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Stochastic OPF

Consider

min f(x) st hx, () <0

xeR"

where ( is a parameter, e.g., admittance matrix, renewable generations, forecast loads

In many power system applications some of these parameters are uncertain, giving rise to
stochastic OPF

Brief introduction to theory of stochastic optimization
 Most stochastic optimization problems are intractable (e.g., nonconvex, nonsmooth)
 Explains 4 main ideas to deal with uncertainty

 Focuses on convex reformulations and structural properties



Stochastic OPF

4 main ideas

Choose optimal x* s.t.
» Robust opt: x* satisfies constraints for all { in an uncertainty set Z

e Chance constrained opt: x* satisfies constraints with high probability
» Scenario opt: x* satisfies constraints for K random samples of { € Z

» Two-stage opt: 2nd-stage decision y(x™*, ') adapts to realized parameter {, given 1st-stage decision x*

Many methods are combinations of these 4 ideas, e.qg.
* Distributional robust opt: robust + chance constrained

» Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost

» Adaptive robust affine control: two-stage + robust (or avg) + affine policy
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General formulation

Consider

min f(x) st h(x,{) < 0, V(e Zx)

xeR"

* f(x) : cost function is assumed certain wlog

» ( :uncertain parameter

» h(x,{) : uncertain inequality constraint

« Z(x) : uncertainty set that can depend on optimization variable x

Interpretation: Choose an optimal x* that satisfies the inequality constraint A(x*, {) < O for all
possible uncertainty realization { € Z(x*)



General formulation

Consider

min f(x) st h(x,{) < 0, V(e Zx)

xeR"

» Semi-infinite program: finite #optimization variables x € R”, possibly infinite #constraints
 Generally intractable

» For special cases of uncertainty set Z(x), robust program has finite convex reformulation which is
tractable

* e.9.robust LP, robust SOCP, robust SDP



General formulation
Example

» PV panel with uncertain real power generation ¢, € Z, C R and controllable reactive power
qt = [qmln, qmax]
« PV panel is connected to battery through a line with series admittance y € C

» DC discharging power d, € [d™", d™X] is controllable as long as its SoC b := (by,...,b7)
satisfies b, € [0,B]

— 10 _ . —
» Voltages at buses 1 and 2 are v{, = \vlt\e ) Yy = ‘VZt‘e . Letv, 1= (Vi Vo)

Goal: control (g,, d;) within control limits at time 7 to min cost, subject to SoC b, € [0,B] and
voltage limits |v,.| € [y, v"™ ] fort =1,...,T



General formulation

Example

Letx := (g, d) € R\, v:=(v,...,vp), b :=(by,....b;), = (&, ..., {p)
Robust scheduling problem is:

min f(x) s.t. g, v,b,0) =0, h(x,v,b,0) L0, Vi€ Z X+ XZ;

X

where g(x, v, b, () = 0 are power equation and battery state process
- H 2 H : H 2 H
y G tig =y (\vlt\ — V1t"2;>v d+i0 =y (‘VZt‘ - Vztvu),

and /(x, 1, b, ) < 0 are voltage and battery limits
pmin < |y | <YM G =12, 0<b<B

\ uncertain equality constraints need to be interpreted appropriately and eliminated

bt+1 — bt_ dt



General formulation

Example

Given control decisions x, := (g,, d,) and uncertain parameter {, , voltage v, takes value in
Vi(x) := {v, € C?: v, satisfies power flow equation, {, € Z}
To eliminate battery, write b, as

b =by— )d, t=1..T
s<t

Then robust scheduling problem is:
min f(x) st VUL |y | <V i=12, Vv, e V(x),t=1,..,T
X

0<by— Y d<B t=1..T

The original uncertainty set Z is embedded into the x-dependent uncertainty set V (x)



General formulation
Tractability

Consider

min f(x) st hx,¢) < 0, V(€ Zx)

xeR"

Equivalent bi-level formulation

min f(x) st sup A(x,0) < O (1)
xeR” rEZ(x)

Assuming f is convex, tractability of (1) boils down to whether the following subproblem is
tractable:

h(x) := sup h(x, )
CEZ(x)



Derivation strategy

3 common strategies to derive finite convex reformulation of robust optimizations:

1. Solve h(x) analytically in close form and A(x) < 0 is convex in x robust LP

2. Replace h(x) < 0 by strong duality d(y) < 0 and KKT condition such that y is optimal for the
dual of subproblem sup A(x, (), i.e., y satisfies dual feasibility and stationary

CEZ(x)
(@) Need Slater theorem (ﬁ(x) is finite, convexity and Slater condition) to guarantee strong duality and
existence of dual opt y robust LP

(b) C is eliminated because (i) i(x, {) is affine in { and therefore V(:L(Z,’ ,¥) = 0 does not contain ; and (ji) in
strong duality and stationarity imply complementary slackness (which therefore can be omitted)



Derivation strategy

3. When the semi-infinite constraint takes the form hy(x) + h(x,{) € K for all { € Z where K is a
closed convex cone, such as K¢ € R" or Ksdp & S", it can be reformulated as a set of linear

matrix inequalities (LMIs) using the S-lemma. The resulting problem is an SDP
robust SOCP, robust SDP



Robust linear program

Consider

k
min ¢'x st a'x <b,V[a" b] € { ag b + ) G la" b :¢ezC IR"} (1)
xeR”

[=1

(ay, by) € R"! are nominal parameters; Z G [alT bl] are perturbations, with given [alT bl]

[
Constraints are equivalent to
k

A(x) ;= max ) {(afx—b) < —(ajx— by
(el I

¢ := (..., ¢;) takes value in uncertainty set Z

This is general and allows each entry of a, b to vary independently (with kK = n + 1)



Robust linear program

Consider
k
min ¢'x st. a'x <b, V[a' b] € { ag b + D Ga) b :¢ezC IR"} (1)
xeR" I
Theorem
1. Linear uncertainty Z := {{ € R* : ||£]|, < 1} : (1) is equivalent to LP: strategy 1
min  ¢'x st ayx+ Zyl <by, —yy<a'x—b<y, l=1,.,k
(X,y)ERn_l_k l
2. SOC uncertainty Z := {{ € R* : ||£]|, < r} : (1) is equivalent to SOCP: strategy 1

. 2
min ¢'x st 1 Z(alTx—bl) < —ayx+ b

Rn
= \ l




Robust linear program

Consider

k
min ¢'x st a'x <b, V[a" bl € < [a] b| + ) & laf b) : L€ ZC RE (1)
xeR”

[=1

Theorem

3. Conic uncertainty Z := {{ € R*: qu € RP st. PL + Qu + d € K} where K C R™ is a closed
convex pointed cone with nonempty interior.

Example: Z := {{ € R*: ¢ € K)

Conic uncertainty of part 3 is very general and includes parts 1 and 2 as special cases




Robust linear program

Consider

k
min ¢'x st a'x <b,V[a" b] € { ag b + ) G la" b :¢ezC IR"} (1)
xeR”

[=1

Theorem

3. Conic uncertainty Z := {{ € R*: qu € RP st. PL + Qu + d € K} where K C R™ is a closed
convex pointed cone with nonempty interior.

Example: Z := {{ € R¥: ¢ € K}. Then (1) is equivalent to conic program: min  c¢'x s.t.

( X,y) = Rn+m

aOsz b, alTx+yl= b,ye K* [=1,...,k



Robust linear program

Consider

k
min ¢'x st a'x <b,V[a" b] € { ag b + ) G la" b :¢ezC IR"} (1)
xeR”

[=1

Theorem

3. Conic uncertainty Z := {{ € R*: qu € RP st. PL + Qu + d € K} where K C R™ is a closed
convex pointed cone with nonempty interior.

The subproblem in the bi-level formulation is
k

h(v) = max Y Galx—b) = max @) st [P Q] [°|+dek

cEZ I—1 (&,u)ERMP U

this subproblem will be replaced by strong duality and KKT condition for ft(x)



Robust linear program

Consider

k
min ¢'x st a'x <b, V[a" bl € < [af b| + Y {laf b) : L€ ZC RE (1)
xeR”

[=1

Theorem

3. Conic uncertainty Z := {{ € R*¥: Ju € R? st. PL + Qu + d € K} where K C R is a closed
convex pointed cone with nonempty interior. Suppose Z is nonempty and

. Slater condition: either K is polyhedral cone or (&, it) € R*? st. PC+ Qii+d € ri(K)
For each x, max 2 C (alTx — bl) is finite
[

e/

Then (1) is equivalent to conic program: min c'x st strategy 2

(x,y)ERer
aOTx+d y<b, yeK* Q'y=0, alTx+ (P y)lzbl, [=1,....k

strong duality dual feasibility stationarity




Robust linear program

Summary

k
T T T T Tl - k
316161& c'x st. ax<b,Vl]a b]e{[ao b0]+1221§l[al bl] .CEZQIR}

Uncertainty Set Z Convex reformulation
Linear LP
SOC SOCP

Conic Conic program




Robust second-order cone program

Consider
min ¢'x st |JAOx + DO, £ a'Ox + ), VeZCRF

xeR"

where (A((:), b((:)) and (a(é’),ﬁ({)) are affine functions of (:

k k
AQ) = Ag+ ) GA € R™" b)) = by+ Y (b € R™
=1 [=1

k k
al)= ay+ Y fay € R, BQ) = Po+ ) Gf € R
=1 =1

(A, by, ay, by, I > 0) are fixed and given; ¢ is the uncertain parameter

Formulation is general and allows each entry of the nominal (A, by, &, fy) to be perturbed
independently



Robust second-order cone program

Consider
min ¢'x st |JAOx + DO, £ a'Ox + ), VeZCRF

xeR"

where (A((:), b((:)) and (a(é’),ﬁ({)) are affine functions of (:

k k
AQ) = Ag+ ) GA € R™" b)) = by+ Y (b € R™
=1 [=1

k k
al)= ay+ Y fay € R, BQ) = Po+ ) Gf € R
=1 =1
Generally intractable, except e.g. Z = conv({l, ..., £P) C R* in which case the semi-infinite set of

constraints reduces to

IAC)x + b, < a'Chx+ B¢, i=1,..p



Robust second-order cone program

Decoupled constraints

Special case: left-hand side uncertainty (,’I and right-hand side uncertainty ' are decoupled:

min cTx st A(x + b < aT@x+BED, vileZ, ez

x € R" if feasible iff 47 s.t.

max A+ 6O, < 7 < min @ (x+ AN

CleZI l'e’s
Two classes of uncertainty sets (ZI, 7" for which both maximization and minimization have finite
convex representations, and hence robust SOCP is tractable




Robust second-order cone program

Interval + conic uncertainties

1. Left-side uncertainty: A(CI) = Ay + AA and b(CI) = by + Ab with

7 = {g‘ = [AA AD] : |AA| <8, |Ab| <6, i=1,..m,j= 1n}

Subproblem: nlla)i HA((:')X + b(CI)Hz < 7 (strategy 1: solve in closed form)
('es

ky ky
2. Right-side uncertainty: a({') 1= a, + Z (o, € R™ and A7) = f, + Z ¢;P € R with
I=1 I=1
Z' = {{"eRY": Just. P{"+ Qu+d e K}
Subproblem: 7 < Ipinr o' (CNx + B(E") (same as robust LP < conic constraint)
=V

Suppose Z' satisfies Slater condition: Z' is nonempty and either K is polyhedral or EI(Z:’ 8 i) s.t.
P+ Qi + d € 1i(K)



Robust second-order cone program

Interval + conic uncertainties

Theorem
Suppose Z' is nonempty and

. Slater condition: either K is polyhedral cone or (', i7) s.t. P& + Qii + d € ri(K)
_ Foreachx, min a'({Nx+ B(&") is finite
He
Then robust SOCP is equivalent to conic program: min ¢
(x,,2)

Tx S.1.

des

= | Y Al + (bl | + Y 6511+ 6, i=1l.om—1 e maxlACh+bl, < o
: .

J

Izll, < f(x) —yTd, yeK*, Ply=akx), Q'y=0 &1 < gﬁﬁﬁr a'(CHx + B

(same as robust LP)

strong duality dual feasibility  stationarity



Robust second-order cone program

Bounded 7, norm + conic uncertainties
1. Left-side uncertainty: A(Cl)x + b(é’l) = (on + bo) + LT(x)Zjlr(x) with

7 = {CI e Rhxk CI = max Clu , < 1}

2 wllull<1

At most one of L(x) and r(x) depends on x; moreover dependence is affine in x

Subproblem: IIlla)? HA(CI)X + b(CI)HZ < 7 (reduce to LMIs using S-lemma)
e/

2. Right-side uncertainty: same

Subproblem: 7 < I}linr a'(CNx + B(E") (same as robust LP < conic constraint)
e’



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Suppose Z' is nonempty and

. Slater condition: either K is polyhedral cone or (&', i) s.t. PE" + Qii + d € ri(K)

_ Foreachx, min a'(Nx+ B(&") is finite
A



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Then robust SOCP is equivalent to conic program: min c'x st
('X’y?T’A)
yEK*, 7<px)-y'd Ply=ak), Qy=0 o 7 < mina'(Nx+ A

e

1. IfA(CI)x + b(g’l) = (on + bo) + L (x)ZjIr then
T—/IHrH% (A0x+bO)T 0

) Ax+by  d, L'w| =0 & max [ACHx + b, < 7
0 Lx) ez



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Then robust SOCP is equivalent to conic program: min c'x st
('X’y?T’A)
yEK*, 7<px)-y'd Ply=ak), Qy=0 o 7 < mina'(Nx+ A

Cre il

2. IfA(CI)x + b(g’l) = (on + bo) + L Clr(x) then
T (Agx + b)) r'(x)
A >0, Agx+by 78 —ALTL 0 | > 0 = ITIIaPiHA(CI)X'Fb(CI)Hz <7
r(x) 0 /ll]k2 <



Robust semidefinite program

1. Nominal SDP

min f(x) st k) :=By+ Y xA) € Kpgg C S"

cR”
A i=1

2. Robust SDP
min  f(x) s.t. ho(x) + h(x, ) € Kpsds Vie”Z

xeR”
where
hix,0) == L"GX)RX)+R'")C"Lx) € §™
Z = { CERWE L Clly = max [icully < g }

At most one of the matrices L(x) and R(x) depends on X; moreover dependence is affine in x
to obtain linear matrix inequalities



Example: SDP relaxation of OPF

SDP relaxation of OPF:

min tr (COW> S.t. (CI) Wl < p] —tr ((I)]W) < _pjmin
Wek
psd
(‘P W) < q] —tr (‘PJW) < q
tr( W) < v —tr (JW) pmin
where J J J
1 1
b; = 5 (YHee +€€TY0) v, > (YHeejT—ejejTYO), J; = ejejT

and Y, € CV*+D>XV+D g 3 given nominal admittance matrix

®; and ‘I’j depend on admittance matrix



Example: SDP relaxation of OPF

Nominal SDP: dual problem

—min ¢'x st x>0, hy(x) € Kpsd

xeR"
where

N+1
ho(x) = Cy+ Z ( X2i—1 _x21 (D T (xz(N: 1)+2i—1 —xz(N+1)+2i) ¥,

+ <X4(N+1)+2i—1 — x4(N+1)+2i) Ji)

which is in standard form: min f(x) s.t. hyx) :=By+ inAé € Kpsd

R
XE i—1



Example: SDP relaxation of OPF

Uncertain admittance matrix Y =Y, + AY

Uncertainty: admittance matrix ¥ = Y, + AY

This results in uncertainty in 2(x):
hix,AY) ;= LY(x)AY + AYL(x)

N+1 1 1
L(x) : Z (5 <x2i—1 — x2i) T 2_1 (xz(N+1)+2i—1 — A(N+1)4 Zi)) eieiT
i=1

Robust SDP:
T

—min ¢c'x st x > O, h()(X) + h(X, AY) S Kde
xeR"

which is in standard form with 7.(x) := L'(x){0 + 1" L(x)



Robust semidefinite program

Theorem

Robust SDP is equivalent to SDP: min  f(x) s.t.
(x,4)

1. If hx) := L'"(x)(R+ R"¢"L(x) then

hy(x) — AR'R pL'(x)
420, [ PL(x) i, ] > 0
2. hx) := L"¢CR(x) + R"(x)¢"L then
> 0

. T T
150 lho(x) ALTL pR (x)]
PR(x) Al

2
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Proofs

The proofs illustrate two useful techniques in this, and many other, types of problems

1. Robust LP: conic uncertainty Z := {{ € R*: Ju € R? st. P + Qu + d € K}

» Replace subproblem /(x) < 0 by strong duality and KKT condition strategy 2

2. Robust SOCP: bounded /,-norm + conic uncertainty

« Express Kggc as Kpgg strategy 3

Use S-lemma to reduce nlla)? HA(CI)x b(Cl)Hz < 7to LMis
e/

3. S-lemma

» Use separating hyperplane theorem (similar to Slater theorem proof)



Robust linear program

Consider

k
min ¢'x st a'x <b, V[a" bl € < [af b| + Y {laf b) : L€ ZC RE (1)
xeR”

[=1

Theorem

3. Conic uncertainty Z := {{ € R*¥: Ju € R? st. PL + Qu + d € K} where K C R is a closed
convex pointed cone with nonempty interior. Suppose Z is nonempty and

. Slater condition: either K is polyhedral cone or (&, it) € R*? st. PC+ Qii+d € ri(K)
For each x, max 2 C (alTx — bl) is finite
[

e/

Then (1) is equivalent to conic program: min c'x st strategy 2

(x,y)ERer
aOTx+d y<b, yeK* Q'y=0, alTx+ (P y)lzbl, [=1,....k

strong duality dual feasibility stationarity




Robust linear program

Proof
Recall the subproblem and feasibility condition is:
. k
A(x) := max ) {afx—b) < —(ajx—by)

=74 I
Define s € R¥ by s, 1= s5/(x) := a, x — b,
Then subproblem is:

K  — T G
pr@ = max ST st [P Q) “|+dek

Hence the constraint h(x) < — (aOT X —by)is: p*(x) < — (aOT x — by)
Lagrangian is: for all (&, u) € R¥?, y € K*,

L u,y) = s'C+y' ([P 0| lq + d) = y'd+ (s"+y'P){+y'Qu

Uu



Robust linear program

Proof stationarity V., L(C,u,y) =0
Dual function is:

dly) = max L, u,y) =

{dTy If P y = — S, QTy — O
(&,u)ERMP

o0 otherwise

Dual problem is:

d*(x) = min d'y st Ply=—s@), QTy=0%

Slater Theorem applies (finite optimal primal value, convexity, Slater condition) to conclude strong
duality and existence of dual optimal solution y := y(x):

p¥(x) = d*(x) =d'y

Therefore feasibility p*(x) < — (aOTx — by) is equivalent to: d'y < — (aOTx — by)



Robust linear program

Consider
k
min ¢'x st a'x <b, V[a" bl € < [af b| + Y {laf b) : L€ ZC RE (1)
xeR"
I=1
Theorem

3. Conic uncertainty Z := {{ € R*¥: Ju € R? st. PL + Qu + d € K} where K C R is a closed
convex pointed cone with nonempty interior. Suppose Z is nonempty and

. Slater condition: either K is polyhedral cone or (&, it) € R*? st. PC+ Qii+d € ri(K)
For each x, max 2 C (alTx — bl) is finite
[

e/

Then (1) is equivalent to conic program: min c'x st

(x,y)ER™™
| yEK*Y, Q'y=0,a/x+(P'y) =b,1=1,..k




Robust linear program

Proof
To ensure y := y(x) is dual optimal, it is necessary and sufficient it satisfies KKT condition for
min d'y st Ply=—s5(x),0'y=0
yeEK™
max s (x) st [P Q] lq +deK
(S u)ERMP U
Dual feasibility: y € K* this involves ( : eliminate it using

-~ stationarity and strong duality

Stationarity: P'y = — s(x), Q'y =0

Complementary slackness: y' ([P Q] lé] +d) = (

Uu



Robust linear program
Proof

Complementary slackness is implied by stationarity and strong duality:

Y

([P ol |* +d>

y'PC+y'Qu+y'd

—s'C+0+y'd
0

stationarity: P'y = — s(x), Q'y =0
strong duality: s ' =d'y



Robust linear program

Consider
k
min ¢'x st a'x <b, V[a" bl € < [af b| + Y {laf b) : L€ ZC RE (1)
xeR"
I=1
Theorem

3. Conic uncertainty Z := {{ € R*¥: Ju € R? st. PL + Qu + d € K} where K C R is a closed
convex pointed cone with nonempty interior. Suppose Z is nonempty and

. Slater condition: either K is polyhedral cone or (&, it) € R*? st. PC+ Qii+d € ri(K)
For each x, max 2 C (alTx — bl) is finite
[

e/
Then (1) is equivalent to conic program: min c' X s.t

aOTx+d




2. Robust SOCP: bounded /,-norm + conic uncertainty

Use S-lemma to reduce Hlla}? HA(CI)x + b(é’l)Hz < tasLMils
e/

3. S-lemma

» Use separating hyperplane theorem (similar to Slater theorem proof)



Robust second-order cone program

Decoupled constraints

Special case: left-hand side uncertainty (,’I and right-hand side uncertainty ' are decoupled:

min cTx st A(x + b < aT@x+BED, vileZ, ez

x € R"if feasible iff 47 s.t.

max [ACx + b, < 7 < min a"(")x+ BE
Aes/ de




Robust second-order cone program

Bounded 7, norm + conic uncertainties
1. Left-side uncertainty: A(Cl)x + b(é’l) = (on + bo) + LT(x)Zjlr(x) with

7 = {CI e Rhxk CI = max Clu , < 1}

2 wllull<1

At most one of L(x) and r(x) depends on x; moreover dependence is affine in x

Subproblem: IIlla)? HA(CI)X + b(CI)HZ < 7 (reduce to LMIs using S-lemma)
e/

2. Right-side uncertainty: same

Subproblem: 7 < I}linr a'(CNx + B(E") (same as robust LP < conic constraint)
e’



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Suppose Z' is nonempty and

. Slater condition: either K is polyhedral cone or (&', i) s.t. PE" + Qii + d € ri(K)

_ Foreachx, min a'(Nx+ B(&") is finite
A



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Then robust SOCP is equivalent to conic program: min c'x st
('X’y?T’A)
yEK*, 7<px)-y'd Ply=ak), Qy=0 o 7 < mina'(Nx+ A

e

1. IfA(CI)x + b(g’l) = (on + bo) + L (x)ZjIr then
T—/IHrH% (A0x+bO)T 0

) Ax+by  d, L'w| =0 & max [ACHx + b, < 7
0 Lx) ez



Robust second-order cone program

Bounded 7, norm + conic uncertainties

Theorem
Then robust SOCP is equivalent to conic program: min c'x st
('X’y?T’A)
yEK*, 7<px)-y'd Ply=ak), Qy=0 o 7 < mina'(Nx+ A

Cre il

2. IfA(CI)x + b(g’l) = (on + bo) + L Clr(x) then
T (Agx + b)) r'(x)
A >0, Agx+by 78 —ALTL 0 | > 0 = ITIIaPiHA(CI)X'Fb(CI)Hz <7
r(x) 0 /ll]k2 <



Robust second-order cone program

Proof

Prove Hlla)? HA((,“l)x + b(Z_,’I)Hz < 7 is equivalent to LMIs:
e/

1. FACx + b = (Agx + by) + LT(x)'r then
r—Alrl} Apx+by)T 0
A > 0, Agx + by 7l LTx)| = 0

0 L(x) Al K,



Robust second-order cone program

Proof

3 ideas:

foyT
1. Kgoc @s Kpsq : (V1) € Kgoc i€, [[¥]l, < tifand only if ly fﬂ ] >0
l

2. l,-norm matrix minimization : —p||a,||,||a,]||, = min alTXaz
X:||X]l,<p

3. S-lemma : Suppose X' Ax > 0 for some . Thenx' Ax > 0 = x'Bx > 0 holds if and only if
B > AA forsome A > 0



Robust second-order cone program

Proof
Let g(x) :==Apx + by € R™
Subproblem max \|A(§|)x + b(é’l)l\z < 7 is equivalent to:

e
S CORT A CTey I
g(x) + LT (x)¢ ” ol

Or:
(z))t + 2z, (g(x) +LT(x)C'r> 2+ @) >0, VZER, 5, eR”, (' e”Z

Or:

(21)°7 + 22, 8(0)z + (3, 2)7 + Imlin QLX) "C(zr) > 0 Vz €R, 7 € R
¢S l=1



Robust second-order cone program

Proof

Apply [,-norm matrix minimization twice:

min  (2L()2)" (1) = = 2|L®nlLllzirll, =  min  (2L(x)z,)TX(1)
A< X:[1X1,<1z, 7l

Therefore, for all z; € R$,z, € R™, X & RYif zlerH% — XX >0 then
(Zl)zf + 222T gx)z; + (ZzT )T + 2XTL(x)z2 > (

This Is equivalent to:

Irll; 0 0 r gl 0
0O 0 0] =0 — gix) 71 L'x)| = O

m

0 0 =0 0 Lkx) O



Robust second-order cone program

Proof

Clearly there exists z; > 0 such that szrH% > ()

Hence S-lemma implies: 44 > 0 such that
c—Alrl3 T 0
2(x) il L'(x)| > 0

m

0 L(x) Al

1



3. S-lemma

» Use separating hyperplane theorem (similar to Slater theorem proof)



S-lemma

Proof

S-lemma

Let A, B be n X n symmetric matrices and X' Ax > 0 for some ¥ € R”
The following are equivalent

) x'"Ax>0=x"Bx>0
(i) A4 > OsuchthatB > 1A



S-lemma

Proof

S-lemma

Let A, B be n X n symmetric matrices and X' Ax > 0 for some ¥ € R”
The following are equivalent

) x'"Ax>0=x"Bx>0
(i) A4 > OsuchthatB > 1A

Proof
(i) = (i) : x'Bx — x"AAx = x"(B — 1A)x > 0. Hence (i) = (i)



S-lemma
Proof: (i) — (i)

Consider
¢ . {[xTAx
x'Bx

Will prove in 4 steps:

EIRZ:xE[R”}, T = {lzleR2:u20,v<O}

1. ShowthatSN7T =@

(_A':]/t)

2. Show that S is a cone. q

3. Show that S is convex.

4. Use the Separating Hyperplane theorem to prove (ii)

The result is shown in the figure




S-lemma
Proof: (i) = (i)
Let
uX)|  [x"Ax
[V(X)] - LTBx

Suppose (i) holds.

e S forall x € R"




S-lemma
Proof: (i) = (ii)
Let
uX)|  [x"Ax
o) = [

Suppose (i) holds.

e S forall x € R"

1. SNT =@ :Since u(x) >0 = v(x) > 0, we have (u(x),v(x)) & T. Conversely, if (a,b) € T,
then there is no x € R” with (u(x), v(x)) = (a, b)



S-lemma
Proof: (i) = (ii)
Let
uX)|  [x"Ax
o) = [

Suppose (i) holds.

e S forall x € R"

1. SNT =@ :Since u(x) >0 = v(x) > 0, we have (u(x),v(x)) & T. Conversely, if (a,b) € T,
then there is no x € R” with (u(x), v(x)) = (a, b)

2. Sisacone: If (u(x),v(x)) € S, then for any 1° > 0 we have

22 [u(x)] _ l(/lx)TA(/lx)] _ [u(/lx)

S
v(x) (0T BUX) x|




S-lemma

Proof: S Is convex
3. Sisconvex:Lety, := (u(x,), v(x;)) and y, := (u(x,), v(x,)) bein §. Fixany a € (0,1)

Case 1:y,, Y, are linearly dependent.

Then y, = ¢y, for some ¢ # 0, i.e., y;, y, are are on the same ray from O

ca+(1—a))
M|
C

Note that z = ay; + (1 —a)y, = (ca+(1—a)y, = (

..e., 7 Is on the same ray as y, and y,, and hence must be in S



S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.

We have to show: dx € R" such that

uX| 1
@] T ay; + (1 — a)y,

which implies that z := ay, + (1 —a@)y, € §



S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.

We have to show: dx € R" such that
u(x)
= ay,+ (1l — «
[v()_c)] v+ ( Y5
which implies that z := ay, + (1 —a@)y, € §
Since S is a cone, it suffices to construct x such that
[u(fc)

| = May; + (1 —a)y,), for some A > ()
V(X)

We will seek x of the form X = ax; + px,, i.e., derive f € R such that the above holds



S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.
By definition of (u(x), v(x)):
[M(J_C)] (ax; + fxy) ' A(ax, + fx,) B a’u(x;) + fu(x,) + 2apx| Ax,
V(x) (a.xl + ﬁx2)TB(ax1 + ﬂXz) \az\/(xl) + ﬁZV(X2) + zaﬁXirB.XQ

T
X, Ax
I 2] usesA'=A, B'=B

a’y; + By, + 20 leBx
1 bX;



S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.
By definition of (u(x), v(x)):
[M(J_C)] (ax; + fxy) ' A(ax, + fx,) B a’u(x;) + fu(x,) + 2apx| Ax,
V(x) (a.xl + ﬁx2)TB(ax1 + ﬂXz) \az\/(xl) + ﬁZV(X2) + zaﬁXirB.XQ

T
X, Ax
I 2] usesA'=A, B'=B

— a2y1 + ﬁzyz + 2C¥ﬁ leBx
1 2

x| Ax,
Since v;, V-, form a basis of R?, we can express
1>)2

T ] =: ay; + by, forsomea,b € R
x| Bx,

u(x)
V(X)

= |

B p* + 2abp
] = (a+ 2aﬁ)<ay1 + Y y2>



S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.

Therefore we seek f € R such that
[u(fc) B% + 2abp

a+ 2ap 72

V(X)
i.e. we seek / € R such that
a+2aB>0, p?+2abp=(1-a)a+2ap)

] = (a+ 2aﬁ)<ay1 + ) = May, + (1 —a)y,), forsomed >0




S-lemma

Proof: S 1S convex

Case 2: y,, ¥, are linearly independent, i.e., they form a basis of R2.
Therefore we seek f € R such that
u(x)
[v()'c)
i.e. we seek / € R such that
a+2aB>0, p?+2abp=(1-a)a+2ap)
The quadratic equation has two routes, one > 0 and the other < 0

Choose root /) such that aff > 0, so that a + 2af > 0

B+ 2abf
Y2
a+ 2ap

] = (a+ 2aﬁ)<ay1 + ) = May, + (1 —a)y,), forsomed >0

This shows z := ay; + (1 —a)y, € §, i.e., § is convex



S-lemma
Proof: (i) = (ii)

4. Since S and T are convex and disjoint, the Separating Hyperplane theorem implies there exists
nonzero (—A, 1) € R? sum that

—Au+uv > — Aa + ub, Vu,v) €S, (a,b) €T

e Since0 € S, we have —Aa + ub < Oforall V(a,b) € T

 This implies4A > 0andu > 0

» Taking (a,b) — 0, we have —Au + uv > O forall (u,v) € §, i.e.,
—Ax"Ax + ux"Bx > 0 forallx € R"

e If u =20,thenA > 0 (since (—4, u) # 0), but this contradicts the above at x

. Hence, can take u = 1, leadingto x'Bx > Ax'Ax for all x € R"



Outline

1. Robust optimization

2. Chance constrained optimization
* Tractable instances
 (Concentration inequalities

3. Convex scenario optimization

4. Stochastic optimization with recourse



Chance constrained optimization

Separable constraints

min c(x) st P({<hX) =p

xeX

e ¢:R" - R : cost function

. h,: R" x R¥ - R : constraint functions

 ( :random vector

« [P : probability measure
- p € [0,1]

« X C R": nonempty convex

Less conservative than robust optimization and allows constraint violation with probability < 1 — p



Chance constrained optimization

Separable constraints

min c(x) st P({<hX) =p

xeX
where h : R" - R", { € R™

Can express it terms of distribution function F v

min c(x) st Fgh(x) >p

xeX



Chance constrained optimization

min c(x) st FJ(h(x) >p

xeX

Will introduce two techniques to deal with chance constrained opt
1. Tractable instances

* ... When constraint functions /; and probability measure [P have certain concavity properties

» Study conditions for feasible set to be convex and for strong duality and dual optimality

2. Safe approximation through concentration inequalities
o Safe approximation: more conservative but simpler to solve

* Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)

» Upper bounding distribution of { by known distribution (e.g. sub-Gaussian)



Tractable instances

min c(x) st FJ(h(x) >p

xeX

Two equivalent formulations

1. Hides constraint function /& and distribution FC INn the feasible set Xp

min c(x) st x€X, where X, 1= {x € R": Fe(h(x)) 2 p}
xeX

« When is Xp a convex set?



Tractable instances

min c(x) st FJ(h(x) >p

xeX

Two equivalent formulations for convexity analysis

1. Hides constraint function /& and distribution FC INn the feasible set Xp

min c(x) st x€X, where X, 1= {x € R": Fe(h(x)) 2 p}
xeX

« When is Xp a convex set?

2. Characterizes optimality in terms of /& through p-level set Z,, of distribution function £,

min c(x) s.t h(x) >z where A {z e R™: FC(z) > p}

(x,2)EXXZ, . P
 What are conditions for strong duality and saddle point optimality?

explicit constraint for opt cond



a=-concavity

Definition

Let €2 C R"™ be a convex set. A nonnegative function f : €2 — R, is a-concave with

a € [—o0, 00] if forall x,y € L such that f(x) > 0,/(y) > Oand all A € [0,1], we have

f%is concave

(") + (1= D) if ag {0, — 0,00
fUAx+ A=Ay =2 m,(f(x),f(y),4) = Ff ) if a=0

min{f(x), /() } if a=— o0

max {f(x),f(y)} if o= oo

¢ 00-concavity: constant function f
* 1-concavity: concave
* 0-concavity: log-concave

e — O0-coNncavity: quasi-concave



a-concavity

Lemma

Consider a convex set 2 C R™ and a nonnegative functionf : € — R, .

1.

W D

The mapping @ — m (a, b, A) is nondecreasing in
a-concavity = [-concavity if a > [ (e.g., concavity = log-concavity = quasi-concavity)
If fis a concave for some a > — 00, then fis continuous in ri(£2)

If all hi :R" > R, i=1,...,m, are concave and f is nonnegative, nondecreasing and o
-concave for some a € [— o0, 0], thenfo h : R" — R is a-concave

. Suppose f := R s such that, forally € Y C R™, f(x, y) is a-concave in x for some

a € [—00, 0] on aconvex set X C R™. Then g(x) := 1nf f(x, y) is a-concave on X
yeY



Convexity of Xp

Theorem

Suppose all components /; of h : R" — R™ are concave and the distribution function F’ cisa

-concave for some a € |—o00, 00|, then the feasible set
X, = {x € R": Fe(h(x)) Zp}

IS closed and convex



Duality and optimality

1. Let p-level set of distribution function F(z) be (p € (0,1))

Zp = {Z c R™ - Fg(Z) > p} distribution F(: of { is embedded in p-level set Zp
2. Chance constrained problem is equivalent to:
c* = mmn cx) st hlx) >z
xXEX, ZEZp

3. Lagrangian, dual function and dual problem are:
L(x,z,p) := c(x)+p'(z = h(x))
d(p) = inf (¢c(x) —p'h(x)) + infu'z, peR”

xeX ZEZp

) - - 4

dXZ’“ ) dZZﬂ)
d* ;= supd(u) = sup dy(u) + d ()

pu=>0 pu>0




Duality and optimality

Chance constrained problem and its dual:

c* = mm cx) st hx) >z
xEX,ZEZp
d* = supdy(u) + dy(u)
pu>0
where dy(u) := inf (c(x) — p"h(x)) and du) := inf u'z
xeX ZEZp

dy(n), d (1) can be extended real-valued and not differentiable, even if ¢, /1 are real-valued and differentiable
They are however always concave and hence subdifferentiable



Duality and optimality

Chance constrained problem and its dual:

ZEZp

L(x,z, u*)

c* = min ckx) st hx) >z
xXEX, ZEZp
d* = supdy(u) + d (1)
pu=>0
where dy(u) := inf (c(x) — u"h(x)) and dy(u) := inf u'z
Xe
Definition
(x,z2, 1) € X X Zp X RY € R"XR"™XR"is asaddle point if
sup L(x*,z*,u) = L(x*,z*,pu*) = mf
u>0 (x,2)EXXZ,



Duality and optimality

Assumptions
1. Convexity:

e Cis convex: his concave
« X is nonempty convex

- Distribution function F(z) is a-concave for an @ € [— o0, 0]

2. Slater condition: one of the following holds
- CQ1: There exists (¥, Z) € X X Z, such that h(x) > Z

« CQ2: Functions /i is affine and there exists (X, 2) € ri(X X Zp) such that i(Xx) > 7



Duality and optimality

Theorem
Suppose conditions 1 and 2 hold.

1. Strong duality and optimality: If c* > — oo then d dual optimal y* > 0 that closes the duality

gap, i.e., ¢* = d(u*) = d*. Moreover the set of dual optima p* is convex and closed
(compact under CQ1)

2. Saddle point characterization: A point (x*, z*, u*) € X X Z, X R’ is primal-dual optimal and
closes the duality gap (i.e., ¢* = c(x*) = d(u™) = d*) if and only if
dyu®) = ) = Th(e%),  du®) = pTE T = b)) = 0

Such a point is a saddle point



Primal optimality and dual differentiability

Let primal optima, given u, be
X(uy={xe X dyp) =cx)—p'hx)},  Zur={z€Z,:du)=pn'z}
Theorem holds whether or not X(u), Z(1) are empty, i.e., primal optimum does not exist

Suppose X, Zp are nonempty, convex and compact. Then

1. X(u), Z(u) are nonempty, convex and compact

2. d(u) = dy(u) + d, () is real-valued and concave

3. Subdifferentials are
odx(p) = conv(—h(x):x € X(u)),  ddj(u) = Z(u)
Hence dd(u) = conv(—h(x) : x € X(n)) + Z(u)
4. Derivative Vd(u) = — h(x™) + z* exists if X(u)), Z(u) are singletons



Outline

1.
2.

Robust optimization

Chance constrained optimization

* (Concentration inequalities
Convex scenario optimization
Stochastic optimization with recourse

Applications



Chance constrained optimization

min c(x) st FJ(h(x) >p

xeX

Will introduce two techniques to deal with chance constrained opt

2. Safe approximation through concentration inequalities
o Safe approximation: more conservative but simpler to solve

* Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)

» Upper bounding distribution of { by known distribution (e.g. sub-Gaussian)



Safe approximation

Example
Chance constrained linear program:
k
min ¢'x st P Z (alx—bl) < —(ayx—by) | > 1—e¢

cR"
r =1

The following SOCP is a safe approximation:

min c¢'x sit. rHAx — IAQHZ < — (aAgx — IAQO)

xeR”
where A, b, a,, by depend on (a;, b;, [ > 0) and r depends on €
 More conservative but simpler to solve

« A feasible, or optimal, x for SOCP always satisfies the chance constraint

 Feasible set of safe approximation is inner approximation of feasible set of chance constrained problem



Safe approximation

Derivation

Derivation of inner approximation of CCP feasible set relies on
1. Concentration inequalities

* Upper bound tail probability (violation probability of chance constraint)

... Interms of distribution properties, e.g., variance, log moment generating function yy,

2. sub-Gaussian random variables

» Upper bound distribution properties (e.g. yy) of uncertain parameters { by known distribution properties,
e.g., those of Gaussian random variable

We explain each in turn



Concentration inequalities

Markov’s inequality

Let Y be a nonnegative random variable with finite mean £Y < oo

LY
P >1 < T

Proof: for ¢t > 0, take expectation on Y/t > o6(Y > t) indicator function



Concentration inequalities

Markov’s inequality

Let Y be a nonnegative random variable with finite mean £Y < oo

LY
P >1 < T

Proof: for ¢t > 0, take expectation on Y/t > o6(Y > t) indicator function

For any nonnegative and nondecreasing function ¢

E(p(Y))
P(1)
Proof: 5(Y > 1) = 8(p(Y) > (t))

P(Y>1 <




Concentration inequalities
Chebyshev’s inequality

Let X be a random variable with finite variance var(X) < oo
var(X)
t2

P(|X—-EX|>1) <

Proof: take ¢(¢) := t* in Markov’s inequality



Concentration inequalities
Chebyshev’s inequality

Let X be a random variable with finite variance var(X) < oo
var(X)
t2

P(|X—-EX|>1) <

Proof: take ¢(¢) := t* in Markov’s inequality

For independent random variables X, ..., X, with finite variances var(X,) < oo
1 Y var(X)) o2
Pll-Y - 2| < B0 = 2
n < n’t? nt?

where 0,% =n"! Z var(X;)

l



Concentration inequalities
Chernoff bound

Let Y be a random variable with finite mean £Y < o0

E(e*Y) is moment-generating function of Y.
Define log moment-generating function:

yy(A) = InE(e”), 1€eR
and its conjugate function:

wi(t) = sup (A —yy(d), (ER
AER

Then yy(0) = 0, yy(4) > AEY



Concentration inequalities
Chernoff bound

Let Y be a random variable with finite mean EY < o0
Three equivalent forms of Chernoff bound:

1. Fort > EY
P(Y > 1) < e—l//?k(f)
Proof: take ¢(¢) := e* which is nonnegative and nondecreasing for 1 > 0

2. Forre R

P(Y > 1) < exp (— sup (t/l — l//Y(/l))>

120

3. Forre R

InP(Y >¢ < inf In (e"“Ee’IY)
A>0




Concentration inequalities
Chernoff bound

1
Let ¥ := — Z X; be sample mean of independent random variables X; with £EX. < 00,1 =1,...,n
n -

l

1. If X are independent, then yy(41) = Z in(/l/n) and

W) = sup ). (m - l/in(/l)) < D Wk with =" if X; are id

LER i



Concentration inequalities
Chernoff bound

1
Let ¥ := — Z X; be sample mean of independent random variables X; with £EX. < 00,1 =1,...,n
n -
l

1. If X are independent, then yy(41) = Z 1//X(/1/n) and

wiE(t) = sup ) (M l/fx(/l)) < ny (t)  with "="if X; are i

LER i

1 1
Pl—) X;>t) < e = ¢ t>— > EX,
(-2 2
where [ (¢) is called a rate function defined as

|
L(f) := sup (t/l — — Z y/X(/l)) [ > — Z EX.

AER



Concentration inequalities
Chernoff bound

1
Let ¥ := — Z X; be sample mean of independent random variables X; with £X. < 00,1 = 1,...
n

l

1. If X are independent, then yy(41) = Z 1//X(/1/n) and

llfff(t) = Sup Z (tﬂ V/X(/l)> < Z l//;("(t) with "="if X; are iid

LER i

1 1
Pl — ) X.>t] < ew® = ) t>— Y EX.
(GZxe) Pl

where [ (¢) is called a rate function defined as

|
L(1) = sup (tﬂ —— Z l/fx(/l)) < — Z wi(r)  with "="if X; are iid
n ; !

AER



Concentration inequalities
Chernoff bound

1
Let ¥ 1= — Z X; be sample mean of independent random variables X; with £EX; < 00,1 =1,...,n
n -

l

2. If X are iid



Gaussian random variable

Let Y be Gaussian random variable with i := EY and standard deviation o := \/var(Y)

Log moment-generating function:
2

wg(A) = IE (V) = /4,1+%12, JeR
and its conjugate function:
(t = p)’ e
£() = sup (A —yy(l)) = : reR
W (1) Hg( wy(4)) >

Chernoff bound for Gaussian random var:

P(Y>u+ro) < e_’”z/z, r>0

probability of Gaussian r.v. exceeding r std above its mean decays exponentially in 2



Gaussian random variable

Weighted sum of independent Gaussians

Let Y := Z a;X; of independent Gaussian r.v. X; with (,ul-, 01-2)

i
Then Y ~ N ( Z a;u;, Z afaf). Hence
j j

/12
AN = InEe” = 1Y au+— Y a’c? A ER
WY( ) Z lll/tl 2 Z 1 1

re R

(1 — Ziai,ul-)z
(S FE

IV
-

2 2 —r?/2
i

l



Gaussian random variable

Sample mean

1
Let ¥ 1= — Z X; be the sample mean of independent Gaussian r.v. X; with (,ul-, 01.2)
n

l

1 | 1
Then Y ~ N| — ,—Vv_ | wherev :=— ) o?isavgvar. Hence

l

1 >
Pl — X.—pu)>t)] < el t>0
(nZ(l I;) )

l

If X. are iid then

1 2 2
Pl — X:—u;>t)] < e"”/z"l, t >0
(nZ l Hq )



sub-Gaussian random variable

Ar.v. Y is sub-Gaussian with (u, 02) If its log moment-generating function is upper bounded by that
of the Gaussian r.v.:

2

o
py(d) < yg(d) = ,bt/1+7/12, AER
Hence conjugate function:
(t = p)°
* % _
Chernoff bound:
P(Y>1 < e < e_(t_”)z/z"z, t > EY

Tail probability of sub-Gaussian r.v. decays more rapidly than that of the bounding Gaussian r.v.
As far as Chernoff bound is concern, sub-Gaussian r.v. behaves like its bounding Gaussian r.v.



sub-Gaussian random variable

Weighted sum of independent sub-Gaussians

Let Y := Z a;X: of independent sub-Gaussian r.v. X; with (,ul-, 01.2)

l

2
b < i+ =2,

Then Y is sub-Gaussian with (i, 6%) := ( Z a;i;, Z aizaiz):
i i

c*
Yy(d) < pAd+—A4

2
(t—p)°

P(Y >t < exp|— >
o

: t > LY

Chernoff bound of sub-Gaussian weighted sum is same as that of bounding Gaussian weighted sum



Chance constrained optimization

min c(x) st FJ(h(x) >p

xeX

Will introduce two techniques to deal with chance constrained opt

2. Safe approximation through concentration inequalities
o Safe approximation: more conservative but simpler to solve

* Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)

» Upper bounding distribution of { by known distribution (e.g. sub-Gaussian)



Safe approximation

Chance constrained LP

Consider
k
min ¢'x st P Z (alTx— bz) < —(agx—Dby) | = 1—¢
xeR”

I=1
where {; are independent sub-Gaussian with (u;, al.z):
2

O 9
W) < w22 JER

An optimization problem is a safe approximation of the chance constrained LP if feasible set of the
safe approximation is a subset (inner approximation) of feasible set of the chance constrained LP

—> an optimal solution of safe approximation satisfies the chance constraint



Safe approximation

Chance constrained LP

Consider

xeR"

k
min c¢'x s.t. P(Z(aﬁx—bl) CZS—(aOTx—bO)) > 1 —€

[=1

where {; are independent sub-Gaussian with (u,, alz):

of .,
W@’l(;t) < WA+ 7/1 ; AE€R
letA" := [a, -~ a]and b := (by,...,b;). The chance constrained LP is:

min ¢'x st

xeR"

P((TAx—Db) < —(agx—by)) = 1—¢



Safe approximation

Chance constrained LP
Consider

min c¢'x st P({TAx—b) < —(ajx—by)) > 1—e¢
xeR”

Theorem
The following SOCP is a safe approximation:

min c¢'x st rH\E(Ax —b)|l, £ = (dgx — IA90)

xeR"

where r 1= \/2 In(1/€) and

A\
A\

CIO .= Clo‘l'AT//l = Rn, bo .= bo‘l‘bT//t = R

Hoi= (U -y 1), 2. .= diag (012, ...,sz)



Safe approximation

Proof
k

Fixx € R". Let¢)(x) :=a'x—b, [ =0,....,k and Y(x) := Z c/(x)C;

I—1

Violation probability: [P (Y(x) > — CO()C))



Safe approximation

Proof
k

Fix x € R". Let ¢)(x) := alTx — b, [ =0,...,k and Y(x) := Z c/(x)C,
I=1
Violation probability: [P (Y(x) > — Co(x)) and Y(x) is sub-Gaussian with

(h(x), 0* () = (Z O ), cf(x)of)
[ [

l.e.
W)
2

Wy < ux)4 +



Safe approximation

Proof
k

Fix x € R". Let ¢)(x) := alTx — b, [ =0,...,k and Y(x) := Z c/(x)C,
I=1
Violation probability: [P (Y(x) > — Co(x)) and Y(x) is sub-Gaussian with

(h(x), 0* () = (Z O ), cf(x)of)
[ [

l.e.
W)
2

Hence Chernoff bound on Y(x) is:

Wy < ux)4 +

. . 67(x)
InP (Y(x) > — cyx)) < ing Wyo(d) + co)d < ing (co(x) + u(x)A + ; 22



Safe approximation

Proof
k

Fix x € R". Let ¢)(x) := alTx — b, [=0,...,k and Y(x) := 2 c(x)C,
=1

The minimum is attained at A(x) := [— (Cco(x) + ,u(x))/az(x)] " and hence

() + p(x))’

InP (Y(x) > — co(x)) < 20200




Safe approximation

Proof
k

Fix x € R". Let ¢)(x) := alTx — b, [=0,...,k and Y(x) := 2 c(x)C,
=1

The minimum is attained at A(x) := [— (Cco(x) + ,u(x))/az(x)] " and hence

() + p(x))’

InP (Y(x) > — co(x)) < 20200

Hence x is feasible if

(Co(x) + p(x))*
202%(x)

< Ine < +2In(1/e)o(x) < — (cpx) + pu(x))



Safe approximation

Proof
k

Fix x € R". Let ¢)(x) := alTx — b, [=0,...,k and Y(x) := 2 c(x)C,
=1

The minimum is attained at A(x) := [— (Cco(x) + ,u(x))/az(x)] " and hence

() + p(x))’

InP (Y(x) > — co(x)) < 20700

Hence x is feasible if

(Co(x) + p(x))*
202%(x)

< Ine < +2In(1/e)o(x) < — (cpx) + pu(x))

or if

\/2 111(1/6)\/2 Glzclz(X) < - (C()(X) + ZﬂlCl(X)) < I”H\/E(AX — b)”z < — (&gx — [30)
[ [




Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (qp+al;+a,)'x <0
xeR"”

where uncertain parameter ¢ := ({;, {,) takes valuein Z_, := {{ : |||, < 1}



Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (qp+al;+a,)'x <0
xeR"”

where uncertain parameter ¢ := ({;, {,) takes valuein Z_, := {{ : |||, < 1}

1. Robust counterpart:

. T T T
min c¢'x st ayx+ max (alé’l + azé_,'z) x <0
xeR"” EZ,,



Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (qp+al;+a,)'x <0
xeR"”

where uncertain parameter ¢ := ({;, {,) takes valuein Z_, := {{ : |||, < 1}

1. Robust counterpart:

. T T T
min c¢'x st ayx+ max (a14’1+a2{,’2) x <0

xeR" eZ,,
which is equivalent to LP: min c'x st x€ X, where (solving max in closed form)
xeR”
(+Cll —+ Clz)T
A A (+Cl — d )T
X = {xEIR”:aOTx+Ax§O} with A = ! ZT
(—a, + a,)

(—a;, — az)T



Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (aqp+al+al,)'x <0
xeR”

where uncertain parameter ¢ := ({;,{,) takesvaluein Z_ := {{ : [|C]|, £ 1}

2. Chance constrained formulation:

. T
min ¢c'x st P ((ao + a,{; + azéjz) x<0) > 1—e¢€
xeR”

Denote its feasible set by X,



Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (aqp+al+al,)'x <0
xeR”

where uncertain parameter ¢ := ({;,{,) takesvaluein Z_ := {{ : [|C]|, £ 1}

3. Safe approximation: Suppose {; are independent and zero-mean r.v. Since they take values in
|—1,1], they are sub-Gaussian with (y,, 012) = (0,1) (Hoeffinding’s Lemma)



Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (aqp+al+al,)'x <0
xeR”

where uncertain parameter ¢ := ({;,{,) takesvaluein Z_ := {{ : [|C]|, £ 1}

3. Safe approximation: Suppose {; are independent and zero-mean r.v. Since they take values in
|—1,1], they are sub-Gaussian with (y,, 012) = (0,1) (Hoeffinding’s Lemma)

Therefore the SOCP is a safe approximation:

min c¢'x st aOTx + r||Ax|[, £ 0

xeR"

where r ;= \/2 In(1/€), A ;= [q, az]T

A
Feasible set is X; := {x c R": [ X € Ksoc}

—(1/r)ay




Comparison: uncertain LPs

Example

Consider uncertain LP

min ¢'x st (aqp+al+al,)'x <0
xeR”

where uncertain parameter ¢ := ({;,{,) takesvaluein Z_ := {{ : [|C]|, £ 1}

« Feasible sets X, X5 are convex, X, of chance constrained opt may not.

o But neither Xl nor X3 may contain the other, depending on ¢, I.e., robust LP may not be more
conservative than safe approximation of chance constrained LP



Comparison: uncertain LPs

Example

* This is because safe approximation (SOCP) is equivalent to the robust LP:

min ¢
xeR"

T

T T
X S.t. CZO X 4+ max (CZICI —+ azéjz> X
CEZ,

where Z, := {({ € R~ : I<]], < \/21n(1/€)}

Compare with robust LP:

min ¢
xeR"

T

T
X s.l aOTx + ?2}( (alé’l + azé’z) X

<

IA

0




Summary

Concentration inequalities

Inequality

Assumptions

Markov’s

E(¢Y))
P(Y >1) < 0

S(Y) >0, p(t) >0, EY < oo

Chebyshev’s

P(|X —EX| > 1) < var(X)/t?

nt?

P( %Zi(xi _EXi) > t) < (1/n) ); var(X;)

var(X) < oo, t >0

var(X;) < oo, independent X;, r > 0

Chernoft

P(Y 21) <e v
P(Y > 1) <exp (- SUP >0 (tA =y (1))
P(% 2 X > t) < e "X (7)

EY <oco,t > EY
LY <oo,t €R

iid X;, EX; < 00,1 > E(X;)

sub-Gaussian

P(Y > 1) < e~ (=H)*/207

P(>;aiX; >1t) <exp (— (1= ai,ui)z)

)
2),;a;0;

P(max?zl X; > t) <oV2Inn/t

sub-Gaussian Y, EY < oo, t > EY
indep. sub-Gaussian X;, EX; < oo, t > EY

sub-Gaussian X;, f > 0

Hoeflding’s lemma

EY =0,Y € |a,b] a.s.

Azuma-Hoeflding

Uy (A) < (1/8)(b—a)*a?
2n’t? )

1
(5 ST (bi—a)?
P(X, —Xo > t) < exp (—t2/2 Z?:l 0'12)

?:1 X; > t) < exp (—

independent zero-mean X; € |a;,b;],t >0

martingale X;, |X; - X;_1| < o0y,t >0




Outline

1. Robust optimization
2. Chance constrained optimization

3. Convex scenario optimization
* Violation probabillity
 Sample complexity
* Optimality guarantee

4. Stochastic optimization with recourse



Convex scenario opt

Consider
RCP : c* = min c¢'x st h(x,$) <0, le€ZCR*
RCP CEXCR"
. sk _ ' T .
CCP(¢) : Cepl®) = min clxost P (h(x,{)<0) > 1—¢
CSP(N) : cx (N) ;= min c¢'x st h(x¢)<0,i=1,...,N
CSP XEXQR”

« X : nonempty closed convex set

. h:R"x R* > R™: convex (and hence continuous) in x for every uncertain parameter £ € Z
« [P : probability measure on some probability space; € € [0,]1]

o (Cl, el (:N) : independent random samples each according to P

. Linear cost: does not lose generality (can convert nonlinear cost min f(x) to linear cost min ¢ with
X x,t

additional constraint f(x) < )



Convex scenario opt

Consider
RCP : c* = min c¢'x st h(x,$) <0, le€ZCR*
RCP YEXCR”
CCP(e) : c* €) ;= min c'x st P(h(x,0)<0) > 1-—-¢
(e) Scp(©) = min (h(x.0) < 0)
CSP(N) : cx (N) ;= min c¢'x st h(x¢)<0,i=1,...,N
CSP XEXQR”

» RCP : deterministic, semi-infinite, generally computational hard, conservative (safe)
» CCP(¢) : deterministic, generally computationally hard, less conservative, need P

« CSP(N) : randomized, finite convex program for each realization of { := (4’1, - Z,’N), less
conservative, only need samples under [P (not necessarily [P itself), much more practical



Convex scenario opt

Consider
RCP : c* = min c¢'x st h(x,$) <0, le€ZCR*
RCP CEXCR"
. sk _ ' T .
CCP(¢) : Cepl®) = min clxost P (h(x,{)<0) > 1—¢
CSP(N) : cx (N) ;= min c¢'x st h(x¢)<0,i=1,...,N
CSP XEXQR”

Study 3 questions on CSP(/V):
. Violation probability : how likely is the random solution x;\’j of CSP(/V) feasible for CCP(¢)?

« Sample complexity : what is min NV for x;\’; to be feasible for CCP(¢) in expectation or probability?

-~

. Optimality guarantee : how close is the min cost CCSP(N) to the min costs CCCP(G) and CRep



Assumption

Let X, ;== {x € X C R": h(x,¢) <0}
CSP(N) : (N) = min c¢'x st hx,¢)<0,i=1,...N
CSP XEXQR”
Assumption 1
- Foreach ¢ € Z, h(x, {) is convex and continuous in x so that X, is a closed convex set

. For eachinteger N > n and each realization of { := ((:1, e CN), feasible set of CSP(/NV) has a

nonempty interior. Moreover CSP(/NV) has a unique optimal solution x;‘\j (can be relaxed)



Violation probability

Definition

Let X, ;== {x € X C R": h(x,¢) <0}

Violation probability: V(x) := P ({5 CL:XE Xc})

» For fixed x € X, V(x) is a deterministic value in [0, 1]

. CF €) '= min c¢c'x st V) <e
o CCP(G) |S. CCP( ) LEXCR" ( )

« For CSP(/V), optimal solution x;‘\j is a random variable under product measure P

. Violation probability V (x;\’j) of x;\’j is therefore a random variable under P", taking value in [0,1]

. V (xf{j) may be smaller or greater than ¢, i.e., x;\’j may or may not be feasible for CCP(¢)

. Goal: derive tight upper bounds on expected value and tail probability of V (xf{j)



Violation probability

Definition

Let X, ;== {x € X C R": h(x,¢) <0}

Conditional violation probability: V (x;\‘j) =P ({C cZL:xy & Xg} (S CN>)

. A random variable under P, taking value in [0,1]

. Relation betweenr.v. V (x*) and the (deterministic) unconditional probability pA+l (x;\‘j & XC) IS

P (o g X;) = JNV(’?‘G) PY(dC, ... dEY) = EN(V(W))

/

i.e., expected value of V (x;‘\j) is the unconditional probability PV +! (xf\j & Xév)

(This unconditional probability will be later related to support constraints)



Violation probability

Uniformly supported problem

Definition
Consider CSP(N)

1. A constraint Xéi is a support constraint for CSP(/) if its removal changes the optimal
solution, i.e., for every realization of (¢!, ..., ¢N) e ZV, CTx;\‘j +* CTx;\‘;\l.

2. CSP(N) is uniformly supported with s < n support constraints if every realization of
(&L, ..., YY) € ZN contains exactly s support constraints (a.s.). It is fully supported if s = n.

A support constraint must be active at x*; the converse may not hold.

« Lemma: The number of support constraints for CSP(/NV) is at most n




Violation probability

Uniformly supported problem

Example: fully supported problem
Construct strip of min vertical width containing all NV points

° l l N
min - x; st b'—(@a'x;+x)| £ x, 1=1,...,N
(X1,%,%3)ER

For every realization of { := ((ai,bi) L = 1,...,N)
#support constraints =3 =n




Violation probability

Uniformly supported problem

Example: uniformly supported problem
Construct circle of min radius containing all /V points

min  Xx; s.t. \/(ai—x1)2+(bi—x2)2 < x (=1,.,N

(x; ,xz,x3)ER3

For every realization of { := ((ai,bi) L = 1,...,N)
#support constraints =2 < n




Violation probability

Expected value

Theorem [Calafiore & Campi 2005; Calafiore 2009]
Suppose Assumption 1 holds.

N _ N+ "
men 24 (v () ) = BV (s Xe) €

2. If CSP(N + 1) is uniformly supported with 0 < s < n support constraints then

N _ N+ _ 0
E (V(x;\‘j)) — pM (#’G%Xsw) =~

 Upper bound is tight for uniformly supported problems

G. C. Calafiore and M. C. Campi, “Uncertain convex programs: Randomized solutions and confidence levels,” Math. Program., 20035.

G. C. Calafiore. “A note on the expected probability of constraint violation in sampled convex programs.” IEEE CCA & ISIC, 2009.



Violation probability

Tall probability

Theorem [Campi, Garatti 2008]
Suppose Assumption 1 holds.

n—1
1. Then PV (V(x;‘;) > €> < % (]j) e'(1 —e)V™ Binomial tail

2. If CSP(NN + 1) is uniformly supported with O < s < n support constraints then

PN (V(x;\‘j) > e> = i () efct — ey

1=0

 Upper bound is tight for uniformly supported problems

M. C. Campi and S. Garatti. “The exact feasibility of randomized solutions of uncertain convex programs.” SIAM J. Optim., 2008.



Violation probability

Summary

Suppose Assumption 1 holds.

A EN(‘/(’C;)) : N:l—l
2 PN(V(x;*;) >€> < 3

(-

(1;7) e'(1 —e)N™ Binomial tail

I
-

l

« Binomial tail decreases rapidly as /V increases
» Bounds are tight for uniformly supported problems with O < s < n support constraints
» Bounds depend only on (n, N) and €.

* Not on detalls of cost function ch, constraint function A(x, (), probability measure [P; they
determine if the problem is fully supported and hence tightness of the bounds



Violation probability

Key proof idea

Partition sample space 7N for Independent samples (Z_,’ 1, ey CN ) according to #support constraints

ZN(PP) = {(Cl, ...,CN) c 7V : (Xé’i,i = IS> are s support Constraints}

ZN( S) : U ZN( ]S) conditioned on s support constraints

. ZN(I®) : vectors in Z" whose s support constraints are indexed by I* C {1,..., N}

. ZN(s) : subset of Z" that contains exactly s support constraints

Then

7N = UZN(S) U U AR

s=() s=0 I’



Violation probability

Key proof idea

Uniformly supported with s support constraints

ZN(s) = U ZN), ZNG) = @, s’ # s
-
7N = 7ZN(s) = U AR
-

 Fully supported problem: s = n

» No support constraint = uniformly supported with s = 0 support constraint



Violation probability

Key proof idea

Uniformly supported with s support constraints
Moy = 2, Z2N) = @, s#s
IS

7N = 7ZN(s) = U AR
-

 Fully supported problem: s = n

» No support constraint = uniformly supported with s = 0 support constraint

Lemma [No spport constraint]

If CSP(/NV) has no support constraint, then V (x;’j) = ( a.s.

vence £ (v (x¢) ) =0. B (v (x5) > ) =0



Violation probability

Key proof idea

Partition sample space ZN for iIndependent samples ((: 1, Cees CN ) according to #support constraints

ZN(I%) = {(4’1, ...,Z_,’N) e 7V : (X(:i,i = IS> are § support constraints}

7ZN(s) U VAR
-

Lemma [Support constraints are uniformly distributed]
Suppose Assumption 1 holds. Then

pN (ZN(IS) ZN(S)) — [(N )]_1 VIS with [I°] = s

uses iid samples ('’



Sample complexity

Corollary

Suppose Assumption 1 holds. For any €, in |0,1]

1 EN(V(X;I\;)) <Bit N>unp) —1

>, PV (V(x;\’;) > e) < B if N> N f) where

(3)ea-or <5

(W

N(e, ) := min {N : )

l

I
-



Optimality guarantee

Consider
RCP : c* = min c¢'x st h(x,$) <0, le€ZCR*
RCP CEXCR"
. sk _ ' T .
CCP(¢) : Cepl®) = min clxost P (h(x,{)<0) > 1—¢
CSP(N) : cx (N) ;= min c¢'x st h(x¢)<0,i=1,...,N
CSP XEXQR”

Study 3 questions on CSP(/V):

. Optimality guarantee : how close is the min cost ¢* . _(/V) to the min costs ¢* . _(€) and ¢

x ?
CSP CCP RCP



Optimality guarantee

Intuition
Consider
RCP : c* = min c'x st hx ) <0, leZCR
RCP YEXCR”
CCP(e¢) : c* €) ;= min c'x st P(h(x,0)<0) > 1-¢
(€) Sop© = min (h(x,8) <0)
CSP(N) : cx (N) ;= min c¢'x st h(x¢)<0,i=1,...,N
CSP XEXQR”
Intuition

- s - % %
. Random solution x7; feasible for CCP(€) w.h.p. connects CCSP(N) and CCCP(G)

. x;\‘j is however infeasible for RCP, unless V <x;‘\;) = ()

. v
. Key to connecting CCSP(N) and Chop 1S @ perturbed RCP



Optimality guarantee

Perturbed robust program

Consider
RCP :

| RCP():

. K
CSP(N) : CCSP(

+ RCP = RCP(0)

ok .
Coeplé) -

N) :

xeXCR"

xeXCR"

T

min c¢'x st hx$) <0, eZCR

2o

min ¢'x st h():=suph(x.0) <v |

—

U > | —¢

Tx st P(heD)<0)

min s.t.

xeXCR"

T

min c¢'x st h(x,¢)<0,i=1,...,N

xeXCR"

. h(x) is convex in x since h(x, &) is convex in x for every € Z



Optimality guarantee

Perturbed robust program

Definition

1. The probability of worst-case constraints is the function p : X X RY — [0,1] :

px.b) = P ({5 €7:3i=i) st hx)—hxE) < bi})

2. The perturbation bound with respect to p is the function v : [0,1] — R :

v(e) = sup {b e RY : 1nf p(x, b) < 6}

xeX

where supremum is taken componentwise of vectors b

» Perturbation bound V(€) depends on constraint function A(x, (), uncertainty set Z, probability measure [P



Optimality guarantee

Perturbed robust program

Definition

1. The probability of worst-case constraints is the function p : X X RY — [0,1] :

px.b) = P ({5 €7:3i=i) st hx)—hxE) < bi})

2. The perturbation bound with respect to p is the function v : [0,1] — R :

v(e) = sup {b e RY : 1nf p(x, b) < 6}

xeX

where supremum is taken componentwise of vectors b

. For fixed x, violation probability V(x) < € < p(x,h(x)) <e. Hence V(x) <e = h(x) < i(e)



Optimality guarantee

Perturbed robust program

Lemma [Esfahani, Sutter, Lygeros 2015]

x is feasible for CCP(¢) —> x is feasible for RCP(v(¢))

Therefore, if N > N(e, ) then

< < coly* = % <
RepN@) = coeple) & Xy = CogpV) = Cpep

| T

Lemma wp. 1 —p CSP(NN)
Corollary relaxation

CCP(¢) and CSP(/N) sandwiched between RCP(v) for v = v(e¢) and v = 0



Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015]

Suppose Assumptions 1-4 hold (see below). Given any ¢, fin [0, 1] and any N > N(e, f):

PY (et o = ChepN) €10.CE)]) 2 1-p

pN (céSP(N) — et (e) € [O,C(e)]) > -8

where confidence interval is

P. M.. Esfahani, T. Sutter, and J. Lygeros, “Performance bounds for the scenario approach and an extension to a class of non-convex programs,” TAC, 2015.



Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015]

Suppose Assumptions 1-4 hold (see below). Given any ¢, fin [0, 1] and any N > N(e, f):

PY (et o = ChepN) €10.CE)]) 2 1-p

pN (céSP(N) — et (e) € [O,C(e)]) > -8

where confidence interval is

C(e) := min {LRCPHTJ(G)HZ, max ¢ ' x — min ch}

xeX xeX

T - T
C'X—MIN yC X

- 0
min; (vmin — h;(%))

LRcp



Optimality guarantee
Proof idea

Assumptions

2. V= {\7(6) eRT:0<e< 1} is compact and convex
3. ForeachveV

 d unique primal-dual optimal (x(v), #(v)) and it is continuous at v
 Strong duality holds at (x(v), u(v))

4. Slater condition: 3% € X s.t. h(¥) < v™" where vl.min =min{v;: v € V}

Lemma [Esfahani, Sutter, Lygeros 2015]

Suppose Assumptions 1-4 hold. ¢ _ _(v) is Lipschitzon V, i.e., forallv,,v, € V-

RCP

chap(V) = ko) || < Lrep v = vl
2



Outline

R A

Robust optimization
Chance constrained optimization
Convex scenario optimization

Stochastic optimization with recourse
o Stochastic LP with fixed recourse

» Stochastic nonlinear program



Stochastic linear program

With fixed recourse

min f(x) + Eg( min qT(a))y(a))>

xeR" y(w)eR"2
s.t. Ax=b, x € K
T(w)x + Wy(w) = h(w), y(w) > 0, Vo € €

1st-stage problem
» Cost function f : R™ — R is real-valued convex, K is closed convex cone
» Parameters (f, A, b, K) are certain

2nd-stage problem: semi-infinite linear program for each @

» Recourse action y(w) adapts to each realized @ € £2

« Recourse matrix W is independent of w (i.e., fixed recourse)
. Uncertain parameter ¢ := &(w) := ((g(@), T(w), h(®)) € RX
. uncertainty set Z := {{(w) € R*: @ € Q)



Stochastic linear program

Equivalent formulation
min Jx) + Ox)

xeR"
s.t. Ax=b, x € K
where
Q) = E; ( min ¢ (w)y(®w) st Wy(w) = hw) - T(w) x)
y(@)=20

« ((x) : recourse function (or 2nd-stage expected value function)
* (J(x) can be extended real-valued function and nondifferentiable

« O(x) = o if second-stage problem is infeasible (e.g., day-ahead schedule leads to insufficient
supply when outages occur in real time)

This will be a simple conic program, but for the recourse function Q(x)



Example

Generation scheduling

Schedule 2 generators with same generation capacity [0,a] to meet random demand {(w)

1. Slow but cheap generator must be scheduled before {(w), at level x € [0,a] at unit cost ¢,

2. Fast but expensive generator can be scheduled after {(w), at level y(w) := y({(w)) € [0,a] at
unit cost ¢, > ¢

3. Suppose {(w) = a + € with prob. p, and {(w) = a — € with prob. 1 — p

Goal: choose (x, y(w)) to meet random demand {(w) at minimum expected cost:

f* = mmncx+Q0kx st 0<x<a
xeER
where O(x) := ECQ(x, () and
Q(xa §) = min Czy(a)) s.t. x4+ y(w) = {(w) What is the optimal solution ?

0<y(w)<a



Example
Generation scheduling

2nd-stage problem:

O(x,) = min oy st x+yw) = ()

0<y(w)<La

Since {(w) = a + € with prob. p, and {(w) = a — € with prob. 1 — p

Wa + €) = {a+€—x ifXZ€,= 0 = cH(a+ € — x) if x>e¢€
infeasible if x<e€ o0 fox < e

Wa—€) = {a—e—x if x<a-—e 0 = cH(a — € — x) if x<a-—e¢
infeasible f x>a—c¢€ o0 f x>a—¢€

Ifx < eorx > a— e, then Q(x, () = oo with probabilities p or 1 — p respectively and
Q(x) = EQ(x, ) = o0. Therefore

C, ;= dom(Q) = {(x:ex<a—e¢€}



Example
Generation scheduling

2nd-stage problem:

O(x,) = min oy st x+yw) = ()

0<y(w)<a

Suppose ((w) = a + € with prob. p, and {(w) = a — € with prob. 1 — p

Wa + €) = {a+€—x ifXZ€,= 0 = cH(a+ € — x) if x>e¢€
infeasible if x<e€ o0 fox < e

Wa—€) = {a—e—x if x<a-—e 0 = cH(a — € — x) if x<a-—e¢
infeasible f x>a—c¢€ o0 f x>a—¢€

On G, O(x) = ECQ(x, () is affine in x

Ox) = pela+e—x)+ (1 —p)cy,(a— € —x) c(a+e2p—1)) — cx



Example

Generation scheduling

Therefore
f* = mn(c;,—c)x+c(a+e(@2p—1)) st ex<La-—ce€
xeR
Solution:

Since ¢, < ¢y, optimal solution is:
X* =a—e, *=c(a—e€)+20¢p
Therefore
1. The cheap generator always produces at the lower level a — € of the random demand

2. The expensive generator will pick up the slack, 2e with probability p



Recourse function QO(x)

Lemma

Suppose the recourse is fixed (W independent of w) and EC ’ < 00.
1. O(x) is convex and Lipschitz on dom(Q) = {x : O(x) < oo}
2. If distribution function of { is absolutely continuous, then Q(x) is differentiable on ri(dom(Q))
3. Suppose ( takes finitely many values. Then
« dom(Q) is closed, convex, and polyhedral

« (J(x) is piecewise linear and convex on dom((Q)

Summary: for two-stage problem with fixed recourse, if EC ’ < 0, then ((x) is convex and hence subdifferentiable

Hence ;2%{}1 J) +0x) st Ax=Db, x € K is nonsmooth conic program



Strong duality and KKT

Nonsmooth conic program: Jr o= xfgﬂg}l J)+0x) st Ax=b,xeK

where fis convex and K C R™ is a closed convex cone

Dual cone: K* = {E€R":Ex>0 VxeK)

Lagrangian:

Lix, A, 1) = f(x)+0x) —A1"(Ax — b) — u'x, xeR" AeR" yue K* CR™M

Dual function:

d(A, 1) :

dO(/la /’t) :

min L(x, A, ) = A'b+ dy(A, p)

min (f(x) +0x)— (ATl + //t)Tx)

xeR™

Dual problem:

d>I< — max /lTb + d()(/la ,l/t)

AER™, neK*



Strong duality and KKT

Nonsmooth conic program: Jr o= xfél”i%{}l J) +0Kx) st Ax=b,xeK

Assumptions
1. Finite 2nd moment: EC* < o0 and Q(x) € (— o0, 0]

2. f: R"™ — R is aconvex function; K is a closed convex cone

3. Slater condition: dx € ri(dom(Q)) N ri(K) such that Ax = b

Theorem [nonsmooth Slater theorem]
1. Strong duality and dual optimality: If f* is finite, then d dual optimal (4™, u*) that closes duality gap, i.e.,

f* = d* = d%, p¥)
2. KKT characterization: A feasible x* € K with Ax™ = b is primal optimal iff 4 subgradients £* € oJf(x™)
and y* € d0(x*), a dual feasible (4*, u*) € R™ X K* such that

EX 4y = ATQ* 4 p*, T =0

In this case (x™, 4™, u™) is a saddle point that closes the duality gap



Stochastic OPF

Summary

Brief introduction to theory of stochastic optimization

min f(x) st h(x,{) <0

xeR"
where ( is an uncertain parameter

Choose optimal x* s.t.
» Robust opt: x* satisfies constraints for all  in an uncertainty set Z
« Chance constrained opt: x* satisfies constraints with high probability

» Scenario opt: x* satisfies constraints for V random samples of { € Z

» Two-stage opt: 2nd-stage decision y(x*, (') adapts to realized parameter {, given 1st-stage decision x*

Many methods are combinations of these 4 ideas, e.g.
* Distributional robust opt: robust + chance constrained
» Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost

» Adaptive robust affine control: two-stage + robust (or avg) + affine policy



