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Power System Analysis
Chapter 13  Stochastic optimal power flow



Stochastic OPF
Consider





where  is a parameter, e.g., admittance matrix, renewable generations, forecast loads

In many power system applications some of these parameters are uncertain, giving rise to 
stochastic OPF 

Brief introduction to theory of stochastic optimization


• Most stochastic optimization problems are intractable (e.g., nonconvex, nonsmooth)


• Explains 4 main ideas to deal with uncertainty


• Focuses on convex reformulations and structural properties

min
x∈ℝn

f(x)  s.t.  h(x, ζ) ≤ 0

ζ



Stochastic OPF
4 main ideas
Choose optimal  s.t.


• Robust opt:  satisfies constraints for all  in an uncertainty set 


• Chance constrained opt:  satisfies constraints with high probability


• Scenario opt:  satisfies constraints for  random samples of 


• Two-stage opt: 2nd-stage decision  adapts to realized parameter , given 1st-stage decision 


Many methods are combinations of these 4 ideas, e.g.

• Distributional robust opt: robust + chance constrained


• Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost


• Adaptive robust affine control: two-stage + robust (or avg) + affine policy

x*
x* ζ Z

x*
x* K ζ ∈ Z

y(x*, ζ) ζ x*



Outline
1. Robust optimization


2. Chance constrained optimization


3. Convex scenario optimization


4. Stochastic optimization with recourse



Outline
1. Robust optimization


• General formulation

• Robust linear program

• Robust second-order cone program

• Robust semidefinite program

• Proofs


2. Chance constrained optimization


3. Convex scenario optimization


4. Stochastic optimization with recourse



General formulation
Consider





•  : cost function is assumed certain wlog

•  : uncertain parameter

•  : uncertain inequality constraint 
•  : uncertainty set that can depend on optimization variable 


Interpretation: Choose an optimal  that satisfies the inequality constraint  for all 
possible uncertainty realization 


min
x∈ℝn

f(x)  s.t.  h(x, ζ) ≤ 0, ∀ζ ∈ Z(x)

f(x)
ζ
h(x, ζ)
Z(x) x

x* h(x*, ζ) ≤ 0
ζ ∈ Z(x*)



General formulation
Consider





• Semi-infinite program: finite #optimization variables , possibly infinite #constraints 

• Generally intractable 
• For special cases of uncertainty set , robust program has finite convex reformulation which is 

tractable

• e.g. robust LP, robust SOCP, robust SDP


min
x∈ℝn

f(x)  s.t.  h(x, ζ) ≤ 0, ∀ζ ∈ Z(x)

x ∈ ℝn

Z(x)



General formulation
Example
• PV panel with uncertain real power generation  and controllable reactive power 




• PV panel is connected to battery through a line with series admittance 


• DC discharging power  is controllable as long as its SoC  
satisfies 


• Voltages at buses 1 and 2 are .  Let  

Goal: control  within control limits at time  to min cost, subject to SoC  and 
voltage limits  for 


ζt ∈ Zt ⊆ ℝ+
qt ∈ [qmin, qmax]

y ∈ ℂ
dt ∈ [dmin, dmax] b := (b1, …, bT)

bt ∈ [0,B]
v1t = |v1t |eiθ1t, v2t = |v2t |eiθ2t vt := (v1t, v2t)

(qt, dt) t bt ∈ [0,B]
|vit | ∈ [vmin, vmax] t = 1,…, T



General formulation
Example
Let , 

Robust scheduling problem is:





where  are power equation and battery state process





and  are voltage and battery limits


x := (q, d) ∈ ℝ2T v := (v1, …, vT), b := (b1, …, bT), ζ := (ζ1, …, ζT)

min
x

f(x) s.t. g(x, v, b, ζ) = 0, h(x, v, b, ζ) ≤ 0, ∀ζ ∈ Z1 × ⋯ × ZT

g(x, v, b, ζ) = 0

ζt + iqt = y𝖧 ( |v1t |
2 − v1tv𝖧

2t), dt + i0 = y𝖧 ( |v2t |
2 − v2tv𝖧

1t), bt+1 = bt − dt

ht(x, t, b, ζ) ≤ 0

vmin ≤ |vit | ≤ vmax, i = 1,2, 0 ≤ bt ≤ B

uncertain equality constraints need to be interpreted appropriately and eliminated



General formulation
Example
Given control decisions  and uncertain parameter  , voltage  takes value in





To eliminate battery, write  as





Then robust scheduling problem is:





The original uncertainty set  is embedded into the -dependent uncertainty set 

xt := (qt, dt) ζt vt

Vt(x) := {vt ∈ ℂ2 : vt satisfies power flow equation, ζt ∈ Zt}
bt

bt = b0 − ∑
s<t

ds, t = 1,…, T

min
x

f(x) s.t. vmin ≤ |vit | ≤ vmax, i = 1,2, ∀vt ∈ Vt(x), t = 1,…, T

0 ≤ b0 − ∑
s<t

ds ≤ B, t = 1,…, T

Zt x Vt(x)



General formulation
Tractability
Consider





Equivalent bi-level formulation




Assuming  is convex, tractability of (1) boils down to whether the following subproblem is 
tractable:


min
x∈ℝn

f(x)  s.t.  h(x, ζ) ≤ 0, ∀ζ ∈ Z(x)

min
x∈ℝn

f(x)  s.t.  sup
ζ∈Z(x)

h(x, ζ) ≤ 0 (1)

f

h̄(x) := sup
ζ∈Z(x)

h(x, ζ)



Derivation strategy
3 common strategies to derive finite convex reformulation of robust optimizations:


1. Solve  analytically in close form and  is convex in 

2. Replace  by strong duality  and KKT condition such that  is optimal for the 

dual of subproblem , i.e.,  satisfies dual feasibility and stationary 


(a) Need Slater theorem (  is finite, convexity and Slater condition) to guarantee strong duality and 
existence of dual opt 


(b)  is eliminated because (i)  is affine in  and therefore  does not contain ; and (ii) in 
strong duality and stationarity imply complementary slackness (which therefore can be omitted)

h̄(x) h̄(x) ≤ 0 x
h̄(x) ≤ 0 d(y) ≤ 0 y

sup
ζ∈Z(x)

h(x, ζ) y

h̄(x)
y

ζ h(x, ζ) ζ ∇ζL(ζ, y) = 0 ζ

robust LP

robust LP



Derivation strategy
3. When the semi-infinite constraint takes the form  for all  where  is a 

closed convex cone, such as  or , it can be reformulated as a set of linear 
matrix inequalities (LMIs) using the -lemma.  The resulting problem is an SDP

h0(x) + h(x, ζ) ∈ K ζ ∈ Z K
Ksoc ⊆ ℝn Ksdp ⊆ 𝕊n

S
robust SOCP, robust SDP



Robust linear program
Consider





 are nominal parameters;   are perturbations, with given 


Constraints are equivalent to





 takes value in uncertainty set 


This is general and allows each entry of  to vary independently (with )

min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

(a0, b0) ∈ ℝn+1 ∑
l

ζl [a𝖳
l bl] [a𝖳

l bl]

h̄(x) := max
ζ∈Z

k

∑
l=1

ζl(a𝖳
l x − bl) ≤ − (a𝖳

0 x − b0)

ζ := (ζ1, …, ζk) Z
a, b k = n + 1



Robust linear program
Consider





Theorem 
1. Linear uncertainty  : (1) is equivalent to LP:





2. SOC uncertainty  : (1) is equivalent to SOCP:


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∥ζ∥∞ ≤ 1}
min

(x,y)∈ℝn+k
c𝖳x s.t.  a𝖳

0 x + ∑
l

yl ≤ b0, − yl ≤ a𝖳
l x − bl ≤ yl, l = 1,…, k

Z := {ζ ∈ ℝk : ∥ζ∥2 ≤ r}

min
x∈ℝn

c𝖳x s.t.  r ∑
l

(a𝖳
l x − bl)2 ≤ − a𝖳

0 x + b0

strategy 1

strategy 1



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior. 


Example: 


Conic uncertainty of part 3 is very general and includes parts 1 and 2 as special cases

min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z := {ζ ∈ ℝk : ζ ∈ K}



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior. 


Example: .  Then (1) is equivalent to conic program:    s.t. 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z := {ζ ∈ ℝk : ζ ∈ K} min
(x,y)∈ℝn+m

c𝖳x

a𝖳
0 x ≤ b0, a𝖳

l x + yl = bl, y ∈ K*, l = 1,…, k



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior. 


The subproblem in the bi-level formulation is 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

h̄(x) := max
ζ∈Z

k

∑
l=1

ζl(a𝖳
l x − bl) = max

(ζ,u)∈ℝk+p
(s(x))𝖳ζ  s.t.  [P Q] [ζ

u] + d ∈ K

this subproblem will be replaced by strong duality and KKT condition for h̄(x)



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior.  Suppose  is nonempty and


• Slater condition: either  is polyhedral cone or 


• For each ,  is finite


 Then (1) is equivalent to conic program:    s.t. 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z
K ∃(ζ̄, ū) ∈ ℝk+p  s.t.  Pζ̄ + Qū + d ∈ ri(K)

x max
ζ∈Z ∑

l

ζl (a𝖳
l x − bl)

min
(x,y)∈ℝn+m

c𝖳x

a𝖳
0 x + d𝖳y ≤ b0, y ∈ K*, Q𝖳y = 0, a𝖳

l x + (P𝖳y)l
= bl, l = 1,…, k

strategy 2

strong duality dual feasibility stationarity



Robust linear program
Summary

min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk}

Uncertainty Set Z Convex reformulation

Linear LP

SOC SOCP

Conic Conic program



Robust second-order cone program
Consider





where  and  are affine functions of :





 are fixed and given;  is the uncertain parameter

Formulation is general and allows each entry of the nominal  to be perturbed 
independently

min
x∈ℝn

c𝖳x  s.t.  ∥A(ζ)x + b(ζ)∥2 ≤ α𝖳(ζ)x + β(ζ), ∀ζ ∈ Z ⊆ ℝk

(A(ζ), b(ζ)) (α(ζ), β(ζ)) ζ

A(ζ) := A0 +
k

∑
l=1

ζlAl ∈ ℝm×n, b(ζ) := b0 +
k

∑
l=1

ζlbl ∈ ℝm

α(ζ) = α0 +
k

∑
l=1

ζlαl ∈ ℝn, β(ζ) := β0 +
k

∑
l=1

ζlβl ∈ ℝ

(Al, bl, αl, βl, l ≥ 0) ζ
(A0, b0, α0, β0)



Robust second-order cone program
Consider





where  and  are affine functions of :





Generally intractable, except e.g.  in which case the semi-infinite set of 
constraints reduces to


min
x∈ℝn

c𝖳x  s.t.  ∥A(ζ)x + b(ζ)∥2 ≤ α𝖳(ζ)x + β(ζ), ∀ζ ∈ Z ⊆ ℝk

(A(ζ), b(ζ)) (α(ζ), β(ζ)) ζ

A(ζ) := A0 +
k

∑
l=1

ζlAl ∈ ℝm×n, b(ζ) := b0 +
k

∑
l=1

ζlbl ∈ ℝm

α(ζ) = α0 +
k

∑
l=1

ζlαl ∈ ℝn, β(ζ) := β0 +
k

∑
l=1

ζlβl ∈ ℝ

Z = conv(ζ1, …, ζp) ⊆ ℝk

∥A(ζi)x + b(ζi)∥2 ≤ α𝖳(ζi)x + β(ζi), i = 1,…, p



Robust second-order cone program
Decoupled constraints

Special case: left-hand side uncertainty  and right-hand side uncertainty  are decoupled:




 if feasible iff   s.t. 





Two classes of uncertainty sets  for which both maximization and minimization have finite 
convex representations, and hence robust SOCP is tractable


ζl ζr

min
x∈ℝn

c𝖳x  s.t.  A(ζl)x + b(ζl)
2

≤ α𝖳(ζr)x + β(ζr), ∀ζl ∈ Zl, ζr ∈ Zr

x ∈ ℝn ∃τ
max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ ≤ min
ζr∈Zr

α𝖳(ζr) x + β(ζr)

(Zl, Zr)



Robust second-order cone program
Interval + conic uncertainties
1. Left-side uncertainty:   and    with





Subproblem:     (strategy 1: solve in closed form)


2. Right-side uncertainty:   and    with





Subproblem:     (same as robust LP  conic constraint)


Suppose  satisfies Slater condition:  is nonempty and either  is polyhedral or  s.t. 

A(ζl) = A0 + ΔA b(ζl) = b0 + Δb

Zl := {ζl := [ΔA Δb] : |ΔAij | ≤ δij, |Δbi | ≤ δi, i = 1,…, m, j = 1,…, n}
max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

α(ζr) := α0 +
kr

∑
l=1

ζlαl ∈ ℝn β(ζr) := β0 +
kr

∑
l=1

ζlβl ∈ ℝ

Zr := {ζr ∈ ℝkr : ∃u s.t. Pζr + Qu + d ∈ K}
τ ≤ min

ζr∈Zr
α𝖳(ζr)x + β(ζr) ⇔

Zr Zr K ∃(ζ̄r, ū)
Pζ̄r + Qū + d ∈ ri(K)



Robust second-order cone program
Interval + conic uncertainties
Theorem 
Suppose  is nonempty and 


• Slater condition: either  is polyhedral cone or  s.t. 


• For each ,   is finite


 Then robust SOCP is equivalent to conic program:    s.t. 


Zr

K ∃(ζ̄r, ū) Pζ̄r + Qū + d ∈ ri(K)
x min

ζr∈Zr
α𝖳(ζr)x + β(ζr)

min
(x,y,z)

c𝖳x

zi = ∑
j

[A0]ijxj + [b0]i + ∑
j

δij |xj | + δi, i = 1,…, m − 1

∥z∥2 ≤ ̂β(x) − y𝖳d, y ∈ K*, P𝖳y = α̂(x), Q𝖳y = 0

⇔ max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

⇔ τ ≤ min
ζr∈Zr α𝖳(ζr)x + β(ζr)

(same as robust LP)
strong duality dual feasibility stationarity



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

1. Left-side uncertainty:   with





At most one of  and  depends on ; moreover dependence is affine in 


Subproblem:   (reduce to LMIs using -lemma)


2. Right-side uncertainty: same


Subproblem:     (same as robust LP  conic constraint)


A(ζl)x + b(ζl) = (A0x + b0) + L𝖳(x)ζlr(x)

Zl := {ζl ∈ ℝk1×k2 : ζl
2

:= max
u:∥u∥2≤1

ζlu
2

≤ 1}
L(x) r(x) x x

max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ S

τ ≤ min
ζr∈Zr

α𝖳(ζr)x + β(ζr) ⇔



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Suppose  is nonempty and 


• Slater condition: either  is polyhedral cone or  s.t. 


• For each ,   is finite


Zr

K ∃(ζ̄r, ū) Pζ̄r + Qū + d ∈ ri(K)
x min

ζr∈Zr
α𝖳(ζr)x + β(ζr)



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Then robust SOCP is equivalent to conic program:    s.t. 





1. If   then


min
(x,y,τ,λ)

c𝖳x

y ∈ K*, τ ≤ ̂β(x) − y𝖳d, P𝖳y = α̂(x), Q𝖳y = 0

A(ζl)x + b(ζl) = (A0x + b0) + L𝖳(x)ζlr

λ ≥ 0,
τ − λ∥r∥2

2 (A0x + b0)𝖳 0
A0x + b0 τ𝕀m L𝖳(x)

0 L(x) λ𝕀k1

⪰ 0

⇔ τ ≤ min
ζr∈Zr α𝖳(ζr)x + β(ζr)

⇔ max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Then robust SOCP is equivalent to conic program:    s.t. 





2. If   then


min
(x,y,τ,λ)

c𝖳x

y ∈ K*, τ ≤ ̂β(x) − y𝖳d, P𝖳y = α̂(x), Q𝖳y = 0

A(ζl)x + b(ζl) = (A0x + b0) + L𝖳ζlr(x)

λ ≥ 0,
τ (A0x + b0)𝖳 r𝖳(x)

A0x + b0 τ𝕀m − λL𝖳L 0
r(x) 0 λ𝕀k2

⪰ 0

⇔ τ ≤ min
ζr∈Zr α𝖳(ζr)x + β(ζr)

⇔ max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ



Robust semidefinite program

1. Nominal SDP





2. Robust SDP





where





At most one of the matrices  and  depends on ; moreover dependence is affine in 

min
x∈ℝn

f(x)  s.t.  h0(x) := B0 +
n

∑
i=1

xiAi
0 ∈ Kpsd ⊂ 𝕊m

min
x∈ℝn

f(x)  s.t.  h0(x) + h(x, ζ) ∈ Kpsd, ∀ζ ∈ Z

h(x, ζ) := L𝖳(x)ζR(x) + R𝖳(x)ζ𝖳L(x) ∈ 𝕊m

Z := { ζ ∈ ℝk1×k2 : ∥ζ∥2 := max
u:∥u∥2=1

∥ζu∥2 ≤ ρ }
L(x) R(x) x x

to obtain linear matrix inequalities



Example: SDP relaxation of OPF
SDP relaxation of OPF:





where





and   is a given nominal admittance matrix

min
W∈Kpsd

tr (C0W) s.t. tr (ΦjW) ≤ pmax
j , −tr (ΦjW) ≤ − pmin

j

tr (ΨjW) ≤ qmax
j , −tr (ΨjW) ≤ − qmin

j

tr (JjW) ≤ vmax
j , −tr (JjW) ≤ − vmin

j

Φj :=
1
2 (Y𝖧

0 eje𝖳
j + eje𝖳

j Y0), Ψj :=
1
2i (Y𝖧

0 eje𝖳
j − eje𝖳

j Y0), Jj := eje𝖳
j

Y0 ∈ ℂ(N+1)×(N+1)

 and  depend on admittance matrixΦj Ψj



Example: SDP relaxation of OPF

Nominal SDP: dual problem




where





− min
x∈ℝn

c𝖳x s.t. x ≥ 0, h0(x) ∈ Kpsd

h0(x) := C0 +
N+1

∑
i=1

((x2i−1 − x2i) Φi + (x2(N+1)+2i−1 − x2(N+1)+2i) Ψi

+ (x4(N+1)+2i−1 − x4(N+1)+2i) Ji)

which is in standard form:  min
x∈ℝn

f(x)  s.t.  h0(x) := B0 +
n

∑
i=1

xiAi
0 ∈ Kpsd



Example: SDP relaxation of OPF
Uncertain admittance matrix Y = Y0 + ΔY

Uncertainty: admittance matrix 


This results in uncertainty in : 


  


Robust SDP: 

Y = Y0 + ΔY
h(x)

h(x, ΔY) := L𝖧(x)ΔY + ΔY𝖧L(x)

L(x) :=
N+1

∑
i=1

( 1
2 (x2i−1 − x2i) +

1
2i (x2(N+1)+2i−1 − x2(N+1)+2i)) eie𝖳

i

− min
x∈ℝn

c𝖳x s.t. x ≥ 0, h0(x) + h(x, ΔY) ∈ Kpsd

which is in standard form with  hζ(x) := L𝖳(x)ζ𝕀 + 𝕀ζ𝖳L(x)



Robust semidefinite program

Theorem 
Robust SDP is equivalent to SDP:    s.t. 


1. If   then





2.   then


min
(x,λ)

f(x)

hζ(x) := L𝖳(x)ζR + R𝖳ζ𝖳L(x)

λ ≥ 0, [h0(x) − λR𝖳R ρL𝖳(x)
ρL(x) λ𝕀k1 ] ⪰ 0

hζ(x) := L𝖳ζR(x) + R𝖳(x)ζ𝖳L

λ ≥ 0, [h0(x) − λL𝖳L ρR𝖳(x)
ρR(x) λ𝕀k2 ] ⪰ 0



Outline
1. Robust optimization


• General formulation

• Robust linear program

• Robust second-order cone program

• Robust semidefinite program

• Proofs


2. Chance constrained optimization


3. Convex scenario optimization


4. Stochastic optimization with recourse


5. Applications



Proofs
The proofs illustrate two useful techniques in this, and many other, types of problems


1. Robust LP: conic uncertainty 


• Replace subproblem  by strong duality and KKT condition


2. Robust SOCP: bounded -norm + conic uncertainty


• Express  as  


• Use -lemma to reduce  to LMIs


3. -lemma

• Use separating hyperplane theorem (similar to Slater theorem proof)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K}
h̄(x) ≤ 0

l2
Ksoc Kpsd

S max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

S

strategy 2

strategy 3



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior.  Suppose  is nonempty and


• Slater condition: either  is polyhedral cone or 


• For each ,  is finite


 Then (1) is equivalent to conic program:    s.t. 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z
K ∃(ζ̄, ū) ∈ ℝk+p  s.t.  Pζ̄ + Qū + d ∈ ri(K)

x max
ζ∈Z ∑

l

ζl (a𝖳
l x − bl)

min
(x,y)∈ℝn+m

c𝖳x

a𝖳
0 x + d𝖳y ≤ b0, y ∈ K*, Q𝖳y = 0, a𝖳

l x + (P𝖳y)l
= bl, l = 1,…, k

strategy 2

strong duality dual feasibility stationarity



Robust linear program
Proof
Recall the subproblem and feasibility condition is:





Define  by 


Then subproblem is:





Hence the constraint  is: 


Lagrangian is: for all ,


h̄(x) := max
ζ∈Z

k

∑
l=1

ζl(a𝖳
l x − bl) ≤ − (a𝖳

0 x − b0)

s ∈ ℝk sl := sl(x) := a𝖳
l x − bl

p*(x) := max
(ζ,u)∈ℝk+p

s𝖳(x)ζ  s.t.  [P Q] [ζ
u] + d ∈ K

h̄(x) ≤ − (a𝖳
0 x − b0) p*(x) ≤ − (a𝖳

0 x − b0)
(ζ, u) ∈ ℝk+p, y ∈ K*

L(ζ, u, y) := s𝖳ζ + y𝖳 ([P Q] [ζ
u] + d) = y𝖳d + (s𝖳 + y𝖳P) ζ + y𝖳Qu



Robust linear program
Proof
Dual function is:





Dual problem is:





Slater Theorem applies (finite optimal primal value, convexity, Slater condition) to conclude strong 
duality and existence of dual optimal solution :





Therefore feasibility  is equivalent to: 

d(y) := max
(ζ,u)∈ℝk+p

L(ζ, u, y) = {d𝖳y  if P𝖳y = − s, Q𝖳y = 0
∞  otherwise

d*(x) := min
y∈K*

d𝖳y  s.t.  P𝖳y = − s(x), Q𝖳y = 0

y := y(x)

p*(x) = d*(x) = d𝖳y

p*(x) ≤ − (a𝖳
0 x − b0) d𝖳y ≤ − (a𝖳

0 x − b0)

stationarity ∇ζ,uL(ζ, u, y) = 0



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior.  Suppose  is nonempty and


• Slater condition: either  is polyhedral cone or 


• For each ,  is finite


 Then (1) is equivalent to conic program:    s.t. 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z
K ∃(ζ̄, ū) ∈ ℝk+p  s.t.  Pζ̄ + Qū + d ∈ ri(K)

x max
ζ∈Z ∑

l

ζl (a𝖳
l x − bl)

min
(x,y)∈ℝn+m

c𝖳x

a𝖳
0 x + d𝖳y ≤ b0, y ∈ K*, Q𝖳y = 0, a𝖳

l x + (P𝖳y)l
= bl, l = 1,…, k

strong duality



Robust linear program
Proof
To ensure  is dual optimal, it is necessary and sufficient it satisfies KKT condition for





Dual feasibility: 


Stationarity: 


Complementary slackness: 

y := y(x)
min
y∈K*

d𝖳y  s.t.  P𝖳y = − s(x), Q𝖳y = 0

max
(ζ,u)∈ℝk+p

s𝖳(x)ζ  s.t.  [P Q] [ζ
u] + d ∈ K

y ∈ K*

P𝖳y = − s(x), Q𝖳y = 0

y𝖳 ([P Q] [ζ
u] + d) = 0

this involves  : eliminate it using

stationarity and strong duality

ζ



Robust linear program
Proof
Complementary slackness is implied by stationarity and strong duality:


y𝖳 ([P Q] [ζ
u] + d) = y𝖳Pζ + y𝖳Qu + y𝖳d

= − s𝖳ζ + 0 + y𝖳d
= 0

stationarity:  P𝖳y = − s(x), Q𝖳y = 0
strong duality: s𝖳ζ = d𝖳y



Robust linear program
Consider





Theorem 
3. Conic uncertainty  where  is a closed 

convex pointed cone with nonempty interior.  Suppose  is nonempty and


• Slater condition: either  is polyhedral cone or 


• For each ,  is finite


 Then (1) is equivalent to conic program:    s.t. 


min
x∈ℝn

c𝖳x  s.t.  a𝖳x ≤ b, ∀[a𝖳 b] ∈ {[a𝖳
0 b0] +

k

∑
l=1

ζl [a𝖳
l bl] : ζ ∈ Z ⊆ ℝk} (1)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K} K ⊆ ℝm

Z
K ∃(ζ̄, ū) ∈ ℝk+p  s.t.  Pζ̄ + Qū + d ∈ ri(K)

x max
ζ∈Z ∑

l

ζl (a𝖳
l x − bl)

min
(x,y)∈ℝn+m

c𝖳x

a𝖳
0 x + d𝖳y ≤ b0, y ∈ K*, Q𝖳y = 0, a𝖳

l x + (P𝖳y)l
= bl, l = 1,…, k

dual feasibility stationarity



Proofs
1. Robust LP: conic uncertainty 


• Replace subproblem  by strong duality and KKT condition


2. Robust SOCP: bounded -norm + conic uncertainty


• Express  as  


• Use -lemma to reduce  as LMIs


3. -lemma

• Use separating hyperplane theorem (similar to Slater theorem proof)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K}
h̄(x) ≤ 0

l2
Ksoc Kpsd

S max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

S

strategy 3



Robust second-order cone program
Decoupled constraints

Special case: left-hand side uncertainty  and right-hand side uncertainty  are decoupled:




 if feasible iff   s.t. 





ζl ζr

min
x∈ℝn

c𝖳x  s.t.  A(ζl)x + b(ζl)
2

≤ α𝖳(ζr)x + β(ζr), ∀ζl ∈ Zl, ζr ∈ Zr

x ∈ ℝn ∃τ
max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ ≤ min
ζr∈Zr

α𝖳(ζr) x + β(ζr)



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

1. Left-side uncertainty:   with





At most one of  and  depends on ; moreover dependence is affine in 


Subproblem:   (reduce to LMIs using -lemma)


2. Right-side uncertainty: same


Subproblem:     (same as robust LP  conic constraint)


A(ζl)x + b(ζl) = (A0x + b0) + L𝖳(x)ζlr(x)

Zl := {ζl ∈ ℝk1×k2 : ζl
2

:= max
u:∥u∥2≤1

ζlu
2

≤ 1}
L(x) r(x) x x

max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ S

τ ≤ min
ζr∈Zr

α𝖳(ζr)x + β(ζr) ⇔



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Suppose  is nonempty and 


• Slater condition: either  is polyhedral cone or  s.t. 


• For each ,   is finite


Zr

K ∃(ζ̄r, ū) Pζ̄r + Qū + d ∈ ri(K)
x min

ζr∈Zr
α𝖳(ζr)x + β(ζr)



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Then robust SOCP is equivalent to conic program:    s.t. 





1. If   then


min
(x,y,τ,λ)

c𝖳x

y ∈ K*, τ ≤ ̂β(x) − y𝖳d, P𝖳y = α̂(x), Q𝖳y = 0

A(ζl)x + b(ζl) = (A0x + b0) + L𝖳(x)ζlr

λ ≥ 0,
τ − λ∥r∥2

2 (A0x + b0)𝖳 0
A0x + b0 τ𝕀m L𝖳(x)

0 L(x) λ𝕀k1

⪰ 0

⇔ τ ≤ min
ζr∈Zr α𝖳(ζr)x + β(ζr)

⇔ max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ



Robust second-order cone program
Bounded  norm + conic uncertaintiesℓ2

Theorem 
Then robust SOCP is equivalent to conic program:    s.t. 





2. If   then


min
(x,y,τ,λ)

c𝖳x

y ∈ K*, τ ≤ ̂β(x) − y𝖳d, P𝖳y = α̂(x), Q𝖳y = 0

A(ζl)x + b(ζl) = (A0x + b0) + L𝖳ζlr(x)

λ ≥ 0,
τ (A0x + b0)𝖳 r𝖳(x)

A0x + b0 τ𝕀m − λL𝖳L 0
r(x) 0 λ𝕀k2

⪰ 0

⇔ τ ≤ min
ζr∈Zr α𝖳(ζr)x + β(ζr)

⇔ max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ



Robust second-order cone program
Proof
Prove    is equivalent to LMIs:


1. If   then


max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

A(ζl)x + b(ζl) = (A0x + b0) + L𝖳(x)ζlr

λ ≥ 0,
τ − λ∥r∥2

2 (A0x + b0)𝖳 0
A0x + b0 τ𝕀m L𝖳(x)

0 L(x) λ𝕀k1

⪰ 0



Robust second-order cone program
Proof
3 ideas:


1.  :  , i.e.,  if and only if 


2. -norm matrix minimization : 


3. -lemma : Suppose  for some .  Then  holds if and only if 
 for some 

Ksoc as Kpsd (y, t) ∈ Ksoc ∥y∥2 ≤ t [t y𝖳

y t𝕀l] ⪰ 0

l2 −ρ∥a1∥2∥a2∥2 = min
X:∥X∥2≤ρ

a𝖳
1 Xa2

S x̄𝖳Ax̄ > 0 x̄ x𝖳Ax ≥ 0 ⇒ x𝖳Bx ≥ 0
B ⪰ λA λ ≥ 0



Robust second-order cone program
Proof
Let 


Subproblem    is equivalent to:





Or:  





Or:  


g(x) := A0x + b0 ∈ ℝm

max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

τ (g(x) + L𝖳(x)ζlr)
𝖳

g(x) + L𝖳(x)ζlr τ𝕀m

⪰ 0, ζl ∈ Zl

(z1)2τ + 2z𝖳
2 (g(x) + L𝖳(x)ζlr) z1 + (z𝖳

2 z2)τ ≥ 0, ∀z1 ∈ ℝ, z2 ∈ ℝm, ζl ∈ Zl

(z1)2τ + 2z𝖳
2 g(x)z1 + (z𝖳

2 z2)τ + min
ζl:∥ζl∥2≤1

(2L(x)z2)𝖳ζl(z1r) ≥ 0 ∀z1 ∈ ℝ, z2 ∈ ℝm



Robust second-order cone program
Proof
Apply -norm matrix minimization twice:  





Therefore, for all ,  if    then 





This is equivalent to:





l2
min

ζl:∥ζl∥2≤1
(2L(x)z2)𝖳ζl(z1r) = − 2∥L(x)z2∥2∥z1r∥2 = min

X:∥X∥2≤∥z1r∥2

(2L(x)z2)𝖳X(1)

z1 ∈ ℝ$, z2 ∈ ℝm, X ∈ ℝk1 z2
1∥r∥2

2 − X𝖳X ≥ 0

(z1)2τ + 2z𝖳
2 g(x)z1 + (z𝖳

2 z2)τ + 2 X𝖳L(x)z2 ≥ 0

∥r∥2
2 0 0

0 0 0
0 0 −𝕀k1

⪰ 0 ⟹
τ g𝖳(x) 0

g(x) τ𝕀m L𝖳(x)
0 L(x) 0

⪰ 0



Robust second-order cone program
Proof
Clearly there exists  such that 


Hence -lemma implies:  such that





z1 > 0 z2
1∥r∥2

2 > 0

S ∃λ ≥ 0

τ − λ∥r∥2
2 g𝖳(x) 0

g(x) τ𝕀m L𝖳(x)
0 L(x) λ𝕀k1

⪰ 0



Proofs
1. Robust LP: conic uncertainty 


• Replace subproblem  by strong duality and KKT condition


2. Robust SOCP: bounded -norm + conic uncertainty


• Express  as  


• Use -lemma to reduce  as LMIs


3. -lemma

• Use separating hyperplane theorem (similar to Slater theorem proof)

Z := {ζ ∈ ℝk : ∃u ∈ ℝp s.t. Pζ + Qu + d ∈ K}
h̄(x) ≤ 0

l2
Ksoc Kpsd

S max
ζl∈Zl

∥A(ζl)x + b(ζl)∥2 ≤ τ

S



-lemmaS
Proof

-lemma 

Let  be  symmetric matrices and  for some 

The following are equivalent

(i) 


(ii)  such that 


Proof 
 : . Hence 


S
A, B n × n x̄𝖳Ax̄ > 0 x̄ ∈ ℝn

x𝖳Ax ≥ 0 ⇒ x𝖳Bx ≥ 0
∃λ ≥ 0 B ⪰ λA

(ii) ⟹ (i) x𝖳Bx − x𝖳λAx = x𝖳(B − λA)x ≥ 0 (ii) ⟹ (i)



-lemmaS
Proof

-lemma 

Let  be  symmetric matrices and  for some 

The following are equivalent

(i) 


(ii)  such that 


Proof 
 : . Hence 


S
A, B n × n x̄𝖳Ax̄ > 0 x̄ ∈ ℝn

x𝖳Ax ≥ 0 ⇒ x𝖳Bx ≥ 0
∃λ ≥ 0 B ⪰ λA

(ii) ⟹ (i) x𝖳Bx − x𝖳λAx = x𝖳(B − λA)x ≥ 0 (ii) ⟹ (i)



-lemmaS
Proof: (i) ⟹ (ii)
Consider


 


Will prove in 4 steps:


1. Show that 


2. Show that  is a cone.


3. Show that  is convex.


4. Use the Separating Hyperplane theorem to prove (ii)


The result is shown in the figure

S := {[x𝖳Ax
x𝖳Bx] ∈ ℝ2 : x ∈ ℝn}, T := {[u

v] ∈ ℝ2 : u ≥ 0, v < 0}
S ∩ T = ∅

S

S

i
i
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Proof Suppose (ii) holds. Then G
T
⌫G� G

T
_�G = G

T (⌫�_�)G � 0, implying (i).

To prove (i) ) (ii), consider the following subsets of R2:

( :=
⇢
G

T
�G

G
T
⌫G

�
2 R2 : G 2 R=

�
, ) :=

⇢
D

E

�
2 R2 : D � 0, E < 0

�

Suppose (i) holds. We will establish (ii) in 4 steps:

1. Show that (\) = ;.
2. Show that ( is a cone.
3. Show that ( is convex.
4. Use the Separating Hyperplane Theorem 7.9 of Chapter 7.2.4 to prove (ii).

The Slater condition ḠT
�Ḡ > 0 in the lemma serves the same purpose as in the Slater the-

orem of ensuring that the separating hyperplane is not vertical. The result is illustrated
in Figure 13.1. Let D(G) := G

T
�G and E(G) := G

T
⌫G for G 2 R=. Then (D(G),E(G)) 2 (

S

T

(−λ , µ)

Figure 13.1 (-lemma: (, ) and their separation.

by definition for all G 2 R=.

1. (\) = ;. Since (i) says D(G) � 0 ) E(G) � 0, (D(G),E(G)) 8 ) . On the other hand
let (0,1) 2 ) , i.e., 0 � 0 and 1 < 0. If (0,1) 2 (, then 0 = D(G) and 1 = E(G) for
some G, and hence 0 � 0 and 1 < 0 contradicts (i). This shows that (\) = ;.

2. ( is a cone. Suppose (D(G),E(G)) = (GT
�G,GT

⌫G) 2 (. For any _
2
> 0 we have

_
2

D(G)
E(G)

�
=


(_G)T

�(_G)
(_G)T

⌫(_G)

�
=


D(_G)
E(_G)

�

i.e., _2 (D(G),E(G)) 2 ( and hence ( is a cone.
3. ( is convex. To show that ( is convex let H1 := (D(G1),E(G1)) and H2 := (D(G2),E(G2))

be in (. Fix any U 2 (0,1). We separate two cases.
• Case 1: H1, H2 are linearly dependent. Suppose H1 = 2H2 for some 2 < 0. Then

UH1 + (1�U)H2 = (2U+ (1�U))H2 =
✓
2U+ (1�U)

2

◆
H1

i.e., UH1 + (1�U)H2 is on the ray of H1 and H2 (which are on the same ray). It



-lemmaS
Proof: (i) ⟹ (ii)
Let 


 


Suppose (i) holds.


1.  : Since , we have .  Conversely, if , 
then there is no  with 


2.  is a cone : If , then for any  we have


[u(x)
v(x)] := [x𝖳Ax

x𝖳Bx] ∈ S for all x ∈ ℝn

S ∩ T = ∅ u(x) ≥ 0 ⇒ v(x) ≥ 0 (u(x), v(x)) ∉ T (a, b) ∈ T
x ∈ ℝn (u(x), v(x)) = (a, b)

S (u(x), v(x)) ∈ S λ2 > 0

λ2 [u(x)
v(x)] = [(λx)𝖳A(λx)

(λx)𝖳B(λx)] = [u(λx)
v(λx)] ∈ S



-lemmaS
Proof: (i) ⟹ (ii)
Let 


 


Suppose (i) holds.


1.  : Since , we have .  Conversely, if , 
then there is no  with 


2.  is a cone : If , then for any  we have


[u(x)
v(x)] := [x𝖳Ax

x𝖳Bx] ∈ S for all x ∈ ℝn

S ∩ T = ∅ u(x) ≥ 0 ⇒ v(x) ≥ 0 (u(x), v(x)) ∉ T (a, b) ∈ T
x ∈ ℝn (u(x), v(x)) = (a, b)

S (u(x), v(x)) ∈ S λ2 > 0

λ2 [u(x)
v(x)] = [(λx)𝖳A(λx)

(λx)𝖳B(λx)] = [u(λx)
v(λx)] ∈ S



-lemmaS
Proof: (i) ⟹ (ii)
Let 


 


Suppose (i) holds.


1.  : Since , we have .  Conversely, if , 
then there is no  with 


2.  is a cone : If , then for any  we have


[u(x)
v(x)] := [x𝖳Ax

x𝖳Bx] ∈ S for all x ∈ ℝn

S ∩ T = ∅ u(x) ≥ 0 ⇒ v(x) ≥ 0 (u(x), v(x)) ∉ T (a, b) ∈ T
x ∈ ℝn (u(x), v(x)) = (a, b)

S (u(x), v(x)) ∈ S λ2 > 0

λ2 [u(x)
v(x)] = [(λx)𝖳A(λx)

(λx)𝖳B(λx)] = [u(λx)
v(λx)] ∈ S



-lemmaS
Proof:  is convexS
3.  is convex : Let  and  be in .  Fix any 


Case 1:  are linearly dependent.  


Then  for some , i.e.,  are are on the same ray from 0


Note that 


i.e.,  is on the same ray as  and , and hence must be in 

S y1 := (u(x1), v(x1)) y2 := (u(x2), v(x2)) S α ∈ (0,1)

y1, y2

y1 = cy2 c ≠ 0 y1, y2

z := αy1 + (1 − α)y2 = (cα + (1 − α))y2 = ( cα + (1 − α)
c ) y1

z y1 y2 S



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


We have to show:  such that





which implies that 


Since  is a cone, it suffices to construct  such that





We will seek  of the form , i.e., derive  such that the above holds

y1, y2 ℝ2

∃x̄ ∈ ℝn

[u(x̄)
v(x̄)] = αy1 + (1 − α)y2

z := αy1 + (1 − α)y2 ∈ S
S x̄

[u(x̄)
v(x̄)] = λ(αy1 + (1 − α)y2), for some λ > 0

x̄ x̄ = αx1 + βx2 β ∈ ℝ



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


We have to show:  such that





which implies that 


Since  is a cone, it suffices to construct  such that





We will seek  of the form , i.e., derive  such that the above holds

y1, y2 ℝ2

∃x̄ ∈ ℝn

[u(x̄)
v(x̄)] = αy1 + (1 − α)y2

z := αy1 + (1 − α)y2 ∈ S
S x̄

[u(x̄)
v(x̄)] = λ(αy1 + (1 − α)y2), for some λ > 0

x̄ x̄ = αx1 + βx2 β ∈ ℝ



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


By definition of :





Since  form a basis of , we can express   for some 


y1, y2 ℝ2

(u(x), v(x))

[u(x̄)
v(x̄)] = [(αx1 + βx2)𝖳A(αx1 + βx2)

(αx1 + βx2)𝖳B(αx1 + βx2)] = [α2u(x1) + β2u(x2) + 2αβx𝖳
1 Ax2

α2v(x1) + β2v(x2) + 2αβx𝖳
1 Bx2]

= α2y1 + β2y2 + 2αβ [x𝖳
1 Ax2

x𝖳
1 Bx2]

y1, y2 ℝ2 [x𝖳
1 Ax2

x𝖳
1 Bx2] =: ay1 + by2 a, b ∈ ℝ

⟹ [u(x̄)
v(x̄)] = (α + 2aβ)(αy1 +

β2 + 2αbβ
α + 2aβ

y2)

uses  A𝖳 = A, B𝖳 = B



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


By definition of :





Since  form a basis of , we can express   for some 


y1, y2 ℝ2

(u(x), v(x))

[u(x̄)
v(x̄)] = [(αx1 + βx2)𝖳A(αx1 + βx2)

(αx1 + βx2)𝖳B(αx1 + βx2)] = [α2u(x1) + β2u(x2) + 2αβx𝖳
1 Ax2

α2v(x1) + β2v(x2) + 2αβx𝖳
1 Bx2]

= α2y1 + β2y2 + 2αβ [x𝖳
1 Ax2

x𝖳
1 Bx2]

y1, y2 ℝ2 [x𝖳
1 Ax2

x𝖳
1 Bx2] =: ay1 + by2 a, b ∈ ℝ

⟹ [u(x̄)
v(x̄)] = (α + 2aβ)(αy1 +

β2 + 2αbβ
α + 2aβ

y2)

uses  A𝖳 = A, B𝖳 = B



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


Therefore we seek  such that





i.e. we seek  such that





The quadratic equation has two routes, one  and the other 


Choose root  such that , so that 


This shows , i.e.,  is convex


y1, y2 ℝ2

β ∈ ℝ

[u(x̄)
v(x̄)] = (α + 2aβ)(αy1 +

β2 + 2αbβ
α + 2aβ

y2) = λ(αy1 + (1 − α)y2), for some λ > 0

β ∈ ℝ
α + 2aβ > 0, β2 + 2αbβ = (1 − α)(α + 2aβ)

> 0 < 0
β aβ ≥ 0 α + 2aβ > 0

z := αy1 + (1 − α)y2 ∈ S S



-lemmaS
Proof:  is convexS
Case 2:  are linearly independent, i.e., they form a basis of .  


Therefore we seek  such that





i.e. we seek  such that





The quadratic equation has two routes, one  and the other 


Choose root  such that , so that 


This shows , i.e.,  is convex


y1, y2 ℝ2

β ∈ ℝ

[u(x̄)
v(x̄)] = (α + 2aβ)(αy1 +

β2 + 2αbβ
α + 2aβ

y2) = λ(αy1 + (1 − α)y2), for some λ > 0

β ∈ ℝ
α + 2aβ > 0, β2 + 2αbβ = (1 − α)(α + 2aβ)

> 0 < 0
β aβ ≥ 0 α + 2aβ > 0

z := αy1 + (1 − α)y2 ∈ S S



-lemmaS
Proof: (i) ⟹ (ii)
4. Since  and  are convex and disjoint, the Separating Hyperplane theorem implies there exists 

nonzero  sum that 





• Since , we have  for all 


• This implies  and 


• Taking , we have  for all , i.e., 


  for all 


• If , then  (since ), but this contradicts the above at 


• Hence, can take , leading to   for all 

S T
(−λ, μ) ∈ ℝ2

−λu + μv ≥ − λa + μb, ∀(u, v) ∈ S, (a, b) ∈ T

0 ∈ S −λa + μb ≤ 0 ∀(a, b) ∈ T

λ ≥ 0 μ ≥ 0

(a, b) → 0 −λu + μv ≥ 0 (u, v) ∈ S

−λx𝖳Ax + μx𝖳Bx ≥ 0 x ∈ ℝn

μ = 0 λ > 0 (−λ, μ) ≠ 0 x̄

μ = 1 x𝖳Bx ≥ λx𝖳Ax x ∈ ℝn



Outline
1. Robust optimization


2. Chance constrained optimization

• Tractable instances

• Concentration inequalities


3. Convex scenario optimization


4. Stochastic optimization with recourse



Chance constrained optimization
Separable constraints




•  : cost function


•  : constraint functions


•  : random vector


•  : probability measure


• 


•  : nonempty convex


Less conservative than robust optimization and allows constraint violation with probability 

min
x∈X

c(x) s.t. ℙ (ζ ≤ h(x)) ≥ p

c : ℝn → ℝ
hi : ℝn × ℝk → ℝ
ζ
ℙ
p ∈ [0,1]
X ⊆ ℝn

< 1 − p



Chance constrained optimization
Separable constraints




where , 


Can express it terms of distribution function :


min
x∈X

c(x) s.t. ℙ (ζ ≤ h(x)) ≥ p

h : ℝn → ℝm ζ ∈ ℝm

Fζ

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p



Chance constrained optimization




Will introduce two techniques to deal with chance constrained opt

1. Tractable instances

• … when constraint functions  and probability measure  have certain concavity properties


• Study conditions for feasible set to be convex and for strong duality and dual optimality


2. Safe approximation through concentration inequalities

• Safe approximation: more conservative but simpler to solve

• Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)


• Upper bounding distribution of  by known distribution (e.g. sub-Gaussian)

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p

hi ℙ

ζ



Tractable instances




Two equivalent formulations

1. Hides constraint function  and distribution  in the feasible set 





• When is  a convex set?


2. Characterizes optimality in terms of  through -level set  of distribution function 





• What are conditions for strong duality and saddle point optimality?

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p

h Fζ Xp

min
x∈X

c(x) s.t. x ∈ Xp where Xp := {x ∈ ℝn : Fζ(h(x)) ≥ p}
Xp

h p Zp Fζ

min
(x,z)∈X×Zp

c(x) s.t. h(x) ≥ z where Zp := {z ∈ ℝm : Fζ(z) ≥ p}
explicit constraint for opt cond



Tractable instances




Two equivalent formulations for convexity analysis

1. Hides constraint function  and distribution  in the feasible set 





• When is  a convex set?


2. Characterizes optimality in terms of  through -level set  of distribution function 





• What are conditions for strong duality and saddle point optimality?

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p

h Fζ Xp

min
x∈X

c(x) s.t. x ∈ Xp where Xp := {x ∈ ℝn : Fζ(h(x)) ≥ p}
Xp

h p Zp Fζ

min
(x,z)∈X×Zp

c(x) s.t. h(x) ≥ z where Zp := {z ∈ ℝm : Fζ(z) ≥ p}
explicit constraint for opt cond



-concavityα
Definition 
Let  be a convex set.  A nonnegative function  is -concave with 

 if for all  such that  and all , we have





• -concavity: constant function 

• 1-concavity: concave

• 0-concavity: log-concave 

• -concavity: quasi-concave

Ω ⊆ ℝm f : Ω → ℝ+ α
α ∈ [−∞, ∞] x, y ∈ Ω f(x) > 0,f(y) > 0 λ ∈ [0,1]

f(λx + (1 − λ)y) ≥ mα( f(x), f(y), λ) :=

(λf α(x) + (1 − λ)f α(y))1/α
if  α ∉ {0, − ∞, ∞}

fλ(x) f1−λ(y) if  α = 0
min{f(x), f(y)} if  α = − ∞
max{f(x), f(y)} if  α = ∞

∞ f

−∞

 is concavef α



-concavityα
Lemma 
Consider a convex set   and a nonnegative function . 


1. The mapping  is nondecreasing in 


2. -concavity -concavity  if    (e.g., concavity  log-concavity  quasi-concavity)


3. If  is  concave for some , then  is continuous in ri 


4. If all  are concave and  is nonnegative, nondecreasing and 
-concave for some , then  is -concave


5. Suppose  is such that, for all ,  is -concave in  for some 
 on a convex set .  Then  is -concave on 

Ω ⊆ ℝm f : Ω → ℝ+

α → mα(a, b, λ) α

α ⇒ β α ≥ β ⇒ ⇒

f α α > − ∞ f (Ω)

hi : ℝn → ℝ, i = 1,…, m, f α
α ∈ [−∞, ∞] f ∘ h : ℝn → ℝ+ α

f := ℝn1+n2 y ∈ Y ⊆ ℝn2 f(x, y) α x
α ∈ [−∞, ∞] X ⊆ ℝn1 g(x) := inf

y∈Y
f(x, y) α X



Convexity of Xp
Theorem 
Suppose all components  of  are concave and the distribution function   is 

-concave for some , then the feasible set 





is closed and convex

hi h : ℝn → ℝm Fζ α
α ∈ [−∞, ∞]

Xp := {x ∈ ℝn : Fζ(h(x)) ≥ p}



Duality and optimality
1. Let -level set of distribution function  be 





2. Chance constrained problem is equivalent to:




3. Lagrangian, dual function and dual problem are:


p Fζ(z) (p ∈ (0,1))

Zp := {z ∈ ℝm : Fζ(z) ≥ p}

c* := min
x∈X, z∈Zp

c(x) s.t. h(x) ≥ z

L(x, z, μ) := c(x) + μ𝖳(z − h(x))
d(μ) = inf

x∈X
(c(x) − μ𝖳h(x))

dX(μ)

+ inf
z∈Zp

μ𝖳z

dZ(μ)

, μ ∈ ℝm

d* := sup
μ≥0

d(μ) = sup
μ≥0

dX(μ) + dZ(μ)

distribution  of  is embedded in -level set Fζ ζ p Zp



Duality and optimality
Chance constrained problem and its dual:





where   and  


c* := min
x∈X, z∈Zp

c(x) s.t. h(x) ≥ z

d* := sup
μ≥0

dX(μ) + dZ(μ)

dX(μ) := inf
x∈X

(c(x) − μ𝖳h(x)) dZ(μ) := inf
z∈Zp

μ𝖳z

 can be extended real-valued and not differentiable, even if  are real-valued and differentiable

They are however always concave and hence subdifferentiable
dX(μ), dZ(μ) c, h



Duality and optimality
Chance constrained problem and its dual:





where   and  


Definition 
 is a saddle point if 





c* := min
x∈X, z∈Zp

c(x) s.t. h(x) ≥ z

d* := sup
μ≥0

dX(μ) + dZ(μ)

dX(μ) := inf
x∈X

(c(x) − μ𝖳h(x)) dZ(μ) := inf
z∈Zp

μ𝖳z

(x, z, μ) ∈ X × Zp × ℝm
+ ⊆ ℝn × ℝm × ℝm

sup
μ≥0

L(x*, z*, μ) = L(x*, z*, μ*) = inf
(x,z)∈X×Zp

L(x, z, μ*)



Duality and optimality
Assumptions 
1. Convexity:


•  is convex;  is concave


•  is nonempty convex


• Distribution function  is -concave for an 


2. Slater condition: one of the following holds


• CQ1: There exists  such that 


• CQ2: Functions  is affine and there exists  such that 

c h
X

Fζ(z) α α ∈ [−∞, ∞]

(x̄, z̄) ∈ X × Zp h(x̄) > z̄

h (x̄, z̄) ∈ ri(X × Zp) h(x̄) ≥ z̄



Duality and optimality
Theorem 
Suppose conditions 1 and 2 hold. 


1. Strong duality and optimality: If  then  dual optimal  that closes the duality 
gap, i.e., .  Moreover the set of dual optima  is convex and closed 
(compact under CQ1)


2. Saddle point characterization: A point  is primal-dual optimal and 

closes the duality gap (i.e., ) if and only if 





Such a point is a saddle point

c* > − ∞ ∃ μ* ≥ 0
c* = d(μ*) = d* μ*

(x*, z*, μ*) ∈ X × Zp × ℝm
+

c* = c(x*) = d(μ*) = d*

dX(μ*) = c(x*) − μ*𝖳h(x*), dZ(μ*) = μ*𝖳z*, μ*𝖳(z* − h(x*)) = 0



Primal optimality and dual differentiability 
Let primal optima, given , be


 


Theorem holds whether or not  are empty, i.e., primal optimum does not exist


Suppose  are nonempty, convex and compact.  Then


1.  are nonempty, convex and compact


2.  is real-valued and concave


3. Subdifferentials are





Hence 


4. Derivative  exists if  are singletons

μ

X(μ):= {x ∈ X : dX(μ) = c(x) − μ𝖳h(x)}, Z(μ):= {z ∈ Zp : dZ(μ) = μ𝖳z}

X(μ), Z(μ)

X, Zp

X(μ), Z(μ)

d(μ) = dX(μ) + dZ(μ)

∂dX(μ) = conv(−h(x) : x ∈ X(μ)), ∂dZ(μ) = Z(μ)

∂d(μ) = conv(−h(x) : x ∈ X(μ)) + Z(μ)

∇d(μ) = − h(x*) + z* X(μ)), Z(μ)



Outline
1. Robust optimization


2. Chance constrained optimization

• Tractable instances

• Concentration inequalities


3. Convex scenario optimization


4. Stochastic optimization with recourse


5. Applications



Chance constrained optimization




Will introduce two techniques to deal with chance constrained opt

1. Tractable instances

• … when constraint functions  and probability measure  have certain concavity properties


• Study conditions for feasible set to be convex and for strong duality and dual optimality


2. Safe approximation through concentration inequalities

• Safe approximation: more conservative but simpler to solve

• Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)


• Upper bounding distribution of  by known distribution (e.g. sub-Gaussian)

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p

hi ℙ

ζ



Safe approximation
Example
Chance constrained linear program:





The following SOCP is a safe approximation:




where  depend on  and  depends on 

• More conservative but simpler to solve


• A feasible, or optimal,  for SOCP always satisfies the chance constraint

• Feasible set of safe approximation is inner approximation of feasible set of chance constrained problem

min
x∈ℝn

c𝖳x s.t. ℙ (
k

∑
l=1

(a𝖳
l x − bl) ζl ≤ − (a𝖳

0 x − b0)) ≥ 1 − ϵ

min
x∈ℝn

c𝖳x s.t.  r∥ ̂Ax − b̂∥2 ≤ − ( ̂a𝖳
0 x − b̂0)

̂A, b̂, ̂a0, b̂0 (al, bl, l ≥ 0) r ϵ

x



Safe approximation
Derivation
Derivation of inner approximation of CCP feasible set relies on

1. Concentration inequalities


• Upper bound tail probability (violation probability of chance constraint) 


• … in terms of distribution properties, e.g., variance, log moment generating function 


2. sub-Gaussian random variables


• Upper bound distribution properties (e.g. ) of uncertain parameters  by known distribution properties, 
e.g., those of Gaussian random variable


ψY

ψY ζ

We explain each in turn



Concentration inequalities
Markov’s inequality

Let  be a nonnegative random variable with finite mean 





Proof: for , take expectation on  indicator function


For any nonnegative and nondecreasing function 





Proof: 


Y EY < ∞

ℙ (Y ≥ t) ≤
EY
t

t > 0 Y/t ≥ δ(Y ≥ t)

ϕ

ℙ (Y ≥ t) ≤
E(ϕ(Y))

ϕ(t)
δ(Y ≥ t) = δ(ϕ(Y) ≥ ϕ(t))



Concentration inequalities
Markov’s inequality

Let  be a nonnegative random variable with finite mean 





Proof: for , take expectation on  indicator function


For any nonnegative and nondecreasing function 





Proof: 

Y EY < ∞

ℙ (Y ≥ t) ≤
EY
t

t > 0 Y/t ≥ δ(Y ≥ t)

ϕ

ℙ (Y ≥ t) ≤
E(ϕ(Y))

ϕ(t)
δ(Y ≥ t) = δ(ϕ(Y) ≥ ϕ(t))



Concentration inequalities
Chebyshev’s inequality

Let  be a random variable with finite variance 





Proof: take  in Markov’s inequality


For independent random variables  with finite variances 





where 

X var(X) < ∞

ℙ ( |X − EX | ≥ t) ≤
var(X)

t2

ϕ(t) := t2

X1, …, Xn var(Xi) < ∞

ℙ
1
n ∑

i

(Xi − EXi) ≥ t ≤
∑i var(Xi)

n2t2
=

σ2
n

nt2

σ2
n := n−1 ∑

i

var(Xi)



Concentration inequalities
Chebyshev’s inequality

Let  be a random variable with finite variance 





Proof: take  in Markov’s inequality


For independent random variables  with finite variances 





where 

X var(X) < ∞

ℙ ( |X − EX | ≥ t) ≤
var(X)

t2

ϕ(t) := t2

X1, …, Xn var(Xi) < ∞

ℙ
1
n ∑

i

(Xi − EXi) ≥ t ≤
∑i var(Xi)

n2t2
=

σ2
n

nt2

σ2
n := n−1 ∑

i

var(Xi)



Concentration inequalities
Chernoff bound

Let  be a random variable with finite mean 


 is moment-generating function of .   

Define log moment-generating function: 





and its conjugate function: 




Then 

Y EY < ∞
E(eλY) Y

ψY(λ) := ln E (eλY), λ ∈ ℝ

ψ*Y (t) := sup
λ∈ℝ

(tλ − ψY(λ)), t ∈ ℝ

ψY(0) = 0, ψY(λ) ≥ λEY



Concentration inequalities
Chernoff bound

Let  be a random variable with finite mean 

Three equivalent forms of Chernoff bound:

1. For 





Proof: take  which is nonnegative and nondecreasing for 


2. For 





3. For 


Y EY < ∞

t ≥ EY
ℙ(Y ≥ t) ≤ e−ψ*Y (t)

ϕ(t) := eλt λ ≥ 0
t ∈ ℝ

ℙ(Y ≥ t) ≤ exp (− sup
λ≥0

(tλ − ψY(λ)))
t ∈ ℝ
ln ℙ(Y ≥ t) ≤ inf

λ≥0
ln (e−λtEeλY)



Concentration inequalities
Chernoff bound

Let   be sample mean of independent random variables  with , 


1. If  are independent, then  and 





where  is called a rate function defined as


Y :=
1
n ∑

i

Xi Xi EXi < ∞ i = 1,…, n

Xi ψY(λ) = ∑
i

ψXi
(λ/n)

ψ*Y (t) = sup
λ∈ℝ ∑

i
(tλ − ψXi

(λ)) ≤ ∑
i

ψ*Xi
(t) with "=" if Xi are iid

ℙ ( 1
n ∑

i

Xi ≥ t) ≤ e−ψ*Y (t) = e−nIn(t), t ≥
1
n ∑

i

EXi

In(t)

In(t) := sup
λ∈ℝ (tλ −

1
n ∑

i

ψXi
(λ)), t ≥

1
n ∑

i

EXi



Concentration inequalities
Chernoff bound

Let   be sample mean of independent random variables  with , 


1. If  are independent, then  and 





where  is called a rate function defined as
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n ∑
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Concentration inequalities
Chernoff bound

Let   be sample mean of independent random variables  with , 


1. If  are independent, then  and 





where  is called a rate function defined as


Y :=
1
n ∑

i

Xi Xi EXi < ∞ i = 1,…, n

Xi ψY(λ) = ∑
i

ψXi
(λ/n)

ψ*Y (t) = sup
λ∈ℝ ∑

i
(tλ − ψXi

(λ)) ≤ ∑
i

ψ*Xi
(t) with "=" if Xi are iid

ℙ ( 1
n ∑

i

Xi ≥ t) ≤ e−ψ*Y (t) = e−nIn(t), t ≥
1
n ∑

i

EXi

In(t)

In(t) := sup
λ∈ℝ (tλ −

1
n ∑

i

ψXi
(λ)), t ≥

1
n ∑

i

EXi≤
1
n ∑

i

ψ*Xi
(t) with "=" if Xi are iid



Concentration inequalities
Chernoff bound

Let   be sample mean of independent random variables  with , 


2. If  are iid


Y :=
1
n ∑

i

Xi Xi EXi < ∞ i = 1,…, n

Xi

ℙ ( 1
n ∑

i

Xi ≥ t) ≤ e−nψ*X1
(t) t ≥ EX1



Gaussian random variable
Let  be Gaussian random variable with  and standard deviation 

Log moment-generating function: 





and its conjugate function: 





Chernoff bound for Gaussian random var:


Y μ := EY σ := var(Y)

ψG(λ) := ln E (eλY) = μλ +
σ2

2
λ2, λ ∈ ℝ

ψ*G(t) := sup
λ∈ℝ

(tλ − ψY(λ)) =
(t − μ)2

2σ2
, t ∈ ℝ

ℙ(Y > μ + rσ) ≤ e−r2/2, r ≥ 0

probability of Gaussian r.v. exceeding  std above its mean decays exponentially in r r2



Gaussian random variable
Weighted sum of independent Gaussians
Let  of independent Gaussian r.v.  with 


Then .  Hence





Y := ∑
i

aiXi Xi (μi, σ2
i )

Y ∼ N (∑
i

aiμi, ∑
i

a2
i σ2

i )
ψY(λ) = ln EeλY = λ∑

i

aiμi +
λ2

2 ∑
i

a2
i σ2

i , λ ∈ ℝ

ψ*Y (t) = sup
λ∈ℝ

(tλ − ϕY(λ)) =
(t − ∑i aiμi)2

2∑i a2
i σ2

i
, t ∈ ℝ

ℙ ∑
i

ai(Xi − μi) > r ∑
i

a2
i σ2

i ≤ e−r2/2, r ≥ 0



Gaussian random variable
Sample mean 

Let  be the sample mean of independent Gaussian r.v.  with 


Then  where  is avg var.  Hence





If  are iid then


Y :=
1
n ∑

i

Xi Xi (μi, σ2
i )

Y ∼ N ( 1
n ∑

i

μi,
1
n

vn) vn :=
1
n ∑

i

σ2
i

ℙ ( 1
n ∑

i

(Xi − μi) > t) ≤ e−nt2/2vn, t ≥ 0

Xi

ℙ ( 1
n ∑

i

Xi − μ1 > t) ≤ e−nt2/2σ2
1, t ≥ 0



sub-Gaussian random variable
A r.v.  is sub-Gaussian with  if its log moment-generating function is upper bounded by that 
of the Gaussian r.v.:





Hence conjugate function: 





 Chernoff bound:


Y (μ, σ2)

ψY(λ) ≤ ψG(λ) = μλ +
σ2

2
λ2, λ ∈ ℝ

ψ*Y (t) ≥ ψ*G(t) =
(t − μ)2

2σ2
, t ∈ ℝ

ℙ(Y > t) ≤ e−ψ*Y (t) ≤ e−(t−μ)2/2σ2, t ≥ EY

Tail probability of sub-Gaussian r.v. decays more rapidly than that of the bounding Gaussian r.v.

As far as Chernoff bound is concern, sub-Gaussian r.v. behaves like its bounding Gaussian r.v.



sub-Gaussian random variable
Weighted sum of independent sub-Gaussians

Let  of independent sub-Gaussian r.v.  with 





Then  is sub-Gaussian with : 





Y := ∑
i

aiXi Xi (μi, σ2
i )

ϕXi
(λ) ≤ μiλ +

σ2
i

2
λ2,

Y (μ, σ2) := (∑
i

aiμi, ∑
i

a2
i σ2

i )
ψY(λ) ≤ μλ +

σ2

2
λ2

ℙ (Y ≥ t) ≤ exp − (t − μ)2

2σ2
, t ≥ EY

Chernoff bound of sub-Gaussian weighted sum is same as that of bounding Gaussian weighted sum



Chance constrained optimization




Will introduce two techniques to deal with chance constrained opt

1. Tractable instances

• … when constraint functions  and probability measure  have certain concavity properties


• Study conditions for feasible set to be convex and for strong duality and dual optimality


2. Safe approximation through concentration inequalities

• Safe approximation: more conservative but simpler to solve

• Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)


• Upper bounding distribution of  by known distribution (e.g. sub-Gaussian)

min
x∈X

c(x) s.t. Fζ(h(x)) ≥ p

hi ℙ

ζ



Safe approximation
Chance constrained LP
Consider





where  are independent sub-Gaussian with : 





An optimization problem is a safe approximation of the chance constrained LP if feasible set of the 
safe approximation is a subset (inner approximation) of feasible set of the chance constrained LP


 an optimal solution of safe approximation satisfies the chance constraint

min
x∈ℝn

c𝖳x s.t. ℙ (
k

∑
l=1

(a𝖳
l x − bl) ζl ≤ − (a𝖳

0 x − b0)) ≥ 1 − ϵ

ζl (μi, σ2
i )

ψζl
(λ) ≤ μlλ +

σ2
l

2
λ2, λ ∈ ℝ

⟹
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where  are independent sub-Gaussian with : 





Let  and .  The chance constrained LP is:


min
x∈ℝn

c𝖳x s.t. ℙ (
k

∑
l=1

(a𝖳
l x − bl) ζl ≤ − (a𝖳

0 x − b0)) ≥ 1 − ϵ

ζl (μl, σ2
l )

ψζl
(λ) ≤ μlλ +

σ2
l

2
λ2, λ ∈ ℝ

A𝖳 := [a1 ⋯ ak] b := (b1, …, bk)

min
x∈ℝn

c𝖳x s.t. ℙ (ζ𝖳(Ax − b) ≤ − (a𝖳
0 x − b0)) ≥ 1 − ϵ
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Theorem 
 The following SOCP is a safe approximation:





where  and 


min
x∈ℝn

c𝖳x s.t. ℙ (ζ𝖳(Ax − b) ≤ − (a𝖳
0 x − b0)) ≥ 1 − ϵ

min
x∈ℝn

c𝖳x s.t. r∥ Σ(Ax − b)∥2 ≤ − ( ̂a𝖳
0 x − b̂0)

r := 2 ln(1/ϵ)

̂a0 := a0 + A𝖳μ ∈ ℝn, b̂0 := b0 + b𝖳μ ∈ ℝ
μ := (μ1, …, μk), Σ := diag (σ2

1 , …, σ2
k )



Safe approximation
Proof

Fix .  Let   and  


Violation probability:   and   is sub-Gaussian with 





i.e.





Hence Chernoff bound on  is:


x ∈ ℝn cl(x) := a𝖳
l x − bl, l = 0,…, k Y(x) :=

k

∑
l=1

cl(x)ζl

ℙ (Y(x) > − c0(x)) Y(x)

(μ(x), σ2(x)) := (∑
l

cl(x)μl, ∑
l

c2
l (x)σ2

l )
ψY(x)(λ) ≤ μ(x)λ +

σ2(x)
2

λ2

Y(x)

ln ℙ (Y(x) > − c0(x)) ≤ inf
λ≥0

ψY(x)(λ) + c0(x)λ ≤ inf
λ≥0

(c0(x) + μ(x))λ +
σ2(x)

2
λ2
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Safe approximation
Proof

Fix .  Let   and  


The minimum is attained at  and hence 





Hence  is feasible if 





or if


x ∈ ℝn cl(x) := a𝖳
l x − bl, l = 0,…, k Y(x) :=

k

∑
l=1

cl(x)ζl

λ(x) := [−(c0(x) + μ(x))/σ2(x)]+

ln ℙ (Y(x) > − c0(x)) ≤ −
(c0(x) + μ(x))2

2σ2(x)
x

−
(c0(x) + μ(x))2

2σ2(x)
≤ ln ϵ ⟺ 2 ln(1/ϵ)σ(x) ≤ − (c0(x) + μ(x))

2 ln(1/ϵ) ∑
l

σ2
l c2

l (x) ≤ − (c0(x) + ∑
l

μlcl(x)) ⇔ r∥ Σ(Ax − b)∥2 ≤ − ( ̂a𝖳
0 x − b̂0)
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Comparison: uncertain LPs
Example
Consider uncertain LP


  


where uncertain parameter  takes value in 


1. Robust counterpart:





which is equivalent to LP:   where (solving max in closed form)


min
x∈ℝn

c𝖳x s.t. (a0 + a1ζ1 + a2ζ2)𝖳x ≤ 0

ζ := (ζ1, ζ2) Z∞ := {ζ : ∥ζ∥∞ ≤ 1}

min
x∈ℝn

c𝖳x s.t. a𝖳
0 x + max

ζ∈Z∞
(a1ζ1 + a2ζ2)𝖳 x ≤ 0

min
x∈ℝn

c𝖳x  s.t.  x ∈ X1

X1 := {x ∈ ℝn : a𝖳
0 x + ̂Ax ≤ 0}  with  ̂A :=

(+a1 + a2)𝖳

(+a1 − a2)𝖳

(−a1 + a2)𝖳

(−a1 − a2)𝖳
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Comparison: uncertain LPs
Example
Consider uncertain LP


  


where uncertain parameter  takes value in 


2. Chance constrained formulation:





Denote its feasible set by 

min
x∈ℝn

c𝖳x s.t. (a0 + a1ζ1 + a2ζ2)𝖳x ≤ 0

ζ := (ζ1, ζ2) Z∞ := {ζ : ∥ζ∥∞ ≤ 1}

min
x∈ℝn

c𝖳x s.t. ℙ ((a0 + a1ζ1 + a2ζ2)𝖳 x ≤ 0) ≥ 1 − ϵ

X2



Comparison: uncertain LPs
Example
Consider uncertain LP


  


where uncertain parameter  takes value in 


3. Safe approximation: Suppose  are independent and zero-mean r.v. Since they take values in 
, they are sub-Gaussian with   (Hoeffinding’s Lemma)


Therefore the SOCP is a safe approximation:




where 


Feasible set is 

min
x∈ℝn

c𝖳x s.t. (a0 + a1ζ1 + a2ζ2)𝖳x ≤ 0

ζ := (ζ1, ζ2) Z∞ := {ζ : ∥ζ∥∞ ≤ 1}

ζl
[−1,1] (μl, σ2

l ) = (0,1)

min
x∈ℝn

c𝖳x s.t. a𝖳
0 x + r∥Ax∥2 ≤ 0

r := 2 ln(1/ϵ), A := [a1 a2]𝖳

X3 := {x ∈ ℝn : [ A
−(1/r)a𝖳

0 ] x ∈ Ksoc}
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Example
Consider uncertain LP


  


where uncertain parameter  takes value in 


• Feasible sets  are convex,  of chance constrained opt may not.


• 


• But neither  nor  may contain the other, depending on , i.e., robust LP may not be more 
conservative than safe approximation of chance constrained LP

min
x∈ℝn

c𝖳x s.t. (a0 + a1ζ1 + a2ζ2)𝖳x ≤ 0

ζ := (ζ1, ζ2) Z∞ := {ζ : ∥ζ∥∞ ≤ 1}

X1, X3 X2

X1 ⊆ X2, X3 ⊆ X2

X1 X3 ϵ



Comparison: uncertain LPs
Example
• This is because safe approximation (SOCP) is equivalent to the robust LP:





where 

Compare with robust LP:


min
x∈ℝn

c𝖳x s.t. a𝖳
0 x + max

ζ∈Z2
(a1ζ1 + a2ζ2)𝖳 x ≤ 0

Z2 := {ζ ∈ ℝ2 : ∥ζ∥2 ≤ 2 ln(1/ϵ)}

min
x∈ℝn

c𝖳x s.t. a𝖳
0 x + max

ζ∈Z∞
(a1ζ1 + a2ζ2)𝖳 x ≤ 0

i
i

“Low-PSA-202501” — 2025/2/19 — 16:38 — page 775 — #797 i
i

i
i

i
i

13.2 Chance constrained optimization 775

x2

x1

Z2

Z∞

−1

−1

1

1

Figure 13.2 Example 13.6: neither /1 nor /2 may contain the other, depending on n . (Remove
the curly set.)

Hoe�ding’s lemma for bounded . .

We have seen above sub-Gaussian random variables have convenient Cherno� bounds.
Hoe�ding’s lemma shows that a zero-mean random variable with bounded support
[0,1] is always sub-Gaussian with variance factor (1 � 0)2/4. It is used in Example
13.6 and will be used to prove Theorem 13.13 that bounds the tail probability of a
martingale with bounded increments. The proof of the Hoe�ding’s lemma relies on a
useful technique called change of measure, which we now explain.

Given a probability measure represented by the distribution function �/ , let a func-
tion ! (G) and another probability measure on the same probability space, represented
by the distribution function �/ , satisfy

3�/ (G) = ! (G)3�. (G) (13.77a)

which means that
Ø
�

3�/ (G) =
Ø
�

! (G)3�/ (G) for any (measurable) set �. If they have
probability density functions 5/ and 5. respectively then (13.77) means

5/ (G) = ! (G) 5. (G)

The function ! (G) is called the likelihood ratio of the distribution functions �/ and
�. . A consequence of (13.77a) is that for any (measurable) function 6, the expectation
⇢/ (6(/)) under distribution �/ can be computed under �. instead according to

⇢/ (6(/)) :=
π

6(I)3�/ (I) =
π

6(H)! (H)3�. (H) =: ⇢. (6(. )! (. )) (13.77b)

This is used e.g. in importance sampling to speed up simulations where a rare event
under distribution �/ can be much more e�ciently sampled under a modified dis-
tribution �. , i.e., instead of generating # samples {I8} under �/ (a rare event) to
estimate ⇢/ (6(/)) by (1/#)Õ

8
6(I8) we generate = samples {H8} under �. (not a

rare event) to estimate ⇢. (6(. )! (. )) by (1/=)Õ
8
6(H8)! (H8) (Exercise 13.18). The

required number = of samples can be much smaller than # for the same variance. Due
to (13.77b) we refer to (13.77) as a change of measure from �/ to �. through the
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Inequality Assumptions

Markov’s P (. � C)  ⇢ (q (. ))
q (C) q(. ) � 0, q(C) > 0, ⇢. <1

Chebyshev’s P ( |- �⇢- | � C)  var(-)/C2 var(-) <1, C > 0

P

⇣��� 1
=

Õ
8
(-8 �⇢-8)

��� � C

⌘
 (1/=)Õ

8
var(-8)

=C
2 var(-8) <1, independent -8 , C > 0

Cherno� P(. � C)  4
�k⇤

.
(C)

⇢. <1, C � ⇢.

P(. � C)  exp
�
�sup

_�0 (C_�k. (_))
�

⇢. <1, C 2 R
P

⇣
1
=

Õ
8
-8 � C

⌘
 4

�=k⇤
-1

(C)
iid -8 , ⇢-8 <1, C � ⇢ (-1)

sub-Gaussian P(. � C)  4
�(C�`)2/2f2

sub-Gaussian . , ⇢. <1, C � ⇢.

P (Õ
8
08-8 � C)  exp

✓
� (C�Õ

8
08`8)2

2
Õ

8
0

2
8
f

2
8

◆
indep. sub-Gaussian -8 , ⇢-8 <1, C � ⇢.

P

⇣
max=

8=1 -8 � C

⌘
 f

p
2ln=/C sub-Gaussian -8 , C > 0

Hoe�ding’s lemma k. (_)  (1/8) (1� 0)2_2
⇢. = 0, . 2 [0,1] a.s.

Azuma-Hoe�ding P

⇣
1
=

Õ
=

8=1 -8 � C

⌘
 exp

⇣
� 2=2

C
2Õ

=

8=1 (18�08)2

⌘
independent zero-mean -8 2 [08 ,18], C � 0

P(-= � -0 � C)  exp
⇣
�C2/2Õ=

8=1f
2
8

⌘
martingale -8 , |-8 � -

8�1 |  f8 , C � 0

Table 13.1 Summary of concentration inequalities. k. (_) := ln⇢4_. and
k
⇤
.
(C) := sup

_2R (C_�q. (_)). . is sub-Gaussian if k. (_)  `_+ (f2/2)_2.

13.3 Convex scenario optimization

Consider the robust program (13.5) studied in Chapter 13.1 with a linear cost: 4

RCP : 2
⇤
RCP := min

G2- ✓R=
2

T
G s.t. ⌘(G, Z)  0, Z 2 / ✓ R: (13.83)

where 2 2 R=, Z 2 R: is an uncertain parameter taking value in the uncertainty set / , ⌘ :
R
=⇥R: !R< is a convex (and hence continuous) function in G for every Z 2 / , and -

is a nonempty closed convex set.5 Even though (13.83) is convex, it is semi-infinite and
hence generally intractable. Moreover requiring constraint satisfaction for all possible
uncertain parameters in / can be too conservative. The chance constrained formulation
studied in Chapter 13.2 is less conservative as it requires constraint satisfaction only
with high probability rather than with probability 1. Consider the chance constrained
program with a linear cost:

CCP(n) : 2
⇤
CCP (n) := min

G2- ✓R=
2

T
G s.t. P (⌘(G, Z)  0) � 1� n (13.84)

4 The linear cost function does not lose generality; see Remark 13.1.
5 We can also assume without loss of generality that ⌘ : R= ⇥R: ! R is a scalar-valued function because

otherwise, ⌘ (G, Z )  0 can be replaced by the single constraint max8 ⌘8 (G, Z )  0. Note however that if
⌘ is scalar-valued then G is infeasible if ⌘ (G, Z ) > 0, but if ⌘ is vector-valued then G is infeasible if
⌘8 (G, Z ) > 0 for at least one 8, not ⌘ (G, Z ) > 0.
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Convex scenario opt

Consider





•  : nonempty closed convex set

•  : convex (and hence continuous) in  for every uncertain parameter  
•  : probability measure on some probability space; 

•  : independent random samples each according to 


• Linear cost: does not lose generality (can convert nonlinear cost  to linear cost  with 

additional constraint )

RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

X
h : ℝn × ℝk → ℝm x ζ ∈ Z
ℙ ϵ ∈ [0,1]
(ζ1, …, ζN) ℙ

min
x

f(x) min
x,t

t

f(x) ≤ t



Convex scenario opt

Consider





• RCP : deterministic, semi-infinite, generally computational hard, conservative (safe) 

• CCP  : deterministic, generally computationally hard, less conservative, need  
• CSP  : randomized, finite convex program for each realization of , less 

conservative, only need samples under  (not necessarily  itself), much more practical

RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

(ϵ) ℙ
(N) ζ := (ζ1, …, ζN)

ℙ ℙ



Convex scenario opt

Consider





Study 3 questions on CSP :

• Violation probability : how likely is the random solution  of CSP  feasible for CCP ? 


• Sample complexity : what is min  for  to be feasible for CCP  in expectation or probability? 

• Optimality guarantee : how close is the min cost  to the min costs  and  ?

RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

(N)
x*N (N) (ϵ)

N x*N (ϵ)
c*CSP(N) c*CCP(ϵ) c*RCP



Assumption

Let 





Assumption 1 
• For each  is convex and continuous in  so that  is a closed convex set


• For each integer  and each realization of , feasible set of CSP  has a 
nonempty interior.  Moreover CSP  has a unique optimal solution  (can be relaxed)

Xζ := {x ∈ X ⊆ ℝn : h(x, ζ) ≤ 0}

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

ζ ∈ Z, h(x, ζ) x Xζ

N ≥ n ζ := (ζ1, …, ζN) (N)
(N) x*N



Violation probability
Definition

Let 


Violation probability: 


• For fixed ,  is a deterministic value in 


• CCP  is:   


• For CSP , optimal solution  is a random variable under product measure  

• Violation probability  of  is therefore a random variable under , taking value in 


•  may be smaller or greater than , i.e.,  may or may not be feasible for CCP 


• Goal: derive tight upper bounds on expected value and tail probability of 

Xζ := {x ∈ X ⊆ ℝn : h(x, ζ) ≤ 0}

V(x) := ℙ ({ζ ∈ Z : x ∉ Xζ})
x ∈ X V(x) [0,1]

(ϵ) c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. V(x) ≤ ϵ

(N) x*N ℙN

V (x*N) x*N ℙN [0,1]

V (x*N) ϵ x*N (ϵ)

V (x*N)



Violation probability
Definition

Let 


Conditional violation probability: 


• A random variable under , taking value in 


• Relation between r.v.  and the (deterministic) unconditional probability  is





i.e., expected value of  is the unconditional probability 


(This unconditional probability will be later related to support constraints)

Xζ := {x ∈ X ⊆ ℝn : h(x, ζ) ≤ 0}

V (x*N) := ℙ ({ζ ∈ Z : x*N ∉ Xζ} (ζ1, …, ζN))
ℙN [0,1]

V (x*N) ℙN+1 (x*N ∉ Xζ)
ℙN+1 (x*N ∉ Xζ) = ∫ZN

V (x*N) ℙN (dζ1, …, dζN) = EN (V (x*N))
V (x*N) ℙN+1 (x*N ∉ Xζ)



Violation probability
Uniformly supported problem
Definition 
Consider CSP 


1. A constraint  is a support constraint for CSP  if its removal changes the optimal 
solution, i.e., for every realization of , 


2. CSP  is uniformly supported with  support constraints if every realization of 
 contains exactly  support constraints (a.s.).  It is fully supported if .


• A support constraint must be active at ; the converse may not hold.


• Lemma: The number of support constraints for CSP  is at most  

(N)

Xζi (N)
(ζ1, …, ζN) ∈ ZN c𝖳x*N ≠ c𝖳x*N∖i

(N) s ≤ n
(ζ1, …, ζN) ∈ ZN s s = n

x*N
(N) n



Violation probability
Uniformly supported problem
Example: fully supported problem 
Construct strip of min vertical width containing all  points





                   

N

min
(x1,x2,x3)∈ℝ3

x1 s.t. bi − (aix1 + x2) ≤ x3, i = 1,…, N

For every realization of 

#support constraints 

ζ := ((ai, bi) : i = 1,…, N)
= 3 = n

i
i
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vertical width that contains all the # points; see Figure 13.3. This can be formulated
as the scenario program CSP(#):

min
(G1,G2,G3)2R3

G1 s.t.
��
1
8 � (08G1 + G2)

��  G3, 8 = 1, . . . ,#

This problem is fully supported as (with probability 1) CSP(#) has exactly = = 3
support constraints for every realization of (08 ,18).

2. Uniformly supported problem. Suppose we construct the circle of smallest radius
that contains all the # points (see Figure 13.3), formulated as solving the CSP(#):

min
(G1,G2,G3)2R3

G1 s.t.
p
(08 � G1)2 + (18 � G2)2  G3, 8 = 1, . . . ,#

with SOC constraints. This problem is uniformly (but not fully) supported as (with
probability 1) CSP(#) has 2 support constraints for every realization of (08 ,18). ⇤

Feb 22, 2025: Convex scenario program

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y

x∗
1x*3

(a) Stipe of minimum vertical width

Feb 22, 2025: Convex scenario program

x*3

(x*1 , x*2 )

(b) Circle of minimum radius

Figure 13.3 Example 13.7 (from (179)).

The main characterization of the conditional violation probability + (G⇤
#
) is given

in the next two theorems. Note that CSP(B) below denotes a scenario program with
possibly fewer than = constraints. It is possible that CSP(B) has B support constraints
even when B < =, as the second example in Example 13.7 shows, with # = B = 2. The
SOC constraints on G 2 R3 is illustrated in Figure 13.4.

figures-ee135Notes/fig-Megan-CSPs.pdf

Figure 13.4 Support constraints of CSP(2) in R3.



Violation probability
Uniformly supported problem
Example: uniformly supported problem 
Construct circle of min radius containing all  points





                   

N

min
(x1,x2,x3)∈ℝ3

x1 s.t. (ai − x1)2 + (bi − x2)2 ≤ x3, i = 1,…, N

For every realization of 

#support constraints 

ζ := ((ai, bi) : i = 1,…, N)
= 2 < n

i
i
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vertical width that contains all the # points; see Figure 13.3. This can be formulated
as the scenario program CSP(#):

min
(G1,G2,G3)2R3

G1 s.t.
��
1
8 � (08G1 + G2)

��  G3, 8 = 1, . . . ,#

This problem is fully supported as (with probability 1) CSP(#) has exactly = = 3
support constraints for every realization of (08 ,18).

2. Uniformly supported problem. Suppose we construct the circle of smallest radius
that contains all the # points (see Figure 13.3), formulated as solving the CSP(#):

min
(G1,G2,G3)2R3

G1 s.t.
p
(08 � G1)2 + (18 � G2)2  G3, 8 = 1, . . . ,#

with SOC constraints. This problem is uniformly (but not fully) supported as (with
probability 1) CSP(#) has 2 support constraints for every realization of (08 ,18). ⇤

Feb 22, 2025: Convex scenario program

x*3

(a) Stipe of minimum vertical width

Feb 22, 2025: Convex scenario program

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x∗
2, x

∗
3

x∗
1x*3

(x*1 , x*2 )

(b) Circle of minimum radius

Figure 13.3 Example 13.7 (from (179)).

The main characterization of the conditional violation probability + (G⇤
#
) is given

in the next two theorems. Note that CSP(B) below denotes a scenario program with
possibly fewer than = constraints. It is possible that CSP(B) has B support constraints
even when B < =, as the second example in Example 13.7 shows, with # = B = 2. The
SOC constraints on G 2 R3 is illustrated in Figure 13.4.

figures-ee135Notes/fig-Megan-CSPs.pdf

Figure 13.4 Support constraints of CSP(2) in R3.



Violation probability
Expected value
Theorem [Calafiore & Campi 2005; Calafiore 2009]

Suppose Assumption 1 holds.  


1. Then  


2. If CSP  is uniformly supported with  support constraints then 





• Upper bound is tight for uniformly supported problems

EN (V (x*N)) = ℙN+1 (x*N ∉ XζN+1) ≤
n

N + 1

(N + 1) 0 ≤ s ≤ n

EN (V (x*N)) = ℙN+1 (x*N ∉ XζN+1) =
s

N + 1

G. C. Calafiore and M. C. Campi, “Uncertain convex programs: Randomized solutions and confidence levels,” Math. Program., 2005.

G. C. Calafiore. “A note on the expected probability of constraint violation in sampled convex programs.” IEEE CCA & ISIC, 2009.



Violation probability
Tail probability
Theorem [Campi, Garatti 2008]

Suppose Assumption 1 holds.  


1. Then  


2. If CSP  is uniformly supported with  support constraints then 





• Upper bound is tight for uniformly supported problems

ℙN (V (x*N) > ϵ) ≤
n−1

∑
i=0

(N
i ) ϵi(1 − ϵ)N−i

(N + 1) 0 ≤ s ≤ n

ℙN (V (x*N) > ϵ) =
s−1

∑
i=0

(N
i ) ϵi(1 − ϵ)N−i

M. C. Campi and S. Garatti. “The exact feasibility of randomized solutions of uncertain convex programs.” SIAM J. Optim., 2008.

Binomial tail



Violation probability
Summary
Suppose Assumption 1 holds.  


1. 


2. 


• Binomial tail decreases rapidly as  increases

• Bounds are tight for uniformly supported problems with  support constraints

• Bounds depend only on  and . 

• Not on details of cost function , constraint function , probability measure ; they 

determine if the problem is fully supported and hence tightness of the bounds

EN (V (x*N)) ≤
n

N + 1

ℙN (V (x*N) > ϵ) ≤
n−1

∑
i=0

(N
i ) ϵi(1 − ϵ)N−i

N
0 ≤ s ≤ n

(n, N) ϵ
c𝖳x h(x, ζ) ℙ

Binomial tail



Violation probability
Key proof idea

Partition sample space  for independent samples  according to #support constraints





•  : vectors in  whose  support constraints are indexed by 


•  : subset of  that contains exactly  support constraints

ZN (ζ1, …, ζN)
ZN(Is) := {(ζ1, …, ζN) ∈ ZN : (Xζi, i ∈ Is)  are s support constraints}
ZN(s) := ⋃

Is

ZN(Is)

ZN(Is) ZN s Is ⊆ {1,…, N}

ZN(s) ZN s

Then


ZN =
n

⋃
s=0

ZN(s) :=
n

⋃
s=0

⋃
Is

ZN(Is)

conditioned on  support constraintss



Violation probability
Key proof idea
Uniformly supported with  support constraints





• Fully supported problem: 


• No support constraint = uniformly supported with  support constraint


Lemma [No spport constraint]


If CSP  has no support constraint, then  a.s.  


Hence 

s
ZN(s) := ⋃

Is

ZN(Is), ZN(s′￼) = ∅, s′￼ ≠ s

ZN = ZN(s) := ⋃
Is

ZN(Is)

s = n

s = 0

(N) V (x*N) = 0

EN (V (x*N)) = 0, ℙN (V (x*N) > ϵ) = 0



Violation probability
Key proof idea
Uniformly supported with  support constraints





• Fully supported problem: 


• No support constraint = uniformly supported with  support constraint


Lemma [No spport constraint]


If CSP  has no support constraint, then  a.s.  


Hence 

s
ZN(s) := ⋃

Is

ZN(Is), ZN(s′￼) = ∅, s′￼ ≠ s

ZN = ZN(s) := ⋃
Is

ZN(Is)

s = n

s = 0

(N) V (x*N) = 0

EN (V (x*N)) = 0, ℙN (V (x*N) > ϵ) = 0



Violation probability
Key proof idea

Lemma [Support constraints are uniformly distributed]

Suppose Assumption 1 holds.  Then


  ℙN (ZN(Is) ZN(s)) = [(N
s)]

−1

∀Is with  | Is | = s

Partition sample space  for independent samples  according to #support constraints





ZN (ζ1, …, ζN)
ZN(Is) := {(ζ1, …, ζN) ∈ ZN : (Xζi, i ∈ Is)  are s support constraints}
ZN(s) := ⋃

Is

ZN(Is)

uses iid samples ζi



Sample complexity

Corollary 

Suppose Assumption 1 holds.  For any  in 


1.   if  


2.   if    where


ϵ, β [0,1]

EN (V(x*N)) ≤ β N ≥ (n/β) − 1

ℙN (V(x*N) > ϵ) ≤ β N ≥ N(ϵ, β)

N(ϵ, β) := min {N :
n−1

∑
i=0

(N
i ) ϵi(1 − ϵ)N−i ≤ β}



Optimality guarantee

Consider





Study 3 questions on CSP :

• Violation probability : how likely is the random solution  of CSP  feasible for CCP ? 


• Sample complexity : what is min  for  to be feasible for CCP  in expectation or probability?


• Optimality guarantee : how close is the min cost  to the min costs  and  ?

RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

(N)
x*N (N) (ϵ)

N x*N (ϵ)
c*CSP(N) c*CCP(ϵ) c*RCP



Optimality guarantee
Intuition
Consider





Intuition

• Random solution  feasible for CCP  w.h.p. connects  and 


•  is however infeasible for RCP, unless 


• Key to connecting  and  is a perturbed RCP

RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

x*N (ϵ) c*CSP(N) c*CCP(ϵ)

x*N V (x*N) = 0

c*CSP(N) c*RCP



Optimality guarantee
Perturbed robust program
Consider





RCP : c*RCP := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζ) ≤ 0, ζ ∈ Z ⊆ ℝk

RCP(v) : c*RCP(v) := min
x∈X⊆ℝn

c𝖳x s.t. h̄(x) := sup
ζ∈Z

h(x, ζ) ≤ v

CCP(ϵ) : c*CCP(ϵ) := min
x∈X⊆ℝn

c𝖳x s.t. ℙ (h(x, ζ) ≤ 0) ≥ 1 − ϵ

CSP(N) : c*CSP(N) := min
x∈X⊆ℝn

c𝖳x s.t. h(x, ζi) ≤ 0, i = 1,…, N

• RCP = RCP 

•  is convex in  since  is convex in  for every 

(0)
h̄(x) x h(x, ζ) x ζ ∈ Z



Optimality guarantee
Perturbed robust program
Definition 


1. The probability of worst-case constraints is the function 





2. The perturbation bound with respect to  is the function  : 





where supremum is taken componentwise of vectors 


p : X × ℝm
+ → [0,1] :

p(x, b) := ℙ ({ζ ∈ Z : ∃i := i(ζ)  s.t.  h̄i(x) − hi(x, ζ) < bi})
p v̄ : [0,1] → ℝm

+

v̄(ϵ) := sup {b ∈ ℝm
+ : inf

x∈X
p(x, b) ≤ ϵ}

b

• Perturbation bound  depends on constraint function , uncertainty set , probability measure v̄(ϵ) h(x, ζ) Z ℙ



Optimality guarantee
Perturbed robust program
Definition 


1. The probability of worst-case constraints is the function 





2. The perturbation bound with respect to  is the function  : 





where supremum is taken componentwise of vectors 


p : X × ℝm
+ → [0,1] :

p(x, b) := ℙ ({ζ ∈ Z : ∃i := i(ζ)  s.t.  h̄i(x) − hi(x, ζ) < bi})
p v̄ : [0,1] → ℝm

+

v̄(ϵ) := sup {b ∈ ℝm
+ : inf

x∈X
p(x, b) ≤ ϵ}

b

• For fixed , violation probability .   Hence x V(x) ≤ ϵ ⇔ p(x, h̄(x)) ≤ ϵ V(x) ≤ ϵ ⇒ h̄(x) ≤ v̄(ϵ)



Optimality guarantee
Perturbed robust program
Lemma [Esfahani, Sutter, Lygeros 2015] 


 is feasible for CCP      is feasible for RCPx (ϵ) ⟹ x (v̄(ϵ))

Therefore, if  then N ≥ N(ϵ, β)

c*RCP(v̄(ϵ)) ≤ c*CCP(ϵ) ⪅ c𝖳x*N = c*CSP(N) ≤ c*RCP

Lemma w.p. 

Corollary

1 − β CSP 

relaxation

(N)

CCP  and CSP  sandwiched between RCP  for  and (ϵ) (N) (v) v = v̄(ϵ) v = 0



Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015] 


Suppose Assumptions 1-4 hold (see below).  Given any  in [0, 1] and any :





where confidence interval is


ϵ, β N ≥ N(ϵ, β)

ℙN (c*RCP − c*CSP(N) ∈ [0,C(ϵ)]) ≥ 1 − β

ℙN (c*CSP(N) − c*CCP(ϵ) ∈ [0,C(ϵ)]) ≥ 1 − β

C(ϵ) := min {LRCP∥v̄(ϵ)∥2, max
x∈X

c𝖳x − min
x∈X

c𝖳x}
LRCP :=

c𝖳x̄ − minx∈X c𝖳x
mini (vmin

i − h̄i(x̄))
≥ 0

P. M. Esfahani, T. Sutter, and J. Lygeros, “Performance bounds for the scenario approach and an extension to a class of non-convex programs,” TAC, 2015. 



Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015] 


Suppose Assumptions 1-4 hold (see below).  Given any  in [0, 1] and any :





where confidence interval is


ϵ, β N ≥ N(ϵ, β)

ℙN (c*RCP − c*CSP(N) ∈ [0,C(ϵ)]) ≥ 1 − β

ℙN (c*CSP(N) − c*CCP(ϵ) ∈ [0,C(ϵ)]) ≥ 1 − β

C(ϵ) := min {LRCP∥v̄(ϵ)∥2, max
x∈X

c𝖳x − min
x∈X

c𝖳x}
LRCP :=

c𝖳x̄ − minx∈X c𝖳x
mini (vmin

i − h̄i(x̄))
≥ 0



Optimality guarantee
Proof idea

Lemma [Esfahani, Sutter, Lygeros 2015] 


Suppose Assumptions 1-4 hold.  is Lipschitz on , i.e., for all :
c*RCP(v) V v1, v2 ∈ V

c*RCP(v1) − c*RCP(v2)
2

≤ LRCP ∥v1 − v2∥2

Assumptions 

2.  is compact and convex


3. For each 


•  unique primal-dual optimal  and it is continuous at 


• Strong duality holds at 

4. Slater condition:  s.t.   where 

V := {v̄(ϵ) ∈ ℝm
+ : 0 ≤ ϵ ≤ 1}

v ∈ V
∃ (x(v), μ(v)) v

(x(v), μ(v))
∃x̄ ∈ X h̄(x̄) < vmin vmin

i := min{vi : v ∈ V}



Outline
1. Robust optimization


2. Chance constrained optimization


3. Convex scenario optimization


4. Stochastic optimization with recourse

• Stochastic LP with fixed recourse

• Stochastic nonlinear program



Stochastic linear program
With fixed recourse




1st-stage problem


• Cost function  is real-valued convex,  is closed convex cone


• Parameters  are certain


2nd-stage problem: semi-infinite linear program for each 


• Recourse action  adapts to each realized 


• Recourse matrix  is independent of  (i.e., fixed recourse)


• Uncertain parameter 


• uncertainty set 

min
x∈ℝn1

f(x) + Eζ ( min
y(ω)∈ℝn2

q𝖳(ω)y(ω))
s.t. Ax = b, x ∈ K

T(ω)x + Wy(ω) = h(ω), y(ω) ≥ 0, ∀ω ∈ Ω

f : ℝn1 → ℝ K
( f, A, b, K)

ω
y(ω) ω ∈ Ω
W ω

ζ := ζ(ω) := ((q(ω), T(ω), h(ω)) ∈ ℝk

Z := {ζ(ω) ∈ ℝk : ω ∈ Ω}



Stochastic linear program
Equivalent formulation




where





•  : recourse function (or 2nd-stage expected value function)


•  can be extended real-valued function and nondifferentiable


•  if second-stage problem is infeasible (e.g., day-ahead schedule leads to insufficient 
supply when outages occur in real time)

min
x∈ℝn1

f(x) + Q(x)

s.t. Ax = b, x ∈ K

Q(x) := Eζ ( min
y(ω)≥0

q𝖳(ω)y(ω) s.t. Wy(ω) = h(ω) − T(ω) x)
Q(x)
Q(x)
Q(x) = ∞

This will be a simple conic program, but for the recourse function Q(x)



Example
Generation scheduling
Schedule 2 generators with same generation capacity  to meet random demand 


1. Slow but cheap generator must be scheduled before , at level  at unit cost 


2. Fast but expensive generator can be scheduled after , at level  at 
unit cost 


3. Suppose  with prob. , and  with prob. 

[0,a] ζ(ω)
ζ(ω) x ∈ [0,a] c1

ζ(ω) y(ω) := y(ζ(ω)) ∈ [0,a]
c2 > c1

ζ(ω) = a + ϵ p ζ(ω) = a − ϵ 1 − p

Goal: choose  to meet random demand  at minimum expected cost:





where  and


(x, y(ω)) ζ(ω)
f* := min

x∈ℝ
c1x + Q(x) s.t. 0 ≤ x ≤ a

Q(x) := EζQ̃(x, ζ)
Q̃(x, ζ) := min

0≤y(ω)≤a
c2y(ω) s.t. x + y(ω) = ζ(ω) What is the optimal solution ?



Example
Generation scheduling
2nd-stage problem:


Q̃(x, ζ) := min
0≤y(ω)≤a

c2y(ω) s.t. x + y(ω) = ζ(ω)

Since  with prob. , and  with prob. 





If  or , then  with probabilities  or  respectively and 
.  Therefore


ζ(ω) = a + ϵ p ζ(ω) = a − ϵ 1 − p

y(a + ϵ) = {a + ϵ − x if x ≥ ϵ
infeasible if x < ϵ, = Q̃ = {c2(a + ϵ − x) if x ≥ ϵ

∞ if x < ϵ

y(a − ϵ) = {a − ϵ − x if x ≤ a − ϵ
infeasible if x > a − ϵ Q̃ = {c2(a − ϵ − x) if x ≤ a − ϵ

∞ if x > a − ϵ

x < ϵ x > a − ϵ Q̃(x, ζ) = ∞ p 1 − p
Q(x) = EζQ̃(x, ζ) = ∞

C2 := dom(Q) := {x : ϵ ≤ x ≤ a − ϵ}



Example
Generation scheduling
2nd-stage problem:


Q̃(x, ζ) := min
0≤y(ω)≤a

c2y(ω) s.t. x + y(ω) = ζ(ω)

Suppose  with prob. , and  with prob. 





On ,  is affine in 


ζ(ω) = a + ϵ p ζ(ω) = a − ϵ 1 − p

y(a + ϵ) = {a + ϵ − x if x ≥ ϵ
infeasible if x < ϵ, = Q̃ = {c2(a + ϵ − x) if x ≥ ϵ

∞ if x < ϵ

y(a − ϵ) = {a − ϵ − x if x ≤ a − ϵ
infeasible if x > a − ϵ Q̃ = {c2(a − ϵ − x) if x ≤ a − ϵ

∞ if x > a − ϵ

C2 Q(x) = EζQ̃(x, ζ) x

Q(x) = pc2(a + ϵ − x) + (1 − p)c2(a − ϵ − x) = c2(a + ϵ(2p − 1)) − c2x



Example
Generation scheduling
Therefore


f* := min
x∈ℝ

(c1 − c2)x + c2(a + ϵ(2p − 1)) s.t. ϵ ≤ x ≤ a − ϵ

Solution: 

Since , optimal solution is: 





Therefore 


1. The cheap generator always produces at the lower level  of the random demand


2. The expensive generator will pick up the slack,  with probability 


c2 < c1

x* = a − ϵ, f* = c1(a − ϵ) + 2c2ϵp

a − ϵ
2ϵ p



Recourse function Q(x)
Lemma 
Suppose the recourse is fixed (  independent of ) and .


1.  is convex and Lipschitz on dom 


2. If distribution function of  is absolutely continuous, then  is differentiable on ri 


3. Suppose  takes finitely many values.  Then


• dom  is closed, convex, and polyhedral


•  is piecewise linear and convex on dom

W ω Eζ2 < ∞

Q(x) (Q) := {x : Q(x) < ∞}

ζ Q(x) (dom(Q))

ζ

(Q)

Q(x) (Q)

Summary: for two-stage problem with fixed recourse, if , then  is convex and hence subdifferentiable 


Hence   is nonsmooth conic program

Eζ2 < ∞ Q(x)
min
x∈ℝn1

f(x) + Q(x) s.t. Ax = b, x ∈ K



Strong duality and KKT
Nonsmooth conic program:    


where  is convex and  is a closed convex cone


Dual cone:    


Lagrangian:  





Dual function:  





Dual problem:  


f* := min
x∈ℝn1

f(x) + Q(x) s.t. Ax = b, x ∈ K

f K ⊆ ℝn1

K* := {ξ ∈ ℝn1 : ξ𝖳x ≥ 0 ∀x ∈ K}

L(x, λ, μ) := f(x) + Q(x) − λ𝖳(Ax − b) − μ𝖳x, x ∈ ℝn1, λ ∈ ℝm1, μ ∈ K* ⊆ ℝn1

d(λ, μ) := min
x

L(x, λ, μ) = λ𝖳b + d0(λ, μ)

d0(λ, μ) := min
x∈ℝn1

(f(x) + Q(x) − (A𝖳λ + μ)𝖳x)

d* := max
λ∈ℝm1, μ∈K*

λ𝖳b + d0(λ, μ)



Strong duality and KKT
Nonsmooth conic program:    


Assumptions  
1. Finite 2nd moment:  and 


2.  is a convex function;  is a closed convex cone


3. Slater condition:  such that 


Theorem [nonsmooth Slater theorem] 
1. Strong duality and dual optimality: If  is finite, then  dual optimal  that closes duality gap, i.e., 




2. KKT characterization: A feasible  with  is primal optimal iff  subgradients  
and , a dual feasible  such that





In this case  is a saddle point that closes the duality gap

f* := min
x∈ℝn1

f(x) + Q(x) s.t. Ax = b, x ∈ K

Eζ2 < ∞ Q(x) ∈ (−∞, ∞]
f : ℝn1 → ℝ K

∃x̄ ∈ ri(dom(Q)) ∩ ri(K) Ax̄ = b

f* ∃ (λ*, μ*)
f* = d* = d(λ*, μ*)

x* ∈ K Ax* = b ∃ ξ* ∈ ∂f(x*)
ψ* ∈ ∂Q(x*) (λ*, μ*) ∈ ℝm1 × K*

ξ* + ψ* = A𝖳λ* + μ*, μ*𝖳x* = 0

(x*, λ*, μ*)



Stochastic OPF
Summary
Brief introduction to theory of stochastic optimization





where  is an uncertain parameter


Choose optimal  s.t.

• Robust opt:  satisfies constraints for all  in an uncertainty set 


• Chance constrained opt:  satisfies constraints with high probability


• Scenario opt:  satisfies constraints for  random samples of 


• Two-stage opt: 2nd-stage decision  adapts to realized parameter , given 1st-stage decision 


Many methods are combinations of these 4 ideas, e.g.

• Distributional robust opt: robust + chance constrained


• Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost


• Adaptive robust affine control: two-stage + robust (or avg) + affine policy

min
x∈ℝn

f(x)  s.t.  h(x, ζ) ≤ 0

ζ
x*
x* ζ Z

x*
x* N ζ ∈ Z

y(x*, ζ) ζ x*


