , proving 


⇒ z*(ϵ) = d*(ϵ) = − ∞
Δx

x(t) := x̄ + tΔx
h(x(t)) ≤ 0 ty𝖳Δx > 0

y ∈ NC(x̄) y ∈ Y(x̄)



Linear transformation
Pre-image
Given a nonempty set , its pre-image under  is





Let  and 


Theorem 


Y ⊆ ℝm A ∈ ℝm×n

X := {x ∈ ℝn : Ax ∈ Y}
x̄ ∈ X ȳ = Ax̄ ∈ Y

A𝖳NY(ȳ) = NX(x̄)



Pre-image: A𝖳NY(ȳ) = NX(x̄)
Proof: SVD decomposition of ℝn

Singular value decomposition of  with rank  is:




where





with 


Pseudo-inverse of  is:




Hence 


A (A) = r
A = VΣW𝖳 = VrΣrW𝖳

r

V = [Vr Vm−r], Σ = [Σr 0
0 0], W = [Wr Wn−r]

range(Wr) = range(A𝖳), range(Wn−r) = null(A)

A
A† = WΣ†V𝖳 = WrΣ−1

r V𝖳
r

A†A = WrW𝖳
r



Pre-image: A𝖳NY(ȳ) = NX(x̄)
Proof: SVD decomposition of ℝn

Since columns of  form an orthonormal basis of , every  can be written uniquely in 
terms of  and   as   : 





i.e.,  can be decomposed uniquely into 2 orthogonal components in terms of  and  :


W ℝn x ∈ ℝn

Wr Wn−r x = Wr (W𝖳
r x) + Wn−r (W𝖳

n−rx)
x = Wr (W𝖳

r

A†A

x) + Wn−r (W𝖳
n−rx)
β(x)

= A†y + Wn−rβ(x)

ℝn Wr Wn−r

i
i
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has a unique orthogonal decomposition:

G = �
† (�G)|{z}

H (G)

+,=�A
⇣
,

T
=�AG

⌘
|    {z    }

V (G)

= �
†
H(G) +,=�A V(G) (12.11)

for some H(G) 2 . and some ,=�A V(G) in null(�) = range(,=�A ). This is illustrated
in Figures 12.8. The first term �

†
H =,A

�
⌃�1
A
+

T
A
H

�
2 range(,A ) is the projection of

xA†Ax

range(AT) = range(Wr)

null(A) = range(Wn−r)Wn−rβ(x)

Figure 12.8 Orthogonal decomposition of R= using singular value decomposition of matrix �.

G onto range(�T) and is orthogonal to the second term (Theorem A.19). As G takes
values in - we write (12.11) as

- = �
†
. +,=�A⌫(-) with ⌫(-) :=

�
,

T
=�AG : G 2 -

 
✓ R=�A (12.12a)

On the other hand, given an arbitrary set . ✓ R<, let - := {G : �G 2 . } ✓ R= be its
pre-image under �. Then every G 2 - still decomposes uniquely into its orthogonal
components along range(�T) and null(�), but the set - in terms of . becomes

- = �
†
. +,=�AR

=�A (12.12b)

i.e., the pre-images of each H 2 . consists of �
†
H plus the whole subspace null(�) =

range(,=�A ). In contrast the pre-images of H 2 . in (12.12a) consists of �
†
H plus

a subset of null(�). This underlies the di�erence between Theorems 12.6 and 12.7.
When � has a full column rank, null(�) = {0} and - = �

†
. in both (12.12a) and

(12.12b).

Theorem 12.7 (Pre-image of linear transformation). Let . ✓ R< be a nonempty set
and - := {G 2 R= : �G 2 . } be its pre-image under � 2 R<⇥=. Then #- (Ḡ) = �

T
#. ( H̄)

for any Ḡ 2 - and H̄ = �Ḡ 2 . .

Proof Given any H̃ 2 #. ( H̄), H̃T (H� H̄)  0 for all H 2 . . In particular H̃T (H� H̄)  0
for all H = �G 2 �- ✓ . . Therefore H̃

T
�(G � Ḡ)  0 for all G 2 - , i.e., �T

H̃ 2 #- (Ḡ).
This shows that �T

#. ( H̄) ✓ #- (Ḡ).

Conversely suppose G̃ 2 #- (Ḡ), i.e. G̃T (G� Ḡ)  0 for all G 2 - . Use (12.12b) to write

 : project  onto rangeA†A x (Wr)



Pre-image: A𝖳NY(ȳ) = NX(x̄)
Proof: SVD decomposition of ℝn

Hence any  can be written as   for some  and  (dependent on ) 


Given  : let its image under  be .  Then





with 


Given  : let its pre-image under  be .  Then





i.e., the pre-image of each  consists of  plus the entire null 


This is the key difference between image and pre-image under 


x ∈ ℝn x = A†y + Wn−rβ y = Ax β x

X ⊆ ℝn A Y := AX
X = A†Y + Wn−rB(X)
B(X) := {W𝖳

n−rx : x ∈ X} ⊆ ℝn−r

Y ⊆ ℝm A X := {x : Ax ∈ Y}
X = A†Y + Wn−rℝn−r

y ∈ Y A†y (A)

A



Pre-image: A𝖳NY(ȳ) = NX(x̄)
Proof
Suppose , i.e.,  for all .  


Then  for all , i.e., .


This shows 


Conversely, suppose , i.e.,  for all 

Write 





Then




ỹ ∈ NY(ȳ) ỹ𝖳(y − ȳ) ≤ 0 y = Ax ∈ AX ⊆ Y
ỹ𝖳A(x − x̄) ≤ 0 x ∈ X A𝖳ỹ ∈ NX(x̄)

A𝖳NY(ȳ) ⊆ NX(x̄)

x̃ ∈ NX(x̄) x̃𝖳(x − x̄) ≤ 0 x ∈ X

x = A†y + Wn−rβ for some y ∈ Y, β (dependent on x)
x̄ = A†ȳ + Wn−r β̄

x̃𝖳A†(y − ȳ) + x̃𝖳Wn−r(β − β̄) ≤ 0, ∀y ∈ Y, ∀β ∈ ℝn−r



Pre-image: A𝖳NY(ȳ) = NX(x̄)
Proof
Since this holds for all , we must have (take  and ):





Taking  implies , and hence 


1st inequality implies   for some .  


Multiplying both sides by  gives:





where 1st equality follows because  is symmetric, and the 2nd equality follows 
because  and hence 


Hence 

y ∈ Y, β ∈ ℝn−r y = ȳ β = β̄
x̃𝖳A†(y − ȳ) ≤ 0 ∀y ∈ Y

x̃𝖳Wn−r(β − β̄) ≤ 0 ∀β ∈ ℝn−r

β = β̄ ± ej x̃𝖳Wn−r = 0 x̃ ∈ range(Wr)

(A†)𝖳x̃ = ỹ ỹ ∈ NY(ȳ)
A𝖳

(A†A)𝖳x̃ = (A†A)x̃ = x̃ = A𝖳ỹ
A†A = WrW𝖳

r
x̃ ∈ range(Wr) WrW𝖳

r x̃ = x̃
NX(x̄) ⊆ A𝖳NY(ȳ)



Outline
1. Normal cones of feasible sets


2. CPC functions

• Extended real-valued functions

• Indicator function, support function, polyhedral function


3. Gradient and subgradient


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Extended real-valued function

A real-valued function  with  maps a finite vector  to a finite value 



An extended real-valued function  can take a finite value in  or 


•  : domain of  


•  : effective domain of  


•  : epigraph of  


Remarks 
• If , then 

•  , i.e.,  is projection of  onto 

f : X → ℝ X ⊆ ℝn x ∈ X
f(x) ∈ ℝ

f : X → [−∞, ∞] ℝ ±∞
X f
dom( f ) := {x ∈ X : f(x) < ∞} f
epi( f ) := {(x, y) ∈ X × ℝ : y ≥ f(x)} ⊆ Rn+1 f

(x, y) ∈ epi( f ) y ∉ {−∞, ∞}
x ∈ dom( f ) ⟺ ∃y ∈ ℝ  s.t.  (x, y) ∈ epi( f ) dom( f ) epi( f ) ℝn



Extended real-valued function
Continuity
An extended real-valued function  is lower semicontinuous (lsc) at  if





for every sequence  with 


 is lsc (on ) if it is lsc at every 


 is upper semicontinuous (usc) if  is lsc


 is continuous if and only if it is both lsc and usc


f : X → [−∞, ∞] x ∈ X
f(x) ≤ lim inf

k
f(xk)

{xk} ⊆ X xk → x
f X x ∈ X
f −f
f



Extended real-valued function
CPC functions
Definition 
Consider  with 


1.  is closed if  is a closed set in 


2.  is proper if  for all   and   such that  (so that 
).  In particular a real-valued function  is proper


3. Suppose  is convex.  Then  is convex if  is a convex set in 


Remarks

• Convexity definition in terms of  reduces to usual definition for real-valued functions

• If a closed convex function is not proper, then  if  and  if 

.  We therefore only consider proper functions with 

• A proper convex function is continuous, except possibly on its relative boundary.  Moreover, it 

is Lipschitz continuous over a compact set

f : X → [−∞, ∞] X ⊆ ℝn

f epi( f ) ℝn+1

f f(x) > − ∞ x ∈ X ∃x̄ ∈ X f(x̄) < ∞
epi( f ) ≠ ∅ f : X → ℝ

X f epi( f ) ℝn+1

epi( f )
f(x) = − ∞ x ∈ dom( f ) f(x) = ∞

x ∉ dom( f ) f : X → (−∞, ∞)



Extended real-valued function
CPC functions
Definition 
Consider  with 


1.  is closed if  is a closed set in 


2.  is proper if  for all   and   such that  (so that 
).  In particular a real-valued function  is proper


3. Suppose  is convex.  Then  is convex if  is a convex set in 


Examples: Closed proper lsc functions  

• Nonconvex function:   


• Convex function:         

f : X → [−∞, ∞] X ⊆ ℝn

f epi( f ) ℝn+1

f f(x) > − ∞ x ∈ X ∃x̄ ∈ X f(x̄) < ∞
epi( f ) ≠ ∅ f : X → ℝ

X f epi( f ) ℝn+1

f : ℝ → (−∞, ∞]

f(x) = {0 if x ≤ 0
1 if x > 0

f(x) = {0 if x ≤ 0
∞ if x > 0

lsc

closed dom( f )

convex



Examples
Constrained functions fX(x)
A real-valued function   constrained to a feasible set  can be extended to  
as an extended real-valued function   :





Remarks


• Constrained minimization    is equivalent to unconstrained minimization 


• Unified theory for unconstrained minimization

f : X → ℝ X ⊆ ℝn ℝn

f : ℝn → [−∞, ∞]

fX(x) := {f(x) if  x ∈ X
∞ if  x ∈ ℝn∖X

min
x∈X

f(x) min
x∈ℝn

fX(x)



Examples
Indicator function δX(x)
The indicator function of  is  defined by





• It is proper iff  is nonempty


• It is convex iff  is a convex set

X ⊆ ℝn δX : ℝn → (−∞, ∞]

δX(x) := {0 if  x ∈ X
∞ if  x ∉ X

X
X



Examples
Support function σX(x)
The support function of  is  defined by





• It is proper iff  is nonempty and  for some 


•

X ⊆ ℝn σX : ℝn → (−∞, ∞]
σX(x) := sup

y∈X
y𝖳x

X sup
y∈X

y𝖳x < ∞ x

σX(x) = σcl(X)(x) = σconv(X)(x) = σcl(conv(X))(x) = σconv(cl(X))(x)



Examples

δ(−1,1)(x) := {0 x ∈ (−1,1)
∞ x ∉ (−1,1)

σ(−1,1)(x) := sup
y∈(−1,1)

yx = |x |

i
i
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672 Nonsmooth convex optimization

Theory of convexity, optimality and duality can be developed based either on real-
valued functions or on extended real-valued functions. An advantage of extended
real-valued functions is that they allow us to represent the minimization of a real-
valued function 5 : R= ! R over - as an unconstrained optimization of the extended
real-valued function (12.21):

min
G2R=

5- (G) = 5 (G) + X- (G) (12.25)

A unified theory can then be developed for unconstrained optimization as we will see
in the following sections.

Example 12.9. Derive X- (G) and f- (G) for:

1. - := (0,1) ✓ R.
2. - := (�1,1) ✓ R.
3. - := {G 2 R= : G8 2 (�1,1)}.

Solution. For - := (0,1) and - := (�1,1)

X (0,1) (G) =
⇢

0 G 2 (0,1)
1 G 8 (0,1) f(0,1) (G) := sup

H2 (0,1)
HG =

⇢
G G � 0
0 G < 0

X (�1,1) (G) =
⇢

0 G 2 (�1,1)
1 G 8 (�1,1) f(�1,1) (G) := sup

H2 (�1,1)
HG = |G |

For - := {G 2 R= : G8 2 (�1,1)}

X- (G) =
⇢

0 88 G8 2 (�1,1)
1 98 s.t. G8 8 (�1,1)

f- (G) :=
’
8

sup
H8 2 (�1,1)

H8G8 =
’
8

|G8 | = kGk1

They are illustrated in Figure 12.12. ⇤

(a) - := (0,1) ✓ R (b) - := (�1,1) ✓ R

(c) - := {G 2 R2 : G8 2 (�1,1) }

Figure 12.12 Example 12.9. (Smaller spacing between figures to fit (a)(b)(c) in 1 line. (a):
shorten G-axis, like in (b). )

i
i
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min
G2R=

5- (G) = 5 (G) + X- (G) (12.25)

A unified theory can then be developed for unconstrained optimization as we will see
in the following sections.
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1. - := (0,1) ✓ R.
2. - := (�1,1) ✓ R.
3. - := {G 2 R= : G8 2 (�1,1)}.

Solution. For - := (0,1) and - := (�1,1)

X (0,1) (G) =
⇢

0 G 2 (0,1)
1 G 8 (0,1) f(0,1) (G) := sup

H2 (0,1)
HG =

⇢
G G � 0
0 G < 0

X (�1,1) (G) =
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0 G 2 (�1,1)
1 G 8 (�1,1) f(�1,1) (G) := sup
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HG = |G |
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1 98 s.t. G8 8 (�1,1)

f- (G) :=
’
8

sup
H8 2 (�1,1)

H8G8 =
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|G8 | = kGk1
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(a) - := (0,1) ✓ R (b) - := (�1,1) ✓ R

(c) - := {G 2 R2 : G8 2 (�1,1) }

Figure 12.12 Example 12.9. (Smaller spacing between figures to fit (a)(b)(c) in 1 line. (a):
shorten G-axis, like in (b). )

δX(x) := {0 xi ∈ (−1,1) for all i
∞ xi ∉ (−1,1) for some i

σX(x) := ∑
i

sup
yi∈(−1,1)

yixi = ∑
i

|xi |



Examples
Polyhedral function
A proper function  is a polyhedral function if  is a nonempty polyhedral 
set (polyhedron) in 


• Hence a polyhedral function is closed proper convex


Lemma 
Let  be a convex function.  Then  is polyhedral iff  is a polyhedron 
and





for some 

f : ℝn → (−∞, ∞] epi( f )
ℝn+1

f : ℝn → (−∞, ∞] f dom( f )

f(x) = max
i∈{1,…,m}

(a𝖳
i x + bi), x ∈ dom( f )

ai ∈ ℝn, bi ∈ ℝ, integer m > 0



Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient

• Derivative, directional derivative, partial derivative

• Subgradient

• Subdifferential calculus


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Basic concepts
• Smooth functions: differentiable, partially differentiable, continuously differentiable

• … and their relationship


• Nonsmooth convex functions: subdifferentiable, subdifferential

• First-order optimality condition



Derivative

Consider a proper function  with an open  


 is differentiable at  if there exists  s.t.





The column vector  is called the gradient or derivative of  at , denoted by 


 is differentiable on  if  is differentiable at every 


f : X → (−∞, ∞] X ⊆ ℝn

f x ∈ X m ∈ ℝn

lim
h ∈ ℝn

h → 0

f(x + h) − f(x) − m𝖳h
∥h∥

= 0

m f x ∇f(x)

f X f x ∈ X



Directional derivative
The one-sided directional derivative of  at  in the direction  is:





provided the limit exists, possibly 


If  both exist, they are called partial derivative of  at  wrt  :





Then  is called partially differentiable at  wrt 


f x ∈ X v ∈ ℝn

df(x; v) := lim
t ∈ ℝ
t ↓ 0

f(x + tv) − f(x)
t

±∞

df(x; ej) = df(x; − ej) f x ∈ X xj

df(x; v) := lim
t ∈ ℝ
t → 0

f(x + tej) − f(x)
t

f x ∈ X xj



Partial derivative
The row vector of partial derivatives of  at  is:





 is called partially differentiable on  if  is partially differentiable at every 


 is called continuously differentiable if  is partially differentiable and  is continuous


Remarks

• Derivative  describes behavior of  at  in all directions


• Partial derivative  describes behavior of  at  only along coordinate axes


• If  is differentiable, then it is partially differentiable (the converse may not hold)

• If  is continuously differentiable, then it is differentiable

f x ∈ X
∂f
∂x

(x) := [ ∂f
∂x1

(x) ⋯ ∂f
∂xn

(x)]
f X f x ∈ X

f f
∂f
∂x

(x)

∇f(x) f x
∂f
∂x

(x) f x

f
f



Subgradient

Consider a proper convex function  (we can always extend  on  to )


A vector  is a subgradient of  at  if





The set of all subgradients is the subdifferential  of  at 


Remarks

• Inequality in subgradient definition must hold for all , not just 

• The affine function on RHS is supporting hyperplane (lower approximation) of  at  over 

• Equivalent definition: 





• If , then 

f : ℝn → (−∞, ∞] f X ℝn

y ∈ ℝn f x̄ ∈ dom( f )
f(x) ≥ f(x̄) + y𝖳(x − x̄) ∀x ∈ ℝn

∂f(x̄) f x̄

x ∈ ℝn x ∈ dom( f )
f x̄ ℝn

f(x̄) − y𝖳x̄ = min
x∈ℝn (f(x) − y𝖳x)

x̄ ∉ dom( f ) ∂f(x̄) := ∅



Optimality condition
Consider 





where  is a proper convex function


Corollary

 is optimal if and only if 


Proof 
Substitute  into  


Remark 
• Optimality condition reduces to  for smooth convex function 

•  is a certificate of optimality of   (there may be other  with   )

inf
x∈ℝn

f(x)

f : ℝn → (−∞, ∞]

x* ∈ ℝn 0 ∈ ∂f(x*)

y = 0 ∈ ∂f(x*) f(x*) − y𝖳x* = min
x∈ℝn (f(x) − y𝖳x)

∇f(x*) = 0 f
0 ∈ ∂f(x*) x* y ∈ ∂f(x*) y𝖳(x − x*) ≠ 0



Optimality condition
For constrained optimization





where  is a convex set and   is a proper convex function,  is 
optimal if and only if there exists  s.t.  for all  (i.e., ) 
because then,


  for all 


(more formal statement later)


inf
x∈ℝn

fX(x)

X ⊆ ℝn fX : ℝn → (−∞, ∞] x* ∈ X
y* ∈ ∂f(x*) y*𝖳(x − x*) ≥ 0 x ∈ X −y* ∈ NX(x*)

f(x*) ≤ f(x) − y𝖳(x − x*) ≤ f(x) x ∈ ℝn



Subdifferentiabilty & continuity
A proper convex function   is subdifferentiable at any interior point 




Lemma 
Let    be a proper convex function

1. For ,  is continuous at 

2. For ,  is nonempty, convex and compact

3. If  is nonempty and compact, then  is nonempty and bounded.  

Moreover  is Lipschitz continuous over  with Lipschitz constant 


Remark 
• If  is real-valued, then  is always nonempty convex compact.

• If  is extended real-valued, then  can be unbounded or empty at the boundary of or outside of 



• If  is nonempty convex, then 

f : ℝn → (−∞, ∞]
x ∈ int(dom( f ))

f : ℝn → (−∞, ∞]
x ∈ ri(dom( f )) f(x) x
x ∈ int(dom( f )) ∂f(x)

X ⊆ dom( f ) ∂X f := ∪x∈X ∂f(x)
f X L := sup

ξ∈∂X f
∥ξ∥2

f : ℝn → ℝ ∂f(x)
f ∂f(x)

dom( f )
X ⊆ ℝn ∂δX(x) = NX(x) important for constrained opt (later)



Subdifferential calculus 
Theorem 
Let  , , be convex functions.  Suppose  is proper.


If  for some , are polyhedral (i.e., epi  are polyhedrons) and





then

1.  is convex


2.

fi : ℝn → (−∞, ∞] i = 1,…, m F(x) := ∑
i

fi(x)

fi, i = 1,…, m̄ m̄ ( fi)

( ∩m̄
i=1 dom( fi)) ⋂ ( ∩m

i=m̄+1 ri(dom( fi))) ≠ ∅

F
∂F(x) = ∑

i

∂fi(x), x ∈ dom(F)

differentiable  :  fi ∇F(x) = ∑
i

∇fi(x)



Subdifferential calculus 
Theorem 
Let   be a convex function and .  Suppose  is proper.

If 


•  is polyhedra, or


• there exists   s.t.  

then

1.  is convex


2.   for all 

f : ℝn → (−∞, ∞] A ∈ ℝm×n F(x) := f(Ax)

f
x̃ ∈ ℝn Ax̃ ∈ ri(dom( f ))

F
∂F(x) = A𝖳∂f(Ax) x ∈ ℝn

differentiable  :  f ∇F(x) = A𝖳 ∇f(Ax)



Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point

• Saddle point = pd optimality + strong duality


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Saddle point theorem
Consider





where  is nonempty,  


•  may be nonconvex set,  may be nonconvex functions


Lagrangian:

 

Dual function:

 

Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  x ∈ X′￼, g(x) = 0, h(x) ≤ 0

X′￼ ⊆ ℝn f : ℝn → (−∞, ∞], g : ℝn → (−∞, ∞]m, h : ℝn → (−∞, ∞]l

X′￼ f, g, h

L(x, λ, μ) := f(x) + λ𝖳g(x) + μ𝖳h(x), x ∈ ℝn, λ ∈ ℝm, μ ∈ ℝl

d(λ, μ) := inf
x∈X′￼

L(x, λ, μ)

d* := sup
λ, μ≥0

d(λ, μ)



Saddle point theorem
Consider





where  is nonempty,  


•  may be nonconvex set,  may be nonconvex functions


Lagrangian:

 

Dual function:

 

Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  x ∈ X′￼, g(x) = 0, h(x) ≤ 0

X′￼ ⊆ ℝn f : ℝn → (−∞, ∞], g : ℝn → (−∞, ∞]m, h : ℝn → (−∞, ∞]l

X′￼ f, g, h

L(x, λ, μ) := f(x) + λ𝖳g(x) + μ𝖳h(x), x ∈ ℝn, λ ∈ ℝm, μ ∈ ℝl

d(λ, μ) := inf
x∈X′￼

L(x, λ, μ), λ ∈ ℝm, μ ∈ ℝl

d* := sup
λ, μ≥0

d(λ, μ)

partial dualization



Saddle point theorem
Let primal and dual feasible sets be





Definition 
A point  is a saddle point if 


 

In particular,  is finite


Theorem 
A point  is a saddle point if and only if

1. It is primal-dual optimal

2. The duality gap is zero at , i.e., 


 
  In particular,  is finite

X := {x ∈ X′￼, g(x) = 0, h(x) ≤ 0}, Y := {(λ, μ) ∈ ℝm+l : μ ≥ 0}

(x*, λ*, μ*) ∈ X′￼× Y
max

(λ,μ)∈Y
L(x*, λ, μ) ≤ L(x*, λ*, μ*) ≤ min

x∈X′￼

L(x, λ*, μ*) ∈ ℝ

L(x*, λ*, μ*)

(x*, λ*, μ*) ∈ X′￼× Y

(x*, λ*, μ*)
d(λ*, μ*) = d* = f* = f(x*)

L(x*, λ*, μ*)



Saddle point theorem
Let primal and dual feasible sets be





Definition 
A point  is a saddle point if 


 

In particular,  is finite


Theorem 
A point  is a saddle point if and only if

1. It is primal-dual optimal

2. The duality gap is zero at , i.e., 


 
  In particular,  is finite

X := {x ∈ X′￼, g(x) = 0, h(x) ≤ 0}, Y := {(λ, μ) ∈ ℝm+l : μ ≥ 0}

(x*, λ*, μ*) ∈ X′￼× Y
max

(λ,μ)∈Y
L(x*, λ, μ) ≤ L(x*, λ*, μ*) ≤ min

x∈X′￼

L(x, λ*, μ*) ∈ ℝ

L(x*, λ*, μ*)

(x*, λ*, μ*) ∈ X′￼× Y

(x*, λ*, μ*)
d(λ*, μ*) = d* = f* = f(x*)

L(x*, λ*, μ*)

same as in smooth case 
except allowing functions 
to be extended real-valued



Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs



Generalized KKT
Consider





where  is a nonempty polyhedral set,  is a nonempty convex set, and 
 is a proper convex extended real-valued function 


Recall 
• Constrained opt can be written as unconstrained opt using indicator function





• Optimality condition for unconstrained convex optimization is 


• If  are convex,  is proper and Slater condition, then 


• If  is nonempty convex, then 

f* := min
x∈ℝn

f(x)  s.t.  x ∈ P ∩ C

P ⊆ ℝn C ⊆ ℝn

f : ℝn → (−∞, ∞]

min
x∈X

f(x) = min
x∈ℝn

f(x) + δX(x)

0 ∈ ∂f(x*)
fi F = ∑

i

fi ∂F(x) = ∑
i

∂fi(x)

X ⊆ ℝn ∂δX(x) = NX(x)

 in smooth case0 = ∇f(x*)

this is why normal cones are important



Generalized KKT
Consider





where  is a nonempty polyhedral set,  is a nonempty convex set, and 
 is a proper convex extended real-valued function 


Recall 
• Constrained opt can be written as unconstrained opt using indicator function





• Optimality condition for unconstrained convex optimization is 


• If  are convex,  is proper and Slater condition, then 


• If  is nonempty convex, then 

f* := min
x∈ℝn

f(x)  s.t.  x ∈ P ∩ C

P ⊆ ℝn C ⊆ ℝn

f : ℝn → (−∞, ∞]

min
x∈X

f(x) = min
x∈ℝn

f(x) + δX(x)

0 ∈ ∂f(x*)
fi F = ∑

i

fi ∂F(x) = ∑
i

∂fi(x)

X ⊆ ℝn ∂δX(x) = NX(x)

 in smooth case0 = ∇f(x*)

this is why normal cones are important



Generalized KKT
Theorem 
Suppose one of the following Slater conditions holds:

1.  is polyhedral and ; or 


2. ri ;


Then  is optimal if and only if





Remarks 

• Equivalent to:   s.t.  


• Equivalent to:   s.t.    for all 


• If  is real-valued, Slater condition reduces to: 


• In  is differentiable, KKT condition reduces to: 

f dom( f ) ∩ P ∩ ri(C) ≠ ∅
(dom( f )) ∩ P ∩ ri(C) ≠ ∅

x* ∈ P ∩ C
0 ∈ ∂f(x*) + NP(x*) + NC(x*)

∃y* ∈ ∂f(x*) −y* ∈ NP(x*) + NC(x*)
∃y* ∈ ∂f(x*) y*𝖳(x − x*) ≥ 0 x ∈ P ∩ C

f P ∩ ri(C) ≠ ∅
f −∇f(x*) ∈ NP(x*) + NC(x*)



Generalized KKT
Theorem 
Suppose one of the following Slater conditions holds:

1.  is polyhedral and ; or 


2. ri ;


Then  is optimal if and only if





Remarks 

• When the feasible sets  are explicitly specified by equality and inequality constraints that 
enable the computation of the normal cones ,  the condition reduces to usual 
KKT conditions (later)


• This theorem illustrates the conceptual simplicity based on set theoretic concepts nonsmooth 
opt

f dom( f ) ∩ P ∩ ri(C) ≠ ∅
(dom( f )) ∩ P ∩ ri(C) ≠ ∅

x* ∈ P ∩ C
0 ∈ ∂f(x*) + NP(x*) + NC(x*)

P, C
NP(x*), NC(x*)



Optimality characterization
Remarks 
• Saddle point theorem and generalized KKT theorem characterize optimal points

• They do not ensure existence of optimal points

• Examples exist where primal optimal solutions do not exist, even though

‣ Slater condition is satisfied


‣  is finite

‣ Dual optimal solutions exist and strong duality holds  


because the primal feasible set is not compact


We next study sufficient conditions for existence of primal and dual optimal solutions (and strong 
duality)

f*
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Nonexistence of primal optimum
Example: feasible set not closed 
Consider





• Primal optimal value 

• No primal optimal  with 


Lagrangian and dual function:


 

Dual optimal value:

 

• Strong duality holds 


• Dual optimal is attained at 

f* := inf
x∈ℝ

f(x) := x2  s.t.  x > 1

f* = 1
x* f(x*) = f*

L(x, μ) := x2 − μx + μ, d(μ) := inf
x

L(x, μ) = −
μ2

4
+ μ

d* := sup
μ≥0

d(μ) = d(2) = 1 = f*

μ* = 2

feasible set not closed



Nonexistence of primal optimum
Example: feasible set not closed 
Consider





• Primal optimal value 

• No primal optimal  with 


Lagrangian and dual function:


 

Dual optimal value:

 

• Strong duality holds 


• Dual optimality is attained at 

f* := inf
x∈ℝ

f(x) := x2  s.t.  x > 1

f* = 1
x* f(x*) = f*

L(x, μ) := x2 − μx + μ, d(μ) := inf
x

L(x, μ) = −
μ2

4
+ μ

d* := sup
μ≥0

d(μ) = d(2) = 1 = f*

μ* = 2

feasible set not closed



Nonexistence of primal optimum
Example: feasible set not closed 
Conclusions:

• (Primal) feasible set is not closed (hence not compact)


• Primal optimal value  is finite, but not attained


• Strong duality holds , and dual optimality is attained at 


KKT condition cannot be satisfied:

• Stationarity and complementary slackness are





which cannot be satisfied when  and 


f* = 1
f* = d* μ* = 2

2x* = μ*, μ*(1 − x*) = 0
μ* = 2 x* > 1



Nonexistence of primal optimum
Example: feasible set not bounded 
Consider





• Primal optimal value 

• No primal optimal  with 


Lagrangian and dual function:


 

Dual optimal value:

 

• Strong duality holds 


• Dual optimality is attained at 

f* := inf
x∈ℝ

f(x) := e−x  s.t.  x ≥ 0

f* = 0
x* f(x*) = f*

L(x, μ) := e−x − μx, d(μ) := min
x

e−x − μx = {0, μ = 0
−∞, μ > 0

d* := sup
μ≥0

d(μ) = d(0) = 0 = f*

μ* = 0

feasible set not bounded



Nonexistence of primal optimum
Example: feasible set not bounded 
Consider





• Primal optimal value 

• No primal optimal  with 


Lagrangian and dual function:


 

Dual optimal value:

 

• Strong duality holds 


• Dual optimality is attained at 

f* := inf
x∈ℝ

f(x) := e−x  s.t.  x ≥ 0

f* = 0
x* f(x*) = f*

L(x, μ) := e−x − μx, d(μ) := min
x

e−x − μx = {0, μ = 0
−∞, μ > 0

d* := sup
μ≥0

d(μ) = d(0) = 0 = f*

μ* = 0

feasible set not bounded



Nonexistence of primal optimum
Example: feasible set not bounded 
Conclusions:

• (Primal) feasible set is not bounded (hence not compact)


• Primal optimal value  is finite, but not attained


• Strong duality holds , and dual optimality is attained at 


KKT condition cannot be satisfied:

• Stationarity condition is





which cannot be satisfied by any finite  when 

f* = 0
f* = d* μ* = 0

e−x* = − μ*
x* μ* = 0



Primal optimality
Consider





where  and  


•  is called radially unbounded if  for every sequence  with 




• All nonempty level sets  of a radially unbounded function are 
bounded

f* := min
x∈ℝn

f(x)  s.t.  x ∈ X ⊆ ℝn

f : X → (−∞, ∞] X ∩ dom( f ) ≠ ∅

f : ℝn → (−∞, ∞] lim
k

f(xk) = ∞ {xk}
∥xk∥ → ∞

Vγ := {x ∈ ℝn : f(x) ≤ γ}



Primal optimality
Consider





where  and  


Theorem (Weierstrass theorem) 
If  is closed,  is lower semicontinuous at every , and one of the following holds:


1.  is bounded; or 


2. There exists  s.t. the level set  is nonempty and bounded; or


3.  is radially unbounded.


then the set  of minima is nonempty and compact


Remark 
• Essentially restrict minimization to a compact subset of 

f* := min
x∈ℝn

f(x)  s.t.  x ∈ X ⊆ ℝn

f : X → (−∞, ∞] X ∩ dom( f ) ≠ ∅

X f x ∈ X
X

γ ∈ ℝ Vγ := {x ∈ ℝn : f(x) ≤ γ}

f
X* ⊆ X

X

(  is convex if  and  are convex)X* X f



Exact optimality condition
CPF function f
Remark 
If  is nonempty closed and convex,  is closed proper and convex, and 

• Under the conditions of the theorem (lsc of  and boundedness):  is nonempty, compact and 

convex if and only if  and  have no common nonzero direction of recession (details in 
textbook)

X f X ∩ dom( f ) ≠ ∅
f X*

X f
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Slater Theorem
Consider





where  is a nonempty convex set,  and  are 
proper convex functions. 


Lagrangian:

 

Dual function:

 

Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  x ∈ X′￼, h(x) ≤ 0

X′￼ ⊆ ℝn f : ℝn → (−∞, ∞] h : ℝn → (−∞, ∞]l

L(x, μ) := f(x) + μ𝖳h(x), x ∈ ℝn, μ ∈ ℝl

d(μ) := inf
x∈X′￼

L(x, μ), μ ∈ ℝl

d* := sup
μ≥0

d(μ)



Slater Theorem
Consider





where  is a nonempty convex set,  and  are 
proper convex functions. 


Set of dual optimal solutions:


 

f* := min
x∈ℝn

f(x)  s.t.  x ∈ X′￼, h(x) ≤ 0

X′￼ ⊆ ℝn f : ℝn → (−∞, ∞] h : ℝn → (−∞, ∞]l

Q* := {μ* ≥ 0 : d(μ*) = inf
x∈X′￼

f(x) + μ*𝖳h(x) = f*}



Slater Theorem
Theorem 
Suppose


• Finite primal value: 


• Convexity:  is a nonempty convex set;  are proper convex functions; 

• Slater condition: one of the following holds:


‣ CQ1:   s.t.  ; or


‣ CQ2:   s.t.  

Then

1. 


2. If CQ1 holds, then  is nonempty, convex and compact


3. If CQ2 holds, then  is nonempty, convex and closed

f* > − ∞
X′￼ f, h

∃x̄ ∈ dom( f ) ∩ X′￼ h(x̄) < 0
∃x̄ ∈ ri(dom( f )) ∩ ri(X′￼) h(x̄) := Ax̄ + b ≤ 0

f* = d*
Q*
Q*



Slater Theorem
Variant
Equivalent formulation:





 


Lagrangian:

 

Dual function:

 

Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  x ∈ P ∩ C, Ax = b, h(x) ≤ 0

L(x, λ, μ) := f(x) + λ𝖳g(x) + μ𝖳h(x), x ∈ ℝn, λ ∈ ℝm, μ ∈ ℝl

d(λ, μ) := inf
x∈X′￼

L(x, λ, μ), λ ∈ ℝm, μ ∈ ℝl

d* := sup
λ, μ≥0

d(λ, μ)

polyhedron convex polyhedral hi, i = 1,…, l̄



Slater Theorem
Variant
Theorem 
Suppose


• Finite primal value: 


• Convexity:  is nonempty polyhedron,  is nonempty convex;  are proper convex functions; 


• Slater condition:   s.t.  

     


Then

1. 

2. The set of dual optimal solutions is nonempty, convex and closed

f* > − ∞
P C f, h

∃x̄ ∈ ri(dom( f )) ∩ P ∩ ri(C) Ax̄ = b, polyhedral hi(x̄) ≤ 0,i = 1,…, l̄,
hi(x̄) < 0,i = l̄ + 1,…, l

f* = d*



Slater Theorem
Theorem 
Suppose


• Finite primal value: 


• Convexity:  is a nonempty convex set;  are proper convex functions; 

• Slater condition: one of the following holds:


‣ CQ1:   s.t.  ; or


‣ CQ2:   s.t.  

Then

1. 


2. If CQ1 holds, then  is nonempty, convex and compact


3. If CQ2 holds, then  is nonempty, convex and closed

f* > − ∞
X′￼ f, h

∃x̄ ∈ dom( f ) ∩ X′￼ h(x̄) < 0
∃x̄ ∈ ri(dom( f )) ∩ ri(X′￼) h(x̄) := Ax̄ + b ≤ 0

f* = d*
Q*
Q*

Prove CQ1



MC/MC problems
Let  be a nonempty set





Easier to work with positive extension of :




Then


M ⊆ ℝl+1

Primal (min common): w* := inf
(0,w)∈M

w

Dual (max crossing): d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)

M
M := M + {(0,w) : w ≥ 0} = {(u, w) : w ≥ w̄ for some (u, w̄) ∈ M}

Primal (min common): w* := inf
(0,w)∈M

w

Dual (max crossing): d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)



MC/MC problems
Let  be a nonempty set





Easier to work with positive extension of :




Then


M ⊆ ℝl+1

Primal (min common): w* := inf
(0,w)∈M

w

Dual (max crossing): d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)

M
M := M + {(0,w) : w ≥ 0} = {(u, w) : w ≥ w̄ for some (u, w̄) ∈ M}

Primal (min common): w* := inf
(0,w)∈M

w

Dual (max crossing): d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)



MC/MC problems

i
i
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696 Nonsmooth convex optimization

M

M̄

w*
(µ*, β*)

d *

w∈R

u∈Rl

(a) Nonconvex "

M

M̄

(µ*, β*)

d *=w*

w∈R

u∈Rl

(b) Convex "

Figure 12.14 The primal and dual problems (12.44) defined by the nonempty set " . Their
optimal values are (F⇤,3⇤) respectively. The normal (`⇤, V⇤ := 1) of the nonvertical
hyperplane attains the dual optimal solution `

⇤, i.e., 3 (`⇤) = 3
⇤. (a) Nonzero duality gap

3
⇤
< F

⇤ when " is not convex. (b) Zero duality gap 3
⇤ = F

⇤ when " is convex even though "

is nonconvex. In both cases, 0 2 ri(⇡
"
) which ensures that V⇤ > 0 (nonvertical hyperplane).

hyperplane is (`,0), i.e., V⇤ = 0 in Figure 12.14, then the hyperplane is vertical and
there is no finite maximum crossing 3

⇤. It is straightforward to show weak duality:
3
⇤  F

⇤ (Exercise 12.18).

It is easier to work with the positive extension " of " defined by:

" := " + {(0,F) : F � 0} = {(D,F) 2 R;+1 : F � F̄ for some (D, F̄) 2 "}
(12.45)

because " ignores nonconvexity in the “upper” part of " which does not a�ect the
minimization in (12.44a). We can define (12.44) equivalently by replacing " with ":

Primal (minimum common) : F
⇤ := inf

(0,F)2"
F (12.46a)

Dual (maximum crossing) : 3
⇤ := sup

`2R;
3 (`) (12.46b)

where 3 (`) := inf (D,F)2" `
T
D +F.

The starting point for our proof is the following condition from (74, Propositions
4.4.1 and 4.4.2, p.150) for 3⇤ = F

⇤ and the existence of a dual optimal solution `
⇤. Let

the set of all dual optimal solutions `⇤ that attain strong duality be

&
⇤ =

(
`
⇤ 2 R; : 3 (`⇤) := inf

(D,F)2"
`
⇤T
D +F = F

⇤
)

(12.47)

Every dual optimal `
⇤ 2 &

⇤ defines a supporting hyperplane � := {(D,F) 2 R;+1 :
`
⇤T
D +F = F

⇤} at (0,F⇤) 2 cl("), with cl(") in the “upper” halfspace of �. See
Figure 12.15.



MC/MC problems




Remarks 
1. Dual relaxation:    relaxes  but adds penalty 


2. Strong duality: there exists a nonvertical hyperplane that contains  in its ``upper’’ closed 
halfspace, i.e., there exist a normal    and an -intercept   s.t.  


 

2. Given ,  is the smallest -intercept of the hyperplane that touches (supports) 


3. Dual problem: find a normal    s.t.  the smallest -intercept  is the max over 

Primal (min common): w* := inf
(0,w)∈M

w

Dual (max crossing): d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)

d(μ) := inf
(u,w)∈M

μ𝖳u + w u = 0 μ𝖳u

M
(μ,1) ∈ ℝl+1 w ξ ∈ ℝ

μ𝖳u + w ≥ ξ, ∀(u, w) ∈ M
μ d(μ) w M

(μ*,1) w d(μ*) μ ∈ ℝl



Dual optimal solution set Q*
Let the set of dual optimal solutions be:


Q* = {μ* ∈ ℝl : d(μ*) := inf
(u,w)∈M

μ*𝖳u + w = w*}

i
i
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12.7 Existence: dual optimal solutions and strong duality 697

Figure 12.15 Every dual optimal `⇤ 2 &
⇤ defines a hyperplane � that passes through (0,F⇤)

and separates it from cl("). The yellow region shows all the hyperplanes defined by &
⇤.

(Change: R= ! R; .)

Define ⇡
"

to be the projection of " on to the D-space:

⇡
"

:= {D 2 R= : (D,F) 2 " for some F 2 R} (12.48)

We may write ⇡ for ⇡
"

if " is understood from the context. Then the relative interior
of " and that of ⇡

"
are related as:

ri(") = {(D,F) 2 R;+1 : D 2 ri(⇡
"
), F > F̄ for some (D, F̄) 2 "}

Lemma 12.30 (MC/MC strong duality). Suppose

• Finite primal value: F⇤
> �1.

• Convexity: " is convex.
• Constraint qualification: 0 2 ri

�
⇡

"

�
.

Then

1. 3
⇤ = F

⇤ in (12.46).
2. the set &⇤ in (12.47) of dual optimal solutions is nonempty, convex and closed. In

particular dual optimality is attained, i.e., 3⇤ = 3 (`⇤) at some `
⇤ 2 &

⇤.
3. If 0 2 int

�
⇡

"

�
then &

⇤ is nonempty, convex and compact. ⇤

Note that the lemma only requires " to be convex, even if " is not. It guarantees
that the dual optimal value 3

⇤ is attained at some `
⇤ 2 R; , but does not guarantee

that the primal optimal value F
⇤ is attained even though F

⇤ is finite, i.e., (0,F⇤) may
be in cl(") but not in " . The lemma is proved by constructing a nonvertical proper
separating hyperplane defined by its normal (`⇤,1) that establishes the existence of an
optimal dual vector `⇤ (the hyperplane is called proper if it does not fully contain the
convex set "). The requirement 0 2 ri(⇡

"
) ensures that the hyperplane is nonvertical

so that the maximum crossing point is finite. The proof below that &⇤ is closed also
proves Lemma 12.29 on dual function 3 (`).

Every dual optimal  defines a supporting 
hyperplane 


 

at , with  in ``upper’’ 
halfspace of 


In this example,  is nonempty, convex and 
compact

μ* ∈ Q*

H := {(u, w) ∈ ℝl+1 : μ*𝖳u + w = w*}
(0,w*) ∈ cl(M) cl(M)

H

Q*



MC/MC strong duality 
Let projection of  onto -space





Lemma 
Suppose


• Finite primal value: 


• Convexity:  is convex


• Constraint qualification: 

Then

1. 


2.  is nonempty, convex and closed


3. If , then  is nonempty, convex and compact

M u
DM := {u ∈ ℝn : (u, w) ∈ M for some w ∈ ℝ}

w* > − ∞
M

0 ∈ ri (DM)

w* = d*
Q*

0 ∈ int (DM) Q*



MC/MC strong duality 
Proof sketch
1.  : Otherwise,   s.t.  


2.  separating  from  :   s.t. 





 implies





3.  : 


•  cannot be negative, for otherwise 


•  cannot be 0, for otherwise  .  Since , this 

infimum is attained at  over the convex set . 


 This is possible only if  is constant over , a contradiction 

(0,w*) ∉ ri(M) ∃(0,w̄) ∈ M w* > w̄
H (0,w*) M ∃(μ, β) ∈ ℝl+1

βw* ≤ μ𝖳u + βw, ∀(u, w) ∈ M
(0,w*) ∉ ri(M)

βw* ≤ inf
(u,w)∈M

μ𝖳u + βw < sup
(u,w)∈M

μ𝖳u + βw

β > 0
β inf

(u,w)∈M
μ𝖳u + βw → − ∞

β 0 ≤ inf
(u,w)∈M

μ𝖳u = inf
u∈DM

μ𝖳u 0 ∈ ri(DM)

u = 0 DM

μ𝖳u = 0 DM



MC/MC strong duality 
Proof sketch
4. Strong duality : Since , can renormalize to , 





5.  convex and closed : The dual function  is concave   is convex.


The dual function  is upper semicontinuous   is closed.


If , then  is bounded, and hence compact.

β > 0 μ* := μ/β β* = 1
w* ≤ inf

(u,w)∈M
μ*𝖳u + w =: d(μ*) ≤ d*

Q* d(μ) ⇒ Q*
d(μ) ⇒ Q*

0 ∈ int(DM) Q*



Slater Theorem
Proof: CQ1
Theorem 
Suppose


• Finite primal value: 


• Convexity:  is a nonempty convex set;  are proper convex functions; 

• Slater condition: one of the following holds:


‣ CQ1:   s.t.  ; or

Then

1. 


2. If CQ1 holds, then  is nonempty, convex and compact

f* > − ∞
X′￼ f, h

∃x̄ ∈ dom( f ) ∩ X′￼ h(x̄) < 0

f* = d*
Q*

Idea: specify  in terms of cost and constraint functions , and use LemmaM f, h



Slater Theorem
Proof: CQ1
Consider





Let




Its positive extension:




Projection onto -space


Primal f* := inf
x∈ℝn

f(x)  s.t.  x ∈ X′￼, h(x) ≤ 0

Dual d* := sup
μ≥0 (d(μ) := inf

x∈X′￼

f(x) + μ𝖳h(x))
M := {(h(x), f(x)) ∈ ℝl+1 : x ∈ dom( f ) ∩ X′￼}

M := {(u, w) ∈ ℝl+1 : u ≥ h(x), w ≥ f(x) for some x ∈ dom( f ) ∩ X′￼}
u

DM = {u ∈ ℝl : u ≥ h(x) for some x ∈ dom( f ) ∩ X′￼}



Slater Theorem
Proof: CQ1

i
i
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700 Nonsmooth convex optimization

Consider the convex optimization problem (12.42), reproduced here:

Primal: 5
⇤ := inf

G2R=
5 (G) s.t. G 2 -

0, ⌘(G)  0 (12.50a)

Dual: 3
⇤ := sup

`�0
3 (`) (12.50b)

where 3 (`) := infG2- 0 ! (G,`) for ` 2 R;+ and ! (G,`) := 5 (G) + `T
⌘(G), G 2 R=, ` 2 R; ,

is the Lagrangian. We can treat the dual function 3 : R; ! [�1,1] as an extended
real-valued function defined as

3 (`) :=
⇢

infG2- 0 5 (G) + `
T
⌘(G), ` � 0

�1, otherwise
(12.50c)

The feasible set is - := {G 2 -
0 : ⌘(G)  0} ✓ R=.

To apply Lemma 12.30 let " := {(⌘(G), 5 (G)) 2 R;+1 : G 2 dom( 5 ) \ -
0}. Let its

positive extension be

" := {(D,F) 2 R;+1 : D � ⌘(G), F � 5 (G) for some G 2 dom( 5 )\ -
0} (12.51a)

and the projection onto the D-space be

⇡
"

= {D 2 R; : D � ⌘(G) for some G 2 dom( 5 )\ -
0} (12.51b)

Note that since G that underlies ⇡
"

lies in dom( 5 ), there always exists F > 5 (G) so
that D 2 ri(⇡

"
) if and only if (D,F) 2 ri(") for some F > 5 (G). The extended set

" defined by -
0 di�ers slightly from " in Figure 12.14 in that D 2 R; extends to

the “right” indefinitely; see Figure 12.16. In the result below constraint qualifications











































































































(a) Nonconvex "










































































































 (b) Convex "

Figure 12.16 The (D,F) space: " := (⌘(- 0), 5 (- 0)) := {(⌘(G), 5 (G) : G 2 dom( 5 )\ -
0} and its

positive extension " . (Figure change: R= ! R; . - ! "; " = " !" .)

imply that the primal problem (12.50a) is feasible so that " is nonempty. Indeed if Ḡ
is a feasible point for (12.50a) then (0, 5 (Ḡ)) 2 " . Moreover " is convex since -

0 is
a convex set and 5 ,⌘ are convex functions.

M M


u ∈ ℝl

u ∈ ℝl

M M



Slater Theorem
Proof: CQ1
Equivalent MC/MC formulation in terms of  :





Set of dual optimal solutions:


M
Primal: f* := inf

(0,w)∈M
w

Dual: d* := sup
μ∈ℝl (d(μ) := inf

(u,w)∈M
μ𝖳u + w)

Q* = {μ* ∈ ℝl : d(μ*) := inf
(u,w)∈M

μ*𝖳u + w = w*}



MC/MC strong duality 
Let projection of  onto -space





Lemma 
Suppose


• Finite primal value: 


• Convexity:  is convex


• Constraint qualification: 

Then

1. 


2.  is nonempty, convex and closed


3. If , then  is nonempty, convex and compact

M u
DM := {u ∈ ℝn : (u, w) ∈ M for some w ∈ ℝ}

w* > − ∞
M

0 ∈ ri (DM)

w* = d*
Q*

0 ∈ int (DM) Q*



Slater Theorem
Proof: CQ1
1.  : By assumption


2. Convex  : Suppose , i.e.,   s.t. 


 


Convexity of  implies





Convexity of  implies





i.e., 


3.  : CQ1 gives   with   where


f* > − ∞
M (u1, w1), (u2, w2) ∈ M ∃x1, x2 ∈ dom( f ) ∩ X′￼

ui ≥ h(xi), wi ≥ f(xi) i = 1,2
h

αu1 + (1 − α)u2 ≥ h(αx1 + (1 − α)x2)
f

αw1 + (1 − α)w2 ≥ f(αx1 + (1 − α)x2)
α(u1, w1) + (1 − α)(u2, w2) ∈ M

0 ∈ int (DM) x̄ ∈ dom( f ) ∩ X′￼ h(x̄) < 0 ⇒ 0 ∈ int (DM)
DM = {u ∈ ℝl : u ≥ h(x) for some x ∈ dom( f ) ∩ X′￼}



Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs

• General method

• Linear program, convex quadratic program

• Second-order cone program

• Conic program



Special convex programs

i
i
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April 20, 2024: Special programs: summary

LP

11.4

SOCP

11.4

SDP

11.4

Conic 

program


17.8

Convex 

inequality


17.11

• Doublecheck chapter references after revisions

• Include convex QP?

QP

11.4

Figure 7.15 Special classes of convex problems studied in this section and Chapter 12.8 using
nonsmooth methods. (Doublecheck section references in the figure.)

5 (G) ⌘(G)  0 su�cient condition 5
⇤ = 3⇤ = 3 (_⇤,`⇤)

KKT, saddle pt

LP linear a�ne finite 5 ⇤ Th 7.21

QP quadratic a�ne feasibility (if & � 0) Th 7.22, 7.23

SOCP convex ⌘(G) 2  soc finite 5 ⇤, �Ḡ = 1 Th 7.24, 7.25
⌘(G) := ⌫̃G + 3̃ ⌘(Ḡ) 2 ri( soc)

SDP convex ⌘(G) 2  psd finite 5 ⇤, �Ḡ = 1 Th 7.26
⌘(G) := ⌫0 +

Õ
=

8=1 G8⌫8 ⌘(Ḡ) 2 ri( psd)

Conic prog. convex ⌘(G) 2  finite 5 ⇤, �Ḡ = 1 Th 12.31, 12.32
⌘(G) := ⌫G + 3 ⌘(Ḡ) 2 ri( )

Convex prog. convex convex finite 5 ⇤, �Ḡ = 1 Exercise 12.22
⌘(Ḡ) < 0

Table 7.3 Summary: strong duality, dual optimality and KKT condition.

in Table 7.3.

The classes in Figure 7.15 di�er mainly in the convex constraint ⌘(G)  0:

1. Linear program (LP): 5 (G) = 2T
G and ⌘(G)  0 specifies ⌫G + 3 2 ':

+ := {G 2 R: :
G � 0}, i.e., an a�ne transformation of G is in the nonnegativity cone.

2. Quadratic program (QP): 5 (G) = GT
&G+22G with a positive semidefinite cost matrix

& and an a�ne constraint ⌫G + 3 2 ':

+ .
3. Second-order cone program (SOCP): ⌘(G)  0 specifies ⌫G + 3 2  soc := {G 2 R: :

kG:�1k2  G: }, i.e., an a�ne transformation of G is in the second-order cone.
4. Semidefinite program (SDP): ⌘(G)  0 specifies ⌫G + 3 2  psd ⇢ S: , i.e., an a�ne

transformation of G is in the semidefinite cone.
5. Conic program: ⌘(G)  0 specifies ⌫G + 3 2  ✓ R: , i.e., an a�ne transformation

of G is in a closed convex cone  .
6. Convex inequality: ⌘ : R= ! R: is a convex function.
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April 20, 2024: Special programs: summary

LP

11.4

SOCP

11.4

SDP

11.4

Conic 

program


17.8

Convex 

inequality


17.11

• Doublecheck chapter references after revisions

• Include convex QP?

QP

11.4

Figure 7.15 Special classes of convex problems studied in this section and Chapter 12.8 using
nonsmooth methods. (Doublecheck section references in the figure.)

5 (G) ⌘(G)  0 su�cient condition 5
⇤ = 3⇤ = 3 (_⇤,`⇤)

KKT, saddle pt

LP linear a�ne: ⌫G + 3 2 R;+ finite 5 ⇤ Th 7.21

QP quadratic a�ne: ⌫G + 3 2 R;+ feasibility (if & � 0) Th 7.22, 7.23

SOCP convex ⌘(G) 2  soc finite 5 ⇤, �Ḡ = 1 Th 7.24, 7.25
⌘(G) := ⌫̃G + 3̃ ⌘(Ḡ) 2 ri( soc)

SDP convex ⌘(G) 2  psd finite 5 ⇤, �Ḡ = 1 Th 7.26
⌘(G) := ⌫0 +

Õ
=

8=1 G8⌫8 ⌘(Ḡ) 2 ri( psd)

Conic prog. convex ⌘(G) 2  finite 5 ⇤, �Ḡ = 1 Th 12.31, 12.32
⌘(G) := ⌫G + 3 ⌘(Ḡ) 2 ri( )

Convex prog. convex convex finite 5 ⇤, �Ḡ = 1 Exercise 12.22
⌘(Ḡ) < 0

Table 7.3 Summary: strong duality, dual optimality and KKT condition.

in Table 7.3.

The classes in Figure 7.15 di�er mainly in the convex constraint ⌘(G)  0:

1. Linear program (LP): 5 (G) = 2T
G and ⌘(G)  0 specifies ⌫G + 3 2 R;+ := {G 2 R; :

G � 0}, i.e., an a�ne transformation of G is in the nonnegativity cone.
2. Quadratic program (QP): 5 (G) = GT

&G+22G with a positive semidefinite cost matrix
& and an a�ne constraint ⌫G + 3 2 ';

+.
3. Second-order cone program (SOCP): ⌘(G)  0 specifies ⌫G + 3 2  soc := {G 2 R; :

kG;�1k2  G;}, i.e., an a�ne transformation of G is in the second-order cone.
4. Semidefinite program (SDP): ⌘(G)  0 specifies ⌫G + 3 2  psd ⇢ S; , i.e., an a�ne

transformation of G is in the semidefinite cone.
5. Conic program: ⌘(G)  0 specifies ⌫G +3 2  ✓ R; , i.e., an a�ne transformation of
G is in a closed convex cone  .

6. Convex inequality: ⌘ : R= ! R; is a convex function.



General method
Smooth setting
Consider





where   is a convex function, , , and  is a convex function


General method

1. Dual problem 

Define Lagrangian  :





Then dual function is  and dual problem is :





f* := min
x∈ℝn

f(x)  s.t.  Ax = b, h(x) ≤ 0

f : ℝn → ℝ A ∈ ℝm×n b ∈ ℝm h : ℝn → ℝl

L(x, λ, μ) : ℝn+m+l → ℝ
L(x, λ, μ) := f(x) − λ𝖳(Ax − b) + μh(x), x ∈ ℝn, (λ, μ) ∈ ℝm+l

d(λ, μ) := min
x∈ℝn

L(x, λ, μ)

d* := max
(λ,μ)∈ℝm+l

d(λ, μ) s.t. μ ≥ 0



General method
Smooth setting
2. Strong duality and dual optimality 

If (i)  is finite, (ii)  are convex, and (iii) Slater condition is satisfied, then the Slater 
Theorem implies that strong duality holds and dual optimality is attained (do not guaranteed 
primal optimality is attained)


3. KKT condition and primal optimality 
If (i)  are convex, and (ii) Slater condition is satisfied, then the KKT Theorem implies that a 
feasible  is optimal if and only if   s.t. 





Moreover, a KKT point is a saddle point that attains both primal and dual optimality and 
closes duality gap, i.e., 


f* f, h

f, h
x* ∃(λ*, μ*) ∈ ℝm+l

∇f(x*) = A𝖳λ* − ∇h(x*)μ, μ*𝖳h(x*) = 0, μ* ≥ 0

f* = f(x*) = d(λ*, μ*) = d*



General method
Nonsmooth setting
Consider





where   is a convex function, , ,  is a nonempty closed convex set that may be 
specified explicitly as  for a convex function 


General method

1. Dual problem 

• If , then same as in smooth setting, except using subgradients


• If  for a closed convex cone , then define Lagrangian  :





Then dual function is  and dual problem is :


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ X ⊆ ℝn

f : ℝn → ℝ A ∈ ℝm×n b ∈ ℝm X
X := {x : h(x) ≤ 0} h : ℝn → ℝl

X := {x : h(x) ≤ 0}
X := {x : Bx + d ∈ K} K L(x, λ, μ) : ℝn+m+l → ℝ
L(x, λ, μ) := f(x) − λ𝖳(Ax − b) + μ(Bx + d), x ∈ ℝn, λ ∈ ℝm, μ ∈ K* ⊆ ℝl

d(λ, μ) := min
x∈ℝn

L(x, λ, μ)

d* := max
(λ,μ)∈ℝm+l

d(λ, μ) s.t. μ ∈ K*



General method
Nonsmooth setting
2. Strong duality and dual optimality 

Same as in smooth setting (does not require differentiability)

3. KKT condition and primal optimality 

Suppose (i)  are convex, and (ii) Slater condition is satisfied.  Stationarity condition in KKT 
may no longer be derived from .


Example  Suppose .   Convert to unconstrained optimization:





where .   Generalized KKT Theorem implies:  is optimal if and 
only if  such that 





or:     

f, h
∇xL(x*, μ*) = 0

X := {x : Bx + d ∈ K}
f* := min

x∈ℝn
f(x) + δH(x) + δK(Bx + d)

H := {x ∈ ℝn : Ax = b} x*
∃ξ* ∈ ∂f(x*), λ* ∈ ℝm, μ* ∈ ℝl

ξ* ∈ − NH(x*) − B𝖳NK(Bx* + d)
ξ* = A𝖳λ* + B𝖳μ*, μ*𝖳(Bx* + d) = 0, μ* ∈ K*



Linear program
Consider





where 

Lagrangian:


 
Dual function:





Dual problem:




Let  be feasible sets

f* := min
x∈ℝn

c𝖳x s.t. Ax ≥ b

c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm

L(x, μ) := (c − A𝖳μ)𝖳 x + b𝖳μ x ∈ ℝn, μ ∈ ℝm

d(μ) := min
x∈ℝn

L(x, μ) = {b𝖳μ if  A𝖳μ = c
−∞ if  A𝖳μ ≠ c

d* := max
μ≥0

d(μ) = max
μ≥0

b𝖳μ s.t. A𝖳μ = c

X := {x ∈ ℝn : Ax ≥ b}, Y := {μ ∈ ℝm : A𝖳μ = c, μ ≥ 0}



Linear program
Consider





where 

Lagrangian:


 
Dual function:





Dual problem:




Let  be feasible sets

f* := min
x∈ℝn

c𝖳x s.t. Ax ≥ b

c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm

L(x, μ) := (c − A𝖳μ)𝖳 x + b𝖳μ x ∈ ℝn, μ ∈ ℝm

d(μ) := min
x∈ℝn

L(x, μ) = {b𝖳μ if  A𝖳μ = c
−∞ if  A𝖳μ ≠ c

d* := max
μ≥0

d(μ) = max
μ≥0

b𝖳μ s.t. A𝖳μ = c

X := {x ∈ ℝn : Ax ≥ b}, Y := {μ ∈ ℝm : A𝖳μ = c, μ ≥ 0}



Linear program
Theorem 

1. Strong duality and primal-dual optimality.  Exactly one of the following holds:


(a) If , then  such that 

 

(b) If primal is feasible but unbounded, then , i.e., dual infeasible


(c) If dual is feasible but unbounded, then , i.e., primal infeasible


(d) Both are infeasible, i.e., 


2. KKT characterization.  A feasible  is optimal if and only if there is a feasible  s.t.





Such a point  is a saddle point and a KKT point, and hence is primal-dual optimal with 
 


−∞ < f* < ∞  or  − ∞ < d* < ∞ ∃(x*, μ*) ∈ X × Y
c𝖳x* = f* = d* = b𝖳μ*

f* = − ∞ = d*

f* = ∞ = d*

f* = ∞  and  d* = − ∞

x* ∈ X μ* ∈ Y

μ*𝖳(Ax* − b) = 0

(x*, μ*)
c𝖳x* = b𝖳μ*



Linear program

i
i
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1. 5
⇤ := minG2R= 2

T
G s.t. �G = 1, G � 0 where 2 2 R=, � 2 R<⇥= and 1 2 R<.

2. 5
⇤ := minG2R= 2

T
G s.t. �G = 1, ⌫G + 3 � 0 where 2 2 R=, � 2 R<⇥=, 1 2 R<,

⌫ 2 R=⇥: and 3 2 R: .

Solution. For part 1 the Lagrangian ! : R2=+< ! R of (7.53) is

! (G,_,`) :=
⇣
2� �

T
_� `

⌘T
G + 1

T
_ G 2 R=, _ 2 R<, ` 2 R=

the dual function is

3 (_,`) := min
G2R=

! (G,_,`) =
⇢
1

T
_ if �

T
_+ ` = 2

�1 if �
T
_+ ` < 2

and the dual problem is

3
⇤ = max

_2R<,`�0
1

T
_ s.t. �

T
_+ ` = 2

Let - := {G 2 R= : �G = 1,G � 0} and . := {(_,`) 2 R<+= : �T
_+ ` = 2, ` � 0} be the

feasible sets. All the structural results of Theorem 7.21 holds. The only change is that
(7.55) becomes, since �G

⇤ = 1,

1
T
`
⇤ = 2

T
G
⇤ � `

⇤T
G
⇤  2

T
G
⇤

and hence a feasible G
⇤ 2 - is optimal if and only if there exists a dual optimal

(_⇤,`⇤) 2 R<+= with

�
T
_
⇤ + `

⇤ = 2, `
⇤T
G
⇤ = 0, `

⇤ � 0

Part 2 can be converted to the problem in part 1 by introducing the slack variable
B 2 R: : 5

⇤ := min(G,B)2R=+: 2
T
G s.t. �G = 1, ⌫G + 3 � B = 0, B � 0. (April 21, 2024:

Exercise?) ⇤

Each of the primal and dual problems can either be “bounded feasible”, “unbounded
feasible”, or “infeasible”, giving 9 cases. Weak and strong duality imply only 4 of these
9 cases are possible, as explained in Table 7.4 and its caption. The only case where the
optimal values are attained at finite G

⇤ or (_⇤,`⇤) is when both problems are bounded
feasible.

primal
bounded feasible unbounded feasible infeasible

dual
bounded feasible (G⇤,_⇤,`⇤) ⇥ (sd) ⇥ (sd)
unbounded feasible ⇥ (sd) ⇥ (wd) 5

⇤ = 3
⇤ =1

infeasible ⇥ (sd) 5
⇤ = 3

⇤ = �1 3
⇤ = �1 <1 = 5

⇤

Table 7.4 Four possibilities: Strong duality in Theorem 7.21 excludes 4 possibilities labeled
“⇥(sd)”. The 5th impossibility, labeled “⇥(wd)”, violates weak duality. Optimal values are attained
only in one case.



Linear program
Example:  Infeasible LP pair


Consider





Its dual is


min
x

x  s.t.  [ 1
−1] x ≥ [0

1]
max
μ≥0

μ2  s.t.  − μ2 = 1



Linear program
Example:  Unbounded primal, infeasible dual 

Consider  




Then .  

Its dual function is:





The constraint implies , and hence there is no  with 

(α < 1)
f* := min

x≥0
− x1 + αx2  s.t.  x1 − x2 = 0

f* = − ∞

d(λ, μ) := 0 if  [−1
α] = [ 1

−1] λ + μ

−∞ otherwise

, λ ∈ ℝ, μ ∈ ℝ2
+

μ1 + μ2 = − (1 − α) < 0 (λ, μ) μ ≥ 0



Quadratic program
Consider





where 


Since  we have the spectral decomposition


 

where  and columns of  form an orthonormal basis

Hence





f*1 := min
x∈ℝn

f(x) := x𝖳Qx + 2c𝖳x

Q ∈ ℝn×n with Q ⪰ 0, c ∈ ℝn

Q ⪰ 0

Q = UΛU𝖳 = [Ur Un−r] [Λr 0
0 0] [ U𝖳

r

U𝖳
n−r] = UrΛrU𝖳

r

r = rank(Q) U

range(Q) = span(Ur), null(Q) = span(Un−r), Q† := UrΛ−1
r U𝖳

r , r ≤ n



Quadratic program
Consider





where 


Since  we have the spectral decomposition


 

where  and columns of  form an orthonormal basis

Hence





f*1 := min
x∈ℝn

f(x) := x𝖳Qx + 2c𝖳x

Q ∈ ℝn×n with Q ⪰ 0, c ∈ ℝn

Q ⪰ 0

Q = UΛU𝖳 = [Ur Un−r] [Λr 0
0 0] [ U𝖳

r

U𝖳
n−r] = UrΛrU𝖳

r

r = rank(Q) U

range(Q) = span(Ur), null(Q) = span(Un−r), Q† := UrΛ−1
r U𝖳

r , r ≤ n



Quadratic program
Theorem 

1. If , then a minimizer  is

 

The set set of minimizers is 


2. If , then 


3. If , then the unique minimizer  is





c ∈ range(Q) x*
x* = − Q†c, f*1 = − c𝖳Q†c

x* ∈ − Q†c + null(Q)

c ∉ range(Q) c*1 = − ∞

Q ≻ 0 x*

x* = − Q−1c, f*1 = − c𝖳Q−1c



Quadratic program
Consider





where 


Theorem: strong duality, dual optimality, KKT characterization 

Suppose .

1. Strong duality holds and dual optimality is attained


2. A feasible  is optimal if and only if  such that  and





Such a point is a saddle point and a KKT point,  is primal-dual optimal and 

f*2 := min
x∈ℝn

f(x) := x𝖳Qx + 2c𝖳x s.t. Ax = b, Bx + d ≥ 0

Q ∈ ℝn×n with Q ⪰ 0, c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm, B ∈ ℝk×n, d ∈ ℝk

Q ≻ 0

x* ∃(λ*, μ*) μ* ≥ 0

x* = Q−1(A𝖳λ* + B𝖳μ* − c), μ*𝖳(Bx* + d) = 0
(x*, λ*, μ*)

f*2 = f(x*) = d(λ*, μ*) = d*



Quadratic program
Consider





where 


Theorem: strong duality, dual optimality, KKT characterization 

Suppose .

1. Strong duality holds and dual optimality is attained


2. A feasible  is optimal if and only if  such that  and





Such a point is a saddle point and a KKT point,  is primal-dual optimal and 

f*2 := min
x∈ℝn

f(x) := x𝖳Qx + 2c𝖳x s.t. Ax = b, Bx + d ≥ 0

Q ∈ ℝn×n with Q ⪰ 0, c ∈ ℝn, A ∈ ℝm×n, b ∈ ℝm, B ∈ ℝk×n, d ∈ ℝk

Q ≻ 0

x* ∃(λ*, μ*) μ* ≥ 0

x* = Q−1(A𝖳λ* + B𝖳μ* − c), μ*𝖳(Bx* + d) = 0
(x*, λ*, μ*)

f*2 = f(x*) = d(λ*, μ*) = d*

(can be generalized to  in Exercises)Q ⪰ 0



Outline
1. Normal cones of feasible sets


2. CPC functions


3. Gradient and subgradient


4. Characterization: saddle point


5. Characterization: generalized KKT


6. Existence: primal optimum


7. Existence: dual optimum and strong duality


8. Special convex programs

• General method

• Linear program, convex quadratic program
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Second-order cone program (SOCP)
Consider





where   and  is the standard second-order cone:


 

Lagrangian is

 

Dual function is  and dual problem is





Let  be feasible sets

f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm K

K := {x ∈ ℝn : ∥xn−1∥2 ≤ xn}

L(x, λ, μ) := f(x) − λ𝖳(Ax − b) + μ (∥xn−1∥2 − xn), x ∈ ℝn, λ ∈ ℝm, μ ∈ ℝ
d(μ) := min

x∈ℝn
L(x, μ)

d* := max
μ≥0

d(μ)

X := {x ∈ ℝn : Ax = b,∥xn−1∥2 ≤ xn}, Y := {(λ, μ) ∈ ℝm+1 : μ ≥ 0}



Second-order cone program (SOCP)
Consider





where   and  is the standard second-order cone:


 

Lagrangian is

 

Dual function is  and dual problem is





Let  be feasible sets

f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm K

K := {x ∈ ℝn : ∥xn−1∥2 ≤ xn}

L(x, λ, μ) := f(x) − λ𝖳(Ax − b) + μ (∥xn−1∥2 − xn), x ∈ ℝn, λ ∈ ℝm, μ ∈ ℝ
d(μ) := min

x∈ℝn
L(x, μ)

d* := max
μ≥0

d(μ)

X := {x ∈ ℝn : Ax = b,∥xn−1∥2 ≤ xn}, Y := {(λ, μ) ∈ ℝm+1 : μ ≥ 0}



Second-order cone program (SOCP)
Consider





Theorem: SOCP duality and KKT 
1. Suppose  is finite and  such that  and .  Then strong duality holds and 

dual optimality is attained, i.e.,  with 


2. Suppose .  A feasible  is primal-dual optimal and closes 
duality gap if and only if





Such a point is a saddle point and a KKT point,  is primal-dual optimal and 

f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

f* ∃x̄ Ax̄ = b ∥x̄n−1∥2 < x̄n
∃(λ*, μ*) ∈ Y f* = d* = d(λ*, μ*)

[x*]n−1 ≠ 0 (x*, λ*, μ*) ∈ X × Y

∇f(x*) = A𝖳λ* + μ* [ −[x*]n−1

∥[x*]n−1∥2], μ* (∥[x*]n−1∥2 − x*n ) = 0

(x*, λ*, μ*)
f*2 = f(x*) = d(λ*, μ*) = d*

(constraint function  differentiable at )h(x) := ∥xn−1∥2 − xn x*



Second-order cone program (SOCP)
Part 1: Slater theorem


Part 2: Constraint function  is differentiable at .  Hence KKT condition 
can be derived by setting 





for stationarity, in addition to complementary slackness 


h(x) := ∥xn−1∥2 − xn x*

∇xL(x*, λ*, μ*) = 0

μ* (∥[x*]n−1∥2 − x*n ) = 0

Derivation



Second-order cone program (SOCP)
Consider





If , then the constraint function  is not differentiable at 


Need nonsmooth analysis to derive KKT condition


Theorem: SOCP duality and KKT 
3. Suppose .  Suppose  s.t.  (Slater condition).


(a) Case  :   is optimal iff  


(b) Case  :   is optimal iff


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

[x*]n−1 = 0 h(x) := ∥xn−1∥2 − xn x*

[x*]n−1 = 0 ∃x̄ Ax̄ = b, ∥x̄n−1∥2 < x̄n

x*n > ∥[x*]n−1∥2 = 0 x* ∂f(x*) ∋ A𝖳λ* for some λ* ∈ ℝm

x*n = ∥[x*]n−1∥2 = 0 x* = 0

∂f(0) ∋ A𝖳λ* + η* for some λ* ∈ ℝm, η* ∈ K



Second-order cone program (SOCP)

Part 3: Constraint function  is nondifferentiable at .  Use generalized KKT 
Theorem which requires the Slater condition.


(a) Rewrite SOCP as unconstrained optimization:





where  and 


(b) If Slater condition holds (  s.t. ), then  is optimal if and only if 
, i.e.,  such that





h(x) := ∥xn−1∥2 − xn x*

min
x∈ℝn

f(x) + δH(x) + δK(x)

H := {x ∈ ℝn : Ax = b} K := {x : ∥xn−1∥2 ≤ xn}

∃x̄ Ax̄ = b, ∥x̄n−1∥2 < x̄n x*
0 ∈ ∂f(x*) + NH(x*) + NK(x*) ∃ξ* ∈ ∂f(x*)

ξ* ∈ − NH(x*) − NK(x*)

Derivation



Second-order cone program (SOCP)

(c) Normal cones:





Substitute into optimality condition:  such that 


NH(x*) = {A𝖳λ ∈ ℝn : λ ∈ ℝm}

NK(x*) =
{ξ ∈ ℝn : ∥ξn−1∥2 ≤ − ξn} if x* = 0
{0 ∈ ℝn} if ∥[x*]n−1∥2 < x*n
{μ([x*]n−1, − x*n ) ∈ ℝn : μ ≥ 0} if ∥[x*]n−1∥2 = x*n > 0

∃ξ* ∈ ∂f(x*) ξ* ∈ − NH(x*) − NK(x*)

Derivation



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that 

x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

x*n > ∥[x*]n−1∥2 ≥ 0 ξ* = A𝖳λ*

Derivation

(constraint function  nondifferentiable if )h(x) := ∥xn−1∥2 − xn [x*]n−1 = 0



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that 


(ii) Case  :  such that 


x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

x*n > ∥[x*]n−1∥2 ≥ 0 ξ* = A𝖳λ*

x*n = ∥[x*]n−1∥2 > 0 ∃μ* ∈ ℝ+ ξ* = A𝖳λ* + μ* [−[x*]n−1

x*n ]

Derivation

(this is the smooth case)



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that 


(ii) Case  :  such that 


(iii) Case  :  such that 

x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

x*n > ∥[x*]n−1∥2 ≥ 0 ξ* = A𝖳λ*

x*n = ∥[x*]n−1∥2 > 0 ∃μ* ∈ ℝ+ ξ* = A𝖳λ* + μ* [−[x*]n−1

x*n ]
x*n = ∥[x*]n−1∥2 = 0 ∃η* ∈ 𝕂 ξ* = A𝖳λ* + η*

Derivation

(constraint function  nondifferentiable at )h(x) := ∥xn−1∥2 − xn x* = 0

Remark 
In all 3 cases, conditions are of the form  for some  

 

ξ* = A𝖳λ* + η* η* ∈ 𝕂

(η* = 0 or η* = μ* [−[x*]n−1

x*n ] ∈ K)



Second-order cone program (SOCP)
Consider





where  


Rewrite as standard SOCP:




where   and 


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, ∥Bx + d∥2 ≤ β𝖳x + δ

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm, B ∈ ℝ(l−1)×n, d ∈ ℝl−1, β ∈ ℝn, δ ∈ ℝ

f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

z = (zl−1, zl) ∈ ℝl, K := {x : ∥xn−1∥2 ≤ xn}

B̃ := [ B
β𝖳], d̃ := [d

δ]

SOC constraint



Second-order cone program (SOCP)
Consider





where  


Rewrite as standard SOCP:




where   and 


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, ∥Bx + d∥2 ≤ β𝖳x + δ

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm, B ∈ ℝ(l−1)×n, d ∈ ℝl−1, β ∈ ℝn, δ ∈ ℝ

f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

z = (zl−1, zl) ∈ ℝl, K := {x : ∥xn−1∥2 ≤ xn}

B̃ := [ B
β𝖳], d̃ := [d

δ]

SOC constraint



Second-order cone program (SOCP)
Rewrite as standard SOCP:





Lagrangian:

 

Dual problem:


 


where 


E.g. If , then  

f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

L(x, z, λ, γ, μ) := f(x) − λ𝖳(Ax − b) − γ𝖳(B̃x + d̃ − z) + μ (∥zl−1∥2 − zl)

d* := max
λ,γ (b𝖳λ − d̃𝖳γ) + d0(λ, γ) s.t. γ ∈ K

d0(λ, γ) := min
x∈ℝn (f(x) − (A𝖳λ + B̃𝖳γ)𝖳x)

f(x) := c𝖳x d* := max
(λ,γ)∈ℝm+l

b𝖳λ − d̃𝖳γ  s.t.  A𝖳λ + B̃𝖳γ = c, ∥γl−1∥2 ≤ γl

SOC constraint



Second-order cone program (SOCP)
Rewrite as standard SOCP:





Lagrangian:

 

Dual problem:


 


where 


Let 

f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

L(x, z, λ, γ, μ) := f(x) − λ𝖳(Ax − b) − γ𝖳(B̃x + d̃ − z) + μ (∥zl−1∥2 − zl)

d* := max
λ,γ (b𝖳λ − d̃𝖳γ) + d0(λ, γ) s.t. γ ∈ K

d0(λ, γ) := min
x∈ℝn (f(x) − (A𝖳λ + B̃𝖳γ)𝖳x)

X := {x ∈ ℝn : Ax = b,∥Bx + d∥2 ≤ β𝖳x + δ}, Y := {(λ, μ) ∈ ℝm+1 : μ ≥ 0}

SOC constraint



Second-order cone program (SOCP)
Rewrite as standard SOCP:





Theorem: SOCP duality and KKT 
Suppose   s.t.   (Slater condition).


1. Suppose  is finite.  Then strong duality holds and dual optimality is attained.


2. Suppose .  A point  is optimal if and only if  such that





Such a point is a saddle point and a KKT point that closes duality gap.

f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

∃x̄ Ax̄ = b, ∥Bx̄ + d∥2 < β𝖳x + δ

f*
Bx* + d ≠ 0 x* ∈ X ∃(λ*, μ*) ∈ Y

∇f(x*) = A𝖳λ* + μ* (−B𝖳(Bx* + d) + β∥Bx* + d∥2)
0 = μ* (∥Bx* + d∥2 − (β𝖳x* + δ))

SOC constraint

(constraint function  differentiable at )h(z) := ∥zl−1∥2 − zl x*



Second-order cone program (SOCP)
Part 1: Slater theorem


Part 2: Constraint function  is differentiable at .  Hence KKT condition 
can be derived by setting 





for stationarity, in addition to complementary slackness 


h(z) := ∥zl−1∥2 − zl (x*, z*)

∇x,zL(x*, z*, λ*, γ*, μ*) = 0

μ* (∥[z*]l−1∥2 − z*l ) = 0

SOC constraint: derivation



Second-order cone program (SOCP)
Rewrite as standard SOCP:





If , then the constraint function  is not differentiable at 
.  Need nonsmooth analysis to derive KKT condition.


Theorem: SOCP duality and KKT 
3. Suppose .  Suppose  s.t.  (Slater condition).


(a) Case  :   is optimal if 


(b) Case  :   is optimal iff


f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

zl−1 := Bx* + d = 0 h(z) := ∥zl−1∥2 − zl
(x*, z*)

Bx* + d = 0 ∃x̄ Ax̄ = b, ∥Bx̄ + d∥2 < β𝖳x̄ + δ

β𝖳x* + δ > 0 x* ∇f(x*) = A𝖳λ* for some λ* ∈ ℝm

β𝖳x* + δ = 0 x* = 0
∇f(0) = A𝖳λ* + B̃𝖳η* for some λ* ∈ ℝm, η* ∈ K

SOC constraint

(constraint function  nondifferentiable at )h(z) := ∥zl−1∥2 − zl x*



Second-order cone program (SOCP)
Rewrite as standard SOCP:





If , then the constraint function  is not differentiable at 
.  Need nonsmooth analysis to derive KKT condition.


Theorem: SOCP duality and KKT 
3. Suppose .  Suppose  s.t.  (Slater condition).


(a) Case  :   is optimal iff  


(b) Case  :   is optimal iff


f* := min
(x,z)∈ℝn+l

f(x)  s.t.  Ax = b, z = B̃x + d̃, z ∈ K

zl−1 := Bx* + d = 0 h(z) := ∥zl−1∥2 − zl
(x*, z*)

Bx* + d = 0 ∃x̄ Ax̄ = b, ∥Bx̄ + d∥2 < β𝖳x̄ + δ

β𝖳x* + δ > 0 x* ∂f(x*) ∋ A𝖳λ* for some λ* ∈ ℝm

β𝖳x* + δ = 0 x* = 0
∂f(0) ∋ A𝖳λ* + B̃𝖳η* for some λ* ∈ ℝm, η* ∈ K

SOC constraint

(constraint function  nondifferentiable at )h(z) := ∥zl−1∥2 − zl (x*, z*)



Second-order cone program (SOCP)

Part 3: Constraint function  is nondifferentiable at .  Use generalized 
KKT Theorem which requires the Slater condition.


(a) Rewrite as unconstrained optimization:





where





and


h(z) := ∥zl−1∥2 − zl (x*, z*)

min
(x,z)∈ℝn+l

f(x) + δH̃1
(x, z) + δK̃(x, z) + δH2

(x, z)

H̃1 := {(x, z) ∈ ℝn+l : Ax = b} =: H1 × ℝl, H1 := {x ∈ ℝn : Ax = b}
K̃ := {(x, z) ∈ ℝn+l : ∥zl−1∥2 ≤ zl} =: ℝn × K, K := {z ∈ ℝl : ∥zl−1∥2 ≤ zl}

H2 := {(x, z) ∈ ℝn+l : z = B̃x + d̃}

NH̃1
(x, z) = NH1

(x) × {0 ∈ ℝl}, NK̃(x, z) = {0 ∈ ℝn} × NK(z)

SOC constraint: derivation



Second-order cone program (SOCP)

(b) If Slater condition holds (  s.t. ), then a feasible  is 
optimal if and only if  such that


∃x̄ Ax̄ = b, ∥Bx̄ + d∥2 < β𝖳x̄ + δ (x*, z*)
∃ξ* ∈ ∂f(x*)

[ξ*
0] ∈ − NH̃1

(x*, z*) − NK̃(x*, z*) − NH2
(x*, z*)

= − [NH1
(x*)

0] − [ 0
NK(z*)] − NH2

(x*, z*)

SOC constraint: derivation



Second-order cone program (SOCP)
(c) Normal cones:





Substitute into optimality condition:  such that 





NH1
(x*) = {A𝖳λ ∈ ℝn : λ ∈ ℝm}

NK(z*) =

{η ∈ ℝl : ∥ηl−1∥2 ≤ − ηl} if z* = 0
{0 ∈ ℝl} if ∥[z*]l−1∥2 < z*l

{μ([z*]l−1, − z*l ) ∈ ℝl : μ ≥ 0} if ∥[z*]l−1∥2 = z*l > 0

NH2
(x*, z*) = {(B̃𝖳γ, − γ) ∈ ℝn+l : γ ∈ ℝl}

∃ξ* ∈ ∂f(x*)

[ξ*
0] ∈ − [NH1

(x*)
0] − [ 0

NK(z*)] − NH2
(x*, z*)

Derivation



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that  

x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

β𝖳x* + δ > ∥Bx* + d∥2 ≥ 0 ξ* = A𝖳λ* (γ* = 0)

Derivation

(constraint function  nondifferentiable if )h(z) := ∥zl−1∥2 − zl [z*]l−1 = 0



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that  


(ii) Case  :  such that 





x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

β𝖳x* + δ > ∥Bx* + d∥2 ≥ 0 ξ* = A𝖳λ* (γ* = 0)
β𝖳x* + δ = ∥Bx* + d∥2 > 0 ∃μ* ∈ ℝ+

ξ* = A𝖳λ* + μ* (−B𝖳(Bx* + d) + β(β𝖳x* + δ))

Derivation

(this is the smooth case)



Second-order cone program (SOCP)

(d) A feasible  is optimal if and only if  and


(i) Case  : such that  


(ii) Case  :  such that 


(i) 


(iii) Case  :  such that 

x* ∃ξ* ∈ ∂f(x*), λ* ∈ ℝm

β𝖳x* + δ > ∥Bx* + d∥2 ≥ 0 ξ* = A𝖳λ* (γ* = 0)
β𝖳x* + δ = ∥Bx* + d∥2 > 0 ∃μ* ∈ ℝ+

ξ* = A𝖳λ* + μ* (−B𝖳(Bx* + d) + β(β𝖳x* + δ))
β𝖳x* + δ = ∥Bx* + d∥2 = 0 ∃η* ∈ 𝕂 ξ* = A𝖳λ* + B̃𝖳η*

Derivation

Remark 
In all 3 cases, conditions are of the form  for some  

 

ξ* = A𝖳λ* + B̃𝖳η* η* ∈ 𝕂

η* = 0 or η* = μ* [−[z*]l−1

z*k ] ∈ K

(constraint function  nondifferentiable at )h(z) := ∥zl−1∥2 − zl z* = 0
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Conic program
Consider





where   is a closed convex cone


Lagrangian:




Dual function:


 

where 


Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm, K ⊆ ℝn

L(x, λ, μ) := f(x) − λ𝖳(Ax − b) − μ𝖳x, x ∈ ℝn, λ ∈ ℝm, μ ∈ K* ⊆ ℝn

d(λ, μ) := min
x∈ℝn

L(x, λ, μ) = λ𝖳b + d0(λ, μ), λ ∈ ℝm, μ ∈ K*⊆Rn

d0(λ, μ) := min
x∈ℝn (f(x) − (A𝖳λ + μ)𝖳x)

d* := max
λ∈ℝm, μ∈K*

λ𝖳b + d0(λ, μ)

Conic feasible set



Conic program
Consider





where   is a closed convex cone


Lagrangian:




Dual function:


 

where 


Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm, K ⊆ ℝn

L(x, λ, μ) := f(x) − λ𝖳(Ax − b) − μ𝖳x, x ∈ ℝn, λ ∈ ℝm, μ ∈ K* ⊆ ℝn

d(λ, μ) := min
x∈ℝn

L(x, λ, μ) = λ𝖳b + d0(λ, μ), λ ∈ ℝm, μ ∈ K*⊆Rn

d0(λ, μ) := min
x∈ℝn (f(x) − (A𝖳λ + μ)𝖳x)

d* := max
λ∈ℝm, μ∈K*

λ𝖳b + d0(λ, μ)

Conic feasible set



Conic program
To derive KKT condition, rewrite as unconstrained optimization





where   


Under Slater condition (  s.t. ), generalized KKT theorem implies:  is optimal 
if and only if  such that




where


min
x∈ℝn

f(x) + δH(x) + δK(x)

H := {x ∈ ℝn : Ax = b}

∃x̄ ∈ ri(K) Ax̄ = b x*
∃ξ* ∈ ∂f(x*)

−ξ* ∈ NH(x*) + NK(x*)

NH(x*) = {A𝖳λ ∈ ℝn : λ ∈ ℝm}
NK(x*) = {μ̃ ∈ K∘ ⊆ ℝn : μ̃𝖳x* = 0}

Conic feasible set



Conic program

Consider   


Theorem: Conic duality and KKT 
Suppose   s.t.   (Slater condition).


1. Suppose  is finite.  Then strong duality holds and dual optimality is attained.


2. A feasible  is optimal if and only if  such that





Such a point  is a saddle point and a KKT point that closes the duality gap.

f* := min
x∈ℝn

f(x)  s.t.  Ax = b, x ∈ K

∃x̄ ∈ ri(K) Ax̄ = b
f*
x* ∃ξ* ∈ ∂f(x*) and (λ*, μ*) ∈ ℝm × K*

ξ* = A𝖳λ* + μ*, μ*𝖳x* = 0
(x*, λ*, μ*)

Conic feasible set



Conic program
Consider





where   is a closed convex cone


Dual problem:


f* := min
x∈ℝn

f(x)  s.t.  Ax = b, Bx + d ∈ K

f : ℝn → ℝ, A ∈ ℝm×n, b ∈ ℝm, B ∈ ℝl×n, d ∈ ℝl, K ⊆ ℝl

d* := max
(λ,μ)∈ℝm+l

d(λ, μ) := (b𝖳λ − d𝖳μ) + d0(λ, μ) s.t. μ ∈ K* ⊆ ℝl

Conic constraint

feasible may not be cone



Conic program

Consider   


Theorem: Conic duality and KKT 
Suppose   s.t.   (Slater condition).


1. Suppose  is finite.  Then strong duality holds and dual optimality is attained.


2. A feasible  is optimal if and only if  such that





Such a point  is a saddle point and a KKT point that closes the duality gap.

f* := min
x∈ℝn

f(x)  s.t.  Ax = b, Bx + d ∈ K

∃x̄ Ax̄ = b, Bx̄ + d ∈ ri(K)
f*
x* ∃ξ* ∈ ∂f(x*) and (λ*, μ*) ∈ ℝm × K*

ξ* = A𝖳λ* + B𝖳μ*, μ*𝖳(Bx* + d) = 0
(x*, λ*, μ*)

Conic constraint


