Power System Analysis Chapter 13 Stochastic optimal power flow

Steven Low

Caltech (April 15, 2025)

Stochastic OPF

Consider

min f(x) s.t. $h(x,\zeta) \le 0$ $x \in \mathbb{R}^n$

where ζ is a parameter, e.g., admittance matrix, renewable generations, forecast loads In many power system applications some of these parameters are uncertain, giving rise to stochastic OPF

Brief introduction to theory of stochastic optimization

- Most stochastic optimization problems are intractable (e.g., nonconvex, nonsmooth) \bullet
- Explains 4 main ideas to deal with uncertainty
- Focuses on convex reformulations and structural properties \bullet

Stochastic OPF 4 main ideas

Choose optimal x^* s.t.

- Robust opt: x^* satisfies constraints for all ζ in an uncertainty set Z
- Chance constrained opt: x^* satisfies constraints with high probability
- Scenario opt: x^* satisfies constraints for K random samples of $\zeta \in Z$
- Two-stage opt: 2nd-stage decision $y(x^*, \zeta)$ adapts to realized parameter ζ , given 1st-stage decision x^* lacksquare

Many methods are combinations of these 4 ideas, e.g.

- Distributional robust opt: robust + chance constrained
- Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost
- Adaptive robust affine control: two-stage + robust (or avg) + affine policy

Outline

- **Robust optimization** 1.
- Chance constrained optimization 2.
- Convex scenario optimization 3.
- Stochastic optimization with recourse 4.
- Example application: stochastic economic dispatch 5.

Outline

- **Robust optimization** 1.
 - General formulation ullet
 - Robust linear program ullet
 - Robust second-order cone program
 - Robust semidefinite program ullet
 - Proofs ullet
- Chance constrained optimization 2.
- Convex scenario optimization 3.
- Stochastic optimization with recourse 4.
- 5. Example application: stochastic economic dispatch

General formulation

Consider

min f(x) s.t. $h(x,\zeta) \leq 0$, $\forall \zeta \in Z(x)$ $x \in \mathbb{R}^n$

- f(x) : cost function is assumed certain wlog
- ζ : uncertain parameter
- $h(x, \zeta)$: uncertain inequality constraint
- Z(x) : uncertainty set that can depend on optimization variable x

possible uncertainty realization $\zeta \in Z(x^*)$

Interpretation: Choose an optimal x^* that satisfies the inequality constraint $h(x^*, \zeta) \leq 0$ for all

General formulation

Consider

min f(x) s.t. $h(x,\zeta) \leq 0$, $\forall \zeta \in Z(x)$ $x \in \mathbb{R}^n$

- ullet
- Generally intractable ullet
- ullettractable
- e.g. robust LP, robust SOCP, robust SDP

Semi-infinite program: finite #optimization variables $x \in \mathbb{R}^n$, possibly infinite #constraints

For special cases of uncertainty set Z(x), robust program has finite convex reformulation which is

General formulation Example

- $q_t \in [q^{\min}, q^{\max}]$
- PV panel is connected to battery through a line with series admittance $y \in \mathbb{C}$
- satisfies $b_t \in [0,B]$
- Voltages at buses 1 and 2 are $v_{1t} = |v_{1t}|e$

Goal: control (q_t, d_t) within control limits at time t to min cost, subject to SoC $b_t \in [0,B]$ and voltage limits $|v_{it}| \in [v^{\min}, v^{\max}]$ for t = 1, ..., T

• PV panel with uncertain real power generation $\zeta_t \in Z_t \subseteq \mathbb{R}_+$ and controllable reactive power

• DC discharging power $d_t \in [d^{\min}, d^{\max}]$ is controllable as long as its SoC $b := (b_1, \dots, b_T)$

$${}^{i\theta_{1t}}, v_{2t} = |v_{2t}| e^{i\theta_{2t}}$$
. Let $v_t := (v_{1t}, v_{2t})$

General formulation Example

Let $x := (q, d) \in \mathbb{R}^{2T}$, $v := (v_1, ..., v_T)$, b :=Robust scheduling problem is:

min f(x) s.t. $g(x, v, b, \zeta) = 0$, h(x, v, z) = 0

where $g(x, v, b, \zeta) = 0$ are power equation and battery state process

$$\zeta_t + iq_t = y^{\mathsf{H}} \left(|v_{1t}|^2 - v_{1t} v_{2t}^{\mathsf{H}} \right), \qquad d_t + i0 = y^{\mathsf{H}} \left(|v_{2t}|^2 - v_{2t} v_{1t}^{\mathsf{H}} \right), \qquad b_{t+1} = b_t - d_t + i0$$

and $h_t(x, t, b, \zeta) \leq 0$ are voltage and battery limits $v^{\min} \leq |v_{it}| \leq v^{\max}, i = 1, 2, \qquad 0 \leq b_t \leq B$

uncertain equality constraints need to be interpreted appropriately and eliminated

$$= (b_1, ..., b_T), \zeta := (\zeta_1, ..., \zeta_T)$$

$$b, \zeta) \leq 0, \, \forall \zeta \in Z_1 \times \cdots \times Z_T$$

General formulation Example

Given control decisions $x_t := (q_t, d_t)$ and uncertain parameter ζ_t , voltage v_t takes value in $V_t(x) := \{v_t \in \mathbb{C}^2 : v_t \text{ satisfies power flow equation, } \zeta_t \in Z_t\}$

To eliminate battery, write b_t as

$$b_t = b_0 - \sum_{s < t} d_s, \qquad t = 1, \dots, T$$

Then robust scheduling problem is:

$$\min_{x} f(x) \quad \text{s.t.} \quad v^{\min} \le |v_{it}| \le v^{\max}, i$$
$$0 \le b_0 - \sum_{s < t} d_s \le B, i$$

The original uncertainty set Z_t is embedded into the x-dependent uncertainty set $V_t(x)$

$= 1, 2, \forall v_t \in V_t(x), t = 1, ..., T$ t = 1, ..., T

General formulation Tractability

Consider min f(x) s.t. $h(x,\zeta) \leq 0$, $\forall \zeta \in Z(x)$ $x \in \mathbb{R}^n$

Equivalent bi-level formulation

min f(x) s.t. $\sup h(x,\zeta) \leq 0$ $x \in \mathbb{R}^n$ $\zeta \in Z(x)$

tractable:

 $h(x) := \sup h(x, \zeta)$ $\zeta \in Z(x)$

(1)

Assuming f is convex, tractability of (1) boils down to whether the following subproblem is

Derivation strategy

3 common strategies to derive finite convex reformulation of robust optimizations:

- 1. Solve $\overline{h}(x)$ analytically in close form and $\overline{h}(x) \leq 0$ is convex in x robust LP
- 2. Replace $\bar{h}(x) \leq 0$ by strong duality $d(y) \leq 0$ and KKT condition such that y is optimal for the dual of subproblem sup $h(x, \zeta)$, i.e., y satisfies dual feasibility and stationary $\zeta \in Z(x)$
 - existence of dual opt y

(a) Need Slater theorem (h(x) is finite, convexity and Slater condition) to guarantee strong duality and robust LP

(b) ζ is eliminated because (i) $h(x, \zeta)$ is affine in ζ and therefore $\nabla_{\zeta} L(\zeta, y) = 0$ does not contain ζ ; and (ii) in strong duality and stationarity imply complementary slackness (which therefore can be omitted)

Derivation strategy

matrix inequalities (LMIs) using the S-lemma. The resulting problem is an SDP

3. When the semi-infinite constraint takes the form $h_0(x) + h(x, \zeta) \in K$ for all $\zeta \in Z$ where K is a closed convex cone, such as $K_{\text{soc}} \subseteq \mathbb{R}^n$ or $K_{\text{sdp}} \subseteq \mathbb{S}^n$, it can be reformulated as a set of linear

robust SOCP, robust SDP

Consider

min $c^{\mathsf{T}}x$ s.t. $a^{\mathsf{T}}x \leq b, \forall [a^{\mathsf{T}}b] \in \langle$ $x \in \mathbb{R}^n$

Constraints are equivalent to

$$\bar{h}(x) := \max_{\zeta \in Z} \sum_{l=1}^{k} \zeta_l (a_l^{\mathsf{T}} x - b_l) \le - (a_0^{\mathsf{T}} x - b_0)$$

 $\zeta := (\zeta_1, \dots, \zeta_k)$ takes value in uncertainty set Z This is general and allows each entry of a, b to vary independently (with k = n + 1)

$$\left\{ \left[a_0^{\mathsf{T}} \ b_0 \right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} \ b_l \right] : \zeta \in \mathbb{Z} \subseteq \mathbb{R}^k \right\}$$

 $(a_0, b_0) \in \mathbb{R}^{n+1}$ are nominal parameters; $\sum \zeta_l \left[a_l^{\mathsf{T}} b_l \right]$ are perturbations, with given $\left[a_l^{\mathsf{T}} b_l \right]$

Consider

 $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \leq b, \, \forall [a^{\mathsf{T}} b] \in \langle a^{\mathsf{T}} b \rangle$

Theorem

1. Linear uncertainty $Z := \{\zeta \in \mathbb{R}^k : \|\zeta\|_{\infty} \le \min_{(x,y)\in\mathbb{R}^{n+k}} c^{\mathsf{T}}x \text{ s.t. } a_0^{\mathsf{T}}x + \sum_l y_l \le z_l \}$ 2. SOC uncertainty $Z := \{\zeta \in \mathbb{R}^k : \|\zeta\|_2 \le z_l \}$ $\min_{x\in\mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } r\sqrt{\sum_l (a_l^{\mathsf{T}}x - b_l^{\mathsf{T}}x)^2}$

$$\left\{ \left[a_0^{\mathsf{T}} b_0 \right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l \right] : \zeta \in \mathbb{Z} \subseteq \mathbb{R}^k \right\}$$

$$\leq 1$$
 } : (1) is equivalent to LP:
 $\leq b_0, -y_l \leq a_l^{\mathsf{T}} x - b_l \leq y_l, \ l = 1, \dots, k$

$$\frac{r}{p_l}: (1) \text{ is equivalent to SOCP:} \qquad \text{strate} \\ \left(p_l \right)^2 \le -a_0^{\mathsf{T}} x + b_0$$

Consider

Theorem

convex pointed cone with nonempty interior.

Example: $Z := \{ \zeta \in \mathbb{R}^k : \zeta \in K \}$

Conic uncertainty of part 3 is very general and includes parts 1 and 2 as special cases

$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \leq b, \, \forall [a^{\mathsf{T}} b] \in \left\{ \left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in Z \subseteq \mathbb{R}^k \right\}$

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

(1)

Consider

Theorem

convex pointed cone with nonempty interior.

Example: $Z := \{\zeta \in \mathbb{R}^k : \zeta \in K\}$. Then (1) is equivalent to conic program:

 $a_0^{\mathsf{T}} x \le b_0, \ a_l^{\mathsf{T}} x + y_l = b_l, \ y \in K^*, \ l = 1, \dots, k$

$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \leq b, \, \forall [a^{\mathsf{T}} b] \in \left\{ \left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in Z \subseteq \mathbb{R}^k \right\}$

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

min c'x s.t. $(x,y) \in \mathbb{R}^{n+m}$

(1)

Consider

$$\min_{x \in \mathbb{R}^n} c^\mathsf{T} x \text{ s.t. } a^\mathsf{T} x \leq b, \, \forall [a^\mathsf{T} b] \in \mathbf{C}$$

Theorem

convex pointed cone with nonempty interior.

The subproblem in the bi-level formulation is

$$\bar{h}(x) := \max_{\zeta \in Z} \sum_{l=1}^{k} \zeta_l (a_l^{\mathsf{T}} x - b_l) = \max_{(\zeta, u) \in \mathbb{R}^{k+p}} (s(x))^{\mathsf{T}} \zeta \text{ s.t. } \left[P \quad Q \right] \begin{bmatrix} \zeta \\ u \end{bmatrix} + d \in K$$

this subproblem will be replaced by strong duality and KKT condition for h(x)

$\left\{ \left[a_0^{\mathsf{T}} b_0 \right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l \right] : \zeta \in \mathbb{Z} \subseteq \mathbb{R}^k \right\}$

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

Consider

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \le b, \, \forall [a^{\mathsf{T}} b] \in \left\{ \left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in Z \subseteq \mathbb{R}^k \right\}$$

Theorem

- convex pointed cone with nonempty interior. Suppose Z is nonempty and
 - For each x, $\max_{\zeta \in Z} \sum_{l} \zeta_l \left(a_l^{\mathsf{T}} x b_l \right)$ is finite

Then (1)

) is equivalent to conic program:
$$\min_{\substack{(x,y)\in\mathbb{R}^{n+m}\\ y \in \mathbb{R}^{n+m}}} c^{\mathsf{T}}x \text{ s.t.} \qquad \text{strat}$$

$$a_0^{\mathsf{T}}x + d^{\mathsf{T}}y \leq b_0, \quad y \in K^*, \quad Q^{\mathsf{T}}y = 0, \ a_l^{\mathsf{T}}x + (P^{\mathsf{T}}y)_l = b_l, \ l = 1, \dots, k$$

strong duality dual feasibility

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}, \bar{u}) \in \mathbb{R}^{k+p}$ s.t. $P\bar{\zeta} + Q\bar{u} + d \in ri(K)$

stationarity



Robust linear program Summary

$\min_{x \in \mathbb{R}^n} c^\mathsf{T} x \text{ s.t. } a^\mathsf{T} x \le b, \, \forall [a^\mathsf{T} b] \in \left\{ \left[\right. \right] \right\}$

Uncertainty Set Z	Conv
Linear	
SOC	
Conic	C

$$\left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in \mathbb{Z} \subseteq \mathbb{R}^k \right\}$$

Robust second-order cone program

Consider min $c^{\mathsf{T}}x$ s.t. $||A(\zeta)x + b(\zeta)||_{2}$ $x \in \mathbb{R}^n$ where $(A(\zeta), b(\zeta))$ and $(\alpha(\zeta), \beta(\zeta))$ are affine functions of ζ : $A(\zeta) := A_0 + \sum_{l=1}^{k} \zeta_l A_l \in \mathbb{R}^{m \times n},$ l = 1 $\alpha(\zeta) = \alpha_0 + \sum_{l=1}^{n} \zeta_l \alpha_l \in \mathbb{R}^n,$ l = 1

 $(A_l, b_l, \alpha_l, \beta_l, l \ge 0)$ are fixed and given; ζ is the uncertain parameter independently

$$_{2} \leq \alpha^{\mathsf{T}}(\zeta)x + \beta(\zeta), \quad \forall \zeta \in Z \subseteq \mathbb{R}^{k}$$

$$b(\zeta) := b_0 + \sum_{l=1}^k \zeta_l b_l \in \mathbb{R}^m$$
$$\beta(\zeta) := \beta_0 + \sum_{l=1}^k \zeta_l \beta_l \in \mathbb{R}$$

Formulation is general and allows each entry of the nominal $(A_0, b_0, \alpha_0, \beta_0)$ to be perturbed

Robust second-order cone program

Consider min $c^{\mathsf{T}}x$ s.t. $||A(\zeta)x + b(\zeta)||_{2}$ $x \in \mathbb{R}^n$ where $(A(\zeta), b(\zeta))$ and $(\alpha(\zeta), \beta(\zeta))$ are affine functions of ζ : $A(\zeta) := A_0 + \sum_{l=1}^{k} \zeta_l A_l \in \mathbb{R}^{m \times n},$ l = 1 $\alpha(\zeta) = \alpha_0 + \sum_{l=1}^{n} \zeta_l \alpha_l \in \mathbb{R}^n,$ l=1

Generally intractable, except e.g. $Z = \operatorname{conv}(\zeta^1, \dots, \zeta^p) \subseteq \mathbb{R}^k$ in which case the semi-infinite set of constraints reduces to

$$\|A(\zeta^{i})x + b(\zeta^{i})\|_{2} \le \alpha^{\mathsf{T}}(\zeta^{i})x + \beta(\zeta^{i}),$$

$$_{2} \leq \alpha^{\mathsf{T}}(\zeta)x + \beta(\zeta), \quad \forall \zeta \in Z \subseteq \mathbb{R}^{k}$$

$$b(\zeta) := b_0 + \sum_{l=1}^k \zeta_l b_l \in \mathbb{R}^n$$
$$\beta(\zeta) := \beta_0 + \sum_{l=1}^k \zeta_l \beta_l \in \mathbb{R}$$

$$i = 1, ..., p$$

Robust second-order cone program **Decoupled constraints**

 $x \in \mathbb{R}^n$ if feasible iff $\exists \tau$ s.t. $\max_{\boldsymbol{\zeta}^{\mathsf{I}} \in Z^{\mathsf{I}}} \|A(\boldsymbol{\zeta}^{\mathsf{I}})x + b(\boldsymbol{\zeta}^{\mathsf{I}})\|_{2} \leq \tau \leq \min_{\boldsymbol{\zeta}^{\mathsf{r}} \in Z^{\mathsf{r}}} \alpha^{\mathsf{T}}(\boldsymbol{\zeta}^{\mathsf{r}})x + \beta(\boldsymbol{\zeta}^{\mathsf{r}})$

convex representations, and hence robust SOCP is tractable

Special case: left-hand side uncertainty ζ^{I} and right-hand side uncertainty ζ^{r} are decoupled: $\min_{x \in \mathbb{D}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad \left\| A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}}) \right\|_{\gamma} \leq \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}}), \quad \forall \zeta^{\mathsf{I}} \in Z^{\mathsf{I}}, \, \zeta^{\mathsf{r}} \in Z^{\mathsf{r}}$

- Two classes of uncertainty sets (Z^{I}, Z^{r}) for which both maximization and minimization have finite

Robust second-order cone program Interval + conic uncertainties

$$Z^{\mathsf{I}} := \left\{ \zeta^{\mathsf{I}} := \left[\Delta A \ \Delta b \right] : \left| \Delta A_{ij} \right| \le \delta \right\}$$

1. Left-side uncertainty: $A(\zeta^{I}) = A_0 + \Delta A$ and $b(\zeta^{I}) = b_0 + \Delta b$ with $\delta_{ij}, |\Delta b_i| \le \delta_i, i = 1, ..., m, j = 1, ..., n$ Subproblem: $\max_{\zeta \in Z} ||A(\zeta)x + b(\zeta)||_2 \le \tau$ (strategy 1: solve in closed form) 2. Right-side uncertainty: $\alpha(\zeta^{\mathsf{r}}) := \alpha_0 + \sum_{l=1}^{k_{\mathsf{r}}} \zeta_l \alpha_l \in \mathbb{R}^n$ and $\beta(\zeta^{\mathsf{r}}) := \beta_0 + \sum_{l=1}^{k_{\mathsf{r}}} \zeta_l \beta_l \in \mathbb{R}$ with l=1l = 1 $Z^{\mathsf{r}} := \{ \zeta^{\mathsf{r}} \in \mathbb{R}^{k_{\mathsf{r}}} : \exists u \text{ s.t. } P\zeta^{\mathsf{r}} + Qu + d \in K \}$

Subproblem: $\tau \leq \min_{\alpha} \alpha^{T}(\zeta^{r})x + \beta(\zeta^{r})$ (same as robust LP \Leftrightarrow conic constraint) $\zeta' \in Z'$

 $P\bar{\zeta}^{\mathsf{r}} + Q\bar{u} + d \in \operatorname{ri}(K)$

Suppose Z^r satisfies Slater condition: Z^r is nonempty and either K is polyhedral or $\exists (\overline{\zeta}^r, \overline{u})$ s.t.

Robust second-order cone program Interval + conic uncertainties

Theorem

Suppose Z^{r} is nonempty and

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}^r, \bar{u})$ s.t. $P\bar{\zeta}^r + Q\bar{u} + d \in ri(K)$ • For each x, $\min_{\zeta^{\mathsf{r}} \in Z^{\mathsf{r}}} \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}})$ is finite

Then robust SOCP is equivalent to conic program: min $c^{T}x$ s.t.

$$z_{i} = \left| \sum_{j} [A_{0}]_{ij} x_{j} + [b_{0}]_{i} \right| + \sum_{j} \delta_{ij} |$$
$$|z||_{2} \leq \hat{\beta}(x) - y^{\mathsf{T}}d, \quad y \in K^{*}, \quad P^{\mathsf{T}}y =$$
strong duality dual feasibility station

- (x,y,z)
- $|x_j| + \delta_i, \quad i = 1, \dots, m 1 \Leftrightarrow \max_{\zeta \in \mathcal{I}} ||A(\zeta)x + b(\zeta)||_2 \leq \tau$
- $\Leftrightarrow \tau \leq \min_{\zeta^{\Gamma} \in Z^{\Gamma}} \alpha^{T} (\zeta^{\Gamma}) x + \beta(\zeta^{\Gamma})$ Q' y = 0 $= \hat{\alpha}(x),$ narity (same as robust LP)

1. Left-side uncertainty: $A(\zeta^{I})x + b(\zeta^{I}) = (A)$

$$Z^{\mathsf{I}} := \left\{ \zeta^{\mathsf{I}} \in \mathbb{R}^{k_1 \times k_2} : \left\| \zeta^{\mathsf{I}} \right\|_2 := \max_{u: \|u\|_2 \le 1} \left\| \zeta^{\mathsf{I}} u \right\|_2 \le 1 \right\}$$

At most one of L(x) and r(x) depends on x; moreover dependence is affine in x

Subproblem: $\max_{\zeta_{l \in \mathbb{Z}}^{l}} ||A(\zeta_{l})x + b(\zeta_{l})||_{2} \le \tau$ (reduce to LMIs using *S*-lemma)

2. Right-side uncertainty: same

Subproblem: $\tau \leq \min \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}})$ (same as robust LP \Leftrightarrow conic constraint) $\zeta^{\mathbf{r}} \in \mathbb{Z}^{\mathbf{r}}$

$$A_0 x + b_0 + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r(x)$$
 with

Theorem

Suppose Z^r is nonempty and

• For each x, $\min_{\zeta^{\mathsf{r}} \in Z^{\mathsf{r}}} \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}})$ is finite

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}^r, \bar{u})$ s.t. $P\bar{\zeta}^r + Q\bar{u} + d \in ri(K)$

Theorem

Then robust SOCP is equivalent to conic program:
$$\min_{\substack{(x,y,\tau,\lambda)\\(x,y,\tau,\lambda)}} c^{\mathsf{T}}x \text{ s.t.}$$
$$y \in K^*, \quad \tau \leq \hat{\beta}(x) - y^{\mathsf{T}}d, \quad P^{\mathsf{T}}y = \hat{\alpha}(x), \quad Q^{\mathsf{T}}y = 0 \qquad \Leftrightarrow \tau \leq \min_{\zeta^{\mathsf{T}} \in \mathbb{Z}^{\mathsf{T}}} \alpha^{\mathsf{T}}(\zeta^{\mathsf{T}})x + \beta$$
$$1. \text{ If } A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}}) = (A_0x + b_0) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r \text{ then}$$
$$\lambda \geq 0, \qquad \begin{bmatrix} \tau - \lambda \|r\|_2^2 & (A_0x + b_0)^{\mathsf{T}} & 0\\ A_0x + b_0 & \tau \mathbb{I}_m & L^{\mathsf{T}}(x)\\ 0 & L(x) & \lambda \mathbb{I}_{k_1} \end{bmatrix} \geq 0 \qquad \Leftrightarrow \max_{\zeta^{\mathsf{I}} \in \mathbb{Z}^{\mathsf{I}}} \|A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}})\|_2$$

Theorem

 $\leq \tau$

Robust semidefinite program

1. Nominal SDP

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad h_0(x) := B_0 + \sum_{x \in \mathbb{R}^n} f(x)$

2. Robust SDP min f(x) s.t. $h_0(x) + h(x)$ $x \in \mathbb{R}^n$

where

$$h(x,\zeta) := L^{\mathsf{T}}(x)\zeta R(x) + R^{\mathsf{T}}(x)\zeta^{\mathsf{T}}L(x) \in \mathbb{S}^{m}$$
$$Z := \left\{ \zeta \in \mathbb{R}^{k_{1} \times k_{2}} : \|\zeta\|_{2} := \max_{u:\|u\|_{2}=1} \|\zeta u\|_{2} \le \rho \right\}$$

At most one of the matrices L(x) and R(x) depends on x; moreover dependence is affine in x to obtain **linear** matrix inequalities

$$\sum_{i=1}^{n} x_i A_0^i \in K_{\text{psd}} \subset \mathbb{S}^m$$

$$(x,\zeta) \in K_{\mathsf{psd}}, \qquad \forall \zeta \in Z$$

Example: SDP relaxation of OPF

SDP relaxation of OPF:

W

where

$$\min_{V \in K_{\text{psd}}} \operatorname{tr} (C_0 W) \quad \text{s.t.} \quad \operatorname{tr} \left(\Phi_j W \right) \leq p_j^{\max}, \qquad -\operatorname{tr} \left(\Phi_j W \right) \leq -p_j^{\min}$$

$$\operatorname{tr} \left(\Psi_j W \right) \leq q_j^{\max}, \qquad -\operatorname{tr} \left(\Psi_j W \right) \leq -q_j^{\min}$$

$$\operatorname{tr} \left(J_j W \right) \leq v_j^{\max}, \qquad -\operatorname{tr} \left(J_j W \right) \leq -v_j^{\min}$$

$$\operatorname{tr} \left(J_j W \right) \leq v_j^{\max}, \qquad -\operatorname{tr} \left(J_j W \right) \leq -v_j^{\min}$$

$$\Phi_j := \frac{1}{2} \left(Y_0^{\mathsf{H}} e_j e_j^{\mathsf{T}} + e_j e_j^{\mathsf{T}} Y_0 \right), \qquad \Psi_j := \frac{1}{2i} \left(Y_0^{\mathsf{H}} e_j e_j^{\mathsf{T}} - e_j e_j^{\mathsf{T}} Y_0 \right), \qquad J_j := e_j e_j^{\mathsf{T}} Y_j$$

and $Y_0 \in \mathbb{C}^{(N+1) \times (N+1)}$ is a given nominal admittance matrix

 Φ_j and Ψ_j depend on admittance matrix

Example: SDP relaxation of OPF

Nominal SDP: dual problem $-\min_{x} c^{\mathsf{T}}x$ s.t. $x \ge 0, h_0(x) \in K_{\mathsf{psd}}$ $x \in \mathbb{R}^n$ where

$$h_0(x) := C_0 + \sum_{i=1}^{N+1} \left(\left(x_{2i-1} - x_{2i} \right) \Phi_i + \left(x_{2(N+1)+2i-1} - x_{2(N+1)+2i} \right) \Psi_i + \left(x_{4(N+1)+2i-1} - x_{4(N+1)+2i} \right) J_i \right)$$

which is in standard form: $\min f(x)$ s.t. $x \in \mathbb{R}^n$

$$h_0(x) := B_0 + \sum_{i=1}^n x_i A_0^i \in K_{psd}$$

Example: SDP relaxation of OPF Uncertain admittance matrix $Y = Y_0 + \Delta Y$

Uncertainty: admittance matrix $Y = Y_0 + \Delta Y$ This results in uncertainty in h(x):

$$h(x, \Delta Y) := L^{\mathsf{H}}(x)\Delta Y + \Delta Y^{\mathsf{H}}L(x)$$
$$L(x) := \sum_{i=1}^{N+1} \left(\frac{1}{2} \left(x_{2i-1} - x_{2i}\right) + \frac{1}{2}\right) \left(\frac{1}{2} \left(x_{2i-1} - x_{2i}\right) + \frac{1}{2}\right)$$

Robust SDP:

 $-\min c^{\mathsf{T}}x$ s.t. $x \ge 0$, $h_0(x) + h(x, \Delta Y) \in K_{\mathsf{psd}}$ $x \in \mathbb{R}^n$

which is in standard form with $h_{\zeta}(x) := L^{T}(x)\zeta I + I\zeta^{T}L(x)$

 $\frac{1}{2i} \left(x_{2(N+1)+2i-1} - x_{2(N+1)+2i} \right) e_i e_i^{\mathsf{T}}$

Robust semidefinite program

Theorem

Robust SDP is equivalent to SDP: min f(x) s.t. (x,λ) 1. If $h_{\mathcal{E}}(x) := L^{\mathsf{T}}(x)\zeta R + R^{\mathsf{T}}\zeta^{\mathsf{T}}L(x)$ then $\lambda \ge 0, \qquad \begin{bmatrix} h_0(x) - \lambda R^{\mathsf{T}} R & \rho L^{\mathsf{T}}(x) \\ \rho L(x) & \lambda \mathbb{I}_{k_1} \end{bmatrix} \ge 0$ 2. $h_{\zeta}(x) := L^{\mathsf{T}} \zeta R(x) + R^{\mathsf{T}}(x) \zeta^{\mathsf{T}} L$ then $\lambda \ge 0, \qquad \begin{vmatrix} h_0(x) - \lambda L^{\mathsf{T}} L & \rho R^{\mathsf{T}}(x) \\ \rho R(x) & \lambda \mathbb{I}_{k_2} \end{vmatrix} \ge 0$

Outline

1. Robust optimization

- General formulation
- Robust linear program
- Robust second-order cone program
- Robust semidefinite program
- Proofs
- 2. Chance constrained optimization
- 3. Convex scenario optimization
- 4. Stochastic optimization with recourse
- 5. Applications

Proofs

The proofs illustrate two useful techniques in this, and many other, types of problems

1. Robust LP: conic uncertainty $Z := \{ \zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K \}$

- Replace subproblem $\bar{h}(x) \leq 0$ by strong duality and KKT condition
- 2. Robust SOCP: bounded l_2 -norm + conic uncertainty
 - Express K_{SOC} as K_{psd}

• Use S-lemma to reduce $\max_{\zeta^{|} \in Z^{|}} ||A(\zeta^{|})x + b(\zeta^{|})||_{2} \le \tau$ to LMIs

- 3. S-lemma
 - Use separating hyperplane theorem (similar to Slater theorem proof)

strategy 2

strategy 3

Robust linear program

Consider

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \le b, \, \forall [a^{\mathsf{T}} b] \in \left\{ \left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in Z \subseteq \mathbb{R}^k \right\}$$

Theorem

- convex pointed cone with nonempty interior. Suppose Z is nonempty and
 - For each x, $\max_{\zeta \in Z} \sum_{l} \zeta_l \left(a_l^{\mathsf{T}} x b_l \right)$ is finite

Then (1)

) is equivalent to conic program:
$$\min_{\substack{(x,y)\in\mathbb{R}^{n+m}\\ y \in \mathbb{R}^{n+m}}} c^{\mathsf{T}}x \text{ s.t.} \qquad \text{strat}$$

$$a_0^{\mathsf{T}}x + d^{\mathsf{T}}y \leq b_0, \quad y \in K^*, \quad Q^{\mathsf{T}}y = 0, \ a_l^{\mathsf{T}}x + (P^{\mathsf{T}}y)_l = b_l, \ l = 1, \dots, k$$

strong duality dual feasibility

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}, \bar{u}) \in \mathbb{R}^{k+p}$ s.t. $P\bar{\zeta} + Q\bar{u} + d \in ri(K)$

stationarity



Robust linear program Proof

Recall the subproblem and feasibility condition is:

$$\bar{h}(x) := \max_{\zeta \in Z} \sum_{l=1}^{k} \zeta_l (a_l^{\mathsf{T}} x - b_l) \leq -(a_0^{\mathsf{T}} x)$$

Define $s \in \mathbb{R}^k$ by $s_l := s_l(x) := a_l^{\mathsf{T}} x - b_l$

Then subproblem is:

$$p^*(x) := \max_{(\zeta,u)\in\mathbb{R}^{k+p}} s^{\mathsf{T}}(x)\zeta$$
 s.t. [P

Hence the constraint $\bar{h}(x) \le -(a_0^{\mathsf{T}}x - b_0)$ is: $p^*(x) \le -(a_0^{\mathsf{T}}x - b_0)$ Lagrangian is: for all $(\zeta, u) \in \mathbb{R}^{k+p}$, $y \in K^*$,

$$L(\zeta, u, y) := s^{\mathsf{T}}\zeta + y^{\mathsf{T}} \left(\begin{bmatrix} P & Q \end{bmatrix} \begin{bmatrix} \zeta \\ u \end{bmatrix} + \right)$$

- $(x-b_0)$

- $P \quad Q \end{bmatrix} \begin{vmatrix} \zeta \\ \mu \end{vmatrix} + d \in K$

 $(d) = y^{\mathsf{T}}d + (s^{\mathsf{T}} + y^{\mathsf{T}}P)\zeta + y^{\mathsf{T}}Qu$

Robust linear program Proof

Dual

I function is:

$$d(y) := \max_{(\zeta,u) \in \mathbb{R}^{k+p}} L(\zeta, u, y) = \begin{cases} d^{\mathsf{T}}y & \text{if } P^{\mathsf{T}}y = -s, \ Q^{\mathsf{T}}y = 0 \end{cases}$$

$$(\zeta,u) \in \mathbb{R}^{k+p} = \int_{\infty}^{\infty} d^{\mathsf{T}}y & \text{otherwise} \end{cases}$$
I problem is:

$$d^*(x) := \min_{\mathsf{T}} d^{\mathsf{T}}y \quad \text{s.t.} \quad P^{\mathsf{T}}y = -s(x), \ Q^{\mathsf{T}}y = 0 \end{cases}$$

Dual

Solution is:

$$d(y) := \max_{(\zeta,u) \in \mathbb{R}^{k+p}} L(\zeta, u, y) = \begin{cases} d^{\mathsf{T}}y & \text{if } P^{\mathsf{T}}y = -s, \ Q^{\mathsf{T}}y = 0 \end{cases}$$

$$d^{\mathsf{T}}y & \text{otherwise} \end{cases}$$
I problem is:

$$d^{*}(x) := \min_{y \in K^{*}} d^{\mathsf{T}}y \quad \text{s.t.} \quad P^{\mathsf{T}}y = -s(x), \ Q^{\mathsf{T}}y = 0 \end{cases}$$

duality and existence of dual optimal solution y := y(x):

$$p^*(x) = d^*(x) = d^\mathsf{T} y$$

Therefore feasibility $p^*(x) \le -(a_0^T x - b_0)$ is

Slater Theorem applies (finite optimal primal value, convexity, Slater condition) to conclude strong

equivalent to:
$$d^{\mathsf{T}}y \leq -(a_0^{\mathsf{T}}x - b_0)$$

Robust linear program

Consider

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } a^{\mathsf{T}}x \leq b, \, \forall [a^{\mathsf{T}} b] \in \left\{ \left[a_0^{\mathsf{T}} b_0\right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l\right] : \zeta \in Z \subseteq \mathbb{R}^k \right\}$$

Theorem

- convex pointed cone with nonempty interior. Suppose Z is nonempty and
 - For each x, $\max_{\zeta \in Z} \sum_{l} \zeta_l \left(a_l^{\mathsf{T}} x b_l \right)$ is finite

Then (1

1) is equivalent to conic program:
$$\min_{\substack{(x,y)\in\mathbb{R}^{n+m}\\ y \in \mathbb{R}^{n+m}}} c^{\mathsf{T}}x$$
 s.t.
 $a_0^{\mathsf{T}}x + d^{\mathsf{T}}y \leq b_0, \quad y \in K^*, \quad Q^{\mathsf{T}}y = 0, \ a_l^{\mathsf{T}}x + (P^{\mathsf{T}}y)_l = b_l, \ l = 1, \dots, k$
strong duality

3. Conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ where $K \subseteq \mathbb{R}^m$ is a closed

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}, \bar{u}) \in \mathbb{R}^{k+p}$ s.t. $P\bar{\zeta} + Q\bar{u} + d \in ri(K)$

(])

Robust linear program Proof

min $d^{\mathsf{T}}y$ s.t. $P^{\mathsf{T}}y = -s(x), Q^{\mathsf{T}}y = 0$ *y*∈*K** $\max_{(\zeta,u)\in\mathbb{R}^{k+p}} s^{\mathsf{T}}(x)\zeta \text{ s.t. } \left[P \ Q\right] \begin{bmatrix} \zeta \\ u \end{bmatrix} + d \in K$

Dual feasibility: $y \in K^*$ Stationarity: $P^{\mathsf{T}}y = -s(x), Q^{\mathsf{T}}y = 0$ Complementary slackness: $y^{\mathsf{T}}\left(\begin{bmatrix}P & Q\end{bmatrix}\begin{bmatrix}\zeta\\u\end{bmatrix}+d\right) = 0$

- To ensure y := y(x) is dual optimal, it is necessary and sufficient it satisfies KKT condition for

this involves ζ : eliminate it using stationarity and strong duality

Robust linear program Proof

Complementary slackness is implied by stationarity and strong duality:

$$y^{\mathsf{T}}\left(\begin{bmatrix}P & Q\end{bmatrix}\begin{bmatrix}\zeta\\u\end{bmatrix}+d\right) = y^{\mathsf{T}}P\zeta+y^{\mathsf{T}}Qz$$
$$= -s^{\mathsf{T}}\zeta+0+z$$
$$= 0$$

- $u + y^{\mathsf{T}}d$
- $y^{\mathsf{T}}d$ stationarity: $P^{\mathsf{T}}y = -s(x), Q^{\mathsf{T}}y = 0$ strong duality: $s^{\mathsf{T}}\zeta = d^{\mathsf{T}}y$

Robust linear program

Consider

 $\min_{x \in \mathbb{R}^n} c^\mathsf{T} x \text{ s.t. } a^\mathsf{T} x \le b, \, \forall [a^\mathsf{T} b] \in \left\{ \right.$

Theorem

- convex pointed cone with nonempty interior. Suppose Z is nonempty and
 - For each x, $\max_{\zeta \in Z} \sum_{l} \zeta_l \left(a_l^{\mathsf{T}} x b_l \right)$ is finite

Then (1)

) is equivalent to conic program:
$$\min_{\substack{(x,y) \in \mathbb{R}^{n+m} \\ q_0^{\mathsf{T}}x + d^{\mathsf{T}}y \le b_0}} c^{\mathsf{T}}x = k^*, \quad Q^{\mathsf{T}}y = 0, \ a_l^{\mathsf{T}}x + (P^{\mathsf{T}}y)_l = b_l, \ l = 1, \dots, k$$

dual feasibility stationarity

$$\left\{ \left[a_0^{\mathsf{T}} b_0 \right] + \sum_{l=1}^k \zeta_l \left[a_l^{\mathsf{T}} b_l \right] : \zeta \in \mathbb{Z} \subseteq \mathbb{R}^k \right\}$$

3. Conic uncertainty $Z := \{ \zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K \}$ where $K \subseteq \mathbb{R}^m$ is a closed

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}, \bar{u}) \in \mathbb{R}^{k+p}$ s.t. $P\bar{\zeta} + Q\bar{u} + d \in ri(K)$

(])

Proofs

- 1. Robust LP: conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$ • Replace subproblem $h(x) \le 0$ by strong duality and KKT condition
- 2. Robust SOCP: bounded l_2 -norm + conic uncertainty
 - Express K_{SOC} as K_{DSd}
 - Use S-lemma to reduce $\max_{\substack{\zeta \mid \in Z^{l}}} \|A(\zeta^{l})x + b(\zeta^{l})\|_{2} \le \tau$ as LMIs
- 3. S-lemma
 - Use separating hyperplane theorem (similar to Slater theorem proof)

strategy 3

Robust second-order cone program Decoupled constraints

Special case: left-hand side uncertainty ζ^{I} and right-hand side uncertainty ζ^{r} are decoupled: $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad \left\| A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}}) \right\|_2 \leq \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}}), \quad \forall \zeta^{\mathsf{I}} \in Z^{\mathsf{I}}, \ \zeta^{\mathsf{r}} \in Z^{\mathsf{r}}$

 $\begin{aligned} x \in \mathbb{R}^n \text{ if feasible iff } \exists \tau \text{ s.t.} \\ \max_{\boldsymbol{\zeta}^{\boldsymbol{\mathsf{I}}} \in \boldsymbol{Z}^{\boldsymbol{\mathsf{I}}}} \|A(\boldsymbol{\zeta}^{\boldsymbol{\mathsf{I}}})x + b(\boldsymbol{\zeta}^{\boldsymbol{\mathsf{I}}})\|_2 &\leq \tau &\leq \min_{\boldsymbol{\zeta}^{\boldsymbol{\mathsf{r}}} \in \boldsymbol{Z}^{\boldsymbol{\mathsf{r}}}} \alpha^{\mathsf{T}}(\boldsymbol{\zeta}^{\boldsymbol{\mathsf{r}}})x + \beta(\boldsymbol{\zeta}^{\boldsymbol{\mathsf{r}}}) \end{aligned}$

1. Left-side uncertainty: $A(\zeta^{I})x + b(\zeta^{I}) = (A)$

$$Z^{\mathsf{I}} := \left\{ \zeta^{\mathsf{I}} \in \mathbb{R}^{k_1 \times k_2} : \left\| \zeta^{\mathsf{I}} \right\|_2 := \max_{u: \|u\|_2 \le 1} \left\| \zeta^{\mathsf{I}} u \right\|_2 \le 1 \right\}$$

At most one of L(x) and r(x) depends on x; moreover dependence is affine in x

Subproblem: $\max_{\zeta_{l \in \mathbb{Z}}^{l}} ||A(\zeta_{l})x + b(\zeta_{l})||_{2} \le \tau$ (reduce to LMIs using *S*-lemma)

2. Right-side uncertainty: same

Subproblem: $\tau \leq \min \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}})$ (same as robust LP \Leftrightarrow conic constraint) $\zeta^{\mathbf{r}} \in \mathbb{Z}^{\mathbf{r}}$

$$A_0 x + b_0 + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r(x)$$
 with

Theorem

Suppose Z^r is nonempty and

• For each x, $\min_{\zeta^{\mathsf{r}} \in Z^{\mathsf{r}}} \alpha^{\mathsf{T}}(\zeta^{\mathsf{r}})x + \beta(\zeta^{\mathsf{r}})$ is finite

• Slater condition: either K is polyhedral cone or $\exists (\bar{\zeta}^r, \bar{u})$ s.t. $P\bar{\zeta}^r + Q\bar{u} + d \in ri(K)$

Theorem

Then robust SOCP is equivalent to conic program:
$$\min_{\substack{(x,y,\tau,\lambda)\\(x,y,\tau,\lambda)}} c^{\mathsf{T}}x \text{ s.t.}$$
$$y \in K^*, \quad \tau \leq \hat{\beta}(x) - y^{\mathsf{T}}d, \quad P^{\mathsf{T}}y = \hat{\alpha}(x), \quad Q^{\mathsf{T}}y = 0 \qquad \Leftrightarrow \tau \leq \min_{\zeta^{\mathsf{T}} \in \mathbb{Z}^{\mathsf{T}}} \alpha^{\mathsf{T}}(\zeta^{\mathsf{T}})x + \beta$$
$$1. \text{ If } A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}}) = (A_0x + b_0) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r \text{ then}$$
$$\lambda \geq 0, \qquad \begin{bmatrix} \tau - \lambda \|r\|_2^2 & (A_0x + b_0)^{\mathsf{T}} & 0\\ A_0x + b_0 & \tau \mathbb{I}_m & L^{\mathsf{T}}(x)\\ 0 & L(x) & \lambda \mathbb{I}_{k_1} \end{bmatrix} \geq 0 \qquad \Leftrightarrow \max_{\zeta^{\mathsf{I}} \in \mathbb{Z}^{\mathsf{I}}} \|A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}})\|_2$$

Theorem

 $\leq \tau$

Prove $\max_{\zeta^{l} \in Z^{l}} ||A(\zeta^{l})x + b(\zeta^{l})||_{2} \le \tau$ is equivalent to LMIs:

1. If
$$A(\zeta^{\mathsf{I}})x + b(\zeta^{\mathsf{I}}) = (A_0x + b_0) + L^{\mathsf{T}}(x)\zeta_{\mathsf{I}}$$

 $\lambda \ge 0,$

$$\begin{bmatrix} \tau - \lambda \|r\|_2^2 & (A_0x + b_0) \\ A_0x + b_0 & \tau \|_m \\ 0 & L(x) \end{bmatrix}$$

 $\begin{array}{c} (z) \zeta^{l} r \text{ then} \\ (z) \delta_{0} & 0 \\ (z) \delta_{0} & 0 \\ (z) \delta_{0} & \lambda \delta_{k_{1}} \end{array} > 0$

3 ideas:

- 1. K_{soc} as K_{psd} : $(y, t) \in K_{\text{soc}}$, i.e., $||y||_2$
- 2. l_2 -norm matrix minimization : $-\rho ||a_1||_2 ||a_2||$
- 3. S-lemma : Suppose $\bar{x}^{\mathsf{T}}A\bar{x} > 0$ for some \bar{x} $B \geq \lambda A$ for some $\lambda \geq 0$

$$\leq t \text{ if and only if } \begin{bmatrix} t & y^{\mathsf{T}} \\ y & t \mathbb{I}_l \end{bmatrix} \geq 0$$

$$\|a_2\|_2 = \min_{X: \|X\|_2 \le \rho} a_1^\mathsf{T} X a_2$$

3. S-lemma : Suppose $\bar{x}^T A \bar{x} > 0$ for some \bar{x} . Then $x^T A x \ge 0 \Rightarrow x^T B x \ge 0$ holds if and only if

Let $g(x) := A_0 x + b_0 \in \mathbb{R}^m$ Subproblem $\max_{\substack{\beta \in \mathbb{Z}^{I}}} ||A(\zeta^{I})x + b(\zeta^{I})||_{2} \le \tau$ is equivalent to:

$$\begin{bmatrix} \tau & \left(g(x) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r\right)^{\mathsf{T}} \\ g(x) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r & \tau \mathbb{I}_{m} \end{bmatrix}$$

Or:

$$(z_1)^2 \tau + 2z_2^{\mathsf{T}} \left(g(x) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r \right) z_1 + (z_2)^{\mathsf{T}} \left(g(x) + L^{\mathsf{T}}(x)\zeta^{\mathsf{I}}r \right) z_2 + (z_2)^{\mathsf{T}} \left(g(x) + L^{\mathsf{T}}(x)\zeta^{\mathsf{T}}r \right) z_2 + (z_2)^{\mathsf{T}} \left(g(x$$

Or:

 $(z_1)^2 \tau + 2z_2^{\mathsf{T}} g(x) z_1 + (z_2^{\mathsf{T}} z_2) \tau + \min_{\substack{\zeta : \|\zeta^{\mathsf{I}}\|_2 \le 1}} (2L(x) z_2)^{\mathsf{T}} \zeta^{\mathsf{I}}(z_1 r) \ge 0 \quad \forall z_1 \in \mathbb{R}, \, z_2 \in \mathbb{R}^m$

 $\succeq 0, \qquad \zeta^{\mathsf{I}} \in Z^{\mathsf{I}}$

 $(z_2^{\mathsf{T}} z_2) \tau \geq 0, \quad \forall z_1 \in \mathbb{R}, z_2 \in \mathbb{R}^m, \zeta^{\mathsf{I}} \in Z^{\mathsf{I}}$

Apply l_2 -norm matrix minimization twice:

 $\min_{\substack{\zeta : \|\zeta\|_{2} \le 1}} (2L(x)z_{2})^{\mathsf{T}} \zeta^{\mathsf{I}}(z_{1}r) = -2\|L(x)z_{2}\|_{2}\|z_{1}r\|_{2} = \min_{\substack{X : \|X\|_{2} \le \|z_{1}r\|_{2}}} (2L(x)z_{2})^{\mathsf{T}} X(1)$

Therefore, for all $z_1 \in \mathbb{R}$, $z_2 \in \mathbb{R}^m$, $X \in \mathbb{R}^{k_1}$, if $z_1^2 ||r||_2^2 - X^T X \ge 0$ then $(z_1)^2 \tau + 2z_2^T g(x)z_1 + (z_2^T z_2)\tau + 2X^T L(x)z_2 \ge 0$

This is equivalent to:

$$\begin{bmatrix} \|r\|_{2}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\mathbb{I}_{k_{1}} \end{bmatrix} \geq 0 \qquad \Longrightarrow$$

$$\begin{bmatrix} \tau & g^{\mathsf{T}}(x) & 0 \\ g(x) & \tau \mathbb{I}_m & L^{\mathsf{T}}(x) \\ 0 & L(x) & 0 \end{bmatrix} \succeq 0$$

Clearly there exists $z_1 > 0$ such that $z_1^2 ||r||_2^2 > 0$

Hence S-lemma implies: $\exists \lambda \geq 0$ such that

$$\begin{bmatrix} \tau - \lambda \|r\|_2^2 & g^{\mathsf{T}}(x) & 0 \\ g(x) & \tau \mathbb{I}_m & L^{\mathsf{T}}(x) \\ 0 & L(x) & \lambda \mathbb{I}_{k_1} \end{bmatrix} \geq 0$$

Proofs

- 1. Robust LP: conic uncertainty $Z := \{\zeta \in \mathbb{R}^k : \exists u \in \mathbb{R}^p \text{ s.t. } P\zeta + Qu + d \in K\}$
 - Replace subproblem $h(x) \le 0$ by strong duality and KKT condition
- 2. Robust SOCP: bounded l_2 -norm + conic uncertainty
 - Express K_{SOC} as K_{pSd}
 - Use S-lemma to reduce max $||A(\zeta^{l})x + b(\zeta^{l})||_{2} \le \tau$ as LMIs $\xi^{l} \in \mathbb{Z}^{l}$
- 3. S-lemma
 - Use separating hyperplane theorem (similar to Slater theorem proof)

S-lemma Proof

S-lemma

Let A, B be $n \times n$ symmetric matrices and $\bar{x}^T A \bar{x} > 0$ for some $\bar{x} \in \mathbb{R}^n$ The following are equivalent

- (i) $x^{\mathsf{T}}Ax \ge 0 \Rightarrow x^{\mathsf{T}}Bx \ge 0$
- (ii) $\exists \lambda \geq 0$ such that $B \geq \lambda A$

S-lemma Proof

S-lemma

Let A, B be $n \times n$ symmetric matrices and $\bar{x}^T A \bar{x} > 0$ for some $\bar{x} \in \mathbb{R}^n$ The following are equivalent

- (i) $x^{\mathsf{T}}Ax \ge 0 \Rightarrow x^{\mathsf{T}}Bx \ge 0$
- (ii) $\exists \lambda \geq 0$ such that $B \geq \lambda A$

Proof

(ii) \implies (i) : $x^{\mathsf{T}}Bx - x^{\mathsf{T}}\lambda Ax = x^{\mathsf{T}}(B - \lambda A)x \ge 0$. Hence (ii) \implies (i)

S-lemma **Proof:** (i) \implies (ii)

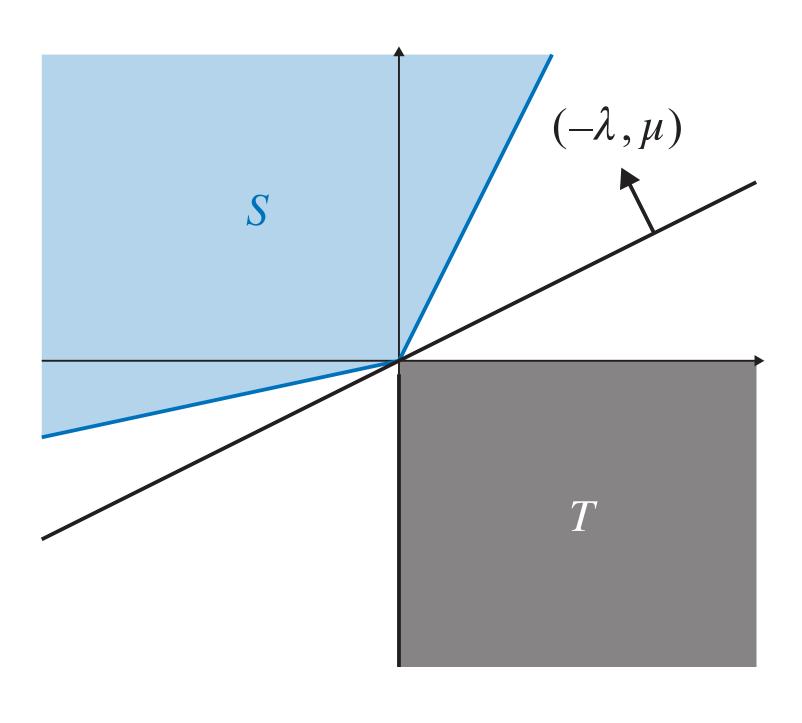
Consider

$$S := \left\{ \begin{bmatrix} x^{\mathsf{T}} A x \\ x^{\mathsf{T}} B x \end{bmatrix} \in \mathbb{R}^2 : x \in \mathbb{R}^n \right\},\$$

Will prove in 4 steps:

- 1. Show that $S \cap T = \emptyset$
- 2. Show that *S* is a cone.
- 3. Show that *S* is convex.
- 4. Use the Separating Hyperplane theorem to prove (ii)

The result is shown in the figure



 $T := \left\{ \begin{bmatrix} u \\ v \end{bmatrix} \in \mathbb{R}^2 : u \ge 0, \ v < 0 \right\}$

S-lemma Proof: (i) \Longrightarrow (ii)

Let

$$\begin{bmatrix} u(x) \\ v(x) \end{bmatrix} := \begin{bmatrix} x^{\mathsf{T}}Ax \\ x^{\mathsf{T}}Bx \end{bmatrix} \in S \quad \text{for all } x \in S$$

Suppose (i) holds.

 $\in \mathbb{R}^n$

S-lemma **Proof:** (i) \implies (ii)

Let

$$\begin{bmatrix} u(x) \\ v(x) \end{bmatrix} := \begin{bmatrix} x^{\mathsf{T}}Ax \\ x^{\mathsf{T}}Bx \end{bmatrix} \in S \quad \text{for all } x \in S$$

Suppose (i) holds.

then there is no $x \in \mathbb{R}^n$ with (u(x), v(x)) = (a, b)

$\in \mathbb{R}^n$

1. $S \cap T = \emptyset$: Since $u(x) \ge 0 \Rightarrow v(x) \ge 0$, we have $(u(x), v(x)) \notin T$. Conversely, if $(a, b) \in T$,

S-lemma **Proof:** (i) \implies (ii)

Let

$$\begin{bmatrix} u(x) \\ v(x) \end{bmatrix} := \begin{bmatrix} x^{\mathsf{T}}Ax \\ x^{\mathsf{T}}Bx \end{bmatrix} \in S \quad \text{for all } x \in S$$

Suppose (i) holds.

- 1. $S \cap T = \emptyset$: Since $u(x) \ge 0 \Rightarrow v(x) \ge 0$, we have $(u(x), v(x)) \notin T$. Conversely, if $(a, b) \in T$, then there is no $x \in \mathbb{R}^n$ with (u(x), v(x)) = (a, b)
- 2. *S* is a cone : If $(u(x), v(x)) \in S$, then for any $\lambda^2 > 0$ we have

$$\lambda^{2} \begin{bmatrix} u(x) \\ v(x) \end{bmatrix} = \begin{bmatrix} (\lambda x)^{\mathsf{T}} A(\lambda x) \\ (\lambda x)^{\mathsf{T}} B(\lambda x) \end{bmatrix} = \begin{bmatrix} u(x) \\ v(x) \end{bmatrix}$$

 $\in \mathbb{R}^n$

 $(\lambda x) \\ (\lambda x) \end{bmatrix}$ $\in S$

Case 1: y_1, y_2 are linearly dependent. Then $y_1 = cy_2$ for some $c \neq 0$, i.e., y_1, y_2 are are on the same ray from 0 Note that $z := \alpha y_1 + (1 - \alpha)y_2 = (c\alpha + (1 - \alpha))y_2 = \left(\frac{c\alpha + (1 - \alpha)}{c}\right)y_1$

i.e., z is on the same ray as y_1 and y_2 , and hence must be in S

3. S is convex : Let $y_1 := (u(x_1), v(x_1))$ and $y_2 := (u(x_2), v(x_2))$ be in S. Fix any $\alpha \in (0, 1)$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 .

We have to show: $\exists \bar{x} \in \mathbb{R}^n$ such that

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = \alpha y_1 + (1 - \alpha) y_2$$

which implies that $z := \alpha y_1 + (1 - \alpha) y_2 \in S$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 .

We have to show: $\exists \bar{x} \in \mathbb{R}^n$ such that

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = \alpha y_1 + (1 - \alpha) y_2$$

which implies that $z := \alpha y_1 + (1 - \alpha) y_2 \in S$ Since S is a cone, it suffices to construct \bar{x} such that

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = \lambda(\alpha y_1 + (1 - \alpha)y_2), \quad \text{for}$$

We will seek \bar{x} of the form $\bar{x} = \alpha x_1 + \beta x_2$, i.e., derive $\beta \in \mathbb{R}$ such that the above holds

some $\lambda > 0$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 . By definition of (u(x), v(x)):

 $\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = \begin{bmatrix} (\alpha x_1 + \beta x_2)^{\mathsf{T}} A(\alpha x_1 + \beta x_2) \\ (\alpha x_1 + \beta x_2)^{\mathsf{T}} B(\alpha x_1 + \beta x_2) \end{bmatrix}$ $= \alpha^2 y_1 + \beta^2 y_2 + 2\alpha\beta \begin{bmatrix} x_1^\mathsf{T} A x_2 \\ x_1^\mathsf{T} B x_2 \end{bmatrix}$

$$= \begin{bmatrix} \alpha^2 u(x_1) + \beta^2 u(x_2) + 2\alpha \beta x_1^T A x_2 \\ \alpha^2 v(x_1) + \beta^2 v(x_2) + 2\alpha \beta x_1^T B x_2 \end{bmatrix}$$

uses $A^T = A$, $B^T = B$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 . By definition of (u(x), v(x)):

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = \begin{bmatrix} (\alpha x_1 + \beta x_2)^{\mathsf{T}} A(\alpha x_1 + \beta x_2) \\ (\alpha x_1 + \beta x_2)^{\mathsf{T}} B(\alpha x_1 + \beta x_2) \end{bmatrix}$$
$$= \alpha^2 y_1 + \beta^2 y_2 + 2\alpha\beta \begin{bmatrix} x_1^{\mathsf{T}} A x_2 \\ x_1^{\mathsf{T}} B x_2 \end{bmatrix}$$

Since
$$y_1, y_2$$
 form a basis of \mathbb{R}^2 , we can express $\begin{bmatrix} x_1^T A x_2 \\ x_1^T B x_2 \end{bmatrix} =: ay_1 + by_2$ for some $a, b \in \mathbb{R}$
 $\implies \begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = (\alpha + 2a\beta) \left(\alpha y_1 + \frac{\beta^2 + 2\alpha b\beta}{\alpha + 2a\beta} y_2 \right)$

$$= \begin{bmatrix} \alpha^2 u(x_1) + \beta^2 u(x_2) + 2\alpha \beta x_1^T A x_2 \\ \alpha^2 v(x_1) + \beta^2 v(x_2) + 2\alpha \beta x_1^T B x_2 \end{bmatrix}$$

uses $A^T = A$, $B^T = B$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 . Therefore we seek $\beta \in \mathbb{R}$ such that

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = (\alpha + 2a\beta) \left(\alpha y_1 + \frac{\beta^2 + 2\alpha b\beta}{\alpha + 2a\beta} y_2 \right) = \lambda(\alpha y_1 + (1 - \alpha)y_2), \text{ for some } \lambda > 0$$

i.e. we seek $\beta \in \mathbb{R}$ such that

 $\alpha + 2a\beta > 0$, $\beta^2 + 2\alpha b\beta = (1 - \alpha)(\alpha + 2a\beta)$

Case 2: y_1, y_2 are linearly independent, i.e., they form a basis of \mathbb{R}^2 . Therefore we seek $\beta \in \mathbb{R}$ such that

$$\begin{bmatrix} u(\bar{x}) \\ v(\bar{x}) \end{bmatrix} = (\alpha + 2a\beta) \left(\alpha y_1 + \frac{\beta^2 + 2\alpha b\beta}{\alpha + 2a\beta} y_2 \right) = \lambda(\alpha y_1 + (1 - \alpha)y_2), \text{ for some } \lambda > 0$$

i.e. we seek $\beta \in \mathbb{R}$ such that

 $\alpha + 2a\beta > 0$, $\beta^2 + 2\alpha b\beta = (1 - \alpha)(\alpha + 2a\beta)$

The quadratic equation has two routes, one > 0 and the other < 0Choose root β such that $\alpha\beta \geq 0$, so that $\alpha + 2\alpha\beta > 0$

This shows $z := \alpha y_1 + (1 - \alpha) y_2 \in S$, i.e., S is convex

S-lemma **Proof:** (i) \implies (ii)

4. Since S and T are convex and disjoint, the Separating Hyperplane theorem implies there exists nonzero $(-\lambda, \mu) \in \mathbb{R}^2$ sum that

$$-\lambda u + \mu v \geq -\lambda a + \mu b, \quad \forall (u, v)$$

- Since $0 \in S$, we have $-\lambda a + \mu b \leq 0$ for all $\forall (a, b) \in T$
- This implies $\lambda \geq 0$ and $\mu \geq 0$
- Taking $(a, b) \rightarrow 0$, we have $-\lambda u + \mu v \ge 0$ for all $(u, v) \in S$, i.e., $-\lambda x^{\mathsf{T}}Ax + \mu x^{\mathsf{T}}Bx \ge 0$ for all $x \in \mathbb{R}^n$
- If $\mu = 0$, then $\lambda > 0$ (since $(-\lambda, \mu) \neq 0$), but this contradicts the above at \bar{x}
- Hence, can take $\mu = 1$, leading to $x^T B x \ge \lambda x^T A x$ for all $x \in \mathbb{R}^n$

 $) \in S, (a,b) \in T$

Outline

Robust optimization 1.

- Chance constrained optimization 2.
 - Tractable instances lacksquare
 - Concentration inequalities ullet
- Convex scenario optimization 3.
- Stochastic optimization with recourse 4.
- Example application: stochastic economic dispatch 5.

Chance constrained optimization Separable constraints

min c(x) s.t. $\mathbb{P}\left(\zeta \le h(x)\right) \ge p$ $x \in X$

- $c: \mathbb{R}^n \to \mathbb{R}$: cost function
- $h_i: \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}$: constraint functions
- ζ : random vector
- \mathbb{P} : probability measure
- $p \in [0,1]$
- $X \subseteq \mathbb{R}^n$: nonempty convex

Less conservative than robust optimization and allows constraint violation with probability < 1 - p

Chance constrained optimization Separable constraints

min c(x) s.t. $\mathbb{P}\left(\zeta \le h(x)\right) \ge p$ $x \in X$ where $h : \mathbb{R}^n \to \mathbb{R}^m$, $\zeta \in \mathbb{R}^m$ Can express it terms of distribution function $F_{\mathcal{L}}$: min c(x) s.t. $F_{\zeta}(h(x)) \ge p$

 $x \in X$

Chance constrained optimization

min c(x) s.t. $F_{\zeta}(h(x)) \ge p$ $x \in X$

Will introduce two techniques to deal with chance constrained opt 1. Tractable instances

- ... When constraint functions h_i and probability measure \mathbb{P} have certain concavity properties
- Study conditions for feasible set to be convex and for strong duality and dual optimality
- 2. Safe approximation through concentration inequalities
 - Safe approximation: more conservative but simpler to solve
 - Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)
 - Upper bounding distribution of ζ by known distribution (e.g. sub-Gaussian)

Tractable instances

min c(x) s.t. $F_{\zeta}(h(x)) \ge p$ $x \in X$

Two equivalent formulations

1. Hides constraint function h and distribution F_{ζ} in the feasible set X_p $\min_{x \in V} c(x) \quad \text{s.t.} \quad x \in X_p \quad \text{where} \quad X_p := \left\{ x \in \mathbb{R}^n : F_{\zeta}(h(x)) \ge p \right\}$

 $x \in X$

• When is X_p a convex set?

Tractable instances

min c(x) s.t. $F_{\zeta}(h(x)) \ge p$ $x \in X$

Two equivalent formulations for convexity analysis

1. Hides constraint function h and distribution

min c(x) s.t. $x \in X_p$ where $x \in X$

- When is X_p a convex set?

min c(x) s.t. $h(x) \ge z$ w $(x,z) \in X \times Z_p$

• What are conditions for strong duality and saddle point optimality?

alysis
on
$$F_{\zeta}$$
 in the feasible set X_p
 $X_p := \left\{ x \in \mathbb{R}^n : F_{\zeta}(h(x)) \ge p \right\}$

2. Characterizes optimality in terms of h through p-level set Z_p of distribution function F_{ζ}

where
$$Z_p := \left\{ z \in \mathbb{R}^m : F_{\zeta}(z) \ge p \right\}$$

explicit constraint for opt cond

α -concavity

Definition

Let $\Omega \subseteq \mathbb{R}^m$ be a convex set. A nonnegative function $f: \Omega \to \mathbb{R}_+$ is α -concave with $\alpha \in [-\infty, \infty]$ if for all $x, y \in \Omega$ such that f(x) > 0, f(y) > 0 and all $\lambda \in [0,1]$, we have

- ∞ -concavity: constant function f
- 1-concavity: concave
- 0-concavity: log-concave
- $-\infty$ -concavity: quasi-concave

 $f(\lambda x + (1 - \lambda)y) \ge m_{\alpha}(f(x), f(y), \lambda) := \begin{cases} \int^{\alpha} \text{ is concave} \\ \left(\lambda f^{\alpha}(x) + (1 - \lambda)f^{\alpha}(y)\right)^{1/\alpha} & \text{ if } \alpha \notin \{0, -\infty, \infty\} \\ f^{\lambda}(x)f^{1-\lambda}(y) & \text{ if } \alpha = 0 \\ \min\{f(x), f(y)\} & \text{ if } \alpha = -\infty \\ \max\{f(x), f(y)\} & \text{ if } \alpha = \infty \end{cases}$

α -concavity

Lemma

Consider a convex set $\Omega \subseteq \mathbb{R}^m$ and a nonnegative function $f: \Omega \to \mathbb{R}_+$.

- 1. The mapping $\alpha \to m_{\alpha}(a, b, \lambda)$ is nondecreasing in α
- 2. α -concavity $\Rightarrow \beta$ -concavity if $\alpha \geq \beta$ (e.g., concavity \Rightarrow log-concavity \Rightarrow quasi-concavity)
- 3. If f is α concave for some $\alpha > -\infty$, then f is continuous in ri(Ω)
- 4. If all $h_i : \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$, are concave and f is nonnegative, nondecreasing and α -concave for some $\alpha \in [-\infty, \infty]$, then $f \circ h : \mathbb{R}^n \to \mathbb{R}_+$ is α -concave
- 5. Suppose $f := \mathbb{R}^{n_1 + n_2}$ is such that, for all $y \in Y \subseteq \mathbb{R}^{n_2}$, f(x, y) is α -concave in x for some $\alpha \in [-\infty, \infty]$ on a convex set $X \subseteq \mathbb{R}^{n_1}$. Then $g(x) := \inf f(x, y)$ is α -concave on X $y \in Y$

Convexity of X_p

Theorem

Suppose all components h_i of $h: \mathbb{R}^n \to \mathbb{R}^m$ are concave and the distribution function F_{ζ} is α -concave for some $\alpha \in [-\infty, \infty]$, then the feasible set

$$X_p := \left\{ x \in \mathbb{R}^n : F_{\zeta}(h(x)) \ge p \right\}$$

is closed and convex

Duality and optimality 1. Let *p*-level set of distribution function $F_{\mathcal{L}}(z)$ be $(p \in (0,1))$ distribution F_{ζ} of ζ is embedded in p-level set Z_p

$$Z_p := \left\{ z \in \mathbb{R}^m : F_{\zeta}(z) \ge p \right\}$$

2. Chance constrained problem is equivalent to:

$$c^* := \min_{x \in X, z \in Z_p} c(x)$$
 s.t. $h(x)$

3. Lagrangian, dual function and dual problem are: $L(x, z, \mu) := c(x) + \mu^{\mathsf{T}}(z - h(x))$ $d(\mu) = \inf_{x \in X} \left(c(x) - \mu^{\mathsf{T}} h(x) \right) + \inf_{z \in Z_p} \mu^{\mathsf{T}} z,$ $\mu \in \mathbb{R}^m$ $d_X(\mu)$ $d_Z(\mu)$ $+ d_Z(\mu)$

$$d^* := \sup_{\mu \ge 0} d(\mu) = \sup_{\mu \ge 0} d_X(\mu)$$

 $\geq z$

Chance constrained problem and its dual:

$$c^* := \min_{x \in X, z \in Z_p} c(x)$$
 s.t. $h(x) \ge c(x)$

$$d^* := \sup_{\mu \ge 0} d_X(\mu) + d_Z(\mu)$$

where $d_X(\mu) := \inf_{x \in X} \left(c(x) - \mu^T h(x) \right)$ and d_Z

They are however always concave and hence subdifferentiable

 $\geq z$

$$Z_{Z}(\mu) := \inf_{z \in Z_{p}} \mu^{\mathsf{T}} z$$

 $d_X(\mu), d_Z(\mu)$ can be extended real-valued and not differentiable, even if c, h are real-valued and differentiable

Chance constrained problem and its dual:

$$c^* := \min_{x \in X, z \in Z_p} c(x)$$
 s.t. $h(x) \ge c(x)$

$$d^* := \sup_{\mu \ge 0} d_X(\mu) + d_Z(\mu)$$

where $d_X(\mu) := \inf_{x \in X} \left(c(x) - \mu^T h(x) \right)$ and d_Z

Definition

 $(x, z, \mu) \in X \times Z_p \times \mathbb{R}^m_+ \subseteq \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m$ is a saddle point if $\sup_{x \to 0} L(x^*, z^*, \mu) = L(x^*, z^*, \mu^*) = \inf_{(x,z) \in X \times Z_p} L(x, z, \mu^*)$ $\mu \geq 0$

 $\geq z$

$$Z(\mu) := \inf_{z \in Z_p} \mu^{\mathsf{T}} z$$

Assumptions

1. Convexity:

- *c* is convex; *h* is concave
- X is nonempty convex
- Distribution function $F_{\mathcal{E}}(z)$ is α -concave for an $\alpha \in [-\infty, \infty]$

2. Slater condition: one of the following holds

- CQ1: There exists $(\bar{x}, \bar{z}) \in X \times Z_p$ such that $h(\bar{x}) > \bar{z}$

• CQ2: Functions h is affine and there exists $(\bar{x}, \bar{z}) \in ri(X \times Z_p)$ such that $h(\bar{x}) \ge \bar{z}$

Theorem

Suppose conditions 1 and 2 hold.

- (compact under CQ1)
- closes the duality gap (i.e., $c^* = c(x^*) = d(\mu^*) = d^*$) if and only if

$$d_X(\mu^*) = c(x^*) - \mu^{*T}h(x^*), \qquad a$$

Such a point is a saddle point

1. Strong duality and optimality: If $c^* > -\infty$ then \exists dual optimal $\mu^* \ge 0$ that closes the duality gap, i.e., $c^* = d(\mu^*) = d^*$. Moreover the set of dual optima μ^* is convex and closed

2. Saddle point characterization: A point $(x^*, z^*, \mu^*) \in X \times Z_p \times \mathbb{R}^m_+$ is primal-dual optimal and

 $d_{z}(\mu^{*}) = \mu^{*T} z^{*}, \qquad \mu^{*T}(z^{*} - h(x^{*})) = 0$

Primal optimality and dual differentiability

Let primal optima, given μ , be

 $X(\mu) := \{x \in X : d_{X}(\mu) = c(x) - \mu^{T}h(x)\}$

Theorem holds whether or not $X(\mu), Z(\mu)$ are empty, i.e., primal optimum does not exist Suppose X, Z_p are nonempty, convex and compact. Then 1. $X(\mu), Z(\mu)$ are nonempty, convex and compact 2. $d(\mu) = d_X(\mu) + d_Z(\mu)$ is real-valued and concave 3. Subdifferentials are $\partial d_X(\mu) = \operatorname{conv}(-h(x) : x \in X(\mu))$ Hence $\partial d(\mu) = \operatorname{conv}(-h(x) : x \in X(\mu)) + Z(\mu)$

)},
$$Z(\mu) := \{ z \in Z_p : d_Z(\mu) = \mu^{\mathsf{T}} z \}$$

$$, \qquad \partial d_Z(\mu) = Z(\mu)$$

- 4. Derivative $\nabla d(\mu) = -h(x^*) + z^*$ exists if $X(\mu)$, $Z(\mu)$ are singletons

Outline

- 1. Robust optimization
- 2. Chance constrained optimization
 - Tractable instances
 - Concentration inequalities
- 3. Convex scenario optimization
- 4. Stochastic optimization with recourse
- 5. Applications

Chance constrained optimization

$\min_{x \in X} c(x) \quad \text{s.t.} \quad F_{\zeta}(h(x)) \ge p$

Will introduce two techniques to deal with chance constrained opt

1. Tractable instances

- ... When constraint functions h_i and probability measure \mathbb{P} have certain concavity properties
- Study conditions for feasible set to be convex and for strong duality and dual optimality

2. Safe approximation through concentration inequalities

- Safe approximation: more conservative but simpler to solve
- Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)
- Upper bounding distribution of ζ by known distribution (e.g. sub-Gaussian)

ty measure \mathbb{P} have certain concavity properties and for strong duality and dual optimality

Safe approximation Example

Chance constrained linear program:

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad \mathbb{P}\left(\sum_{l=1}^k \left(a_l^{\mathsf{T}}x - b_l\right)\zeta_l \le - \left(a_0^{\mathsf{T}}x - b_0\right)\right) \ge 1 - \epsilon$$

The following SOCP is a safe approximation: min $c^{\mathsf{T}}x$ s.t. $r\|\hat{A}x - \hat{b}\|_2 \le -(\hat{a}_0^{\mathsf{T}})$ $x \in \mathbb{R}^n$

where $\hat{A}, \hat{b}, \hat{a}_0, \hat{b}_0$ depend on $(a_l, b_l, l \ge 0)$ and *r* depends on ϵ

- More conservative but simpler to solve
- A feasible, or optimal, x for SOCP always satisfies the chance constraint

$$(\hat{b}_0)$$

• Feasible set of safe approximation is inner approximation of feasible set of chance constrained problem

Safe approximation Derivation

Derivation of inner approximation of CCP feasible set relies on 1. Concentration inequalities

- Upper bound tail probability (violation probability of chance constraint)
- ... in terms of distribution properties, e.g., variance, log moment generating function ψ_V
- 2. sub-Gaussian random variables
 - Upper bound distribution properties (e.g. ψ_{Y}) of uncertain parameters ζ by known distribution properties, e.g., those of Gaussian random variable

We explain each in turn

Concentration inequalities Markov's inequality

Let Y be a nonnegative random variable with finite mean $EY < \infty$ $\mathbb{P}\left(Y \ge t\right) \leq \frac{EY}{t}$

Proof: for t > 0, take expectation on $Y/t \ge \delta(Y \ge t)$ indicator function

Concentration inequalities Markov's inequality

Let Y be a nonnegative random variable with finite mean $EY < \infty$ $\mathbb{P}\left(Y \ge t\right) \leq \frac{EY}{t}$

Proof: for t > 0, take expectation on $Y/t \ge \delta(Y \ge t)$ indicator function

For any nonnegative and nondecreasing function ϕ $\mathbb{P}(Y \ge t) \le \frac{E(\phi(Y))}{\phi(t)}$ Proof: $\delta(Y \ge t) = \delta(\phi(Y) \ge \phi(t))$

Concentration inequalities Chebyshev's inequality

Let *X* be a random variable with finite variance $var(X) < \infty$ $\mathbb{P}\left(|X - EX| \ge t\right) \le \frac{var(X)}{t^2}$

Proof: take $\phi(t) := t^2$ in Markov's inequality

Concentration inequalities Chebyshev's inequality

Let X be a random variable with finite variance $var(X) < \infty$ $\mathbb{P}\left(|X - EX| \ge t\right) \le \frac{\operatorname{var}(X)}{t^2}$

Proof: take $\phi(t) := t^2$ in Markov's inequality

For independent random variables X_1, \ldots, X_n with finite variances var $(X_i) < \infty$ $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i}\left(X_{i}-EX_{i}\right)\right| \geq t\right) \leq \frac{\sum_{i}\operatorname{var}(X_{i}-EX_{i})}{n^{2}t^{2}}$ where $\sigma_n^2 := n^{-1} \sum \operatorname{var}(X_i)$

$$\frac{\operatorname{dr}(X_i)}{t^2} = \frac{\sigma_n^2}{nt^2}$$

Let Y be a random variable with finite mean $EY < \infty$ $E(e^{\lambda Y})$ is moment-generating function of Y. Define log moment-generating function:

$$\psi_Y(\lambda) := \ln E(e^{\lambda Y}), \quad \lambda \in \mathbb{R}$$

and its conjugate function:

$$\psi_Y^*(t) := \sup_{\lambda \in \mathbb{R}} (t\lambda - \psi_Y(\lambda)), \quad t \in \mathbb{R}$$

Then $\psi_Y(0) = 0, \ \psi_Y(\lambda) \ge \lambda EY$

- Let Y be a random variable with finite mean $EY < \infty$ Three equivalent forms of Chernoff bound:
- 1. For $t \ge EY$

$$\mathbb{P}(Y \ge t) \le e^{-\psi_Y^*(t)}$$

Proof: take $\phi(t) := e^{\lambda t}$ which is nonnegative and nondecreasing for $\lambda \ge 0$ 2. For $t \in \mathbb{R}$

$$\mathbb{P}(Y \ge t) \le \exp\left(-\sup_{\lambda \ge 0} \left(t\lambda - \psi_Y\right)\right)$$

3. For $t \in \mathbb{R}$

 $\ln \mathbb{P}(Y \ge t) \le \inf_{\lambda \ge 0} \ln \left(e^{-\lambda t} E e^{\lambda Y} \right)$

 $(\lambda))$

Let $Y := \frac{1}{n} \sum_{i} X_i$ be sample mean of independent random variables X_i with $EX_i < \infty$, i = 1, ..., n1. If X_i are independent, then $\psi_Y(\lambda) = \sum_{i} \psi_{X_i}(\lambda/n)$ and

$$\psi_Y^*(t) = \sup_{\lambda \in \mathbb{R}} \sum_i^l \left(t\lambda - \psi_{X_i}(\lambda) \right) \leq \sum_i^l \psi_{X_i}^*(t)$$

with "=" if X_i are iid

Let $Y := \frac{1}{n} \sum_{i} X_i$ be sample mean of independent random variables X_i with $EX_i < \infty$, i = 1, ..., n1. If X_i are independent, then $\psi_Y(\lambda) = \sum \psi_{X_i}(\lambda/n)$ and $\psi_Y^*(t) = \sup_{\lambda \in \mathbb{R}} \sum_{i} \left(t\lambda - \frac{1}{2} \right)^{-1}$ $\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i}\geq t\right)\leq e^{-\psi_{Y}^{*}(t)}=e^{-n}$

where $I_n(t)$ is called a rate function defined as

$$I_n(t) := \sup_{\lambda \in \mathbb{R}} \left(t\lambda - \frac{1}{n} \sum_i \psi_{X_i}(\lambda) \right),$$

$$\Psi_{X_i}(\lambda) \left(\begin{array}{c} \leq \sum_i \Psi_{X_i}^*(t) \\ i \end{array}\right) \leq \sum_i \Psi_{X_i}^*(t) \\ t \geq \frac{1}{n} \sum_i EX_i$$

with "=" if X_i are iid

$$t \ge \frac{1}{n} \sum_{i} EX_{i}$$

Let $Y := \frac{1}{n} \sum_{i} X_i$ be sample mean of independent random variables X_i with $EX_i < \infty$, i = 1, ..., n1. If X_i are independent, then $\psi_Y(\lambda) = \sum \psi_{X_i}(\lambda/n)$ and $\psi_Y^*(t) = \sup_{\lambda \in \mathbb{R}} \sum_{i} \left(t\lambda - \frac{1}{2} \right)^{-1}$ $\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i}\geq t\right)\leq e^{-\psi_{Y}^{*}(t)}=e^{-n}$

where $I_n(t)$ is called a rate function defined as

$$I_n(t) := \sup_{\lambda \in \mathbb{R}} \left(t\lambda - \frac{1}{n} \sum_i \psi_{X_i}(\lambda) \right)$$

$$\psi_{X_i}(\lambda) \left(\begin{array}{c} \leq \sum_i \psi_{X_i}^*(t) \\ \psi_{X_i}(t) \\ t \geq \frac{1}{n} \sum_i EX_i \end{array} \right)$$

with "=" if X_i are iid

$$\leq \frac{1}{n} \sum_{i} \psi_{X_i}^*(t)$$
 with "=" if X_i are iid

Let $Y := \frac{1}{n} \sum_{i} X_i$ be sample mean of independent random variables X_i with $EX_i < \infty$, i = 1, ..., n

2. If X_i are iid $\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i} \ge t\right) \le e^{-n\psi_{X_{1}}^{*}(t)} \qquad t \ge EX_{1}$

Gaussian random variable

Let Y be Gaussian random variable with $\mu := EY$ and standard deviation $\sigma := \sqrt{\operatorname{var}(Y)}$ Log moment-generating function:

$$\psi_{\mathbf{G}}(\lambda) := \ln E\left(e^{\lambda Y}\right) = \mu\lambda + \frac{\sigma^2}{2}\lambda^2$$

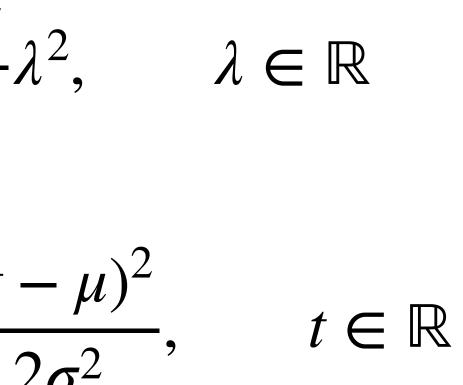
and its conjugate function:

$$\psi_{\mathsf{G}}^{*}(t) := \sup_{\lambda \in \mathbb{R}} \left(t\lambda - \psi_{Y}(\lambda) \right) = \frac{(t-1)^{2}}{2t^{2}}$$

Chernoff bound for Gaussian random var:

$$\mathbb{P}(Y > \mu + r\sigma) \leq e^{-r^2/2}, \qquad r \geq 0$$

probability of Gaussian r.v. exceeding r std above its mean decays exponentially in r^2



Gaussian random variable Weighted sum of independent Gaussians

Let $Y := \sum a_i X_i$ of independent Gaussian r.v. X_i with (μ_i, σ_i^2) Then $Y \sim N\left(\sum_{i} a_{i}\mu_{i}, \sum_{i} a_{i}^{2}\sigma_{i}^{2}\right)$. Hence $\psi_Y(\lambda) = \ln E e^{\lambda Y} = \lambda \sum_i a_i \mu_i + \frac{\lambda^2}{2}$ $\psi_Y^*(t) = \sup_{\lambda \in \mathbb{R}} \left(t\lambda - \phi_Y(\lambda) \right) = \frac{(t - \sum_{i=1}^{N} \frac{1}{2\sum_{i=1}^{N} \frac$ $\mathbb{P}\left[\sum_{i}a_{i}(X_{i}-\mu_{i})>r\sqrt{\sum_{i}a_{i}^{2}\sigma_{i}^{2}}\right] \leq e^{-r^{2}/2}, \quad r \geq 0$

$$\frac{\sum_{i} a_{i}^{2} \sigma_{i}^{2}}{\sum_{i} a_{i} \mu_{i}^{2}}, \qquad \lambda \in \mathbb{R}$$

$$\frac{\sum_{i} a_{i} \mu_{i}^{2}}{\sum_{i} a_{i}^{2} \sigma_{i}^{2}}, \qquad t \in \mathbb{R}$$

Gaussian random variable Sample mean

Let
$$Y := \frac{1}{n} \sum_{i} X_{i}$$
 be the sample mean of independent Gaussian r.v. X_{i}
Then $Y \sim N\left(\frac{1}{n} \sum_{i} \mu_{i}, \frac{1}{n} v_{n}\right)$ where $v_{n} := \frac{1}{n} \sum_{i} \sigma_{i}^{2}$ is avg var. Hence
 $\mathbb{P}\left(\frac{1}{n} \sum_{i} (X_{i} - \mu_{i}) > t\right) \leq e^{-nt^{2}/2v_{n}}, \quad t \geq 0$

If X_i are iid then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i}-\mu_{1}>t\right) \leq e^{-nt^{2}/2\sigma_{1}^{2}}, \quad t\geq 0$$

with (μ_i, σ_i^2)

sub-Gaussian random variable

of the Gaussian r.v.:

$$\psi_Y(\lambda) \leq \psi_G(\lambda) = \mu\lambda + \frac{\sigma^2}{2}\lambda^2,$$

Hence conjugate function:

$$\psi_Y^*(t) \ge \psi_G^*(t) = \frac{(t-\mu)^2}{2\sigma^2}, \quad t \in$$

Chernoff bound:

 $\mathbb{P}(Y > t) \leq e^{-\psi_Y^*(t)} \leq e^{-(t-\mu)^2/2\sigma^2}, \quad t \geq ETY$

Tail probability of sub-Gaussian r.v. decays more rapidly than that of the bounding Gaussian r.v. As far as Chernoff bound is concern, sub-Gaussian r.v. behaves like its bounding Gaussian r.v.

A r.v. Y is sub-Gaussian with (μ, σ^2) if its log moment-generating function is upper bounded by that

$\lambda \in \mathbb{R}$

$\in \mathbb{R}$

sub-Gaussian random variable Weighted sum of independent sub-Gaussians

Let $Y := \sum a_i X_i$ of independent sub-Gaussian r.v. X_i with (μ_i, σ_i^2) $\phi_{X_i}(\lambda) \leq \mu_i \lambda + \frac{\sigma_i^2}{2} \lambda^2,$

Then *Y* is sub-Gaussian with $(\mu, \sigma^2) := \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1$

$$\psi_{Y}(\lambda) \leq \mu \lambda + \frac{\sigma^{2}}{2} \lambda^{2}$$

$$\mathbb{P}(Y \geq t) \leq \exp\left(-\frac{(t-\mu)^{2}}{2\sigma^{2}}\right),$$

Chernoff bound of sub-Gaussian weighted sum is same as that of bounding Gaussian weighted sum

$$a_i\mu_i, \sum_i a_i^2\sigma_i^2$$
:

$t \geq EY$

Chance constrained optimization

$\min_{x \in X} c(x) \quad \text{s.t.} \quad F_{\zeta}(h(x)) \ge p$

Will introduce two techniques to deal with chance constrained opt

1. Tractable instances

- ... When constraint functions h_i and probability measure \mathbb{P} have certain concavity properties
- Study conditions for feasible set to be convex and for strong duality and dual optimality

2. Safe approximation through concentration inequalities

- Safe approximation: more conservative but simpler to solve
- Upper bounding violation probability using concentration inequality (e.g. Chernoff bound)
- Upper bounding distribution of ζ by known distribution (e.g. sub-Gaussian)

ty measure \mathbb{P} have certain concavity properties and for strong duality and dual optimality

Safe approximation **Chance constrained LP**

Consider

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad \mathbb{P}\left(\sum_{l=1}^k \left(a_l^{\mathsf{T}}x - b_l\right)\zeta_l \le - \left(a_0^{\mathsf{T}}x - b_0\right)\right) \ge 1 - \epsilon$$

The ζ_l are independent sub-Gaussian with (μ_i, σ_i^2) :

where $\psi_{\zeta_l}(\lambda) \leq \mu_l \lambda + \frac{\sigma_l}{\gamma} \lambda^2, \qquad \lambda \in \mathbb{R}$

An optimization problem is a safe approximation of the chance constrained LP if feasible set of the safe approximation is a subset (inner approximation) of feasible set of the chance constrained LP

 \implies an optimal solution of safe approximation satisfies the chance constraint

Safe approximation **Chance constrained LP**

Consider

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad \mathbb{P}\left(\sum_{l=1}^k \left(a_l^{\mathsf{T}}x - b_l\right)\zeta_l \leq -\left(a_0^{\mathsf{T}}x - b_0\right)\right) \geq 1 - \epsilon$$

 $\zeta_l \text{ are independent sub-Gaussian with } (\mu_i, \sigma_i^2):$

where

$$\psi_{\zeta_l}(\lambda) \leq \mu_l \lambda + \frac{\sigma_l^2}{2} \lambda^2, \qquad \lambda \in \mathbb{F}$$

Let $A^T := [a_1 \cdots a_k]$ and $b := (b_1, \dots, b_k)$. The chance constrained LP is: $\min_{x \to b} c^{\mathsf{T}} x \quad \text{s.t.} \quad \mathbb{P}\left(\zeta^{\mathsf{T}}(Ax - b) \leq -\right)$ $x \in \mathbb{R}^n$

 \mathbb{R}

$$-\left(a_0^{\mathsf{T}}x - b_0^{\mathsf{T}}\right) \geq 1 - \epsilon$$

Safe approximation **Chance constrained LP**

Consider

min $c^{\mathsf{T}}x$ s.t. $\mathbb{P}\left(\zeta^{\mathsf{T}}(Ax-b) \leq -(a_0^{\mathsf{T}}x-b_0)\right) \geq 1-\epsilon$ $x \in \mathbb{R}^n$

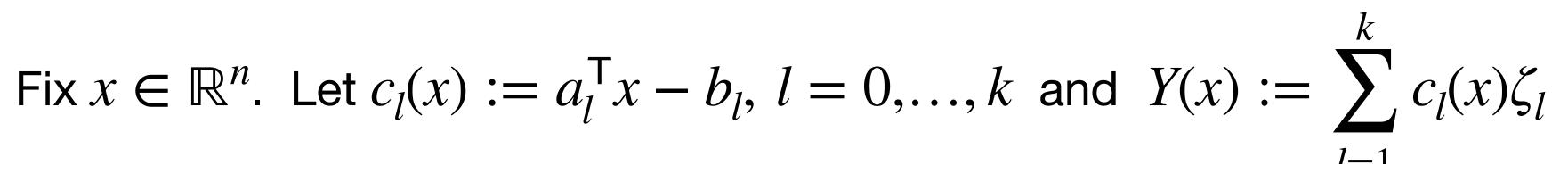
Theorem

The following SOCP is a safe approximation: min $c^{\mathsf{T}}x$ s.t. $r\|\sqrt{\Sigma}(Ax-b)\|_2$ $x \in \mathbb{R}^n$ where $r := \sqrt{2 \ln(1/\epsilon)}$ and $\hat{a}_0 := a_0 + A^{\mathsf{T}} \mu \in \mathbb{R}^n, \qquad \hat{b}_0 := b_0 + b^{\mathsf{T}} \mu \in \mathbb{R}$ $\Sigma := \operatorname{diag}\left(\sigma_1^2, \ldots, \sigma_k^2\right)$ $\mu := (\mu_1, \ldots, \mu_k),$

$$_{2} \leq -(\hat{a}_{0}^{\mathsf{T}}x - \hat{b}_{0})$$

Safe approximation Proof

Violation probability: $\mathbb{P}\left(Y(x) > -c_0(x)\right)$



Fix $x \in \mathbb{R}^n$. Let $c_l(x) := a_l^T x - b_l$, l = 0,...

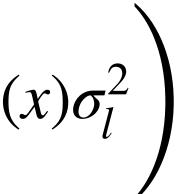
Violation probability: $\mathbb{P}\left(Y(x) > -c_0(x)\right)$ and Y(x) is sub-Gaussian with

$$\left(\mu(x), \sigma^2(x)\right) := \left(\sum_l c_l(x)\mu_l, \sum_l c_l^2(x)\right)$$

i.e.

$$\psi_{Y(x)}(\lambda) \leq \mu(x)\lambda + \frac{\sigma^2(x)}{2}\lambda^2$$

, *k* and
$$Y(x) := \sum_{l=1}^{k} c_l(x)\zeta_l$$



Fix $x \in \mathbb{R}^n$. Let $c_l(x) := a_l^T x - b_l$, l = 0,...

Violation probability: $\mathbb{P}\left(Y(x) > -c_0(x)\right)$ and Y(x) is sub-Gaussian with

$$\left(\mu(x), \sigma^2(x)\right) := \left(\sum_l c_l(x)\mu_l, \sum_l c_l^2(x)\right)$$

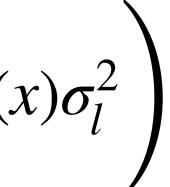
i.e.

$$\psi_{Y(x)}(\lambda) \leq \mu(x)\lambda + \frac{\sigma^2(x)}{2}\lambda^2$$

Hence Chernoff bound on Y(x) is:

 $\ln \mathbb{P}\left(Y(x) > -c_0(x)\right) \leq \inf_{\lambda \ge 0} \psi_{Y(x)}(\lambda)$

, *k* and
$$Y(x) := \sum_{l=1}^{k} c_l(x)\zeta_l$$



$$+ c_0(x)\lambda \leq \inf_{\lambda \ge 0} (c_0(x) + \mu(x))\lambda + \frac{\sigma^2(x)}{2}\lambda^2$$

Fix $x \in \mathbb{R}^n$. Let $c_l(x) := a_l^T x - b_l, \ l = 0, ..., k$

The minimum is attained at $\lambda(x) := \left[-(c_0(x) + \mu)^2 + \frac{1}{2\sigma^2(x)}\right]$ $\ln \mathbb{P}\left(Y(x) > -c_0(x)\right) \le -\frac{c_0(x) + \mu(x)^2}{2\sigma^2(x)}$

and
$$Y(x) := \sum_{l=1}^{k} c_l(x)\zeta_l$$

- $\mu(x))/\sigma^2(x) \Big]^+$ and hence

Fix $x \in \mathbb{R}^n$. Let $c_l(x) := a_l^T x - b_l$, l = 0, ..., k and $Y(x) := \sum_{l=1}^{k} c_l(x) \zeta_l$

The minimum is attained at $\lambda(x) := \left[-(c_0(x) + \mu(x))/\sigma^2(x)\right]^+$ and hence $\ln \mathbb{P}\left(Y(x) > -c_0(x)\right) \le -\frac{c_0(x) + \mu(x)^2}{2\sigma^2(x)}$

Hence *x* is feasible if

$$\frac{-\frac{c_0(x) + \mu(x))^2}{2\sigma^2(x)} \le \ln \epsilon \iff \sqrt{2\ln(1+\alpha)}$$

$1/\epsilon \sigma(x) \le - (c_0(x) + \mu(x))$

Fix $x \in \mathbb{R}^n$. Let $c_l(x) := a_l^T x - b_l$, l = 0, ..., k and $Y(x) := \sum_{l=1}^{k} c_l(x)\zeta_l$

The minimum is attained at $\lambda(x) := \left[-(c_0(x) + \mu(x))/\sigma^2(x)\right]^+$ and hence $\ln \mathbb{P}\left(Y(x) > -c_0(x)\right) \le -\frac{c_0(x) + \mu(x)^2}{2\sigma^2(x)}$

Hence *x* is feasible if

$$\frac{-\frac{c_0(x) + \mu(x))^2}{2\sigma^2(x)} \le \ln \epsilon \iff \sqrt{2\ln(1-\alpha)}$$

or if

$$\sqrt{2\ln(1/\epsilon)} \sqrt{\sum_{l} \sigma_{l}^{2} c_{l}^{2}(x)} \leq -\left(c_{0}(x) + \frac{1}{2} c_{0}(x)\right)$$

$1/\epsilon \sigma(x) \le - (c_0(x) + \mu(x))$

 $+\sum_{l} \mu_l c_l(x) \end{pmatrix} \Leftrightarrow r \| \sqrt{\Sigma} (Ax - b) \|_2 \le - (\hat{a}_0^{\mathsf{T}} x - \hat{b}_0)$

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)^{\mathsf{T}}x \leq 0$ $x \in \mathbb{R}^n$

where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)^{\mathsf{T}}x \leq 0$ $x \in \mathbb{R}^n$

where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

Robust counterpart: 1.

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad a_0^{\mathsf{T}}x + \max_{\zeta \in Z_{\infty}} \left(a_1\zeta_1 + \zeta_1 \right)$$

- $\left| a_2 \zeta_2 \right| x \leq 0$

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)^{\mathsf{T}}x \leq 0$ $x \in \mathbb{R}^n$ where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

1. Robust counterpart:

 $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad a_0^{\mathsf{T}}x + \max_{\zeta \in Z_{\infty}} \left(a_1\zeta_1 + \zeta_1 + \zeta_2\right)$ which is equivalent to LP: min $c^{\top}x$ s.t. $x \in X_1$ where (solving max in closed form) $x \in \mathbb{R}^n$

$$X_{1} := \left\{ x \in \mathbb{R}^{n} : a_{0}^{\mathsf{T}} x + \hat{A} x \leq 0 \right\} \quad \text{with} \quad \hat{A} := \begin{bmatrix} (+a_{1} + a_{2})^{\mathsf{T}} \\ (+a_{1} - a_{2})^{\mathsf{T}} \\ (-a_{1} + a_{2})^{\mathsf{T}} \\ (-a_{1} - a_{2})^{\mathsf{T}} \end{bmatrix}$$

$$a_2\zeta_2\big)^\mathsf{T} x \leq 0$$

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)^{\mathsf{T}}x \leq 0$ $x \in \mathbb{R}^n$ where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

2. Chance constrained formulation:

 $\min c^{\mathsf{T}} x \quad \text{s.t.} \quad \mathbb{P}\left((a_0 + a_1 \zeta_1 + a_2 \zeta_2)^{\mathsf{T}} x \le 0 \right) \ge 1 - \epsilon$ $x \in \mathbb{R}^n$ Denote its feasible set by X_2

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)^{\mathsf{T}}x \leq 0$ $x \in \mathbb{R}^n$

where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

[-1,1], they are sub-Gaussian with $(\mu_l, \sigma_l^2) = (0,1)$ (Hoeffinding's Lemma)

3. Safe approximation: Suppose ζ_l are independent and zero-mean r.v. Since they take values in

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)'x \leq 0$ $x \in \mathbb{R}^n$ where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

[-1,1], they are sub-Gaussian with $(\mu_l, \sigma_l^2) = (0,1)$ (Hoeffinding's Lemma) Therefore the SOCP is a safe approximation: min $c^{\mathsf{T}}x$ s.t. $a_0^{\mathsf{T}}x + r ||Ax||_2 \le 0$ $x \in \mathbb{R}^n$ where $r := \sqrt{2 \ln(1/\epsilon)}, A := [a_1 \ a_2]^{\mathsf{T}}$ Feasible set is $X_3 := \left\{ x \in \mathbb{R}^n : \left| \begin{array}{c} A \\ -(1/r)a_0^T \end{array} \right| x \in K_{\text{soc}} \right\}$

3. Safe approximation: Suppose ζ_l are independent and zero-mean r.v. Since they take values in

Consider uncertain LP

min $c^{\mathsf{T}}x$ s.t. $(a_0 + a_1\zeta_1 + a_2\zeta_2)'x \leq 0$ $x \in \mathbb{R}^n$ where uncertain parameter $\zeta := (\zeta_1, \zeta_2)$ takes value in $Z_{\infty} := \{\zeta : \|\zeta\|_{\infty} \le 1\}$

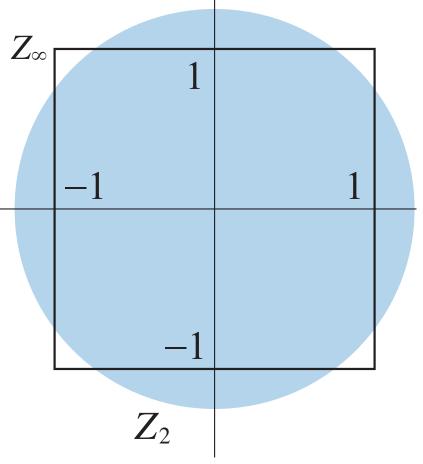
- Feasible sets X_1, X_3 are convex, X_2 of chance constrained OP may not.
- $X_1 \subseteq X_2, X_3 \subseteq X_2$
- conservative than safe approximation of chance constrained LP

• But neither X_1 nor X_3 may contain the other, depending on ϵ , i.e., robust LP may not be more

• This is because safe approximation (SOCP) is equivalent to the robust LP:

 $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad a_0^{\mathsf{T}}x + \max_{\zeta \in \mathbb{Z}_2} \left(a_1\zeta_1 + a_2\zeta_2\right)^{\mathsf{T}}x \leq 0$ where $Z_2 := \{ \zeta \in \mathbb{R}^2 : \|\zeta\|_2 \le \sqrt{2\ln(1/\epsilon)} \}$ Compare with robust LP: $\min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x \quad \text{s.t.} \quad a_0^{\mathsf{T}}x + \max_{\zeta \in \mathbb{Z}_{\infty}} (a_1\zeta_1)$

$$+a_2\zeta_2\Big)^\mathsf{T} x \leq 0$$



Summary Concentration inequalities

	Inequality	Assumptions
Markov's	$\mathbb{P}(Y \ge t) \le \frac{E(\phi(Y))}{\phi(t)}$	$\phi(Y) \ge 0, \phi(t) > 0, EY < \infty$
Chebyshev's	$\mathbb{P}\left(X - EX \ge t\right) \le \operatorname{var}(X)/t^2$	$\operatorname{var}(X) < \infty, t > 0$
	$\mathbb{P}\left(\left \frac{1}{n}\sum_{i}(X_{i}-EX_{i})\right \ge t\right) \le \frac{(1/n)\sum_{i}\operatorname{var}(X_{i})}{nt^{2}}$	$\operatorname{var}(X_i) < \infty$, independent X_i , $t > 0$
Chernoff	$\mathbb{P}(Y \ge t) \le e^{-\psi_Y^*(t)}$	$EY < \infty, t \ge EY$
	$\mathbb{P}(Y \ge t) \le \exp\left(-\sup_{\lambda \ge 0} \left(t\lambda - \psi_Y(\lambda)\right)\right)$	$EY < \infty, t \in \mathbb{R}$
	$\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i} \ge t\right) \le e^{-n\psi_{X_{1}}^{*}(t)}$	iid $X_i, EX_i < \infty, t \ge E(X_1)$
sub-Gaussian	$\mathbb{P}(Y \ge t) \le e^{-(t-\mu)^2/2\sigma^2}$	sub-Gaussian <i>Y</i> , $EY < \infty$, $t \ge EY$
	$\mathbb{P}\left(\sum_{i} a_{i} X_{i} \ge t\right) \le \exp\left(-\frac{\left(t - \sum_{i} a_{i} \mu_{i}\right)^{2}}{2\sum_{i} a_{i}^{2} \sigma_{i}^{2}}\right)$ $\mathbb{P}\left(\max_{i=1}^{n} X_{i} \ge t\right) \le \sigma \sqrt{2\ln n}/t$	indep. sub-Gaussian X_i , $EX_i < \infty$, $t \ge EY$
	$\mathbb{P}\left(\max_{i=1}^{n} X_i \ge t\right) \le \sigma \sqrt{2\ln n}/t$	sub-Gaussian X_i , $t > 0$
Hoeffding's lemma	$\psi_Y(\lambda) \le (1/8)(b-a)^2 \lambda^2$	$EY = 0, Y \in [a, b]$ a.s.
Azuma-Hoeffding	$\mathbb{P}(X_n - X_0 \ge t) \le \exp\left(-t/2\sum_{i=1}^n \sigma_i^2\right)$	martingale X_i , $ X_i - X_{i-1} \le \sigma_i$

Outline

- **Robust optimization** 1.
- Chance constrained optimization 2.
- Convex scenario optimization 3.
 - Violation probability ullet
 - Sample complexity •
 - Optimality guarantee ullet
- Stochastic optimization with recourse 4.
- Example application: stochastic economic dispatch 5.

Convex scenario opt

- Consider $c_{\mathsf{RCP}}^* := \min_{x \in X \subseteq \mathbb{R}^n} c^{\mathsf{T}}x \text{ s.t. } h(x,\zeta) \le 0, \, \zeta \in Z \subseteq \mathbb{R}^k$ RCP: $c^*_{\mathsf{CCP}}(\epsilon) := \min_{x \in X \subset \mathbb{R}^n} c^\mathsf{T} x \text{ s.t. } \mathbb{P}\left(h(x,\zeta) \le 0\right) \ge 1 - \epsilon$ $CCP(\epsilon)$: $c^*_{\mathsf{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c^\mathsf{T} x$ s.t. $h(x, \zeta^i) \le 0, i = 1, ..., N$ CSP(N):
 - X: nonempty closed convex set
 - $h: \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^m$: convex (and hence continuous) in x for every uncertain parameter $\zeta \in Z$ • \mathbb{P} : probability measure on some probability space; $\epsilon \in [0,1]$

 - $(\zeta^1, ..., \zeta^N)$: independent random samples each according to \mathbb{P}
 - Linear cost: does not lose generality (can convert nonlinear cost $\min f(x)$ to linear cost $\min t$ with X,tadditional constraint $f(x) \leq t$

Convex scenario opt

- Consider $c^*_{\mathsf{RCP}} := \min_{x \in X \subset \mathbb{R}^n} c^{\mathsf{T}}$ RCP: $\operatorname{CCP}(\epsilon): \quad c^*_{\operatorname{CCP}}(\epsilon) := \min_{x \in X \subseteq \mathbb{R}^n} c$ $\operatorname{CSP}(N): \quad c^*_{\operatorname{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c$
 - RCP : deterministic, semi-infinite, generally computational hard, conservative (safe) •
 - $\mathsf{CCP}(\epsilon)$: deterministic, generally computationally hard, less conservative, need \mathbb{P} •

$$\begin{array}{ll} \mathbf{x}^{\mathsf{T}} \mathbf{x} & \text{s.t.} & h(x,\zeta) \leq 0, \ \zeta \in Z \subseteq \mathbb{R}^k \\ \mathbf{x}^{\mathsf{T}} \mathbf{x} & \text{s.t.} & \mathbb{P}\left(h(x,\zeta) \leq 0\right) \geq 1 - \epsilon \\ \mathbf{x}^{\mathsf{T}} \mathbf{x} & \text{s.t.} & h(x,\zeta^i) \leq 0, \ i = 1, \dots, N \end{array}$$

• CSP(N) : randomized, finite convex program for each realization of $\zeta := (\zeta^1, ..., \zeta^N)$, less conservative, only need samples under \mathbb{P} (not necessarily \mathbb{P} itself), much more practical

Convex scenario opt

Consider $c^*_{\mathsf{RCP}} := \min_{x \in X \subseteq \mathbb{R}^n} c$ RCP: $c^*_{\mathsf{CCP}}(\epsilon) := \min_{x \in X \subseteq \mathbb{R}^n} c$ $CCP(\epsilon)$: $c^*_{\mathsf{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c$ CSP(N):

Study 3 questions on CSP(N):

- Violation probability : how likely is the random solution x_N^* of CSP(N) feasible for $CCP(\epsilon)$?

$$h^{\mathsf{T}}x$$
 s.t. $h(x,\zeta) \leq 0, \ \zeta \in Z \subseteq \mathbb{R}^k$
 $h^{\mathsf{T}}x$ s.t. $\mathbb{P}\left(h(x,\zeta) \leq 0\right) \geq 1 - \epsilon$
 $h^{\mathsf{T}}x$ s.t. $h(x,\zeta^i) \leq 0, \ i = 1, \dots, N$

• Sample complexity : what is min N for x_N^* to be feasible for $CCP(\epsilon)$ in expectation or probability? Optimality guarantee : how close is the min cost $c^*_{CSP}(N)$ to the min costs $c^*_{CCP}(\epsilon)$ and c^*_{RCP} ?

Assumption

Let $X_{\mathcal{E}} := \{ x \in X \subseteq \mathbb{R}^n : h(x, \zeta) \le 0 \}$ $\mathsf{CSP}(N): \quad c^*_{\mathsf{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c^\mathsf{T} x \quad \text{s.t.} \quad h(x, \zeta^i) \le 0, \ i = 1, \dots, N$

Assumption 1

- For each $\zeta \in Z$, $h(x, \zeta)$ is convex and continuous in x so that X_{ζ} is a closed convex set

• For each integer $N \ge n$ and each realization of $\zeta := (\zeta^1, \dots, \zeta^N)$, feasible set of CSP(N) has a nonempty interior. Moreover CSP(N) has a unique optimal solution x_N^* (can be relaxed)

Violation probability Definition

Let $X_{\mathcal{E}} := \{ x \in X \subseteq \mathbb{R}^n : h(x, \zeta) \le 0 \}$

Violation probability: $V(x) := \mathbb{P}\left(\left\{\zeta \in Z : x \notin X_{\zeta}\right\}\right)$

- For fixed $x \in X$, V(x) is a deterministic value in [0,1]
- $CCP(\epsilon)$ is: $c^*_{CCP}(\epsilon) := \min_{x \in X \subset \mathbb{R}^n} c^T x$ s.t. $V(x) \le \epsilon$
- For CSP(N), optimal solution x_N^* is a random variable under product measure \mathbb{P}^N
- Violation probability $V(x_N^*)$ of x_N^* is therefore a random variable under \mathbb{P}^N , taking value in [0,1]
- $V(x_N^*)$ may be smaller or greater than ϵ , i.e., x_N^* may or may not be feasible for $CCP(\epsilon)$

Goal: derive tight upper bounds on expected value and tail probability of $V(x_N^*)$

Violation probability Definition

Let $X_{\mathcal{E}} := \{ x \in X \subseteq \mathbb{R}^n : h(x, \zeta) \le 0 \}$

Conditional violation probability: $V(x_N^*)$:=

- A random variable under \mathbb{P}^N , taking value in [0,1]
- Relation between r.v. $V(x_N^*)$ and the (deterministic) unconditional probability $\mathbb{P}^{N+1}(x_N^* \notin X_{\zeta})$ is

$$\mathbb{P}^{N+1}\left(x_N^* \notin X_{\zeta}\right) = \int_{Z^N} V\left(x_N^*\right) \mathbb{P}^N\left(d\zeta^1, \dots, d\zeta^N\right) = E^N\left(V\left(x_N^*\right)\right)$$

i.e., expected value of $V(x_N^*)$ is the unconditional probability $\mathbb{P}^{N+1}(x_N^* \notin X_{\zeta})$

(This unconditional probability will be later related to support constraints)

$$= \mathbb{P}\left(\left\{\zeta \in Z : x_N^* \notin X_\zeta\right\} \middle| (\zeta^1, \dots, \zeta^N)\right)$$

Violation probability **Uniformly supported problem**

Definition

Consider CSP(N)

- wrt $(\zeta^1, \dots, \zeta^N)$, if its removal changes the optimal solution, i.e., $c^T x_N^* \neq c^T x_{N\setminus i}^*$
- 2. CSP(N) is uniformly supported with $s \ge 0$ support constraints if every realization of $(\zeta^1, \dots, \zeta^N) \in \mathbb{Z}^N$ contains exactly s support constraints for $\mathsf{CSP}(N)$ a.s. It is fully supported if s = n.
 - A support constraint must be active at x_N^* ; the converse may not hold.
 - **<u>Lemma</u>**: The number of support constraints for CSP(N) is at most n

1. Given a realization $(\zeta^1, ..., \zeta^N) \in Z^N$, a constraint X_{ζ^i} is a support constraint for CSP(N),

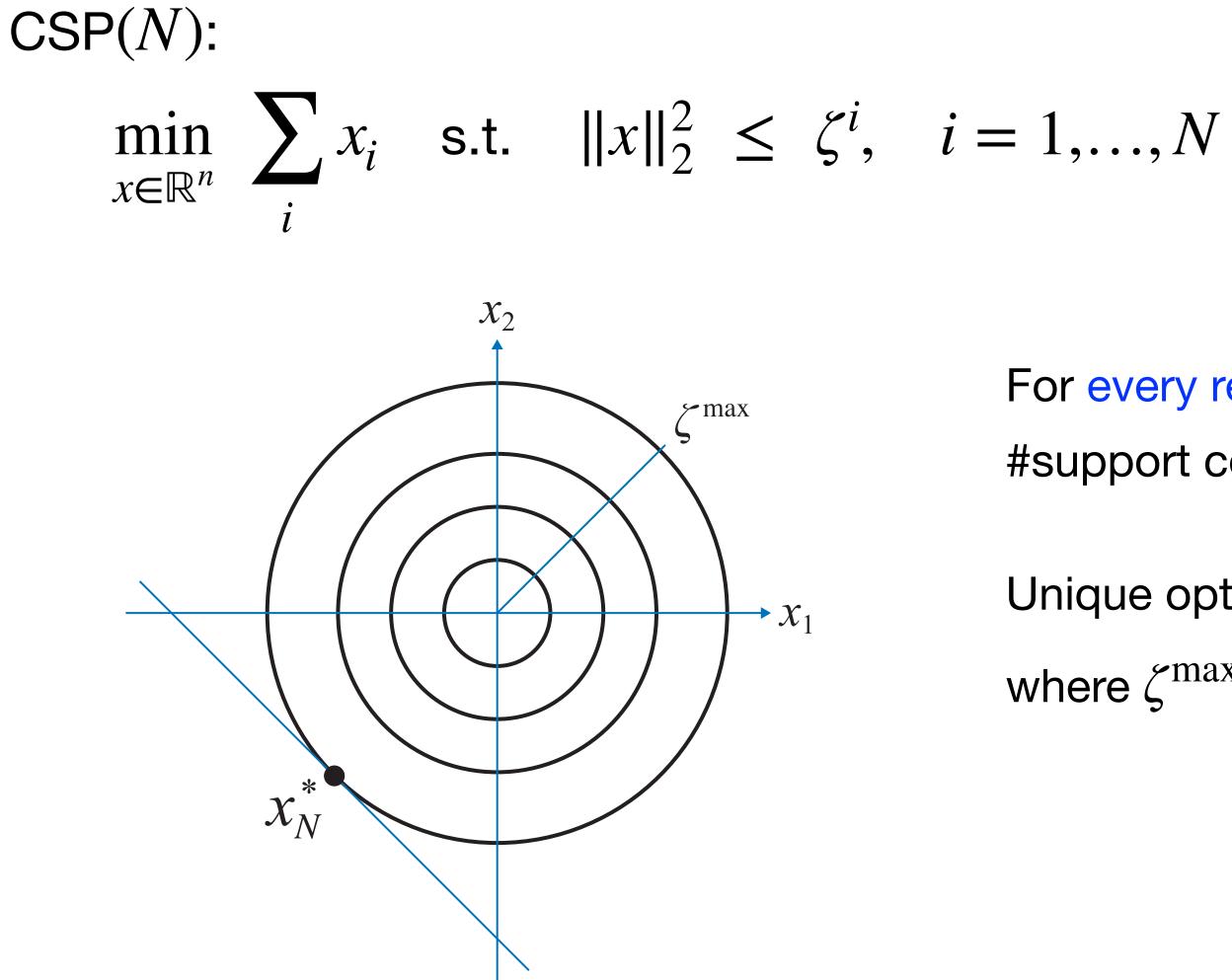
Violation probability **Uniformly supported problem**

Definition

Consider CSP(N)

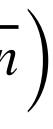
- 1. Given a realization $(\zeta^1, ..., \zeta^N) \in Z^N$, a constraint X_{ζ^i} is a support constraint for CSP(N), wrt $(\zeta^1, \dots, \zeta^N)$, if its removal changes the optimal solution, i.e., $c^T x_N^* \neq c^T x_{N \setminus i}^*$
- 2. CSP(N) is uniformly supported with $s \ge 0$ support constraints if every realization of $(\zeta^1, \dots, \zeta^N) \in \mathbb{Z}^N$ contains exactly s support constraints for $\mathsf{CSP}(N)$ a.s. It is fully supported if s = n.
 - A support constraint must be active at x_N^* ; the converse may not hold.
 - For uniformly supported problem with $s \ge 1$ support constraints, $\mathbb{P}(\zeta^i = \zeta^j) = 0$
 - Since optimal solutions are unique, $c^{\mathsf{T}} x_N^* \neq c^{\mathsf{T}} x_{N\setminus i}^*$ if and only if $x_N^* \neq x_{N\setminus i}^*$
 - **<u>Lemma</u>**: The number of support constraints for CSP(N) is at most n

Examples **Uniformly supported problem**



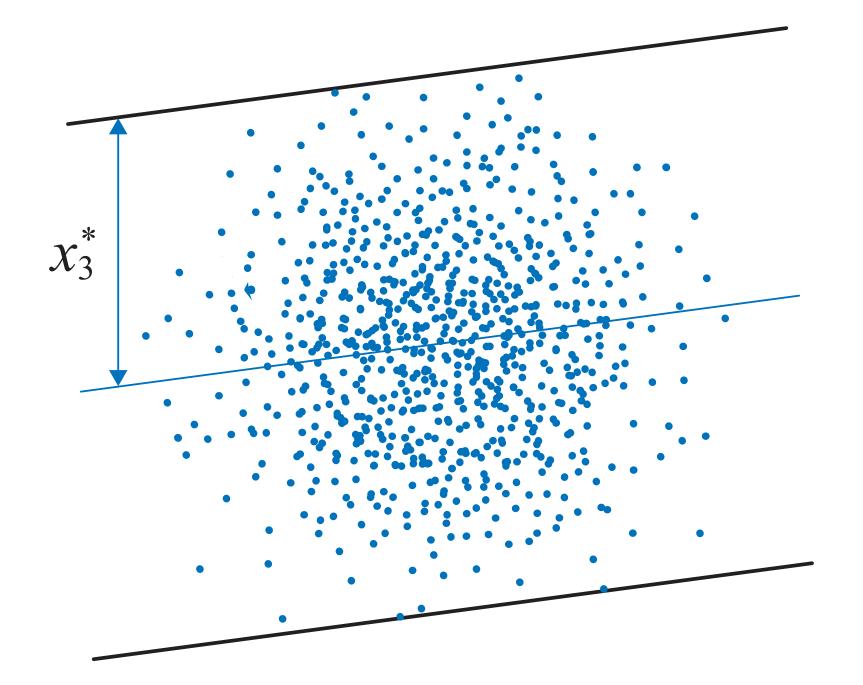
For every realization of $\zeta := ((a^i, b^i) : i = 1, ..., N)$ #support constraints = 1 < n

Unique optimal solution $x_N^* := \left(-\sqrt{\zeta^{\max}/n}, ..., -\sqrt{\zeta^{\max}/n}\right)$ where $\zeta^{\max} := \max \zeta^i$



Examples **Fully supported problem**

Construct strip of min vertical width containing all N iid points under Gaussian distribution on \mathbb{R}^2 $\min_{(x_1, x_2, x_3) \in \mathbb{R}^3} x_1 \quad \text{s.t.} \quad \left| b^i - (a^i x_1 + x_2) \right| \le x_3, \quad i = 1, \dots, N$

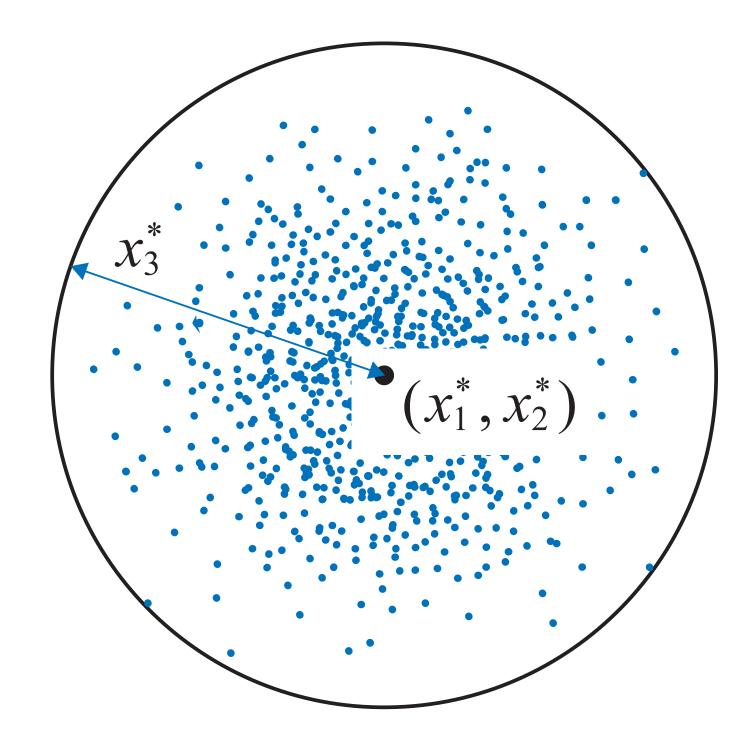


For every realization of $\zeta := ((a^i, b^i) : i = 1, ..., N)$ #support constraints = 3 = n a.s.

Examples General problem

Construct circle of min radius instead containing all N points

 $\min_{(x_1, x_2, x_3) \in \mathbb{R}^3} x_1 \quad \text{s.t.} \quad \sqrt{(a^i - x_1)^2 + (b^i)^2}$



$$(i - x_2)^2 \le x_3, \quad i = 1, \dots, N$$

3 support constraints if optimal circle is defined by 3 points 2 support constraints if it is defined by 2 points

Violation probability **Expected value**

Theorem [Calafiore & Campi 2005; Calafiore 2009] Suppose Assumption 1 holds. For any $N \ge n$

1. Then
$$E^N\left(V\left(x_N^*\right)\right) = \mathbb{P}^{N+1}\left(x_N^* \notin X_{\zeta^{N+1}}\right) \leq \frac{n}{N+1}$$

2. If CSP(N+1) is uniformly supported with $0 \le s \le n$ support constraints then

$$E^N\left(V\left(x_N^*\right)\right) = \mathbb{P}^{N+1}\left(x_N^* \notin X_{\zeta^{N+1}}\right) = \frac{S}{N+1}$$

Upper bound is tight for uniformly supported problems

• Improved bound: $E^N(V(x_N^*)) \le \frac{s^{\max}}{N+1}$

G. C. Calafiore and M. C. Campi, "Uncertain convex programs: Randomized solutions and confidence levels," Math. Program., 2005. G. C. Calafiore. "A note on the expected probability of constraint violation in sampled convex programs." IEEE CCA & ISIC, 2009.

Violation probability **Tail probability**

Theorem [Campi, Garatti 2008] Suppose Assumption 1 holds. For any $N \ge n$

1. Then
$$\mathbb{P}^N\left(V(x_N^*) > \epsilon\right) \leq \sum_{i=0}^{n-1} \binom{N}{i} \epsilon$$

2. If CSP(N + 1) is uniformly supported with $1 \le s \le n$ support constraints then

$$\mathbb{P}^{N}\left(V\left(x_{N}^{*}\right) > \epsilon\right) = \sum_{i=0}^{s-1} \binom{N}{i} \epsilon^{i}$$

 Upper bound is tight for uniformly supported problems $t^{\max}-1$ Improved bound: $\mathbb{P}^{N}(V(x_{N}^{*}) > \epsilon) \leq$

i=0

 $(1-\epsilon)^{N-i}$

$$\binom{N}{i} \epsilon^i (1-\epsilon)^{N-i}$$

M. C. Campi and S. Garatti. "The exact feasibility of randomized solutions of uncertain convex programs." SIAM J. Optim., 2008.

Violation probability Summary

Suppose Assumption 1 holds.

1.
$$E^{N}\left(V\left(x_{N}^{*}\right)\right) \leq \frac{n^{\max}}{N+1}$$

2. $\mathbb{P}^{N}\left(V\left(x_{N}^{*}\right) > \epsilon\right) \leq \sum_{i=0}^{t^{\max}-1} \binom{N}{i} \epsilon^{i}(1-1)$

- Binomial tail decreases rapidly as N increases
- Bounds depend only on (n, N) and ϵ .
- determine if the problem is fully supported and hence tightness of the bounds

Bounds are tight for uniformly supported problems with $0 \le s \le n$ support constraints

Not on details of cost function $c^{\mathsf{T}}x$, constraint function $h(x,\zeta)$, probability measure \mathbb{P} ; they

Key proof ideas **Partitioning of** Z^N

Partition sample space Z^N for independent satisfies

$$Z^{N}(I^{s}) := \begin{cases} \zeta := (\zeta^{1}, \dots, \zeta^{N}) \in Z \\ Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s}) \end{cases}$$

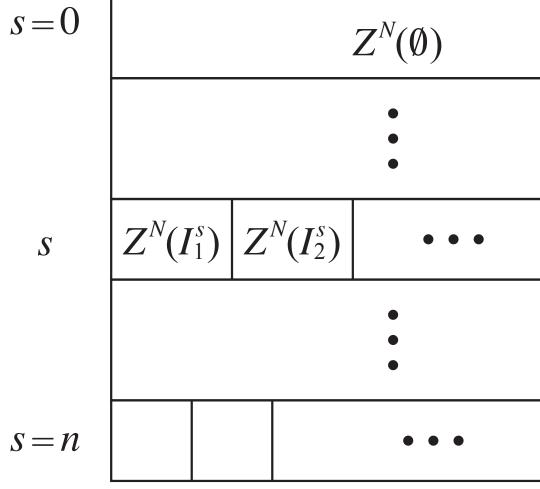
- $Z^N(I^s)$: vectors in Z^N with *s* support constraints indexed by $I^s \subseteq \{1, ..., N\}$ s=0
- $Z^N(s)$: subset of Z^N with exactly *s* support constraints

Then

$$Z^{N} = \bigcup_{s=0}^{n} Z^{N}(s) := \bigcup_{s=0}^{n} \bigcup_{I^{s}} Z^{N}(I^{s})$$

$$\begin{array}{l} \text{amples } \left(\zeta^1, \dots, \zeta^N \right) \text{ according to #support constrate} \\ \frac{dN}{dN} : \left(X_{\zeta^i}, i \in I^s \right) \text{ are } s \text{ support constraints} \end{array} \right\}$$

S



Key proof ideas **Uniformly supported problems**

Uniformly supported with *s* support constraints

$$Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s}), \qquad Z^{N}(s') =$$
$$Z^{N} = Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s})$$

- Fully supported problem: s = nlacksquare
- No support constraint = uniformly supported with s = 0 support constraint ●

$\emptyset, s' \neq s$

Key proof ideas No support constraint

Uniformly supported with *s* support constraints

$$Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s}), \qquad Z^{N}(s') =$$
$$Z^{N} = Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s})$$

- Fully supported problem: s = n
- No support constraint = uniformly supported with s = 0 support constraint \bullet

Lemma [No spport constraint] If CSP(N) has no support constraint, then V(x)Hence $E^N\left(V\left(x_N^*\right)\right) = 0, \ \mathbb{P}^N\left(V\left(x_N^*\right) > \epsilon\right)$

$\emptyset, \quad s' \neq s$

$$\begin{pmatrix} x_N^* \\ e \end{pmatrix} = 0 \text{ a.s.}$$

Key proof ideas Partitions $Z^{N}(I^{s})$ of $Z^{N}(s)$

Partition sample space Z^N for independent samples $(\zeta^1, ..., \zeta^N)$ according to #support constraints $\{\zeta_i, i \in I^s\}$ are *s* support constraints $\}$

$$Z^{N}(I^{s}) := \begin{cases} \left(\zeta^{1}, \dots, \zeta^{N}\right) \in Z^{N} : \left(X_{\zeta}\right) \\ Z^{N}(s) := \bigcup_{I^{s}} Z^{N}(I^{s}) \end{cases}$$

Lemma [Support constraints are uniformly distributed] Suppose Assumption 1 holds. For any $N \ge n$

$$\mathbb{P}^{N}\left(Z^{N}(I^{s}) \middle| Z^{N}(s)\right) = \left[\binom{N}{s}\right]^{-1}$$

$$\forall I^s \text{ with } |I^s| = s$$

uses iid samples ζ^i

Key proof ideas

For both expected $V(x_N^*)$ and tail probability of $V(x_N^*)$

- First prove the uniformly supported problems;
- Then generalize to general problems

Details in textbook

Sample complexity

Corollary

Suppose Assumption 1 holds. For any ϵ, β in [0,1]

1.
$$E^{N}\left(V(x_{N}^{*})\right) \leq \beta$$
 if $N \geq (n/\beta) - 1$
2. $\mathbb{P}^{N}\left(V(x_{N}^{*}) > \epsilon\right) \leq \beta$ if $N \geq N(\epsilon, \beta)$ when $N(\epsilon, \beta) := \min\left\{N : \sum_{i=0}^{n-1} {N \choose i} \epsilon\right\}$

here

 $V : \sum_{i=0}^{n-1} {N \choose i} \epsilon^{i} (1-\epsilon)^{N-i} \le \beta$

Optimality guarantee

Consider RCP: $CCP(\epsilon)$: CSP(N):

Study 3 questions on CSP(N):

$c^*_{\mathsf{RCP}} := \min_{x \in X \subset \mathbb{R}^n} c^\mathsf{T} x$ s.t. $h(x, \zeta) \le 0, \ \zeta \in Z \subseteq \mathbb{R}^k$ $c^*_{\mathsf{CCP}}(\epsilon) := \min_{x \in X \subset \mathbb{R}^n} c^\mathsf{T} x \text{ s.t. } \mathbb{P}\left(h(x,\zeta) \le 0\right) \ge 1 - \epsilon$ $c^*_{\mathsf{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c^\mathsf{T} x$ s.t. $h(x, \zeta^i) \le 0, i = 1, ..., N$

• Violation probability : how likely is the random solution x_N^* of CSP(N) feasible for $CCP(\epsilon)$? Sample complexity : what is min N for x_N^* to be feasible for CCP(ϵ) in expectation or probability? Optimality guarantee : how close is the min cost $c^*_{CSP}(N)$ to the min costs $c^*_{CCP}(\epsilon)$ and c^*_{RCP} ?

Optimality guarantee Intuition

Consider $c^*_{\mathsf{RCP}} := \min_{x \in X \subseteq \mathbb{R}^n} c' x$ RCP: $c^*_{\mathsf{CCP}}(\epsilon) := \min_{x \in X \subseteq \mathbb{R}^n} c$ $CCP(\epsilon)$: $\operatorname{CSP}(N): \quad c^*_{\operatorname{CSP}}(N) := \min_{x \in X \subseteq \mathbb{R}^n} c$

Intuition

- Random solution x_N^* feasible for $CCP(\epsilon)$ w.h.p. connects $c_{CSP}^*(N)$ and $c_{CCP}^*(\epsilon)$
- x_N^* is however infeasible for RCP, unless $V(x_N^*) = 0$
- Key to connecting $c^*_{CSP}(N)$ and c^*_{RCP} is a perturbed RCP

$$h^{\mathsf{T}}x \quad \text{s.t.} \quad h(x,\zeta) \leq 0, \ \zeta \in Z \subseteq \mathbb{R}^k$$

$$h^{\mathsf{T}}x \quad \text{s.t.} \quad \mathbb{P}\left(h(x,\zeta) \leq 0\right) \geq 1 - \epsilon$$

$$h^{\mathsf{T}}x \quad \text{s.t.} \quad h(x,\zeta^i) \leq 0, \ i = 1, \dots, N$$

С	onsider RCP :	c* RCP	:=	$\min_{x \in X \subseteq \mathbb{R}^n}$	С
	RCP(v):	$c_{RCP}^*(\mathbf{v})$:—	$\min_{x \in X \subseteq \mathbb{R}^n}$	С
	$CCP(\epsilon)$:	$c^*_{CCP}(\epsilon)$:—	$\min_{x \in X \subseteq \mathbb{R}^n}$	С
	CSP(N):	$c^*_{CSP}(N)$:=	$\min_{x \in X \subseteq \mathbb{R}^n}$	С

- RCP = RCP(0)
- $\bar{h}(x)$ is convex in x since $h(x, \zeta)$ is convex in x for every $\zeta \in Z$

$c^{\mathsf{T}}x$ s.t. $h(x,\zeta) \leq 0, \, \zeta \in Z \subseteq \mathbb{R}^k$ $c^{\mathsf{T}}x$ s.t. $\bar{h}(x) := \sup h(x,\zeta) \le \mathbf{v}$ $\zeta \in Z$ $c^{\mathsf{T}}x$ s.t. $\mathbb{P}\left(h(x,\zeta) \leq 0\right) \geq 1 - \epsilon$ $c^{\mathsf{T}}x$ s.t. $h(x,\zeta^{i}) \le 0, i = 1,...,N$

Definition

1. The pro

obability of worst-case constraints is the function
$$p: X \times \mathbb{R}^m_+ \to [0,1]$$
:
 $p(x,b) := \mathbb{P}\left(\left\{\zeta \in Z : \exists i := i(\zeta) \text{ s.t. } \bar{h}_i(x) - h_i(x,\zeta) < b_i\right\}\right)$

2. The perturbation bound with respect to p is the function $\bar{v} : [0,1] \to \mathbb{R}^m_+$:

$$\bar{v}(\epsilon) := \sup \left\{ b \in \mathbb{R}^m_+ : \inf_{x \in X} p(x, b) \le \epsilon \right\}$$

where supremum is taken componentwise of vectors b

Perturbation bound $\bar{v}(\epsilon)$ depends on constraint function $h(x,\zeta)$, uncertainty set Z, probability measure \mathbb{P}

Definition

1. The pro

obability of worst-case constraints is the function
$$p: X \times \mathbb{R}^m_+ \to [0,1]$$
:
 $p(x,b) := \mathbb{P}\left(\left\{\zeta \in Z : \exists i := i(\zeta) \text{ s.t. } \bar{h}_i(x) - h_i(x,\zeta) < b_i\right\}\right)$

2. The perturbation bound with respect to p is the function $\bar{v}: [0,1] \to \mathbb{R}^m_+$:

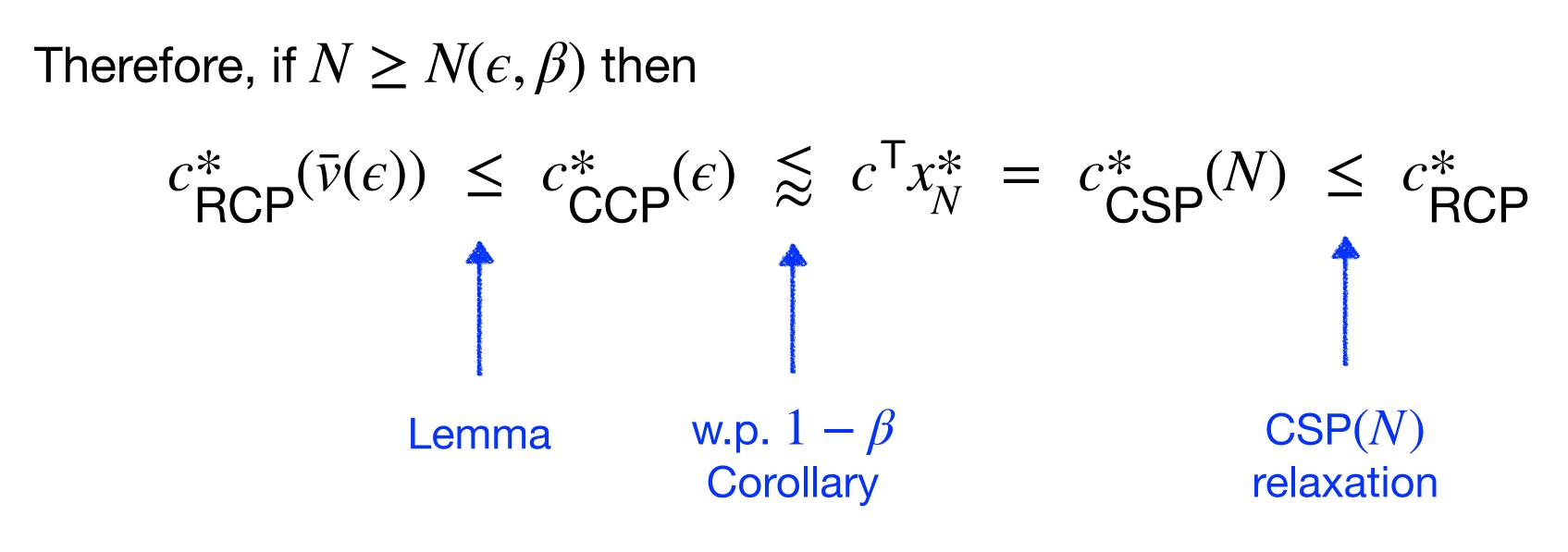
$$\bar{v}(\epsilon) := \sup \left\{ b \in \mathbb{R}^m_+ : \inf_{x \in X} p(x, b) \le \epsilon \right\}$$

where supremum is taken componentwise of vectors b

• For fixed x, violation probability $V(x) \le \epsilon \iff p(x, \bar{h}(x)) \le \epsilon$. Hence $V(x) \le \epsilon \implies \bar{h}(x) \le \bar{v}(\epsilon)$

Lemma [Esfahani, Sutter, Lygeros 2015]

x is feasible for $CCP(\epsilon) \implies x$ is feasible for $RCP(\bar{v}(\epsilon))$



 $CCP(\epsilon)$ and CSP(N) sandwiched between RCP(v) for $v = \bar{v}(\epsilon)$ and v = 0

Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015]

$$\mathbb{P}^{N}\left(c_{\mathsf{RCP}}^{*} - c_{\mathsf{CSP}}^{*}(N) \in [0, C]\right)$$
$$\mathbb{P}^{N}\left(c_{\mathsf{CSP}}^{*}(N) - c_{\mathsf{CCP}}^{*}(\epsilon) \in [0, C]\right)$$

where confidence interval is

P. M. Esfahani, T. Sutter, and J. Lygeros, "Performance bounds for the scenario approach and an extension to a class of non-convex programs," TAC, 2015.

Suppose Assumptions 1-4 hold (see below). Given any ϵ, β in [0, 1] and any $N \ge N(\epsilon, \beta)$: $C(\epsilon)] > 1 - \beta$ $\mathcal{C}(\epsilon)] > 1 - \beta$

Optimality guarantee

Theorem [Esfahani, Sutter, Lygeros 2015]

$$\mathbb{P}^{N}\left(c_{\mathsf{RCP}}^{*} - c_{\mathsf{CSP}}^{*}(N) \in [0, C]\right)$$
$$\mathbb{P}^{N}\left(c_{\mathsf{CSP}}^{*}(N) - c_{\mathsf{CCP}}^{*}(\epsilon) \in [0, C]\right)$$

where confidence interval is

$$C(\epsilon) := \min \left\{ L_{\mathsf{RCP}} \| \bar{v}(\epsilon) \|_{2}, \max_{x \in X} c^{\mathsf{T}} x - \min_{x \in X} c^{\mathsf{T}} x \right\}$$
$$L_{\mathsf{RCP}} := \frac{c^{\mathsf{T}} \bar{x} - \min_{x \in X} c^{\mathsf{T}} x}{\min_{i} \left(v_{i}^{\min} - \bar{h}_{i}(\bar{x}) \right)} \ge 0$$

Suppose Assumptions 1-4 hold (see below). Given any ϵ, β in [0, 1] and any $N \ge N(\epsilon, \beta)$: $C(\epsilon)] \ge 1 - \beta$ $C(\epsilon)] > 1 - \beta$

Optimality guarantee Proof idea

Assumptions

2. $V := \{ \overline{v}(\epsilon) \in \mathbb{R}^m_+ : 0 \le \epsilon \le 1 \}$ is compact and convex

- 3. For each $v \in V$
 - \exists unique primal-dual optimal $(x(v), \mu(v))$ and it is continuous at v
 - Strong duality holds at $(x(v), \mu(v))$
- 4. Slater condition: $\exists \bar{x} \in X \text{ s.t. } \bar{h}(\bar{x}) < v^{\min}$ where $v_i^{\min} := \min\{v_i : v \in V\}$

Lemma [Esfahani, Sutter, Lygeros 2015] Suppose Assumptions 1-4 hold. $c^*_{\mathsf{RCP}}(v)$ is Lipschitz on V, i.e., for all $v_1, v_2 \in V$:

$$\left\| c_{\mathsf{RCP}}^{*}(v_{1}) - c_{\mathsf{RCP}}^{*}(v_{2}) \right\|_{2} \leq L$$

 $L_{\text{RCP}} \| v_1 - v_2 \|_2$

Outline

- **Robust optimization** 1.
- Chance constrained optimization 2.
- Convex scenario optimization 3.
- Stochastic optimization with recourse 4.
 - Stochastic LP with fixed recourse ullet
 - Stochastic nonlinear program ullet
- Example application: stochastic economic dispatch 5.

Stochastic linear program With fixed recourse

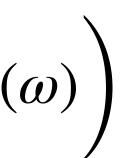
$\min_{x \in \mathbb{R}^{n_1}}$	$f(x) + E_{\zeta} \left(\min_{y(\omega) \in \mathbb{R}^{n_2}} q^{T}(\omega) y(\omega) \right)$
s.t.	$Ax = b, x \in K$
	$T(\omega)x + Wy(\omega) = h(\omega), y(\omega)$

1st-stage problem

- Cost function $f: \mathbb{R}^{n_1} \to \mathbb{R}$ is real-valued convex, K is closed convex cone
- Parameters (f, A, b, K) are certain

2nd-stage problem: semi-infinite linear program for each ω

- Recourse action $y(\omega)$ adapts to each realized $\omega \in \Omega$
- Recourse matrix W is independent of ω (i.e., fixed recourse)
- Uncertain parameter $\zeta := \zeta(\omega) := ((q(\omega), T(\omega), h(\omega)) \in \mathbb{R}^k)$
- uncertainty set $Z := \{\zeta(\omega) \in \mathbb{R}^k : \omega \in \Omega\}$



$) \geq 0,$ $\forall \omega \in \Omega$

Stochastic linear program **Equivalent formulation**

f(x) + Q(x)m1n $x \in \mathbb{R}^{n_1}$ $Ax = b, x \in K$ s.t. where

$$Q(x) := E_{\zeta} \left(\min_{y(\omega) \ge 0} q^{\mathsf{T}}(\omega) y(\omega) \text{ s.t} \right)$$

- Q(x) : recourse function (or 2nd-stage expected value function)
- Q(x) can be extended real-valued function and nondifferentiable
- supply when outages occur in real time)

This will be a simple conic program, but for the recourse function Q(x)

$$Wy(\omega) = h(\omega) - T(\omega)x$$

• $Q(x) = \infty$ if second-stage problem is infeasible (e.g., day-ahead schedule leads to insufficient

- unit cost $c_2 > c_1$
- 3. Suppose $\zeta(\omega) = a + \epsilon$ with prob. p, and
- **Goal:** choose $(x, y(\omega))$ to meet random demand $\zeta(\omega)$ at minimum expected cost:

$$\begin{split} f^* &:= \min_{x \in \mathbb{R}} c_1 x + Q(x) \quad \text{s.t.} \quad 0 \leq x \leq a \\ \text{where } Q(x) &:= E_{\zeta} \tilde{Q}(x, \zeta) \text{ and} \\ \tilde{Q}(x, \zeta) &:= \min_{0 \leq y(\omega) \leq a} c_2 y(\omega) \quad \text{s.t.} \quad x + y(\omega) = \zeta(\omega) \\ \end{split}$$
 What is the optimal sol

Schedule 2 generators with same generation capacity [0,a] to meet random demand $\zeta(\omega)$ 1. Slow but cheap generator must be scheduled before $\zeta(\omega)$, at level $x \in [0,a]$ at unit cost c_1 2. Fast but expensive generator can be scheduled after $\zeta(\omega)$, at level $y(\omega) := y(\zeta(\omega)) \in [0,a]$ at

$$\zeta(\omega) = a - \epsilon$$
 with prob. $1 - p$

2nd-stage problem:

 $\tilde{Q}(x,\zeta) := \min_{\substack{0 \le y(\omega) \le a}} c_2 y(\omega)$ s.t. x

Sinc

$$\begin{aligned} & ce \zeta(\omega) = a + \epsilon \text{ with prob. } p, \text{ and } \zeta(\omega) = a - \epsilon \text{ with prob. } 1 - p \\ & y(a + \epsilon) = \begin{cases} a + \epsilon - x & \text{if } x \ge \epsilon \\ \text{infeasible} & \text{if } x < \epsilon' \end{cases} = \qquad & \tilde{Q} = \begin{cases} c_2(a + \epsilon - x) & \text{if } x \ge \epsilon \\ \infty & \text{if } x < \epsilon \end{cases} \\ & \text{if } x < \epsilon \end{aligned}$$

$$y(a - \epsilon) = \begin{cases} a - \epsilon - x & \text{if } x \le a - \epsilon \\ \text{infeasible} & \text{if } x > a - \epsilon \end{cases} \quad & \tilde{Q} = \begin{cases} c_2(a - \epsilon - x) & \text{if } x \le a - \epsilon \\ \infty & \text{if } x > a - \epsilon \end{cases}$$

If $x < \epsilon$ or $x > a - \epsilon$, then $Q(x, \zeta) = \infty$ with probabilities p or 1 - p respectively and $Q(x) = E_{\zeta}\tilde{Q}(x,\zeta) = \infty$. Therefore

 $C_2 := \operatorname{dom}(Q) := \{x : \epsilon \leq x \leq a - \epsilon\}$

$$+ y(\omega) = \zeta(\omega)$$

2nd-stage problem:

$$\tilde{Q}(x,\zeta) := \min_{0 \le y(\omega) \le a} c_2 y(\omega)$$
 s.t. $x + y(\omega) = \zeta(\omega)$

Sup

pose
$$\zeta(\omega) = a + \epsilon$$
 with prob. p , and $\zeta(\omega) = a - \epsilon$ with prob. $1 - p$

$$y(a + \epsilon) = \begin{cases} a + \epsilon - x & \text{if } x \ge \epsilon \\ \text{infeasible} & \text{if } x < \epsilon' \end{cases} = \qquad \tilde{Q} = \begin{cases} c_2(a + \epsilon - x) & \text{if } x \ge \epsilon \\ \infty & \text{if } x < \epsilon \end{cases}$$

$$y(a - \epsilon) = \begin{cases} a - \epsilon - x & \text{if } x \le a - \epsilon \\ \text{infeasible} & \text{if } x > a - \epsilon \end{cases} \qquad \tilde{Q} = \begin{cases} c_2(a - \epsilon - x) & \text{if } x \le a - \epsilon \\ \infty & \text{if } x > a - \epsilon \end{cases}$$

$$\begin{aligned} y(a+\epsilon) &= \begin{array}{ll} a+\epsilon & \text{with prob. } p, \text{ and } \zeta(\omega) = a-\epsilon & \text{with prob. } 1-p \\ y(a+\epsilon) &= \begin{array}{ll} a+\epsilon-x & \text{if } x \geq \epsilon \\ \text{infeasible} & \text{if } x < \epsilon \end{array} = \begin{array}{ll} \tilde{Q} &= \begin{array}{ll} c_2(a+\epsilon-x) & \text{if } x \geq \epsilon \\ \infty & \text{if } x < \epsilon \end{array} \\ y(a-\epsilon) &= \begin{array}{ll} a-\epsilon-x & \text{if } x \leq a-\epsilon \\ \text{infeasible} & \text{if } x > a-\epsilon \end{array} & \tilde{Q} &= \begin{array}{ll} c_2(a-\epsilon-x) & \text{if } x \leq a - \epsilon \\ \infty & \text{if } x > a-\epsilon \end{array} \end{aligned}$$

On C_2 , $Q(x) = E_{\zeta} \tilde{Q}(x, \zeta)$ is affine in x

 $Q(x) = pc_2(a + \epsilon - x) + (1 - p)c_2(a - \epsilon - x) = c_2(a + \epsilon(2p - 1)) - c_2x$

Therefore

$$f^* := \min_{x \in \mathbb{R}} (c_1 - c_2)x + c_2(a + \epsilon(2p))$$

Solution:

Since $c_2 < c_1$, optimal solution is:

 $x^* = a - \epsilon, \qquad f^* = c_1(a - \epsilon) + 2c_2\epsilon p$ Therefore

1. The cheap generator always produces at the lower level $a - \epsilon$ of the random demand 2. The expensive generator will pick up the slack, 2ϵ with probability p

(p-1)) s.t. $\epsilon \leq x \leq a-\epsilon$

Recourse function Q(x)

Lemma

Suppose the recourse is fixed (W independent of ω) and $E\zeta^2 < \infty$.

- 1. Q(x) is convex and Lipschitz on dom $(Q) := \{x : Q(x) < \infty\}$
- 2. If distribution function of ζ is absolutely continuous, then Q(x) is differentiable on ri(dom(Q))
- 3. Suppose ζ takes finitely many values. Then
 - dom(Q) is closed, convex, and polyhedral
 - Q(x) is piecewise linear and convex on dom(Q)

Hence $\min_{x \in \mathbb{R}^{n_1}} f(x) + Q(x)$ s.t. $Ax = b, x \in K$ is nonsmooth conic program

Summary: for two-stage problem with fixed recourse, if $E\zeta^2 < \infty$, then Q(x) is convex and hence subdifferentiable

Strong duality and KKT

Nonsmooth conic program: $f^* := \min_{x \in \mathbb{R}^{n_1}} f(x) + Q(x)$ s.t. $Ax = b, x \in K$ where *f* is convex and $K \subseteq \mathbb{R}^{n_1}$ is a closed convex cone Dual cone: $K^* := \{\xi \in \mathbb{R}^{n_1} : \xi^T x \ge 0 \ \forall x \in K\}$ Lagrangian:

$$L(x, \lambda, \mu) := f(x) + Q(x) - \lambda^{\mathsf{T}}(Ax - b) - A^{\mathsf{T}}(Ax - b) - A^$$

Dual function:

$$d(\lambda,\mu) := \min_{x} L(x,\lambda,\mu) = \lambda^{\mathsf{T}}b + d_0(\lambda,\mu)$$
$$d_0(\lambda,\mu) := \min_{x \in \mathbb{R}^{n_1}} \left(f(x) + Q(x) - (A^{\mathsf{T}}\lambda + \mu) \right)$$

Dual problem:

$$d^* := \max_{\lambda \in \mathbb{R}^{m_1}, \mu \in K^*} \lambda^\mathsf{T} b + d_0(\lambda, \mu)$$

- $\mu^{\mathsf{T}} x, \qquad x \in \mathbb{R}^{n_1}, \lambda \in \mathbb{R}^{m_1}, \mu \in K^* \subseteq \mathbb{R}^{n_1}$
- μ)
- $()^{\mathsf{T}}x)$

Strong duality and KKT Nonsmooth conic program: $f^* := \min_{x \in \mathbb{R}^{n_1}} f(x) + Q(x)$ s.t. $Ax = b, x \in K$

Assumptions

1. Finite 2nd moment: $E\zeta^2 < \infty$ and $Q(x) \in (-\infty, \infty)$

2. $f: \mathbb{R}^{n_1} \to \mathbb{R}$ is a convex function; K is a closed convex cone

3. Slater condition: $\exists \bar{x} \in ri(dom(Q)) \cap ri(K)$ such that $A\bar{x} = b$

Theorem [nonsmooth Slater theorem]

- 1. Strong duality and dual optimality: If f^* is finite, then \exists dual optimal (λ^*, μ^*) that closes duality gap, i.e., $f^* = d^* = d(\lambda^*, \mu^*)$
- 2. KKT characterization: A feasible $x^* \in K$ with $Ax^* = b$ is primal optimal iff \exists subgradients $\xi^* \in \partial f(x^*)$ and $\psi^* \in \partial Q(x^*)$, a dual feasible $(\lambda^*, \mu^*) \in \mathbb{R}^{m_1} \times K^*$ such that

$$\xi^* + \psi^* = A^{\mathsf{T}}\lambda^* + \mu^*, \qquad \mu^{*\mathsf{T}}x^*$$

In this case (x^*, λ^*, μ^*) is a saddle point that closes the duality gap

- = 0

Outline

- **Robust optimization** 1.
- 2. Chance constrained optimization
- **Convex scenario optimization** 3.
- Stochastic optimization with recourse 4.
- Example application: stochastic economic dispatch 5.
 - Nominal ED ullet
 - Robust ED ullet
 - Chance constrained ED \bullet
 - Scenario-based ED \bullet

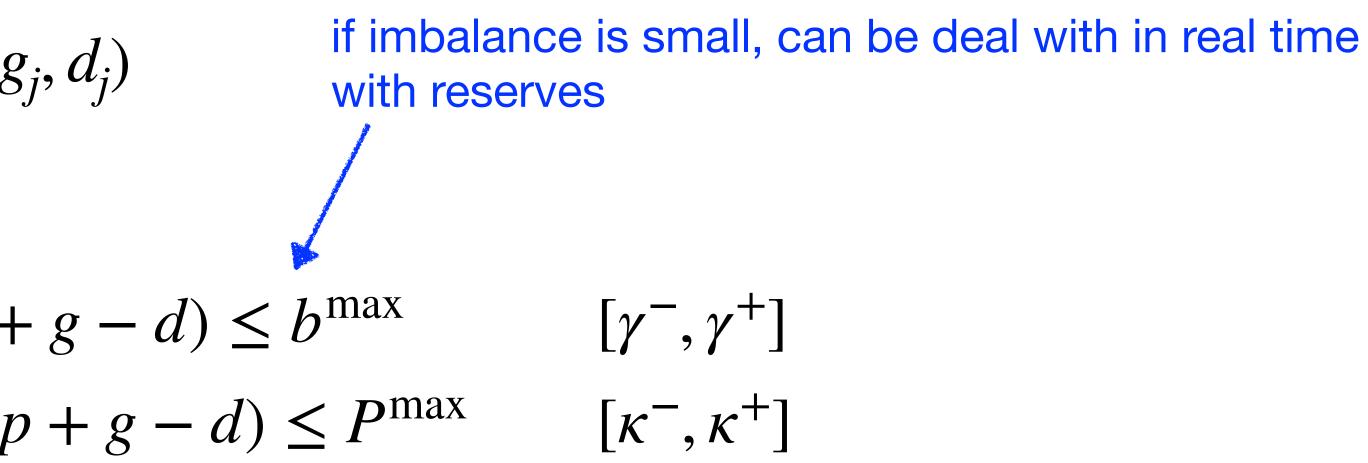
Nominal economic dispatch

Uncontrollable generations and demands: (g_i, d_j)

$$f_{\min} := \min_{\substack{p^{\min} \le p \le p^{\max}}} c^{\mathsf{T}} p$$
s.t.
$$b^{\min} \le \mathbf{1}^{\mathsf{T}} (p + p^{\min}) \le S^{\mathsf{T}} (p + p^{\min}) \le S^{\mathsf{T}} (p + p^{\min})$$

Locational marginal price (LMP):

$$\lambda^*:=\gamma^*\mathbf{1}+S\kappa^*$$
 where $\gamma:=\gamma^--\gamma^+,\ \kappa:=\kappa^--\kappa^+,\ S:=L$



 $^{\dagger}CB$ (shift factor)

Suppose $(g_i, d_j) \in G_i \times D_i := [0, g_i^{\max}] \times [0, d_i^{\max}]$

f^*_{rED}	:=	$\min_{p^{\min} \le p \le p^{\max}}$	<i>c</i> ' <i>p</i>		
		s.t.	b^{\min}	\leq	1 [⊤]
			min		C

$(p+g-d) \leq b^{\max}, \ \forall (g,d) \in G \times D$ $P^{\min} \leq S(p+g-d) \leq P^{\max}, \ \forall (g,d) \in G \times D$

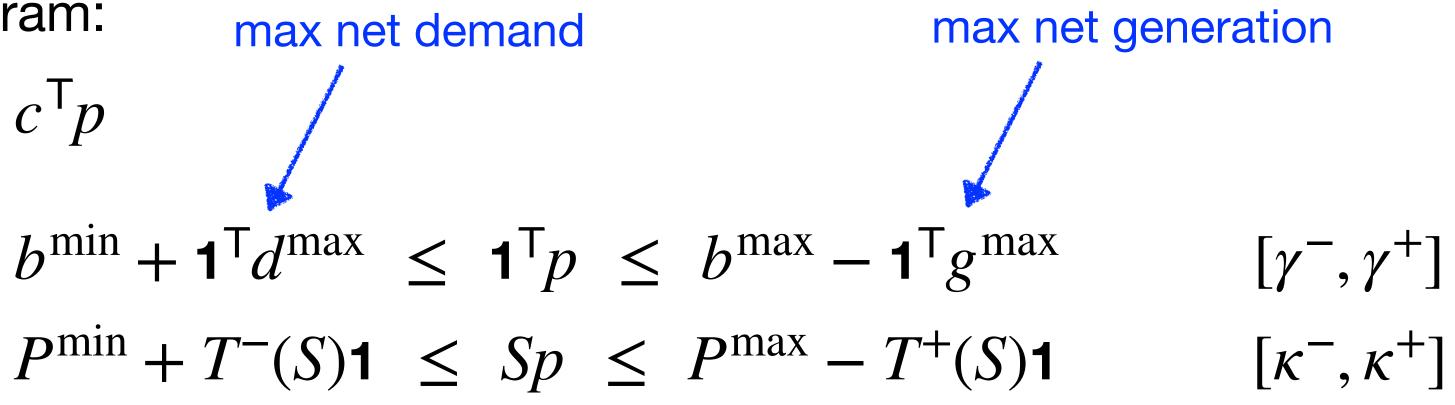
Suppose $(g_j, d_j) \in G_i \times D_i := [0, g_i^{\max}] \times [0, d_i^{\max}]$ $f_{\mathsf{rED}}^* := \min_{\substack{p^{\min} \le p \le p^{\max}}} c^{\mathsf{T}}p$

> s.t. $b^{\min} \leq \mathbf{1}^{\mathsf{T}}$ $P^{\min} \leq S(\mathbf{1}^{\mathsf{T}})$

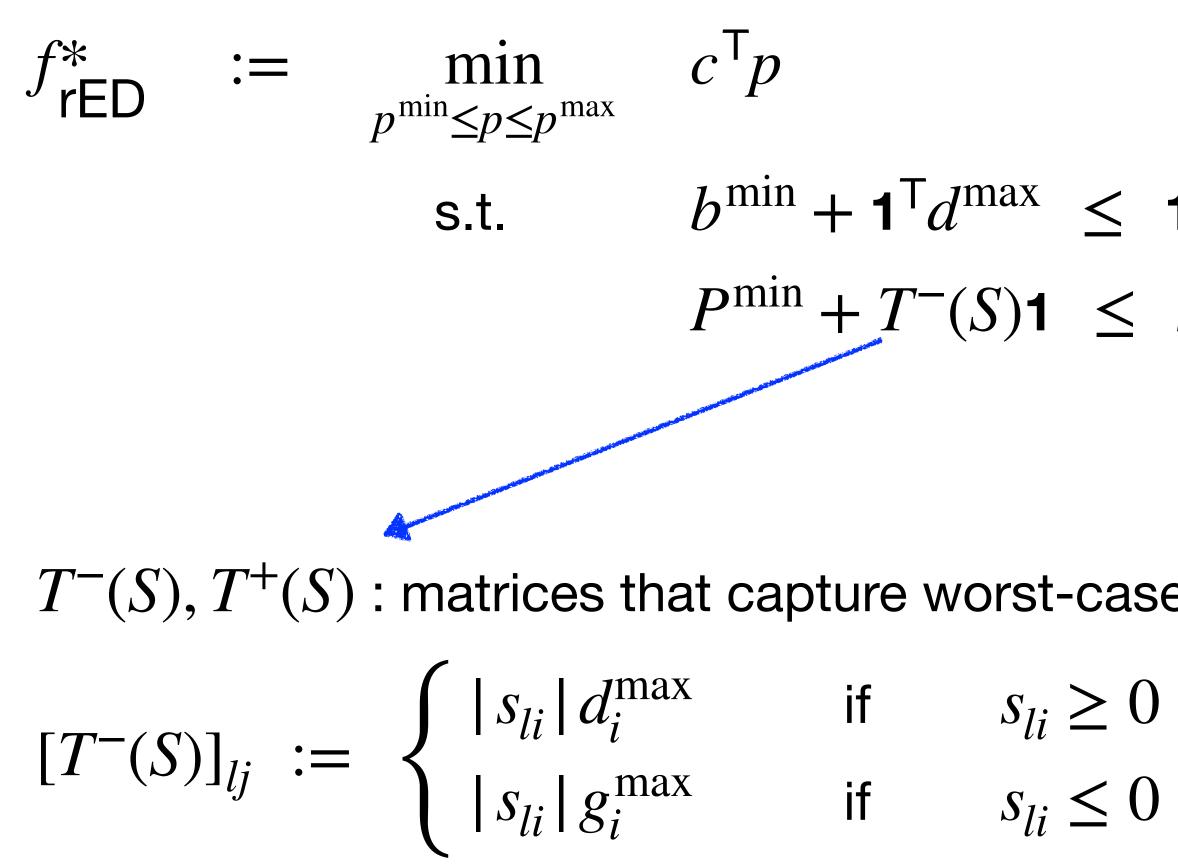
This is equivalent to a linear program: $f_{\mathsf{rED}}^* := \min_{\substack{p^{\min} \le p \le p^{\max}}} c^{\mathsf{T}}p$ s.t. $b^{\min} + \mathbf{1}^{\mathsf{T}}d^{\mathsf{T}}$ $P^{\min} + T^{-}(p^{\min})$

$$f(p+g-d) \le b^{\max}, \ \forall (g,d) \in G \times D$$

 $f(p+g-d) \le P^{\max}, \ \forall (g,d) \in G \times D$



Suppose $(g_i, d_j) \in G_i \times D_i := [0, g_i^{\max}] \times [0, d_i^{\max}]$ Equivalent reformulation as a linear program:

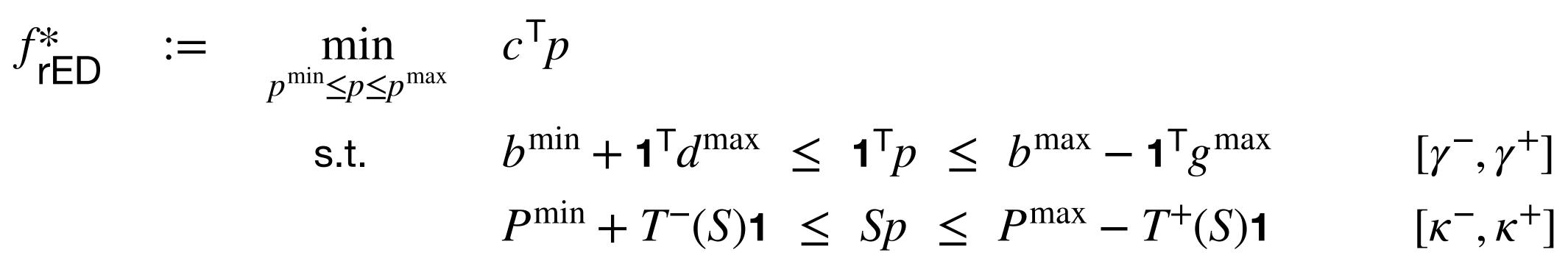


$$\sum^{\max} \leq \mathbf{1}^{\mathsf{T}} p \leq b^{\max} - \mathbf{1}^{\mathsf{T}} g^{\max} \qquad [\gamma^-, \gamma^+]$$

$$(S)\mathbf{1} \leq Sp \leq P^{\max} - T^+(S)\mathbf{1} \qquad [\kappa^-, \kappa^+]$$

 $T^{-}(S), T^{+}(S)$: matrices that capture worst-case impact on line flows in each direction

Suppose $(g_i, d_i) \in G_i \times D_i := [0, g_i^{\max}] \times [0, d_i^{\max}]$ Equivalent reformulation as a linear program:



Define LMP

 $\lambda^* := \gamma^* \mathbf{1} + S^{\mathsf{T}} \kappa^*$ where $\gamma^* := \gamma^{-*} - \gamma^{+*}$ and $\kappa^* := \kappa^{-*} - \kappa^{+*}$

• Competitive equilibrium, incentive compatible, revenue adequate

Then optimal (p^*, λ^*) enjoys the same structural properties (but tighter constraints & higher cost)

Chance constrained economic dispatch

Define random vector $\zeta := (\mathbf{1}^T (g - d), S(g - d)) \in \mathbb{R}^{M+1}$ Suppose ζ has a continuous probability distribution function $F_{\zeta}(z)$ Define affine functions

$$h_1(p) := \left(b^{\min} - \mathbf{1}^\mathsf{T} p, P^{\min} - Sp \right)$$
$$h_2(p) := \left(b^{\max} - \mathbf{1}^\mathsf{T} p, P^{\max} - Sp \right)$$

Then chance-constrained economic dispatch is:

$$f^*_{\mathsf{ccED}} := \min_{\substack{p^{\min} \le p \le p^{\max}}} c^\mathsf{T} p \quad \text{s.t.}$$

 $F_{\zeta}(h_2(p)) - F_{\zeta}(h_1(p)) \geq 1 - \epsilon$

Scenario-based economic dispatch

Define random vector $\zeta := (\mathbf{1}^T (g - d), S(g - d)) \in \mathbb{R}^{M+1}$ Suppose ζ has a continuous probability distribution function $F_{\zeta}(z)$ Suppose $K \ge N + 1$ independent samples $(\zeta^1, \dots, \zeta^K)$ are drawn according to $F_{\zeta}(z)$

Then scenario-based approach solves

$$f_{sED}^* := \min_{\substack{p^{\min} \le p \le p^{\max}}} c^{\mathsf{T}}p$$
 s.t. $h_1(p)$

 $) \le \zeta^k \le h_2(p), \quad k = 1, ..., K$

)

Scenario-based economic dispatch

Define random vector $\zeta := (\mathbf{1}^T(g-d), S(g-d)) \in \mathbb{R}^{M+1}$ Suppose ζ has a continuous probability distribution function $F_{\mathcal{L}}(z)$ Suppose $K \ge N+1$ independent samples $(\zeta^1, ..., \zeta^K)$ are drawn according to $F_{\zeta}(z)$

Then scenario-based approach solves

$$f_{sED}^* := \min_{p^{\min} \le p \le p^{\max}} c^T p \text{ s.t. } h_1(p) \le \zeta^k \le h_2(p), \quad k = 1, ..., K$$

and tail probability are bounded by:

$$E\left(V\left(x_{K}^{*}\right)\right) \leq \frac{N+1}{K+1}$$
$$\mathbb{P}^{K}\left(V\left(x_{K}^{*}\right) > \epsilon\right) \leq \sum_{i=0}^{n-1} {K \choose i} \epsilon^{i} (1-\epsilon)^{K-i}$$

However, it is not clear how to price electricity

Then an optimal dispatch p_K^* is random and violates constraints with a random probability $V(x_K^*)$ whose mean

Calafiore and Campi. *Math. Prog.* 2005 Campi and Garatti. SIAM J. Optim. 2008 Esfahani, Sutter, and Lygeros. IEEE TAC 2015

Stochastic OPF Summary

Brief introduction to theory of stochastic optimization

 $\min_{x \in Y} f(x) \quad \text{s.t.} \quad h(x,\zeta) \le 0$ $x \in \mathbb{R}^n$

where ζ is an uncertain parameter

Choose optimal x^* s.t.

- Robust opt: x^* satisfies constraints for all ζ in an uncertainty set Z •
- Chance constrained opt: x^* satisfies constraints with high probability
- Scenario opt: x^* satisfies constraints for N random samples of $\zeta \in Z$
- Two-stage opt: 2nd-stage decision $y(x^*, \zeta)$ adapts to realized parameter ζ , given 1st-stage decision x^*

Many methods are combinations of these 4 ideas, e.g.

- Distributional robust opt: robust + chance constrained
- Adaptive robust opt: two-stage + robust (as opposed to expected) 2nd-stage cost
- Adaptive robust affine control: two-stage + robust (or avg) + affine policy