Power System Analysis

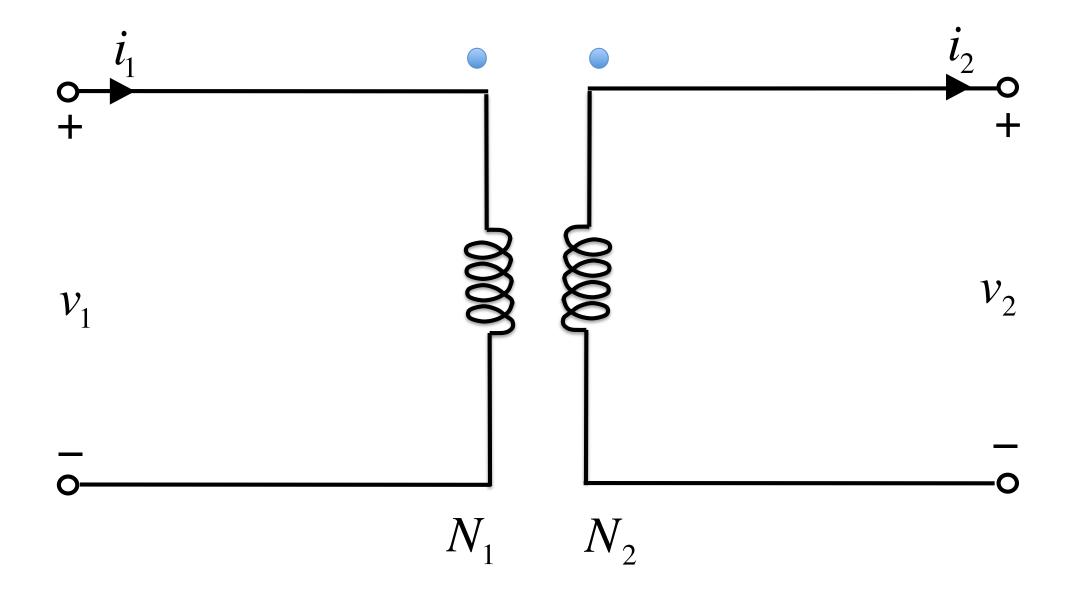
Chapter 3 Transformer models

Outline

- 1. Single-phase transformer
- 2. Balanced three-phase transformers
- 3. Equivalent impedance
- 4. Per-phase analysis
- 5. Per-unit normalization

Outline

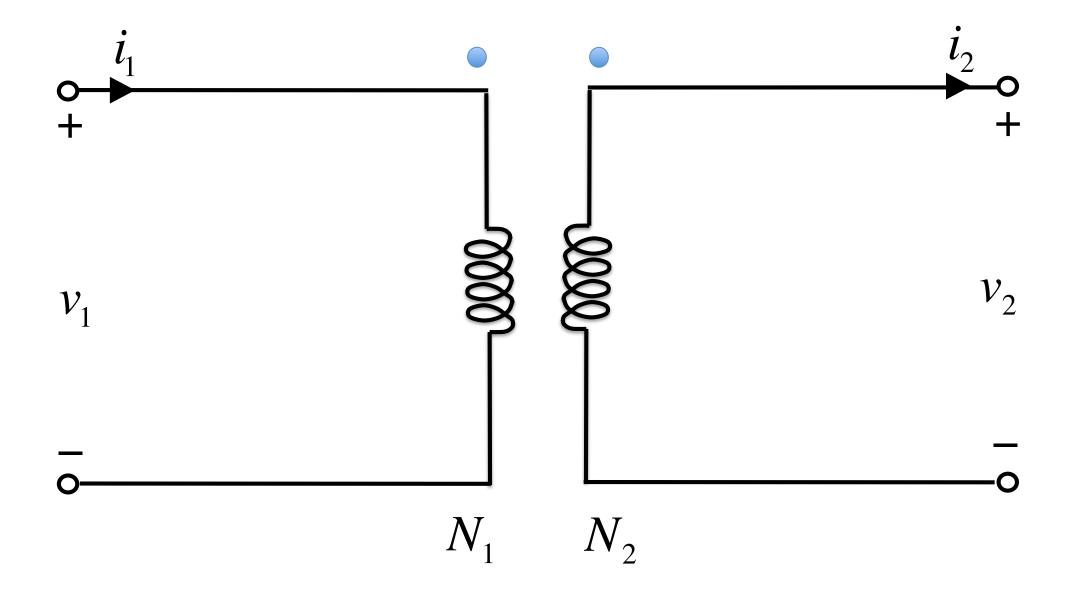
- 1. Single-phase transformer
 - Ideal transformer
 - Nonideal transformer
 - ullet Circuit models: T eq circuit, simplified circuit, UVN, split-phase
- 2. Balanced three-phase transformers
- 3. Equivalent impedance
- 4. Per-phase analysis
- 5. Per-unit normalization



voltage gain
$$n:=\frac{N_2}{N_1}$$
 turns ratio $a:=\frac{N_1}{N_2}$

Voltage & current gains

$$\frac{v_2(t)}{v_1(t)} = n \qquad \frac{i_2(t)}{i_1(t)} = a$$



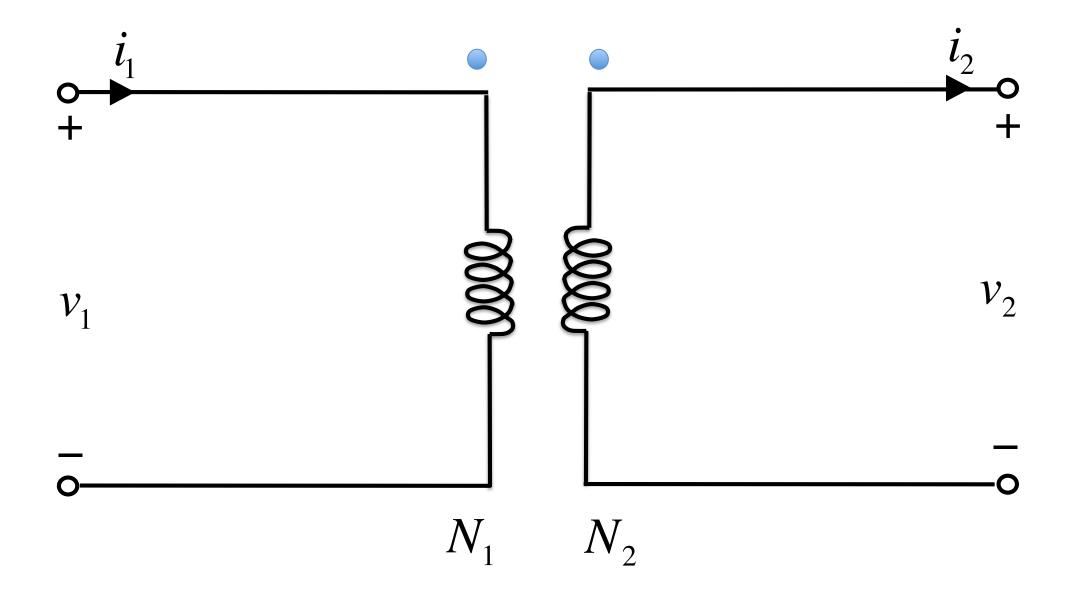
voltage gain
$$n:=\frac{N_2}{N_1}$$
 turns ratio $a:=\frac{N_2}{N_2}$

Voltage & current gains

$$\frac{V_2}{V_1} = n \qquad \frac{I_2}{I_1} = a$$

Transmission matrix

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & n \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

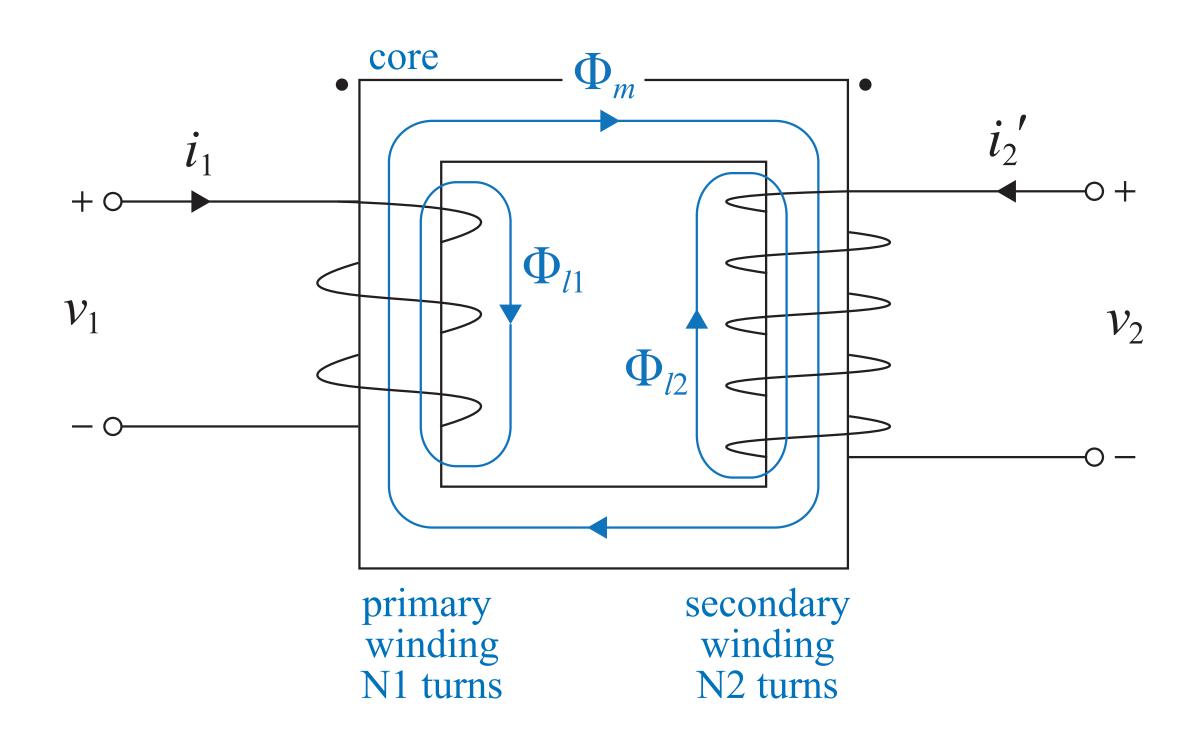


voltage gain
$$n:=rac{N_2}{N_1}$$
 turns ratio $a:=rac{N_2}{N_2}$

Power transfer

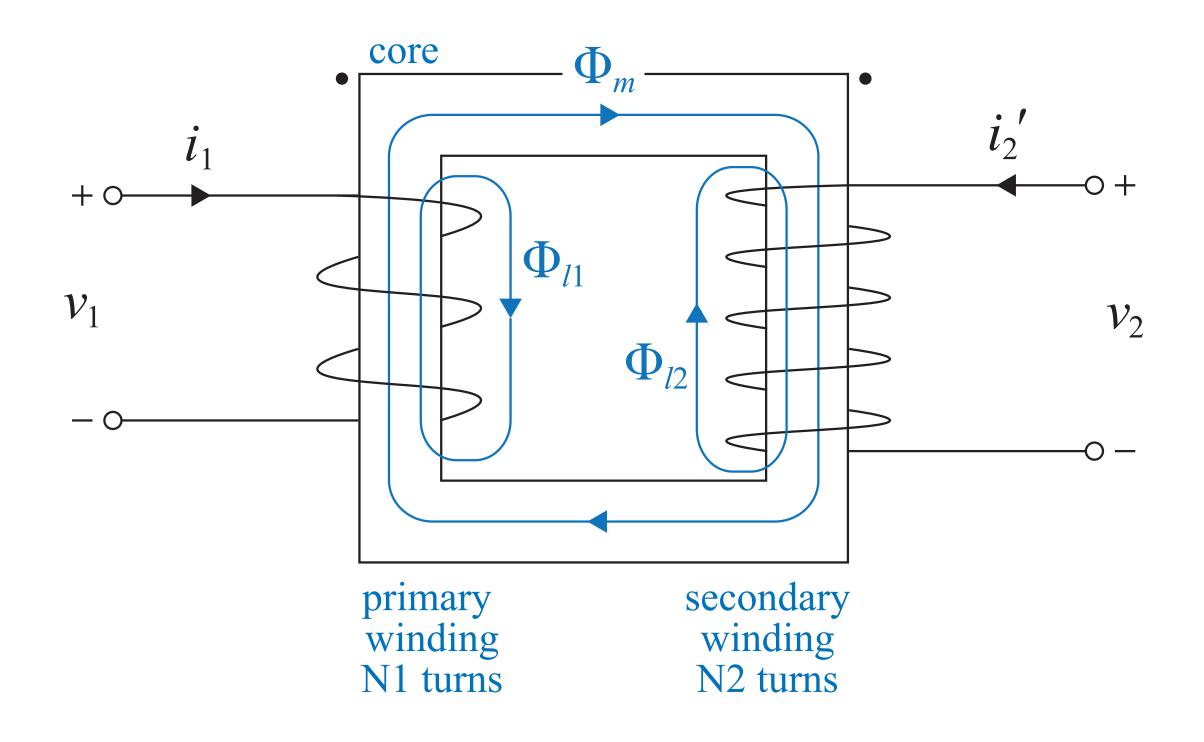
$$\frac{-S_{21}}{S_{12}} := \frac{V_2 \bar{I}_2}{V_1 \bar{I}_1} = n \cdot a = 1$$

i.e., deal transformer incurs no power loss



Nonideal behavior

- Power losses (coil resistances, eddy currents, hysteresis losses)
- . Leakage magnetic fluxes $\left(\Phi_{l_1},\Phi_{l_2}\right)$
- Finite permeability of magnetic cores



Voltages

$$v_1 = r_1 i_1 + \frac{d\lambda_1}{dt}, \qquad v_2 = r_2 i_2' + \frac{d\lambda_2}{dt}$$

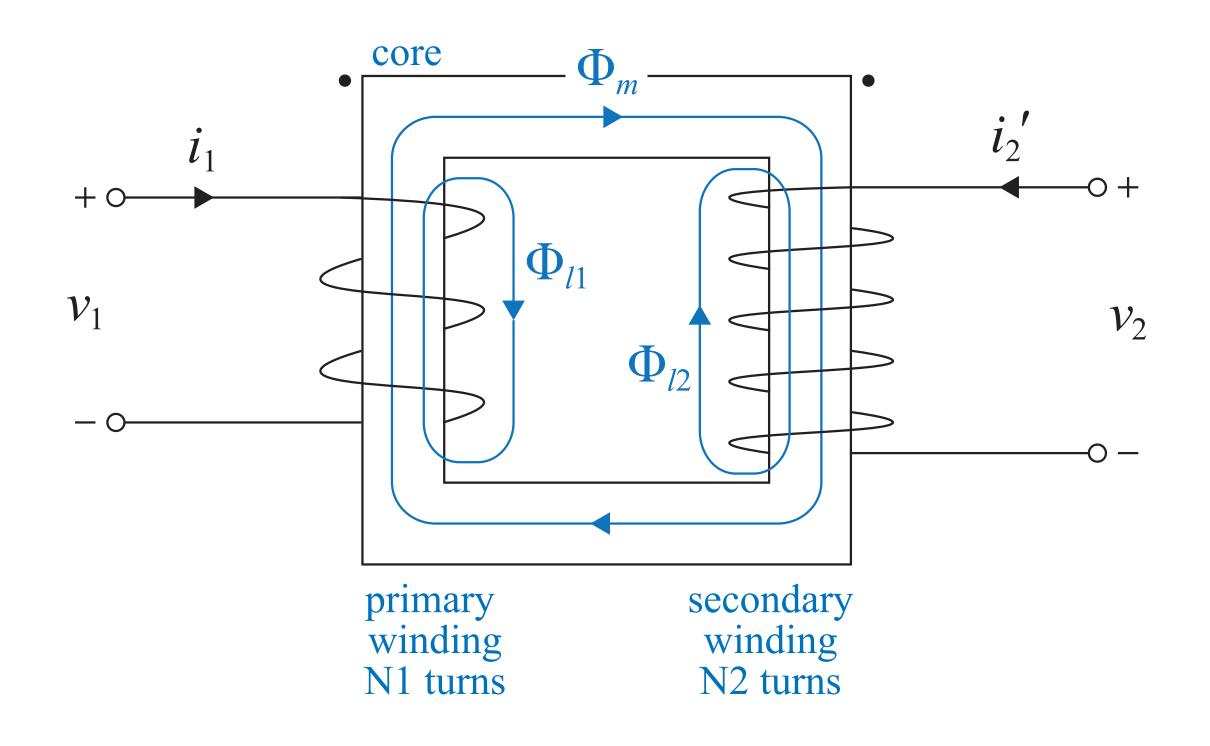
Total flux linkages

$$\lambda_1 = N_1 \Phi_m + \lambda_{l1}, \qquad \lambda_2 = N_2 \Phi_m + \lambda_{21}$$
 $\lambda_{l1} = L_{l1} i_1, \qquad \lambda_{l2} = L_{l2} i_2'$

Total magnetomotive force

$$F = N_1 i_1 + N_2 i_2' = R\Phi_m$$

Mutual flux linkages due to mutual flex Φ_m : $\left(N_1\Phi_m,N_2\Phi_m\right)$ Leakage flux linkages due to leakage fluxes $\left(\Phi_{l_1},\Phi_{l_2}\right)$: $\left(\lambda_{l1},\ \lambda_{l2}\right)$



Voltages

$$v_1 = r_1 i_1 + \frac{d\lambda_1}{dt}, \qquad v_2 = r_2 i_2' + \frac{d\lambda_2}{dt}$$

Total flux linkages

$$\lambda_1 = N_1 \Phi_m + \lambda_{l1}, \qquad \lambda_2 = N_2 \Phi_m + \lambda_{21}$$
 $\lambda_{l1} = L_{l1} i_1, \qquad \lambda_{l2} = L_{l2} i_2'$

Total magnetomotive force

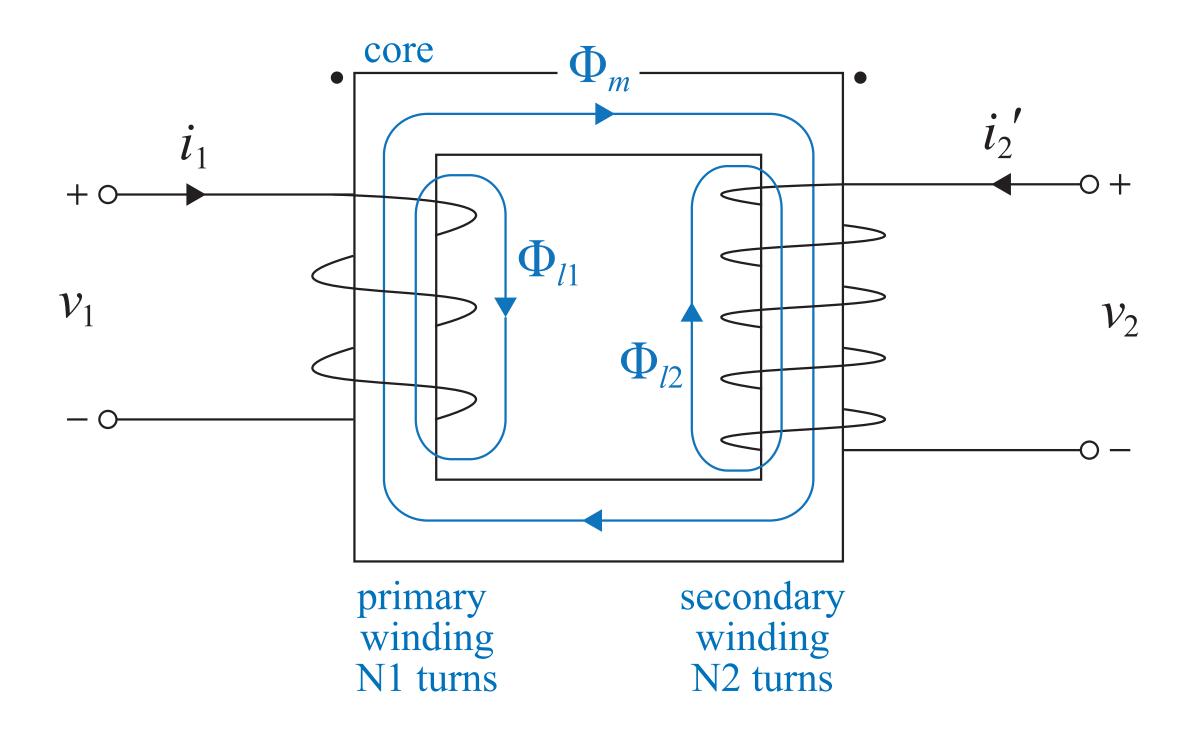
$$F = N_1 i_1 + N_2 i_2' = R\Phi_m$$

Ideal transformer

- Zero power losses: $r_1 = r_2 = 0$
- Zero leakage flux linkages: $L_{l1} = L_{l2} = 0$ \Longrightarrow

 $v_1 = N_1 \frac{d\Phi_m}{dt}, \quad v_2 = N_2 \frac{d\Phi_m}{dt}, \quad 0 = N_1 i_1 + N_2 i_2'$

Infinite permeability: R=0



Voltages

$$v_{1} = r_{1}i_{1} + L_{l1}\frac{di_{1}}{dt} + N_{1}\frac{d\Phi_{m}}{dt}$$

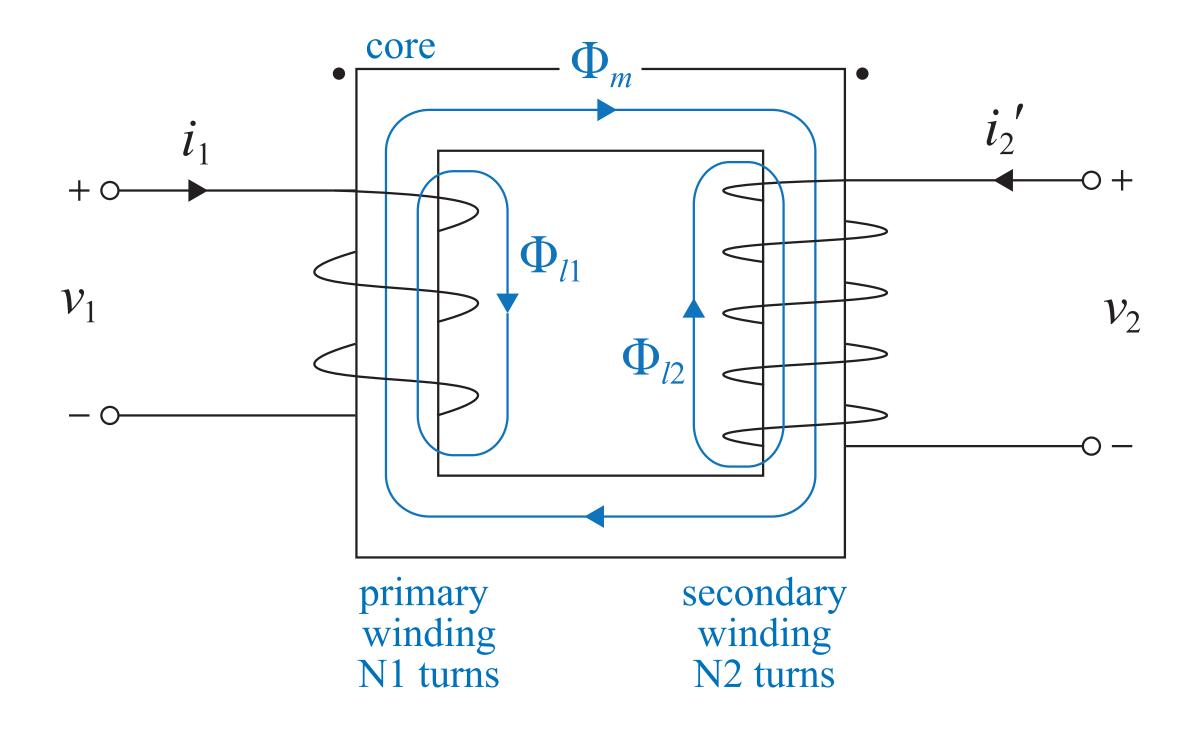
$$v_{2} = r_{2}i'_{2} + L_{l2}\frac{di'_{2}}{dt} + N_{2}\frac{d\Phi_{m}}{dt}$$

Primary magnetizing current \hat{i}_m

• primary current when secondary circuit is open $i_2' := 0$

•
$$N_1\hat{i}_m=R\Phi_m$$
: let $L_m:=N_1^2/R$ and
$$\hat{u}_1:=N_1\frac{d\Phi_m}{dt}=L_m\frac{d\hat{i}_m}{dt}$$

$$\hat{u}_2:=N_2\frac{d\Phi_m}{dt}=\frac{N_2}{N_1}\hat{u}_1$$
 ideal transformer



Nonideal elements

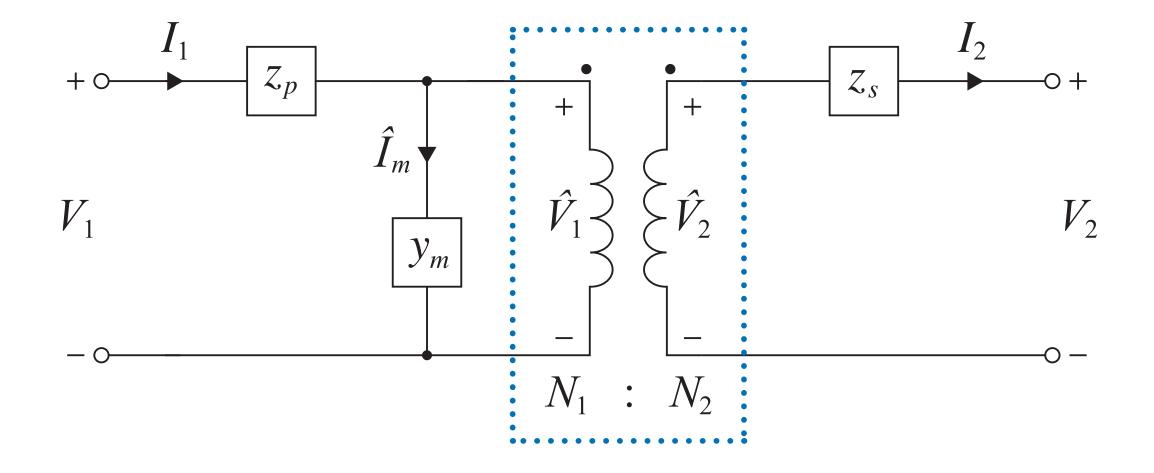
$$v_{1} = r_{1}i_{1} + L_{l1}\frac{di_{1}}{dt} + \hat{u}_{1}, \quad \hat{u}_{1} = L_{m}\frac{d\hat{i}_{m}}{dt}$$

$$v_{2} = -r_{2}i_{2} - L_{l2}\frac{di_{2}}{dt} + \hat{u}_{2}$$

Ideal transformer

$$\hat{u}_2 = \frac{N_2}{N_1} \hat{u}_1, \qquad i_2 = \frac{N_1}{N_2} \left(i_1 - \hat{i}_m \right)$$

Circuit model



Nonideal elements (phasor domain)

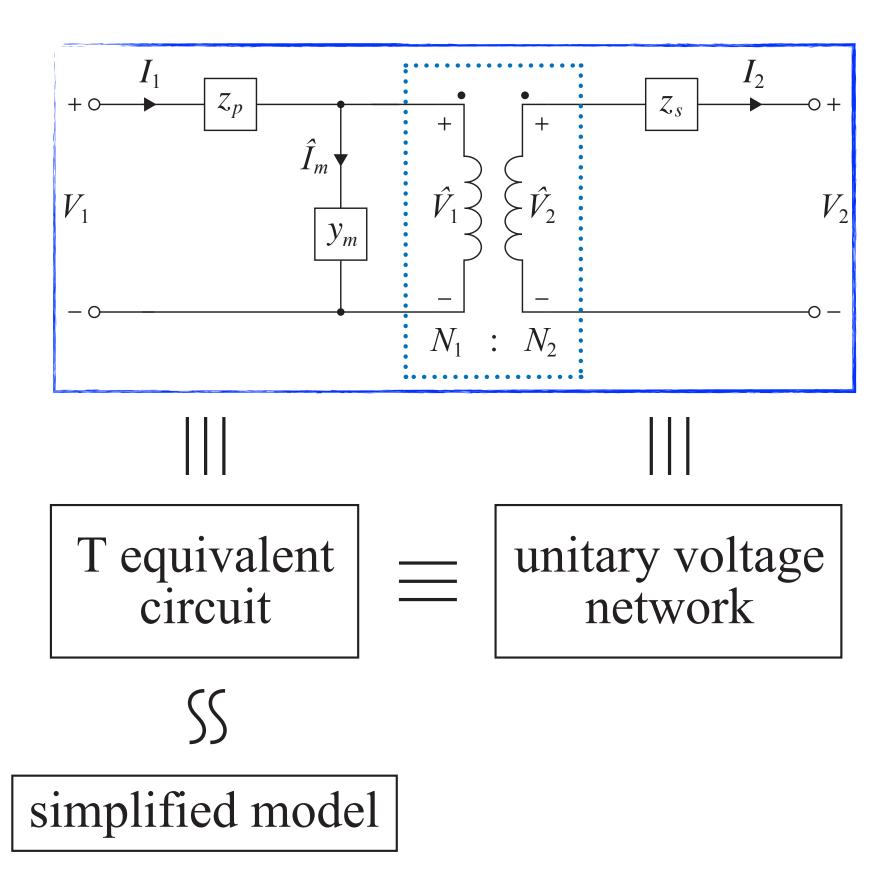
$$V_1 = z_p I_1 + \hat{U}_1, \qquad \hat{I}_m = y_m \hat{U}_1$$

 $\hat{U}_2 = z_s I_2 + V_2$

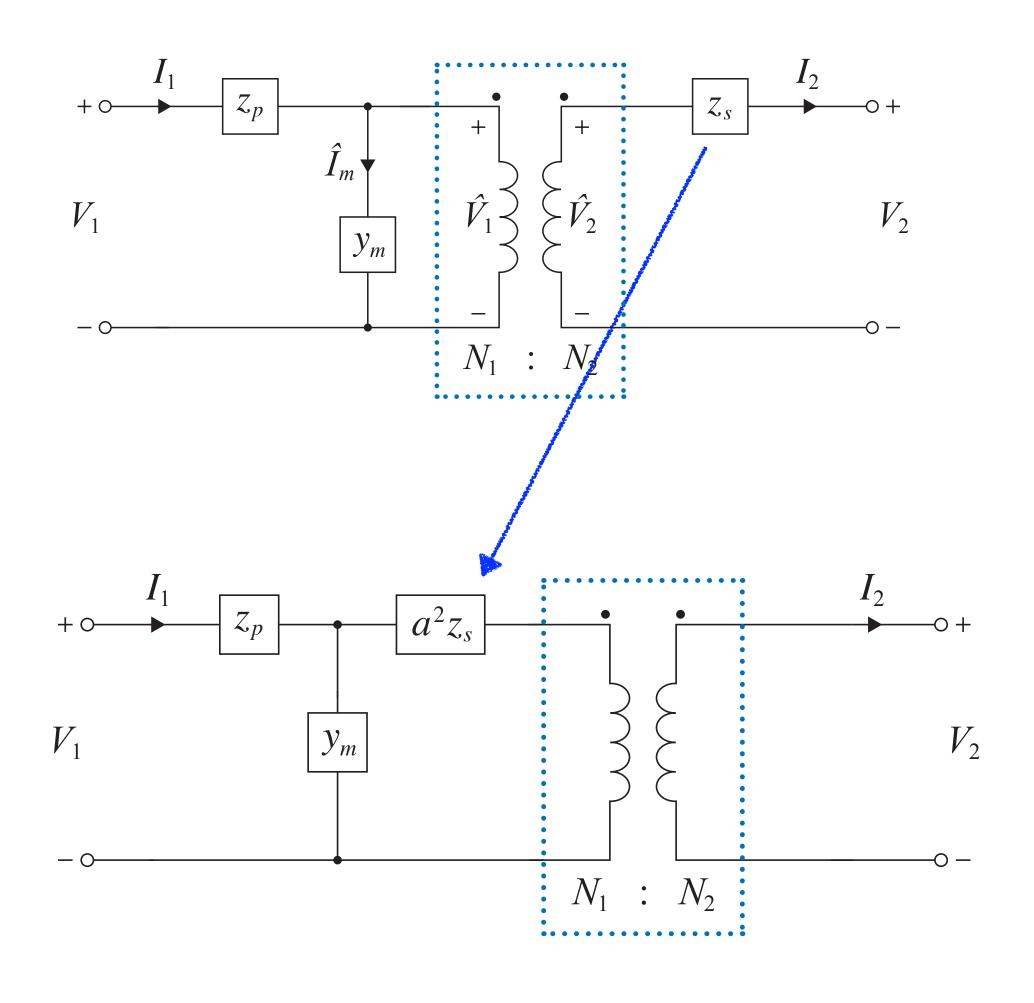
Ideal transformer (phasor domain)

$$\hat{U}_2 = \frac{N_2}{N_1} \hat{U}_1, \qquad I_2 = \frac{N_1}{N_2} \left(I_1 - \hat{I}_m \right)$$

Circuit models



T equivalent circuit



Refer series impedance z_s to the primary side $\longrightarrow T$ equivalent circuit

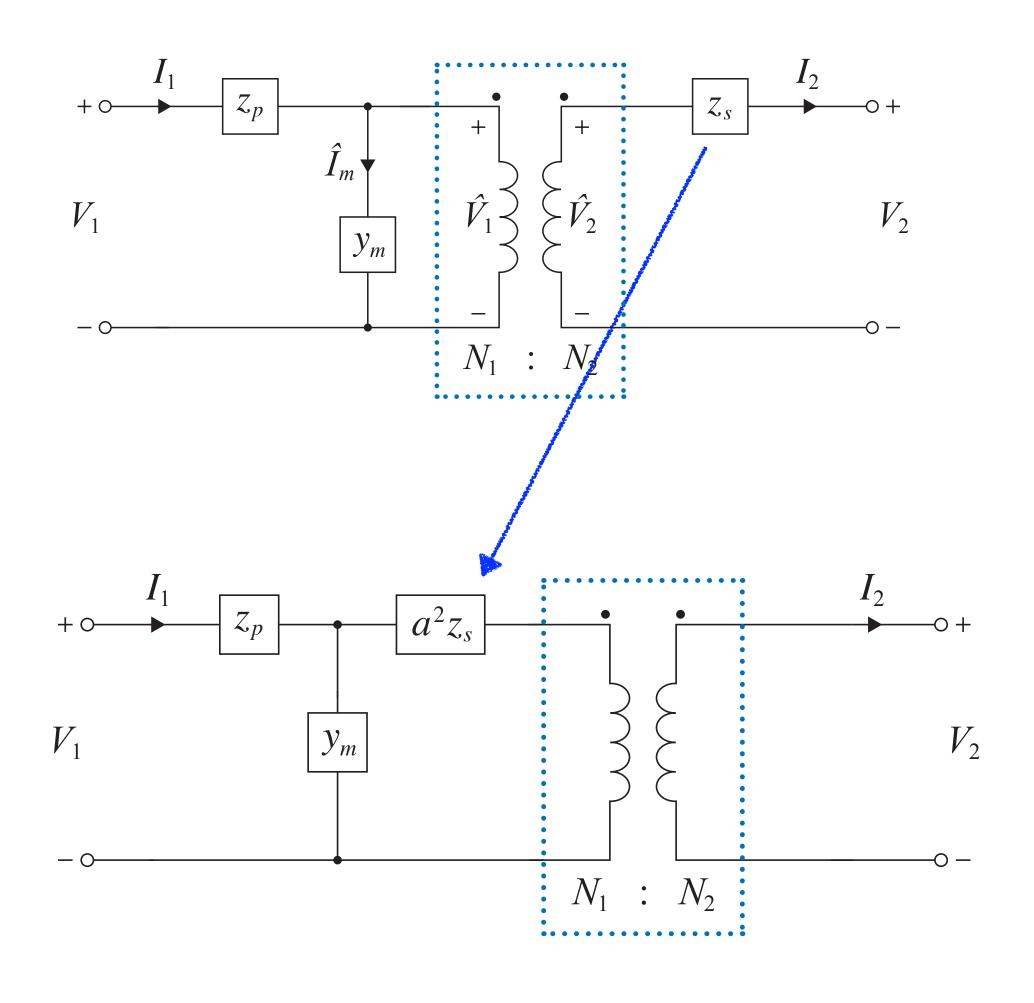
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a \left(1 + z_p y_m \right) & a z_s (1 + z_p y_m) + n z_p \\ a y_m & n + a z_s y_m \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

where $n := N_2/N_1$, a := 1/n

"Equivalent model" means

- Same end-to-end behavior, e.g., transmission matrix, or admittance matrix;
- Internal variables may be different

T equivalent circuit



Refer series impedance z_s to the primary side $\longrightarrow T$ equivalent circuit

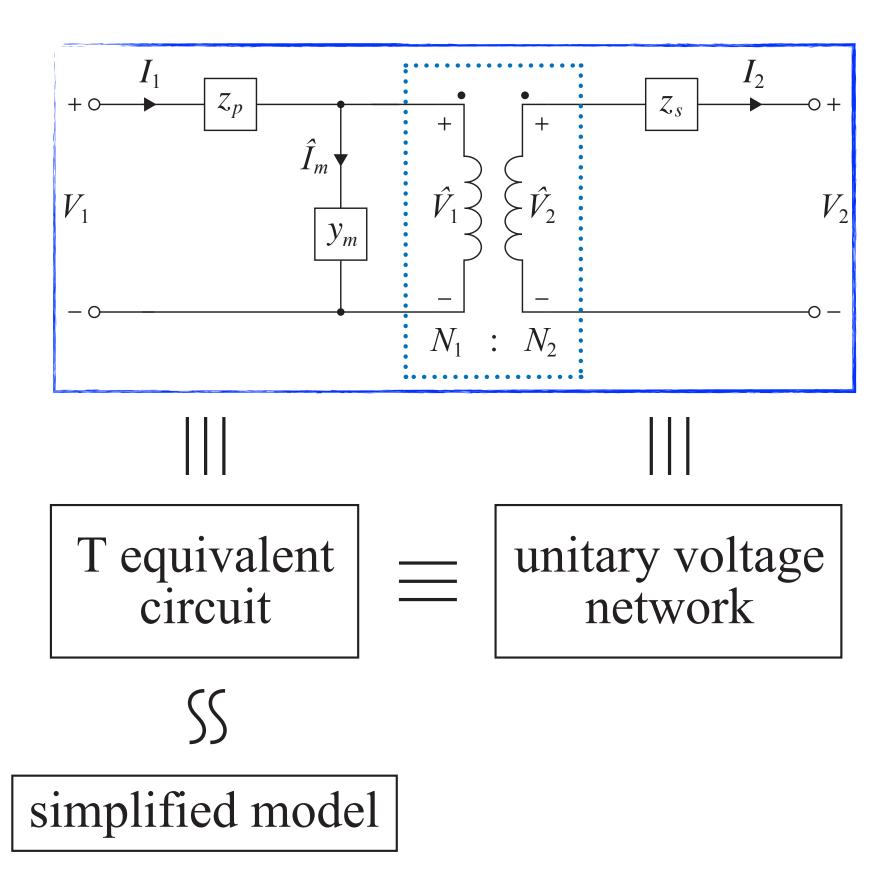
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a \left(1 + z_p y_m \right) & a z_s (1 + z_p y_m) + n z_p \\ a y_m & n + a z_s y_m \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

where $n := N_2/N_1$, a := 1/n

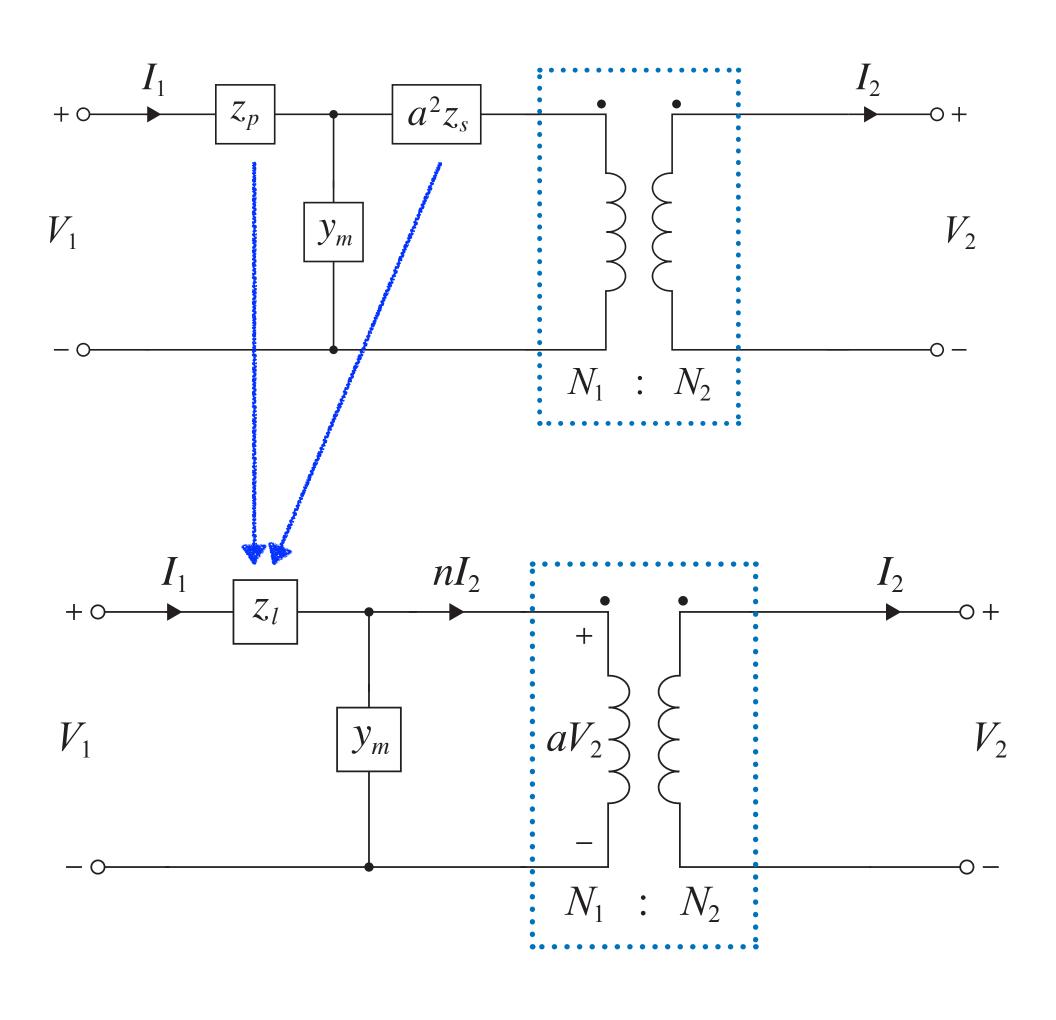
Model parameters (z_p, z_s, y_m) cannot be uniquely determined from just short-circuit & open-circuit tests

Additional tests are needed

Circuit models



Simplified circuit

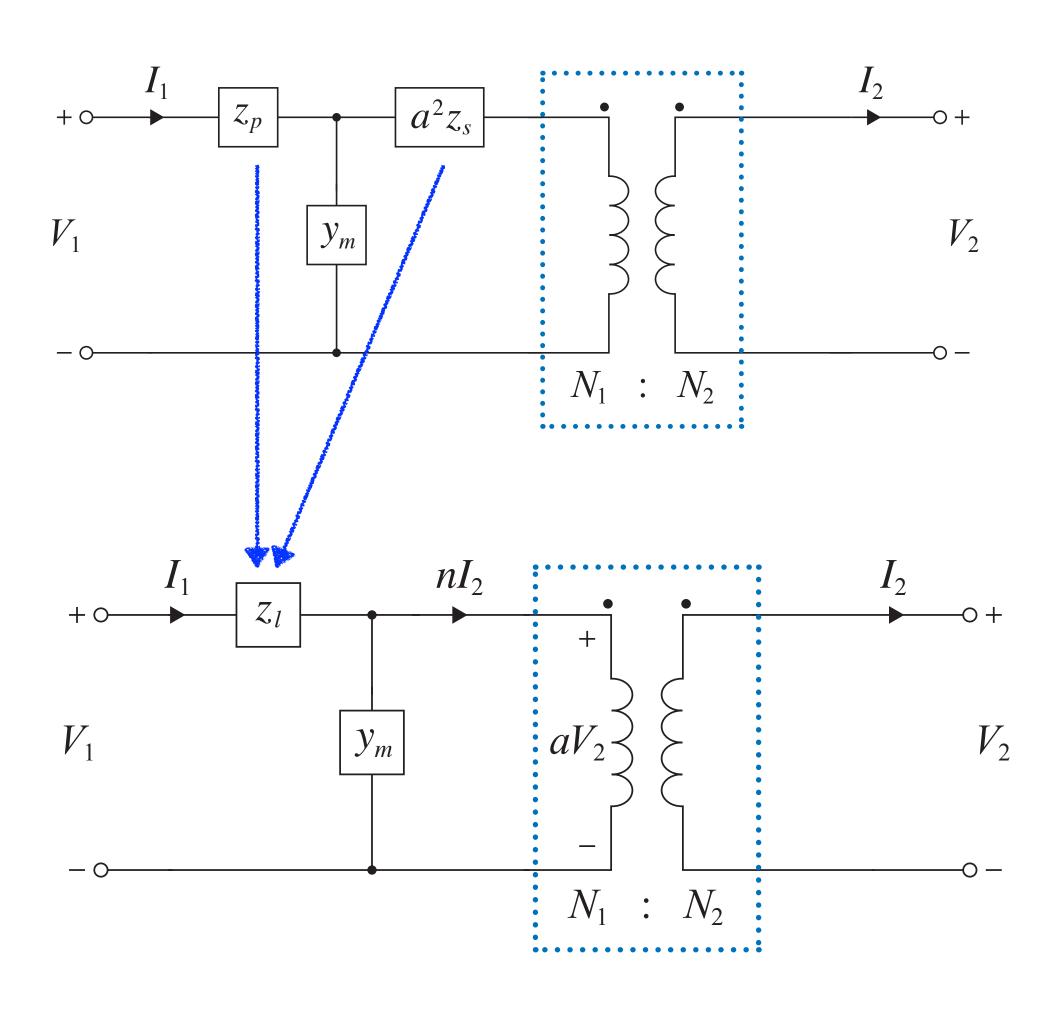


Interchange a^2z_s and y_m and combine with z_p : $z_l := z_p + a^2z_s$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a (1 + z_l y_m) & n z_l \\ a y_m & n \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

where $n := N_2/N_1$, a := 1/n

Simplified circuit



Interchange a^2z_s and y_m and combine with z_p : $z_l := z_p + a^2z_s$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a (1 + z_l y_m) & n z_l \\ a y_m & n \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

where $n := N_2/N_1$, a := 1/n

Good approximation of T equivalent circuit when $|y_m| \ll 1/|a^2z_s|$

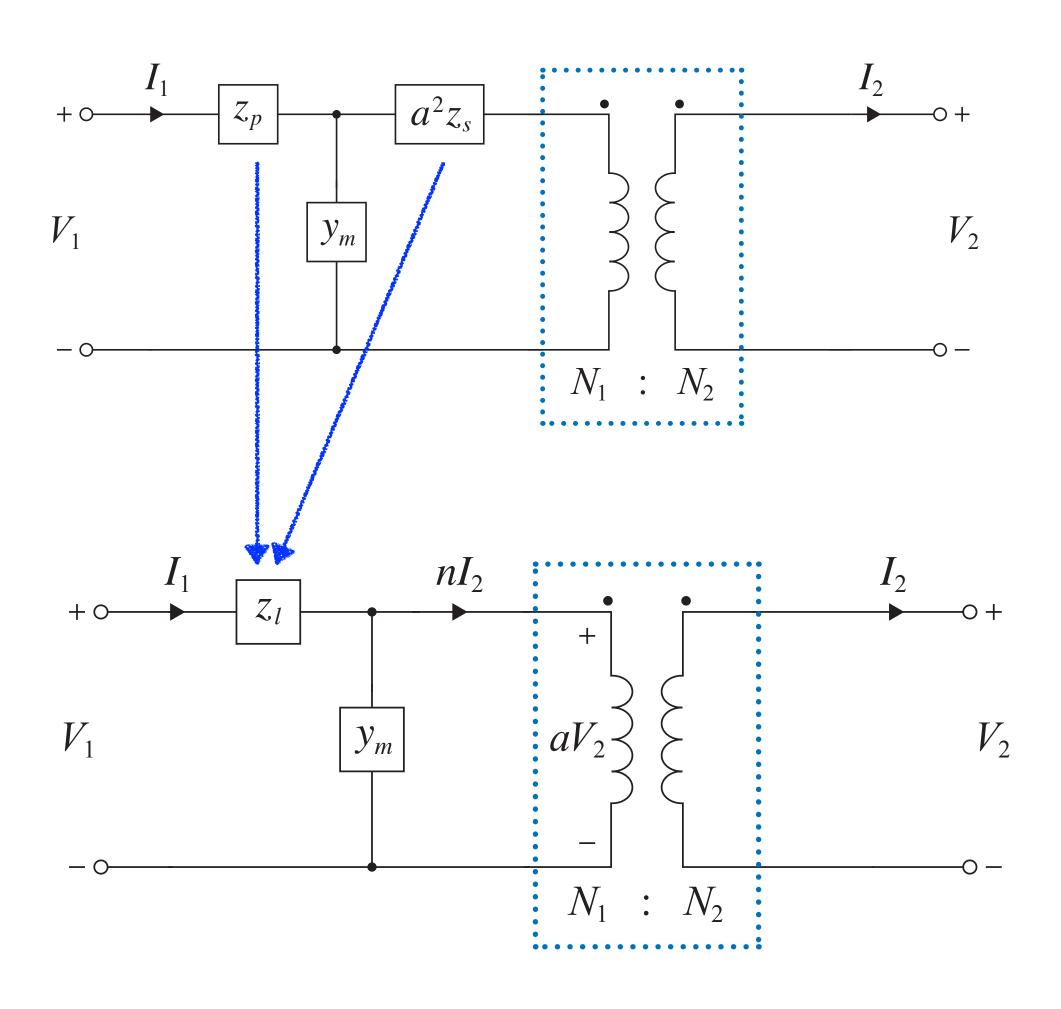
$$\frac{||M-T||}{||T||} < |\epsilon| \ll 1$$

M: transmission matrix of simplified model

T: transmission matrix of simplified model

$$\epsilon := a^2 z_s y_m$$

Simplified circuit



Interchange a^2z_s and y_m and combine with z_p : $z_l := z_p + a^2z_s$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a (1 + z_l y_m) & n z_l \\ a y_m & n \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

where $n := N_2/N_1$, a := 1/n

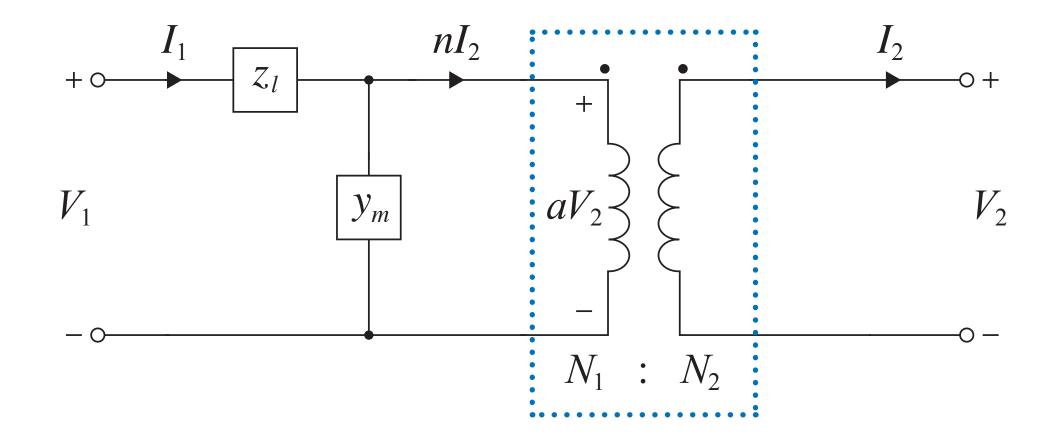
Good approximation when $|y_m| \ll 1/|a^2z_s|$

$$\frac{\|M - T\|}{\|T\|} < |\epsilon| \ll 1$$

If $y_m = 0$: T equivalent circuit and simplified model are equivalent, M = T

Parameter determination

Short & open-circuit tests



Most popular model (at least for transmission systems)

Parameters (z_l, y_m) can be determined from open and short-circuit tests

• Short-circuit test $(V_2 := 0)$:

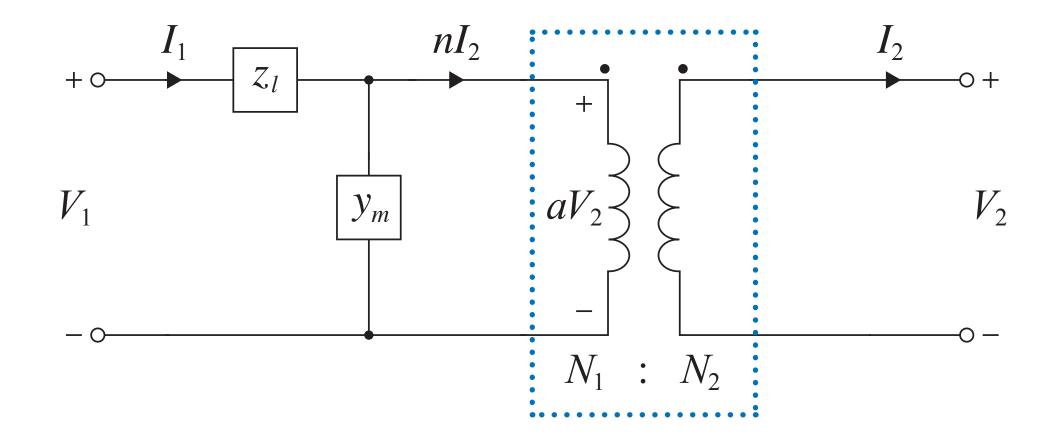
$$z_l = \frac{V_{so}}{I_{sc}}$$

• Open-circuit test $(I_2 := 0)$:

$$\frac{1}{y_m} = \frac{V_{oc}}{I_{oc}} - \frac{V_{sc}}{I_{sc}}$$

Parameter determination

Short & open-circuit tests



Most popular model (at least for transmission systems)

Parameters (z_l, y_m) can be determined from open and short-circuit tests

• Short-circuit test $(V_2 := 0)$:

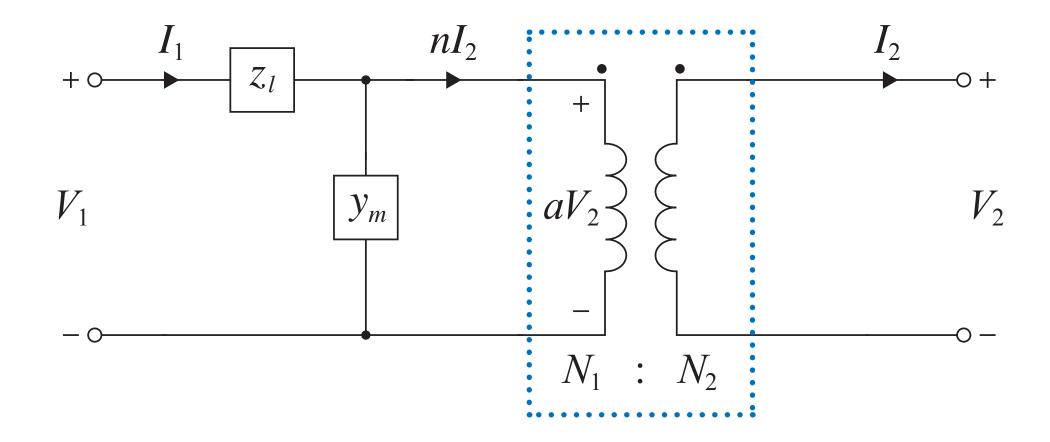
$$z_l = \frac{V_{so}}{I_{sc}}$$

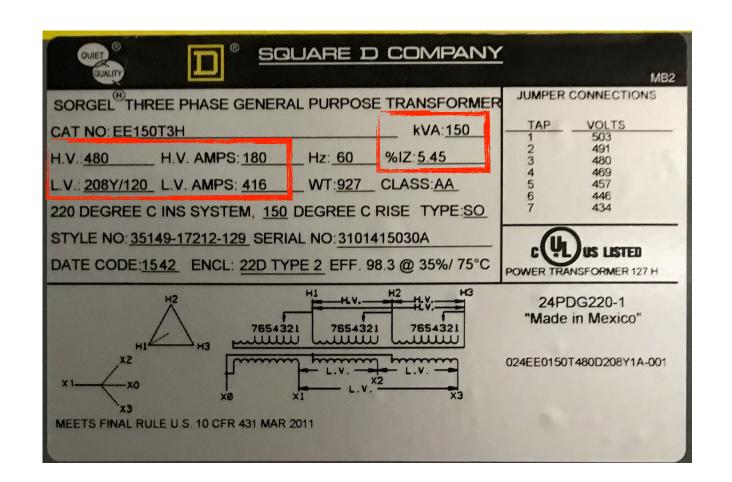
• Open-circuit test $(I_2 := 0)$:

$$\frac{1}{y_m} = \frac{V_{oc}}{I_{oc}} - \frac{V_{sc}}{I_{sc}}$$

Parameter determination

Zero shunt admittance $y_m = 0$



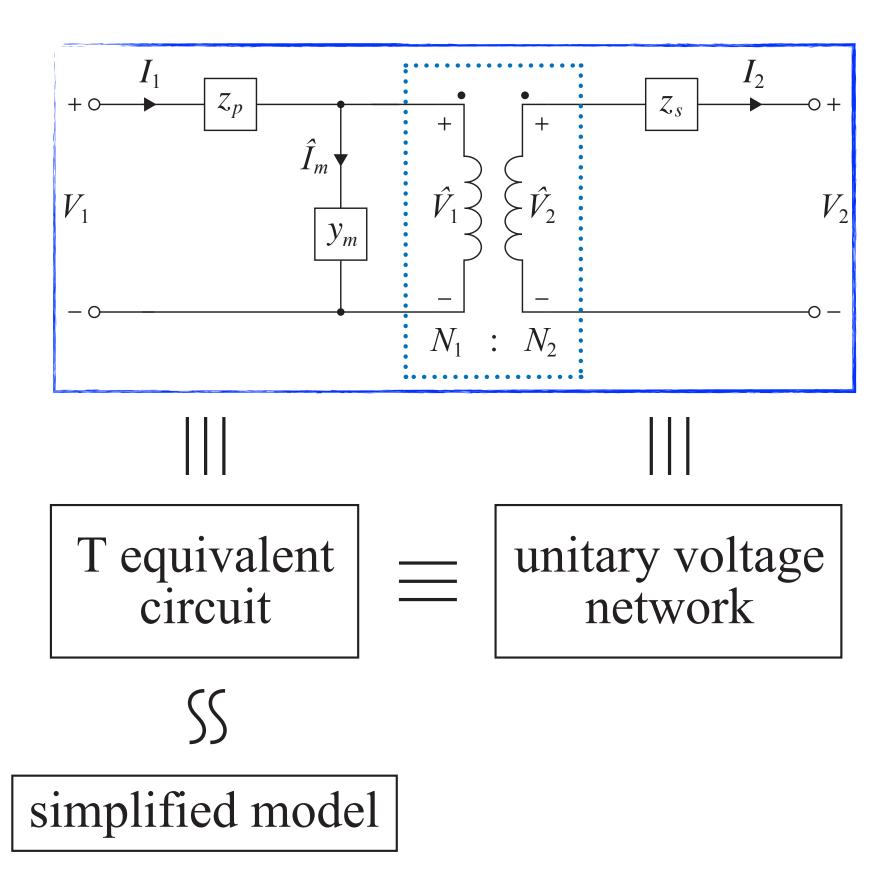


When $y_m = 0$, parameter z_l can be determined from standard 3-phase transformer ratings:

- . Rated primary line-to-line voltage $\left|V_{\mathsf{pri}}\right|$
- . Rated primary line current $\left|I_{\mathsf{pri}}\right|$
- Impedance voltage β on the primary side, per phase, as % of rated primary voltage

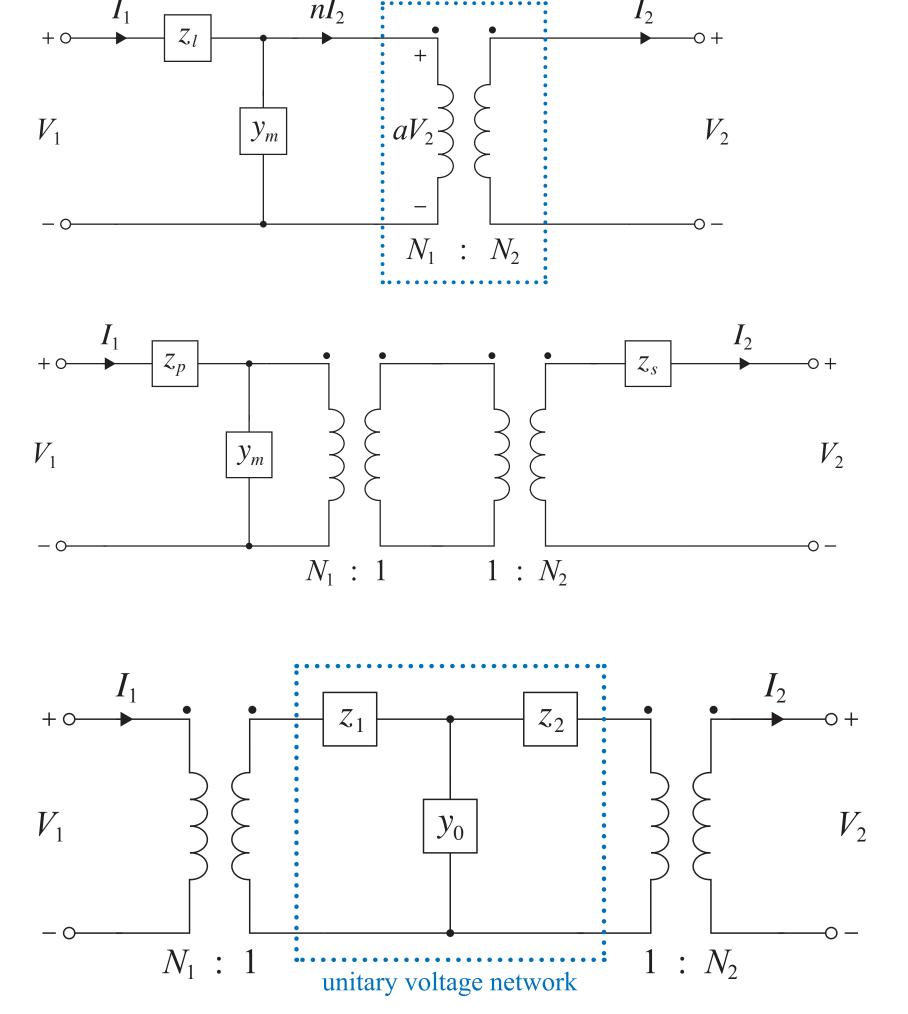
 β : voltage needed on the primary side to produce rated primary current across each single-phase transformer is $\beta\times$ rated primary voltage

Circuit models



Unitary voltage network

Single-phase 2-winding transformer



ref imp & adm across ideal transformers

UVN-based model

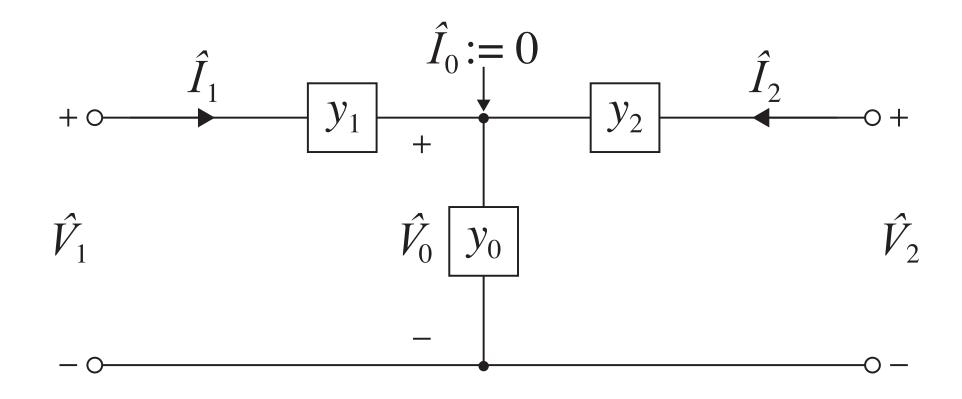
- Unitary voltage network (UVN) connecting 2 ideal transformers
- Equivalent to T equivalent circuit
- Simplified model is an approximation

Advantages

- UVN can be generalized to incorporate multiple windings, e.g., split-phase transformers
- Ideal transformers on both ends can be connected in various ways, e.g., 3-phase transformers in Y/Δ configurations, non-standard transformers

Single-phase transformer

Unitary voltage network



$$\hat{I}_1 = y_1(\hat{V}_1 - \hat{V}_0), \qquad \hat{I}_2 = y_2(\hat{V}_2 - \hat{V}_0)$$

$$y_0\hat{V}_0 = \hat{I}_0 + \hat{I}_1 + \hat{I}_2$$

Admittance matrix

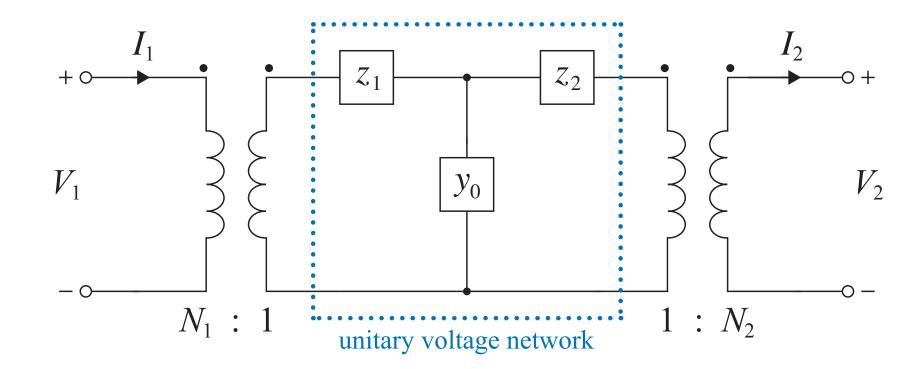
$$\begin{bmatrix} \hat{I}_0 \\ \hat{I}_1 \\ \hat{I}_2 \end{bmatrix} = \begin{bmatrix} y_0 + y_1 + y_2 & -y_1 & -y_2 \\ -y_1 & y_1 & 0 \\ -y_2 & 0 & y_2 \end{bmatrix} \begin{bmatrix} \hat{V}_0 \\ \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}$$

Since $\hat{I}_0 = 0$, can eliminate \hat{U}_0 to obtain Kron reduced admittance matrix

$$\begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \end{bmatrix} = \underbrace{\frac{1}{\sum_i y_i} \begin{bmatrix} y_1(y_0 + y_2) & -y_1 y_2 \\ -y_1 y_2 & y_2(y_0 + y_1) \end{bmatrix}}_{Y_{\text{uvn}}} \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix}$$

Single-phase transformer

External model: admittance matrix



$$\begin{bmatrix} \hat{I}_{1} \\ \hat{I}_{2} \end{bmatrix} = \underbrace{\frac{1}{\sum_{i} y_{i}} \begin{bmatrix} y_{1}(y_{0} + y_{2}) & -y_{1}y_{2} \\ -y_{1}y_{2} & y_{2}(y_{0} + y_{1}) \end{bmatrix}}_{Y_{uvn}} \begin{bmatrix} \hat{V}_{1} \\ \hat{V}_{2} \end{bmatrix}$$

Let

$$I := \begin{bmatrix} I_1 \\ -I_2 \end{bmatrix}, \quad V := \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
 $M := \begin{bmatrix} 1/N_1 & 0 \\ 0 & 1/N_2 \end{bmatrix}$

Conversion between internal vars & terminal vars across ideal transformers

$$\hat{U} = MV$$
, $\hat{J} = M^{-1}I$

Hence, external model:

$$I = (MY_{\mathsf{uvn}}M) V$$

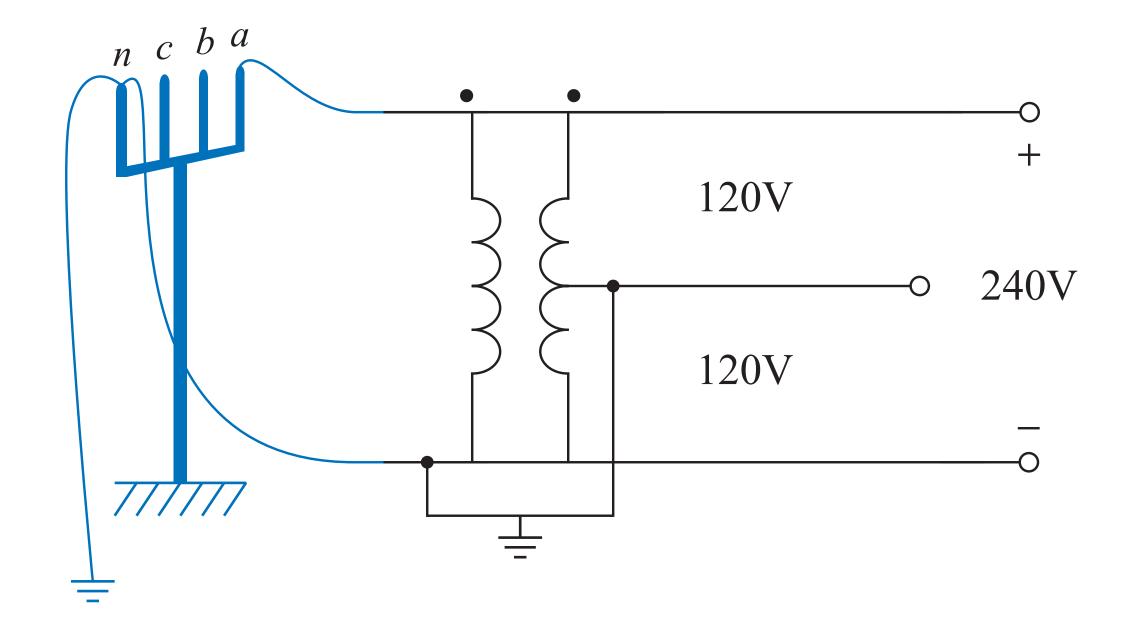
Application of UVN model

Common distribution transformers

line-to-line voltage (kV)	phase voltage (kV)	total power (MVA)
$\ V_{ab}\ $	$ V_{an} $	$ S_{3\phi} $
4.8	2.8	3.3
12.47	7.2	8.6
22.9	13.2	15.9
34.5	19.9	23.9

Distribution transformer

Example: split-phase

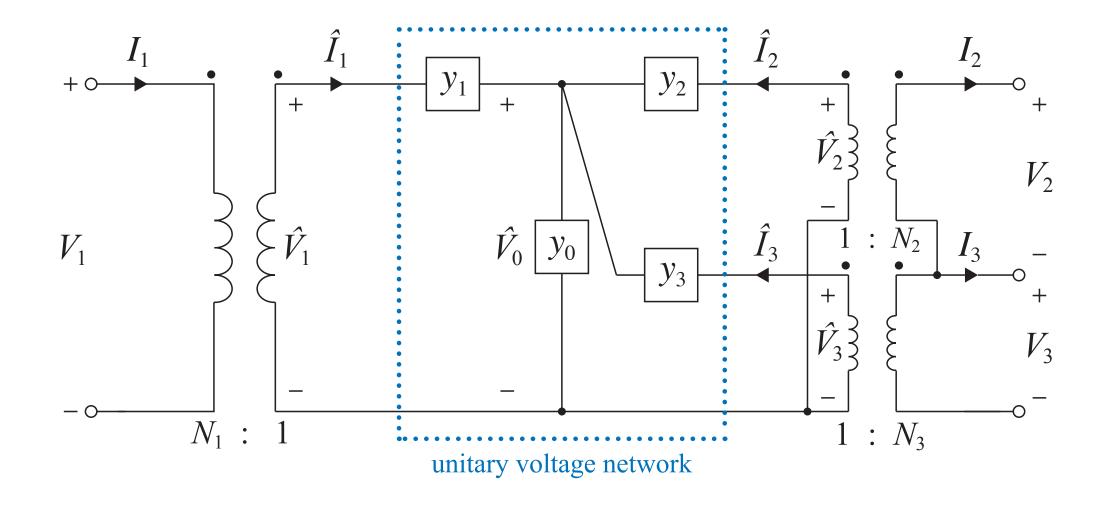


Common deployment in US

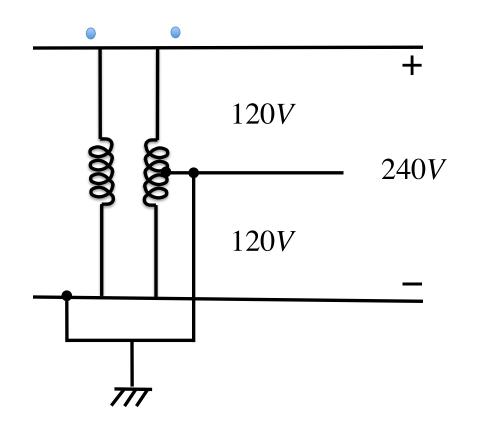
- Single phase
- Split-phase 120/240 V

Multi-winding transformers

Example: split-phase



$$\begin{bmatrix} \hat{I}_0 \\ \hat{I}_1 \\ \hat{I}_2 \\ \hat{I}_3 \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^3 & -y_1 & -y_2 & -y_3 \\ -y_1 & y_1 & 0 & 0 \\ -y_2 & 0 & y_2 & 0 \\ -y_3 & 0 & 0 & y_3 \end{bmatrix} \begin{bmatrix} \hat{V}_0 \\ \hat{V}_1 \\ \hat{V}_2 \\ \hat{V}_3 \end{bmatrix}$$

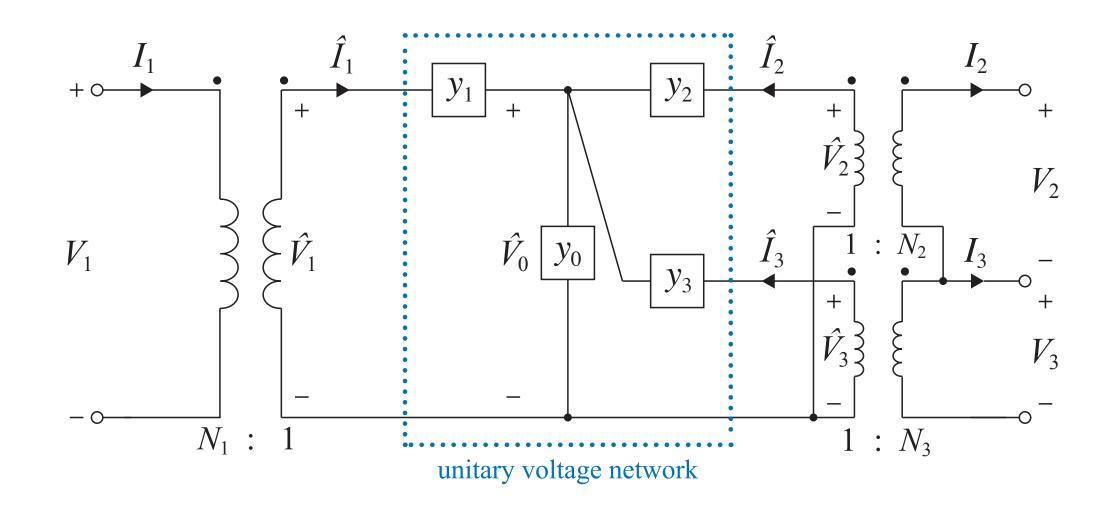


UVN: Kron-reduced admittance matrix

$$\begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \\ \hat{I}_3 \end{bmatrix} = \underbrace{\frac{1}{\sum_i y_i}}_{i} \begin{bmatrix} y_1(y_0 + y_2 + y_3) & -y_1y_2 & -y_1y_3 \\ -y_2y_1 & y_2(y_0 + y_1 + y_3) & -y_2y_3 \\ -y_3y_1 & -y_3y_2 & y_3(y_0 + y_1 + y_2) \end{bmatrix} \begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \\ \hat{V}_3 \end{bmatrix}$$

Multi-winding transformers

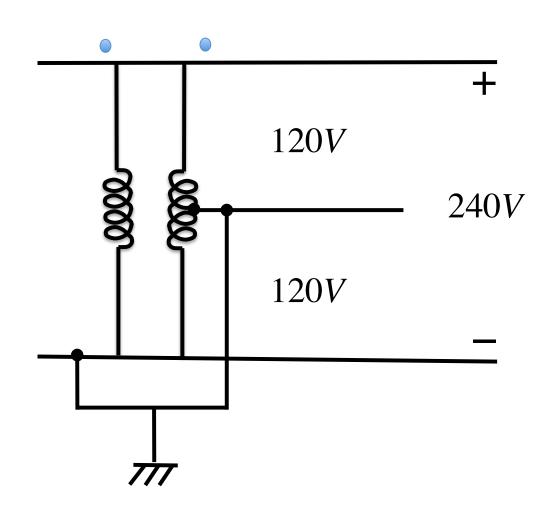
Example: split-phase transformer



Let

$$I := egin{bmatrix} I_1 \ -I_2 \ -I_3 \end{bmatrix}, \quad V := egin{bmatrix} V_1 \ V_2 \ V_3 \end{bmatrix}$$

$$M := \begin{bmatrix} 1/N_1 & 0 & 0 \\ 0 & 1/N_2 & 0 \\ 0 & 0 & 1/N_3 \end{bmatrix}$$

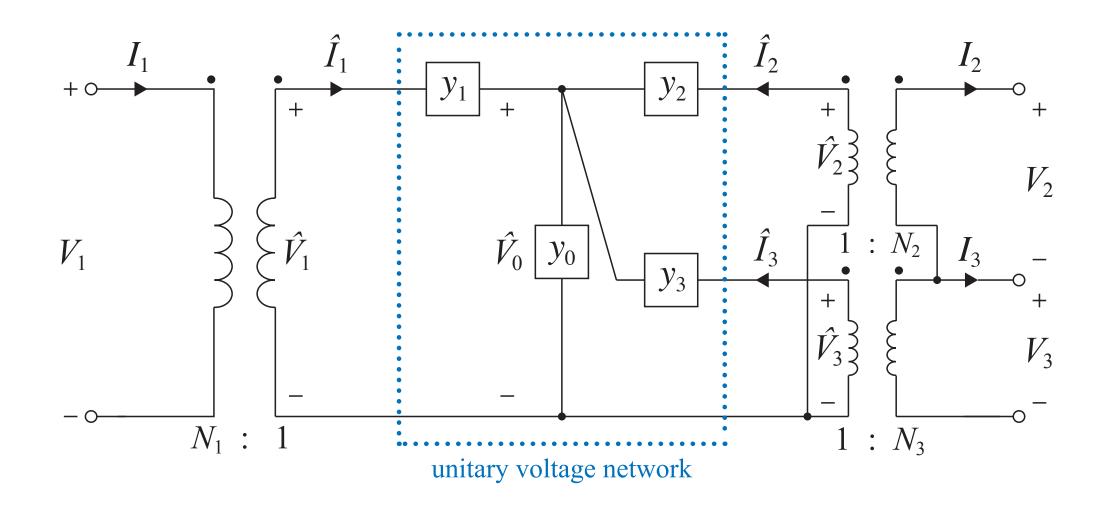


Conversion between internal vars & terminal vars across ideal transformers: $\hat{V} = MV$ and

$$\hat{I} = M^{-1} \begin{bmatrix} I_1 \\ -I_2 \\ -I_2 - I_3 \end{bmatrix} =: M^{-1}AI \text{ where } A := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Multi-winding transformers

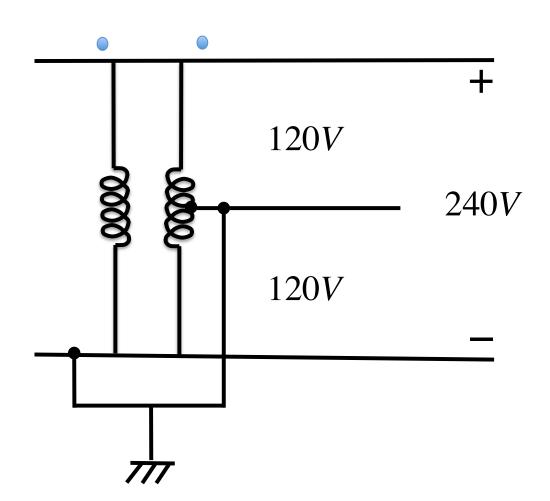
Example: split-phase transformer



Let

$$I := \begin{bmatrix} I_1 \\ -I_2 \\ -I_3 \end{bmatrix}, \quad V := \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

$$M := \begin{bmatrix} 1/N_1 & 0 & 0 \\ 0 & 1/N_2 & 0 \\ 0 & 0 & 1/N_3 \end{bmatrix}$$



Eliminate internal vars (\hat{I}, \hat{V}) from

$$\hat{V} = Y_{\text{UVN}}\hat{I}, \quad \hat{V} = MV, \quad \hat{I} = M^{-1}AI$$

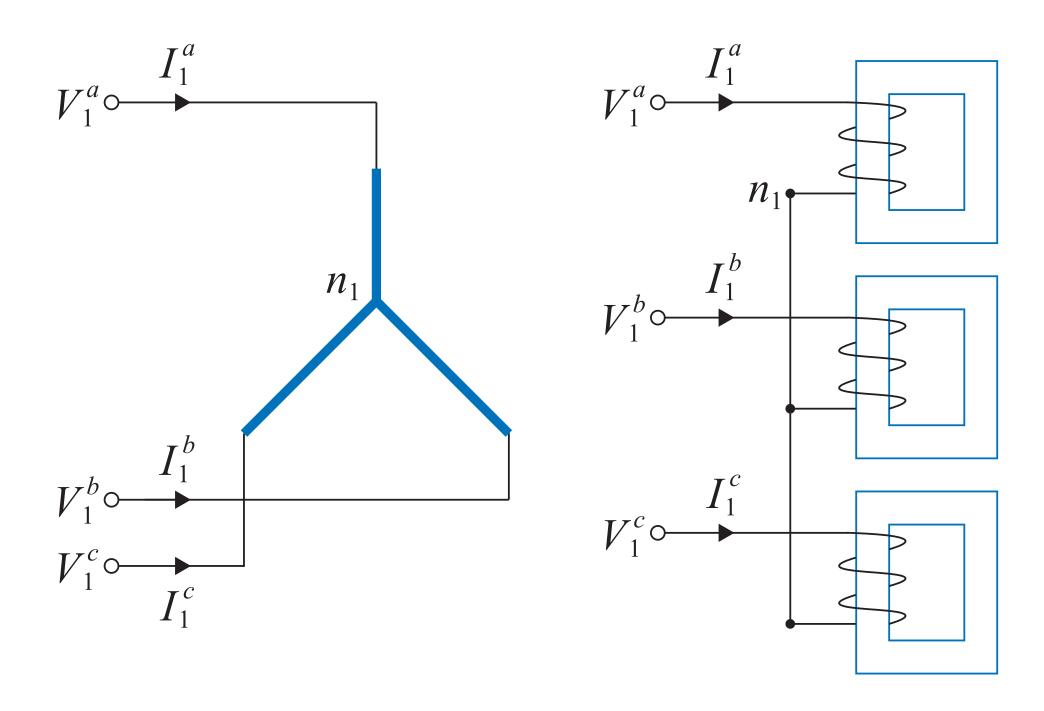
External model:

$$I = A^{-1} (MY_{\mathsf{uvn}} M) V$$

Outline

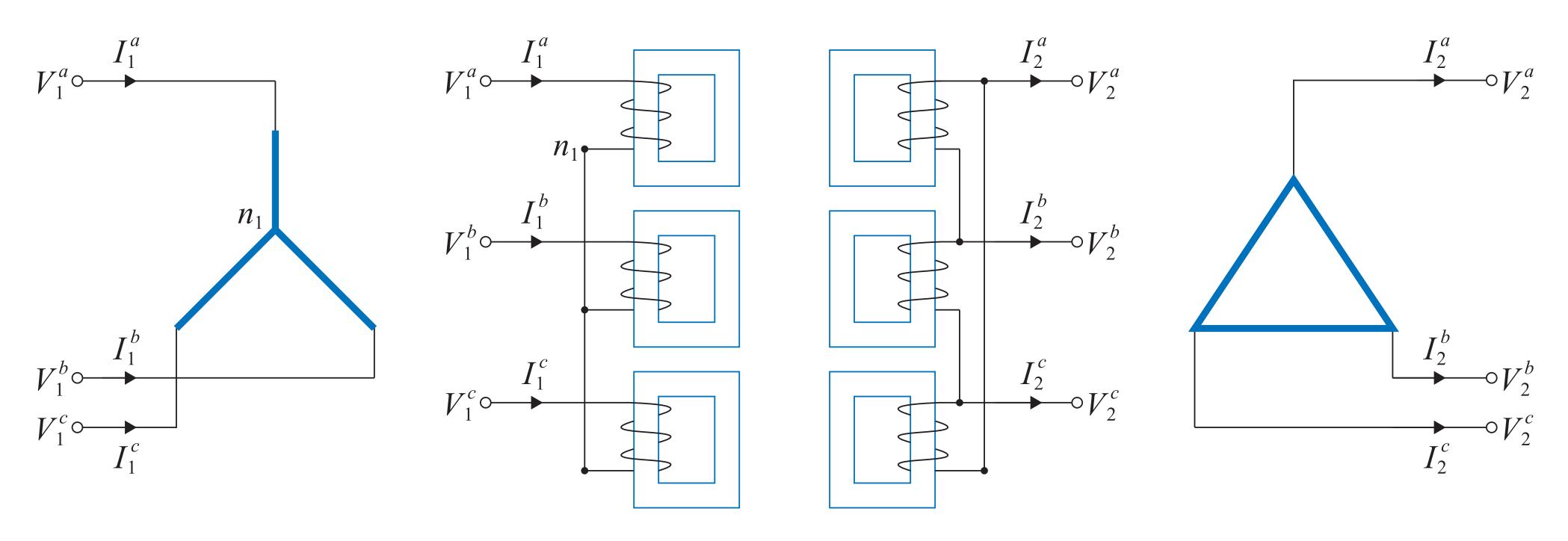
- 1. Single-phase transformer
- 2. Balanced three-phase transformers
 - Ideal transformers
 - Nonideal transformers
- 3. Equivalent impedance
- 4. Per-phase analysis
- 5. Per-unit normalization

Connectivity



(a) Primary winding in Y configuration

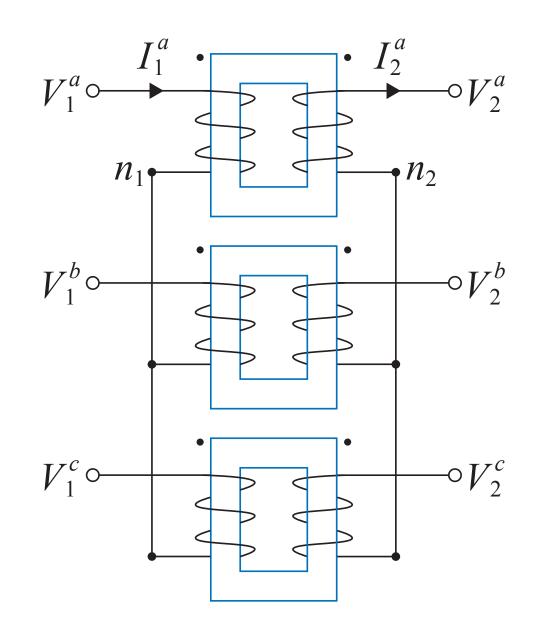
Connectivity

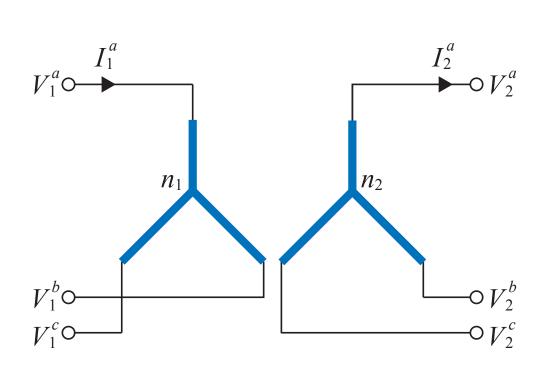


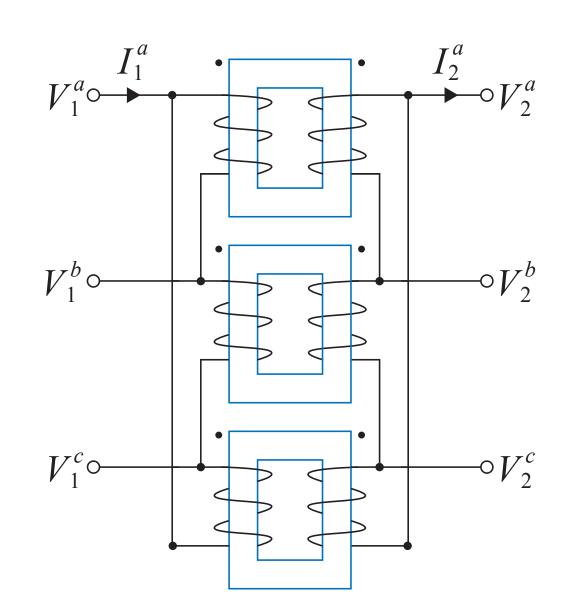
(a) Primary winding in Y configuration

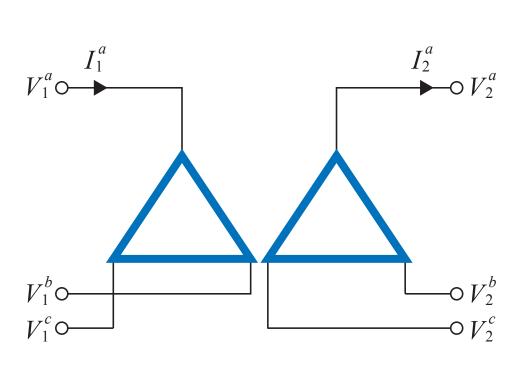
(b) Secondary winding in Δ configuration

Configurations





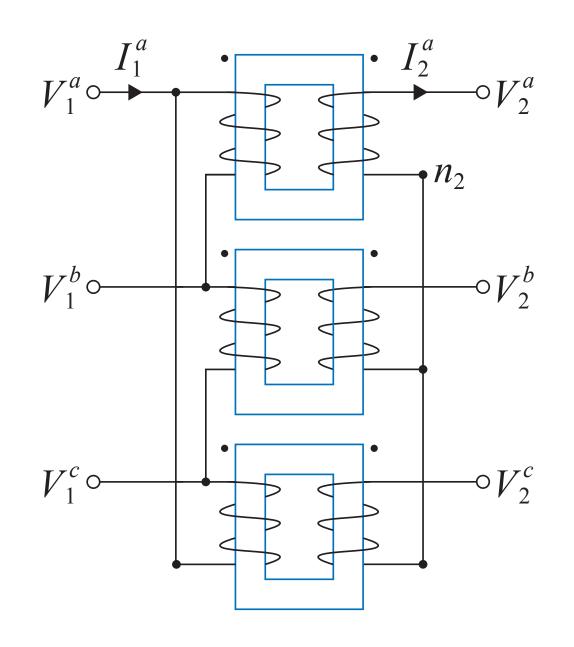


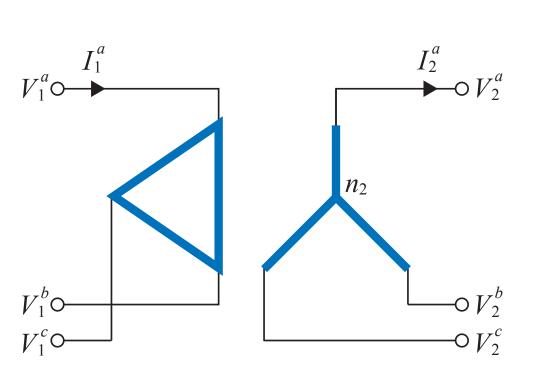


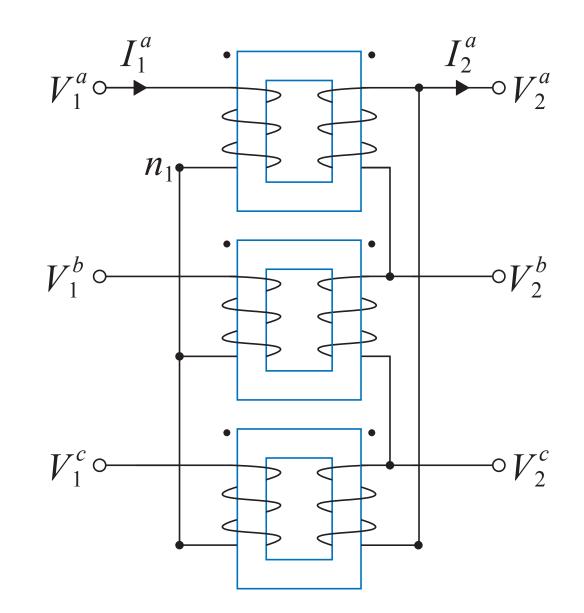
YY

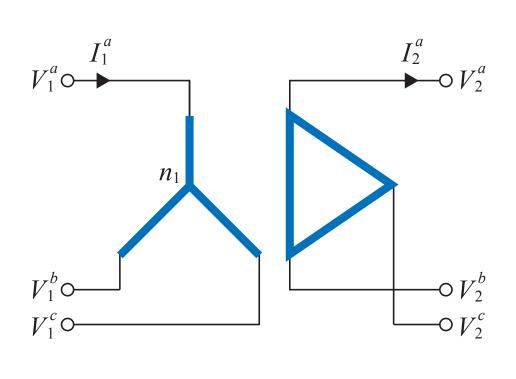
 $\Delta \Delta$

Configurations









 ΔY

 $Y\Delta$

Ideal transformers Summary

Property	Gain
Voltage gain Current gain Power gain Sec z _l referred to pri	$\frac{K(n)}{\frac{1}{\bar{K}(n)}}$ $\frac{1}{z_{l}}$ $\frac{z_{l}}{ K(n) ^{2}}$

Configuration	Gain
YY	$K_{YY}(n) := n$
$\Delta\Delta$	$K_{\Delta\Delta}(n) := n$
ΔY	$K_{\Delta Y}(n) := \sqrt{3}n \ e^{\mathbf{i}\pi/6}$
$Y\Delta$	$K_{Y\Delta}(n) := \frac{n}{\sqrt{3}} e^{-\mathbf{i}\pi/6}$

Per-phase equivalent

YY-equivalent of a balanced 3-phase transformer: balanced YY transformer with same external model, i.e., same voltage gain K(n)

• Single-phase equivalent: phase a model of YY-equivalent

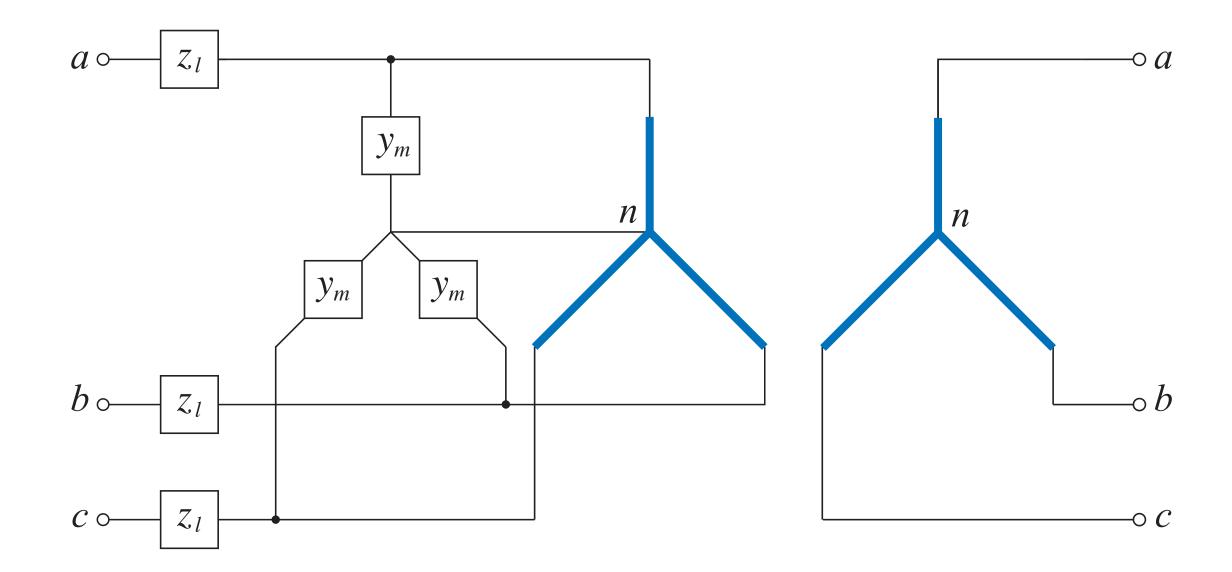
$$YY: \quad V_{2}^{\text{line}} = (1-\alpha)V_{2}^{Y} = nV_{1}^{\text{line}}, \quad I_{2} = aI_{1}^{Y} \quad \Rightarrow \quad K_{YY}(n) := n$$

$$\Delta\Delta: \quad V_{2}^{\text{line}} = V_{2}^{\Delta} = nV_{1}^{\text{line}}, \quad I_{2} = aI_{1}^{Y} \quad \Rightarrow \quad K_{\Delta\Delta}(n) := n$$

$$\Delta Y: \quad V_{2}^{\text{line}} = (1-\alpha)V_{2}^{Y} = (1-\alpha)nV_{1}^{\text{line}}, \quad I_{2} = \frac{a}{1-\bar{\alpha}}I_{1} \quad \Rightarrow \quad K_{\Delta Y}(n) := (1-\alpha)n$$

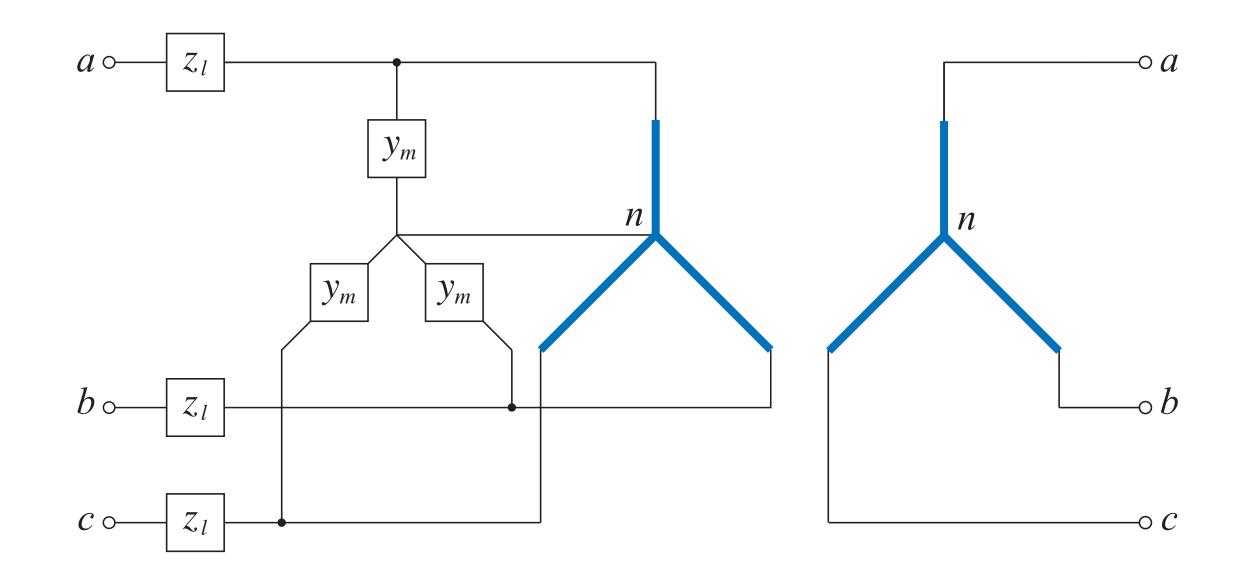
$$\Delta\Delta: \quad V_{2}^{\text{line}} = V_{2}^{\Delta} = \frac{n}{1-\alpha}V_{1}^{\text{line}}, \quad I_{2} = -(1-\alpha^{2})I_{2}^{\Delta} = (1-\bar{\alpha})aI_{1} \quad \Rightarrow \quad K_{Y\Delta}(n) := n/(1-\alpha)$$

YY configuration

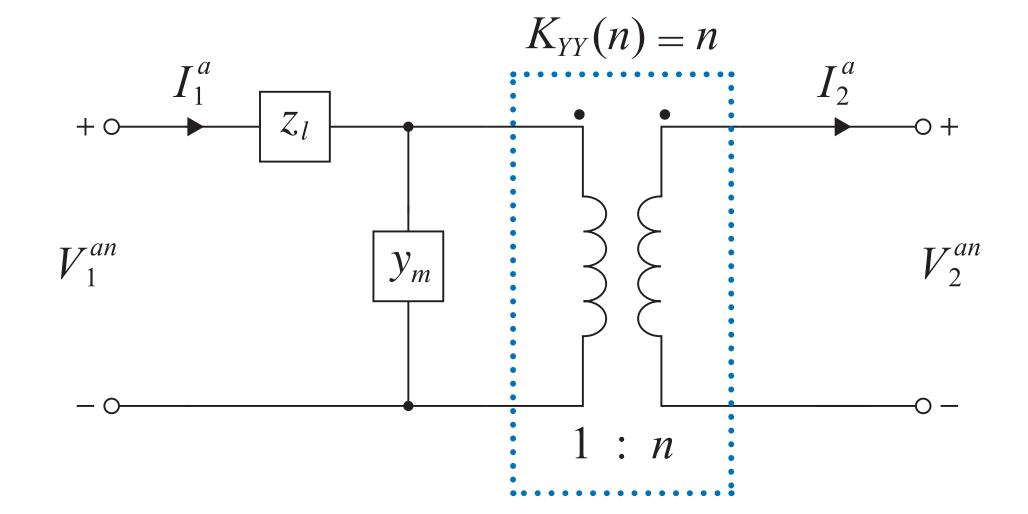


(a) YY configuration

YY configuration

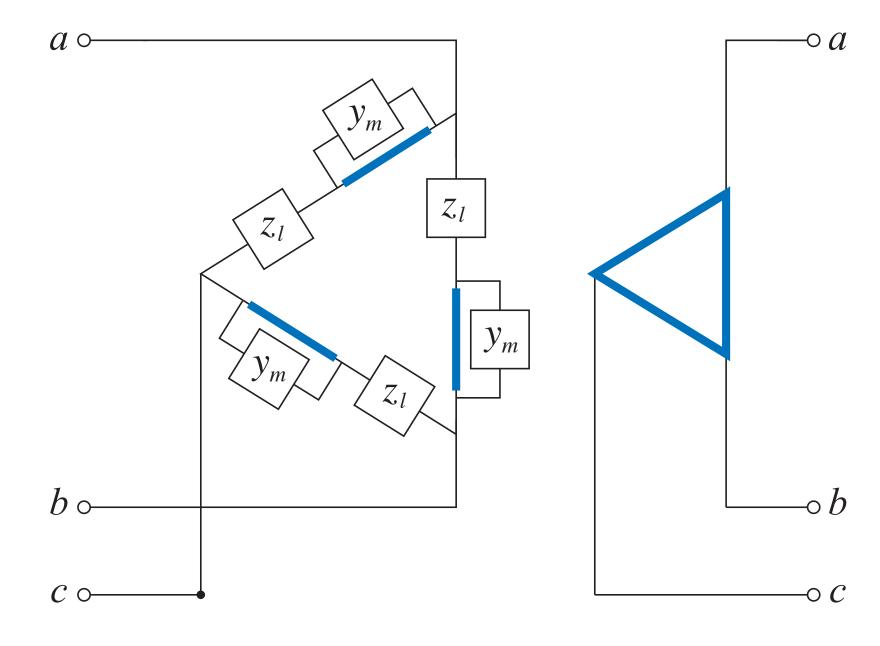


(a) YY configuration



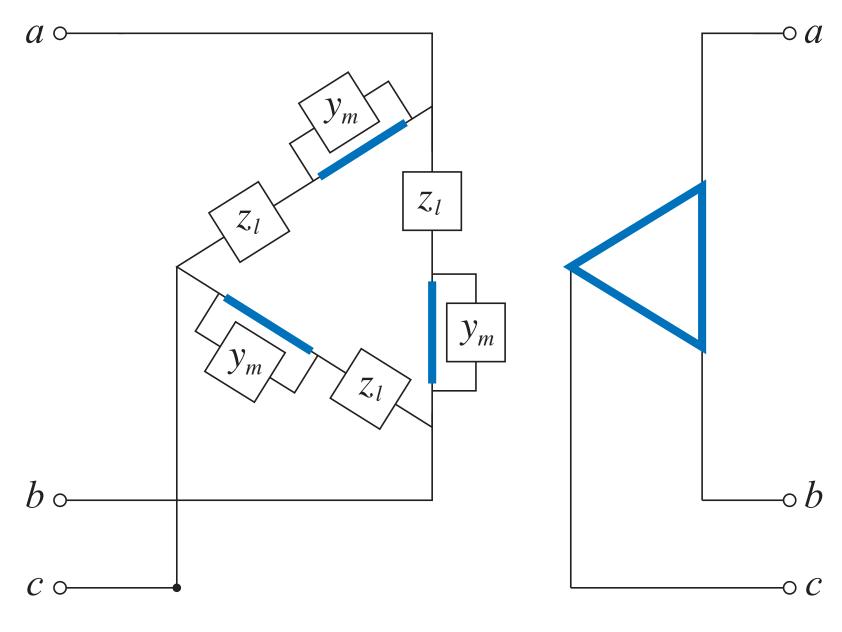
(b) Per-phase circuit

$\Delta\Delta$ configuration

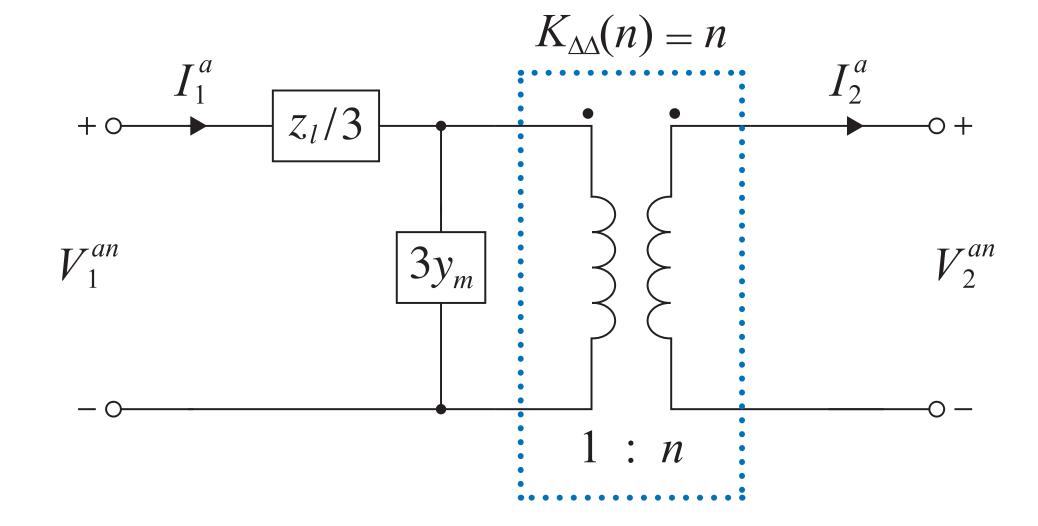


(a) $\Delta\Delta$ configuration

$\Delta\Delta$ configuration

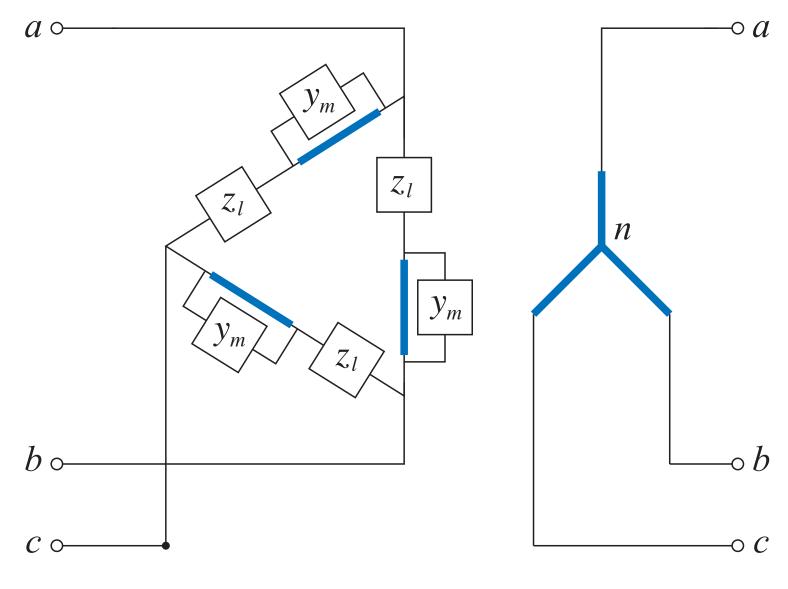


(a) $\Delta\Delta$ configuration



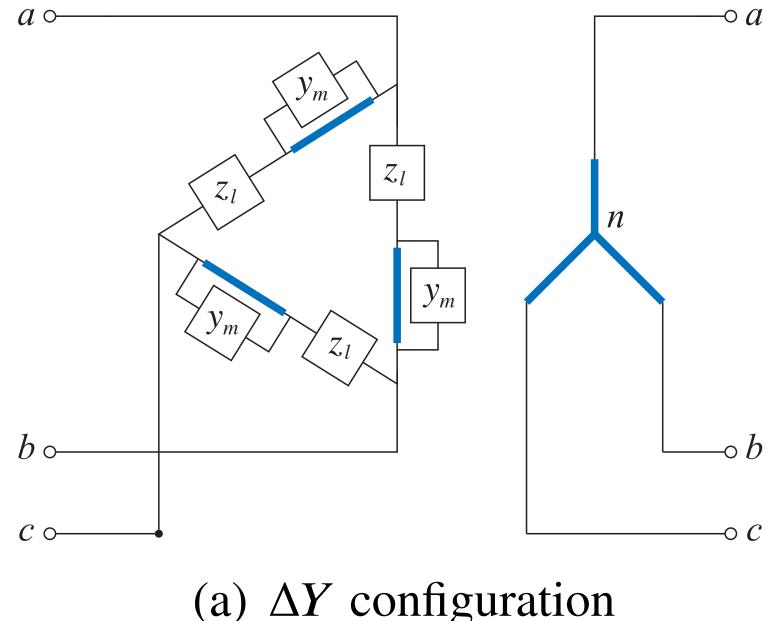
(b) Per-phase circuit

ΔY configuration

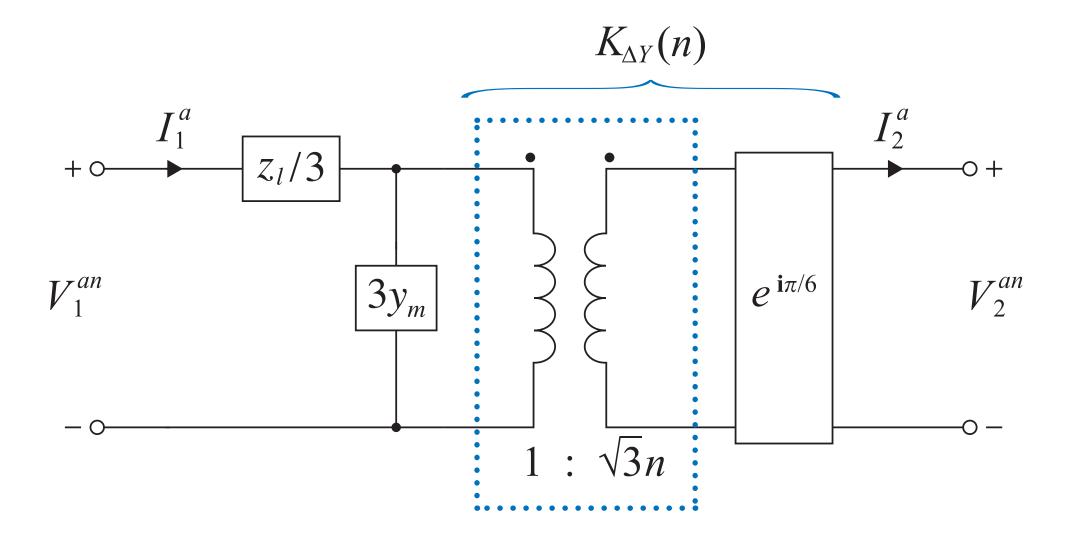


(a) ΔY configuration

ΔY configuration

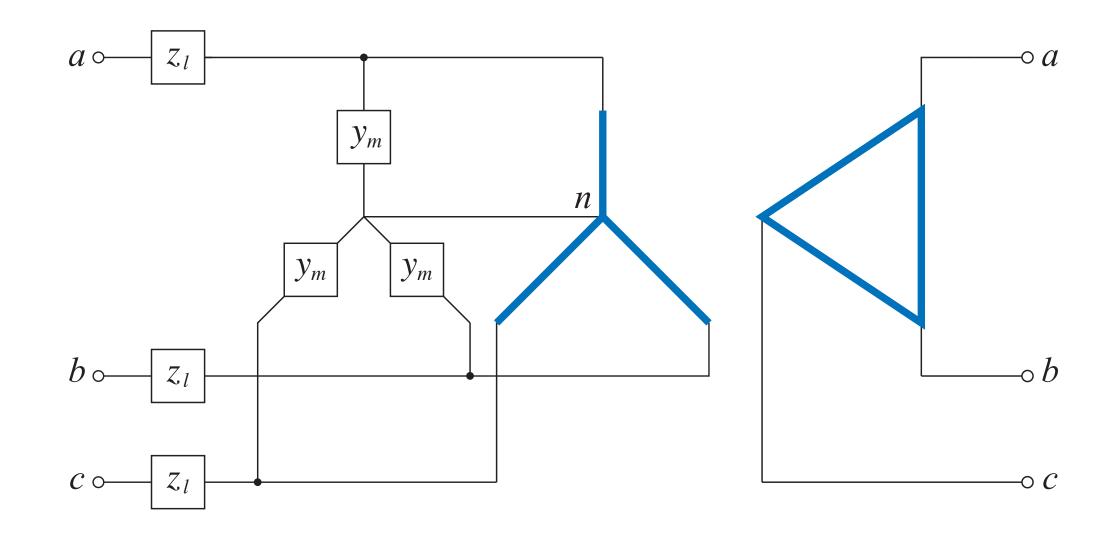


(a) ΔY configuration



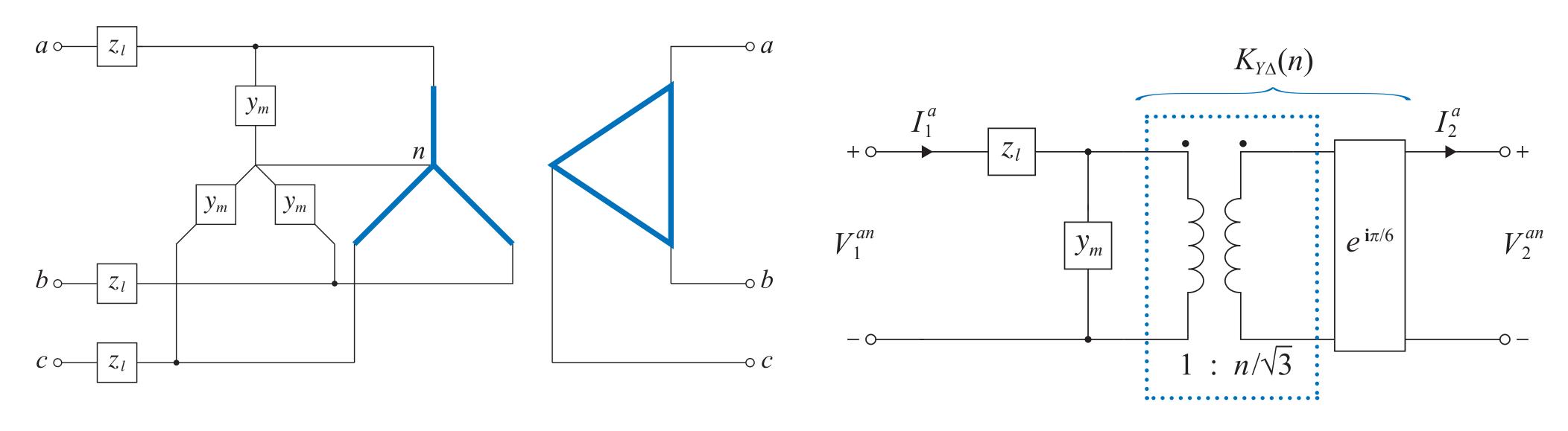
(b) Per-phase circuit

$Y\Delta$ configuration



(a) $Y\Delta$ configuration

$Y\Delta$ configuration



(a) $Y\Delta$ configuration

(b) Per-phase circuit

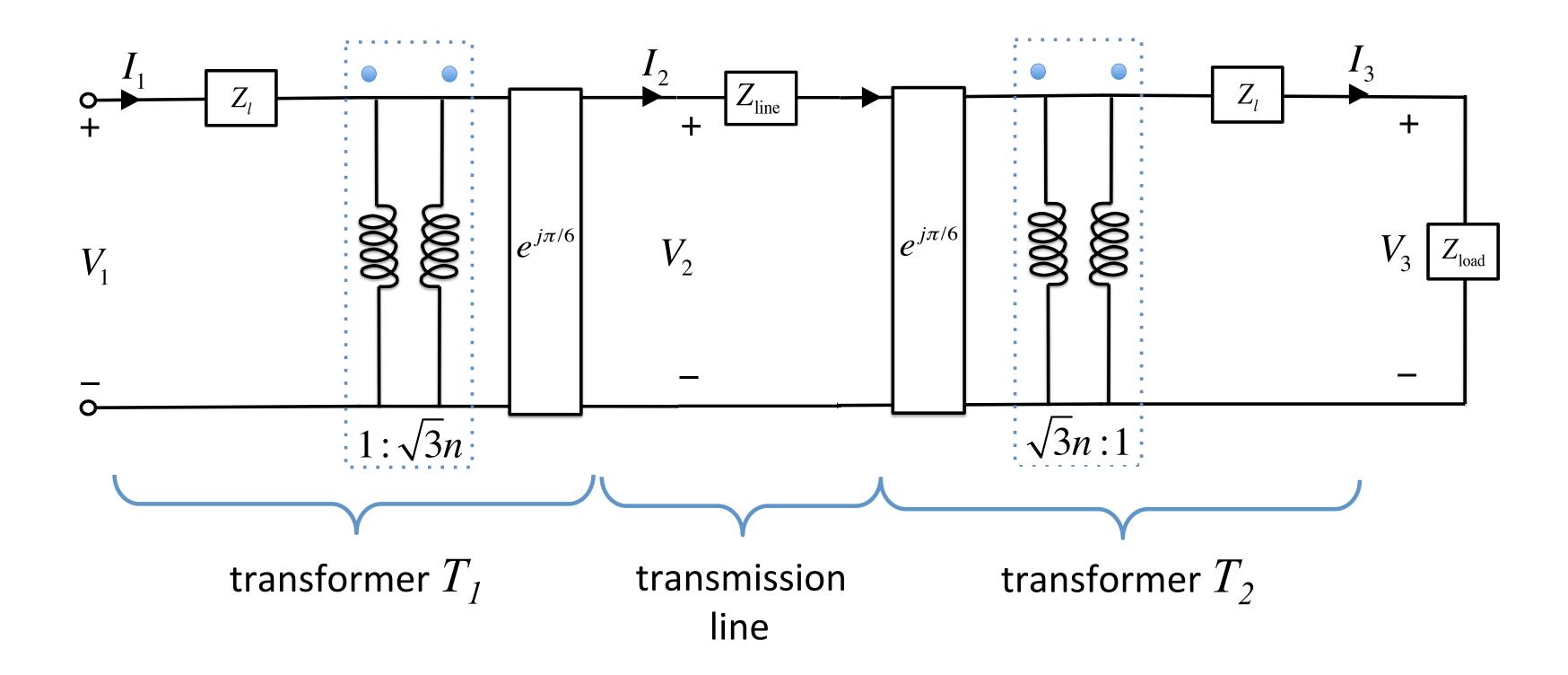
Outline

- 1. Single-phase transformer
- 2. Balanced three-phase transformers
- 3. Equivalent impedance
 - Transmission matrix
 - Driving-point impedance
- 4. Per-phase analysis
- 5. Per-unit normalization

Motivation

Short cut in analyzing circuits containing transformers

- Thevenin equivalent of impedances in series and in parallel
- Equivalent impedances in primary or secondary circuits



Equivalent impedances

• referring Z_s in secondary to primary

$$Z_p = \frac{Z_s}{|K(n)|^2}$$

"It is equivalent to replace $Z_{\!\scriptscriptstyle S}$ in the secondary circuit by $Z_{\!\scriptscriptstyle p}$ in the primary circuit"

• referring Z_p in primary to secondary

$$Z_s = |K(n)|^2 Z_p$$

"It is equivalent to replace Z_p in the primary circuit by $Z_{\!\scriptscriptstyle S}$ in the secondary circuit"

Equivalent admittances

• referring Y_s in secondary to primary

$$Y_p = |K(n)|^2 Y_s$$

"It is equivalent to replace $Y_{\scriptscriptstyle S}$ in the secondary circuit by Y_p in the primary circuit"

ullet referring Y_p in primary to secondary

$$Y_{s} = \frac{Y_{p}}{|K(n)|^{2}}$$

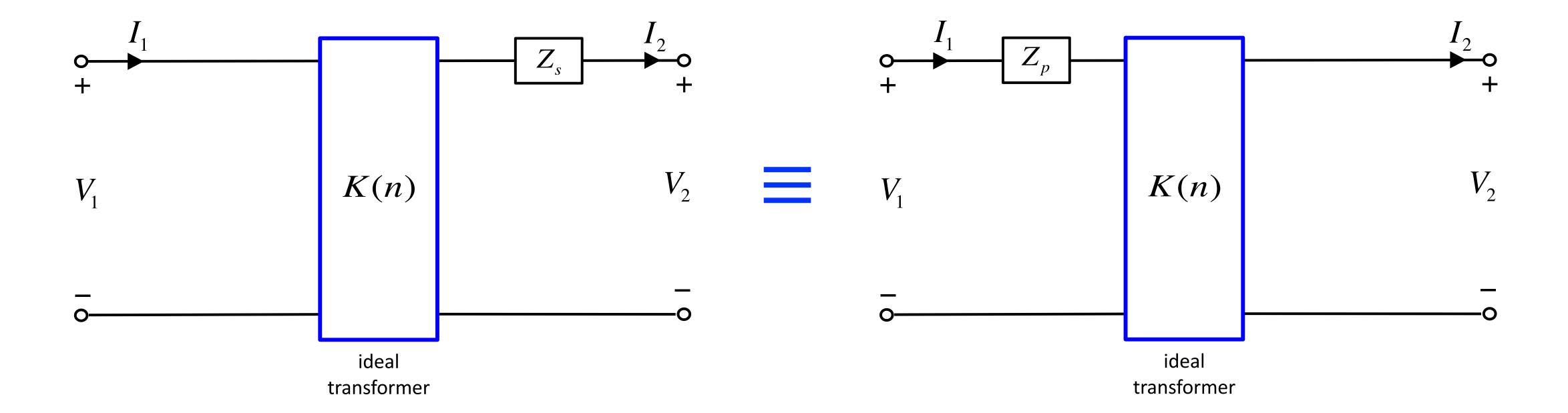
"It is equivalent to replace Y_p in the primary circuit by $Y_{\scriptscriptstyle S}$ in the secondary circuit"

Equivalent impedances

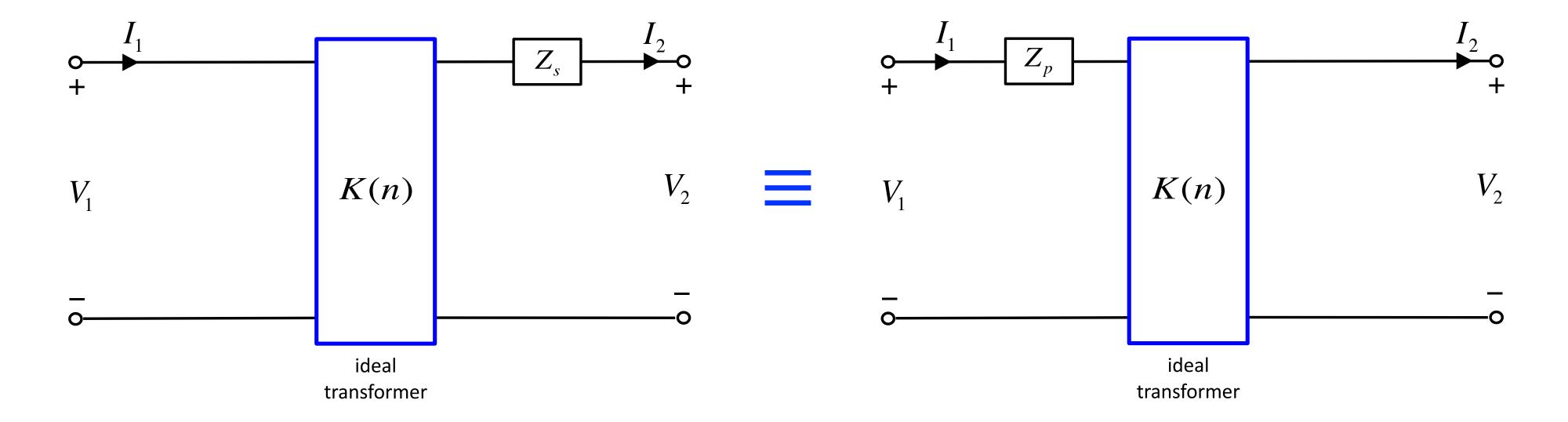
What is equivalence?

- Same transmission matrices
- Same driving-point impedance

This is a simple consequence of Kirchhoff's and Ohm's laws

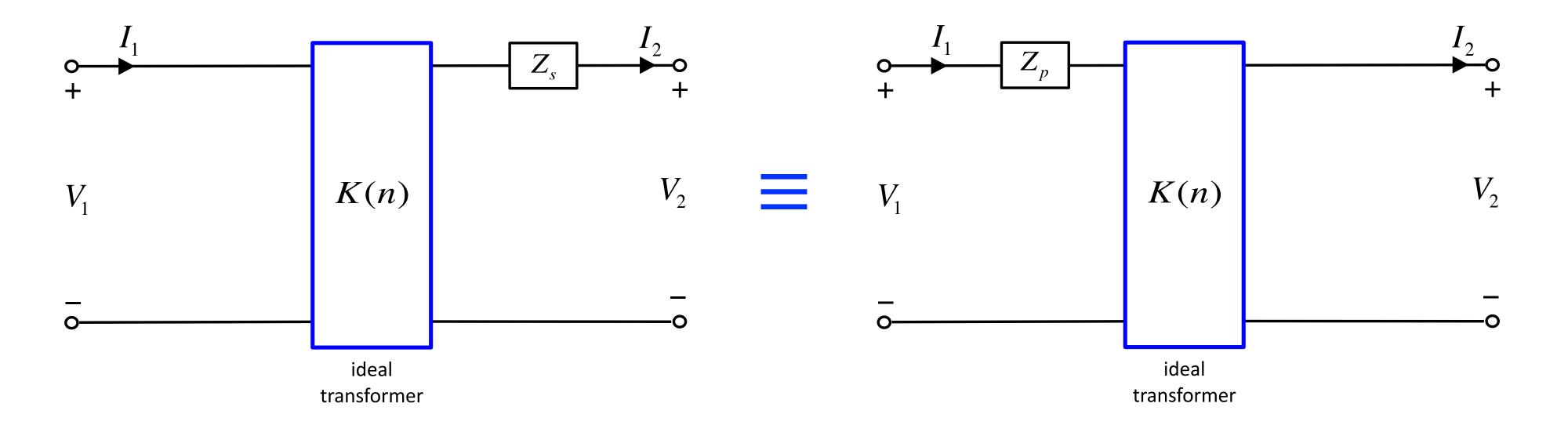


External models (transmission matrices) of 2 circuits are equal if and only if $Z_p = \frac{Z_s}{|K(n)|^2}$



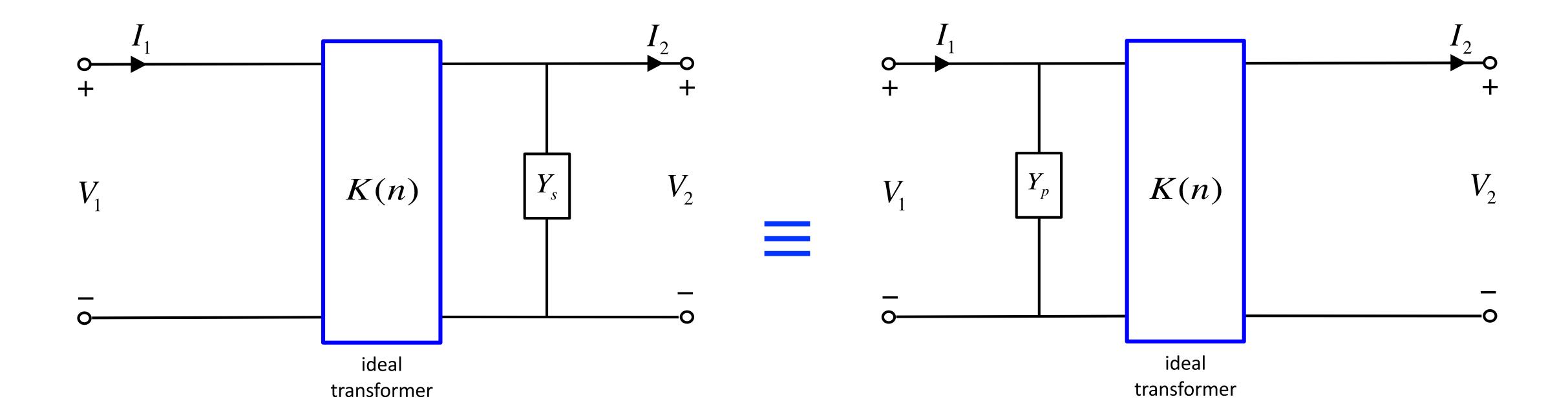
$$\begin{bmatrix} V \\ I \end{bmatrix} = \begin{bmatrix} 1 & Z_s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} K^{-1}(n) & 0 \\ 0 & K^*(n) \end{bmatrix} \begin{bmatrix} V \\ I \end{bmatrix}$$



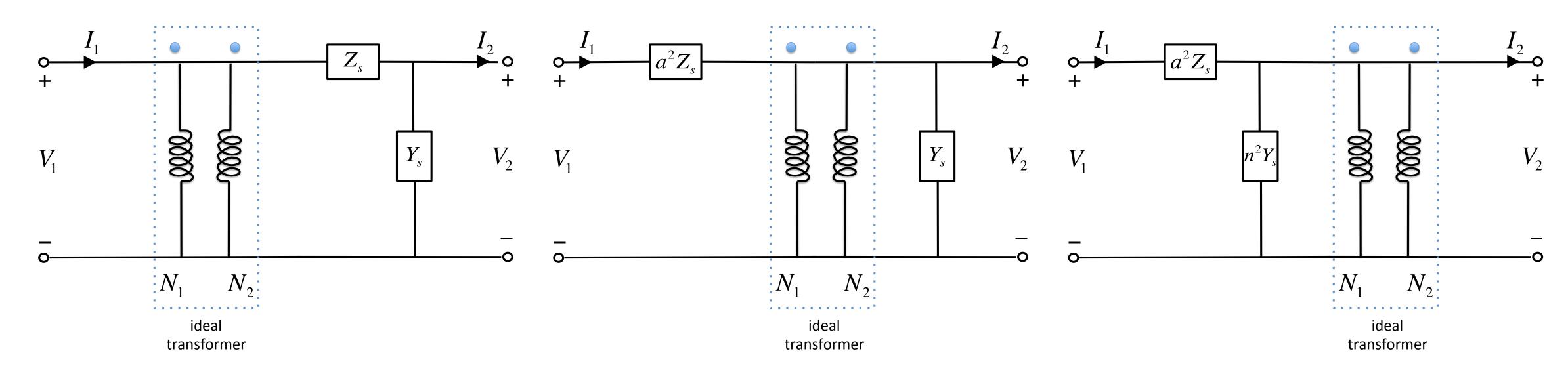
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} K^{-1}(n) & K^{-1}(n)Z_s \\ 0 & K^*(n) \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix} \qquad \begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} K^{-1}(n) & K^*(n)Z_p \\ 0 & K^*(n) \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$

External models (transmission matrices) of 2 circuits are equal if and only if $Z_p = \frac{Z_s}{|K(n)|^2}$



External models (transmission matrices) of 2 circuits are equal if and only if $Y_p = |K(n)|^2 Y_s$

Example

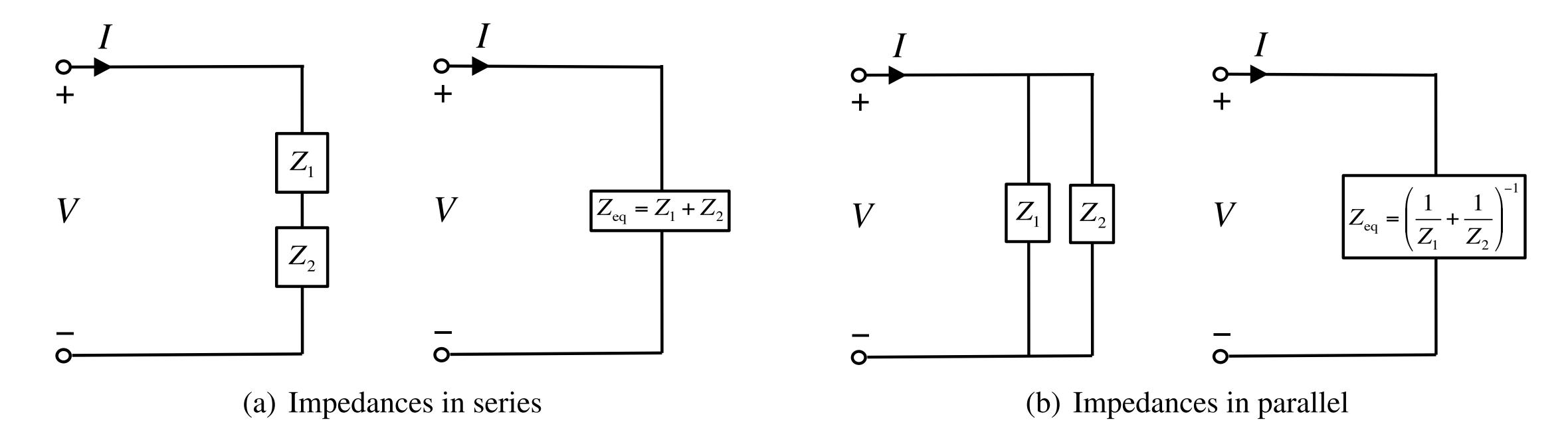


(a) (Z_s, Y_s) in the secondary circuit.

(b) Refer Z_s to the primary.

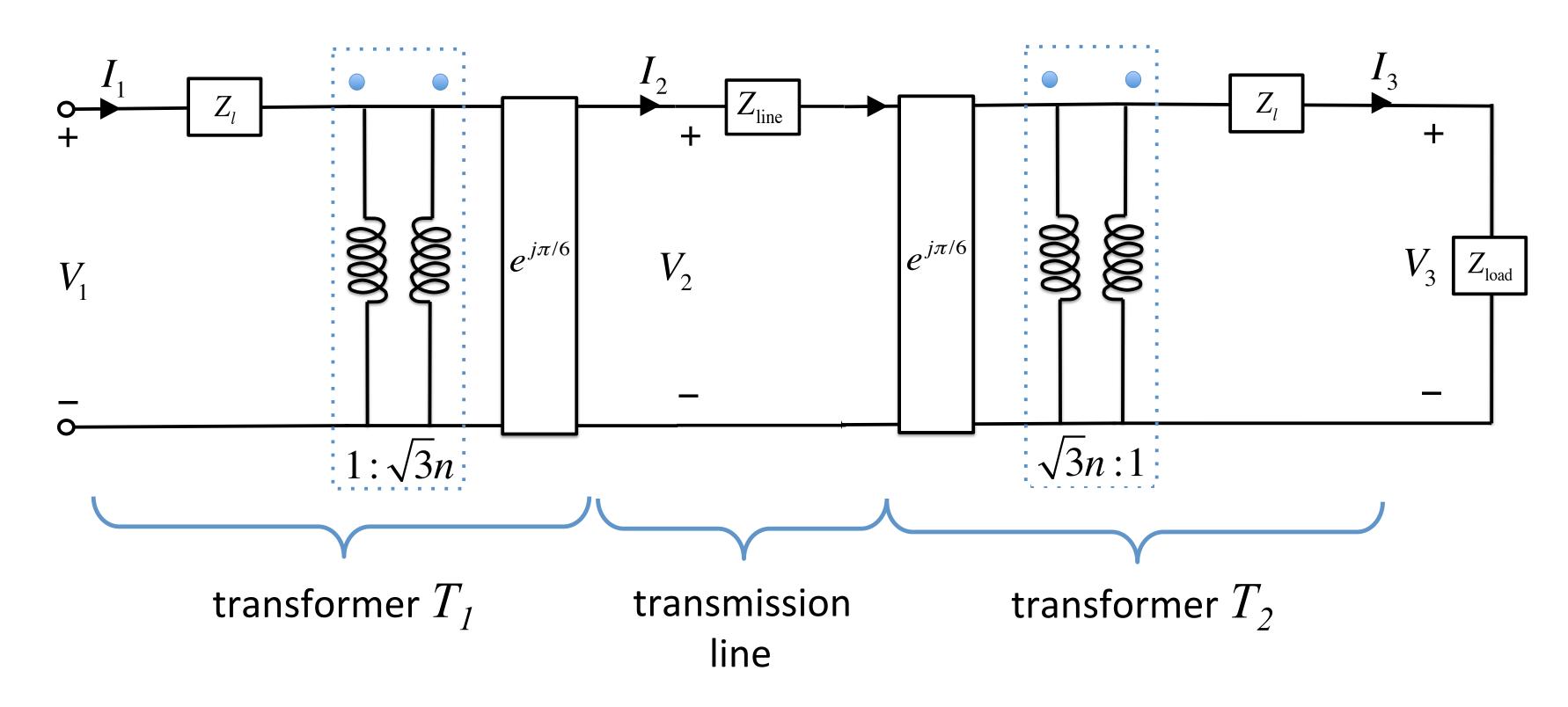
(c) Refer Y_s to the primary.

Thevenin equivalent



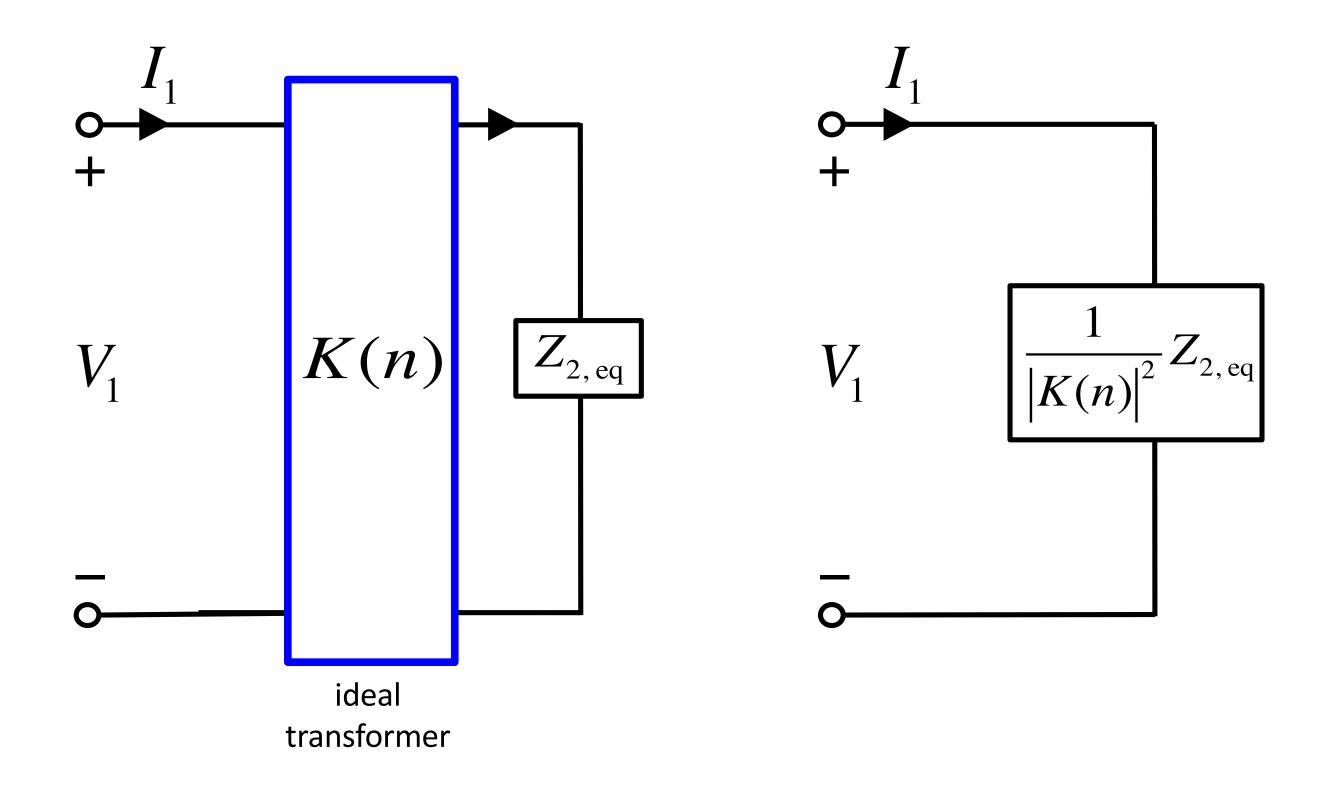
Thevenin equivalent is a short cut in analyzing circuits with impedances only

Thevenin equivalent



What if circuits contain both impedance and transformers?

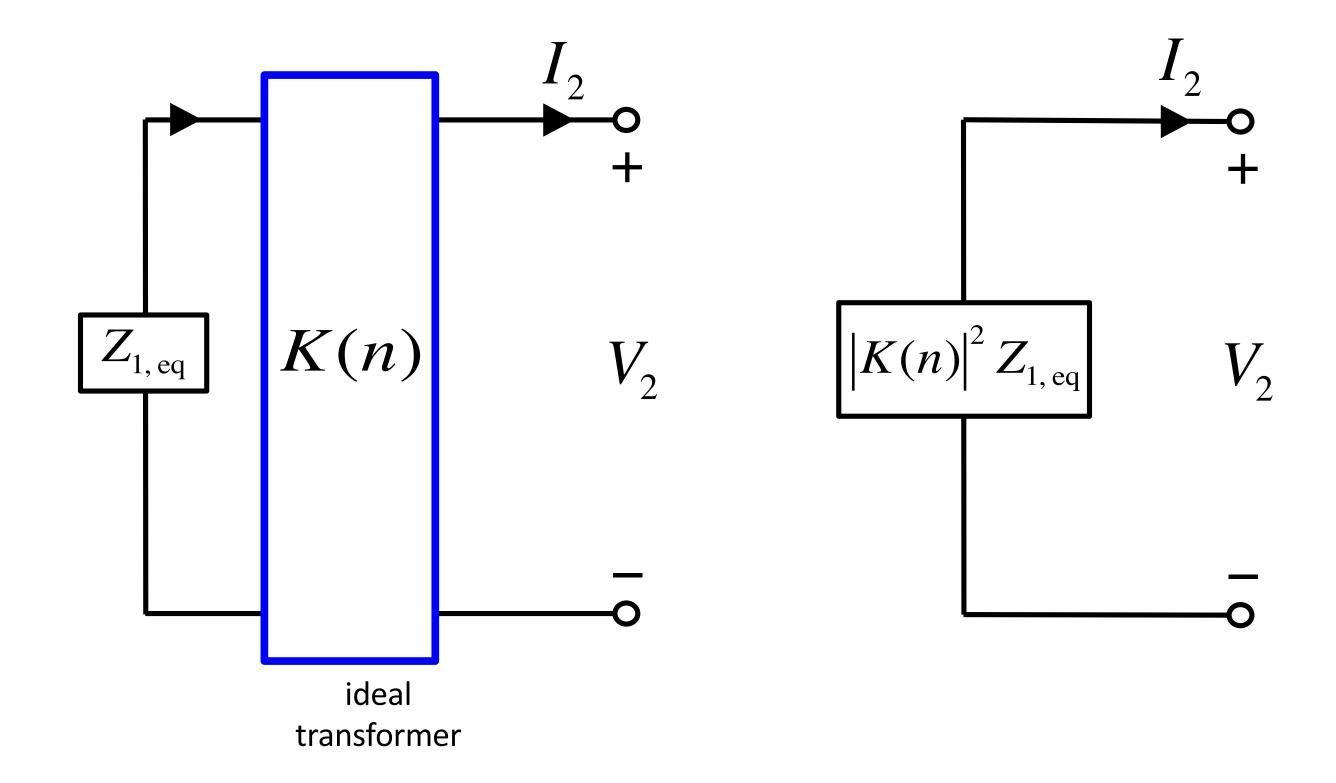
Referring impedance from secondary to primary



Both circuits have same driving-point impedance V_1/I_1 on primary side

Can verify using Kirchhoff's and Ohm's laws

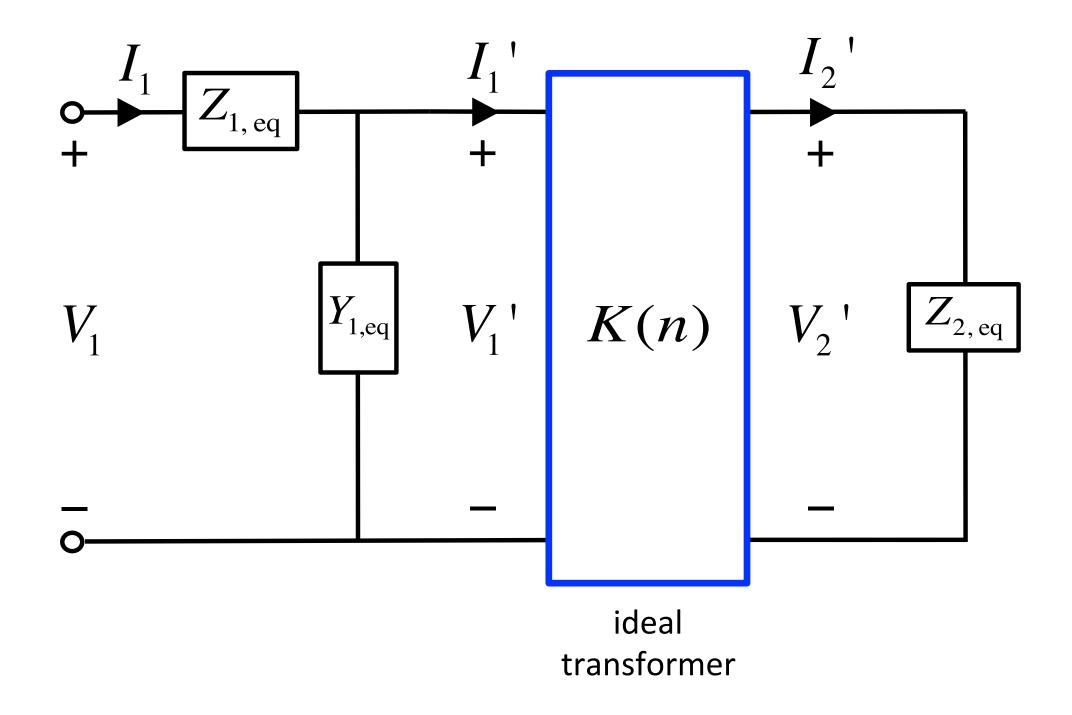
Referring impedance from primary to secondary



Both circuits have same driving-point impedance V_2/I_2 on secondary side

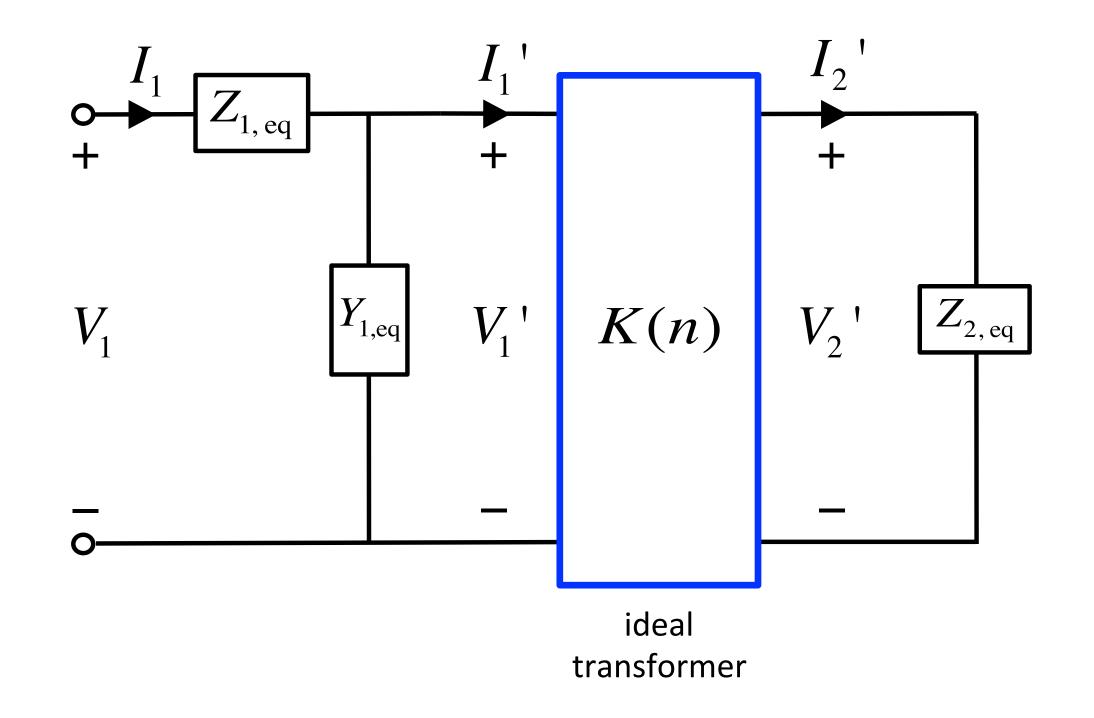
Can verify using Kirchhoff's and Ohm's laws

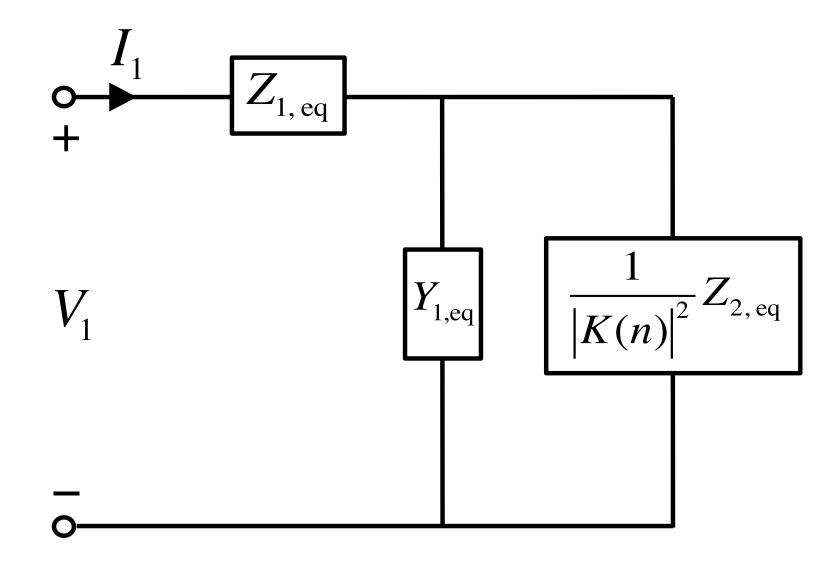
Example



To find V_1/I_1 , can analyze using Kirchhoff's and Ohm's laws

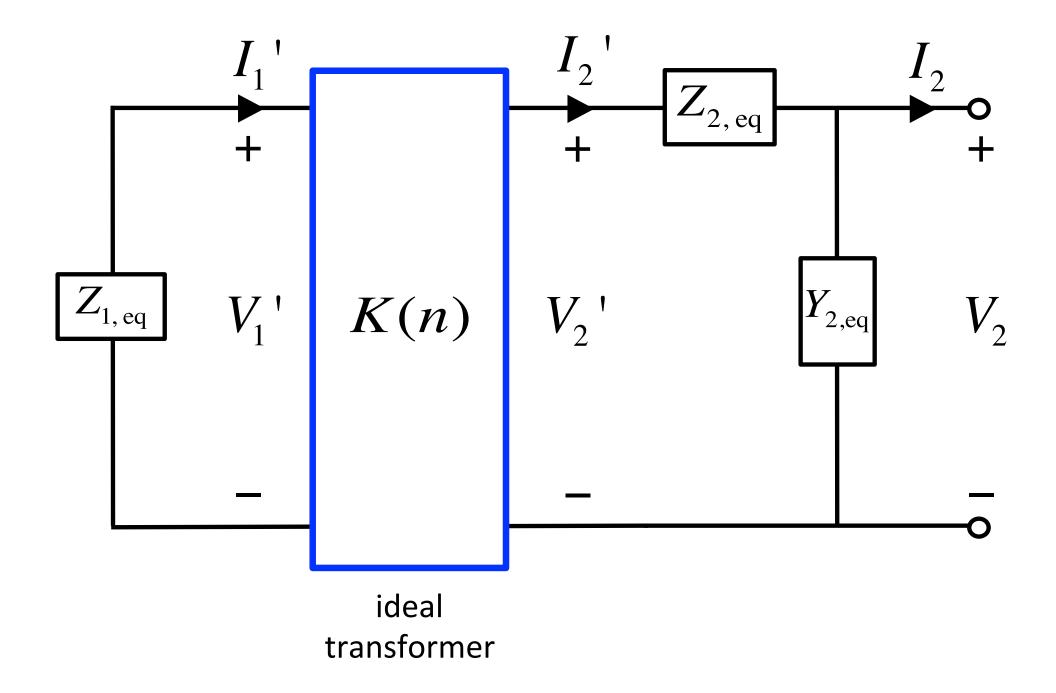
Example





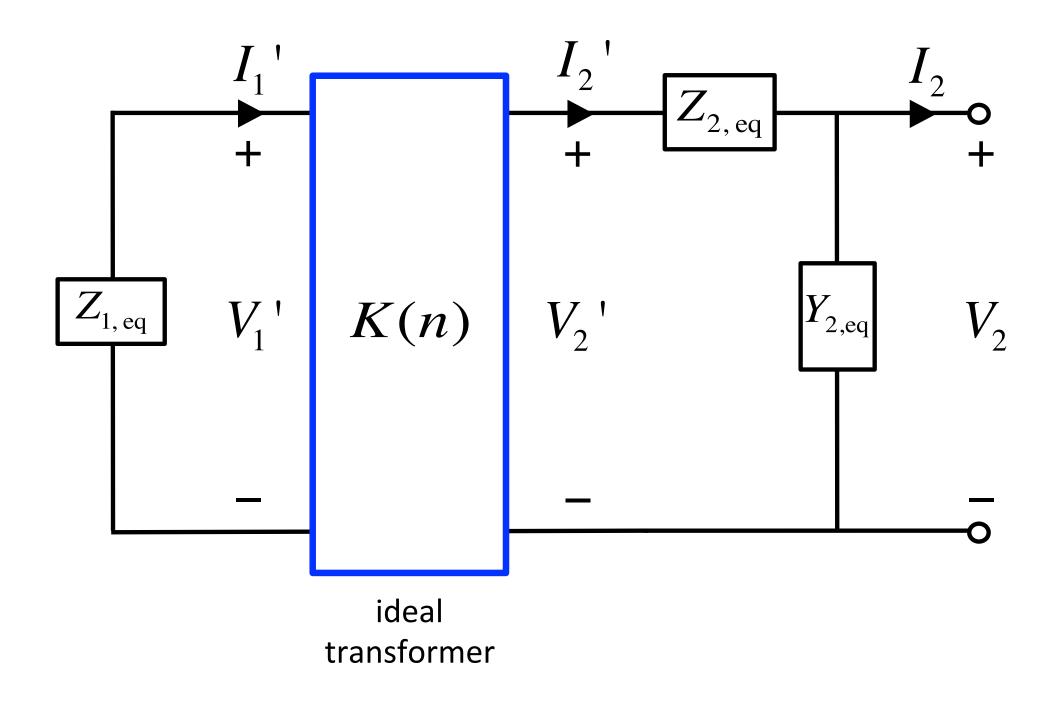
$$\frac{V_1}{I_1} = Z_{1,eq} + \left(Y_{1,eq} + \frac{1}{Z_{2,eq}/|K(n)|^2}\right)^{-1}$$

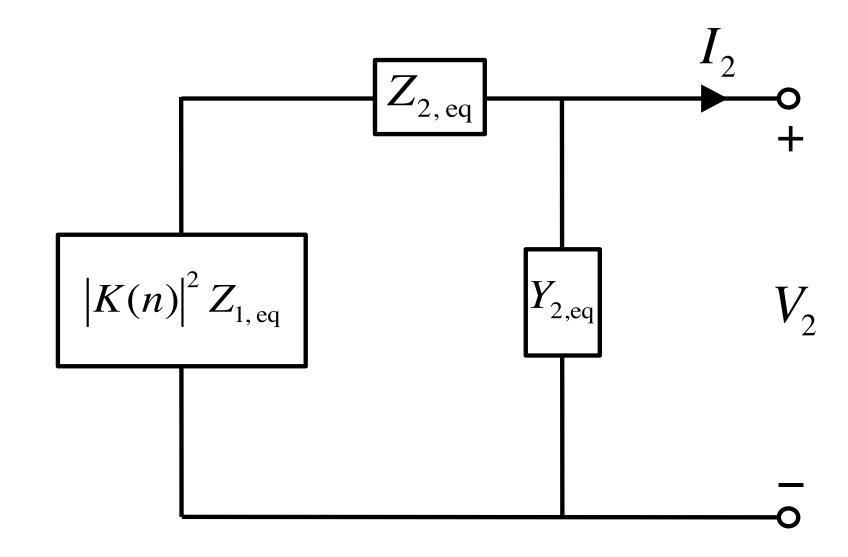
Example



To find V_2/I_2 , can analyze using Kirchhoff's and Ohm's laws

Example





$$\frac{V_2}{I_2} = \left(Y_{2,eq} + \frac{1}{Z_{2,eq} + |K(n)|^2 \cdot Z_{1,eq}}\right)^{-1}$$

Reference from one circuit to the other is not always applicable

- Example: circuits containing parallel paths (see example later)
- Generally applicable in a radial network without parallel paths
- Can always analyze original circuit using Kirchhoff's and Ohm's laws

Outline

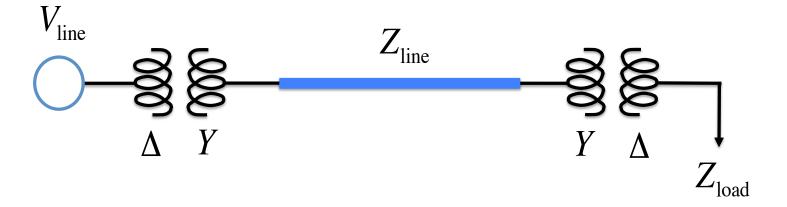
- 1. Single-phase transformer
- 2. Balanced three-phase transformers
- 3. Equivalent impedance
- 4. Per-phase analysis
 - Example
 - Normal system
- 5. Per-unit normalization

Per-phase analysis

Procedure

- 1. Convert all sources and loads in Δ configurations into their Y equivalents
- 2. Convert all ideal transformers in Δ configurations into their Y equivalents
- 3. Obtain phase a equivalent circuit by connecting all neutrals
- 4. Solve for desired phase-a variables
 - Use Thevenin equivalent of series impedances and shunt admittances in networks containing transformers whenever applicable, e.g., for a radial network
- 5. Obtain variables for phases b and c by subtracting 120° and 240° from phase a variables (positive sequence sources)
 - If variables in the internal of Δ configurations are desired, derive them from original circuits

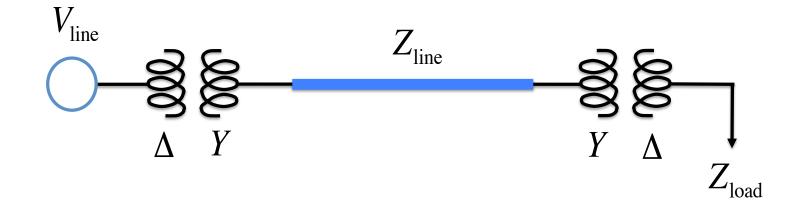
Per-phase analysis Example

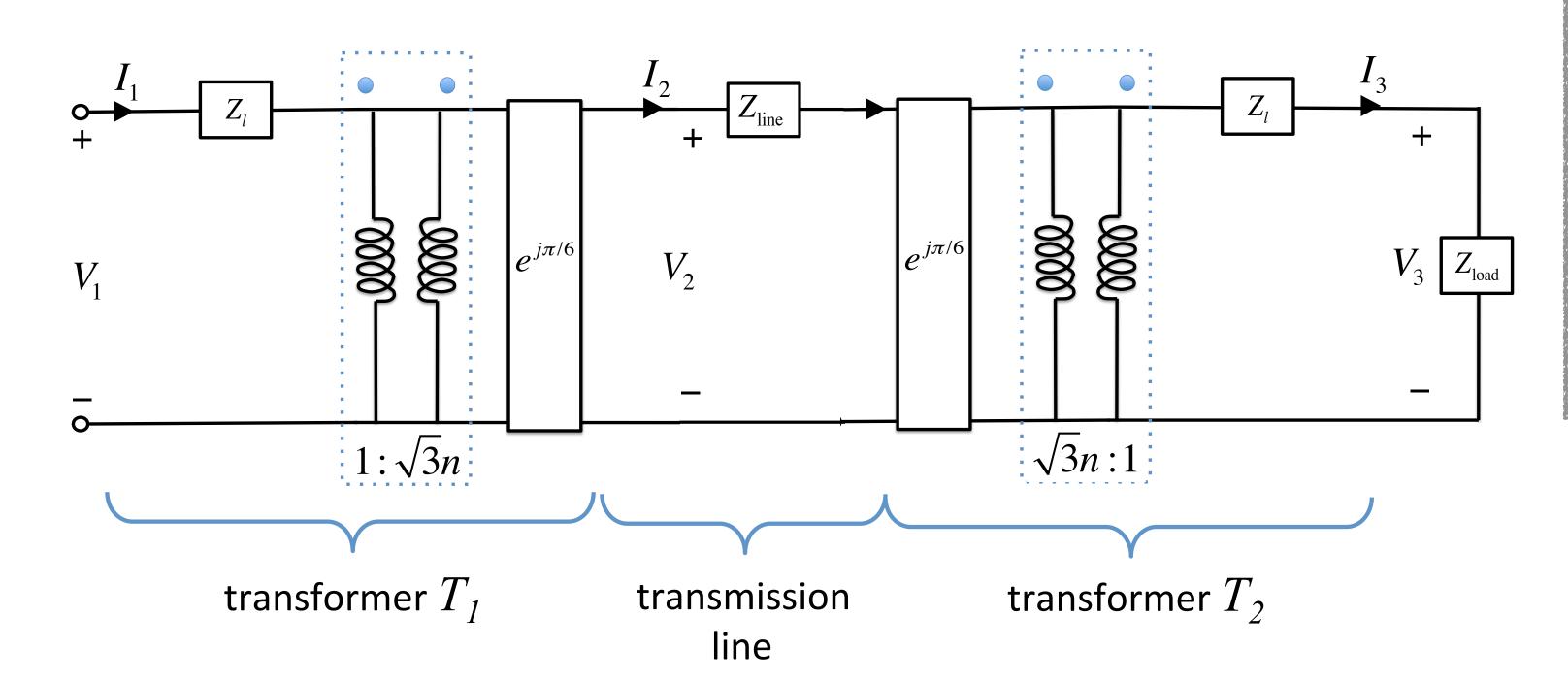


Balanced 3 ϕ system

- Generator with line voltage V_{line}
- Step-up ΔY transformer
- Transmission line with series impedance Z_{line}
- Step-down ΔY transformer (primary on right)
- Load with impedance Z_{load}
- Single-phase transformer with voltage gain n and series impedance $3Z_l$ on primary side

Per-phase analysis Example





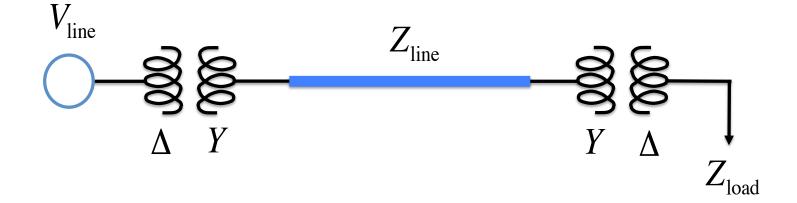
Balanced 3ϕ system

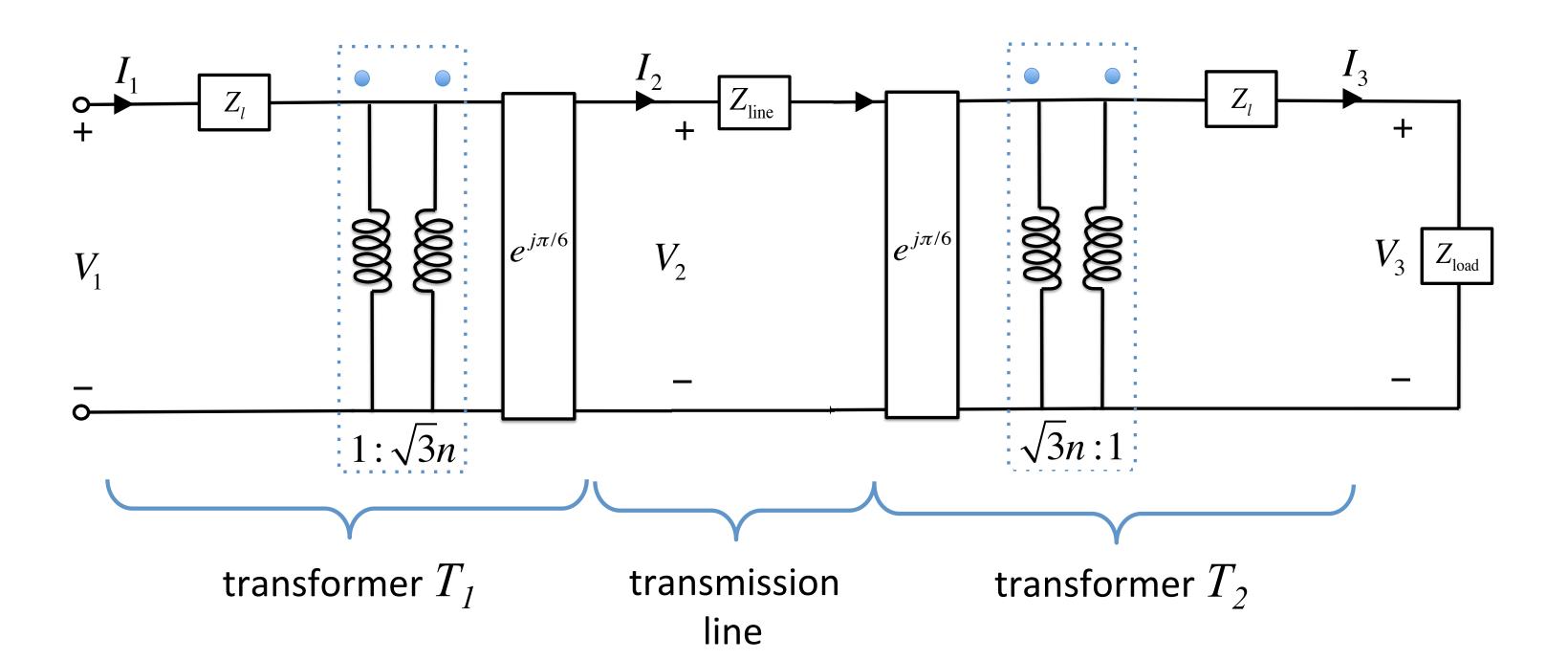
- Generator with line voltage V_{line}
- Step-up ΔY transformer
- Transmission line with series impedance Z_{line}
- Step-down ΔY transformer (primary on right)
- Load with impedance Z_{load}
- Single-phase transformer with turns ratio n and series impedance $3Z_l$ on primary side

$$V_1 = \frac{V_{\text{line}}}{\sqrt{3} e^{i\pi/6}} \qquad Z^Y = Z$$

Per-phase analysis

Example



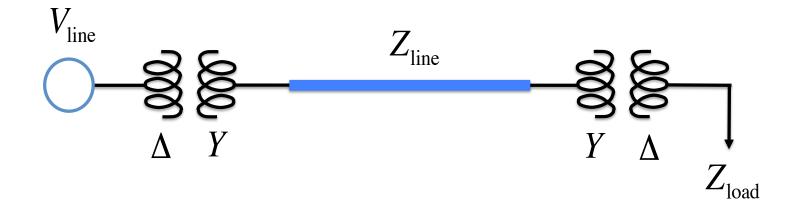


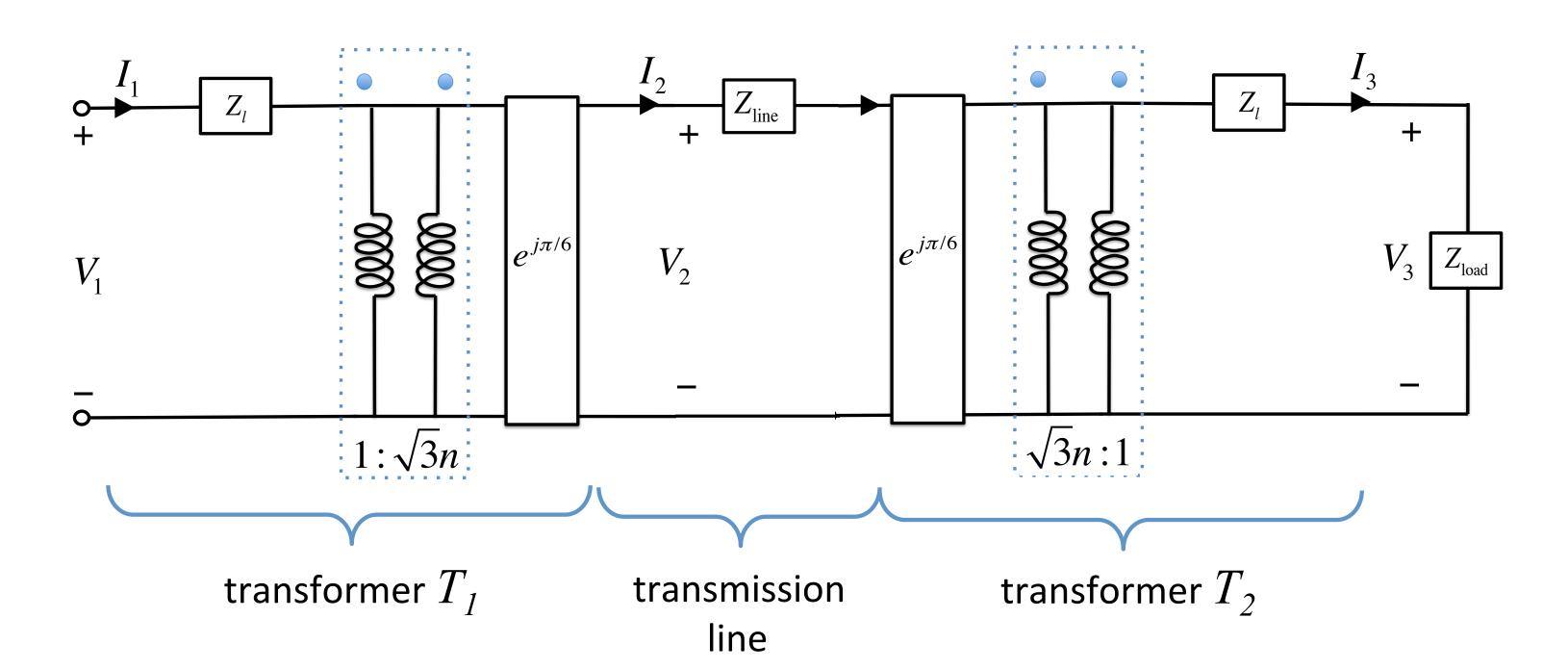
Calculate

- Generator current I_1
- Transmission line current I_2
- Load current I_3
- Load voltage V_3
- Power delivered to load: $V_3I_3^*$

$$V_1 = \frac{V_{\text{line}}}{\sqrt{3} e^{i\pi/6}} \qquad Z^Y = Z_l$$

Per-phase analysis Example





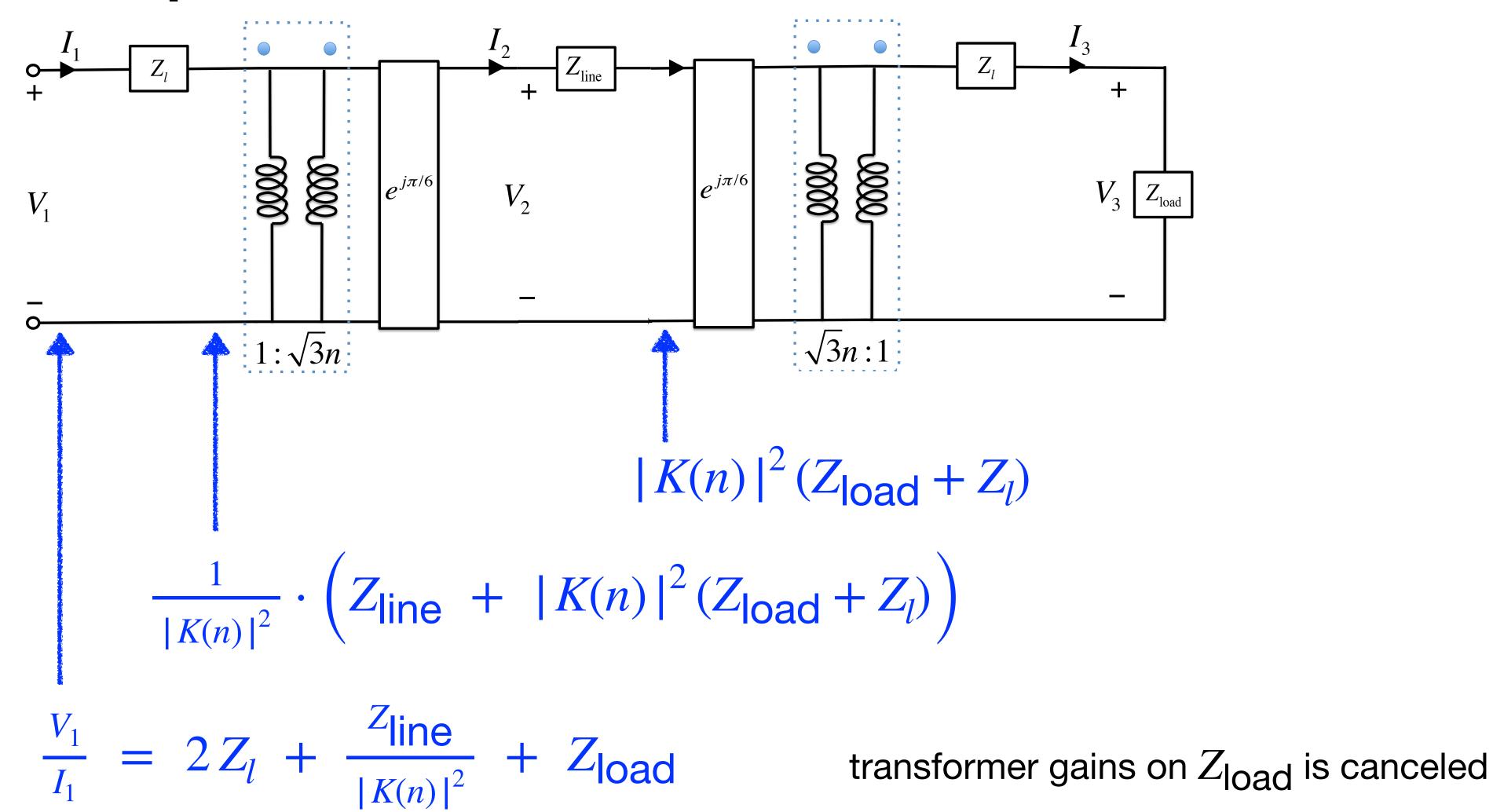
Solution strategy

- Refer all impedances to primary side of step-up transformer
- Derive driving-point impedance V_1/I_1
- Derive generator current I_1
- Propagate calculation towards load

$$V_1 = \frac{V_{\text{line}}}{\sqrt{3} e^{i\pi/6}} \qquad Z^Y = Z_0^Y$$

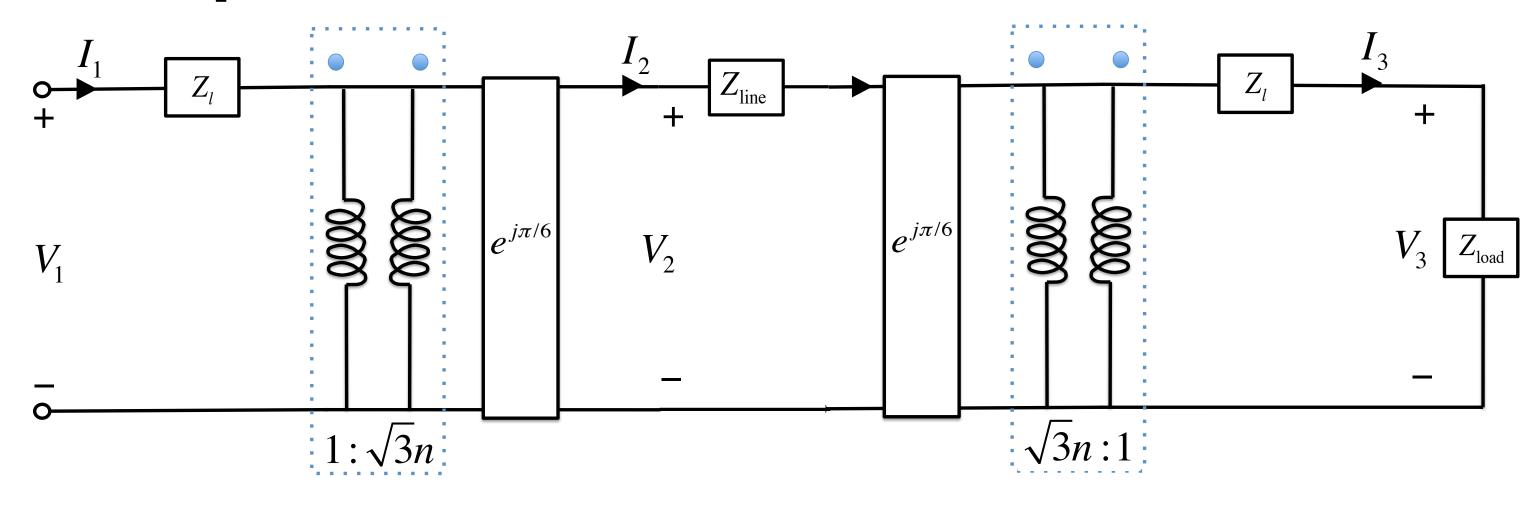
Per-phase analysis

Example



Per-phase analysis

Example



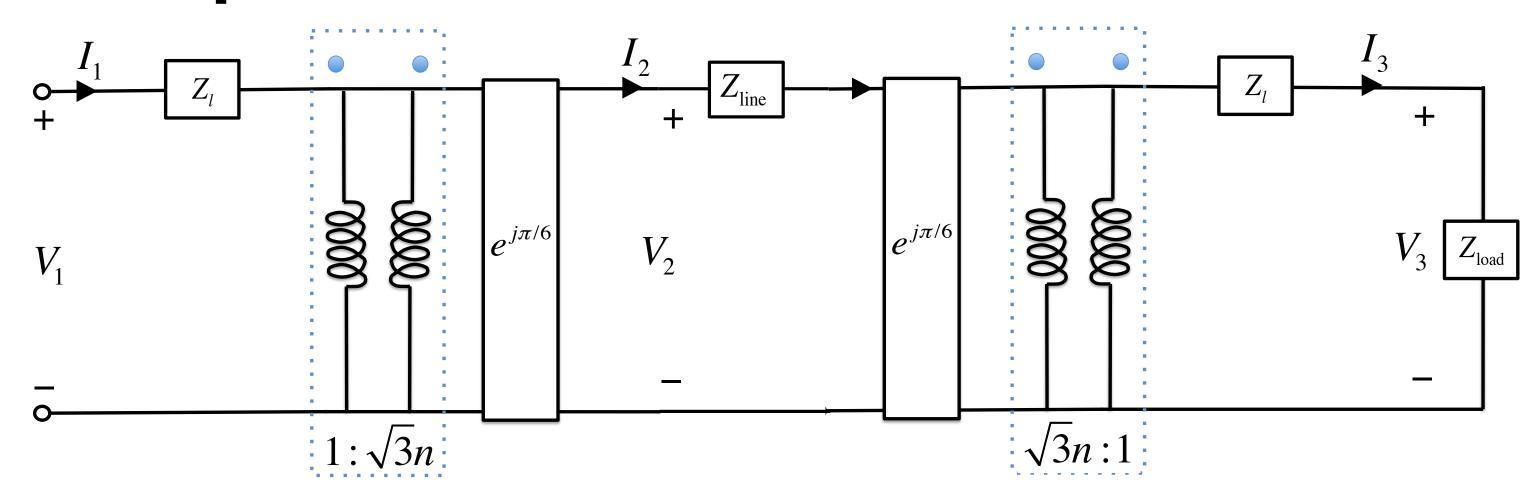
$$I_{1} = \frac{V_{\text{line}} / (\sqrt{3}e^{i\pi/6})}{2Z_{l} + \frac{Z_{\text{line}}}{|K(n)|^{2}} + Z_{\text{load}}}$$

$$I_3 = \bar{K}(n) I_2 = I_1$$
 $V_3 = Z_{load} I_3 = Z_{load} I_1$

$$I_2 = \frac{I_1}{\bar{K}(n)}$$

Per-phase analysis

Example



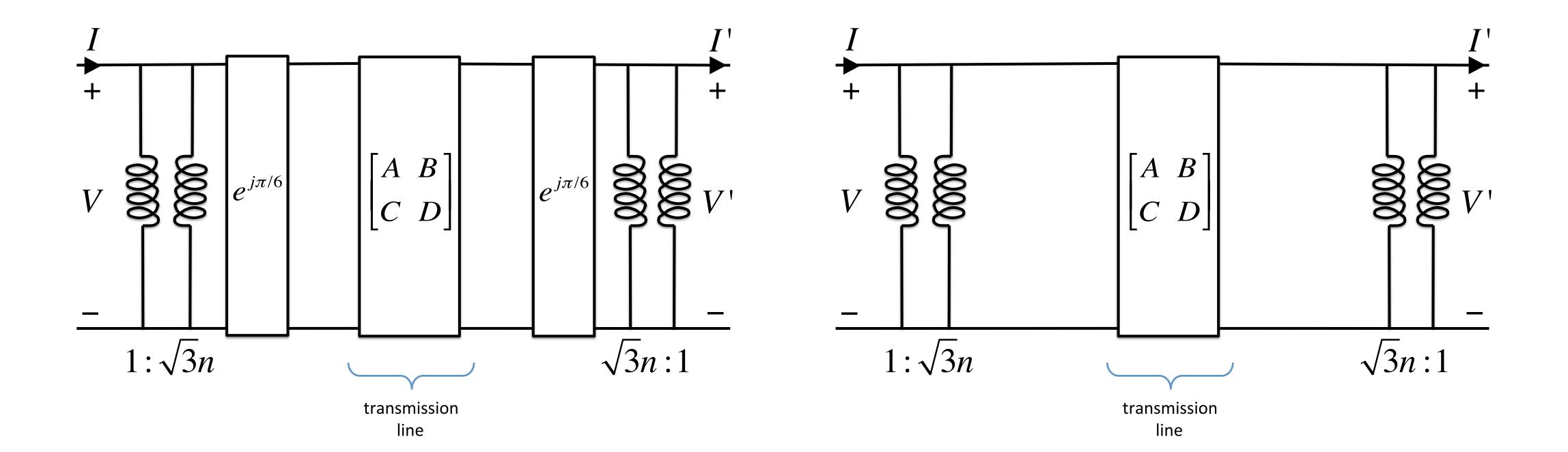
$$I_{1} = \frac{V_{\text{line}} / (\sqrt{3}e^{i\pi/6})}{2Z_{l} + \frac{Z_{\text{line}}}{|K(n)|^{2}} + Z_{\text{load}}}$$

$$I_{3} = I_{1}$$

$$V_{3} = Z_{\text{load}} I_{1}$$

- External behavior does not depend on connection-induced phase shift $e^{i\pi/6}$
- Only internal variables I_{line} does

Simplified model for terminal behavior



Terminal behavior does not depend on $e^{i\pi/6}$

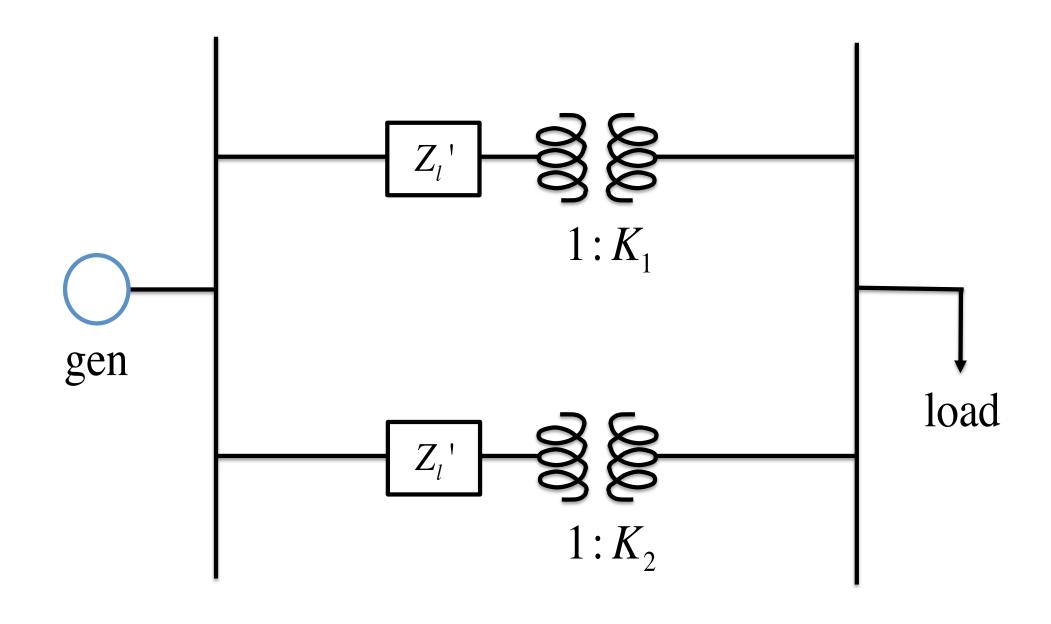
The simplified model has the same transmission matrix

A system is normal if, in its per-phase circuit, the product of complex ideal transformer gains around every loop is 1

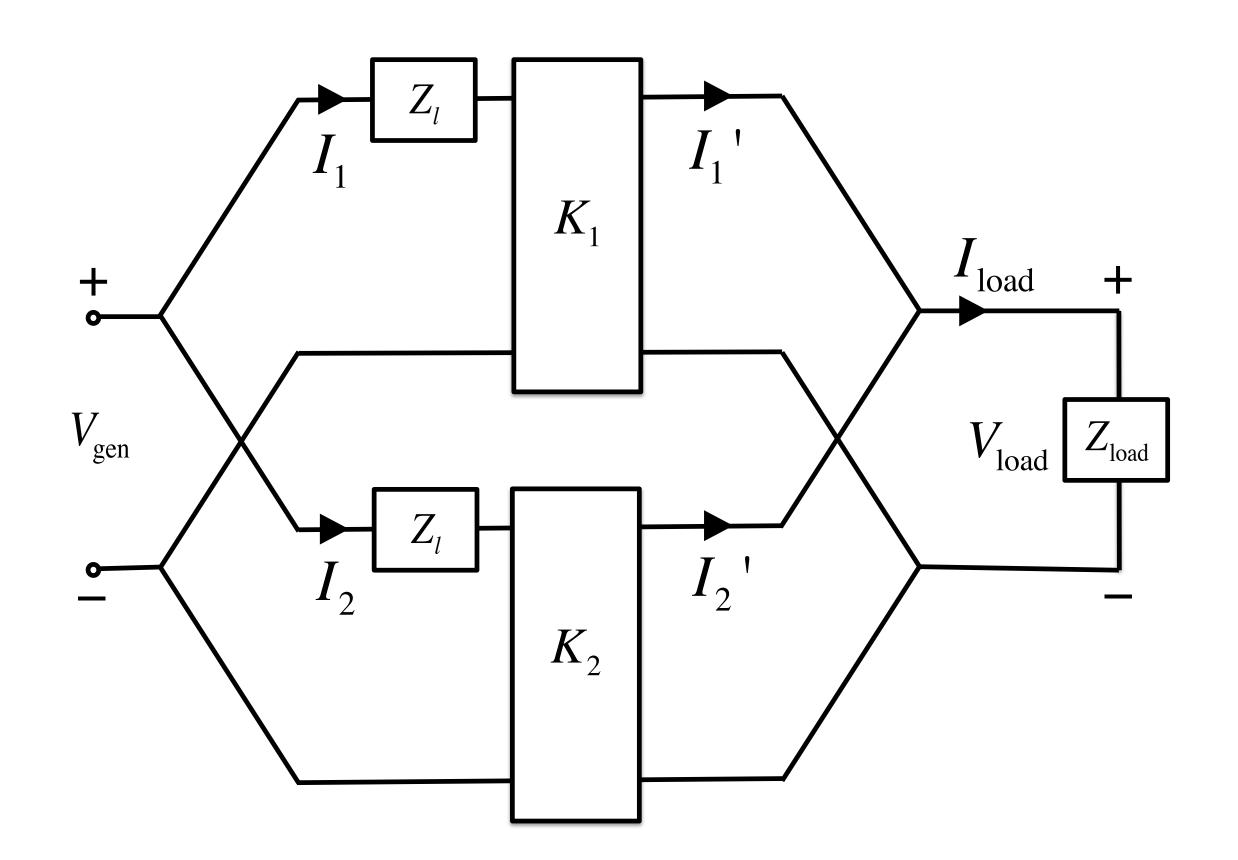
Equivalently, on each parallel path,

- 1. Product of ideal transformer gain magnitudes is the same, and
- 2. Sum of ideal transformer phase shifts is the same

Example



Generator & load connected by two 3ϕ transformers in parallel (forming a loop)



Example

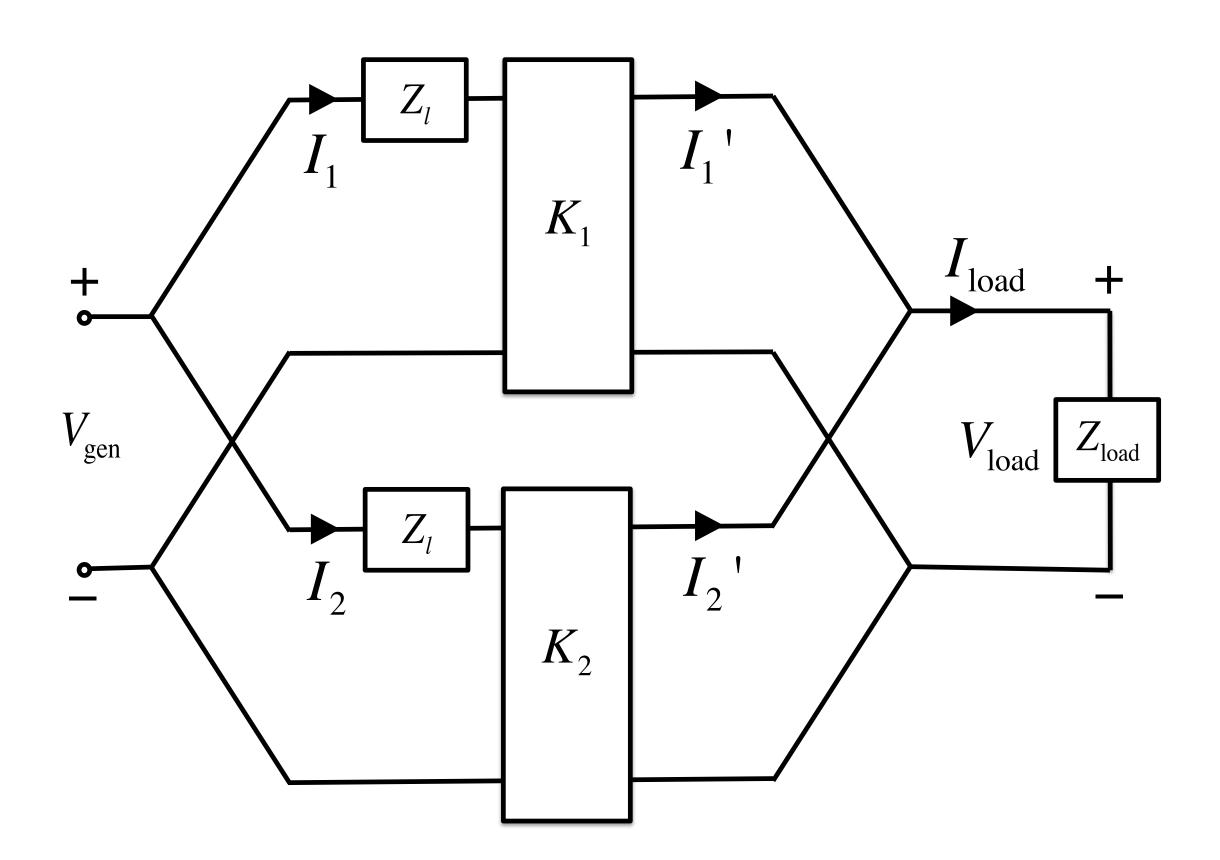
Calculate

- Load current I_{load}
- Line currents I_1' , I_2'

in terms of $V_{\rm gen},\,Z_{\it l},\,Z_{\rm load}$

Implications when

- $K_2 = K_1$ (normal system)
- $K_2 = K_1 e^{i\theta}$
- $K_2 = k \cdot K_1$

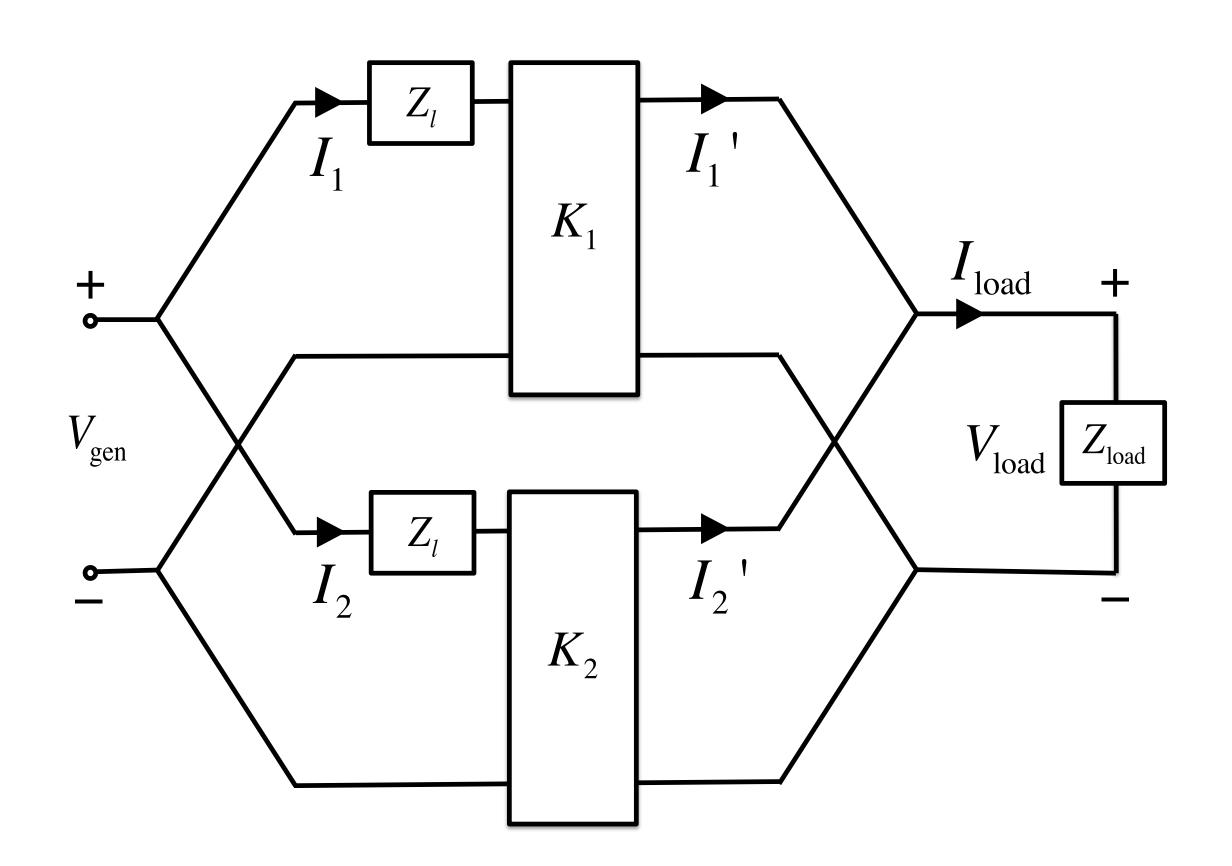


Normal system Example

$$K_2 = K_1$$
 (normal system):

•
$$I'_1 = I'_2$$

$$\frac{I_{\text{load}}}{I_1'} = \frac{I_{\text{load}}}{I_2'} = 2$$



Example

$$K_2 = K_1 e^{i\theta}:$$

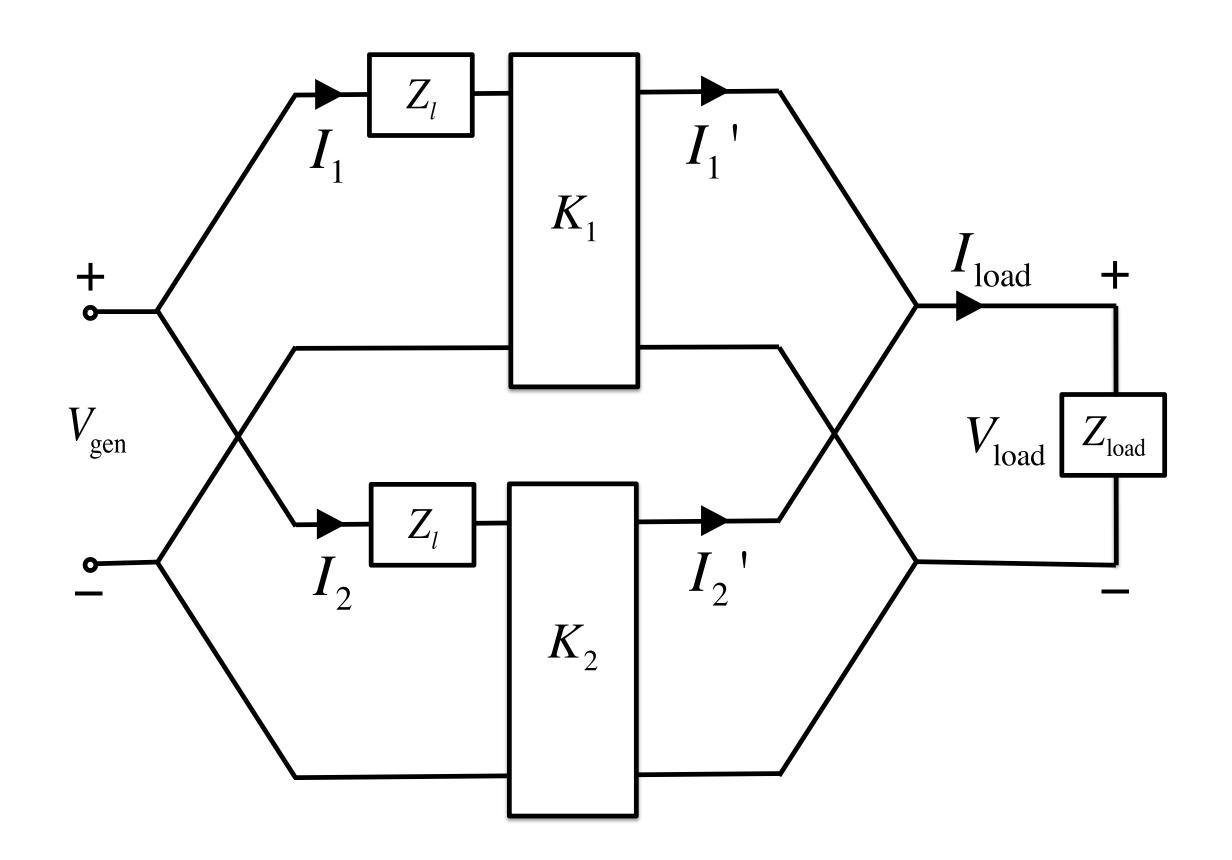
$$I'_1 \neq I'_2$$

$$\left|\frac{I_{\text{load}}}{|I'_1|} = \frac{\left|1 + e^{i\theta}\right|}{|\alpha_1|}, \quad \frac{\left|I_{\text{load}}\right|}{|I'_2|} = \frac{\left|1 + e^{i\theta}\right|}{|\alpha_2|}$$

Example: $K_2 = K_1 e^{i\pi/6}$:

$$\frac{\left|I_{\text{load}}\right|}{|I'_{1}|} = 20.6\%, \quad \frac{\left|I_{\text{load}}\right|}{|I'_{2}|} = 17.1\%$$

Most current loops between transformers without entering load



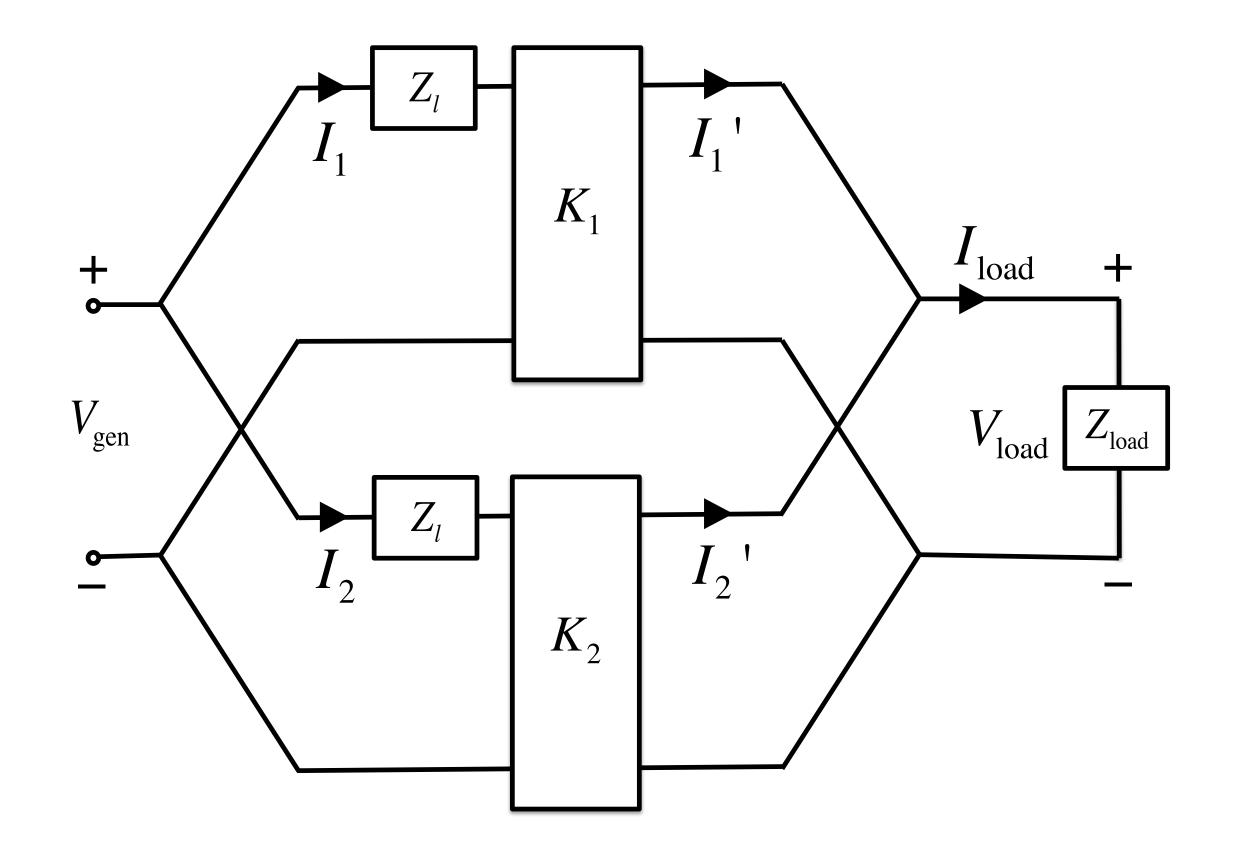
Example

$$K_2 = K_1 e^{i\theta}$$
:
• $I_1' \neq I_2'$

$$|I_1 = e^{i\theta}| \quad |I_1 = e^{i\theta}|$$

Example: $K_2 = K_1 e^{i\pi/6}$:

•
$$S_{\text{gen}} = 183 \angle 71^{\circ}$$
, $S_{\text{load}} = 60 \angle 0^{\circ}$ MVA



Per-phase circuit

Most current loops between transformers without entering load

Example

$$K_2 = k \cdot K_1:$$

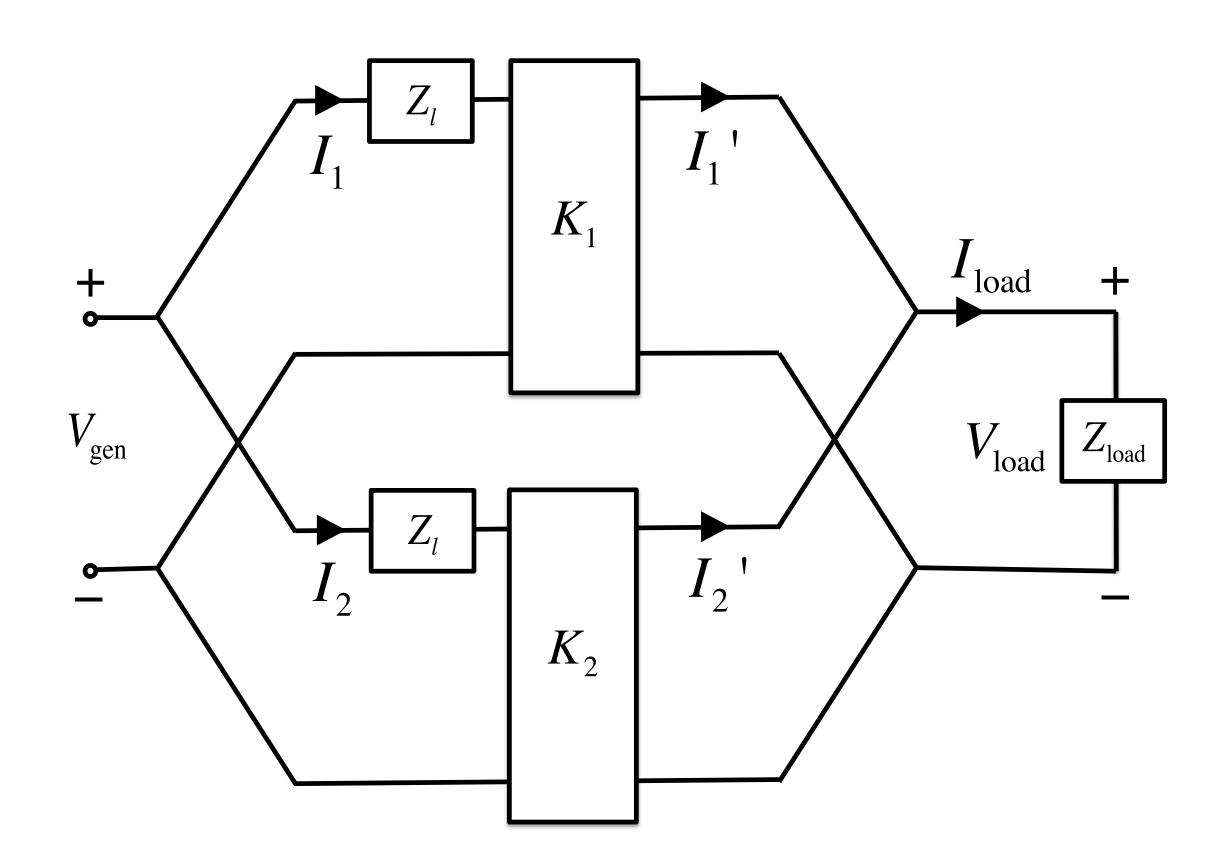
$$\cdot I'_1 \neq I'_2$$

$$\cdot \frac{\left|I_{\text{load}}\right|}{\left|I'_1\right|} = \frac{1+k^{-1}}{\left|\alpha_1\right|}, \quad \frac{\left|I_{\text{load}}\right|}{\left|I'_2\right|} = \frac{1+k}{\left|\alpha_2\right|}$$

Example: $K_2 = 2K_1$:

$$\frac{\left|I_{\text{load}}\right|}{|I_1'|} = 29.4\%, \quad \frac{\left|I_{\text{load}}\right|}{|I_2'|} = 29.9\%$$

Most current loops between transformers without entering load



Outline

- 1. Single-phase transformer
- 2. Balanced three-phase transformers
- 3. Equivalent impedance
- 4. Per-phase analysis
- 5. Per-unit normalization
 - Kirchhoff's and Ohm's laws
 - Across ideal transformer
 - Three-phase quantities
 - Per-unit per-phase analysis

Per-unit normalization

• Quantities of interest: voltages V, currents I, power S, impedances Z

quantity in p.u. =
$$\frac{\text{actual quantity}}{\text{base value of quantity}}$$

- Base values
 - Real positive values
 - Same units as actual quantities
- Choose base values to satisfy same physical laws
 - Kirchhoff's and Ohm's laws
 - Across ideal transformer
 - Relationship between 3ϕ and 1ϕ quantities

Per-unit normalization

General procedure

- 1. Choose voltage base value V_{1B} for (say) area 1
- 2. Choose power base value S_R for entire network
- 3. Calculate all other base values from physical laws

Example: Choose

- 1. V_{1B} = nominal voltage magnitude of area 1
- 2. S_B = rated apparent power of a transformer in area 1

How to calculate the other base values (V_{iB}, I_{iB}, Z_{iB}) ?

• Consider single-phase or per-phase circuit of balanced 3ϕ system

Kirchhoff's and Ohm's laws

Given base values (V_{1B}, S_B) , within area 1:

$$I_{1B} := rac{S_B}{V_{1B}} A, \qquad Z_{1B} := rac{V_{1B}^2}{S_B} \Omega$$

Then: physical laws are satisfied by both the base values and p.u. quantities

$$V_{1B} = Z_{1B}I_{1B},$$
 $V_{1pu} = Z_{1pu}I_{1pu}$
 $S_B = V_{1B}I_{1B},$ $S_{1pu} = V_{1pu}I_{1pu}$

Can perform circuit analysis using pu quantities instead of actual quantities

Kirchhoff's and Ohm's laws

Other quantities

These quantities $(V_{1B}, S_B, I_{1B}, Z_{1B})$ serve as base values for other quantities within area 1, with appropriate units

• S_B is base value for real power in W, reactive power in var

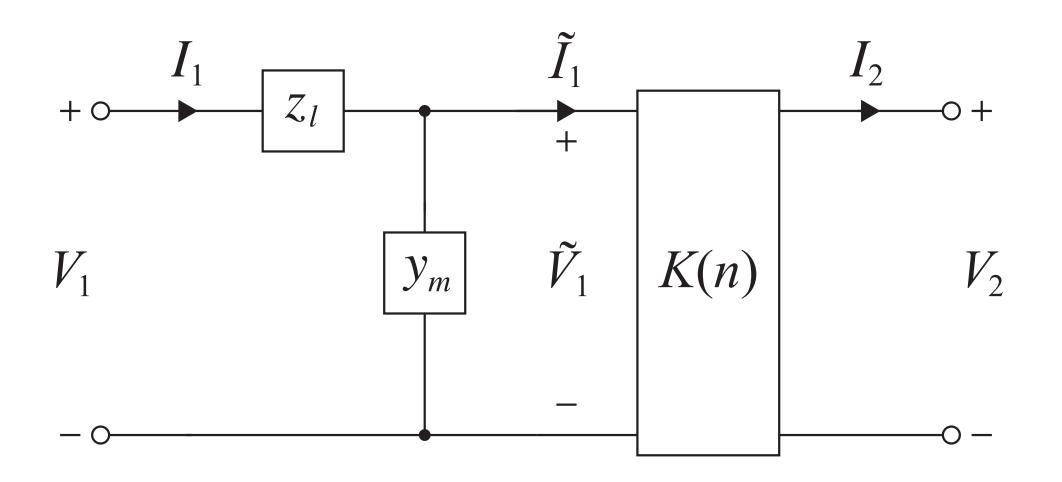
$$P_{1pu} := \frac{P_1}{S_R}, \qquad Q_{1pu} := \frac{Q_1}{S_R}, \qquad S_{1pu} = P_{1pu} + iQ_{1pu}$$

• Z_{1R} is base value for resistances & reactances in Ω

$$R_{1\text{pu}} := \frac{R_1}{Z_{1R}}, \qquad X_{1\text{pu}} := \frac{X_1}{Z_{1R}}, \qquad Z_{1\text{pu}} = R_{1\text{pu}} + iX_{1\text{pu}}$$

• $Y_{1B}:=1/Z_{1B}$ in Ω^{-1} is base value for conductances, susceptances, & admittances

$$G_{1pu} := \frac{G_1}{Y_{1B}}, \qquad B_{1pu} := \frac{B_1}{Y_{1B}}, \qquad Y_{1pu} = G_{1pu} + iB_{1pu} = \frac{1}{Z_{1pu}}$$



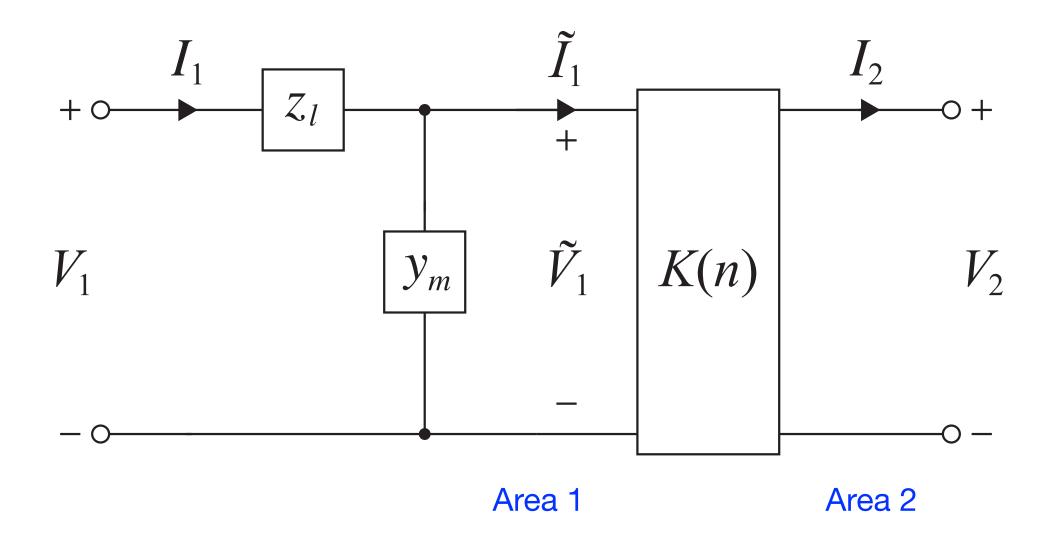
Choose
$$\left(V_{2B},I_{2B},Z_{2B}\right)$$
 according to

$$V_{2B} := |K(n)| V_{1B} \quad V$$

$$I_{2B} := \frac{I_{1B}}{|K(n)|} A$$

$$Z_{2B} := |K(n)|^2 Z_{1B} \Omega$$

Base values remain real positive S_B remains base value for power

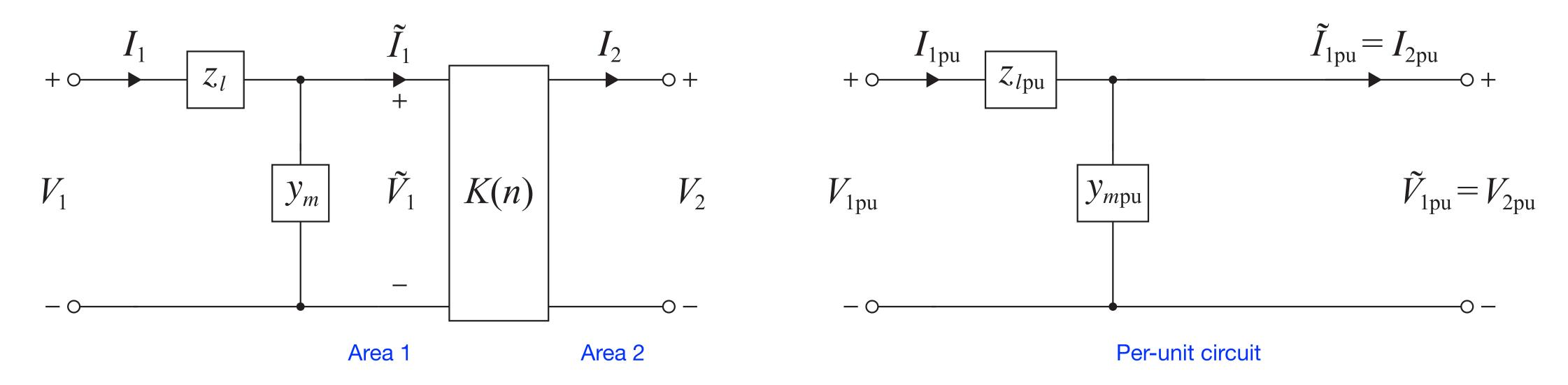


External behavior

$$\tilde{V}_{1\text{pu}} = \frac{\tilde{V}_{1}}{V_{1B}} = \frac{V_{2}}{K(n)} \frac{|K(n)|}{V_{2B}} = V_{2\text{pu}} e^{-j \angle K(n)} \qquad \text{If } \angle K(n) = 0 \text{ then}$$

$$\tilde{I}_{1\text{pu}} = \frac{\tilde{I}_{1}}{\tilde{I}_{1B}} = \frac{K^{*}(n)I_{2}}{|K(n)|I_{2B}} = I_{2\text{pu}} e^{-j \angle K(n)}$$

$$\tilde{V}_{1\text{pu}} = V_{2\text{pu}}, \quad \tilde{I}_{1\text{pu}} = I_{2\text{pu}}$$



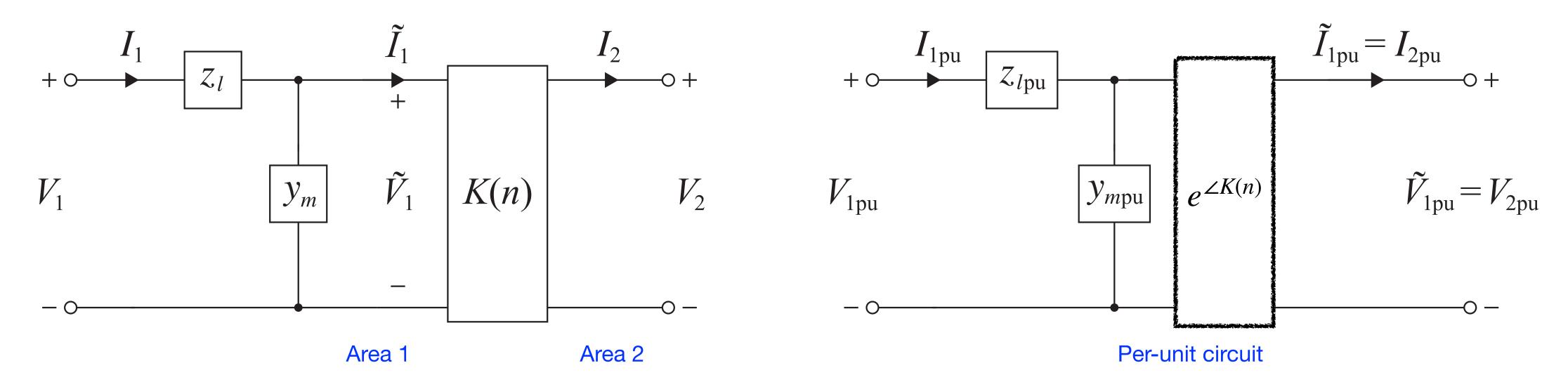
External behavior

$$\tilde{V}_{1pu} = \frac{\tilde{V}_{1}}{V_{1B}} = \frac{V_{2}}{K(n)} \frac{|K(n)|}{V_{2B}} = V_{2pu} e^{-j \angle K(n)}$$

$$\tilde{I}_{1pu} = \frac{\tilde{I}_{1}}{\tilde{I}_{1B}} = \frac{K^{*}(n)I_{2}}{|K(n)|I_{2B}} = I_{2pu} e^{-j \angle K(n)}$$

If
$$\angle K(n) = 0$$
 then
$$\tilde{V}_{1\text{pu}} = V_{2\text{pu}}, \quad \tilde{I}_{1\text{pu}} = I_{2\text{pu}}$$

Ideal transformer has disappeared!



External behavior

$$\tilde{V}_{1pu} = \frac{\tilde{V}_{1}}{V_{1B}} = \frac{V_{2}}{K(n)} \frac{|K(n)|}{V_{2B}} = V_{2pu} e^{-j \angle K(n)}$$

$$\tilde{I}_{1pu} = \frac{\tilde{I}_{1}}{\tilde{I}_{1B}} = \frac{K^{*}(n)I_{2}}{|K(n)|I_{2B}} = I_{2pu} e^{-j \angle K(n)}$$

Otherwise

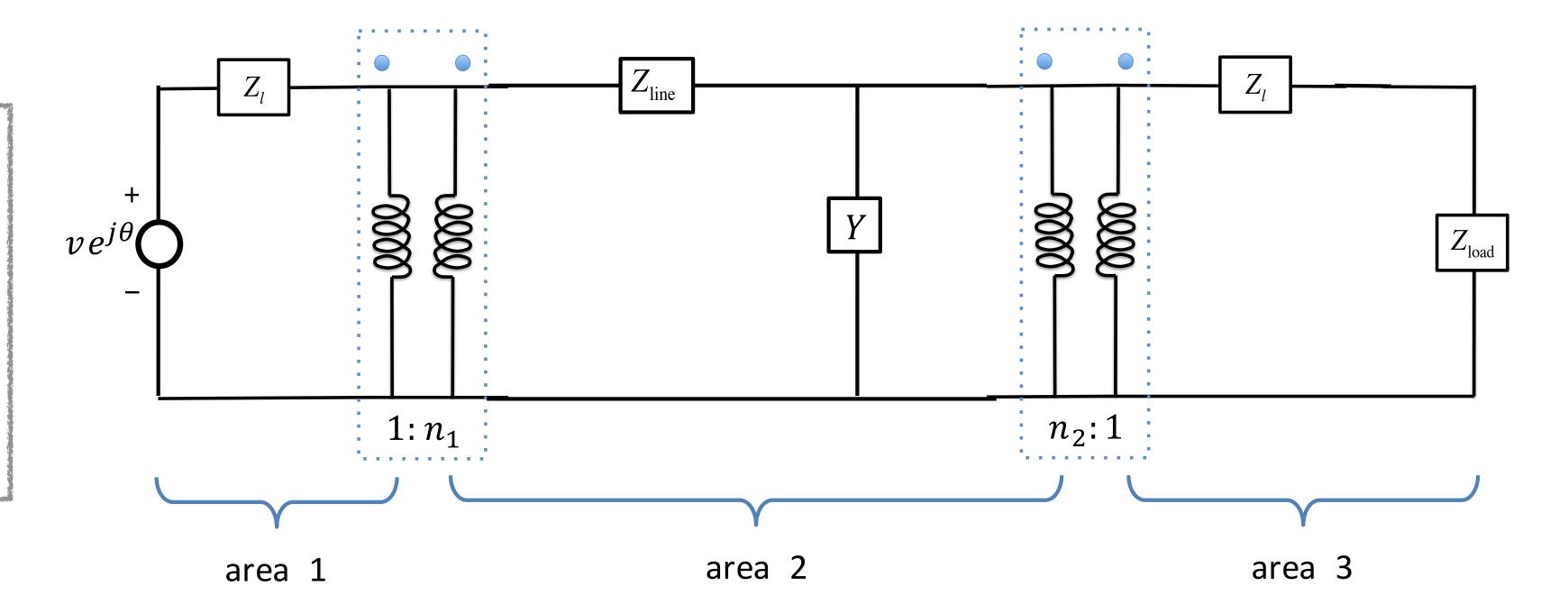
 pu circuit contains an off-nominal phase-shifting transformer

Example

Given nameplate rating of generator

- Voltage v V
- Apparent power s VA

Calculate base values



Voltage base $V_{1B} := v$, power base $S_B := s$

- Area 1: $I_{1B} := s/v$, $Z_{1B} := v^2/s$
- Area 2: $V_{2B} := n_1 v$, $I_{2B} := s/(n_1 v)$, $Z_{2B} := (n_1 v)^2/s$, $Y_{2B} := s/(v_1 v)^2$
- Area 3: $V_{3B} := n_1 v/n_2$, $I_{3B} := n_2 s/(n_1 v)$, $Z_{3B} := (n_1 v)^2/(n_2^2 s)$, $Y_{3B} := (n_2^2 s)/(v_1 v)^2$

3\$\phi\$ quantities

Given 1ϕ devices (generators, lines, loads) with

- with 1 ϕ quantities $\left(S^{1\phi},V^{1\phi},I^{1\phi},Z^{1\phi}\right)$
- and their base values

Construct balanced 3ϕ devices from these 1ϕ devices

- What are 3ϕ quantities of interest?
- What are base values so that 3ϕ quantities equal to 1ϕ quantities in p.u.?

Base values should satisfy the same 3ϕ relationships as actual quantities Values depend on the configuration, Y or Δ

3ϕ quantities

Y configuration

In terms of $(S^{1\phi}, V^{1\phi}, I^{1\phi}, Z^{1\phi})$ and their base values

• 3ϕ power (total power to/from 3 1ϕ devices):

$$S^{3\phi} = 3S^{1\phi},$$

Line-to-line voltage

$$V^{\parallel} = \sqrt{3}e^{i\pi/6}V^{\ln},$$

Line current

$$I^{3\phi} = I_{an} = I^{1\phi},$$

Line-to-neutral voltage

$$V^{\mathsf{ln}} = V^{1\phi}$$
.

Impedance

$$Z^{3\phi} = Z^{1\phi},$$

3ϕ quantities

Y configuration

In terms of $\left(S^{1\phi}, V^{1\phi}, I^{1\phi}, Z^{1\phi} \right)$ and their base values

• 3ϕ power (total power to/from 3 1ϕ devices):

$$S^{3\phi} = 3S^{1\phi}, \qquad S_B^{3\phi} = 3S_B^{1\phi}$$

Line-to-line voltage

$$V^{\parallel} = \sqrt{3}e^{i\pi/6}V^{\ln}, \qquad V_B^{\parallel} = \sqrt{3}V_B^{\ln}$$

Line current

$$I^{3\phi} = I_{an} = I^{1\phi}, \qquad I_{R}^{3\phi} = I_{R}^{1\phi}$$

Line-to-neutral voltage

$$V_B^{\mathsf{ln}} = V^{1\phi}, \qquad V_B^{\mathsf{ln}} = V_B^{1\phi}$$

Impedance

$$Z_{B}^{\phi} = Z^{1\phi}, \qquad Z_{B}^{3\phi} = Z_{B}^{3\phi}$$

Calculation

Base values satisfy the same relationship

3ϕ quantities

Δ configuration

In terms of $\left(S^{1\phi},V^{1\phi},I^{1\phi},Z^{1\phi}\right)$ and their base values

• 3ϕ power (total power to/from 3 1ϕ devices):

$$S^{3\phi} = 3S^{1\phi},$$

Line-to-line voltage

$$V^{\parallel} = \sqrt{3}e^{i\pi/6}\,V^{\ln},$$

Line current

$$I^{3\phi} = I_{ab} - I_{ca} = \sqrt{3} e^{-i\pi/6} I^{1\phi},$$

Line-to-neutral voltage

$$V^{\mathsf{ln}} = \left(\sqrt{3} e^{i\pi/6}\right)^{-1} V^{1\phi},$$

Impedance

$$Z^{3\phi} = Z^{1\phi}/3,$$

Note:

 $V^{\rm ln},\,Z^{3\phi}$ are voltage and & impedance in Y equivalent circuit

3\$\phi\$ quantities

Δ configuration

In terms of $\left(S^{1\phi},V^{1\phi},I^{1\phi},Z^{1\phi}\right)$ and their base values • 3ϕ power (total power to/from 3 1ϕ devices):

$$S^{3\phi} = 3S^{1\phi},$$

$$S_B^{3\phi} = 3S_B^{1\phi}$$

Line-to-line voltage

$$V^{\parallel} = \sqrt{3}e^{i\pi/6}\,V^{\ln},$$

$$V_B^{\parallel} = \sqrt{3} V_B^{\ln}$$

Line current

$$I^{3\phi} = I_{ab} - I_{ca} = \sqrt{3} e^{-i\pi/6} I^{1\phi}, \qquad I_{p}^{3\phi} = \sqrt{3} I_{p}^{1\phi}$$

$$I_B^{3\phi} = \sqrt{3} I_B^{1\phi}$$

Line-to-neutral voltage

$$V^{\text{ln}} = \left(\sqrt{3} e^{i\pi/6}\right)^{-1} V^{1\phi},$$

$$V_B^{\text{ln}} = (\sqrt{3})^{-1} V_B^{1\phi}$$

Impedance

$$Z^{3\phi} = Z^{1\phi}/3,$$

$$Z_B^{3\phi} = Z_B^{1\phi}/3$$

Note:

and & impedance in Y equivalent circuit

Per-unit quantities

Per-unit quantities satisfy

$$S_{\text{pu}}^{3\phi} = S_{\text{pu}}^{1\phi},$$
 $V_{\text{pu}}^{\text{II}} = V_{\text{pu}}^{\text{In}},$ $Z_{\text{pu}}^{3\phi} = Z_{\text{pu}}^{1\phi}$ $\left|V_{\text{pu}}^{\text{In}}\right| = \left|V_{\text{pu}}^{1\phi}\right|,$ $\left|I_{\text{pu}}^{3\phi}\right| = \left|I_{\text{pu}}^{1\phi}\right|$

- 3ϕ quantities equal 1ϕ quantities in p.u.
- modulo phase shifts in Δ configuration:

$$V_{\text{pu}}^{\text{ln}} := \frac{V^{\text{ln}}}{V_{B}^{\text{ln}}} = \frac{\left(\sqrt{3}e^{i\pi/6}\right)^{-1}V^{1\phi}}{\left(\sqrt{3}\right)^{-1}V_{B}^{1\phi}} = e^{-i\pi/6}V_{\text{pu}}^{1\phi}$$

Per-unit per-phase analysis

- 1. For single-phase system, pick power base $S_B^{1\phi}$ for entire system and voltage base $V_{1B}^{1\phi}$ in area 1, e.g., induced by nameplate ratings of transformer
- 2. For balanced 3ϕ system, pick 3ϕ power base $S_B^{3\phi}$ and line-to-line voltage base V_B^{II} induced by nameplate ratings of 3ϕ transformer. Then choose power & voltage bases for per-phase equivalent circuit:

$$S_B^{1\phi} := S_B^{3\phi} / 3, \qquad V_{1B}^{1\phi} := V_{1B}^{\parallel} / \sqrt{3}$$

 $S_{1R}^{1\phi}$ will be power base for entire per-phase circuit.

3. Calculate current and impedance bases in that area:

$$I_{1B} := \frac{S_B^{1\phi}}{V_{1B}^{1\phi}}, \qquad Z_{1B} := \frac{\left(V_{1B}^{1\phi}\right)^2}{S_B^{1\phi}}$$

Per-unit per-phase analysis

4. Calculate base values for voltages, currents, and impedances in areas i connected to area 1 using the magnitude n_i of transformer gains (assume area 1 is primary):

$$V_{iB}^{1\phi} := n_i V_{1B}^{1\phi}, \qquad V_{iB}^{\parallel} := n_i V_{1B}^{\parallel}, \qquad I_{iB} := \frac{1}{n_i} I_{1B}, \qquad Z_{iB} := n_i^2 Z_{1B}$$

Continue this process to calculate the voltage, current, and impedance base values for all areas

Per-unit per-phase analysis

- 5. For real, reactive, apparent power in entire system, use $S_B^{1\phi}$ as base value.
 - For resistances and reactances, use Z_{iB} as base value in area i.
 - For admittances, conductances, and susceptancesq, use $Y_{iB} := 1/Z_{iB}$ as base value in area i
- 6. Draw impedance diagram of entire system, and solve for desired per-unit quantities
- 7. Convert back to actual quantities if desired

Summary

- 1. Single-phase transformer
 - Ideal transformer gain *n*, equivalent circuit
- 2. Three-phase transformer
 - YY, $\Delta\Delta$, ΔY , $Y\Delta$: external behavior, YY equivalent
- 3. Equivalent impedance
 - Short cut for analyzing circuits containing transformers
 - Transmission matrix, driving-point impedance
- 4. Per-phase analysis
- 5. Per-unit normalization
 - Physical laws, across transformer, 3ϕ quantities, per-unit per-phase analysis