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Ideal transformer

Voltage & current gains
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It is represented schematically in Figure 3.1. The ratio n and a are satisfied by the voltages and currents at
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Figure 3.1: Single-phase ideal transformer.

all times in the time domain. Our analysis will however be carried out mostly in the phasor domain where
we have

V2

V1
= n and

I2

I1
= a

We define the transmission matrix Tideal for an ideal transformer as

V1
I1

�
=


a 0
0 n

�

| {z }
Tideal


V2
I2

�
(3.1)

Hence an ideal transformer is a linear (and invertible) transformation Tideal that maps (V2, I2) to (V1, I1).
Since the determinant of Tideal 6= 0, an ideal transformer does not have a P equivalent circuit model (see
Exercise 2.3). A non-ideal transformer does have a P equivalent circuit model as we will see later. The
ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤
2

V1I⇤
1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Equivalent circuit

A real transformer has power losses due to resistance in windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. A more realistic
transformer model includes a series resistance to model the power losses, a series inductance to model the
leakage fluxes, and a shunt admittance to model the finite permeability of the magnetic core, in both the
primary circuit (Zp,Ym) and the secondary circuit (Zs), as shown in Figure 3.2(a). This circuit is simplified
by referring the impedance Zs on the secondary side to the primary side of the ideal transformer (on the
right of the shunt admittance Ym) to obtain a so-called T equivalent circuit on the primary side. In practice

voltage gain n :=
N2

N1

turns ratio a :=
N1

N2



Ideal transformer

Voltage & current gains





Transmission matrix


V2

V1
= n

I2

I1
= a

[V1
I1] = [a 0

0 n] [V2
I2]

EE 135 Notes October 5, 2021 79

It is represented schematically in Figure 3.1. The ratio n and a are satisfied by the voltages and currents at

v1

+

−

v2

+

−

i2i1

N2N1

n := N2

N1

          a := N1

N2

Figure 3.1: Single-phase ideal transformer.

all times in the time domain. Our analysis will however be carried out mostly in the phasor domain where
we have

V2

V1
= n and

I2

I1
= a

We define the transmission matrix Tideal for an ideal transformer as

V1
I1

�
=


a 0
0 n

�

| {z }
Tideal


V2
I2

�
(3.1)

Hence an ideal transformer is a linear (and invertible) transformation Tideal that maps (V2, I2) to (V1, I1).
Since the determinant of Tideal 6= 0, an ideal transformer does not have a P equivalent circuit model (see
Exercise 2.3). A non-ideal transformer does have a P equivalent circuit model as we will see later. The
ratio of the complex receiving-end to sending-end power is

�S21

S12
:=

V2I⇤
2

V1I⇤
1

= n ·a = 1

i.e., an ideal transformer has no power loss.

3.1.2 Equivalent circuit

A real transformer has power losses due to resistance in windings (r|I|2), eddy currents and hysteresis
losses. It also has nonzero leakage fluxes and finite permeability of the magnetic core. A more realistic
transformer model includes a series resistance to model the power losses, a series inductance to model the
leakage fluxes, and a shunt admittance to model the finite permeability of the magnetic core, in both the
primary circuit (Zp,Ym) and the secondary circuit (Zs), as shown in Figure 3.2(a). This circuit is simplified
by referring the impedance Zs on the secondary side to the primary side of the ideal transformer (on the
right of the shunt admittance Ym) to obtain a so-called T equivalent circuit on the primary side. In practice

voltage gain n :=
N2

N1

turns ratio a :=
N1

N2



Ideal transformer

Power transfer





i.e., deal transformer incurs no power 
loss


−S21

S12
:=

V2Ī2
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Nonideal transformer
Nonideal behavior


• Power losses (coil resistances, eddy currents, 
hysteresis losses)


• Leakage magnetic fluxes 


• Finite permeability of magnetic cores 
(Φl1, Φl2)
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Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2. (Sept 2, 2025: vertical alignment.)

according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
coils. The flux linkages _;1 =: !;181 and _;2 =: !;28

0
2 due to�;1 and�;2 are proportional

to the currents 81 and 8
0
2 respectively. The proportionality constants !;1,!;2 are called

inductances. Then the total flux linkages _1,_2 of the primary and secondary circuits
are the sums of the leakage flux linkages and the mutual flux linkage:

_1 = _;1 +#1�<, _2 = _21 +#2�<

The voltages are

E1 = A181 +
3_1

3C

= A181 + !;1
381

3C

+#1
3�<

3C

(3.2a)

E2 = A28
0
2 +

3_2

3C

= A28
0
2 + !;2

38
0
2

3C

+#2
3�<

3C

(3.2b)

where A181 and A28
0
2 represent power losses due to winding resistances. The model for

an ideal transformer neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in
(3.2) and hence E1 = #1

3�<

3C
and E2 = #2

3�<

3C
, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 8
0
2 is proportional to the

mutual flux �<:

� = #181 +#28
0
2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define

Ê1 := #1
3�<

3C

= !<

38̂<

3C

, Ê2 := #2
3�<

3C

=
#2

#1
Ê1

1 Instead of 8< := ('/#1)�<, we can define 80
<

:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80

<
.)



Nonideal transformer
Voltages





Total flux linkages





Total magnetomotive force


v1 = r1i1 +
dλ1

dt
, v2 = r2i′￼2 +

dλ2

dt

λ1 = N1Φm + λl1, λ2 = N2Φm + λ21

λl1 = Ll1 i1, λl2 = Ll2 i′￼2

F = N1i1 + N2i′￼2 = RΦm

Mutual flux linkages due to mutual flex :  

Leakage flux linkages due to leakage fluxes : 

Φm (N1Φm, N2Φm)
(Φl1, Φl2) (λl1, λl2)
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Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2. (Sept 2, 2025: vertical alignment.)
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where A181 and A28
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2 is proportional to the

mutual flux �<:
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
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Ê1
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when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80
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Ideal transformer

• Zero power losses: 


• Zero leakage flux linkages: 


• Infinite permeability:  

r1 = r2 = 0
Ll1 = Ll2 = 0

R = 0
⟹ v1 = N1

dΦm

dt
, v2 = N2

dΦm

dt
, 0 = N1i1 + N2i′￼2
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with 0 := #1/#2. (Sept 2, 2025: vertical alignment.)
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where A181 and A28
0
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(3.2) and hence E1 = #1

3�<

3C
and E2 = #2

3�<

3C
, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 8
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
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:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80
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Nonideal transformer

Voltages





Primary magnetizing current  


• primary current when secondary circuit is open 


•  : let  and 





v1 = r1i1 + Ll1
di1
dt

+ N1
dΦm

dt

v2 = r2i′￼2 + Ll2
di′￼2

dt
+ N2

dΦm

dt

̂im

i′￼2 := 0

N1
̂im = RΦm Lm := N2

1 /R

̂u1 := N1
dΦm

dt
= Lm

d ̂im

dt

̂u2 := N2
dΦm

dt
=

N2

N1
̂u1 ideal transformer
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where A181 and A28
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define
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1 Instead of 8< := ('/#1)�<, we can define 80
<
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when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
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v1 = r1i1 + Ll1
di1
dt

+ ̂u1, ̂u1 = Lm
d ̂im

dt

v2 = − r2i2 − Ll2
di2
dt

+ ̂u2

̂u2 =
N2

N1
̂u1, i2 =

N1

N2
(i1 − ̂im)
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where A181 and A28
0
2 represent power losses due to winding resistances. The model for
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(3.2) and hence E1 = #1
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
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, Ê2 := #2
3�<

3C

=
#2

#1
Ê1
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Circuit model 

Nonideal elements (phasor domain)





Ideal transformer (phasor domain)


V1 = zpI1 + Û1, ̂Im = ymÛ1

Û2 = zsI2 + V2

Û2 =
N2

N1
Û1, I2 =

N1

N2
(I1 − ̂Im)
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
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Circuit models
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circuit model
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≈
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.

3.1.3 ) equivalent circuit

Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB
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according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
coils. The flux linkages _;1 =: !;181 and _;2 =: !;28
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to the currents 81 and 8
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2 respectively. The proportionality constants !;1,!;2 are called

inductances. Then the total flux linkages _1,_2 of the primary and secondary circuits
are the sums of the leakage flux linkages and the mutual flux linkage:
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where A181 and A28
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2 represent power losses due to winding resistances. The model for

an ideal transformer neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in
(3.2) and hence E1 = #1
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and E2 = #2
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, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 8
0
2 is proportional to the

mutual flux �<:

� = #181 +#28
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2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define

Ê1 := #1
3�<

3C

= !<

38̂<

3C
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1 Instead of 8< := ('/#1)�<, we can define 80
<

:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80

<
.)
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Îm

V2

(b) Circuit model

Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2. (Sept 2, 2025: vertical alignment.)

according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
coils. The flux linkages _;1 =: !;181 and _;2 =: !;28

0
2 due to�;1 and�;2 are proportional

to the currents 81 and 8
0
2 respectively. The proportionality constants !;1,!;2 are called

inductances. Then the total flux linkages _1,_2 of the primary and secondary circuits
are the sums of the leakage flux linkages and the mutual flux linkage:

_1 = _;1 +#1�<, _2 = _21 +#2�<

The voltages are

E1 = A181 +
3_1

3C

= A181 + !;1
381

3C

+#1
3�<

3C

(3.2a)

E2 = A28
0
2 +

3_2

3C

= A28
0
2 + !;2

38
0
2

3C

+#2
3�<

3C

(3.2b)

where A181 and A28
0
2 represent power losses due to winding resistances. The model for

an ideal transformer neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in
(3.2) and hence E1 = #1

3�<

3C
and E2 = #2

3�<

3C
, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 8
0
2 is proportional to the

mutual flux �<:

� = #181 +#28
0
2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.

3.1.3 ) equivalent circuit
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Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB
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where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
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:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.
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Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB

Model parameters  cannot be uniquely 
determined from just short-circuit & open-circuit tests

• Additional tests are needed

(zp, zs, ym)
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(+ :1 , �:1 , : = 1, . . . , ) and secondary voltage and current (+ :2 , �:2 , : = 1, . . . , ), their
relation (3.5) provide  nonlinear equations in the unknown parameter (I? , IB , H<) in
the transmission matrix. These data can therefore be used to identify (I? , IB , H<) by
regression. Specifically write (3.5) as
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
transformer parameter is to minimize the measurement error, i.e., choose (I? , IB , H<)
to be a solution of the optimization problem:
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).
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(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.
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Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.
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Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB

Good approximation of  equivalent circuit when 





 : transmission matrix of simplified model

 : transmission matrix of simplified model


T |ym | ≪ 1/ |a2zs |
∥M − T∥

∥T∥
< |ϵ | ≪ 1

M
T
ϵ := a2zsym



Simplified circuit

Interchange  and  and combine with  : 






where 

a2zs ym zp
zl := zp + a2zs

[V1
I1 ] = [a (1 + zlym) nzl

aym n ] [V2
I2 ]

n := N2/N1, a := 1/n
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(+ :1 , �:1 , : = 1, . . . , ) and secondary voltage and current (+ :2 , �:2 , : = 1, . . . , ), their
relation (3.5) provide  nonlinear equations in the unknown parameter (I? , IB , H<) in
the transmission matrix. These data can therefore be used to identify (I? , IB , H<) by
regression. Specifically write (3.5) as
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
transformer parameter is to minimize the measurement error, i.e., choose (I? , IB , H<)
to be a solution of the optimization problem:

min
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).

ym

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.
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Figure 3.3 Relation between di�erent circuit models of transformers. (Sept 4, 2025: (i) T
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a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.
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Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB

Good approximation when 
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Short & open-circuit tests

Parameters  can be determined from open 
and short-circuit tests


• Short-circuit test  : 





• Open-circuit test  : 
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1
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=
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Ioc
−

Vsc

Isc

Most popular model 

(at least for transmission systems)
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).
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(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I
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:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
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IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).

ym

zl

V1

I1 I2nI2

N1   :   N2

V2aV2

(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I
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Parameter determination
Zero shunt admittance ym = 0

When , parameter  can be determined 
from standard 3-phase transformer ratings:


• Rated primary line-to-line voltage  


• Rated primary line current 


• Impedance voltage  on the primary side, per 
phase, as % of rated primary voltage

ym = 0 zl

Vpri

Ipri

β

 : voltage needed on the primary side to produce rated 
primary current across each single-phase transformer is 
rated primary voltage

β
β ×
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Figure 3.6: The transformer ratings.

• Rated line-to-line secondary voltage |Vsec| = 280Y/120V in Y configuration with rated secondary
line current |Isec| = 416A. This means that the secondary side is Y -configured with a line-to-line
voltage of 208V and line-to-neutral voltage of 120V.

• Impedance voltage b = 5.45% on the primary side (the shunt admittance is assumed zero).

Verify that the rated line currents on the primary and secondary sides are consistent with the power rating
and voltage ratings and determine the magnitude |zl| of the series impedance of the transformer.

Solution. On the primary side of the transformer the apparent power on line ab is

|Sab| := |Vab Īab|

The rated line-to-line voltage |Vab| = 480V. The rated line current |Ia| = 180A. The current |Iab| is given
by

|Iab| =

����
Iap

3
eip/6

���� =
180p

3
A

since (assuming balanced positive sequence)

Ia = Iab � Ica = Iab

⇣
1� ei2p/3

⌘
= Iab ·

p
3e�ip/6

Therefore the three-phase apparent power is

|S3f | = 3 |Sab| = 3 ·480 · 180p
3

= 149.65 kVA

which is approximately the power rating 150 kVA.

On the secondary side the apparent power on phase a of the Y configuration is

|Sa| := |Van Īan|
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relation (3.5) provide  nonlinear equations in the unknown parameter (I? , IB , H<) in
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
transformer parameter is to minimize the measurement error, i.e., choose (I? , IB , H<)
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).
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(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.
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Circuit models
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circuit model

T equivalent
circuit

unitary voltage
network

simplified model
≈

Figure 3.3 Relation between di�erent circuit models of transformers. (Sept 4, 2025: (i) T
should be in math mode ) . (ii) Add “transformer equations” ⌘ “transformer circuit model”. )

a circuit consisting of two ideal transformers connected by a unitary voltage network
(Chapter 3.1.5). The unitary voltage network can be generalized to model nonstandard
transformers with multiple windings, e.g., split-phase transformer. These models re-
duce to the same model when the shunt admittance H< in Figure 3.2(b) is assumed
zero (i.e., open-circuited). We emphasize that, by equivalence, we only mean that two
circuits have the same end-to-end behavior, i.e., same transmission or admittance ma-
trices, but their internal variables may take di�erent values. This is important, e.g.,
when we try to determine transformer parameter values from measurements using
these circuit models; the derivation should use only terminal variables, not internal
variables, as we discuss in Chapter 3.1.3.

3.1.3 ) equivalent circuit

Figure 3.4 ) equivalent circuit.

It is shown in Exercise 3.1 that the circuit model in Figure 3.2(b) has the same
transmission matrix (3.5) and hence the same end-to-end behavior as what is called the
) equivalent circuit of the transformer shown in Figure 3.4. The di�erence between
the models in Figure 3.2(b) and in Figure 3.4 is the position and the scaling of the
leakage impedance IB; this is called referring IB on the secondary side to the primary
side and is discussed in Chapter 3.3.1.

Remark 3.1 (Internal variables). Even though the circuit model in Figure 3.2(b) and
the ) equivalent circuit in Figure 3.4 have the same transmission matrix (external
behavior), their internal variables are generally di�erent because of the reference of IB
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(a) Nonideal transformer

ym

zp zs

V̂1V1 V̂2

I1 I2

N1   :   N2

Îm

V2

(b) Circuit model

Figure 3.2 Single-phase nonideal transformer. The dotted box represents an ideal transformer
with 0 := #1/#2. (Sept 2, 2025: vertical alignment.)

according to the right-hand rule. The leakage fluxes �;1 and �;2 links the individual
coils. The flux linkages _;1 =: !;181 and _;2 =: !;28

0
2 due to�;1 and�;2 are proportional

to the currents 81 and 8
0
2 respectively. The proportionality constants !;1,!;2 are called

inductances. Then the total flux linkages _1,_2 of the primary and secondary circuits
are the sums of the leakage flux linkages and the mutual flux linkage:

_1 = _;1 +#1�<, _2 = _21 +#2�<

The voltages are

E1 = A181 +
3_1

3C

= A181 + !;1
381

3C

+#1
3�<

3C

(3.2a)

E2 = A28
0
2 +

3_2

3C

= A28
0
2 + !;2

38
0
2

3C

+#2
3�<

3C

(3.2b)

where A181 and A28
0
2 represent power losses due to winding resistances. The model for

an ideal transformer neglects losses (A1 = A2 = 0) and leakage fluxes (_;1 = _;2 = 0) in
(3.2) and hence E1 = #1

3�<

3C
and E2 = #2

3�<

3C
, yielding E1/E2 = #1/#2.

The total magnetomotive force � due to the currents 81 and 8
0
2 is proportional to the

mutual flux �<:

� = #181 +#28
0
2 = '�< (3.3)

where ' is called the reluctance of the core. The model for an ideal transformer assumes
infinite permeability of the magnetic core and hence ' = 0, yielding 81/(�802) = #2/#1.
In practice the magnetic core has finite permeability, i.e., ' > 0, and the magnetomotive
force � is nonzero. When the secondary circuit is open, 802 = 0. The resulting primary
current, denoted 8̂<, is called the primary magnetizing current and satisfies #18̂< =
'�< from (3.3).1 Define

Ê1 := #1
3�<

3C

= !<

38̂<

3C

, Ê2 := #2
3�<

3C

=
#2

#1
Ê1

1 Instead of 8< := ('/#1)�<, we can define 80
<

:= ('/#2)�< as the secondary magnetizing current
when the primary circuit is open 81 = 0. In this case the shunt admittance H< in Figure 3.4(a) will be in
the secondary circuit. (Future ed: Exercise: work out the details; be careful with sign of 80

<
.)



Unitary voltage network
Single-phase 2-winding transformer

equivalent to 2 ideal 
transformers in series

UVN-based model

• Unitary voltage network (UVN) 

connecting 2 ideal transformers


• Equivalent to  equivalent circuit

• Simplified model is an approximation 


Advantages

• UVN can be generalized to 

incorporate multiple windings, e.g., 
split-phase transformers


• Ideal transformers on both ends can 
be connected in various ways, e.g., 
3-phase transformers in  
configurations, non-standard 
transformers

T

Y/Δ
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(+ :1 , �:1 , : = 1, . . . , ) and secondary voltage and current (+ :2 , �:2 , : = 1, . . . , ), their
relation (3.5) provide  nonlinear equations in the unknown parameter (I? , IB , H<) in
the transmission matrix. These data can therefore be used to identify (I? , IB , H<) by
regression. Specifically write (3.5) as
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where Z : are (unknown) measurement errors. Then a popular method to estimate the
transformer parameter is to minimize the measurement error, i.e., choose (I? , IB , H<)
to be a solution of the optimization problem:
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subject to constraints such as Re(I?) � 0, Im(I?) � 0. Here k0k2 is the Euclidean
norm of vector 0.

If H< is assumed to be zero (open-circuited) so that (3.7a) becomes +sc = (I? +
0

2
IB)�sc, then just the short-circuit test will yield the total leakage impedance I? +02

IB

in the primary circuit where 02
IB is secondary-side impedance in reference to the

primary circuit. (This is the same as the model in Figure 3.5(b).)

3.1.4 Simplified model

In practice the shunt admittance H< is much smaller than the leakage admittances
(see Example 3.1). Specifically when |H< | ⌧ 1/|02

IB | or |n | := |02
IBH< | ⌧ 1, we

interchange H< and 02
IB to obtain the simplified model in Figure 3.5(a) with I; =

I? + 02
IB . An even simpler model assumes H< = 0, as shown in Figure 3.5(b).

ym
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(a) Simplified model (b) H< = 0

Figure 3.5 (a) Simplified model of nonideal transformer including power losses, leakage flux
and finite permeability of magnetic core with I

;
:= I? + 02

IB . (b) Simplified model assuming
infinite permeabilitiy.

3.1 Single-phase transformer 121

due to leakage fluxes and finite permeability of the core so that I; ⇡ iG; and H< ⇡ �i1<.
Moreover 1< ⌧ 1/G; . For Example 3.1

+2

+1
= =

G<

G; + G<
= =

1.03k⌦
1.03k⌦+1.24⌦

' =

If H< := 0 then the model parameter is just the leakage impedance I; in the primary
circuit, which can be determined from the short-circuit test, I; = +sc/�sc. Moreover its
magnitude can be determined from typical transformer ratings; see Chapter 3.2.3.

3.1.5 Model with unitary voltage network

(Comment: XJune 4, 2025: 2nd pass of Ch 3.1.5.)

As far as the end-to-end behavior is concerned, the transformer model in Figure
3.2(b) is equivalent to the model in Figure 3.6(a) where the ideal transformer with turns
ratio #1/#2 is replaced by two ideal transformers in series with turns ratios #1 and
1/#2. Referring the leakage impedances (I? , IB) and shunt admittance H< to the other

ym

zp

V1

I1

N1  :  1 1  :  N2

zs
I2

V2

(a) Equivalent model (b) Unitary voltage network

Figure 3.6 Models of nonideal transformer with unitary voltage network.

sides of the ideal transformers using (3.16) in Chapter 3.3, this model is equivalent to
the one in Figure 3.6(b) where

H0 := #
2
1 H<, I1 :=

I?

#
2
1

, I2 :=
IB

#
2
2

(3.10)

The network between the two ideal transformers is sometimes referred to as a unitary
voltage network because the nominal voltage of the network is 1 pu if the scaled
nominal voltages +nom

1 /#1 = +
nom
2 /#2 on both sides of the (nonideal) transformer is

used as the voltage base for per-unit normalization (per-unit normalization is studied
in Appendix 3.5). The transformer model does not assume, and allows, any node to be
grounded. The main advantage of modeling a nonideal transformer this way is that the
unitary voltage network can be generalized from the simple network in Figure 3.6(b)
to a more general network that can be used to model nonstandard transformers with
multiple windings; see below.

We now derive the admittance matrix that maps (+1,+2) to (�1,��2). First focus on
the unitary voltage network, shown in Figure 3.7, where H1 := 1/I1 = #

2
1 H? , H2 := 1/I2 =

ref imp & adm across 
ideal transformers
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voltage network because the nominal voltage of the network is 1 pu if the scaled
nominal voltages +nom

1 /#1 = +
nom
2 /#2 on both sides of the (nonideal) transformer is

used as the voltage base for per-unit normalization (per-unit normalization is studied
in Appendix 3.5). The transformer model does not assume, and allows, any node to be
grounded. The main advantage of modeling a nonideal transformer this way is that the
unitary voltage network can be generalized from the simple network in Figure 3.6(b)
to a more general network that can be used to model nonstandard transformers with
multiple windings; see below.

We now derive the admittance matrix that maps (+1,+2) to (�1,��2). First focus on
the unitary voltage network, shown in Figure 3.7, where H1 := 1/I1 = #

2
1 H? , H2 := 1/I2 =



Single-phase transformer
Unitary voltage network

̂I1 = y1( ̂V1 − ̂V0), ̂I2 = y2( ̂V2 − ̂V0)

y0
̂V0 = ̂I0 + ̂I1 + ̂I2

Admittance matrix 


̂I0

̂I1
̂I2

=
y0 + y1 + y2 −y1 −y2

−y1 y1 0
−y2 0 y2

̂V0

̂V1
̂V2

Since , can eliminate  to obtain Kron 
reduced admittance matrix


̂I0 = 0 Û0

[
̂I1
̂I2] =

1
∑i yi [y1(y0 + y2) −y1y2

−y1y2 y2(y0 + y1)]
Yuvn

[
̂V1
̂V2]
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y0

y2y1

V̂0V̂1 V̂2

Î2Î1
Î0 := 0

Figure 3.7 Unitary voltage network of the model in Figure 3.6(b).

#
2
2 HB with H? := 1/I? , HB := 1/IB . Variables with hats denote internal variables.2 The

variables (+̂0,+̂1,+̂2) are defined as voltage drops as shown in the figure and ( �̂0, �̂1, �̂2)
are the current injections at these nodes with �̂0 := 0. Then

�̂1 = H1 (+̂1 � +̂0), �̂2 = H2 (+̂2 � +̂0), �̂0 + �̂1 + �̂2 = H0+̂0 (3.11)

or in vector form:

266664
�̂0

�̂1

�̂2

377775
=

266664
H0 + H1 + H2 �H1 �H2

�H1 H1 0
�H2 0 H2

377775
266664
+̂0

+̂1

+̂2

377775
The matrix above is called an admittance matrix, which we will study in Chapter 4.
Let +̂ := (+̂1,+̂2) and �̂ := ( �̂1, �̂2). Since �̂0 = 0 we can eliminate +̂0 and write �̂ =.uvn+̂

where .uvn is called the Kron-reduced admittance matrix and given by the Schur
complement of H0 + H1 + H2 (see Appendix A.3.1 for details of Schur complement):

.uvn :=

H1 0
0 H2

�
� 1Õ

8
H8


H1

H2

�⇥
H1 H2

⇤
=

1Õ
8
H8


H1 (H0 + H2) �H1H2

�H1H2 H2 (H0 + H1)

�
(3.12a)

Next connect the two ideal transformers to each side of the unitary voltage network;
see Figure 3.6(b). Let � := (�1,��2) and+ := (+1,+2). The conversion between internal
variables (+̂ , �̂) and terminal variables (+ , �) is +̂ = "+ and �̂ = "

�1
� where

" :=

1/#1 0

0 1/#2

�
(3.12b)

Substitute into �̂ = .uvn+̂ to get the relation between the terminal variables + to �:

� = (".uvn")+ (3.12c)

where ".uvn" is called the admittance matrix of the transformer. It can be shown that
(3.12) is equivalent to the) equivalent circuit (3.5) (Exercise 3.4). As a consequence the
model parameters (H0, H1, H2) cannot be uniquely determined by just the short-circuit
and open-circuit tests.

We often do not know the numbers #1, #2 of turns of the primary and secondary
windings respectively, but can determine the turns ratio 0 := #1/#2 from the specified

2 The explicit separation of internal variables (e.g., +̂8 , �̂8) and terminal variables (e.g., +8 , �8) may not be
significant for single-phase devices but turns out to be crucial in modeling three-phase devices; see
Chapters 14 and 15.



Single-phase transformer
External model: admittance matrix

Let



I := [ I1
−I2], V := [V1

V2]
M := [1/N1 0

0 1/N2]
Conversion between internal vars & terminal vars 
across ideal transformers


Û = MV, ̂J = M−1I

Hence, external model:


I = (MYuvnM) V

3.1 Single-phase transformer 121

due to leakage fluxes and finite permeability of the core so that I; ⇡ iG; and H< ⇡ �i1<.
Moreover 1< ⌧ 1/G; . For Example 3.1

+2

+1
= =

G<

G; + G<
= =

1.03k⌦
1.03k⌦+1.24⌦

' =

If H< := 0 then the model parameter is just the leakage impedance I; in the primary
circuit, which can be determined from the short-circuit test, I; = +sc/�sc. Moreover its
magnitude can be determined from typical transformer ratings; see Chapter 3.2.3.

3.1.5 Model with unitary voltage network

(Comment: XJune 4, 2025: 2nd pass of Ch 3.1.5.)

As far as the end-to-end behavior is concerned, the transformer model in Figure
3.2(b) is equivalent to the model in Figure 3.6(a) where the ideal transformer with turns
ratio #1/#2 is replaced by two ideal transformers in series with turns ratios #1 and
1/#2. Referring the leakage impedances (I? , IB) and shunt admittance H< to the other
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The network between the two ideal transformers is sometimes referred to as a unitary
voltage network because the nominal voltage of the network is 1 pu if the scaled
nominal voltages +nom

1 /#1 = +
nom
2 /#2 on both sides of the (nonideal) transformer is

used as the voltage base for per-unit normalization (per-unit normalization is studied
in Appendix 3.5). The transformer model does not assume, and allows, any node to be
grounded. The main advantage of modeling a nonideal transformer this way is that the
unitary voltage network can be generalized from the simple network in Figure 3.6(b)
to a more general network that can be used to model nonstandard transformers with
multiple windings; see below.

We now derive the admittance matrix that maps (+1,+2) to (�1,��2). First focus on
the unitary voltage network, shown in Figure 3.7, where H1 := 1/I1 = #

2
1 H? , H2 := 1/I2 =

[
̂I1
̂I2] =

1
∑i yi [y1(y0 + y2) −y1y2

−y1y2 y2(y0 + y1)]
Yuvn

[
̂V1
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Distribution system transformers. In the US, single-phase or three-phase stepdown transformers are
typical in the distribution system. The most common three-phase system voltage on the primary side is
12.47 kV, serving more than 50% of loads. This is the line-to-line voltage (magnitude) and hence the
line-to-neutral voltage is |Van| = 12.47/

p
3 = 7.2kV. A typical primary side current rating is |Ian| = 400A.

Hence the total (three-phase) rated power (magnitude) is |S3f | = 3|Van||Ian| = (3)(7.2)(400) = 8.6MVA.
Other common distribution system voltages and their total power at 400A are shown in Table 3.1. The

line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|Vab| |Van| |S3f |
4.8 2.8 3.3

12.47 7.2 8.6
22.9 13.2 15.9
34.5 19.9 23.9

Table 3.1: Typical distribution system voltages (line-to-line) and their total (three-phase) power rating at
400A current.

advantages of a higher-voltage system include:

• It can carry more power for a given ampacity.

• It has a smaller voltage drop for a given level of power flow, requiring fewer voltage regulators and
capacitor banks for voltage support (see Exercise 2.5.5).

• It has a smaller line loss for a given level of power flow (see Exercise 2.5).

• It can cover a larger service area since it has a smaller voltage drop and a smaller line loss. Roughly,
for the same load density, the area covered increases linearly with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.

• Crew safety is a bigger concern with a higher voltage.

• Higher voltage equipment costs more, from transformers to cables to voltage regulators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary phases and
the other end connects to the transformer case which is connected to the neutral wire of the three-phase
system and also earth ground. On the secondary side, the 240V is center-tapped and the center neutral
wire is grounded, making the two ends “hot” with respect to the center tap. These three wires run down
the service drop to the meter and electric panel of a house. This is shown in Figure 3.4. Connecting a
load between either hot wire and the neutral gives 120V while connecting it between both hot wires gives
240V. Note that the transformer is single-phase. This is the split-phase 120/240 V system typical in the
US.



Distribution transformer
Example: split-phase

Common deployment in US

• Single phase


• Split-phase 120/240 V
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line-to-line voltage (kV) phase voltage (kV) total power (MVA)
|+01 | |+0= | |(3q |

4.8 2.8 3.3

12.47 7.2 8.6

22.9 13.2 15.9

34.5 19.9 23.9

Table 3.1 Typical distribution system voltages (line-to-line) and their total (three-phase) power
rating at 400A current.

• It has a smaller line loss for a given level of power flow (see Exercise 2.7).
• It can cover a larger service area since it has a smaller voltage drop and a smaller

line loss. Roughly, for the same load density, the area covered increases linearly
with voltage.

• It requires fewer substations since it covers a larger service area, which can be a big
cost saving.

The disadvantages of a higher-voltage system include:

• It may be less reliable, since a longer circuit can lead to more customer interruptions.
• Crew safety is a bigger concern with a higher voltage.
• Higher voltage equipment costs more, from transformers to cables to voltage regu-

lators.

The 12.47 kV system seems to strike a good balance.

On the primary side, one end of the winding typically connects to one of the primary
phases and the other end connects to the transformer case which is connected to the
neutral wire of the three-phase system and also earth ground. On the secondary side,
the 240V is center-tapped and the center neutral wire is grounded, making the two ends
“hot” with respect to the center tap. These three wires run down the service drop to
the meter and electric panel of a house. This is shown in Figure 3.8. Connecting a load

240V

120V

120V

abcn

Figure 3.8 A common single-phase distribution transformer in the US.



Multi-winding transformers
Example: split-phase

UVN: Kron-reduced admittance matrix


̂I1
̂I2
̂I3

=
1

∑i yi

y1(y0 + y2 + y3) −y1y2 −y1y3

−y2y1 y2(y0 + y1 + y3) −y2y3

−y3y1 −y3y2 y3(y0 + y1 + y2)

Yuvn

̂V1
̂V2
̂V3
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120V
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240V

+

−

Figure 3.3: A common single-phase distribution transformer in the US.
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(a) Primary winding in Y configuration
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Ia ' Ia '

(b) Secondary winding in D configuration

Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

̂I0

̂I1
̂I2
̂I3

=

∑3
i=0 −y1 −y2 −y3

−y1 y1 0 0
−y2 0 y2 0
−y3 0 0 y3

̂V0

̂V1
̂V2
̂V3

3.1 Single-phase transformer 125

between either hot wire and the neutral gives 120V while connecting it between both
hot wires gives 240V. Note that the transformer is single-phase. This is the split-phase
120/240 V system typical in the US.

Admittance matrix.

We now derive the external model of a split-phase transformer. A schematic of such
a transformer is shown in Figure 3.9. The derivation of its external model follows the
same procedure as that in Chapter 3.1.5.

y0

y1
I1 I2

I3

unitary voltage network

V1

V2

V3

N1  :   1 1  :  N3

1  :  N2

y2

V̂3

V̂2

y3

Î2Î1

Î3V̂1 V̂0

Figure 3.9 Single-phase split-phase transformer.

The internal voltages (+̂0,+̂1,+̂2,+̂3) and currents ( �̂0, �̂1, �̂2, �̂3) on the unitary voltage
network are defined in the figure. The admittance matrix that maps these voltages to
currents is given by:

26666664

�̂0

�̂1

�̂2

�̂3

37777775
=

26666664

Õ3
8=0 �H1 �H2 �H3

�H1 H1 0 0
�H2 0 H2 0
�H3 0 0 H3

37777775

26666664

+̂0

+̂1

+̂2

+̂3

37777775
Let +̂ := (+̂1,+̂2,+̂3) and �̂ := ( �̂1, �̂2, �̂3). Since �̂0 = 0 we can eliminate +̂0 to relate
�̂ = .uvn+̂ where .uvn is the Kron-reduced admittance matrix:

.uvn :=
266664
H1 0 0
0 H2 0
0 0 H3

377775
� 1Õ3

8=0 H8

266664
H1

H2

H3

377775
⇥
H1 H2 H3

⇤

=
1Õ
8
H8

266664
H1 (H0 + H2 + H3) �H1H2 �H1H3

�H2H1 H2 (H0 + H1 + H3) �H2H3

�H3H1 �H3H2 H3 (H0 + H1 + H2)

377775
(3.13a)

This extends in a straightforward manner .uvn in (3.12) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in
Figure 3.9. The terminal voltages + := (+1,+2,+3) and currents � := (�1,��2,��3), as
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Figure 3.4: Primary and secondary windings in Y and D configurations respectively. The thick lines in the
schematic diagrams represent transformer windings.

Let



I :=
I1

−I2
−I3

, V :=
V1
V2
V3

M :=
1/N1 0 0

0 1/N2 0
0 0 1/N3

Conversion between internal vars & terminal vars across ideal 
transformers:    and 


    where  

̂V = MV

̂I = M−1
I1

−I2
−I2 − I3

=: M−1AI A := [
1 0 0
0 1 0
0 1 1]
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between either hot wire and the neutral gives 120V while connecting it between both
hot wires gives 240V. Note that the transformer is single-phase. This is the split-phase
120/240 V system typical in the US.

Admittance matrix.

We now derive the external model of a split-phase transformer. A schematic of such
a transformer is shown in Figure 3.9. The derivation of its external model follows the
same procedure as that in Chapter 3.1.5.
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The internal voltages (+̂0,+̂1,+̂2,+̂3) and currents ( �̂0, �̂1, �̂2, �̂3) on the unitary voltage
network are defined in the figure. The admittance matrix that maps these voltages to
currents is given by:

26666664

�̂0

�̂1

�̂2

�̂3

37777775
=

26666664

Õ3
8=0 �H1 �H2 �H3

�H1 H1 0 0
�H2 0 H2 0
�H3 0 0 H3

37777775

26666664

+̂0
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+̂2

+̂3

37777775
Let +̂ := (+̂1,+̂2,+̂3) and �̂ := ( �̂1, �̂2, �̂3). Since �̂0 = 0 we can eliminate +̂0 to relate
�̂ = .uvn+̂ where .uvn is the Kron-reduced admittance matrix:

.uvn :=
266664
H1 0 0
0 H2 0
0 0 H3

377775
� 1Õ3

8=0 H8

266664
H1

H2

H3

377775
⇥
H1 H2 H3

⇤

=
1Õ
8
H8

266664
H1 (H0 + H2 + H3) �H1H2 �H1H3

�H2H1 H2 (H0 + H1 + H3) �H2H3

�H3H1 �H3H2 H3 (H0 + H1 + H2)

377775
(3.13a)

This extends in a straightforward manner .uvn in (3.12) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in
Figure 3.9. The terminal voltages + := (+1,+2,+3) and currents � := (�1,��2,��3), as
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Let



I :=
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, V :=
V1
V2
V3

M :=
1/N1 0 0

0 1/N2 0
0 0 1/N3
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between either hot wire and the neutral gives 120V while connecting it between both
hot wires gives 240V. Note that the transformer is single-phase. This is the split-phase
120/240 V system typical in the US.

Admittance matrix.

We now derive the external model of a split-phase transformer. A schematic of such
a transformer is shown in Figure 3.9. The derivation of its external model follows the
same procedure as that in Chapter 3.1.5.
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The internal voltages (+̂0,+̂1,+̂2,+̂3) and currents ( �̂0, �̂1, �̂2, �̂3) on the unitary voltage
network are defined in the figure. The admittance matrix that maps these voltages to
currents is given by:
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Let +̂ := (+̂1,+̂2,+̂3) and �̂ := ( �̂1, �̂2, �̂3). Since �̂0 = 0 we can eliminate +̂0 to relate
�̂ = .uvn+̂ where .uvn is the Kron-reduced admittance matrix:

.uvn :=
266664
H1 0 0
0 H2 0
0 0 H3
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8=0 H8
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⇥
H1 H2 H3
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=
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H1 (H0 + H2 + H3) �H1H2 �H1H3

�H2H1 H2 (H0 + H1 + H3) �H2H3
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377775
(3.13a)

This extends in a straightforward manner .uvn in (3.12) from two to three windings.

Next we connect ideal transformers to the unitary voltage network as shown in
Figure 3.9. The terminal voltages + := (+1,+2,+3) and currents � := (�1,��2,��3), as

Eliminate internal vars  from





External model:


   

( ̂I, ̂V)
̂V = Yuvn ̂I, ̂V = MV, ̂I = M−1AI

I = A−1 (MYuvnM) V
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3.2.1 Ideal transformers

The primary and secondary circuits of a three-phase transformer can be arranged in
four di�erent configurations: .. , ��, �. , .�. Figure 3.13(a) shows a primary three-
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(a) Primary winding in . configuration
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(b) Secondary winding in � configuration

Figure 3.13 Primary and secondary windings in . and � configurations respectively. The thick
lines in the schematic diagrams represent transformer windings.

phase winding in . configuration and its schematic diagram. The winding on the first
magnetic core goes from terminal 0 to neutral = and then connects with the neutral
terminals on the second and third magnetic cores. It matches the connectivity in the
schematic diagram where the windings are indicated by the thick lines. Figure 3.13(b)
shows a secondary three-phase winding in � configuration and its schematic diagram.
In both diagrams, the windings go from terminal 0 on the first magnetic core to terminal
1 on the second magnetic core to terminal 2 on the third magnetic core. The winding
of an ideal three-phase transformer in .. configuration and its schematic digram are
shown in Figure 3.14(a). The parallel lines in the schematic diagram indicate corre-
sponding primary and secondary windings in the single-phase transformers. Similarly
the winding of an ideal three-phase transformer in �� configuration and its schematic
digram are shown in Figure 3.14(b), and those for �. and.� configurations are shown
in Figure 3.15. The di�erent configurations of three-phase transformer banks can also
be represented compactly as in Figure 3.16 (see its caption for details).

Recall that the internal voltages and currents are denoted by+.

9
:= (+0=

9
,+1=

9
,+2=

9
) 2

C
3. �

.

9
:= (�0=

9
, �1=

9
, �2=

9
) 2 C3 for . configuration and +

�
9

:= (+01

9
,+12

9
,+20

9
) 2 C3,

�
�
9

:= (�01
9

, �12
9

, �20
9
) 2 C3 for � configuration. The terminal voltages and currents are

denoted by + 9 := (+0

9
,+1

9
,+2

9
) 2 C3 and � 9 := (�0

9
, �1

9
, �2

9
) 2 C3, with the current �1

flowing into the primary side of the transformer and �2 flowing out of its secondary
side (see Figure 3.13). The external behavior of an ideal three-phase transformer is
defined by the ratio of the line-to-line voltages on the secondary side to those on the
primary side, and the ratio of the line currents on the secondary and primary sides. We
refer to these ratios as its external model. The phases of a balanced transformer are
decoupled and therefore it can be represented by its phase 0 model, called its per-phase
equivalent.
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The primary and secondary circuits of a three-phase transformer can be arranged in
four di�erent configurations: .. , ��, �. , .�. Figure 3.13(a) shows a primary three-
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Figure 3.13 Primary and secondary windings in . and � configurations respectively. The thick
lines in the schematic diagrams represent transformer windings.

phase winding in . configuration and its schematic diagram. The winding on the first
magnetic core goes from terminal 0 to neutral = and then connects with the neutral
terminals on the second and third magnetic cores. It matches the connectivity in the
schematic diagram where the windings are indicated by the thick lines. Figure 3.13(b)
shows a secondary three-phase winding in � configuration and its schematic diagram.
In both diagrams, the windings go from terminal 0 on the first magnetic core to terminal
1 on the second magnetic core to terminal 2 on the third magnetic core. The winding
of an ideal three-phase transformer in .. configuration and its schematic digram are
shown in Figure 3.14(a). The parallel lines in the schematic diagram indicate corre-
sponding primary and secondary windings in the single-phase transformers. Similarly
the winding of an ideal three-phase transformer in �� configuration and its schematic
digram are shown in Figure 3.14(b), and those for �. and.� configurations are shown
in Figure 3.15. The di�erent configurations of three-phase transformer banks can also
be represented compactly as in Figure 3.16 (see its caption for details).

Recall that the internal voltages and currents are denoted by+.

9
:= (+0=

9
,+1=

9
,+2=

9
) 2

C
3. �

.

9
:= (�0=

9
, �1=

9
, �2=

9
) 2 C3 for . configuration and +

�
9

:= (+01

9
,+12

9
,+20

9
) 2 C3,

�
�
9

:= (�01
9

, �12
9

, �20
9
) 2 C3 for � configuration. The terminal voltages and currents are

denoted by + 9 := (+0
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9
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9
) 2 C3 and � 9 := (�0

9
, �1

9
, �2

9
) 2 C3, with the current �1

flowing into the primary side of the transformer and �2 flowing out of its secondary
side (see Figure 3.13). The external behavior of an ideal three-phase transformer is
defined by the ratio of the line-to-line voltages on the secondary side to those on the
primary side, and the ratio of the line currents on the secondary and primary sides. We
refer to these ratios as its external model. The phases of a balanced transformer are
decoupled and therefore it can be represented by its phase 0 model, called its per-phase
equivalent.
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Figure 3.14 Ideal three-phase transformers in .. and �� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings.

The external model of an ideal balanced three-phase transformer and its per-phase
equivalent can be derived using the following procedure:

1 Internal model. Derive the internal voltage and current gains based on the pairing
of primary and secondary windings in di�erent configurations (see Figures 3.14
and 3.15):
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2 Conversion rules. Apply the conversion rules (1.13) (1.14) to express line-to-line
voltages and line currents on both sides in terms of the internal voltages and
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of primary and secondary windings in di�erent configurations (see Figures 3.14
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Figure 3.15 Ideal three-phase transformers in �. and .� configurations. The parallel lines in
the schematic diagram indicate corresponding primary and secondary windings.
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Figure 3.16 Compact representation of ideal three-phase transformers in (a) .. , ��
configurations and (b) �. , .� configurations. For instance, in the .. configuration, the
vertical arrow represents the vector +0= in the complex plane. The arrow from 1 to 0 (not
shown) represents the vector +01 . The parallel lines in the diagram indicate corresponding
primary and secondary windings.
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where we have assumed the balanced voltages +.
9

and currents ��
9

are in positive
sequence, i.e., in span(U+), and used Corollary 1.3.

3 External model. Derive the line-to-line voltage gains  (=) 2 C and line current
gains 1/ ̄ (=) 2 C for the three-phase transformer by eliminating the internal
variables from the internal model in Step 1 and the conversion rule in Step 2:

+
line
2 =  (=)+ line

1 , �2 =
1

 ̄ (=)
�1 (3.14i)

The fact that the voltage gain  (=) is a scalar means that the phases of a balanced
three-phase transformer are decoupled. The results for di�erent configurations are
given in Table 3.2 (see Example 3.2 for derivation).

Property Gain

Voltage gain  (=)
Current gain 1

 ̄ (=)
Power gain 1
Sec I

;
referred to pri I;

| (=) |2

Configuration Gain

..  .. (=) := =
��  �� (=) := =
�.  �. (=) :=

p
3= 4ic/6

.�  
.� (=) := =p

3
4
�ic/6

Table 3.2 Ideal complex transformer properties.

4 Per-phase equivalent. The .. -equivalent of a balanced three-phase transformer is
a balanced transformer in .. configuration that has the same external model, i.e.,
they have the same voltage gain  (=) and current gain 1/ ̄ (=) given in (3.14i).
Since the phases are decoupled, the per-phase equivalent is the phase 0 model of
the .. -equivalent, i.e., a single-phase transformer with voltage gain  (=). See
Example 3.2.

Example 3.2 (External models and per-phase equivalents). In this example we apply
the method outlined above to derive the external models of ideal balanced three-
phase transformers in .. , ��, �. and .� configurations as well as their per-phase
equivalents. The external models are derived by eliminating internal variables (+.

9
, �.
9
)

and (+�
9
, ��
9
) from (3.14a)–(3.14h).

1 .. configuration. The external model is, from (3.14a) and (3.14e)(3.14f):

+
line
2 = (1�U)+.2 = (1�U)=+.1 = =+

line
1

�2 = ��.2 = 0�
.

1 = 0�
.

1

giving the voltage gain  .. (=) := = and the current gain 1/ ̄.. (=) := 1/= =: 0.
The per-phase equivalent is simply an ideal single-phase transformer with voltage
gain  .. (=) := =. Since we define the voltage gain = (external model) to be the
ratio of balanced line-to-line voltages (or balanced line-to-neutral voltages), the
external model does not depend on the neutral voltages+=

9
(which can be nonzero).
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as I;/| (=) |2 according to (3.16) below. When terminated in a symmetric three-
phase impedance load Iload on the secondary side so that +0=

2 = Iload�
0=

2 (using .. -
equivalent), the per-phase driving-point impedance on the primary side is:

+
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1

�
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Iload
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These relations are also summarized in Table 3.2.

3.2.2 Nonideal transformers

In this section we first present circuit models of nonideal three-phase transformers and
then their per-phase equivalent circuits after all �-configured transformers have been
converted into their. -equivalents. Each nonideal single-phase transformer is modeled
using the simplified model studied in Chapter 3.1.4.

Per-phase equivalent circuits. Figure 3.17(a) shows a model of balanced three-phase
nonideal transformers in .. configuration and Figure 3.17(b) shows its per-phase
equivalent circuit. The per-phase circuit is identical to that in Figure 3.5(a). Figure
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Figure 3.17 Three-phase transformers in .. configuration and its per-phase equivalent circuit.

3.18(a) shows a model of balanced three-phase transformers in �� configuration.
Its .. equivalent and per-phase circuit are identical to those in Figure 3.17 except

(a) �� configuration (b) Per-phase circuit

Figure 3.18 Three-phase transformers in �� configuration and its per-phase equivalent circuit.
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that the equivalent leakage impedance I;/3 is one-third of the value in the original
�� circuit and the shunt admittance 3H< is three times the value in the original ��
circuit. This can be verified by checking the secondary open-circuit equivalent and
the secondary short-circuit equivalent of the original �� circuit. Figure 3.19 shows
a model of balanced three-phase transformers in �. configuration and its per-phase
equivalent circuit. Finally Figure 3.20 shows the model for .� configuration and its
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Figure 3.19 Three-phase transformers in �. configuration and its per-phase equivalent circuit.

per-phase circuit.

(a) .� configuration (b) Per-phase circuit

Figure 3.20 Three-phase transformers in .� configuration and its per-phase equivalent circuit.

Hence balanced three-phase transformers in .. , ��, �. and .� configurations all
have the same per-phase equivalent circuit, with their respective leakage impedances
and shunt admittances as well as (complex) transformer gains  (=).

3.2.3 Parameter identification from transformer ratings

In this subsection we explain how to determine the leakage impedance I; in the primary
circuit from typical transformer ratings, assuming its shunt admittance H< is zero.

A typical specification of a three-phase transformer includes:

• Three-phase power rating |(3q |.
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• Thevenin equivalent of impedances in series and in parallel

• Equivalent impedances in primary or secondary circuits
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Equivalent impedances

• referring  in secondary to primary
Zs

Zp =
Zs

|K(n) |2

“It is equivalent to replace  in the secondary circuit by  in the primary circuit”Zs Zp

• referring  in primary to secondary
Zp
Zs = |K(n) |2 Zp

“It is equivalent to replace  in the primary circuit by  in the secondary circuit”Zp Zs



Equivalent admittances

“It is equivalent to replace  in the secondary circuit by  in the primary circuit”Ys Yp

• referring  in primary to secondary
Yp

Ys =
Yp

|K(n) |2

“It is equivalent to replace  in the primary circuit by  in the secondary circuit”Yp Ys

• referring  in secondary to primary
Ys
Yp = |K(n) |2 Ys



Equivalent impedances

What is equivalence ?

• Same transmission matrices

• Same driving-point impedance


This is a simple consequence of Kirchhoff’s and Ohm’s laws



Transmission matrix

External models (transmission matrices) of 2 circuits are equal

if and only if Zp =

Zs

|K(n) |2

≡
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(b) Series impedance Zp in the primary circuit.

Figure 3.12: Referring series impedance in the secondary to the primary.
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�
=


K�1(n) 0

0 K⇤(n)

�
1 Zs
0 1

�
V2
I2

�
=


K�1(n) K�1(n)Zs

0 K⇤(n)

�

| {z }
Ts


V2
I2

�

Similarly, for the circuit in Figure 3.12(b), we have

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�
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0 1
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
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Tp
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Hence Ts = Tp if and only if (3.3a) holds.

The relation (3.3b) between shunt admittances Yp and Ys ensures that the transmission matrix for the
circuit in Figure 3.13(a) is the same as that in Figure 3.13(b). This is left as Exercise 3.3.
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(a) Shunt admittance Ys in the secondary circuit.
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(b) Shunt admittance Yp in the primary circuit.

Figure 3.13: Referring shunt admittance in the secondary to the primary.

The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.
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The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

[V
I] = [1 Zs

0 1 ] [V2
I2]

[V1
I1] = [K−1(n) 0

0 K*(n)] [V
I]
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The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

[V1
I1] = [K−1(n) K−1(n)Zs

0 K*(n) ] [V2
I2] [V1

I1] = [K−1(n) K*(n)Zp

0 K*(n) ] [V2
I2]

External models (transmission matrices) of 2 circuits are equal

if and only if Zp =

Zs

|K(n) |2
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The operations in (3.3) can be repeatedly applied to a circuit involving multiple impedances and ad-
mittances, as illustrated in the next example.

External models (transmission matrices) of 2 circuits are equal

if and only if Yp = |K(n) |2 Ys
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Example 3.2. A combination of a series impedance Zs and a shunt admittance Ys in the secondary circuit,
as shown in Figure 3.14(a), can be referred to the primary one element at a time, starting from the element
that is closest to the ideal transformer. The transformer gain is K(n) = n = 1/a. Referring the series

V1
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−

V2

+

−

I2I1

Ys

N2N1

Zs

ideal$
transformer$

(a) (Zs,Ys) in the secondary circuit.
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+

−

V2

+

−

I2I1

Ys

N2N1

a2Zs

ideal$
transformer$

(b) Refer Zs to the primary.

V1

+

−

V2

+

−

I2I1

n2Ys

N2N1
ideal$

transformer$

a2Zs

(c) Refer Ys to the primary.

Figure 3.14: Referring (Zs,Ys) in the secondary to the primary.

impedance Zs to the primary yields the equivalent circuit in Figure 3.14(b) with an equivalent primary
impedance a2Zs. Referring then the shunt admittance Ys to the primary yields the equivalent circuit in
Figure 3.14(c) with an equivalent shunt admittance n2Ys.

3.3.2 Driving-point impedance

In the second case the terminal behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.15. For two impedances Z1,Z2 in series depicted in Figure 3.15(a), the Thévenin equiv-

V

+

−

I

Z1

Z2

V

+

−

I

Zeq = Z1 + Z2

(a) Impedances in series

V

+

−

I

Z2Z1 V

+

−

I

Zeq =
1
Z1
+
1
Z2

!

"
#

$

%
&

−1

(b) Impedances in parallel

Figure 3.15: (a) Thévenin equivalent Zeq of two impedances Z1,Z2 in series. (b) Thévenin equivalent Zeq
of two impedances Z1,Z2 in parallel.
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impedance Zs to the primary yields the equivalent circuit in Figure 3.14(b) with an equivalent primary
impedance a2Zs. Referring then the shunt admittance Ys to the primary yields the equivalent circuit in
Figure 3.14(c) with an equivalent shunt admittance n2Ys.

3.3.2 Driving-point impedance

In the second case the terminal behavior is the driving point impedances on one side of the transformer
when the other side is connected to an impedance. In general suppose we apply a voltage V across two ter-
minals that are connected to a network of impedances and transformers. Suppose a current I flows between
these two terminals through the network. The ratio V/I is called the driving-point impedance at these ter-
minals. For networks consisting of a cascade of impedances in series and in parallel, the driving-point
impedance is also called the Thévenin equivalent impedance. The Thévenin equivalent impedance of such
a network can be derived by repeatedly applying simple reduction rules for the two basic configurations
shown in Figure 3.15. For two impedances Z1,Z2 in series depicted in Figure 3.15(a), the Thévenin equiv-
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(b) Impedances in parallel

Figure 3.15: (a) Thévenin equivalent Zeq of two impedances Z1,Z2 in series. (b) Thévenin equivalent Zeq
of two impedances Z1,Z2 in parallel.Thevenin equivalent is a short cut in analyzing circuits with impedances only 
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(a) One-line diagram
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(b) Per-phase circuit

Figure 3.19: Example 3.5.
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Both circuits have same driving-point impedance  on primary side

• Can verify using Kirchhoff’s and Ohm’s laws

V1/I1
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alent impedance Zeq is defined such that the two networks in Figure 3.15(a) have the same driving-point
impedance:

V
I

= Z1 +Z2 =: Zeq (3.4a)

Similarly the Thévenin equivalent impedance of two impedances in parallel depicted in Figure 3.15(b) is
defined to be:

V
I

=

✓
1
Z1

+
1
Z2

◆�1
=: Zeq (3.4b)

These are simple consequences of Kirchhoff’s and Ohm’s laws. Repeated application of (3.4) reduces a
cascade of impedances in parallel and series into a single equivalent impedance that preserves the driving-
point impedance.

When such a network contains not just impedances, but also transformers, the relation (3.3) allows us
to reduce it to a single Thévenin equivalent impedance with the same driving-point impedance. As we
explain below, the key element of this procedure is the driving-point impedance seen from two terminals
of one side of a single-phase transformer when the other side is connected to an impedance Zeq that may
be the Thévenin equivalent of a network of impedances. This yields an equivalent network where the
transformer and Zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.3) and (3.4) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z2,eq as shown in Figure 3.16(a), the transformer and the impedance
Z2,eq can be replaced by the Thévenin equivalent impedance Z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.16(a). This is the same
operation that refers Z2,eq in the secondary to the primary expressed in (3.3a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.5. Similarly when the primary side is connected
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I2

K(n) 2 Z1, eq

(b) V2/I2 on the secondary side

Figure 3.16: Driving-point impedances

to an impedance Z1,eq as shown in Figure 3.16(b), the transformer and the impedance Z1,eq can be replaced
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Both circuits have same driving-point impedance  on secondary side

• Can verify using Kirchhoff’s and Ohm’s laws
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alent impedance Zeq is defined such that the two networks in Figure 3.15(a) have the same driving-point
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transformer and Zeq is replaced by a scaled impedance and the number of transformer is reduced by 1.
Repeated application of (3.3) and (3.4) can then be used to remove all transformers from the equivalent
network, allowing the derivation of the Thévenin equivalent impedance of the original network. When
applicable, this technique greatly simplifies per-phase analysis of a balanced system as we will see in
Chapter 3.4.

We now explain the key building block of this procedure. When the secondary side of an ideal trans-
former is connected to an impedance Z2,eq as shown in Figure 3.16(a), the transformer and the impedance
Z2,eq can be replaced by the Thévenin equivalent impedance Z2,eq/|K(n)|2 in the sense that the driving-
point impedance V1/I1 on the primary side is the same in both circuits in Figure 3.16(a). This is the same
operation that refers Z2,eq in the secondary to the primary expressed in (3.3a). It is a consequence of the
Kirchhoff’s and Ohm’s laws and is derived in Exercise 3.5. Similarly when the primary side is connected
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Figure 3.16: Driving-point impedances

to an impedance Z1,eq as shown in Figure 3.16(b), the transformer and the impedance Z1,eq can be replaced
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by the Thévenin equivalent impedance |K(n)|2 Z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.16(b). This is the same operation that refers
Z1,eq in the primary to the secondary expressed in (3.3a) (see Exercise 3.5).

We caution that the shortcut (3.3) and (3.4) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.6 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.3 (V1/I1 on the primary side.). Consider the network in Figure 3.17(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z2,eq. What is the driving-point impedance
V1/I1? We first derive the driving-point impedance directly using Kirchhoff’s and Ohm’s laws. We then
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ideal$
transformer$
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(a) Transformer circuit
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I1 Z1, eq

1
K(n) 2 Z2, eqY1,eq

(b) Equivalent circuit seen on the primary side

Figure 3.17: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.3) and (3.4).

Circuit analysis. We have for the primary circuit


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Substituting
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by the Thévenin equivalent impedance |K(n)|2 Z1,eq in the sense that the driving-point impedance V2/I2
on the secondary side is the same in both circuits in Figure 3.16(b). This is the same operation that refers
Z1,eq in the primary to the secondary expressed in (3.3a) (see Exercise 3.5).

We caution that the shortcut (3.3) and (3.4) are not always applicable. For example they may not be
applied to a circuit that contains parallel paths; see Example 3.6 in Chapter 3.4.2. In that case we analyze
the circuit using Kirchhoff’s and Ohm’s laws. The shortcut is usually applicable to a radial system that
does not contain parallel paths. We now illustrate its application in the derivation of the driving-point
impedances on the primary and the secondary side.

Example 3.3 (V1/I1 on the primary side.). Consider the network in Figure 3.17(a) where the secondary
side is connected to a network whose Thévenin equivalent is Z2,eq. What is the driving-point impedance
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Figure 3.17: Driving-point impedance V1/I1 on the primary side.

use the result to verify the shortcut expressed in (3.3) and (3.4).
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�
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or equivalently

V1
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= Z1,eq +

✓
Y1,eq +

1
Z2,eq/|K(n)|2

◆�1
(3.5)

It is the Thévenin equivalent on the primary side of a network consisting of impedances, admittances, as
well as an ideal transformer. The Thévenin equivalent (3.5) has a simple interpretation, as we now explain.

Shortcut.. Use (3.3a) to refer Z2,eq in the secondary to the primary, we can replace the ideal transformer
and Z2,eq by the equivalent impedance Z2,eq/|K(n)|2 and arrive at the equivalent circuit in Figure 3.17(b)
seen from the primary side. The application of (3.4) then yields the driving-point impedance (3.5).
Example 3.4 (V2/I2 on the secondary side.). Consider the circuit in Figure 3.18(a) where the primary
side is connected to the impedance Z1,eq. Use (3.3a) to refer Z1,eq in the primary to the secondary, we
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(a) Transformer circuit
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K(n) 2 Z1, eq Y2,eq

(b) Equivalent circuit seen on the secondary side

Figure 3.18: Driving-point impedance V2/I2 on the secondary side.

can replace the ideal transformer and Z1,eq by the equivalent impedance |K(n)|2 Z2,eq and arrive at the
equivalent circuit in Figure 3.18(b) seen from the secondary side. The application of (3.4) then yields the
driving-point impedance:

V2

I2
=

✓
Y2,eq +

1
Z2,eq + |K(n)|2 ·Z1,eq

◆�1
(3.6)
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can replace the ideal transformer and Z1,eq by the equivalent impedance |K(n)|2 Z2,eq and arrive at the
equivalent circuit in Figure 3.18(b) seen from the secondary side. The application of (3.4) then yields the
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V2
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= Y2,eq +

1
Z2,eq + |K(n) |2 ⋅ Z1,eq

−1



Driving-point impedance

Reference from one circuit to the other is not always applicable

• Example: circuits containing parallel paths (see example later)

• Generally applicable in a radial network without parallel paths  

• Can always analyze original circuit using Kirchhoff’s and Ohm’s laws



Outline

1. Single-phase transformer

2. Balanced three-phase transformers

3. Equivalent impedance

4. Per-phase analysis


• Example

• Normal system


5. Per-unit normalization



Per-phase analysis
Procedure

1. Convert all sources and loads in  configurations into their  equivalents


2. Convert all ideal transformers in  configurations into their  equivalents


3. Obtain phase  equivalent circuit by connecting all neutrals


4. Solve for desired phase-  variables

• Use Thevenin equivalent of series impedances and shunt admittances in networks containing 

transformers whenever applicable, e.g., for a radial network


5. Obtain variables for phases  and  by subtracting  and  from phase  
variables (positive sequence sources)

• If variables in the internal of  configurations are desired, derive them from original circuits

Δ Y
Δ Y

a
a

b c 120∘ 240∘ a

Δ



Per-phase analysis
Example
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(b) Per-phase circuit

Figure 3.19: Example 3.5.

Balanced 3  system 

• Generator with line voltage 


• Step-up  transformer

• Transmission line with series 

impedance 


• Step-down  transformer 
(primary on right) 


• Load with impedance 

• Single-phase transformer with 

voltage gain  and series 
impedance  on primary side

ϕ
Vline

ΔY

Zline
ΔY

Zload

n
3Zl



Per-phase analysis
Example

Balanced 3  system 

• Generator with line voltage 


• Step-up  transformer

• Transmission line with series 

impedance 


• Step-down  transformer 
(primary on right) 


• Load with impedance 

• Single-phase transformer with 

turns ratio  and series impedance 
 on primary side

ϕ
Vline

ΔY

Zline
ΔY

Zload

n
3Zl
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V1 =
Vline
3 eiπ/6

ZY = Zl



Per-phase analysis
Example

Calculate 
• Generator current 

• Transmission line current 

• Load current 

• Load voltage 

• Power delivered to load: 

I1
I2

I3
V3

V3I*3
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Per-phase analysis
Example

Solution strategy 
• Refer all impedances to 

primary side of step-up 
transformer


• Derive driving-point 
impedance 


• Derive generator current 

• Propagate calculation 

towards load 

V1/I1
I1
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|K(n) |2 (Zload + Zl)

transformer gains on  is canceledZload

1
|K(n) |2 ⋅ (Zline + |K(n) |2 (Zload + Zl))

V1

I1
= 2 Zl +

Zline
|K(n) |2 + Zload
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I1 =
Vline/( 3eiπ/6)

2 Zl +
Zline
|K(n) |2

+ Zload

I2 = I1

K̄(n)

I3 = K̄(n) I2 = I1
V3 = Zload I3 = Zload I1
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I1 =
Vline/( 3eiπ/6)

2 Zl +
Zline
|K(n) |2

+ Zload
I3 = I1

V3 = Zload I1

• External behavior does not depend on 
connection-induced phase shift 


• Only internal variables  does
eiπ/6

Iline
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e jπ /6V
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(a) Transmission line P-model
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transmission$
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(b) Equivalent circuit without connection-induced phase
shift

Figure 3.20: P-model of transmission line in place of the series impedance Zline model in Figure 3.19(b).

3.4.2 Normal systems

A system is called normal if, in the per-phase equivalent circuit, the product of the complex ideal trans-
former gains around every loop is 1. Equivalently, on each parallel path,

1. the product of ideal transformer gain magnitudes is the same, and

2. the sum of ideal transformer phase shifts is the same.

Normal systems have a normalization that greatly simplifies analysis which we will discuss in Chapter
3.5. The following example motivates such a system.

Example 3.6 (Loop flows). Consider a generator and a load connected by two three-phase transformer
banks in parallel forming a loop as shown in Figure 3.21(a). The transformer in the upper path is charac-
terized by a series impedance and a complex gain K1. The transformer in the lower path is characterized
by the same series impedance and a possibly different complex gain K2. Suppose line-to-neutral voltage
of the generator bus is Vgen, the series impedance Zl of the transformer and the load impedance Zload in the
per-phase equivalent circuit are given, as shown in Figure 3.21(b). Derive the currents Iload, I0

1, I
0
2 in terms

of Vgen,Zl,Zload. Discuss the implications when

1. K2 = K1. This is the case if both transformer banks are YY -configured.

2. K2 = K1 e jq . This is the case if the upper transformer bank is YY -configure with a turns ratio of n
but the lower transformer bank is DY -configured with a turns ratio of n/

p
3 and q = p/6.

3. K2 = k · K1, k > 0. This is the case if both transformer banks are YY -configured but with different
turns ratios.

Terminal behavior does not depend on 

• The simplified model has the same transmission matrix

eiπ/6



Normal system

A system is normal if, in its per-phase circuit, the product of complex ideal transformer 
gains around every loop is 1


Equivalently, on each parallel path,

1. Product of ideal transformer gain magnitudes is the same, and

2. Sum of ideal transformer phase shifts is the same



Normal system
Example
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(a) Transmission line P-model
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I load+
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Vgen

(b) Equivalent circuit without connection-induced phase
shift

Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are

Iload = I0
1 + I0

2

Zload Iload = K1 ·
�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0
j =

I j

K⇤
j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0

1, I
0
2 we have

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K1 ·

�
Vgen � Zl I1
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Zload
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�
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
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2 )�1

Zload(K⇤
1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
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�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2
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Generator & load connected by two 3  
transformers in parallel (forming a loop)

ϕ Per-phase circuit 
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Per-phase circuit 

Calculate 
• Load current 


• Line currents 

in terms of 


Implications when

•  (normal system)

• 

•

Iload
I′￼1, I′￼2

Vgen, Zl, Zload

K2 = K1
K2 = K1 eiθ

K2 = k ⋅ K1
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Per-phase circuit 

 (normal system):


• 


•

K2 = K1

I′￼1 = I′￼2
Iload

I′￼1
=

Iload
I′￼2

= 2



Normal system 
Example
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load
Zl '

Zl '

gen

(a) Transmission line P-model

Vload

+

−

I1
Zl

Zload

K1

Zl

K2

I2

I1 '

I2 '

I load+

−

Vgen

(b) Equivalent circuit without connection-induced phase
shift

Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are

Iload = I0
1 + I0

2

Zload Iload = K1 ·
�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0
j =

I j

K⇤
j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0

1, I
0
2 we have

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K1 ·

�
Vgen � Zl I1

�

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K2 ·

�
Vgen � Zl I2

�

or


Zl +Zload|K1|�2 Zload(K1 K⇤
2 )�1

Zload(K⇤
1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2

Per-phase circuit 

 :


• 


• ,   

K2 = K1 eiθ

I′￼1 ≠ I′￼2

Iload
| I′￼1 |

=
1 + eiθ

|α1 |

Iload
| I′￼2 |

=
1 + eiθ

|α2 |

Example:  :


• ,   

K2 = K1 eiπ/6

Iload
| I′￼1 |

= 20.6 %
Iload

| I′￼2 |
= 17.1 %

Most current loops between transformers 
without entering load
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where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
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2 we have
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
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Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2

Per-phase circuit 

 :


• 


• ,   

K2 = K1 eiθ

I′￼1 ≠ I′￼2

Iload
| I′￼1 |

=
1 + eiθ

|α1 |

Iload
| I′￼2 |

=
1 + eiθ

|α2 |

Example:  :


• ,     MVA

K2 = K1 eiπ/6

Sgen = 183 ∠71∘ Sload = 60 ∠0∘

Most current loops between transformers 
without entering load
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Figure 3.21: Two buses connected in a loop with two parallel transformers.

Solution. We cannot directly apply the shortcut (3.3) and (3.4) to refer the impedances Zload and Zl to the
primary side because of the parallel paths, and must analyze the per-phase circuit using Kirchhoff’s and
Ohm’s laws.

We have five unknowns currents Iload, I0
1, I

0
2, I1, I2. The five equations that relate them are

Iload = I0
1 + I0

2

Zload Iload = K1 ·
�
Vgen � Zl I1

�

Zload Iload = K2 ·
�
Vgen � Zl I2

�

I0
j =

I j

K⇤
j
, j = 1,2

where the first equation expresses KCL, the second and third equations express the load voltage seen on
the upper and lower paths, respectively, and follow from the transformer equation and KVL, and the last
equations express current gains of the transformers. Eliminating Iload, I0

1, I
0
2 we have

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K1 ·

�
Vgen � Zl I1

�

Zload

✓
I1

K⇤
1

+
I2

K⇤
2

◆
= K2 ·

�
Vgen � Zl I2

�

or


Zl +Zload|K1|�2 Zload(K1 K⇤
2 )�1

Zload(K⇤
1 K2)�1 Zl +Zload|K1|�2

�
·


I1
I2

�
=


Vgen
Vgen

�

Inverting the matrix, we obtain

I1 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a1

I2 =
Vgen

Zl + Zload (|K1|�2 + |K2|�2)
·a2

Per-phase circuit 

 :


• 


• ,   

K2 = k ⋅ K1

I′￼1 ≠ I′￼2

Iload
| I′￼1 |

= 1 + k−1

|α1 |

Iload
| I′￼2 |

= 1 + k
|α2 |

Example:  :


• ,   

K2 = 2K1

Iload
| I′￼1 |

= 29.4 %
Iload

| I′￼2 |
= 29.9 %

Most current loops between transformers 
without entering load
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Per-unit normalization
• Quantities of interest: voltages , currents , power , impedances 


• 


• Base values 

• Real positive values


• Same units as actual quantities


• Choose base values to satisfy same physical laws

• Kirchhoff’s and Ohm’s laws

• Across ideal transformer

• Relationship between 3  and 1  quantities

V I S Z

quantity in p.u. =
actual quantity

base value of quantity

ϕ ϕ



Per-unit normalization
General procedure 


1. Choose voltage base value  for (say) area 1


2. Choose power base value  for entire network

3. Calculate all other base values from physical laws


Example: Choose


1.   =  nominal voltage magnitude of area 1


2.     =  rated apparent power of a transformer in area 1

V1B

SB

V1B

SB

How to calculate the other base values ?


• Consider single-phase or per-phase circuit of balanced 3  system
(ViB, IiB, ZiB)

ϕ



Kirchhoff’s and Ohm’s laws
Given base values , within area 1:





Then: physical laws are satisfied by both the base values and p.u. quantities


             


Can perform circuit analysis using pu quantities instead of actual quantities

(V1B, SB)
I1B := SB

V1B
A, Z1B := V2

1B

SB
Ω

V1B = Z1B I1B, V1pu = Z1pu I1pu
SB = V1B I1B, S1pu = V1pu I1pu



Kirchhoff’s and Ohm’s laws

These quantities  serve as base values for other quantities within area 
1, with appropriate units


•  is base value for real power in W, reactive power in var





•  is base value for resistances & reactances in 





•  in is base value for conductances, susceptances, & admittances


(V1B, SB, I1B, Z1B)
SB

P1pu := P1

SB
, Q1pu := Q1

SB
, S1pu = P1pu + iQ1pu

Z1B Ω

R1pu := R1

Z1B
, X1pu := X1

Z1B
, Z1pu = R1pu + iX1pu

Y1B := 1/Z1B Ω−1

G1pu := G1

Y1B
, B1pu := B1

Y1B
, Y1pu = G1pu + iB1pu = 1

Z1pu

Other quantities



Across ideal transformer

Choose  according to
(V2B, I2B, Z2B)
V2B := |K(n) | V1B V

I2B :=
I1B

|K(n) |
A

Z2B := |K(n) |2 Z1B Ω
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Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + i&1pu. The base value for resistances and reactances is I⌫ so that

A1pu :=
A1

I1⌫
, G1pu :=

G1

I1⌫

and I1pu = A1pu + iG1pu. Similarly H1⌫ := 1/I1⌫ in ⌦�1 is the base value for admittances
H1 := 1/I1 = 6� i1 in ⌦�1 as well as conductances 6 and susceptances 1 also in ⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.33(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫, I1⌫) for area 1 calculated in

V1

I1 I2

V2Ṽ1

Ĩ1

ym

zl

K(n)

(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu

Ṽ1pu =V2puympu

zlpu

(b) In per unit

Figure 3.33 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).
(Sept 5, 2025: �̃1 ! �̂1, +̃1 ! +̂1.)

Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ V, �2⌫ :=
�1⌫

| (=) | A, I2⌫ := | (=) |2I1⌫ ⌦ (3.21)

The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.33(a), the per-unit quantities (+̂1pu, �̂1pu) at the input and the

Base values remain real positive

 remains base value for powerSB



Across ideal transformer
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Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + i&1pu. The base value for resistances and reactances is I⌫ so that

A1pu :=
A1

I1⌫
, G1pu :=

G1

I1⌫

and I1pu = A1pu + iG1pu. Similarly H1⌫ := 1/I1⌫ in ⌦�1 is the base value for admittances
H1 := 1/I1 = 6� i1 in ⌦�1 as well as conductances 6 and susceptances 1 also in ⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.33(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫, I1⌫) for area 1 calculated in

V1

I1 I2

V2Ṽ1

Ĩ1

ym

zl

K(n)

(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu

Ṽ1pu =V2puympu

zlpu

(b) In per unit

Figure 3.33 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).
(Sept 5, 2025: �̃1 ! �̂1, +̃1 ! +̂1.)

Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ V, �2⌫ :=
�1⌫

| (=) | A, I2⌫ := | (=) |2I1⌫ ⌦ (3.21)

The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.33(a), the per-unit quantities (+̂1pu, �̂1pu) at the input and the

Area 1 Area 2

External behavior


Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)
|K(n) |

V2B
= V2pu e−j∠K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K*(n)I2

|K(n) | I2B
= I2pu e−j∠K(n)

If  then
∠K(n) = 0
Ṽ1pu = V2pu, Ĩ1pu = I2pu



Across ideal transformer
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Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + i&1pu. The base value for resistances and reactances is I⌫ so that

A1pu :=
A1

I1⌫
, G1pu :=

G1

I1⌫

and I1pu = A1pu + iG1pu. Similarly H1⌫ := 1/I1⌫ in ⌦�1 is the base value for admittances
H1 := 1/I1 = 6� i1 in ⌦�1 as well as conductances 6 and susceptances 1 also in ⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.33(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫, I1⌫) for area 1 calculated in

V1

I1 I2
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Ĩ1
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zl

K(n)

(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu

Ṽ1pu =V2puympu

zlpu

(b) In per unit

Figure 3.33 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).
(Sept 5, 2025: �̃1 ! �̂1, +̃1 ! +̂1.)

Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ V, �2⌫ :=
�1⌫

| (=) | A, I2⌫ := | (=) |2I1⌫ ⌦ (3.21)

The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.33(a), the per-unit quantities (+̂1pu, �̂1pu) at the input and the

Area 1 Area 2

External behavior


Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)
|K(n) |

V2B
= V2pu e−j∠K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K*(n)I2

|K(n) | I2B
= I2pu e−j∠K(n)

If  then
∠K(n) = 0
Ṽ1pu = V2pu, Ĩ1pu = I2pu

Ideal transformer has disappeared !

Per-unit circuit



Across ideal transformer

Area 1 Area 2

External behavior


Ṽ1pu =
Ṽ1

V1B
=

V2

K(n)
|K(n) |

V2B
= V2pu e−j∠K(n)

Ĩ1pu =
Ĩ1

Ĩ1B
=

K*(n)I2

|K(n) | I2B
= I2pu e−j∠K(n)

Per-unit circuit

Otherwise

• pu circuit contains an off-nominal 

phase-shifting transformer
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Extensions to other related quantities are straightforward. For example (⌫ is also
the base value for real power in, and reactive power in var so that

%1pu :=
%1

(⌫

, &1pu :=
&1

(⌫

and (1pu = %1pu + i&1pu. The base value for resistances and reactances is I⌫ so that

A1pu :=
A1

I1⌫
, G1pu :=

G1

I1⌫

and I1pu = A1pu + iG1pu. Similarly H1⌫ := 1/I1⌫ in ⌦�1 is the base value for admittances
H1 := 1/I1 = 6� i1 in ⌦�1 as well as conductances 6 and susceptances 1 also in ⌦�1.

3.5.2 Across ideal transformer

Consider now a neighboring area, say, area 2 that is connected to area 1 through a
transformer. We choose the bases for di�erent sides of the transformer in a way that
respects the transformer gains. Consider the circuit in Figure 3.33(a) where areas 1 and
2 are connected through a transformer with a voltage gain  (=). If it is a single-phase
system then  (=) = =, the reciprocal of the turns ratio. If it is the per-phase equivalent
of a balanced three-phase system then  (=) may be complex if the transformer is not
in .. or �� configuration. Given the bases ((⌫,+1⌫, �1⌫, I1⌫) for area 1 calculated in
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Ĩ1

ym

zl
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(a) In standard unit

V1pu

I1pu Ĩ1pu =  I2pu
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(b) In per unit

Figure 3.33 Per-phase equivalent circuit of balanced three-phase transformers with gain  (=).
(Sept 5, 2025: �̃1 ! �̂1, +̃1 ! +̂1.)

Chapter 3.5.1, the bases for the other side of the transformer are calculated according
to:

+2⌫ := | (=) |+1⌫ V, �2⌫ :=
�1⌫

| (=) | A, I2⌫ := | (=) |2I1⌫ ⌦ (3.21)

The base power value remains (⌫ =+1⌫ �1⌫ =+2⌫ �2⌫ for all areas since the power gain
across an ideal transformer is 1. Even though  (=) may be complex all base values
remain real positive numbers.

Referring to Figure 3.33(a), the per-unit quantities (+̂1pu, �̂1pu) at the input and the

e∠K(n)



Across ideal transformer
Example
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satisfy the Kirchhoff’s laws, as long as the per-unit quantities in area 1 satisfy the Kirchhoff’s laws and
those in other areas respect transformer gains. This is where system normality is important: on each
parallel path in its per-phase equivalent circuit, (i) the product of ideal transformer gain magnitudes is the
same, and (ii) the sum of ideal transformer phase shifts is the same. As discussed above these properties
prevent loop flows between transformers, as illustrated in Example 3.6. Note that in Figure 3.21(b) of that
example, the secondary-side voltages of the two ideal transformers are the same but their primary-side
voltages are different when K2 = K1e jq with q 6= 0. The first property also ensures that the calculation
(3.9) of base values across areas is consistent, i.e., does not depend on the order in which the areas are
chosen for calculation; see Exercise 3.8.

Example 3.7 (Single-phase system). Consider the single-phase system in Figure 3.23 where the voltage
source has a nameplate rated voltage magnitude of v V and a nameplate rated power of s VA. Calculate

V1

+

−

V2

+

−

I2I1

1: 3n

Zl

e jπ /6
+

−

!"#$ V3

+

−

I3

1: 3n

Zl

e jπ /6 Zload

Zline

%

1: () (*: 1

area		1 area		2 area		3

Figure 3.23: Single-phase system for Example 3.7 with a rated voltage magnitude of v in V and a rated
apparent power of s in VA.

the base values for the system.

Solution. Let the base value for power be SB := s in VA for the entire system and the base value for voltage
in area 1 (where the voltage source is) be V1B := v in V . Then the base values for currents and impedances
in area 1 are respectively:

I1B :=
s
v

A and Z1B :=
v2

s
W

The base values in area 2 connected by the first transformer with a turns ratio n1 are:

V2B := n1V1B = n1 v V

I2B :=
I1B

n1
=

1
n1

s
v

A

Z2B := n2
1 Z1B = n2

1
v2

s
W, Y2B :=

1
Z2B

=
1
n2

1

s
v2 W�1

Given nameplate rating 

of generator

• Voltage  V

• Apparent power  VA


Calculate base values

v
s

Voltage base ,  power base 


• Area 1:  ,   


• Area 2:  ,  ,  ,  


• Area 3:  ,  ,  ,  

V1B := v SB := s
I1B := s/v Z1B := v2/s
V2B := n1v I2B := s/(n1v) Z2B := (n1v)2/s Y2B := s/(v1v)2

V3B := n1v/n2 I3B := n2s/(n1v) Z3B := (n1v)2/(n2
2s) Y3B := (n2

2s)/(v1v)2



3  quantitiesϕ

Given 1  devices (generators, lines, loads) with 


• with 1  quantities  


• and their base values


Construct balanced 3  devices from these 1  devices


• What are 3  quantities of interest? 


• What are base values so that 3  quantities equal to 1  quantities in p.u.?

ϕ
ϕ (S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

ϕ ϕ
ϕ

ϕ ϕ

Base values should satisfy the same 3  relationships as actual quantities

Values depend on the configuration,  or 

ϕ
Y Δ



3  quantitiesϕ
 configurationY

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Ian = I1ϕ, I3ϕ
B = I1ϕ

B

Vln = V1ϕ, Vln
B = V1ϕ

B

Z3ϕ = Z1ϕ, Z3ϕ
B = Z1ϕ

B



3  quantitiesϕ
 configurationY

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Ian = I1ϕ, I3ϕ
B = I1ϕ

B

Vln = V1ϕ, Vln
B = V1ϕ

B

Z3ϕ = Z1ϕ, Z3ϕ
B = Z1ϕ

B

Calculation 
Base values satisfy 
the same relationship

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)



3  quantitiesϕ
 configurationΔ

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Iab − Ica = 3 e−iπ/6 I1ϕ, I3ϕ
B = 3 I1ϕ

B

Vln = ( 3 eiπ/6)
−1

V1ϕ, Vln
B = ( 3)−1V1ϕ

B

Z3ϕ = Z1ϕ/3, Z3ϕ
B = Z1ϕ

B /3

Note: 

 are voltage 
and & impedance in 

 equivalent circuit

Vln, Z3ϕ

Y

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)



3  quantitiesϕ
 configurationΔ

• 3  power (total power to/from 3 1  devices):





• Line-to-line voltage 





• Line current 





• Line-to-neutral voltage 





• Impedance 


ϕ ϕ
S3ϕ = 3S1ϕ, S3ϕ

B = 3S1ϕ
B

Vll = 3eiπ/6 Vln, Vll
B = 3Vln

B

I3ϕ = Iab − Ica = 3 e−iπ/6 I1ϕ, I3ϕ
B = 3 I1ϕ

B

Vln = ( 3 eiπ/6)
−1

V1ϕ, Vln
B = ( 3)−1V1ϕ

B

Z3ϕ = Z1ϕ/3, Z3ϕ
B = Z1ϕ

B /3

Note: 

 are voltage 
and & impedance in 

 equivalent circuit

Vln, Z3ϕ

Y

In terms of 




and their base values 
(S1ϕ, V1ϕ, I1ϕ, Z1ϕ)



Per-unit quantities
Per-unit quantities satisfy


S3ϕ
pu = S1ϕ

pu, Vll
pu = Vln

pu, Z3ϕ
pu = Z1ϕ

pu

Vln
pu = V1ϕ

pu , I3ϕ
pu = I1ϕ

pu

• 3  quantities equal 1  quantities in p.u.

• modulo phase shifts in  configuration:


ϕ ϕ
Δ

Vln
pu :=

Vln

Vln
B

=
( 3eiπ/6)

−1
V1ϕ

( 3)
−1

V1ϕ
B

= e−iπ/6 V1ϕ
pu



Per-unit per-phase analysis
1. For single-phase system, pick power base  for entire system and voltage base  in 

area 1, e.g., induced by nameplate ratings of transformer


2. For balanced 3  system, pick 3  power base  and line-to-line voltage base  induced 
by nameplate ratings of 3  transformer.  Then choose power & voltage bases for per-phase 
equivalent circuit:





  will be power base for entire per-phase circuit.

3. Calculate current and impedance bases in that area:


S1ϕ
B V1ϕ

1B

ϕ ϕ S3ϕ
B Vll

B
ϕ

S1ϕ
B := S3ϕ

B / 3, V1ϕ
1B := Vll

1B / 3

S1ϕ
1B

I1B :=
S1ϕ

B

V1ϕ
1B

, Z1B :=
(V1ϕ

1B )
2

S1ϕ
B



Per-unit per-phase analysis
4. Calculate base values for voltages, currents, and impedances in areas  connected to area 1 

using the magnitude  of transformer gains (assume area 1 is primary):





Continue this process to calculate the voltage, current, and impedance base values for all 
areas

i
ni

V1ϕ
iB := ni V1ϕ

1B , Vll
iB := ni Vll

1B, IiB :=
1
ni

I1B, ZiB := n2
i Z1B



Per-unit per-phase analysis
5. For real, reactive, apparent power in entire system, use  as base value.  


For resistances and reactances, use  as base value in area .


For admittances, conductances, and susceptancesq, use  as base value in area 


6. Draw impedance diagram of entire system, and solve for desired per-unit quantities


7. Convert back to actual quantities if desired

S1ϕ
B

ZiB i
YiB := 1/ZiB i



Summary
1. Single-phase transformer


• Ideal transformer gain , equivalent circuit


2. Three-phase transformer

• : external behavior,  equivalent


3. Equivalent impedance

• Short cut for analyzing circuits containing transformers

• Transmission matrix, driving-point impedance


4. Per-phase analysis


5. Per-unit normalization

• Physical laws, across transformer, 3  quantities, per-unit per-phase analysis

n

YY, ΔΔ, ΔY, YΔ YY

ϕ


