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• Resistance  and conductance 
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• Shunt capacitance 

• Balanced 3  lines
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Three-phase line
Alternating currents in conductors line interact electromagnetically 

Interactions couple voltages & currents across phases

In balanced operation, phases behave as if they are decoupled

In each phase, line is characterized by

• series impedance / meter                   

• shunt admittance / meter to neutral   


Assumptions 

   for all 


  for all 

z := r + iωl Ω/m
y := g + iωc Ω−1/m

i1(t) + ⋯ + in(t) = 0 t
q1(t) + ⋯ + qn(t) = 0 t

r > 0, l > 0
g ≥ 0, c > 0



Line characteristics
Series resistance  and shunt conductance r g

Series resistance  depends on

• Temperature and cross-sectional area of the conductor (this is called the dc resistance)

• AC frequency (this is called the ac resistance and defined to be )


Shunt conductance  accounts for real power loss between conductors or conductors and ground

• Due to leakage currents at insulators, depending on environment such as moisture level

• Due to corona when a strong electric field at conductor surface ionizes the air, causing it to conduct, 

depending on meteorological conditions such as rain  

• Power loss due to shunt conductance  is typically much smaller than ; hence  is often assumed zero 

in transmission line models
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Line characteristics
Series inductance L
Total flux linkages  of conductor  depends on currents  in all conductors 


        


in vector form:  
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wire is related to the current 8 and the geometry by:
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where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A

is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.
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Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
': the distance of the center of conductor : from point 0. Then the total flux linkages
of conductor 1 is

_1 = lim
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where ln denotes the natural log. We make the key assumption
=’

:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has nonzero
off-diagonal entries that couple voltages and currents in different phases whether or not za = zb = zc.
As we explain in Chapter 9.4 when the load impedances are indeed identical za = zb = zc a transformed
impedance matrix will always be diagonal, leading to simpler analysis.

9.1.4 Impedance loads in D configuration

Consider a three-wire three-phase impedance load in D configuration as shown in Figure 9.3. The load
impedances (za,zb,zc) are not necessarily identical. Again the external behavior is defined by the relation
V = ZDI between the terminal voltages V := (Va,Vb,Vc) and the terminal currents I := (Ia, Ib, Ic). Here
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Figure 9.3: Sequence components of unbalanced phase currents.

the voltages V are in reference to an arbitrary point, e.g., the ground, not line-to-line voltages. This is the
same as deriving the Y -equivalent of the D-load.

To derive the phase impedance matrix ZD that relates V and I, we start with the load voltages Vload and
the load currents Iload that satisfy the Ohm’s law:

Vload :=

2

4
Vab
Vbc
Vca

3

5 =

2

4
za 0 0
0 zb 0
0 0 zc

3

5

| {z }
Zload

2

4
Iab
Ibc
Ica

3

5 =: Zload Iload (9.2a)

Express (Vload, Iload) in terms of terminal voltages and currents (V, I)

Vload = G1V and I = G2 Iload (9.2b)

where

G1 :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 and G2 :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (9.2c)
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Series inductance l
Total flux linkages  of conductor  depends on currents  in all conductors 


        


In vector form:  


Faraday’s law:  
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wire is related to the current 8 and the geometry by:
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where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A

is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.
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Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
': the distance of the center of conductor : from point 0. Then the total flux linkages
of conductor 1 is

_1 = lim
'1!1
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where ln denotes the natural log. We make the key assumption
=’

:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel



Line characteristics
Shunt capacitance c
Voltage on surface of conductor  relative to reference:      


         


In vector form:     


Let  .      : self capacitance/m,  : mutual capacitance/m
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wire is related to the current 8 and the geometry by:
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where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A

is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.
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Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
': the distance of the center of conductor : from point 0. Then the total flux linkages
of conductor 1 is
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where ln denotes the natural log. We make the key assumption
=’

:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel



Line characteristics
Shunt capacitance c
Voltage on surface of conductor  relative to reference:      


         


In vector form:     


Let  .      : self capacitance/m,  : mutual capacitance/m
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wire is related to the current 8 and the geometry by:
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where `0 := 4c⇥10�7 weber/ampere-meter is the permeability of free space, and `A

is the relative permeability of the wire. If the conductor is nonmagnetic (e.g. copper
or aluminum), then `A ⇡ 1. The first term is due to flux linkages inside the wire and
the second term is due to flux linkages outside the wire up to radius '. The details are
explained in [1, pp.54–59].

Multiple conductors. We will calculate approximately the per-meter total flux linkages
_1 of conductor 1 that carries a current 81. The total flux linkages _1 is determined not
only by current 81, but also by currents 8: from other conductors : = 2, . . . ,=, that carry
currents 8: and are at distances 31: from the center of conductor 1. See Figure 2.1.
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Figure 2.1 Per-meter total flux linkages in a volume within a radius '1 from the center of
conductor 1 due to all conductors. Conductors : carry currents 8

:
and their centers are

distances 31: from the center of conductor 1 and '
:

from point 0.

Denote by '1 the distance of point 0 from the origin (center of conductor 1) and by
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where ln denotes the natural log. We make the key assumption
=’

:=1

8: (C) = 0 at all times C (2.2)

This is a reasonable assumption as in practice the lines carrying power from generation
to load and the lines carrying the return currents follow the same physical path by
design. The implication is that the magnetic inductances due to all the lines cancel



Line characteristics
Balanced three-phase line
Assumptions: 
1. Conductors equally spaced at  with equal radii 

2.    for all 

3.   for all 


Phases are decoupled (vars of conductor  independent of vars of )
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.

D

D D

r

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0 H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.

inductance   (H/m)l
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has nonzero
off-diagonal entries that couple voltages and currents in different phases whether or not za = zb = zc.
As we explain in Chapter 9.4 when the load impedances are indeed identical za = zb = zc a transformed
impedance matrix will always be diagonal, leading to simpler analysis.

9.1.4 Impedance loads in D configuration

Consider a three-wire three-phase impedance load in D configuration as shown in Figure 9.3. The load
impedances (za,zb,zc) are not necessarily identical. Again the external behavior is defined by the relation
V = ZDI between the terminal voltages V := (Va,Vb,Vc) and the terminal currents I := (Ia, Ib, Ic). Here
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Figure 9.3: Sequence components of unbalanced phase currents.

the voltages V are in reference to an arbitrary point, e.g., the ground, not line-to-line voltages. This is the
same as deriving the Y -equivalent of the D-load.

To derive the phase impedance matrix ZD that relates V and I, we start with the load voltages Vload and
the load currents Iload that satisfy the Ohm’s law:

Vload :=

2

4
Vab
Vbc
Vca

3

5 =

2

4
za 0 0
0 zb 0
0 0 zc

3

5

| {z }
Zload

2

4
Iab
Ibc
Ica

3

5 =: Zload Iload (9.2a)

Express (Vload, Iload) in terms of terminal voltages and currents (V, I)

Vload = G1V and I = G2 Iload (9.2b)

where

G1 :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 and G2 :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (9.2c)

: capacitance   (F/m)( ⋅ )−1 c
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
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Per-phase line characteristics 

z:= r + iωl, r > 0, l > 0
y:= g + iωc, g ≥ 0, c > 0
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.
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Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:
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where r0 := re�µr/4, and equal per-phase capacitance for each line:
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Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has nonzero
off-diagonal entries that couple voltages and currents in different phases whether or not za = zb = zc.
As we explain in Chapter 9.4 when the load impedances are indeed identical za = zb = zc a transformed
impedance matrix will always be diagonal, leading to simpler analysis.
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Consider a three-wire three-phase impedance load in D configuration as shown in Figure 9.3. The load
impedances (za,zb,zc) are not necessarily identical. Again the external behavior is defined by the relation
V = ZDI between the terminal voltages V := (Va,Vb,Vc) and the terminal currents I := (Ia, Ib, Ic). Here

Scanned with CamScanner

Figure 9.3: Sequence components of unbalanced phase currents.

the voltages V are in reference to an arbitrary point, e.g., the ground, not line-to-line voltages. This is the
same as deriving the Y -equivalent of the D-load.
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: capacitance   (F/m)( ⋅ )−1 c
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If the voltage V is balanced and za = zb = zc then In will indeed be zero and the phases will be decoupled.
In unbalanced operation, however, the neutral current In may be nonzero and ZY generally has nonzero
off-diagonal entries that couple voltages and currents in different phases whether or not za = zb = zc.
As we explain in Chapter 9.4 when the load impedances are indeed identical za = zb = zc a transformed
impedance matrix will always be diagonal, leading to simpler analysis.

9.1.4 Impedance loads in D configuration

Consider a three-wire three-phase impedance load in D configuration as shown in Figure 9.3. The load
impedances (za,zb,zc) are not necessarily identical. Again the external behavior is defined by the relation
V = ZDI between the terminal voltages V := (Va,Vb,Vc) and the terminal currents I := (Ia, Ib, Ic). Here
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Figure 9.3: Sequence components of unbalanced phase currents.

the voltages V are in reference to an arbitrary point, e.g., the ground, not line-to-line voltages. This is the
same as deriving the Y -equivalent of the D-load.

To derive the phase impedance matrix ZD that relates V and I, we start with the load voltages Vload and
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Vload = G1V and I = G2 Iload (9.2b)

where

G1 :=

2

4
1 �1 0
0 1 �1

�1 0 1

3

5 and G2 :=

2

4
1 0 �1

�1 1 0
0 �1 1

3

5 (9.2c)

Per-phase line characteristics (balanced) 

z:= r + iωl, r > 0, l > 0
y:= g + iωc, g ≥ 0, c > 0



Outline
1. Line characteristics 

2. Line models


• Transmission matrix

•  circuit model

• Real and reactive line losses

• Special cases: lossless line, short line

Π



Balanced three-phase line
Assumptions: 
1. Conductors equally spaced at  with equal radii 


2.    for all 


3.   for all 


Per-phase line characteristics  

                      


D r
i1(t) + ⋯ + in(t) = 0 t
q1(t) + ⋯ + qn(t) = 0 t
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1. the conductors are equally spaced at D and have equal radii r;1

2. ia(t)+ ib(t)+ ic(t) = 0 at all times t;

3. qa(t)+qb(t)+qc(t) = 0 at all times t.

D

D D

r

Figure 2.2: Per-meter inductance and capacitance of a symmetric three-phase transmission line in balanced
operation.

It can be shown (see Exercise 2.1) that in this symmetric arrangement the effect of mutual inductances and
capacitances among the transmission lines is particularly simple, resulting in the following equal per-phase
inductance for each line:

l =
µ0

2p
ln

D
r0 H/m

where r0 := re�µr/4, and equal per-phase capacitance for each line:

c =
2pe

ln(D/r)
F/m

Note that l and c include not only the self-inductance and self-capacitance of the line, but also mutual
inductances and capacitances. Two implications are as follows.

1. Although there is magnetic coupling between phases, the conditions ia(t)+ ib(t)+ ic(t) = 0, qa(t)+
qb(t)+qc(t) = 0 and the symmetry (equal radii r and distances D) reduce the effect of the magnetic
coupling to the term lnD. This allows us to model the magnetic effect as if it consists of only self-
inductance and electric effect as if it consists of only self-capacitance. Moreover, the inductances
and capacitances are equal for each phase, permitting per-phase analysis.

2. To reduce the impedance per meter due to inductance or capacitance, we can reduce the spacing
D or increase the wire radius r. Both have limitations. Other techniques are used in practice to
approximate condition 1 above on the symmetry of line geometry, e.g., conductor bundling and
transposition of the transmission lines.

1We use r to denote both the per-meter series resistance and the radius of the conductor; the meaning should be clear from
the context.

• series impedance / meter                   

• shunt admittance / meter to neutral   

z := r + iωl Ω/m
y := g + iωc Ω−1/m

r > 0, l > 0
g ≥ 0, c > 0

Next: use line parameter  to model end-to-end behavior of per-phase line (transmission matrix)(z, y)



Transmission matrix
Distributed element model

dV = zI(x) dx
dI = (V(x) + dV)y dx ≈ yV(x) dx

ODE:





boundary cond:   

 

d
dx [V

I] = [0 z
y 0] [V

I]

V(0) = V2, I(0) = I2
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where the per-meter resistance A > 0 and conductance 6 � 0 depend on the material
and size of the line, and the per-meter inductance ; > 0 and parameter 2 > 0 of the line
can be calculated as in Chapters 2.1.2–2.1.4. In this section we derive two equivalent
models of a balanced three-phase transmission line. The first model represents the
terminal behavior, i.e., the mapping of the voltage and current between one end of
the line and those at the other end, by a transmission matrix in (2.10) below. The
second model represents the terminal behavior of the line by a linear circuit with series
impedance and shunt admittances given in (2.15) below.

2.2.1 Transmission matrix

Distributed-element model.

We start by deriving the +-� relations between two ends of a transmission line. Figure
2.4 shows a per-phase model of a balanced three-phase line of length ✓. The voltages
are phase (line-to-neutral) voltages as illustrated in Figure 2.3. We will call the left end
the sending end and the right end the receiving end. When we apply a voltage +1, with
respect to neutral, at the sending end driving a current �1 towards the receiving end,
the voltage drops and the current leaks from the sending end to the receiving end so
that the voltage + (G) and current � (G) at each point G of the line vary. We will derive a
relation between the sending end (+1, �1) and the receiving end (+2, �2) by solving for
(+ (G), � (G)) in terms of (+2, �2) for all 0  G  ✓.

V1

I1
zdx

V2V(x)V(x)+dV ydx

I2I(x)

dI

dx x
ℓ

Figure 2.4 Per-phase model of a balanced three-phase line of length ✓ with impedance
parameters I, H.

To this end consider the infinitesimal segment of length 3G at a distance G from the
receiving end. This segment is modeled by the circuit with series impedance I3G and
shunt admittance H3G to neutral as shown in Figure 2.4. Let the voltage and current
at point G be + := + (G) and � := � (G) respectively. Let the corresponding quantities at
point G + 3G be + (G) + 3+ and � (G) + 3�. Applying Kirchho�’s laws to the segment, we
have

3+ = I� (G)3G
3� = (+ (G) + 3+)H3G ⇡ H+ (G)3G



Transmission matrix
Distributed element model

2.2 Line models 85

where the per-meter resistance A > 0 and conductance 6 � 0 depend on the material
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relation between the sending end (+1, �1) and the receiving end (+2, �2) by solving for
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V1

I1
zdx

V2V(x)V(x)+dV ydx

I2I(x)

dI

dx x
ℓ

Figure 2.4 Per-phase model of a balanced three-phase line of length ✓ with impedance
parameters I, H.

To this end consider the infinitesimal segment of length 3G at a distance G from the
receiving end. This segment is modeled by the circuit with series impedance I3G and
shunt admittance H3G to neutral as shown in Figure 2.4. Let the voltage and current
at point G be + := + (G) and � := � (G) respectively. Let the corresponding quantities at
point G + 3G be + (G) + 3+ and � (G) + 3�. Applying Kirchho�’s laws to the segment, we
have

3+ = I� (G)3G
3� = (+ (G) + 3+)H3G ⇡ H+ (G)3G

[V(x)
I(x)] = U [eγx 0

0 e−γx] U−1 [V2
I2]

U := [Zc −Zc

1 1 ], U−1 :=
1

2Zc [ 1 Zc

−1 Zc]
characteristic impedance  Zc := z

y Ω/m propagation constant  γ := zy m−1



Transmission matrix
Distributed element model

[V1
I1] = [

cosh(γℓ) Zc sinh(γℓ)
Z−1

c sinh(γℓ) cosh(γℓ)] [V2
I2]

characteristic impedance  Zc := z
y Ω/m

propagation constant  γ := zy m−1

Transmission matrix maps receiving-end  to sending-end (V2, I2) (V1, I1)



 circuit modelΠ
Lumped element model

Transmission matrix 

[V1
I1 ] = [ 1 + Z′￼Y′￼/2 Z′￼

Y′￼(1 + Z′￼Y′￼/4) 1 + Z′￼Y′￼/2] [V2
I2 ]
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V1

+

−

V2

+

−

Y '
2

Z ' I2I1

Y '
2

Figure 2.5: Lumped-circuit P model of a transmission line.

where Z := z` is the total series impedance of the line and Y := y` is the total shunt admittance to neutral
of the line.

When |g`| ⌧ 1 then sinh(g`)/(g`) ⇡ 1 and tanh(g`/2)/(g`/2) ⇡ 1, in which case the P model in
Figure 2.5 can be approximated by the total series impedance Z and total shunt admittance Y to neutral of
the line.

In summary each phase of a balanced three-phase transmission line can be modeled as follows:

• Long line (` > 150 miles approximately): Use either (2.9) or the P circuit model with Z0 and Y 0

given by (2.11).

• Medium line (50 < ` < 150 miles approximately): Use the P circuit model with Z := z` and Y := y`
instead of Z0 and Y 0. Here Z = R+ iwL is the total series impedance of the line and Y = iwC is the
total shunt admittance to neutral of the line. In particular, for medium lines, the shunt resistance is
negligible.

• short line (` < 50 miles approximately): Use the P circuit model with Z only and neglect Y .

2.2.3 Real and reactive line losses

The power injected at terminal 1 towards terminal 2 and that at terminals 2 towards 1 are derived in Chapter
6.2.1 to be respectively (see (6.15)):

S12 := V1IH
1 =

✓
1
Z0

◆H �
|V1|2 �V1V H

2
�

+

✓
Y 0

2

◆H
|V1|2

S21 := V2(�I2)
H =

✓
1
Z0

◆H �
|V2|2 �V2V H

1
�

+

✓
Y 0

2

◆H
|V2|2

Admittance matrix 

[ I1
−I2] = [Z′￼−1 + Y′￼/2 −Z′￼−1

−Z′￼−1 Z′￼−1 + Y′￼/2] [V1
V2]

Long line (  miles) :                  use    and 


Medium line (  miles) :   use    and  


Short line (  miles) :                   use    and  

ℓ > 150 Z′￼ Y′￼

50 < ℓ < 150 Z = zℓ Y = iωC
ℓ < 50 Z = zℓ Y = 0



Sending-end current 





Line current loss





If   then    sending current = receiving current

I12 =
1
Z′￼

(V1 − V2) +
Y′￼

2
V1

I21 =
1
Z′￼

(V2 − V1) +
Y′￼

2
V2

I12 + I21 =
Y′￼

2 (V1 + V2)
Y′￼ = 0 I12 = − I21

Line current loss

(I12 = I1, I21 = − I2)



Sending-end current 





Line current loss





If   then    sending current = receiving current

I12 =
1
Z′￼

(V1 − V2) +
Y′￼

2
V1

I21 =
1
Z′￼

(V2 − V1) +
Y′￼

2
V2

I12 + I21 =
Y′￼

2 (V1 + V2)
Y′￼ = 0 I12 = − I21

Line current loss

(I12 = I1, I21 = − I2)



Sending-end power  


S12 := V1Ī12 =
1
Z̄′￼

( |V1 |2 − V1V̄2) +
Ȳ′￼

2
|V1 |2

S21 := V2Ī21 =
1
Z̄′￼

( |V2 |2 − V2V̄1) +
Ȳ′￼

2
|V2 |2

Line power loss

Real and reactive power losses


S12 + S21 = Z′￼| Is
12 |2 +

Ȳ′￼

2 ( |V1 |2 + |V2 |2 )



Outline
1. Line characteristics 

2. Line models


• Transmission matrix

•  circuit model

• Real and reactive line losses

• Special cases: lossless line, short lossless line

Π



lossless line

r = g := 0

general per-phase line

z:= r + iωl, r > 0, l > 0
y:= g + iωc, g ≥ 0, c > 0

short lossless line

r := 0, y := 0

Special cases
Per-phase transmission line



Characteristic impedance is real





Propagation constant is imaginary 





 circuit model: both series impedance and shunt admittance are reactive:


,          

Zc =
z
y

=
iωl
iωc

=
l
c

Ω

γ = zy = (iωl)(iωc) = iω lc m−1

Π

Z′￼ = i Zc sin(βℓ) Ω Y′￼

2 = i ωcℓ
2

tan(βℓ/2)
βℓ/2 Ω−1

Lossless line: r = g := 0

2.2 Line models 93

V1

I1 jx

V2

I2

2
ωC'j

2
ωC'j

Figure 2.6 ⇧-circuit model for a lossless line with length ✓ < c/V. (Sept 1, 2025: (i) G ! -; (ii)
Change 9 to i in figure.)

G = ✓ to the load G = 0, we determine the voltage + (G) for G 2 [0,✓] using (2.17):

+ (G) = +2 cos(VG) + i/2 �2 sin(VG) (2.19)

Suppose the line terminates at an impedance load /load := 'load + i-load. Then the
voltage + (G) at each point G depends on the load impedance because +2 = /load�2.
There are four cases of load impedance:

1 No load �2 = 0: Then+ (G) =+2 cos(VG) and hence the voltage magnitude |+ (G) | =
|+2 | cos(VG) increases from the source at G = ✓ to the end of the line at G = 0 as
long as V✓ < c/2 radian.

2 Surge impedance load /load = /2: The voltage magnitude |+ (G) | = |/2 �2 | is con-
stant, independent of G. Moreover the power delivered ((G) at every point G 2 [0,✓]
is real and constant |+2 |2//2 , so only real power is delivered. See Exercise 2.4.

3 Full load: Since �2 =+2//load we have

+ (G) =
✓
cos(VG) + i

/2

/load
sin(VG)

◆
+2

=
✓
cos(VG) + /2-load

|/load |2
sin(VG) + i

/2'load

|/load |2
sin(VG)

◆
+2 (2.20)

In Exercise 2.5 we derive su�cient conditions under which the voltage magnitude
|+ (G) | decreases from the source at G = ✓ to the load /load at G = 0.

4 Short circuit +2 = 0: + (G) = i/2 �2 sin(VG). Hence the voltage magnitude |+ (G) |
decreases from the source at G = ✓ to the load at G = 0 as long as V✓ < c/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude
towards the load (case 3 above) can be problematic because loads are generally designed
to work with specific voltages. As mentioned above low load voltage also increases line
loss in the network. Voltages are regulated tightly around their nominal values through
various voltage compensation devices in generating units and inside the network.

Example 2.4 (Steady-state stability limit). To derive the power delivered to a generic
load we have from (2.18) that

�2 =
+1 �+2

i-
� i

l⇠
0

2
+2

β := ω lc



Voltage along the line


V(x) = V2 cos(βx) + i Zc I2 sin(βx)

Lossless line: r = g := 0
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2. Surge impedance load Zload = Zc: The voltage magnitude |V (x)| is constant; see below.

3. Full load: Since I2 = V2/Zload we have

V (x) =

✓
cos(bx) + i Zc

Zload
sin(bx)

◆
V2

=

✓
cos(bx)+

ZcXload

|Zload|2
sin(bx) + i ZcRload

|Zload|2
sin(bx)

◆
V2 (2.15)

In Exercise 2.4 we derive for special cases sufficient conditions under which the voltage magnitude
|V (x)| decreases from the source at x = ` to the load Zload at x = 0.

4. Short circuit V2 = 0: V (x) = iZc I2 sin(bx). Hence the voltage magnitude |V (x)| decreases from the
source at x = ` to the load at x = 0 as long as b` < p/2 radian.

This is illustrated in Figure 2.7. The general trend of decreasing voltage magnitude towards the load (case

!(#)

!(#)

!(#)

# = ℓ # = 0

No	load	() = 0

SIL	*load = */

Full	 load

Short	circuit	!) = 0

Figure 2.7: Voltage magnitude |V (x)| on a lossless line.

3 above) can be problematic because loads are generally designed to work with specific voltages. As
mentioned above low load voltage also increases line loss in the network. Voltages are regulated tightly
around their nominal values through various voltage compensation devices in generating units and inside
the network.

Surge impedance loading (SIL). Suppose the receiving end is connected to an impedance load that is
equal to the surge impedance Zc =

p
l/c W. The power delivered by a lossless line to the resistive load Zc

is called the surge impedance loading (SIL). To calculate SIL we have from (2.12)

V (x) = V2 cos(bx) + iZcI2 sin(bx) = eibxV2

since V2 = ZcI2. This means

|V (x)| = |V2|, x 2 [0,`]

β := ω lc

Generally voltage drops along 

 the line towards load



Sending-end power from  to :





Explore 3 implications


• How does load voltage magnitude depend on active load power  ?


• Decoupling:  mainly depends on ,  on 

• Linear model: DC power flow


i j

Sij = ViĪij = Vi
V̄i − V̄j

iX
= i

1
X ( |Vi |

2 − ViV̄j)

|V2 | Pload
P θ |V | Q

Short lossless line: r := 0, y := 0



Sending-end power from  to :





Receiving-end load power at bus 2:





Suppose:  supplies a load with load power  , i.e., 





 : load power factor angle

i j

Sij = ViĪij = Vi
V̄i − V̄j

iX
= i

1
X ( |Vi |

2 − ViV̄j)

−S21 = − V2Ī21 = − i
1
X ( |V2 |2 − V2V̄1)

−S21 Pload + iQload
−S21 = Pload(1 + i tan ϕ)

ϕ := θV2
− θ−I21

Short lossless line: r := 0, y := 0



How does load voltage  depend on active load power  ?





Assume:     

Then


• 2 real equations in  with  as parameter 


• Solve for load voltage  given any 


• As load power  increases, solutions  trace out a nose curve


• If  increases further, no real solutions for  exists - voltage collapse

|V2 | Pload

−i
1
X ( |V2 |2 − V2V̄1) = Pload(1 + i tan ϕ)

V1 := 1∠0∘ ⇒ θ21 := θ2 − θ1 = θ2

( |V2 | , θ2) Pload
|V2 | Pload

Pload |V2 |
Pload |V2 |

Short lossless line: r := 0, y := 0
Load voltage solution and collapse



Sending-end power from  to :





Hence


i j

Sij = ViĪij = Vi
V̄i − V̄j

iX
= i

1
X ( |Vi |

2 − ViV̄j)

P12 =
|V1 | |V2 |

X
sin θ12

Q12 =
1
X ( |V1 |2 − |V1 | |V2 |cos θ12)

Q21 =
1
X ( |V2 |2 − |V1 | |V2 |cos θ12)

Short lossless line: r := 0, y := 0



Short lossless line: r := 0, y := 0
Decoupling

1.  and  are roughly decoupled,  and  are roughly decoupled





2.  mainly depends on  with rate





3. Voltage regulation





To maintain high load voltage :


decrease sending-end , increase load injection 

P12 |Vi | Qij θ12
∂P12

∂ |Vi |
=

|Vj |

X
sin θ12 ≈ 0

∂Qij

∂θ12
=

|V1 | |V2 |
X

sin θ12 ≈ 0

P12 θ12
∂P12

∂θ12
=

|V1 | |V2 |
X

cos θ12 ≈
|V1 | |V2 |

X

∂Q12

∂ |V2 |
= −

|V1 |
X

cos θ12 < 0
∂Q21

∂ |V2 |
=

1
X (2 |V2 | − |V1 |cos θ12) > 0

|V2 |
Q12 Q21



Short lossless line: r := 0, y := 0
Linear model

DC power flow model: , fixed , , ignore 





• Widely used for electricity market and long-time planning applications


• Reasonable model for transmission system apps, not for distribution system apps where  is high


R = 0 |Vi | sin θ12 ≈ θ12 Qij

Pij =
|V1 | |V2 |

X
θ12 =: b12(θ1 − θ2)

r


