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Motivation

Consider

min  f(x) s.t. xeX
xeR"

where f : R" — R is convex function and X C R" is convex set

Develop basic theory to answer:

1. How to characterize optimal solutions?
« Saddle point theorem, KKT theorem

2. When will optimal solutions exist and when will it be unique?
» Primal optimality, Slater theorem



Motivation

Generalization of smooth convex optimization theory (Ch 7.3) to nonsmooth setting:
» Cost or constraint functions may not be differentiable

» Cost or constraint functions may take * oo values

» But cost and constraint functions are convex (hence subdifferentiable & continuous in ri(effective
domain))

Nonsmoothness arises in:

. Dual problem: min d(A,u) st u>0 nonsmooth d(4, u)
Ap
. Robust optimization:  min f(x) st A(x):=maxh(x,¢) < 0 nonsmooth /(x)
xeR” cez
» Two-stage optimization with recourse:
inf ) +0x) st hlx) <0 nonsmooth Q(x)
X

O(x) =E, ( inf {/°5, y(@)) : K5 y0) < o})

Y@



Motivation

For convex opt, optimality conditions are based on linear approximations of cost function and
feasible set, e.qg.

= Vfx*) = Vgx*)a* + VAx*)u*

i.e. x™ is minimizer iff negative gradient — V f(x™*) points away from linear approximation of feasible
set at x*, defined by gradients V g(x*), V h(x*) of constraint functions

For nonsmooth setting, how to generalize:
1. Linear approximation of feasible set
« Tangent cone Ty(x™) or equivalently normal cone Ny(x*)

2. Smooth real-valued functions
» Extended real-valued CPC functions
3. Gradients

 Subgradients df(x), dg(x), oh(x) which always exist for convex (extended real-valued) functions



Motivation

Turns out smoothness is unimportant for structural properties (important for computation)
* Fundamental property is convexity of cost and constraint functions

To generalize structural results to nonsmooth setting
» Generalize: linear approximations of feasible set, CPC functions, subgradients
» Express optimality conditions in terms of cost subgradient and normal cone
* Nonsmooth perspective is more abstract, but simpler, geometric and unifying



Outline

1. Normal cones of feasible sets

CPC functions

Gradient and subgradient

Characterization: saddle point = pd optimality + strong duality
Characterization: generalized KKT

Existence: primal optimum

Existence: dual optimum and strong duality
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Special convex programs
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Normal cones of feasible sets
* Polar cone
* Normal cone and tangent cone
» Affine transformation
* Second-order cones and SOC constraints
* Proofs

CPC functions

Gradient and subgradient

Characterization: saddle point
Characterization: generalized KKT
Existence: primal optimum

Existence: dual optimum and strong duality

Special convex programs



Polar cone

Definition

Let X C R" be a nonempty set

1. The polarcone of Xis X°:= {y € R": y'x <0 Vx € X}

2. Thedualconeof XisX* :=—-X"={yeR":y'x>0 Vxe€X}
3. Acone K is called self-dual if K* = K

Remarks
e X°is the set of points “most opposite to/away from” X
« X* is the set of points “most aligned with/cloest to” X

« Dual cone K* is used to define the dual problem of a conic program where the nonlinear
constraint is x € K for a closed convex cone K



Polar cone

Examples

(a) Polar cones X° of X

X*
X X'=X

cone (X)

(b) Dual cones X* =—-X° of X

0&X
X° = (cone(X))°




Polar cone

Proposition

Let X C R" be a nonempty set

1. X' is a closed convex cone

2. X' =[cl(X)]° = [conv(X)]° = [cone(X)]’
3. fXCYthenY C X°

4. If X is a cone then (X°)° = cl(conv(X))



Normal cone and tangent cone

Let x € X C R". The feasible direction cone of X at X is

m
cone(X —Xx) := Z ax;—x):x; €X, a; >0, integers m > 0
i=1

Remarks

« cone(X — X) is set of directions and their convex combinations along which an infinitesimal step
from X will stay in X

« cone(X — X) is closed if and only if X is closed

* cl(cone(X — X)) is a linear approximation of X at X € X : it is the smallest closed convex cone
containing all feasible directions x — x at x

 The feasible direction cone is sometimes defined as cone(X — X) ;== {y(x —X): x € X, y > 0}



Normal cone and tangent cone

Definition
Let X C R"” be a nonempty setand x € X
1. The tangent cone of X at X is Tx(X) := cl(cone(X — X))

2. The normal cone of X at X is
Ny(X) :=(cone(X —X%))'=X—-X%)={yeR": y'(x—x) <0 VxeX)

Proposition

Let X C R"” be a nonempty setand x € X

1. X°, X*, Ty(x), Ny(X) are closed convex cones

2. (Ty(®)" = Ny(®) and Ty(®) = (Ny(®)'

3. Ifx € int(X) then Ny(x) = {0} and Tx(Xx) = R" If X € ri(X), then Ny(x) 2 {0} in general



Normal cone and tangent cone

Examples
« While X* is a set, Ni(X) and Ty(X) are (set-
valued) functions of X, i.e., they depend on x
£ « If 0 € X, then X° = Ny(0) and
Tx(¥) =half-space T(O)=K T(x) = (X°)° = cl(conv(X))
|
|
f (a) Pointed cone (b) Pointed cone: x :=0
l
{ —_
% Ni(®) K .
) ' Tx(®) =R’ - _K o
| Tu(®=K f=£
. (c) Non-pointed nonconvex cone (d) Non-pointed convex cone




Linear approximation & optimality

« Ty(X) is alinear approximation of X at x € X
» Smallest closed convex cone containing feasible directions at x
e Ny(X) is “most opposite” to Tx(X) at X
» If X is smooth at X, then T(X) is a halfspace (supporting hyperplane) and Ny(X) is singleton
« Optimality condition: x* is optimal if direction of cost reduction at x* aligns with Ny(x*), i.e.,
— VAx*) € Ny(x*)
> In smooth setting (KKT): — Vf(x*) = Vg(x*)A* + Vh*)u*

Tx(X) Ti(%)

Nk(X) Ni(X)




Normal cones

hyperplane: H, :={xeR": Ax = b}

polyhedron: Hy, ={xeR": Ax < b}

nonnegative cone: K, ={xeR": x>0}

convex cone: K CR”

Theorem

1. Ny (X) = range(A”) = {ATA € R": 1 € R")

2. Ny (%) = cone (A]) = {ATA€R": 1€ RY, 1T(A% - b)} I:=1%) = {i:a'x= Db}

8. Ng,(®) = {yeR":y <0, y'% =0}
4. Ne(¥) = [ye K :y'x =0}

Derivation of NH2()E) uses Farkas Lemma (or Separating Hyperplane Thm)



Normal cone N ()

convex set (non-polyhedral): C={xeR": hx) <0} with convex h

« Farkas Lemma-type proof for NHz()'c) inadequate

» Due to second-order term in Taylor expansion of /(x) around X
* Need constraint qualification

LICQ (linear independence CQ):
columns of VA, (X) € R are linearly independent

where [ := I(X) := {i : h(X) = 0} is the set of active constraints



Normal cone N ()

convex set (non-polyhedral): C={xeR": hx) <0} with convex h
Let I := I(X) := {i : h(X) = 0}

Theorem

Suppose /1 : R" — R™ is real-valued twice continuously differentiable function that is convex
on R”. If x € C satisfies LICQ, then

1. Ne(X) = cone (VA(X)) = {Vh(X)A € R": 2 € RY, ATh(x) = 0}
2. Foreveryy € N(X), there exists unique 4; € [lel such that y = V h(X)4;

Remarks

 Constraint qualification is sufficient, but not necessary, for existence of A

* LICQ in constrained optimization ensures existence and uniqueness of dual optimal solution
* Proof uses: Farkas Lemma (or Separating Hyperplane Thm), LP duality, LICQ



Normal cone N, (x)

equality constrained: X ={xeR":g(x)=0} withconvexg

Note: X is nonconvex unless g is affine

Theorem

Suppose g : R" — R is real-valued twice continuously differentiable function that is convex
on R"™. If x € X satisfies LICQ, then

1. Ny(X) = range (Vg()?)) = {Vgl)A e R": 1€ R"}
2. Forevery y € Ny(X), there exists unique A such that y = V g(x)4

Remark
* Proof: write g(x) = 0 as g(x) <0, — g(x) <0, and use previous theorem



Set intersection

Multiple constraints

Let C; C R" be
« polyhedralsets C; := {x : Ax < b;} fori=1,....m
- convex sets (e.g. C; := {x : h(x) < 0} forconvex h) fori =m+ 1,...,m

Let C := ﬁ G
i=1

Theorem
If Slater-type CQ: (ﬂ?ll Cl-) ﬂ (ﬂ?imlri(ci))) #* @ then

Ne(® = ) N@®, ViecC



Summary

Set X C R" Normal cone Nx (¥) € R"

{x: Ax =b} range(A') :={AT1: 1 e R"}

{x :convex h(x) =0} range(Vh(x)) :={Vh(xX)A1: 1R} {x : h(x) = 0} may be nonconvex
{x:Ax < b} cone (A}) = {ATA1eR": ¢ R, AT (A% -b)}

{x:convex h(x) <0} cone(Vhj(X)) :={Vh(F)A:1€R”, ATh(%) =0}

cone {x :x > 0} {y<0:y"x=0}

cone K {yeK®:y'x=0}

« KKT conditions in (smooth) convex optimization most encountered in applications are
consequence of these results (more later): — Vf(x*) € Ny(x™)

. Multiple constraints: — Vf(x*) € ZNC,-(X*) = Vg(x*)A* + Vh(x*)u*

1
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Normal cones of feasible sets

e Affine transformation
e Second-order cones and SOC constraints
* Proofs

CPC functions

Gradient and subgradient

Characterization: saddle point
Characterization: KKT

Existence: primal optimum

Existence: dual optimum and strong duality

Special convex programs



Linear transformation

Image

Given a nonempty set X C R”, its image under A € R is
Y = AX = {AxeR":xe X}

letx € Xandy=Ax €Y

Theorem

1. The normal cone Ny(Y) is pre-image of Ny(X) under AT
Ny = {yeR™: ATy € Ny(®)}
Hence A TNy(7) C Ny(X)
2. If rank(A) = n (full column rank), then ATNY()'/) = Ny(X)

This result is used to derive normal cone of rotated second-order cone from that of standard SoC



Linear transformation

Image

Given a nonempty set X C R”, its image under A € R is
Y = AX = {AxeR":xe X} .

letx € Xandy=Ax €Y

v

Example: ATNY()'J) = Ny(X)




Linear transformation

Example: AY° C

XO

Ay X

Given X, Y = AX is image
¢ Ny(0) = X" and Ny(0) =7Y°
« Asingular: ATY° C X°



Linear transformation

Pre-image

Given a nonempty set Y C R"™, its pre-image under A € R"™ " is
X = {xeR":Ax €Y}

letx € Xandy=Ax €Y



Linear transformation

Image vs pre-image

x2 o x2+x1= 0 y2

X1

v

Ay X

Y2

N1

Given X, Y = AX is image
b Nx(O) = Xo and Ny(()) == Yo
« Asingular: ATY° C X°

Given Y, X := {x : Ax € Y} is pre-image
¢ Ny(0) =X° and Ny(0) =7Y°

« ATY® = X° (despite singular A)

« XDnull(A) = {x:x;+x, =0}



Linear transformation

Pre-image

Given a nonempty set Y C R"™, its pre-image under A € R"™ " is
X = {xeR":Ax €Y}

letx € Xandy=Ax €Y

Theorem
ATNY(3) = Ny(X)



Affine transformation

Image

Affine transformation: f(x) = Ax + b

Given a nonempty set X C R", its image under f'is
Y, = AX+b CR"

Lety,=AX+b€EY

Theorem

1. The normal cone NYb(jib) is pre-image of Ny(X) under AT and is independent of b:
Ny () = Nyx(A%) = {y e R": ATy € Ny(D)}
Hence ATNYb()'/b) C Ny(x)
2. If rank(A) = n (full column rank), then ATNYb()?b) = Ny(X)



Affine transformation

Pre-image

Given a nonempty set ¥ C R™, its pre-image under f'is
X, = {(xeR":Ax+b ey}

Letx € X, and y, =Ax+b €Y

Theorem
ATN Y()_’b) =N Xb(J_C)
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Normal cones of feasible sets

e Second-order cones and SOC constraints
* Proofs

CPC functions

Gradient and subgradient

Characterization: saddle point
Characterization: KKT

Existence: primal optimum

Existence: dual optimum and strong duality

Special convex programs



Second-order cone
Standard K

Standard second-order cone is
K :={(x,s) € R™": ||x]|, < s}

Theorem
1. K is closed convex cone

2. Polar coneis K° = {(y,1) € R"" : ||y, < — ¢t}
3. Normal cone is

-

o
N(x,5 = < {(0,0) € R}
{,u()?, —5HeR™ > O}

if (X,5) = (0,0)
if [|x]], <§
if |x]|, =5>0

%,%)
//
¢



Second-order cone
Rotated K,

Rotated second-order cone is
. 2.
K, :=={x € R™ : X"l £ X41X420 Xy 2 0, X0 2 0}

where x™ := (x{, ..., X,,)

Theorem

1. K, is closed convex cone

2. K=AK whereA= [0} 1 -1




Second-order cone
Rotated K,
Rotated second-order cone is
K :={x€R"™ :|Ix"|l, £ X, 1X,10> X, =0, x,,, >0}

where x™ := (x{, ..., X,,)

Theorem
3. Polarconeis K" = ATK° = {ATx € R : ||x"*}|, < — x,,,}

4. Normal cone is N (¥) = ATN(AX) is

ATK® ifAx =0

N @ = 4 (00 eR™) it |[AZ"*! ||, < [A%],,

{ u (IAF]™, = [AZ],,,) € R™2: > 0} i ARl = [AF],,, > 0

k



SOC constraint

Convex set C defined by SOC constraint:
C={xeR":Ax+b,c'x+d) €K} ={xe€R": ||Ax+ b||, < c'x+d}
Hence C'is pre-image of standard second-order cone K under affine transformation:

C:={xeR":Ax+be K} where A := [AT], b = [b]
c d

[
. C = K standard second-order cone if A = [ ”61 8], c=e,b=0,d=0

« (' may not be a cone, e.g., Cis a hyperplane if A = 0

Theorem

Nq(x) = ATNK@) where K is standard second-order cone



Summary

First-order optimality condition for convex opt:
x* is minimizer & — V f(x*) points away from linear approximation of feasible set at x*
(in smooth setting: — Vf(x*) = Vg(x®)A* + Vha(x*)u™)

Generalization to nonsmooth setting:
1. Linear approximation of feasible set
« Tangent cone Ty(x™)
2. Vectors most opposite to linear approximation
« Normal cone Ny(x*)
3. We have derived Ny(X) for:
» Feasible sets widely encountered in applications (hyperplanes, polyhedrons, cones, convex sets)

* Affine transformation of these basic sets
e Second-order cones, SOC constraints



Proofs



Normal cone N ()

convex set (non-polyhedral): C={xeR": hx) <0} with convex h
Let I := I(X) := {i : h(X) = 0}

Theorem

Suppose /1 : R" — R™ is real-valued twice continuously differentiable function that is convex
on R”. If x € C satisfies LICQ, then

1. Ne(X) = cone (VA(X)) = {Vh(X)A € R": 2 € RY, ATh(x) = 0}
2. Foreveryy € N(X), there exists unique 4; € [lel such that y = V h(X)4;

Proof uses: Farkas Lemma (or Separating Hyperplane Thm), LP duality, LICQ



Normal cone N ()

Proof

Let
No(x) = {yeR": y'(x—x) <0 Vxs.t h(x) <0}

Y(%) := cone (Vh(X)) = {VA()A € R": 1 € R}, ATh(x) = 0}

Suppose y € Y(X) : easy (use convexity of h)
Suppose y € N(x) : If I(X) = @, then X € int(C) and hence N-(x) = Y(x) = {0}.
Hence suppose I(x) # @ but y & Y(X).

Will construct x(¢) := X + tAx such that

e h(x(1) <0,tyTAx >0

« contradicting y € N(X), provingy € Y(x)
in 3 steps



Normal cone N ()
Proof

Step 1:
Farkas lemma implies that, if y &€ Y(X) convex cone, then there exists nonzero ¢ € R" with

cTVhi()'c) <0 < cly, Viel

Step 2:

Foreachi = 1,..., m,
2 2

h(x(t)) = h(x+1tAx) = h(x) + ta—}li()'c)Ax + I—AxT—i(x(si))Ax
ox 2 Ox?

for some s; € [0,f]. The second-order term can be upper bounded by
2

(X, Ax) = max AxT—i(x(sl-))Ax
5€[0,1] x2

which is finite (because A, are twice continuously differentiable and s; is in [0,1]), and independent of 7.

Hence

h(x(?)) < h(x)+1 (aa—hi()'c)Ax + éai()'c, Ax)) fort € [0,1]
X



Normal cone N ()
Proof

Step 2:
Hence we need to find Ax such that
oh; _ .
1. —(X)Ax <0 foralli el

ox
2. y'x() —x) = ty"Ax > 0

Then 1 = there exists small enough ¢ > 0 s.t.
: oh; _ ro_
i€l —(X)Ax+—a(x,Ax) < 0
ox 2
. 0hz 4
JIEL (X)) +t | —@)Ax+—ai(x,Ax) ) < 0
ox 2
Hence, foreachi = 1,..., m,
Oh; t
h(x(r)) < h(xX)+1t a—(X)Ax+Eai(X, Ax)] <0
X

1and 2 = y & N(X), a contradiction



Normal cone N ()

Proof

Step 3:

Consider LP (¢ > 0O to be chosen):
7*(e) = min Z

(Ax,z)eR™!

oh;
s.t. —XAx <z, i=1,....m
ox

yTAx > €

Then Ax* satisfies 1 and 2 if and only if for some € > 0, (Ax*, z*(¢)) is optimal for LP with
7¥*() <0



Normal cone N ()

Proof
Step 3:
 LP is feasible for sufficiently small € > 0, because
ahi _
Ax = c, Z = max—(X)c
iel O0Xx

is a feasible point

e |ts dual is infeasible, because

d¥(e) = max eu
(4,u)20

st. 1TA=1, Vh(X)A=py
Suppose (4, ) > 0 is feasible. Then A # 0.
LICQ (V hy(X) has linearly independent columns) implies ¢ > 0. Hence

Ao .
y = 2 — Vh(X), contradictingy & Y(¥)
L l

el



Normal cone N ()

Proof

Step 3:
« Feasible primal, infeasible dual, LP duality = z*(¢) = d*(¢) = — .

» Therefore there exists finite Ax that satisfies 1 and 2

This completes the construction of x(¢) := X + tAx such that
« h(x(1) <0,tyTAx >0
« contradicting y € N(X), proving y € Y(x)



Linear transformation

Pre-image

Given a nonempty set Y C R"™, its pre-image under A € R"™ " is
X = {xeR":Ax €Y}

letx € Xandy=Ax €Y

Theorem
ATNY(3) = Ny(X)



= . T —_ . —_
Pre-image: AN, (3) = Ny(¥)
Proof: SVD decomposition of R”

Singular value decomposition of A with rank(A) = ris:
A= VIW = VIW!
where
2.0
Vv=\|V., V.|, X=1|7
Y, Voo z= o0

with range(W,) = range(A 1), range(W,_,) = null(A)

], w=|W, W,_]

Pseudo-inverse of A is:
AT = wZivl = wxivT
Hence ATA = W W'



= . T —_ . —_
Pre-image: AN, (3) = Ny(¥)
Proof: SVD decomposition of R”

Since columns of W form an orthonormal basis of R”, every x € R” can be written uniquely in
termsof W.and W,_. as x = W, (W;rx) + W,_, (WnT_rx) ;

X = W,,(W,,T x) + Wn_,,(W,;r_,,x) = Aly + W_ B(x)

ATA p(x)
i.e., R" can be decomposed uniquely into 2 orthogonal components in terms of W.and W, _.:

range(A") = range(W,)

ATA : project x onto range(W.) AtAx |-----ccooemoe .

» null(A) = range(W,_,)

W p(x)



= . T —_ . —_
Pre-image: AN, (3) = Ny(¥)
Proof: SVD decomposition of R”

Hence any x € R” can be written as x = ATy + W__ 3 for some y = Ax and /3 (dependent on x)

Given X C R": let its image under A be Y := AX. Then
X =A"Y+W,_ BX)
with B(X) := {W_x:xe€X} C R"”

Given Y C R : let its pre-image under A be X := {x : Ax € Y}. Then
X=AY+W _R""
i.e., the pre-image of each y € Y consists ofATy plus the entire null(A)

This is the key difference between image and pre-image under A



Pre-image: A 'Ny(7) = Ny(¥)

Proof

Suppose y € Ny(y), i.e., 57(y —9) < Oforally=Ax € AX C Y.
Then 3TA(x —X) < Oforallx € X, ie, Ay € Ny(X).

This shows A TNy (¥) C Ny(X)

Conversely, suppose X € Ny(X), i.e., Fx—x)<Oforalx e X
Write
x= Aly+W,_p for some y € Y,  (dependent on x)
x=ATy+W,_p
Then
STATy—9) + X'W _(f—-B) <0, VyeY,VpeR"



Pre-image: A 'Ny(7) = Ny(¥)
Proof
Since this holds for all y € Y, f € R"™", we must have (take y = y and § = f):
FTATy=5) < 0 VyeYt
IW,_(p-pH< 0  VBeR"™

Taking f = f + e; implies "W __ =0, and hence X € range(W,)

1st inequality implies (A")"% = 3 for some § € Ny(y).
Multiplying both sides by AT gives:
ATAx = ATA)x = % = ATy

where 1st equality follows because ATA = WFW,,T is symmetric, and the 2nd equality follows

because X € range(W,) and hence W W% = &
Hence Ny(X) C ATNY(y)



Outline

2. CPC functions

» Extended real-valued functions
 Indicator function, support function, polyhedral function

Gradient and subgradient
Characterization: saddle point
Characterization: generalized KKT
Existence: primal optimum

Existence: dual optimum and strong duality
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Special convex programs



Extended real-valued function

A real-valued function f : X — R with X C R" maps a finite vector x € X to a finite value
fx) eR

An extended real-valued function f: X — [—00, 0] can take a finite value in R or £ 0o
« X :domain of f
« dom(f) :={x € X : f(x) < o0} : effective domain of f
e epi(f) :={(x,y) EXXR:y>f(x)} CR"! : epigraph of f

Remarks

o If (x,y) € epi(f),theny & {—00, 0}
e x €Edom(f) < dyeR st (x,y) €epi(f), ie., dom(f) is projection of epi( f) onto R"



Extended real-valued function
Continuity

An extended real-valued function f : X — [—00, 00] is lower semicontinuous (Isc) at x € X if
flx) < limkinf f(x)

for every sequence {x;,} C X withx, — x

fislsc (on X) if it is Isc at every x € X

fis upper semicontinuous (usc) if —fis Isc

fis continuous if and only if it is both Isc and usc



Extended real-valued function
CPC functions
Definition
Consider f : X — [—00, 00] with X C R”
1. fis closed if epi(f) is a closed set in R"+!

2. fis properif f(x) > — oo forallx € X and dx € X such that f(x) < oo (so that
epi(f) # @). In particular a real-valued function f: X — R is proper

3. Suppose X is convex. Then fis convex if epi( f) is a convex set in R7+1

Remarks
 Convexity definition in terms of epi( ) reduces to usual definition for real-valued functions
« If a closed convex function is not proper, then f(x) = — oo if x € dom(f) and f(x) = oo if

x & dom(f). We therefore only consider proper functions with f : X — (—o00, o0)

* A proper convex function is continuous, except possibly on its relative boundary. Moreover, it
is Lipschitz continuous over a compact set



Extended real-valued function
CPC functions
Definition
Consider f : X — [—00, 00] with X C R”
1. fis closed if epi(f) is a closed set in R"+!

2. fis properif f(x) > — oo forallx € X and dx € X such that f(x) < oo (so that
epi(f) # @). In particular a real-valued function f: X — R is proper

3. Suppose X is convex. Then fis convex if epi( f) is a convex set in R7+1

Examples: Closed proper Isc functions f: R — (— 00, o0]
0 it x<0 Isc
1 if x>0

0 if x < ( closed dom(f)
o - {

00 ,\n‘ x>0
convex

. Nonconvex function: f(x) = {

. Convex function:



Examples
Constrained functions f,(x)

A real-valued function f: X — R constrained to a feasible set X C R” can be extended to R"
as an extended real-valued function f: R" — [—o0, 00] :

- f(x) if xelX
K = {oo if x € R™\X

Remarks

. Constrained minimization min f(x) is equivalent to unconstrained minimization min fy(x)
xeX xeR"

* Unified theory for unconstrained minimization



Examples

Indicator function 6,(x)

The indicator function of X C R" is 0y : R" — (—00, 00] defined by

_J0 if x€X
Ox(x) = {oo if x & X

o It is proper iff X is nonempty

e |t is convex iff X is a convex set



Examples

Support function s, (x)
The support function of X C R"is 6y : R" — (=00, 0o] defined by

oy(x) = sup yTx
yeX

. Itis proper iff X is nonempty and sup yTx < oo for some x
yeX

« ox(X) = ogx(X) = Oconvx)X) = Ucl(conV(X))(x) = Gconv(cI(X))(x)



Examples

-
éxm o 6\;((73 A?
o \j//
IR R A o] 7| |
0 x e (—1,1) 0 x; € (—1,1) forall i
0 = o =
(—1.H%) {oo x & (—1,1) x(%) {oo x; & (—1,1) for some i

Q
L
=
) ——

|
5]
c
o
<
<3

I
oy

ox(x) = Z sup  yx; = 2|x|

ye(=11) ~ ye(=1,1)



Examples

Polyhedral function

A proper function f : R" — (— 00, o0] is a polyhedral function if epi( f) is a nonempty polyhedral
set (polyhedron) in R™+!

* Hence a polyhedral function is closed proper convex

Lemma

Let f: R" — (—o00, 0c0] be a convex function. Then f'is polyhedral iff dom(f) is a polyhedron
and

f(x) = max (al-Tx+bl-), x € dom(f)
ie{l1,....m}

for some a; € R", b; € R, integer m > 0



Outline
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Gradient and subgradient
« Derivative, directional derivative, partial derivative
e Subgradient
» Subdifferential calculus

Characterization: saddle point
Characterization: generalized KKT
Existence: primal optimum

Existence: dual optimum and strong duality

Special convex programs



Basic concepts

Smooth functions: differentiable, partially differentiable, continuously differentiable
... and their relationship

Nonsmooth convex functions: subdifferentiable, subdifferential
First-order optimality condition



Derivative

Consider a proper function f : X — (—00, oo] with an open X C R"

fis differentiable at x € X if there exists m € R" s.t.

. fx+h) —fx)—m'h
Iim
heR |2l

h—-0

The column vector m is called the gradient or derivative of f at x, denoted by Vf(x)

fis differentiable on X if f'is differentiable at every x € X



Directional derivative

The one-sided directional derivative of fat x € X in the direction v € R" is:

s = lim fl + tv: ~f)
tl0

provided the limit exists, possibly * oo

If df(x; ;) = df(x; — ¢;) both exist, they are called partial derivative of fat x € X wrt x; :
Jx +te) — f(x)
dficv) = lim !

relR t
tr—0

Then f'is called partially differentiable at x € X wrt X;




Partial derivative

The row vector of partial derivatives of fat x € X is:

of of of
—@ = L) o)

fis called partially differentiable on X if f'is partially differentiable at every x € X

fis called continuously differentiable if f'is partially differentiable and G_(X) is continuous
X

Remarks
« Derivative V f(x) describes behavior of f at x in all directions

. Partial derivative a—(x) describes behavior of f at x only along coordinate axes
X

« If fis differentiable, then it is partially differentiable (the converse may not hold)
« If fis continuously differentiable, then it is differentiable



Subgradient

Consider a proper convex function f : R" — (—o00, o0] (we can always extend f on X to R")

A vector y € R" is a subgradient of fat x € dom(f) if
fo) =2 fH+y'x-%  VrxeR”

The set of all subgradients is the subdifferential df(x) of f at x

Remarks
Inequality in subgradient definition must hold for all x € R", not just x € dom(f)

The affine function on RHS is supporting hyperplane (lower approximation) of f at X over R”
Equivalent definition:

f®) —y'x = min (fl0) - y'x)
If X & dom(f), then df(X) .= Q&



Optimality condition
Consider

inf f(x)

xeR"

where f: R" — (—00, 00] is a proper convex function

Corollary
x* € R"is optimal if and only if 0 € df(x*)

Proof
Substitute y = 0 € 9f(x*) into f(x*) —y'x*¥ = min (f(x) — yTx)
xeR"

Remark
« Optimality condition reduces to V f(x*) = 0 for smooth convex function f
« 0 € 0f(x*) is a certificate of optimality of x* (there may be other y € df(x*) with yT(x — x*) # 0)



Optimality condition
For constrained optimization

inf  fy(x)

xeR”
where X C R" is a convex set and fy : R" — (—o00, 00] is a proper convex function, x* € X'is
optimal if and only if there exists y* € df(x*) s.t. y*T(x —x*) > Oforallx € X (i.e., —y™ € Ny(x™))
because then,

fx*) < f(x) —y'(x —x%) < f(x) forallx € R”

(more formal statement later)



Subdifferentiabilty & continuity

A proper convex function f: R" — (—o00, 0o] is subdifferentiable at any interior point
x € int(dom(f))

Lemma

Let f: R" — (—o00, 00] be a proper convex function

1. For x € ri(dom(f)), f(x) is continuous at x

2. For x € int(dom(f)), df(x) is nonempty, convex and compact

3. If X C dom(f) is nonempty and compact, then dy f := U, oy 9f(x) is nonempty and bounded.
Moreover f'is Lipschitz continuous over X with Lipschitz constant L := sup ||£]|,

oy f
Remark

« If f: R" — R is real-valued, then df(x) is always nonempty convex compact.
« If fis extended real-valued, then df(x) can be unbounded or empty at the boundary of or outside of

dom(f)

« If X C R"is nonempty convex, then doy(x) = Ny(x) important for constrained opt (later)



Subdifferential calculus

Theorem
Let f,: R" - (=00, 0], i = 1,...,m, be convex functions. Suppose F(x) := Zfl-(x) is propetr.
i

If f,i = 1,...,m for some m, are polyhedral (i.e., epi(f;) are polyhedrons) and

(2 dom(f)) [] (O, ridom(£) # @
then

1. Fis convex

2. OF(x) = ) of(x).  x € dom(F)

differentiable f; : V F(x) = 2 Vfi(x)



Subdifferential calculus

Theorem
Let f: R" - (—o00, 0] be a convex function and A € R, Suppose F(x) := f(Ax) is proper.
If

« fis polyhedra, or
« there exists X € R" s.t. AX € ri(dom(f))
then

1. Fis convex
2. 0F(x) = ATof(Ax) forallx € R”

differentiable f: VF(x) = AT Vf(Ax)
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4. Characterization: saddle point
« Saddle point = pd optimality + strong duality

Characterization: generalized KKT
Existence: primal optimum

Existence: dual optimum and strong duality

© N O O

Special convex programs



Saddle point theorem

Consider
f* = min f{x) st xeX,gx)=0,h(x)<0

xeR”

where X' C R" is nonempty, f: R" - (—00, 0], g : R” - (—00,00]", h : R" - (—00, 0]’

« X’ may be nonconvex set, f, g, h may be nonconvex functions



Saddle point theorem

Consider
f* = min f{x) st xeX,gx)=0,h(x)<0

xeR"
where X' C R" is nonempty, f: R" - (—00, 0], g : R” - (—00,00]", h : R" - (—00, 0]’

« X’ may be nonconvex set, f, g, h may be nonconvex functions

Lagrangian:

Lx, A, pw) == fX)+Agx)+u"h(x), xeR", 1eR"”, ueR!
Dual function:

d(A,u) = inf L(x, A, u), AeR™ ueR partial dualization

xeX’
Dual problem:
d* = sup d,un)
A, 1u>0



Saddle point theorem

Let primal and dual feasible sets be
X:={xeX, gkx) =0, h(x) <0}, Y:={(Au) € R™: >0}

Definition
A point (x*, A*, u*) € X' X Y is a saddle point if

max L(x*,A,u) < L(x* A% pu*) <min L(x,A*,u*) € R
(/I,ﬂ)EY .XEX/

In particular, L(x*, A*, u*) is finite



Saddle point theorem

Let primal and dual feasible sets be
X:={xeX, gkx) =0, h(x) <0}, Y:={(Au) € R™: >0}

Definition
A point (x*, A*, u*) € X’ X Y'is a saddle point if

max L(x*,A,u) < L(x* A% pu*) <min L(x,A*,u*) € R
(/I,ﬂ)EY .XEX/

In particular, L(x*, A*, u*) is finite

Theorem
A point (x*, A*, u*) € X’ X Y'is a saddle point if and only if same as in smooth case
1. It is primal-dual optimal except allowing functions

to be extended real-valued
2. The duality gap is zero at (x*, 1%, u*), i.e.,

d(A*,u*) = d* = f* = f(x¥)
In particular, L(x*, A*, u*) is finite
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Characterization: generalized KKT
Existence: primal optimum

Existence: dual optimum and strong duality
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Special convex programs



Generalized KKT

Consider

f = min f(x) st xePnC
xeR”

where P C R" is a nonempty polyhedral set, C C [R" is a nonempty convex set, and
f:R" > (—00, 0] is a proper convex extended real-valued function



Generalized KKT

Consider

f = min f(x) st xePnC
xeR”

where P C R" is a nonempty polyhedral set, C C [R" is a nonempty convex set, and
f:R" > (—00, 0] is a proper convex extended real-valued function

Recall
« Constrained opt can be written as unconstrained opt using indicator function

minf(x) = min f(x) 4+ oy(x)
xeX xeR”

« Optimality condition for unconstrained convex optimization is 0 € df(x*) 0 = Vf(x*) in smooth case
. If f;are convex, F = Zfl is proper and Slater condition, then dF(x) = Z of(x)

1 1
- If X € R"is nonempty convex, then doy(x) = Ny(x) this is why normal cones are important



Generalized KKT

Theorem
Suppose one of the following Slater conditions holds:

1. fis polyhedral and dom(f) N PNri(C) # @;or
2. ri(dom(f) NPNr(C) # @;

Then x* € P N Cis optimal if and only if
0 € oJf(x*) + Np(x*) + N(x*)

Remarks

« Equivalent to: dy* € df(x™) s.t. —y* € Np(x™) + N-(x*)

. Equivalent to: 3y* € df(x*) st. y '(x —x*) >0 foralx e PN C

« If fis real-valued, Slater condition reduces to: PN ri(C) # @&

« In fis differentiable, KKT condition reduces to: — Vf(x*) € Np(x*) + N(x*)



Generalized KKT

Theorem
Suppose one of the following Slater conditions holds:

1. fis polyhedral and dom(f) N PNri(C) # @;or
2. ri(dom(f) NPNr(C) # @;

Then x* € P N Cis optimal if and only if
0 € oJf(x*) + Np(x*) + N(x*)

Remarks

« When the feasible sets P, C are explicitly specified by equality and inequality constraints that

enable the computation of the normal cones Np(x*), N-(x*), the condition reduces to usual
KKT conditions (later)

* This theorem illustrates the conceptual simplicity based on set theoretic concepts nonsmooth
opt



Optimality characterization

Remarks
« Saddle point theorem and generalized KKT theorem characterize optimal points
* They do not ensure existence of optimal points
* Examples exist where primal optimal solutions do not exist, even though
» Slater condition is satisfied
> f* is finite
> Dual optimal solutions exist and strong duality holds
because the primal feasible set is not compact

We next study sufficient conditions for existence of primal and dual optimal solutions (and strong
duality)
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6. Existence: primal optimum
/. Existence: dual optimum and strong duality

8. Special convex programs



Nonexistence of primal optimum

Example: feasible set not closed
Consider

f* = inf flx):=x*> st x>1 feasible set not closed
xeR

 Primal optimal value f* = 1
 No primal optimal x* with f(x*) = f*



Nonexistence of primal optimum

Example: feasible set not closed
Consider

f* = inf flx):=x*> st x>1 feasible set not closed
xeR

 Primal optimal value f* = 1
 No primal optimal x* with f(x*) = f*

Lagrangian and dual function:
LOup) =22 = e, d(n) i= inf L) = =S+

Dual optimal value:
d* = sup dlu) = d2) = 1 = f*
u=>0
e Strong duality holds

 Dual optimality is attained at u™* = 2



Nonexistence of primal optimum

Example: feasible set not closed

Conclusions:
* (Primal) feasible set is not closed (hence not compact)

 Primal optimal value f* = 1 is finite, but not attained

« Strong duality holds f* = d*, and dual optimality is attained at u* = 2

KKT condition cannot be satisfied:
 Stationarity and complementary slackness are

Wt =p%, prd=x%) =0

which cannot be satisfied when yu* = 2 and x* > 1



Nonexistence of primal optimum

Example: feasible set not bounded
Consider

f* = 1mnf fx):=e st x>0 feasible set not bounded
xeR

 Primal optimal value f* = 0
 No primal optimal x* with f(x*) = f*



Nonexistence of primal optimum

Example: feasible set not bounded
Consider

f* = 1mnf fx):=e st x>0 feasible set not bounded
xeR

 Primal optimal value f* = 0
 No primal optimal x* with f(x*) = f*

Lagrangian and dual function:
. 0, u=0
Lix,p) :==e™ — ux, d(u) :=min e ™ — ux =
X — 00, u>0
Dual optimal value:

d* := sup d(u) = d0) = 0 = f*
u=>0
» Strong duality holds

 Dual optimality is attained at u™* = 0



Nonexistence of primal optimum

Example: feasible set not bounded

Conclusions:

» (Primal) feasible set is not bounded (hence not compact)
 Primal optimal value f* = 0 is finite, but not attained

« Strong duality holds f* = d*, and dual optimality is attained at u™* = 0

KKT condition cannot be satisfied:
 Stationarity condition is
e™ = — p¥

which cannot be satisfied by any finite x* when u* = 0



Primal optimality

Consider

f* = min f{x) st xeXCR”
xeR"

where f : X — (—00, 0] and X N dom(f) # &

« 1 R" > (—00, 0] is called radially unbounded if lim f(x;) = oo for every sequence {x;} with
A k

x| = o0
« All nonempty level sets V, := {x € R": f(x) <y} of aradially unbounded function are
bounded



Primal optimality

Consider

f* = min f{x) st xeXCR”
xeR”

where f : X — (—o00, 0] and X Ndom(f) # @

Theorem (Weierstrass theorem)

If X is closed, fis lower semicontinuous at every x € X, and one of the following holds:

1. X is bounded; or

2. There exists y € R s.t. the level set V, := {x € R" : f(x) < y} is nonempty and bounded; or
3. fis radially unbounded.

then the set X* C X of minima is nonempty and compact (X* is convex if X and f are convex)

Remark
 Essentially restrict minimization to a compact subset of X



Exact optimality condition
CPF function f

Remark

If X is nonempty closed and convex, f'is closed proper and convex, and X N dom(f) # &

« Under the conditions of the theorem (Isc of f and boundedness): X* is nonempty, compact and

convex if and only if X and f have no common nonzero direction of recession (details in
textbook)
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/. Existence: dual optimum and strong duality
« Slater Theorem
« MC/MC problems
« Slater Theorem: proof

8. Special convex programs



Slater Theorem

Consider
f = min f{x) st xeX, hix)<0
xeR”

where X’ C R" is a nonempty convex set, f: R" — (—oo0,00]and i : R" — (— o0, oo]l are
proper convex functions.

Lagrangian:

Lix,p) = fx)+u"hx), xeR" ueR
Dual function:

d(u) = inf L(x, p), ue R

xeX’
Dual problem:
d* = sup d(u)

§>0



Slater Theorem

Consider
f = min f{x) st xeX, hix)<0

xeR”

where X’ C R" is a nonempty convex set, f: R" — (—oo0,00]and i : R" — (— o0, oo]l are
proper convex functions.

Set of dual optimal solutions:

0% = {u* > 02 d(u*) = inf fx) + p Th) =f*}



Slater Theorem

Theorem
Suppose

e Finite primal value: f* > — oo
« Convexity: X' is a nonempty convex set; f, h are proper convex functions;
« Slater condition: one of the following holds:
» CQ1: dx € dom(f) N X' s.t. h(x) < 0;or
» CQ2: dx € ri(dom(f)) Nri(X') s.t. h(x) :=Ax+b <0
Then
1. f* =d*
2. If CQ1 holds, then O* is nonempty, convex and compact

3. If CQ2 holds, then O* is nonempty, convex and closed



Slater Theorem

Variant
Equivalent formulation:
f = min f(x) st xe€PNC,Ax=b, h(x) <0
xeR” /“ \ \
polyhedron  convex polyhedral i,,i = 1,...
Lagrangian:

L, A p) == f)+ATgx) +u"h(x), xeR", 1eR™ uecR
Dual function:
d(A,u) = 1inf L(x, A, n), LeR™ ueR!

xeX’
Dual problem:
d* = sup d(4,u)

Ay u>0

-
NI



Slater Theorem

Variant

Theorem

Suppose

e Finite primal value: f* > — oo

« Convexity: P is nonempty polyhedron, C is nonempty convex; f, h are proper convex functions;

« Slater condition: 3x € ri(dom(f)) N P Nri(C) s.t. Ax = b, polyhedral h,(x) < 0,i = 1,...,1,
h(x) <0,i=1+1,...,1

Then

1. f* =d*

2. The set of dual optimal solutions is nonempty, convex and closed



Slater Theorem

Theorem
Suppose

e Finite primal value: f* > — oo
« Convexity: X' is a nonempty convex set; f, h are proper convex functions;
« Slater condition: one of the following holds:

» CQ1: dx € dom(f) N X' s.t. h(X) < 0;or + Prove CQ1
» CQ2: dx € ri(dom(f)) Nri(X') s.t. h(x) :=Ax+b <0

Then

1. f* =d*

2. If CQ1 holds, then O* is nonempty, convex and compact

3. If CQ2 holds, then O* is nonempty, convex and closed



MC/MC problems

Let M C R™! pe a nonempty set

Primal (min common): w* = inf w
O,w)eM

Dual (max crossing): d* = sup (d(,u) = 1nf uTu+w)
uer! (uw)em



MC/MC problems

Let M C R™! pe a nonempty set

Primal (min common): w* = inf w
O,w)eM

Dual (max crossing): d¥ = sup |d(u):= inf u'u+w
uer! (uw)em

Easier to work with positive extension of M:
M :=M+{0O0w):w>0} = {(u,w) : w>w for some (u, w) € M}
Then

Primal (min common): w* = inf w
O,w)eM

Dual (max crossing): d¥ = sup (d(u):= inf u'u+w
MERI (M,W)GM



MC/MC problems

weR weR

[
ueR

(u,p5")
> uERZ

N

(a) Nonconvex M (b) Convex M




MC/MC problems

Primal (min common): w* = inf w
O.w)eM
Dual (max crossing): d¥ = sup (d(u):= inf u'u+w
uER! (u,w)eM
Remarks
1. Dual relaxation: d(u) := inf u'u+ w relaxes u = 0 but adds penalty i 'u
(uw)emM

2. Strong duality: there exists a nonvertical hyperplane that contains M in its “upper” closed
halfspace, i.e., there exist a normal (u,1) € R and an w-intercept £ € R s.t.

uwlu+w > & V(u,w) e M
2. Given u, d(u) is the smallest w-intercept of the hyperplane that touches (supports) M

3. Dual problem: find a normal (u*,1) s.t. the smallest w-intercept d(u*) is the max over u € R!



Dual optimal solution set O*

Let the set of dual optimal solutions be:

O* = {,u*e[RZ Cd(p*) = inf p Tu+w = w*}

(u,w)eM
welR
| = Every dual optimal u* € Q* defines a supporting
|, — M hyperplane
H:={uw) € R : i Tu 4+ w = w*)
M at (0,w*) € cl(M), with cl(M) in “upper”
\ halfspace of H
AF =" . ~ V4

\ In this example, O* is nonempty, convex and

) > uek”  compact



MC/MC strong duality

Let projection of M onto u-space
Dy = {u€eR": (u,w) € Mforsomew € R}

Lemma
Suppose

e Finite primal value: w* > — oo

« Convexity: M is convex

« Constraint qualification: 0 € ri (DM)
Then

1. w* =d*

2. O* is nonempty, convex and closed

3. If0 € int (DM), then O* is nonempty, convex and compact



MC/MC strong duality
Proof sketch
1. (O,w*) & ri(M) : Otherwise, 3(0,Ww) € M s.t. w* > W
2. H separating (0,w*) from M : 3(u, f) € R*! sit.
pw* < wlu+ pw, V(u,w)eM
(0,w*) & ri(M) implies
pw* < inf  plu+pw < sup p'u+ pw

(u,w)eM (u,w)EM
3. />0:
. Jcannot be negative, for otherwise inf u'u+ pw — —
(u,w)eM
. fcannot be 0, for otherwise 0 < inf u'u = inf p'u. Since 0 € ri(Dy;), this
(u,w)emM u€Dy;

infimum is attained at u = O over the convex set Djy;.

This is possible only if/,tTu = ( is constant over Dy, a contradiction



MC/MC strong duality

Proof sketch
4. Strong duality : Since f > 0, can renormalize to u™* = u/p, p* =1

w* < inf  p Tu4+w = d(u*) < d*
(u,w)em

5. O* convex and closed : The dual function d(u) is concave = Q% is convex.
The dual function d(u) is upper semicontinuous = Q% is closed.

If 0 € int(Dj;), then Q* is bounded, and hence compact.



Slater Theorem
Proof: CQ1

Theorem
Suppose

e Finite primal value: f* > — oo
« Convexity: X' is a nonempty convex set; f, h are proper convex functions;
» Slater condition: one of the following holds:
» CQ1: dx € dom(f) N X' s.t. h(x) < 0;or
Then
1. f* =d*

2. If CQ1 holds, then O* is nonempty, convex and compact

|dea: specify M in terms of cost and constraint functions f, h, and use Lemma



Slater Theorem
Proof: CQ1

Consider
Primal = if fix) st xeX, hx)<LO0
xeR”
Dual d*¥ = sup <d(,u) := inf f(x) + ,uTh(x)>
quo xeX’
Let

M = {(h(x),f(x)) € R*!: x € dom(f) N X'}
Its positive extension:

M = {(u,w) € R*: u> h(x), w > f(x) for some x € dom(f) N X’}
Projection onto u-space

Dy = {ue R!: u > h(x) for some x € dom(f) N X'}



Slater Theorem
Proof: CQ1

wé K

~ (a) Nonconvex M (b) Convex M

—




Slater Theorem
Proof: CQ1

Equivalent MC/MC formulation in terms of M :

Primal: ff:= 1nf w
O,w)eM

Dual: d* := sup (d(,u) = inf_,uTu+w>
,ueRl (uw)emM

Set of dual optimal solutions:

(u,w)em



MC/MC strong duality

Let projection of M onto u-space
Dy = {u€eR": (u,w) € Mforsomew € R}

Lemma
Suppose

e Finite primal value: w* > — oo

« Convexity: M is convex

« Constraint qualification: 0 € ri (DM)
Then

1. w* =d*

2. O* is nonempty, convex and closed

3. If0 € int (DM), then O* is nonempty, convex and compact



Slater Theorem
Proof: CQ1
1. f* > — oo : By assumption
2. Convex M : Suppose (i, wy), (u,, wy) € M, i.e., Ix;,x, € dom(f) N X’ s.t.
u; > h(x), w;, > f(x,) =12
Convexity of i implies
au; + (1 —a)u, > h(ax; + (1 —a)x,)
Convexity of fimplies
aw; + (1 —a)w, > flax; + (1 — a)x,)
ie., a(u, w) + (1 — a)(uy, w,) € M
3. 0 €int (DM) : CQ1 gives X € dom(f) N X" with h(x) < 0 = 0 € int (DM) where
Dy = {ue R!: u > h(x) for some x € dom(f) N X'}
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8. Special convex programs

General method

Linear program, convex quadratic program
Second-order cone program

Conic program



Special convex programs

Conic
program
17.8

Convex
inequality
17.11




Special convex programs

f(x) h(x) <0 sufficient condition  f*=d* =d(A*,u")
KKT, saddle pt

LP linear affine: Bx+d € RL finite f* Th7.21

QP quadratic  affine: Bx+d € Ri feasibility if Q > 0) Th7.22,7.23

SOCP convex h(x) € Kgoc finite f*, Ax=0b Th 7.24, 7.25
h(x) :=Bx+d h(x) € ri(Kgoc)

SDP convex h(x) € Kpsd finite f*, Ax=0b Th 7.26
h(x) := By + Z:.lzl x;Bi h(x) e I‘i(Kde)

Conic prog. convex h(x) e K finite f*, Ax=b Th 12.31, 12.32
h(x):=Bx+d h(x) eri(K)

Convex prog. convex convex finite f*, Ax=b Exercise 12.22

h(x) <0

Table 7.3 Summary: strong duality, dual optimality and KKT condition.



General method

Smooth setting

Consider

f* = min f(x) st Ax=0b, h(x) <0

xeR”
where f: R" — R is a convex function,A € R™" b€ R™, andh : R" - R’is a convex function

General method
1. Dual problem

Define Lagrangian L(x, 4, u) : R™" & R
L(x, A, u) = f(x) —AT(Ax — b) + uh(x), x € R", (1, u) € R

Then dual function is d(4, u) := min L(x, A, u) and dual problem is :
xeR"

d* = max d,u) s.t. u=>0
(Ap)ER™



General method

Smooth setting

2. Strong duality and dual optimality

If (i) /* is finite, (i) f, i are convex, and (iii) Slater condition is satisfied, then the Slater
Theorem implies that strong duality holds and dual optimality is attained (do not guaranteed

primal optimality is attained)

3. KKT condition and primal optimality
If (i) f, h are convex, and (ii) Slater condition is satisfied, then the KKT Theorem implies that a
feasible x* is optimal if and only if (A%, u*) € R™ sit.

VAx*) = AT = Vh(x*u,  p Th(x*)=0,  p*>0

Moreover, a KKT point is a saddle point that attains both primal and dual optimality and
closes duality gap, i.e.,

= fo) = d@*, %) = d



General method

Nonsmooth setting

Consider

f* = min f(x) st Ax=b,x€XCR"

xeR”
where f: R" — R is a convex function, A € R™", b € R™, X is a nonempty closed convex set that may be
specified explicitly as X := {x : h(x) < 0} for a convex function 4 : R" —» R/

General method
1. Dual problem

« If X := {x: h(x) <0}, then same as in smooth setting, except using subgradients
« If X := {x: Bx+d € K} for a closed convex cone K, then define Lagrangian L(x, A, u) : R*™* - R :
Lx, A, 1) = fx) —ATAx—=b)+u(Bx+d), xeR" LeR" ueK*CR!

Then dual function is d(4, u) := min L(x, A, 1) and dual problem is :

xeR"

d* = max d,u) s.t. U € K*
(Ap)ER™!



General method

Nonsmooth setting

2. Strong duality and dual optimality
Same as in smooth setting (does not require differentiability)

3. KKT condition and primal optimality
Suppose (i) f, i are convex, and (ii) Slater condition is satisfied. Stationarity condition in KKT
may no longer be derived from V L(x*, u*) = 0.

Example Suppose X := {x: Bx+ d € K}. Convert to unconstrained optimization:

f* = min f(x)+ 6y(x) + ox(Bx + d)

xeR”

where H := {x € R" : Ax = b}. Generalized KKT Theorem implies: x* is optimal if and
only if ¥ € Jf(x*), 1*¥ € R™, u* € R’ such that

E* € — Ny(x*) — B'N(Bx* + d)
orr EF=ATA*+BTu*, ' TBx¥*+d)=0, u*¥e€K*



Linear program

Consider

f* = min cTx s.t. Ax > b

xeR”
wherec € R", A € R™" p € R™



Linear program

Consider
f* = min cTx s.t. Ax > b
xeR”
wherec € R", A € R™" p € R™
Lagrangian:

Lx,u) = (c —AT,u)Tx + by xeR", ueR"

Dual function:

bt if ATy =
d(y) := min L(x,y) = { g TAREC

xeR” — 00 if ATu#c
Dual problem:
d¥ := maxd(uy) = maxb'y st Alu=c
u=0 u=0

Let X :={x€R":Ax>b}, Y :={u €R": ATy =c,u > 0} be feasible sets



Linear program

Theorem

1. Strong duality and primal-dual optimality. Exactly one of the following holds:
@ If—oco < f*< oo or —o0 <d* < oo,then I(x*, u*) € X X Y such that
cTx¥ = f* = d* = bly*
(b) If primal is feasible but unbounded, then f* = — co = d*, i.e., dual infeasible
(c) If dual is feasible but unbounded, then f* = co = d*, i.e., primal infeasible
(d) Both are infeasible, i.e., f* = co and d* = — o0
2. KKT characterization. A feasible x* € X is optimal if and only if there is a feasible u* € Y s.t.
w T(Ax* —b) =0

Such a point (x*, u*) is a saddle point and a KKT point, and hence is primal-dual optimal with
c'x* = bTu*



Linear program

primal
bounded feasible  unbounded feasible infeasible
bounded feasible (x™, A%, u™) X (sd) X (sd)
dual unbounded feasible X (sd) X (wd) ff=d* =
infeasible X (sd) ff=d*=—- d*=—-oc0o<o0=f*

Table 7.4 Four possibilities: Strong duality in Theorem 7.21 excludes 4 possibilities labeled
“X(sd)”. The 5th impossibility, labeled “x(wd)”, violates weak duality. Optimal values are attained
only in one case.



Linear program

Example: Infeasible LP pair

Consider
) 1
min x s.t. X >
x —1
Its dual is
max [, s.t. — Uy =

u>0




Linear program

Example: Unbounded primal, infeasible dual

Consider (a < 1)

f* = min-x+ax, st x—-x=0
x>0

Then f* = — 0.

Its dual function is:

f

o) = {° | 7al = [—}

— 0 otherwise

"

The constraint implies y; + 4, = — (1 — a) < 0, and hence there is no (4, p) with u > 0

A+
Hoo leR ueR?




Quadratic program

Consider

f;k = min f(x) ;= x'Ox + 2c'x
xeR”

where Q € R with Q > 0, ¢ € R”"



Quadratic program

Consider

f;k = min f(x) ;= x'Ox + 2c'x
xeR”

where Q € R with Q > 0, ¢ € R”"
Since O > 0 we have the spectral decomposition
A, 0] | U}
= UNU" = [U, U_]||" | = UAU!
¢ O e [0 0] [U;_,,]

where r = rank((Q) and columns of U form an orthonormal basis

Hence
range(Q) = span(U,), null(Q) = span(U, _,), 0" = U,,A;IU,,T, r<n



Quadratic program

Theorem

1. If ¢ € range(Q), then a minimizer x* is
¥ = — QTC, f;k — _ CTQTC

The set set of minimizers is x* € — Q¢ + null(Q)
2. If ¢ & range(Q), then cl’*< = — 00

3. If O > 0, then the unique minimizer x* is

xk = — Q_IC, f;k - _ CTQ—IC



Quadratic program

Consider

f5 = min flx) = x"Ox + 2c¢'x st Ax=b,Bx+d>0
xeR”

where O € R™withQ > 0, c e R", A € R™" bh € R, B e R*" d € R*



Quadratic program

Consider

S5 = min flx) = x"Ox + 2¢'x st Ax=b,Bx+d>0
xeR”

where O € R™withQ > 0, c e R", A € R™" bh € R, B e R*" d € R*

Theorem: strong duality, dual optimality, KKT characterization

Suppose QO > 0. (can be generalized to O > 0 in Exercises)
1. Strong duality holds and dual optimality is attained
2. A feasible x* is optimal if and only if 3(A*, u*) such that u* > 0 and

x¥ = Q7N ATA* + BTu* — ¢), W T (Bx¥+d)= 0

Such a point is a saddle point and a KKT point, (x*, A*, u*) is primal-dual optimal and

fi = %) = dQ*, p¥) = d



Outline

8. Special convex programs

« Second-order cone program
« Conic program



Second-order cone program (SOCP)

Consider

f* = mm f(x) st Ax=b,x€K
xeR"

where f: R" - R, A € R™" b € R" and K is the standard second-order cone:
K= [xeR": |||, < x)



Second-order cone program (SOCP)

Consider

f* = mm f(x) st Ax=b,x€K

xeR"
where f: R" - R, A € R™" b € R" and K is the standard second-order cone:

K= (xeR": x|, < x,)

Lagrangian is
L(x,A,p) = fx) — ATAx=b) + p (lIx" ', —x,), xeR,L IeR" ueR

Dual function is d(¢#) := min L(x, u) and dual problem is

xeR"
d* = max d(u)
u=>0

Let X ;= {x € R": Ax = b,||x" Y|, < xn}, Y = {(ﬂ,,u) e R™:py> O} be feasible sets



Second-order cone program (SOCP)

Consider
f* = min f(x) st Ax=b,xeK
xeR”
Theorem: SOCP duality and KKT
1. Suppose f* is finite and JX such that AX = b and ||)‘c”_1||2 < X,. Then strong duality holds and
dual optimality is attained, i.e., 3(A*, u*) € Y with f* = d* = d(A*, u*)

2. Suppose [x*¥]"~! # 0. A feasible (x*, 1%, u*) € X X Y is primal-dual optimal and closes
duality gap if and only if (constraint function A(x) := ||x"~!||, — x, differentiable at x*)

—[x*]”_l
111,

Such a point is a saddle point and a KKT point, (x*, A*, u*) is primal-dual optimal and

f3 = f) = dQ*, ) = d*

Vi) = Au*w*[ ] e (I, - x) = 0



Second-order cone program (SOCP)
Derivation

Part 1: Slater theorem

Part 2: Constraint function a(x) = ||x"*~! |, — x, is differentiable at x*. Hence KKT condition
can be derived by setting

V. L(x*, A%, y*) = 0

for stationarity, in addition to complementary slackness u* (|| [ |, — x,;k) =0



Second-order cone program (SOCP)

Consider
f* = mm f(x) st Ax=b,x€K
xeR”
If [x*]"~! = 0, then the constraint function A(x) := ||x"!||, — x, is not differentiable at x*

Need nonsmooth analysis to derive KKT condition

Theorem: SOCP duality and KKT
3. Suppose [x*]"! = 0. Suppose Ixs.t. AX = b, ||X”_1||2 < X,, (Slater condition).

(a) Case x* > ||[x*]"!|, = 0: x* is optimal iff df(x*) D ATA* for some A* € R™
(b) Case x* = ||[x*]" "}, = 0: x* = O'is optimal iff

df(0) 3 ATA* + p* for some A* € R™, n* € K



Second-order cone program (SOCP)

Derivation

Part 3: Constraint function A(x) := ||x"~!||, — x,, is nondifferentiable at x*. Use generalized KKT
Theorem which requires the Slater condition.

(@) Rewrite SOCP as unconstrained optimization:

min f(x) + 64(x) + ()

where H := {x ER" : Ax = b} and K := {x: ||x"" ||, < x,}

(b) If Slater condition holds (X s.t. Ax = b, ||)"c”_1||2 < X,), then x* is optimal if and only if
0 € Jf(x*) + Ny(x*) + Np(x*), i.e., EF € Jf(x*) such that

E* € — Ny(x*) — Np(x™)



Second-order cone program (SOCP)

Derivation

(c) Normal cones:

Ny(x*) = {ATAeR": 1€ R"}

Nig(x*) = 4

(EeR":Ig" M, < =-¢) if x* =0
{0 e R") it (|1, < gk

Substitute into

e —x eR :p >0} if Il = x5 > 0

optimality condition: 3&* € 9f(x*) such that £* € — Ny(x™) — Ne(x™)



Second-order cone program (SOCP)

Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and
() Casex* > |[[x*]""!|, > 0:suchthat & = AT)*

(constraint function A(x) := ||x"!||, — x, nondifferentiable if [x*]"~! = 0)



Second-order cone program (SOCP)

Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and
() Casex* > |[[x*]""!|, > 0:suchthat & = AT)*

(i) Case x* = ||[x*]"" Y|, > 0: u* € R, such that &% = ATA* + p*

— [x*]”_l
X

(this is the smooth case)



Second-order cone program (SOCP)

Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and
() Casex* > |[[x*]""!|, > 0:suchthat & = AT)*

(i) Case x* = ||[x*]"" Y|, > 0: u* € R, such that &% = ATA* + p* [x*] ]
n
(iii) Case x* = ||[x*]"" Y|, = 0: Iy* € K such that &% = AT)* + p*
(constraint function A(x) := ||x”_1||2 — x,, nondifferentiable at x* = 0)

Remark
In all 3 cases, conditions are of the form £* = ATA* + n* for some n* € K

_[x—1
<;7*=OOI’;/]*=/,{*[ ] EK)

*
Xn




Second-order cone program (SOCP)
SOC constraint

Consider

f* = min f(x) st Ax=b,||Bx+d|,<p'x+5

xeR"

where {1 R" >R, A€ R™ beR", Be R ge R pe R, §€R



Second-order cone program (SOCP)
SOC constraint

Consider

f¥ := min fix) st Ax=b, ||Bx+d|,<px+5

xeR"

where {1 R" >R, A€ R™ beR", Be R ge R pe R, §€R

Rewrite as standard SOCP:
f¥* = min f(x) st Ax=b,z=Bx+d, zeK

(x,2)ER™!

where 7 = (zl_l,zl) eR, K:={x: x|, < x,} and

N



Second-order cone program (SOCP)
SOC constraint
Rewrite as standard SOCP:

f* := min f(x) st Ax=b,z=Bx+d, z€eK
(x,7) R

Lagrangian:
Lx,z, 4, 1,1) = fx) = AT Ax—b) — y"Bx+d—2) + pu (I, - z)

Dual problem:

d* = max (bT/l - JT)/> + dy(4,7) s.t. y €K
Ay
where djy(4,7) := min (f(x) — AT+ I§T;/)Tx)
x€R”
Eg. lff(x) :=c'x,then d* := max b'A-d'y st AA+BTy=c, ||;/l_1||2 <y

(/L}/)e Rm+l



Second-order cone program (SOCP)
SOC constraint

Rewrite as standard SOCP:

f* := min f(x) st Ax=b,z=Bx+d, z€eK
(x,7) R

Lagrangian:
Lx,z, 4, 1,1) = fx) = AT Ax—b) — y"Bx+d—2) + pu (I, - z)

Dual problem:

d* = max (bT/l - JT)/> + dy(4,7) s.t. y €K
Ay

where djy(4,7) := min (f(x) — AT+ I§T;/)Tx)
x€R”

LetX :={x € R": Ax=b,||Bx+d|l, < fTx+ 6}, V:={(dpw) € R™' : > 0}



Second-order cone program (SOCP)
SOC constraint

Rewrite as standard SOCP:
f* := min f(x) st Ax=b,z=Bx+d, z€eK
(x.0)eR™!
Theorem: SOCP duality and KKT
Suppose 3x s.t. AXx = b, ||Bx +d||, < Bx + & (Slater condition).
1. Suppose f* is finite. Then strong duality holds and dual optimality is attained.
2. Suppose Bx* 4+ d # 0. A point x* € X is optimal if and only if (4™, u*) € Y such that
Vfx*) = ATA* + p* (=BT(Bx* + d) + BlIBx* +d||,)
0= p*(|IBx* +d|l, — (BTx*+6))
Such a point is a saddle point and a KKT point that closes duality gap.

(constraint function h(z) := ||z/~! ||, — z; differentiable at x*)



Second-order cone program (SOCP)
SOC constraint: derivation

Part 1: Slater theorem

Part 2: Constraint function A(z) := ||z'~! |, — z; is differentiable at (x*, z*). Hence KKT condition
can be derived by setting

V. Lok, 25, 2%, 75 1) = 0

for stationarity, in addition to complementary slackness p* <|| [z*]l‘l”2 — Zl*) =0



Second-order cone program (SOCP)
SOC constraint
Rewrite as standard SOCP:

f* := min f(x) st Ax=b,z=Bx+d, z€eK
(x,2)ER™!
If z7! := Bx* + d = 0, then the constraint function A(2) := ||z"7!||, — Z; is not differentiable at

(x*, z*¥). Need nonsmooth analysis to derive KKT condition.



Second-order cone program (SOCP)
SOC constraint
Rewrite as standard SOCP:

f* := min f(x) st Ax=b,z=Bx+d, z€eK
(x,2)ER™!
If z7! := Bx* + d = 0, then the constraint function A(2) := ||z"7!||, — Z; is not differentiable at

(x*, z*¥). Need nonsmooth analysis to derive KKT condition.

Theorem: SOCP duality and KKT
3. Suppose Bx* 4+ d = 0. Suppose dxs.t. Ax = b, ||Bx+d||, < ST + & (Slater condition).

(@) Case B'x* + 8> 0: x*is optimal iff df(x*) D ATA* for some A* € R”
(b) Case f'x* + 6 =0: x* = 0 is optimal iff
df(0)  ATA* + BTp* for some A* € R™, n* € K

(constraint function A(z) := ||z/~! ||, — z; nondifferentiable at (x*, z*))



Second-order cone program (SOCP)

SOC constraint: derivation

Part 3: Constraint function /(z) := ||z~ |, — z; is nondifferentiable at (x*, z*). Use generalized
KKT Theorem which requires the Slater condition.

(@) Rewrite as unconstrained optimization:

min  f(x) + 85(x.2) + Sg(x,2) + Oy (x,2)

(x.0)eR™!
where
H, = {(x,2) e R"™: Ax=b} =: H xR/, H = {xeR": Ax =0}
K:= {(x,2) e R™: Iz, £ 7} =@ R"xK, K:= {zeR': |z, < z
H, = {(x,2) e R"™: z7=Bx+d)

and
N (x,2) = Ny (x) X {0 € R}, Ni(x,2) = {0 € R"} X N(z)



Second-order cone program (SOCP)

SOC constraint: derivation

(b) If Slater condition holds (3X s.t. AX = b, ||BX + d||, < X + 8), then a feasible (x*, 7*) is
optimal if and only if 3&* € df(x™) such that

f*

c — Nﬁl(X*, Z*) — NI?(X*’ Z*) — NHZ(X*’ Z*)

_ NHI(X*) 0 S
o [ O] B [NK(Z*)] BRCER



Second-order cone program (SOCP)

Derivation

(c) Normal cones:
Ny (x*) = {ATAeR": 1€ R}

f

{(neR":In"Ml, < —n} if 2% =0
Ne(z¥) = J10€ R') it |24, < 2

(M1 =z e Rz 0) ity =2 > 0

"

Ny (x*,7%) = {(BT;/, —peR" . ye IRl}

Substitute into optimality condition: 3&* € df(x*) such that

E* NHl(x*)] B [ 0] — Ny (%, 7%)

e —_
0 o] |Vk(z®)




Second-order cone program (SOCP)

Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and

() Casef'x*+ 6> ||Bx* +d||, > 0:suchthat & = ATA* (y* = 0)
(constraint function A(z) := ||z 1|, — z; nondifferentiable if [2%]71 = 0)



Second-order cone program (SOCP)
Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and
() Casef'x*+ 6> ||Bx* +d||, > 0:suchthat & = ATA* (y* = 0)
(i) Case fTx* + 6 = ||Bx* +d|, > 0: Iu* R, such that
EF = ATI* 4 ¥ (_ BT(Bx* +d) + (S x* + 5)) (this is the smooth case)



Second-order cone program (SOCP)
Derivation
(d) A feasible x* is optimal if and only if I&* € df(x*), A* € R™ and

() Casef'x*+ 6> ||Bx* +d||, > 0:suchthat & = ATA* (y* = 0)

(i) Case fTx* + 6 = ||Bx* +d|, > 0: Iu* R, such that

(i) & = ATA* + p* (—=BT(Bx* + d) + p(fTx* + 5))
(iii) Case fTx* + 6 = ||Bx* +d||, = 0: Iy* € Ksuchthat & = ATA* + BTy*
(constraint function 4(z) := ||z"7!||, — z; nondifferentiable at z* = 0)

Remark
In all 3 cases, conditions are of the form &* = AT1* 4+ BTy* for some n* € K

_[*x]/-1
ﬂ*zOorﬂ*zﬂ*[ [ZZ*] ]EK
k



Outline

8. Special convex programs

« Conic program



Conic program
Conic feasible set

Consider

f* = min f(x) st Ax=b,x€eK

xeR”
where f: R" > R, A € R™" b e R"™, K C R"is a closed convex cone



Conic program
Conic feasible set

Consider

f* = min f(x) st Ax=b,x€eK

xeR”
where f: R" > R, A € R™" b e R"™, K C R"is a closed convex cone

Lagrangian:
Lix, A, 1) == fx) —ATAx=b)—pu'x, x€R", 1€R™ u € K*CR"
Dual function:

d(A,u) = min L(x,A,u) = ATh + do(A,p), A€ R™ pe K CR"
xeR”
where dy(4, ) := min (f(x) — (ATA + p)"x)
xeR"
Dual problem:

d* = max /ITb+dO(/1, W)
AER™, ueK*



Conic program
Conic feasible set

To derive KKT condition, rewrite as unconstrained optimization

mg}l J(X) 4+ O(x) + Op(x)

where H := {x € R" : Ax = b}

Under Slater condition (3x € ri(K) s.t. Ax = b), generalized KKT theorem implies: x* is optimal
if and only if A&* € df(x™) such that

—&* € Ny(x™) + Ng(x™)

where
Ny(x*) = {ATAeR": 1 € R™)
Ne(x*¥) = {fe€e K CR": i'x* =0)



Conic program
Conic feasible set
Consider f* := min f(x) st Ax=b,x€K

xeR"

Theorem: Conic duality and KKT
Suppose dx € ri(K) s.t. Ax = b (Slater condition).

1. Suppose f* is finite. Then strong duality holds and dual optimality is attained.
2. A feasible x* is optimal if and only if 3&* € df(x™) and (4*, u*) € R X K* such that
Ex = AT +p*,  pTxx=0
Such a point (x*, A*, u*) is a saddle point and a KKT point that closes the duality gap.



Conic program
Conic constraint

Consider

f* = min f(x) st Ax=b,Bx+deK

xeR"
where f: R" - R, A € R™" b e R" BeR> de R, KC Risaclosed convex cone

feasible may not be cone

Dual problem:

d* := max dA,p) = (b"A—d'u) +dy(Ap) st peK*CR
() ER™



Conic program
Conic constraint
Consider f* := min f(x) st Ax=b,Bx+dekK

xeR"

Theorem: Conic duality and KKT
Suppose Jx s.t. Ax = b, Bx + d € ri(K) (Slater condition).

1. Suppose f* is finite. Then strong duality holds and dual optimality is attained.
2. A feasible x* is optimal if and only if 3&* € df(x™) and (4*, u*) € R X K* such that
g = ATI*+BTu*,  uT(Bx*+d)=0
Such a point (x*, A*, u*) is a saddle point and a KKT point that closes the duality gap.



