Power System Analysis

Chapter 2 Transmission line models

Outline

- 1. Line characteristics
- 2. Line models

Outline

- 1. Line characteristics
 - Resistance r and conductance g
 - Series inductance l
 - Shunt capacitance *c*
 - Balanced 3ϕ lines
- 2. Line models

Three-phase line

Alternating currents in conductors line interact electromagnetically Interactions couple voltages & currents across phases In balanced operation, phases behave as if they are decoupled In each phase, line is characterized by

- series impedance / meter $z:=r+i\omega l$ Ω/m $r>0,\ l>0$
- shunt admittance / meter to neutral $y:=g+i\omega c$ Ω^{-1}/m $g\geq 0, \ c>0$

Assumptions

$$i_1(t) + \dots + i_n(t) = 0 \text{ for all } t$$

$$q_1(t) + \dots + q_n(t) = 0 \text{ for all } t$$

Series resistance r and shunt conductance g

Series resistance r depends on

- Temperature and cross-sectional area of the conductor (this is called the dc resistance)
- AC frequency (this is called the ac resistance and defined to be $P_{\mathsf{loss}}/\left|I\right|^2$)

Shunt conductance g accounts for real power loss between conductors or conductors and ground

- Due to leakage currents at insulators, depending on environment such as moisture level
- Due to corona when a strong electric field at conductor surface ionizes the air, causing it to conduct, depending on meteorological conditions such as rain
- Power loss due to shunt conductance g is typically much smaller than $r|I|^2$; hence g is often assumed zero in transmission line models

Series inductance L

Total flux linkages λ_k of conductor k depends on currents $i_{k'}$ in all conductors k'

$$\lambda_k = \left(\frac{\mu_0}{2\pi} \ln \frac{1}{r_k'}\right) i_k + \sum_{k' \neq k} \left(\frac{\mu_0}{2\pi} \ln \frac{1}{d_{kk'}}\right) i_{k'}$$

self inductance L_{kk} henrys/m

mutual inductances $L_{kk'}$ henrys/m

Series inductance l

Total flux linkages λ_k of conductor k depends on currents $i_{k'}$ in all conductors k'

$$\lambda_k = \left(\frac{\mu_0}{2\pi} \ln \frac{1}{r_k'}\right) i_k + \sum_{k' \neq k} \left(\frac{\mu_0}{2\pi} \ln \frac{1}{d_{kk'}}\right) i_{k'}$$

In vector form: $\lambda = Li$

Faraday's law:
$$v(t) = \frac{d}{dt}\lambda(t) = L\frac{d}{dt}i(t)$$

voltage drop along conductor

Shunt capacitance c

Voltage on surface of conductor k relative to reference:

$$v_k = \left(\frac{1}{2\pi\epsilon} \ln \frac{1}{r_k}\right) q_k + \sum_{k' \neq k} \left(\frac{1}{2\pi\epsilon} \ln \frac{1}{d_{kk'}}\right) q_{k'}$$

Shunt capacitance c

Voltage on surface of conductor k relative to reference:

$$v_k = \left(\frac{1}{2\pi\epsilon} \ln \frac{1}{r_k}\right) q_k + \sum_{k' \neq k} \left(\frac{1}{2\pi\epsilon} \ln \frac{1}{d_{kk'}}\right) q_{k'}$$

In vector form: v = Fq

Let $C := F^{-1}$. C_{kk} : self capacitance/m, $C_{kk'}$: mutual capacitance/m

Therefore: $i(t) = C \frac{d}{dt} v(t)$

Balanced three-phase line

Assumptions:

- 1. Conductors equally spaced at D with equal radii r
- 2. $i_1(t) + \cdots + i_n(t) = 0$ for all t
- 3. $q_1(t) + \dots + q_n(t) = 0$ for all t

Balanced three-phase line

Assumptions:

- Conductors equally spaced at D with equal radii r
- 2. $i_1(t) + \cdots + i_n(t) = 0$ for all t
- 3. $q_1(t) + \cdots + q_n(t) = 0$ for all t

$$\lambda_k = \left(\frac{\mu_0}{2\pi} \ln \frac{D}{r'}\right) i_k$$
inductance l (H/m)

$$\lambda_k = \left(\frac{\mu_0}{2\pi} \ln \frac{D}{r'}\right) i_k \qquad v_k = \left(\frac{1}{2\pi\epsilon} \ln \frac{D}{r}\right) q_k$$
inductance l (H/m)
$$(\cdot)^{-1}$$
: capacitance c (F/m)

Per-phase line characteristics (balanced)

$$z:=r+i\omega l, r>0, l>0$$

 $y:=g+i\omega c, g \ge 0, c>0$

Outline

- 1. Line characteristics
- 2. Line models
 - Transmission matrix
 - ■ T circuit model
 - Real and reactive line losses
 - Special cases: lossless line, short line

Balanced three-phase line

Assumptions:

- 1. Conductors equally spaced at D with equal radii r
- 2. $i_1(t) + \cdots + i_n(t) = 0$ for all t
- 3. $q_1(t) + \cdots + q_n(t) = 0$ for all t

Per-phase line characteristics

• series impedance / meter
$$z:=r+i\omega l \qquad \Omega/\mathrm{m}$$
• shunt admittance / meter to neutral
$$y:=g+i\omega c \qquad \Omega^{-1}/\mathrm{m}$$

$$r > 0, l > 0$$
 $g \ge 0, c > 0$

Next: use line parameter (z, y) to model end-to-end behavior of per-phase line (transmission matrix)

Transmission matrix

Distributed element model

$$dV = zI(x) dx$$

$$dI = (V(x) + dV)y dx \approx yV(x) dx$$

ODE:

$$\frac{d}{dx} \begin{bmatrix} V \\ I \end{bmatrix} = \begin{bmatrix} 0 & z \\ y & 0 \end{bmatrix} \begin{bmatrix} V \\ I \end{bmatrix}$$

boundary cond:

$$V(0) = V_2, I(0) = I_2$$

Transmission matrix

Distributed element model

$$\begin{bmatrix} V(x) \\ I(x) \end{bmatrix} = U \begin{bmatrix} e^{\gamma x} & 0 \\ 0 & e^{-\gamma x} \end{bmatrix} U^{-1} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

$$U := \begin{bmatrix} Z_c - Z_c \\ 1 & 1 \end{bmatrix}, \quad U^{-1} := \frac{1}{2Z_c} \begin{bmatrix} 1 & Z_c \\ -1 & Z_c \end{bmatrix}$$

characteristic impedance
$$Z_c:=\sqrt{\frac{z}{y}} \ \Omega/m$$
 propagation constant $\gamma:=\sqrt{zy} \ m^{-1}$

propagation constant
$$\gamma := \sqrt{zy} \quad m^{-1}$$

Transmission matrix

Distributed element model

Transmission matrix maps receiving-end (V_2, I_2) to sending-end (V_1, I_1)

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \cosh(\gamma \ell) & Z_c \sinh(\gamma \ell) \\ Z_c^{-1} \sinh(\gamma \ell) & \cosh(\gamma \ell) \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

characteristic impedance
$$Z_c:=\sqrt{\frac{z}{y}}$$
 Ω/m propagation constant $\gamma:=\sqrt{zy}$ m^{-1}

II circuit model

Lumped element model

Transmission matrix

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 + Z'Y'/2 & Z' \\ Y'(1 + Z'Y'/4) & 1 + Z'Y'/2 \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

Admittance matrix

$$\begin{bmatrix} I_1 \\ -I_2 \end{bmatrix} = \begin{bmatrix} Z'^{-1} + Y'/2 & -Z'^{-1} \\ -Z'^{-1} & Z'^{-1} + Y'/2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Long line ($\ell > 150$ miles): use Z' and Y'

Medium line (50 < ℓ < 150 miles): use $Z = z\ell$ and $Y = i\omega C$

Short line ($\ell < 50$ miles): use $Z = z\ell$ and Y = 0

Line current loss

Sending-end current

$$I_{12} = \frac{1}{Z'}(V_1 - V_2) + \frac{Y'}{2}V_1$$

$$I_{21} = \frac{1}{Z'}(V_2 - V_1) + \frac{Y'}{2}V_2$$

$$(I_{12} = I_1, I_{21} = -I_2)$$

Line current loss

Sending-end current

$$I_{12} = \frac{1}{Z'}(V_1 - V_2) + \frac{Y'}{2}V_1$$

$$I_{21} = \frac{1}{Z'}(V_2 - V_1) + \frac{Y'}{2}V_2$$

$$(I_{12} = I_1, I_{21} = -I_2)$$

Line current loss

$$I_{12} + I_{21} = \frac{Y'}{2} (V_1 + V_2)$$

If Y'=0 then $I_{12}=-I_{21}$ sending current = receiving current

Line power loss

Sending-end power

$$S_{12} := V_1 \bar{I}_{12} = \frac{1}{\bar{Z}'} \left(|V_1|^2 - V_1 \bar{V}_2 \right) + \frac{\bar{Y}'}{2} |V_1|^2$$

$$S_{21} := V_2 \bar{I}_{21} = \frac{1}{\bar{Z}'} \left(|V_2|^2 - V_2 \bar{V}_1 \right) + \frac{\bar{Y}'}{2} |V_2|^2$$

Real and reactive power losses

$$S_{12} + S_{21} = |Z'|I_{12}^s|^2 + \frac{\bar{Y}'}{2} (|V_1|^2 + |V_2|^2)$$

Outline

- 1. Line characteristics
- 2. Line models
 - Transmission matrix
 - II circuit model
 - Real and reactive line losses
 - Special cases: lossless line, short lossless line

Special cases

Per-phase transmission line

general per-phase line

$$z:=r+i\omega l, \quad r>0, l>0$$

$$y := g + i\omega c, \quad g \ge 0, c > 0$$

lossless line

$$r = g := 0$$

short lossless line

$$r := 0, y := 0$$

Lossless line: r = g := 0

Characteristic impedance is real

$$Z_c = \sqrt{\frac{z}{y}} = \sqrt{\frac{i\omega l}{i\omega c}} = \sqrt{\frac{l}{c}} \Omega$$

Propagation constant is imaginary

$$\gamma = \sqrt{zy} = \sqrt{(i\omega l)(i\omega c)} = i\omega\sqrt{lc} \quad m^{-1} \quad \beta := \omega\sqrt{lc}$$

II circuit model: both series impedance and shunt admittance are reactive:

$$Z' = i Z_c \sin(\beta \ell) \quad \Omega, \qquad \frac{Y'}{2} = i \frac{\omega c \ell}{2} \frac{\tan(\beta \ell/2)}{\beta \ell/2} \quad \Omega^{-1}$$

$$V_1 \qquad j \frac{\omega C'}{2} \qquad j \frac{\omega C'}{2} \qquad V_2$$

Lossless line: r = g := 0

Voltage along the line

$$V(x) = V_2 \cos(\beta x) + i Z_c I_2 \sin(\beta x)$$

$$\beta := \omega \sqrt{lc}$$

Generally voltage drops along the line towards load

Short lossless line: r := 0, y := 0

Sending-end power from i to j:

$$S_{ij} = V_i \bar{I}_{ij} = V_i \frac{\bar{V}_i - \bar{V}_j}{iX} = i \frac{1}{X} \left(|V_i|^2 - V_i \bar{V}_j \right)$$

Explore 3 implications

- How does load voltage magnitude $|V_2|$ depend on active load power P_{load} ?
- Decoupling: P mainly depends on θ , |V| on Q
- Linear model: DC power flow

Short lossless line: r := 0, y := 0

Sending-end power from i to j:

$$S_{ij} = V_i \bar{I}_{ij} = V_i \frac{\bar{V}_i - \bar{V}_j}{iX} = i \frac{1}{X} \left(|V_i|^2 - V_i \bar{V}_j \right)$$

Receiving-end load power at bus 2:

$$-S_{21} = -V_2 \bar{I}_{21} = -i\frac{1}{X} \left(|V_2|^2 - V_2 \bar{V}_1 \right)$$

Suppose: $-S_{21}$ supplies a load with load power $P_{\mbox{load}}+iQ_{\mbox{load}}$, i.e.,

$$-S_{21} = P_{\mathsf{load}}(1 + i \tan \phi)$$

 $\phi := \theta_{V_2} - \theta_{-I_{21}}$: load power factor angle

Short lossless line: r := 0, y := 0Load voltage solution and collapse

How does load voltage $\lceil V_2 \rceil$ depend on active load power P_{load} ?

$$-i\frac{1}{X}\left(|V_2|^2 - V_2\bar{V}_1\right) = P_{\text{load}}(1 + i\tan\phi)$$

Assume: $V_1 := 1 \angle 0^\circ \Rightarrow \theta_{21} := \theta_2 - \theta_1 = \theta_2$

Then

- 2 real equations in ($|V_2|$, θ_2) with $P_{\mbox{load}}$ as parameter
- Solve for load voltage $|V_2|$ given any P_{load}
- As load power P_{load} increases, solutions $|V_2|$ trace out a nose curve
- If $P_{\mbox{load}}$ increases further, no real solutions for $|V_2|$ exists voltage collapse

Short lossless line: r := 0, y := 0

Sending-end power from i to j:

$$S_{ij} = V_i \bar{I}_{ij} = V_i \frac{\bar{V}_i - \bar{V}_j}{iX} = i \frac{1}{X} \left(|V_i|^2 - V_i \bar{V}_j \right)$$

Hence

$$P_{12} = \frac{|V_1| |V_2|}{X} \sin \theta_{12}$$

$$Q_{12} = \frac{1}{X} \left(|V_1|^2 - |V_1| |V_2| \cos \theta_{12} \right)$$

$$Q_{21} = \frac{1}{Y} \left(|V_2|^2 - |V_1| |V_2| \cos \theta_{12} \right)$$

Short lossless line: r := 0, y := 0Decoupling

1. P_{12} and $|V_i|$ are roughly decoupled, Q_{ij} and θ_{12} are roughly decoupled

$$\frac{\partial P_{12}}{\partial |V_i|} = \frac{|V_j|}{X} \sin \theta_{12} \approx 0 \qquad \frac{\partial Q_{ij}}{\partial \theta_{12}} = \frac{|V_1||V_2|}{X} \sin \theta_{12} \approx 0$$

2. P_{12} mainly depends on θ_{12} with rate

$$\frac{\partial P_{12}}{\partial \theta_{12}} = \frac{|V_1||V_2|}{X} \cos \theta_{12} \approx \frac{|V_1||V_2|}{X}$$

3. Voltage regulation

$$\frac{\partial Q_{12}}{\partial |V_2|} = -\frac{|V_1|}{X} \cos \theta_{12} < 0 \qquad \frac{\partial Q_{21}}{\partial |V_2|} = \frac{1}{X} \left(2|V_2| - |V_1| \cos \theta_{12} \right) > 0$$

To maintain high load voltage $|V_2|$:

decrease sending-end Q_{12} , increase load injection Q_{21}

Short lossless line: r := 0, y := 0Linear model

DC power flow model: R=0, fixed $|V_i|$, $\sin\theta_{12}\approx\theta_{12}$, ignore Q_{ij}

$$P_{ij} = \frac{|V_1||V_2|}{X} \theta_{12} =: b_{12}(\theta_1 - \theta_2)$$

- Widely used for electricity market and long-time planning applications
- Reasonable model for transmission system apps, not for distribution system apps where r is high