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Single-phase devices

1. Single-terminal device 


• Voltage source , current source , power source , impedance 


• Terminal variables 


• External model: relation between  or 


2. Two-terminal device 


• Line , transformer 


• Terminal variables  and  


• External model: relation between  or 

j

(Ej, zj) (Jj, yj) (σj, zj) zj

(Vj, Ij, sj)
(Vj, Ij) (Vj, sj)
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Single-phase devices

1. Voltage source 

• Constant internal voltage  with series impedance 

• Models for Thevenin equivalent circuit of a balanced 

synchronous machine, secondary side of transformer, grid-
forming inverter


• External model: 


• External model: 

(Ej, zj)
Ej zj

Vj = Ej − zjIj

sj = VjI𝖧
j = y𝖧

j Vj (Ej − Vj)
𝖧
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Instead of impedance z, sometimes it is convenient to use its inverse, called the admittance y := z�1. The
voltage V across an impedance z (or admittance y) and the current I through it are related in the phasor
domain by

V = zI and I = yV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor r and an inductor l in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = l d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = ri(t) + l
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = r
p

2I eiwt + l
⇣

iw
p

2I eiwt
⌘

V = (r + iwl) I

Hence the resistor and inductor in series can be modeled in the phasor domain by an impedance z :=
r + iwl.

Voltage source (E,z). In the phasor domain, a voltage source is a circuit model with a constant internal
voltage E in series with an impedance z, as shown in Figure 1.3(a). Its external behavior is described by

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3: A voltage source (E,z) and a current source (J,y). An ideal voltage source has z = 0 and an
ideal current source has y = 0.

the relation between its terminal voltage and terminal (V, I):

V = E � zI

Hence the open-circuit (terminal) voltage V equals the internal voltage E. We often adopt an ideal voltage
source with z = 0. In this case V = E.



Single-phase devices

2. Current source 

• Constant internal current  with shunt admittance 


• Models for Norton equivalent circuit of a synchronous 
generator, load (e.g. electric vehicle charger), grid-following 
inverter


• External model: 


• External model: 

(Jj, yj)
Jj yj

Ij = Jj − yjVj

sj = VjI𝖧
j = Vj (Jj − yjVj)

𝖧
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Instead of impedance z, sometimes it is convenient to use its inverse, called the admittance y := z�1. The
voltage V across an impedance z (or admittance y) and the current I through it are related in the phasor
domain by

V = zI and I = yV

An important advantage of phasor representation of an AC circuit is that circuit analysis involves only
algebraic operations rather than differential equations in the time domain.

Example 1.1. A voltage v(t) is applied to a resistor r and an inductor l in series and the current through
these devices is i(t). Derive the dynamic equation that relates (v(t), i(t)) in the time domain and the
corresponding equation that relates their phasors (V, I).

Solution. Let v1(t) = ri(t) denote the voltage drop across the resistor and v2(t) the voltage drop across
the inductor that satisfies v2(t) = l d

dt i(t). Then the relation between (v(t), i(t)) is given by KVL: v(t) =
v1(t)+ v2(t) or

v(t) = ri(t) + l
d
dt

i(t)

Noting that v(t) = Re
np

2V eiwt
o

and i(t) = Re
np

2I eiwt
o

, we multiply both sides of the equation above

by eiwt to get
p

2V eiwt = r
p

2I eiwt + l
⇣

iw
p

2I eiwt
⌘

V = (r + iwl) I

Hence the resistor and inductor in series can be modeled in the phasor domain by an impedance z :=
r + iwl.

Voltage source (E,z). In the phasor domain, a voltage source is a circuit model with a constant internal
voltage E in series with an impedance z, as shown in Figure 1.3(a). Its external behavior is described by

E

I

V

z

(a) Voltage source

J

I

Vy

(b) Current source

Figure 1.3: A voltage source (E,z) and a current source (J,y). An ideal voltage source has z = 0 and an
ideal current source has y = 0.

the relation between its terminal voltage and terminal (V, I):

V = E � zI

Hence the open-circuit (terminal) voltage V equals the internal voltage E. We often adopt an ideal voltage
source with z = 0. In this case V = E.



Single-phase devices

3. Power source 


• Constant internal power  in series with impedance 


• Models for load, generator, secondary side of transformer


• External model: 


• External model: 

(σj, zj)
σj zj

σj = (Vj − zjIj) I𝖧
j

sj = VjI𝖧
j = σj + zjIjI𝖧

j
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Single-phase devices

4. Impedance 

• Constant impedance 

• Models for load


• External model: 


• External model: 

zj
z

Vj = zjIj

sj = VjI𝖧
j =

|Vj |
2

z𝖧
j
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Single-phase line (ys
jk, ym

jk , ym
kj)

 relation:  circuit and admittance matrix VI Π Yline

Ijk = ys
jk(Vj − Vk) + ym

jk Vj,
Ikj = ys

jk(Vk − Vj) + ym
kj Vk
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[
Ijk

Ikj] = [
ys

jk + ym
jk −ys

jk

−ys
jk ys

jk + ym
kj]

Yline

[
Vj

Vk]

admittance matrix  : 

• complex symmetric

•  series admittance

Yline

[Y]jk = −
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)



Single-phase line (ys
jk, ym

jk , ym
kj)

 relation:  circuit and admittance matrix VI Π Yline

Ijk = ys
jk(Vj − Vk) + ym

jk Vj,
Ikj = ys

jk(Vk − Vj) + ym
kj Vk
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Their sum is total line current loss





If , then 

Ijk + Ikj = ym
jkVj + ym

kjVk ≠ 0

ym
jk = ym

kj = 0 Ijk = − Ikj
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)



Single-phase line (ys
jk, ym

jk , ym
kj)

 relationVs

Sjk := VjIH
jk = (ys

jk)
H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj := VkIH
kj = (ys

jk)
H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)



Single-phase line (ys
jk, ym

jk , ym
kj)

 relationVs
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Line loss


Sjk + Skj = (ys
jk)

H
Vj − Vk

2
+ (ym

jk)
H

|Vj |
2 + (ym

kj)
H

|Vk |2

series loss shunt loss
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)
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•  : not symmetric

• Has no equivalent  circuit


• Use admittance or transmission matrix 
for analysis

Ytransformer
Π

Single-phase transformer (K (njk), ỹs
jk, ỹm

jk)
Complex K (njk)

[
Ijk

Ikj] =
ys

jk −ys
jk /Kjk(n)

−ys
jk /K̄jk(n) (ys

jk + ym
jk)/ |Kjk(n) |2

Ytransformer

[
Vj

Vk]
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not just on
����
⇣

ys
jk

⌘H �
|Vj|2 �VjVH

k
����� and

����
⇣

ys
k j

⌘H⇣
|Vk|2 �VkVH

j

⌘���� unless the shunt admittances are zero.

If the shunt admittances ym
jk and ym

k j of the line are zero then the power loss has a simple relation with
line currents. Setting ym

jk = ym
k j = 0 in (4.3) and (4.1a) and using ys

jk = ys
k j, we have

S jk +Sk j = zs
jk ·

���ys
jk

���
2 ��Vj �Vk

��2
= zs

jk
��I jk

��2

because I jk = ys
jk(Vj �Vk) = �Ik j when the shunt elements are zero and ys

jk = ys
k j. This is not the case

otherwise.

4.1.3 Single-phase transformer

In Chapters 3.1 and 3.2 we describe circuit models of a single-phase transformer. They are also per-phase
models of balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its
voltage gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the
per-phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ỹs

jk and shunt admittance ỹm
jk

in the primary circuit, as shown in Figure 4.2(a).

Vj

Ijk , Sjk Skj , Ikj

1  :  K(njk)

Vk

reference
point

ỹ s
jk

ỹm
jk

(a) Non-ideal transformer

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

(b) P circuit model (real n jk)

Figure 4.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

that the direction of Ik j at terminal k is opposite to that in Chapter 3. The behavior of the transformer in
Figure 4.2 is characterized by the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�

or that between (Vj,Vk) and line powers
�
S jk,Sk j

�
, which we now summarize.

Real voltage gain K(n jk) = n jk. Using Kirchhoff’s and Ohm’s laws and transformer gains we have

I jk = ỹs
jk

�
Vj �a jkVk

�
, I jk = ỹm

jk a jkVk +n jk(�Ik j) (4.4a)
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Single-phase transformer (K (njk), ỹs
jk, ỹm

jk)
Complex K (njk)
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(a) One-line diagram

ỹ s13

y1 y2ỹm13 ỹm31

V2V3V1

I1 I2

y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load. Changes: ỹs
13 ! ys

13, ỹm
13 ! ym

13 and ỹm
31 !

ym
31.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):

2

4
I1
I2
0

3

5 =

2

4
ỹs + y1 0 �aỹs

0 y+ y2 �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

2

4
V1
V2
V3

3

5

The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y

m
kj )

Figure 4.7: Network graph and notations.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances

⇣
ys

jk,y
m
jk

⌘
2 C

2 from j to k and
⇣

ys
k j,y

m
k j

⌘
2 C

2 from k

ys
jk :=

ỹs
jk

Kjk(n)
, ym

jk := (1 −
1

Kjk(n) ) ỹs
jk
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jk +

1
|Kjk(n) |2 ỹm
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4.1.3 Single-phase transformer

In Chapters 3.1 and 3.2 we describe circuit models of a single-phase transformer. They are also per-phase
models of balanced three-phase transformers. A transformer has two terminals ( j,k) and is specified by its
voltage gain n jk which is the reciprocal of the turns ratio a jk := 1/n jk. If the single-phase transformer is the
per-phase model of a balanced three-phase transformer, then the voltage gain K(n jk) can be complex, e.g.,
K(n jk) =

p
3n jk eip/6 for DY configuration. In addition to the voltage gain n jk, a single-phase transformer

also has series resistance and leakage inductance and shunt admittance due to the primary and secondary
magnetizing currents. These effects can be modeled by a series admittance ỹs

jk and shunt admittance ỹm
jk

in the primary circuit, as shown in Figure 4.2(a).
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Figure 4.2: Single-phase transformer.

As for a line model, associated with terminals j and k are the terminal voltages, sending-end line
currents and sending-end line power flows (Vj, I jk,S jk) 2 C

3 and (Vk, Ik j,Sk j) 2 C
3 respectively. Notice

that the direction of Ik j at terminal k is opposite to that in Chapter 3. The behavior of the transformer in
Figure 4.2 is characterized by the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�

or that between (Vj,Vk) and line powers
�
S jk,Sk j

�
, which we now summarize.

Real voltage gain K(n jk) = n jk. Using Kirchhoff’s and Ohm’s laws and transformer gains we have

I jk = ỹs
jk

�
Vj �a jkVk

�
, I jk = ỹm

jk a jkVk +n jk(�Ik j) (4.4a)
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jk + a2
jk ỹm
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kj

Single-phase transformer(K (njk), ỹs
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3 respectively. Notice
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jk and shunt admittance ỹm
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4.2 Network model: V I relation

In this section we explain how to use the component models of Chapter 4.1 to model a single-phase
network consisting of generators and loads connected by a network of transmission or distribution lines
and transformers. We will construct an equivalent circuit consisting of ideal voltage and current sources
connected by a network of series and shunt admittances. The nodal current injections I are linearly related
to nodal voltages V through a matrix Y called an admittance matrix, I = YV . An admittance matrix is
also called a network admittance matrix or a bus admittance matrix. The relation I = YV represents the
Kirchhoff’s laws and the Ohm’s law. In this section we derive the admittance matrix Y and study its
properties.

We start in Chapter 4.2.1 with a few examples and present in Chapter 4.2.2 our abstract line model.
We define the admittance matrix Y for a general network in Chapter 4.2.3 and discuss how to solve I = YV
numerically in Chapter 4.2.4. We study sufficient conditions for the invertibility of Y in Chapter 4.2.5.
In Chapter 4.2.6 we explain Kron reduction of an admittance matrix Y and in Chapter 4.2.7 we study
the invertibility of a Kron-reduced admittance matrix. When the network graph is a tree, called a radial
network, a reduced admittance matrix is always invertible and we derive explicitly its inverse in Chapter
4.2.8.

4.2.1 Examples

In this subsection we derive the admittance matrix Y of a single-phase network shown in Figure 4.3 where:

1. The generator on the left end is modeled as a current source with parameters (I1,y1).

2. The non-ideal single-phase transformer has a real voltage gain n, a series admittance ỹs and shunt
admittance ỹm in the primary circuit.

3. The transmission line is modeled as a series admittance y (and zero shunt admittances).

4. The motor load on the right end is modeled as another current source (I2,y2).

generator

load

transmission line
transformer

Figure 4.3: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

We will derive the admittance matrix Y for the overall system in two steps.

Example 4.1 (Non-ideal transformer and transmission line). Figure 4.4 shows the circuit model of the
non-ideal transformer in series with the transmission line. To determine the admittance matrix that relates



Example
Step 1: transformer + line

[I13
I31] = [

ỹs −a ỹs

−a ỹs a2 (ỹs + ỹm)] [V1
V3]

[I32
I23] = [ y −y

−y y ] [V3
V2]

Nodal current balance (KCL): 


I1 = I13

I3 = I31 + I32 = 0
I2 = I23relate branch currents with


nodal voltages
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V1

I1 = I13 I23 = I2

V2

I31 I32

V3

y

I3 = 0

1  :  n

ỹm

ỹ s

Figure 4.4: A non-ideal transformer in series with a transmission line.

(I1, I2) to (V1,V2), we introduce an additional network node 3 between the transformer and the transmission
line y with an auxiliary voltage V3 and an auxiliary injection current I3 at node 3, as shown in the figure.

Since the voltage gain n is real, use the transformer model (4.4b) and the line model (4.1) to get


I13
I31

�
=


ỹs �a ỹs

�a ỹs a2 (ỹs + ỹm)

�
V1
V3

�
,


I32
I23

�
=


y �y

�y y

�
V3
V2

�

Kirchhoff’s current law at each node gives:

I1 = I13, 0 = I3 = I31 + I32, I2 = I23

Eliminating branch currents relates nodal currents (I1, I2, I3) to nodal voltages (V1,V2,V3) through matrix
Y1:

2

4
I1
I2
I3

3

5 =

2

4
ỹs 0 �aỹs

0 y �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

| {z }
Y1

2

4
V1
V2
V3

3

5 (4.7)

The matrix Y1 is complex symmetric and is therefore an admittance matrix that can be represented as a P
circuit as shown in Figure 4.5 where ys

13 := aỹs, ym
13 := (1�a)ỹs and ym

31 := a(a�1)ỹs +a2ỹm.

V1

I1= I13 I23= I2

V2

I31 I32

ym13

ys13

ym31 V3

y

I3= 0

transformer line

Figure 4.5: P circuit model of the system in Figure 4.4.

Example 4.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 4.6(a). The only changes to the admittance
matrix, compared with the admittance matrix Y1 in (4.7), are the additional shunt admittances y1,y2 at
nodes 1 and 2 respectively. They should be added to the first two diagonal entries of Y1. The overall



Example
Step 1: transformer + line

Eliminate branch currents:

I1
I2
I3

=
ỹs 0 −aỹs

0 y −y
−aỹs −y y + a2 (ỹs + ỹm)

Y1

V1
V2
V3

•  : complex symmetric

• Hence: admittance matrix with  circuit

• Unequal shunt elements (even if )

Y1
Π

ỹm = 0
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Y1

V1
V2
V3

182 Draft: EE 135 Notes October 10, 2024

V1

I1 = I13 I23 = I2

V2

I31 I32

V3

y

I3 = 0

1  :  n

ỹm

ỹ s

Figure 4.4: A non-ideal transformer in series with a transmission line.

(I1, I2) to (V1,V2), we introduce an additional network node 3 between the transformer and the transmission
line y with an auxiliary voltage V3 and an auxiliary injection current I3 at node 3, as shown in the figure.

Since the voltage gain n is real, use the transformer model (4.4b) and the line model (4.1) to get


I13
I31

�
=


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13 := (1�a)ỹs and ym
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Example 4.2 (Overall system). Finally the circuit model of the overall system that includes the two current
sources that model the generator and the load is shown in Figure 4.6(a). The only changes to the admittance
matrix, compared with the admittance matrix Y1 in (4.7), are the additional shunt admittances y1,y2 at
nodes 1 and 2 respectively. They should be added to the first two diagonal entries of Y1. The overall
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ỹs + y1 0 −aỹs
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V1 V2
y

y1 y2 I2I1

generator load

(a) One-line diagram

ỹ s13

y1 y2ỹm13 ỹm31

V2V3V1

I1 I2

y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load. Changes: ỹs
13 ! ys

13, ỹm
13 ! ym

13 and ỹm
31 !

ym
31.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):

2

4
I1
I2
0

3

5 =

2

4
ỹs + y1 0 �aỹs

0 y+ y2 �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

2

4
V1
V2
V3

3

5

The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y
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For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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4.2 Network model: V I relation

In this section we explain how to use the component models of Chapter 4.1 to model a single-phase
network consisting of generators and loads connected by a network of transmission or distribution lines
and transformers. We will construct an equivalent circuit consisting of ideal voltage and current sources
connected by a network of series and shunt admittances. The nodal current injections I are linearly related
to nodal voltages V through a matrix Y called an admittance matrix, I = YV . An admittance matrix is
also called a network admittance matrix or a bus admittance matrix. The relation I = YV represents the
Kirchhoff’s laws and the Ohm’s law. In this section we derive the admittance matrix Y and study its
properties.

We start in Chapter 4.2.1 with a few examples and present in Chapter 4.2.2 our abstract line model.
We define the admittance matrix Y for a general network in Chapter 4.2.3 and discuss how to solve I = YV
numerically in Chapter 4.2.4. We study sufficient conditions for the invertibility of Y in Chapter 4.2.5.
In Chapter 4.2.6 we explain Kron reduction of an admittance matrix Y and in Chapter 4.2.7 we study
the invertibility of a Kron-reduced admittance matrix. When the network graph is a tree, called a radial
network, a reduced admittance matrix is always invertible and we derive explicitly its inverse in Chapter
4.2.8.

4.2.1 Examples

In this subsection we derive the admittance matrix Y of a single-phase network shown in Figure 4.3 where:

1. The generator on the left end is modeled as a current source with parameters (I1,y1).

2. The non-ideal single-phase transformer has a real voltage gain n, a series admittance ỹs and shunt
admittance ỹm in the primary circuit.

3. The transmission line is modeled as a series admittance y (and zero shunt admittances).

4. The motor load on the right end is modeled as another current source (I2,y2).

generator

load

transmission line
transformer

Figure 4.3: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

We will derive the admittance matrix Y for the overall system in two steps.

Example 4.1 (Non-ideal transformer and transmission line). Figure 4.4 shows the circuit model of the
non-ideal transformer in series with the transmission line. To determine the admittance matrix that relates
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Figure 4.6: Generator, transformer, transmission line and load.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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For each line ( j,k) 2 E let
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Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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(a) One-line diagram
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(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


aI1
I2

�
=


y �y

�y y

�
nV1
V2

�

Since


aI1
I2

�
=


a 0
0 1

�
I1
I2

�
,
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nV1
V2

�
=
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n 0
0 1
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V2

�

the terminal model of the subsystem in Figure 5.5(a) is


I1
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�
=
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n 0
0 1

�
y �y

�y y
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V2

�
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| {z }
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
V1
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�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.
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Figure 4.6: Generator, transformer, transmission line and load.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.
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Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by
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We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.
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Figure 4.6: Generator, transformer, transmission line and load.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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3

5

2

4
V1
V2
V3

3

5

The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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For each line ( j,k) 2 E let
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Vj,Vk
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denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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31 !

ym
31.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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31 !

ym
31.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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For each line ( j,k) 2 E let
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Vj,Vk
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denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)

If  : same relation but equivalent to  circuit: ys
jk = ys

kj Π
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (5.5b)

In vector form, this is I = YV where the admittance matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(5.5c)

Equation (5.5c) prescribes a way to write down the admittance matrix Y by inspection of the network
connectivity and line admittances: its off-diagonal entry is the negative of the series admittance on the
corresponding line while its diagonal entry is the sum of series and shunt admittances incident on the
corresponding bus. Clearly Y is symmetric, but not Hermitian unless Y is a real matrix.

Example 5.4. Consider the three-bus network shown in Figure 5.8. Each line ( j,k) is modeled by a P

V1 V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
s , y23

m , y32
m( )

I12

I13

I21

Figure 5.8: Three-bus network of Example 5.4.

circuit with a series admittance ys
jk and shunt admittances ym

jk and ym
k j (not necessarily equal) at two ends

of the line. The sending-end branch current from bus j to bus k is I jk and that from bus k to bus j is Ik j.
Applying Kirchhoff’s current law and Ohm’s law at bus 1 gives

I12 = ys
12(V1 �V2) + ym

12V1

I13 = ys
13(V1 �V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

I1
I2
I3

=
ys

12 + ys
13 + ym

11 −ys
12 −ys

13

−ys
12 ys

12 + ys
23 + ym

22 −ys
23

−ys
13 −ys

23 ys
13 + ys

23 + ym
33

V1
V2
V3

total shunt admittance: ym
jj := ∑k:j∼k ym

jk
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In terms of incidence matrix C
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where ym
j j denotes the total shunt admittance of the lines connected to bus j:

ym
j j := Â

k: j⇠k
ym

jk (5.5b)

In vector form, this is I = YV where the admittance matrix Y is given by:

Yjk =

8
<

:

�ys
jk, j ⇠ k ( j 6= k)

Âl: j⇠l ys
jl + ym

j j, j = k
0 otherwise

(5.5c)

Equation (5.5c) prescribes a way to write down the admittance matrix Y by inspection of the network
connectivity and line admittances: its off-diagonal entry is the negative of the series admittance on the
corresponding line while its diagonal entry is the sum of series and shunt admittances incident on the
corresponding bus. Clearly Y is symmetric, but not Hermitian unless Y is a real matrix.

Example 5.4. Consider the three-bus network shown in Figure 5.8. Each line ( j,k) is modeled by a P

V1 V2

I2I1

y12
s , y12

m , y21
m( )

y13
s , y13

m, y31
m( )

V3

I3

y23
s , y23

m , y32
m( )

I12

I13

I21

Figure 5.8: Three-bus network of Example 5.4.

circuit with a series admittance ys
jk and shunt admittances ym

jk and ym
k j (not necessarily equal) at two ends

of the line. The sending-end branch current from bus j to bus k is I jk and that from bus k to bus j is Ik j.
Applying Kirchhoff’s current law and Ohm’s law at bus 1 gives

I12 = ys
12(V1 �V2) + ym

12V1

I13 = ys
13(V1 �V3) + ym

13V1

) I1 = I12 + I13 = (ys
12 + ys

13 + ym
12 + ym

13)V1 � ys
12V2 � ys

13V3

Similarly applying KCL and Ohm’s law at buses 2 and 3 we obtain
2

4
I1
I2
I3

3

5 =

2

4
ys

12 + ys
13 + ym

11 �ys
12 �ys

13
�ys

12 ys
12 + ys

23 + ym
22 �ys

23
�ys

13 �ys
23 ys

13 + ys
23 + ym

33

3

5

| {z }
Y

2

4
V1
V2
V3

3

5

example:


C = [
1 0 −1

−1 1 0
0 −1 1]

bus-by-line incidence matrix


Cjl =
1  if l = j → k for some bus k
−1  if l = i → j for some bus i
0  otherwise



Admittance matrix Y
In terms of incidence matrix C

bus-by-line incidence matrix


Cjl =
1  if l = j → k for some bus k
−1  if l = i → j for some bus i
0  otherwise




where  ,  

Y = C Ds
yC𝖳 + Dm

y

Ds
y := diag (ys

l , l ∈ E) Dm
y := diag (ym

jj , j ∈ N)
 is a complex Laplacian matrix when  Y Ym = 0



Properties of Y
1. The inverse , if exists, is called a bus impedance matrix or an impedance 

matrix 

• Useful for fault analysis

• Solving  for 

• Advantages of :  can be constructed by inspection of one-line diagram and inherits 

sparsity structure of .    can/does not.


2. Next: study existence of 

• Derive (Schur complement) expressions for , when  is nonsingular 

• 4 sufficient conditions for  to be nonsingular based on the expressions for 

Z := Y−1

I = YV V
Y Y

G Z

Z
Z Y

Y Z



Inverse of Y
If exists
Let ,  


 nonsingular     s.t. 


  


 


Suppose  is nonsingular.  Then  nonsingular  Schur complement  nonsingular


Then   and hence  

Y := G + iB Z := R + iX

Y ⟺ ∃(R, X) YZ = ZY = 𝕀

⟺ YZ = (GR − BX) + i(GX + BR) = 𝕀

⟺ [G −B
B G ]

M

[R
X] = [I

0]

G Y ⟺ M/G := G + BG−1B

M−1 = [ (M/G)−1 (M/G)−1BG−1

−G−1B(M/G)−1 G−1 − G−1B(M/G)−1BG−1] [R
X] = [ (M/G)−1

−G−1B(M/G)−1]



Invertibility of Y
Theorem 1 

Suppose  is complex symmetric .  


If , then  exists, is symmetric, and 


Proof 

Let  with .  Then  because  and .


Therefore both  and  are nonsingular, which implies that  is nonsingular (from previous slide).


Moreover  implies   since .


Finally, to prove  is symmetric: substitute    and   into (transpose of) 
 to get:


      i.e.,   

Y (ys
jk = ys

kj)

Re(Y) ≻ 0 Y−1 Re (Y−1) ≻ 0

Y = G + iB G ≻ 0 M/G := G + BG−1B ≻ 0 G, G−1 ≻ 0 B = B𝖳

G M/G Y

[R
X] = [ (M/G)−1

−G−1B(M/G)−1] Re (Y−1) = (M/G)−1 ≻ 0 M/G ≻ 0

Z := Y−1 Z𝖳Y𝖳 = Z𝖳Y Y𝖳Z𝖳 = YZ𝖳

ZY = YZ = 𝕀
Z𝖳Y = Z𝖳Y𝖳 = Y𝖳Z𝖳 = YZ𝖳 = 𝕀 Z𝖳 = Y−1 = Z



Invertibility of Y

Theorem 2 

Suppose  is connected and  is complex symmetric .  If conditions 1 and either 2 or 3 are satisfied, then


1. 


2.  exists, is symmetric, and 

G Y (ys
jk = ys

kj)

Re(Y) ≻ 0
Y−1 Re (Y−1) ≻ 0

Let    


Conditions


1.   for all lines , i.e., nonnegative conductances


2.   for all buses , i.e., there is a shunt conductance incident on every bus


3.  for all lines , and   s.t.  , i.e., all series conductances are nonzero and 
there is at least one nonzero shunt conductance

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk , ym
kj =: gm

kj + ibm
kj

gs
jk, gm

jk , gm
kj ≥ 0 ( j, k) ∈ E

∑
k:k∼j

gm
jk ≠ 0 j ∈ N

gs
jk ≠ 0 ( j, k) ∈ E ∃( j′￼, k′￼) ∈ E gm

j′￼k′￼
≠ 0



Invertibility of Y
Theorem 2 

Suppose  is connected and  is complex symmetric .  If conditions 1 and either 2 or 3 are satisfied, then


1. 


2.  exists, is symmetric, and 


Proof 

For any nonzero , these conditions imply


G Y (ys
jk = ys

kj)

Re(Y ) ≻ 0
Y−1 Re (Y−1) ≻ 0

ρ ∈ ℝN+1

ρ𝖳Gρ = ∑
j

∑
k

ρjρkGjk = ∑
j

∑
k:j∼k

− ρjρkgs
jk + ρ2

j ∑
i:j∼i

(gs
ji + gm

ji )

= ∑
( j,k)∈E

(ρ2
j − 2ρjρk + ρ2

k ) gs
jk + ∑

j∈N

ρ2
j ∑

i:j∼i

gm
ji

= ∑
( j,k)∈E

(ρj − ρk)
2

gs
jk + ∑

j∈N

ρ2
j ∑

i:j∼i

gm
ji > 0



Inverse of Y
If exists
Let ,  


 nonsingular     which is the same as:  


Suppose  is nonsingular.  Then  nonsingular  Schur complement  nonsingular


Then   and hence  


This leads to 2 analogous sufficient conditions in terms of Im  and  with similar proofs.

Y := G + iB Z := R + iX

Y ⟺ [G −B
B G ]

M

[R
X] = [I

0] [B G
G −B]

M′￼

[R
X] = [0

I]

B Y ⟺ M/B := − (B + GB−1G)

M′￼−1 = [B−1 + B−1G(M′￼/B)−1GB−1 −B−1G(M′￼/B)−1

−(M′￼/B)−1GB−1 (M′￼/B)−1 ] [R
X] = [−B−1G(M′￼/B)−1

(M′￼/B)−1 ]

(Y) (bs
jk, bm

jk , bm
kj)



Invertibility of Y
Theorem 3 

Suppose  is complex symmetric .  


If , then  exists, is symmetric, and 


Y (ys
jk = ys

kj)

Im(Y) ≺ 0 Y−1 Im (Y−1) ≻ 0



Invertibility of Y

Theorem 4 

Suppose  is connected and  is complex symmetric .  If conditions 1 and either 2 or 3 are satisfied, then


1. 


2.  exists, is symmetric, and 

G Y (ys
jk = ys

kj)

Im(Y) ≺ 0
Y−1 Im (Y−1) ≻ 0

Let    


Conditions


1.   for all lines , i.e., nonpositive susceptances


2.   for all buses , i.e., there is a shunt susceptances incident on every bus


3.  for all lines , and   s.t.  , i.e., all series susceptances are nonzero and 
there is at least one nonzero shunt susceptance

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk , ym
kj =: gm

kj + ibm
kj

bs
jk, bm

jk , bm
kj ≤ 0 ( j, k) ∈ E

∑
k:k∼j

bm
jk ≠ 0 j ∈ N

bs
jk ≠ 0 ( j, k) ∈ E ∃( j′￼, k′￼) ∈ E bm

j′￼k′￼
≠ 0



Invertibility of Y
Sufficiency only

Example:  
Example 1 with node 3 at the primary side of the ideal transformer has an admittance matrix





Suppose .    Then  and  have opposite signs  


Hence  does not satisfy conditions in Theorem 2.   But  is nonsingular if and only if 

Y =
ỹs 0 −ỹs

0 y −ny
−ỹs −ny ỹs + ỹm + n2y

gs, g̃s > 0, bs, b̃s ≤ 0, b̃m ≥ 0 gm
23 := (1 − n)gs gm

32 := n(n − 1)gs (n ≠ 1)

Y Y b̃m > 0

These conditions on are sufficient only   


• Conditions  in Theorem 2 are usually satisfied by transmission/distribution lines


• … but not by transformers
(gs

jk, gm
jk , gm

kj)



Outline
1. Component models

2. Network model:  relation


• Example and network model

• Admittance matrix  and properties

• Kron reduction  and properties

• Radial network


3. Network model:  relation

4. Computation methods

5. Linear power flow model

VI

Y
Y/Y22

Vs
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~
transmission#line##transformer#generator#

load#

Figure 5.4: One-line diagram of a generator supplying a load through a transformer and a transmission
line.

y

1:n

V1 V2
I2I1 aI1

nV1

(a) One-line diagram

V1

+

−

V2

+

−

n(n−1)y

I2I1

(1− n)y

ny

(b) Equivalent P circuit model

Figure 5.5: An ideal transformer with turns ratio n = a�1 followed by a transmission line modeled by a
series admittance y.

Example 5.1 (Ideal transformer and transmission line). We start with a terminal model of a cascade of the
ideal transformer and the transmission line, as shown in the one-line diagram of Figure 5.5(a). Using the
line model (5.1), the terminal voltages and currents at the two ends of the transmission line are related by


aI1
I2

�
=


y �y

�y y

�
nV1
V2

�

Since


aI1
I2

�
=


a 0
0 1

�
I1
I2

�
,


nV1
V2

�
=


n 0
0 1

�
V1
V2

�

the terminal model of the subsystem in Figure 5.5(a) is


I1
I2

�
=


n 0
0 1

�
y �y

�y y

�
n 0
0 1

�
V1
V2

�
=


n2y �ny
�ny y

�

| {z }
Y1


V1
V2

�

We can write the admittance matrix equivalently as

Y1 :=


ny+n(n�1)y �ny
�ny ny+(1�n)y

�

The equivalent P-model is shown in Figure 5.5(b) where the off-diagonal entry �ny is represented by a
series admittance and the elements n(n�1)y and (1�n)y on the diagonal are represented by shunt admit-
tances. Hence an ideal transformer can be incorporated into a transmission line model with appropriate
parameters. Even though neither the transmission line model nor the transformer model includes shunt
elements, the equivalent P-model of Y does as long as n 6= 1. Moreover the shunt admittances in Figure
5.5(b) are different.

I1
I2

0
=

ỹs + y1 0 −aỹs

0 y + y2 −y
−aỹs −y y + a2 (ỹs + ỹm)

V1
V2
V3

generator/load

admittances

Kron reduction (see below) 
• Internal bus has zero injection 

• Can eliminate  

• External behavior: relation between  and 

I3 = 0
(V3, I3)

(I1, I2)
(V1, V2)
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(a) One-line diagram

ys13

y1 y2ym13 ym31

V2V3V1

I1 I2

y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):

2

4
I1
I2
0

3

5 =

2

4
ỹs + y1 0 �aỹs

0 y+ y2 �y
�aỹs �y y+a2 (ỹs + ỹm)

3

5

2

4
V1
V2
V3

3

5

The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y

m
kj )

Figure 4.7: Network graph and notations.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances

⇣
ys

jk,y
m
jk

⌘
2 C

2 from j to k and
⇣

ys
k j,y

m
k j

⌘
2 C

2 from k

to j; see Figure 4.7. We call
⇣

ys
jk,y

s
jk

⌘
the series admittances and

⇣
ym

jk,y
m
jk

⌘
the shunt admittances of line



Kron reduction
•  : buses of interest, e.g., terminal buses


• Want to relate current injections and voltages at buses in 

Nred ⊆ N

Nred

 [I1
I2] = [Y11 Y12

Y21 Y22]
Y

[V1
V2]

 Nred
 N∖Nred

• Eliminate   


• giving  

V2 = − Y−1
22 Y21V1 + Y−1

22 I2

(Y11 − Y12Y−1
22 Y21) V1 = I1 − Y12Y−1

22 I2
Schur complement



Kron reduction

If internal injections  :
I2 = 0

Y/Y22 := (Y11 − Y12Y−1
22 Y21) V1 = I1

Schur complement

•  Describes effective connectivity and line admittances of reduced network

Example:
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4.2.4.1 Kron reduction Y/Y22

Denote the number of buses in Nred also by Nred. Without loss of generality we can partition the buses such
that I1 2C

Nred denotes the first Nred current injections and I2 the remaining N +1�Nred current injections.
Similarly partition the voltages into (V1,V2) with V1 2 C

Nred , V2 2 C
N+1�Nred . Partition the admittance

matrix Y so that


I1
I2

�
=


Y11 Y12
Y21 Y22

�

| {z }
Y


V1
V2

�

If Y22 is invertible then we can eliminate V2 by substituting V2 = �Y �1
22 Y21V1 +Y �1

22 I2 to obtain

�
Y11 �Y12Y �1

22 Y21
�

V1 = I1 � Y12Y �1
22 I2 (4.16)

The Nred ⇥Nred matrix Y/Y22 :=Y11 �Y12Y �1
22 Y21 is the Schur complement of Y22 of matrix Y (see Appendix

17.1.3 for its properties). It can be interpreted as the admittance matrix of the reduced network consisting
only of buses in Nred and describes the effective connectivity and line admittances of the reduced network.
The quantity I1 �Y12Y �1

22 I2 describes the effective current injections at these buses. This is called a Kron
reduction of network G. If Y is complex symmetric, its Kron reduced admittance matrix Y/Y22 is also
complex symmetric and hence satisfies Assumption C4.1 (Exercise 4.10). Two buses j and k are adjacent
in the Kron-reduced network, i.e., [Y/Y22] jk 6= 0, if and only if j and k are adjacent in the original graph
(i.e., Yjk 6= 0) or if there is a path in the original graph that connects j and k.

Example 4.5 (Kron reduction). Consider the network shown in Figure 4.10(a). Under condition C4.1 its

1

2 3

4

(a) Original network

1

2 3

(b) Kron reduced network

Figure 4.10: Kron reduction: Nred := {1,2,3} with internal bus 4. While the original network is a tree, the
Kron reduced network is fully connected.

admittance matrix Y is (0 and symmetric entries are omitted for simplicity)

Y :=

2

664

ys
14 + ym

11 �ys
14

ys
24 + ym

22 �ys
24

ys
34 + ym

33 �ys
34

Â j ys
j4 + ym

44

3

775



Existence of Kron reduction
Admittance matrix   where 


When  is real, it is called a real Laplacian matrix


•  real symmetric matrix 


• Row sum = column sum = 0


• ,   when all  are (real &) of the same sign (otherwise 
rank  can be )


• Any principal submatrix is invertible, i.e.,  always exists (we will study later in more 
detail for linear models)

Y = CYsC Ys := diag (ys
jk)

Y
(N + 1) × (N + 1)

rank(Y) = N null(Y) = span(1) ys
jk

(Y) < N
Y/Y22

When  is a complex symmetric, but not Hermitian, these properties may not hold

In particular,  may not be invertible and  may not exist 

Y
Y22 Y/Y22



Existence of Kron reduction
Next: Properties of  and 


• Conditions on  for  to be nonsingular, hence existence of 


• Conditions on  for  to be nonsingular

Y22 Y/Y22

(ys
jk, ym

jk , ym
kj) Y22 Y/Y22

(ys
jk, ym

jk , ym
kj) Y/Y22



Invertibility of Y22
When ys

jk = ys
kj

Recall proof of Theorem 2:


ρ𝖳Gρ = ∑
( j,k)∈E

(ρj − ρk)
2

gs
jk + ∑

j∈N

ρ2
j ∑

i:j∼i

gm
ji > 0

term associated with lines term associated with nodes



Invertibility of Y22
When ys

jk = ys
kj

Recall proof of Theorem 2:





Similar structure for strict principal submatrix :





ρ𝖳Gρ = ∑
( j,k)∈E

(ρj − ρk)
2

gs
jk + ∑

j∈N

ρ2
j ∑

i:j∼i

gm
ji > 0

Y22

Re (α𝖧Y22α) = ∑
i

∑
j,k∈Ci:( j,k)∈E

gs
jk αj − αk

2
+ ∑

j∈Ci

Gj |αj |
2

Im (α𝖧Y22α) = ∑
i

∑
j,k∈Ci:( j,k)∈E

bs
jk αj − αk

2
+ ∑

j∈Ci

Bj |αj |
2



Invertibility of Y22
Derivation
For strict principal submatrix:





Hence





Y22[ j, j] = ∑
k∉A:( j,k)∈E

ys
jk + ∑

k∈A:( j,k)∈E

ys
jk + ym

jj

α𝖧Y22α = ∑
j∈A

∑
k∉A:( j,k)∈E

ys
jk + ∑

k∈A:( j,k)∈E

ys
jk + ym

jj |αj |
2 − ∑

k∈A:( j,k)∈E

ys
jk α𝖧

j αk

= ∑
j,k∈A:( j,k)∈E

(ys
jk |αj |

2 − ys
jkα

𝖧
j αk − ys

kjα
𝖧
k αj + ys

kj |αk |2 ) + ∑
j∈A

∑
k∉A:( j,k)∈E

ys
jk + ym

jj |αj |
2

= ∑
j,k∈A:( j,k)∈E

ys
jk αj − αk

2
+ ∑

j∈A
∑

k∉A:( j,k)∈E

ys
jk + ym

jj |αj |
2



Invertibility of Y22
Derivation
For strict principal submatrix:





Hence





Y22[ j, j] = ∑
k∉A:( j,k)∈E

ys
jk + ∑

k∈A:( j,k)∈E

ys
jk + ym

jj

Re (α𝖧Y22α) = ∑
i

∑
j,k∈Ci:( j,k)∈E

gs
jk αj − αk

2
+ ∑

j∈Ci

Gj |αj |
2

Im (α𝖧Y22α) = ∑
i

∑
j,k∈Ci:( j,k)∈E

bs
jk αj − αk

2
+ ∑

j∈Ci

Bj |αj |
2

Similar conditions to Theorem 2:


ρ𝖳Gρ = ∑
( j,k)∈E

(ρj − ρk)
2

gs
jk + ∑

j∈N

ρ2
j ∑

i:j∼i

gm
ji > 0



Invertibility of Y22
When ys

jk = ys
kj

Theorem 5 

Suppose  is connected and  is complex symmetric .  If conditions 1 and either 2 or 3 are satisfied, then


1. 


2.  exists, is symmetric, and 

G Y (ys
jk = ys

kj)

Re(Y22) ≻ 0
Y−1

22 Re (Y−1
22 ) ≻ 0

Let    


Conditions


1. For all lines , ;  for all buses , 


2. For all buses , 


3. For all lines , ;  for each connected component ,   s.t.  

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk , ym
kj =: gm

kj + ibm
kj

( j, k) ∈ E gs
jk ≥ 0 j ∈ N Gj ≥ 0

j ∈ N Gj ≠ 0

( j, k) ∈ E gs
jk ≠ 0 Ci ∃ji ∈ Ci Gji ≠ 0



Invertibility of Y22
When ys

jk = ys
kj

Theorem 6 

Suppose  is connected and  is complex symmetric .  If conditions 1 and either 2 or 3 are satisfied, then


1. 


2.  exists, is symmetric, and 

G Y (ys
jk = ys

kj)

Im(Y22) ≺ 0
Y−1

22 Im (Y−1
22 ) ≻ 0

Let    


Conditions


1. For all lines , ;  for all buses , 


2. For all buses , 


3. For all lines , ;  for each connected component ,   s.t.  

ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk , ym
kj =: gm

kj + ibm
kj

( j, k) ∈ E bs
jk ≤ 0 j ∈ N Bj ≤ 0

j ∈ N Bj ≠ 0

( j, k) ∈ E bs
jk ≠ 0 Ci ∃ji ∈ Ci Bji ≠ 0



Invertibility of Y22
When  and ys

jk = ys
kj ym

jk = ym
kj = 0

Corollary 7 

Suppose  is connected,  is complex symmetric  and .  


1. If  for all , then  exists, is symmetric.  Moreover  and 


2. If  for all , then  exists, is symmetric.  Moreover  and 

G Y (ys
jk = ys

kj) ym
jk = ym

kj = 0

gs
jk > 0 ( j, k) ∈ E Y−1

22 Re(Y22) ≻ 0 Re(Y−1
22 ) ≻ 0

bs
jk < 0 ( j, k) ∈ E Y−1

22 Im(Y22) ≺ 0 Im(Y−1
22 ) ≻ 0

Theorem 8 

Suppose  is connected,  is complex symmetric  and .  If  and   
 then


1. 


2.  exists and is symmetric

G Y (ys
jk = ys

kj) ym
jk = ym

kj = 0 gs
jk ≥ 0 bs

jk ≤ 0
∀( j, k) ∈ E

Re(Y22) ⪰ 0, Im(Y22) ⪯ 0, Re(Y22) − Im(Y22) ≻ 0
Y−1

22



Invertibility of Y/Y22
When ys

jk = ys
kj

Theorem 9 

Suppose  is nonsingular.  


1. If , then  exists and is symmetric.  Moreover  and 


2. If , then  exists and is symmetric.  Moreover  and 

Y22

Re(Y) ≻ 0 (Y/Y22)−1
Re(Y/Y22) ≻ 0 Re ((Y/Y22)−1) ≻ 0

Im(Y) ≺ 0 (Y/Y22)−1
Im(Y/Y22) ≺ 0 Im ((Y/Y22)−1) ≻ 0



Outline
1. Component models

2. Network model:  relation


• Example and network model

• Admittance matrix  and properties

• Kron reduction  and properties

• Radial network


3. Network model:  relation

4. Computation methods

5. Linear power flow model

VI

Y
Y/Y22

Vs



Radial networks
When  and ys

jk = ys
kj ym

jk = ym
kj = 0

 incidence matrix , :


           admittance matrix


  reduced incidence matrix , :


            reduced admittance matrix  


Main property:   and hence  are always nonsingular.  Moreover  has a simple and useful structure

(N + 1) × N C Ds
y := diag (ys

l , l ∈ E)
Y = CDs

yC𝖳

N × N Ĉ Ds
y := diag (ys

l , l ∈ E)
̂Y = ĈDs

yĈ𝖳

Ĉ ̂Y ̂Z := ̂Y−1



Radial networks
When  and ys

jk = ys
kj ym

jk = ym
kj = 0

 : subtree rooted 

at bus 
Ti

i

Draft: EE 135 Notes October 15, 2024 217

Each xi can be a vector and fi a vector-valued function. This means that, starting from the leaf nodes and
working towards the root (bus 0) in the reverse breadth-first search order, xi can be recursively updated
given a vector y. The boundary condition for the recursion is that, if i is a leaf node, then T�

i := /0 and
xi = fi ( /0,y) =: fi(y). This relation starts the backward sweep working from the leaf nodes towards the
root, as illustrated in Figure 5.4(a).

i

0

spatial initialization
xj = fj (y)

Ti

xi = fi (x   ; y)Tºi

(a) Backward sweep

i

y0
spatial initialization

yi = gi (y0 ; x)

yi = gi (y   ; x)Pºi

Pº
i

(b) Forward sweep

Figure 5.4: General backward forward sweep

Similarly x and y are chosen so that, given x, the components yi depends on the other components y�i
only through variables y j in the path from the root to node i. Specifically let P�

i denote the set of buses in
the unique path from the root to bus i, including bus 0 but not including i. Let yP�

i
:=

�
y j, j 2 P�

i
�
. The

variable y satisfies a spatially recursive structure if, given x, yi depends on y�i only through yP�
i
✓ y�i, in

the form:

yi = gi

⇣
yP�

i
; x

⌘
, i 2 N

Each yi can be a vector and gi a vector-valued function. The boundary condition for the recursion is that,
if i is a child of the root bus 0, then P�

i := {0} and y0 at bus 0 is given and hence yi = gi(y0; x). This
relation starts the forward sweep to recursively update yi, working from the root towards the leaf nodes in
the breadth-first search order; see Figure 5.4(b).

In summary let x := (xi, i 2 N) and y := (yi(t), i 2 N). A pair (x,y) is a power flow solution if it satisfies

xi = fi

⇣
xT�

i
; y

⌘
, i 2 N, yi = gi

⇣
yP�

i
; x

⌘
, i 2 N (5.24a)

T�
i = /0 for all leaf nodes i y0 given (5.24b)

Let the update functions be f := ( fi, i = 1, . . . ,N) and g := (gi, i = 1, . . . ,N). A BFS algorithm is a special
Gauss-Seidel algorithm that computes a fixed point of (5.24a) starting from the initial conditions in (5.24b).
It is defined by the update functions ( f ,g) and described in Algorithm 1. If it converges and ( f ,g) are
continuous then the limit point is a fixed point and therefore a power flow solution. An advantage of BFS
is that it does not need to calculate derivatives of power flow equations and tends to converge quickly in
practice.

Draft: EE 135 Notes October 15, 2024 217

Each xi can be a vector and fi a vector-valued function. This means that, starting from the leaf nodes and
working towards the root (bus 0) in the reverse breadth-first search order, xi can be recursively updated
given a vector y. The boundary condition for the recursion is that, if i is a leaf node, then T�

i := /0 and
xi = fi ( /0,y) =: fi(y). This relation starts the backward sweep working from the leaf nodes towards the
root, as illustrated in Figure 5.4(a).

i

0

spatial initialization
xj = fj (y)

Ti

xi = fi (x   ; y)Tºi

(a) Backward sweep

i

y0
spatial initialization

yi = gi (y0 ; x)

yi = gi (y   ; x)Pºi

Pº
i

(b) Forward sweep

Figure 5.4: General backward forward sweep

Similarly x and y are chosen so that, given x, the components yi depends on the other components y�i
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Gauss-Seidel algorithm that computes a fixed point of (5.24a) starting from the initial conditions in (5.24b).
It is defined by the update functions ( f ,g) and described in Algorithm 1. If it converges and ( f ,g) are
continuous then the limit point is a fixed point and therefore a power flow solution. An advantage of BFS
is that it does not need to calculate derivatives of power flow equations and tends to converge quickly in
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 : unique path 

from 0 to 
Ti

i

Theorem 10 

Suppose  is connected,  is complex symmetric  and 
. 


1. Reduced incidence matrix  is nonsingular





2. Reduced admittance matrix  is nonsingular, and 





G Y (ys
jk = ys

kj)
ym

jk = ym
kj = 0

Ĉ

[Ĉ−1]lj
=

−1 l ∈ Pj

1 −l ∈ Pj

0  otherwise

̂Y
̂Z := ̂Y−1 = Ĉ−𝖳Ds

z Ĉ−1

̂Zjk = ∑
l∈Pj∩Pk

zs
l

sum of  on common segment 
of paths from ref bus 0 to  and k

zs
jk := 1/ys

jk
j

This property has been applied for topology identification, voltage control, …



Outline
1. Component models

2. Network model:  relation


3. Network model:  relation

• Complex form

• Polar form 

• Cartesian form

• Types of buses

• Application: topology identification 


4. Computation methods

5. Linear power flow model

IV
sV



General network
Branch currents

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj

Ikj = ys
kj(Vk − Vj) + ym

kj Vk
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where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt admittance of the line at bus j, and ym

k j
is the shunt admittance of the line at bus k; see Figure 5.1. Recall that if ( j,k) represents a transmission
line then (ym

jk,y
m
k j) models the line capacitance, called line charging, and the currents through these shunt

elements model the current supplied to the line capacitance called the charging current. We also write
j ⇠ k instead of ( j,k) 2 E. Each line ( j,k) in the graph G may represent a combination of a transmission
line, a transformer, as well as generator and load impedances, as explained in Chapter 5.1.2. As we will
see the shunt admittances ym

jk and ym
k j are generally different.

(a) Graph representation (b) P equivalent circuit

Figure 5.1: Graph representation of a power network.

In bus injection models we are interested in nodal variables (s j, I j,Vj), j 2 N, where s j and I j are the
complex power and current injections respectively into the network at bus j and Vj is the complex voltage
at bus j. There is an arbitrary reference point with respect to which all voltages are defined. If the common
reference point is taken to be the neutral then voltages are line-to-neutral voltages. If it is taken to be the
ground then voltages are line-to-ground voltages. Currents from buses j flow from the corresponding
terminals to the reference point; see Figure 5.1(b). Bus 0 is the slack bus. Its voltage is fixed and we
assume without loss of generality that V0 = 1\0� per unit (pu), i.e., the voltage drop between bus 0 and the
reference point is 1\0�. A bus j 2 N can have a generator, a load, both or neither and s j is the net power
injection (generation minus load) at bus j. We use s j to denote both the complex number p j + iq j 2 C

and the real pair (p j,q j) 2 R
2 depending on the context. The nodal quantities are related by s j = VjIH

j for
each bus j 2 N where the superscript H denotes complex conjugate. We sometimes also use a⇤ to denote
the complex conjugate of a and the meaning should be clear from the context.

In Chapter 5.1 we derive the linear relation between current injections I := (I j, j 2 N) and voltages
V := (Vj, j 2 N) through a network matrix. In Chapter 5.2 we derive the nonlinear power flow equations
that relate power injections s := (s j, j 2 N) and voltages V := (Vj, j 2 N).

5.1.2 Power system components

A bus admittance matrix, or an admittance matrix, Y relates the current injection at each terminal of
a device to its terminal voltage. As mentioned above the current can be interpreted as flowing from the
terminal to the common reference point and the terminal voltage is with respect to the reference point. The
relation represents the Kirchhoff’s laws and the Ohm’s law. We now show that common power system
components can be represented by P circuit models described by admittance matrices.

if  ys
jk = ys

kj



Power flow models
Complex form

Using  :
Sjk := VjIH
jk

Sjk = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Skj = (ys
kj)

H

( |Vk |2 − VkVH
j ) + (ym

kj)
H

|Vk |2



Power flow models
Complex form

Bus injection model  :





In terms of admittance matrix 


sj = ∑k:j∼k Sjk

sj = ∑
k:j∼k

(ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jj )

H
|Vj |

2

Y

sj =
N+1

∑
k=1

YH
jk Vj VH

k

 complex equations in  complex variables N + 1 2(N + 1) (sj, Vj, j ∈ N)



Power flow models
Polar form

Write   and  with  :
sj =: pj + iqj Vj =: |Vj | eiθj ys
jk =: gs

jk + ibs
jk, ym

jk =: gm
jk + ibm

jk

pj = ∑
k:k∼j

(gs
jk + gm

jk) |Vj |
2 − ∑

k:k∼j

|Vj | |Vk |(gs
jk cos θjk + bs

jk sin θjk)
qj = − ∑

k:k∼j
(bs

jk + bm
jk) |Vj |

2 − ∑
k:k∼j

|Vj | |Vk |(gs
jk sin θjk − bs

jk cos θjk)

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, |Vj | , θj, j ∈ N)



Power flow models
Cartesian form

Write   and  with  and  :
sj =: pj + iqj Vj =: cj + idj cj = |Vj |cos θj dj = |Vj |sin θj

pj = ∑
k:k∼j

(gs
jk + gm

jk) (c2
j + d2

j ) − ∑
k:k∼j

(gs
jk(cjck + djdk) + bs

jk(djck − cjdk))
qj = − ∑

k:k∼j
(bs

jk + bm
jk) (c2

j + d2
j ) − ∑

k:k∼j
(gs

jk(djck − cjdk) − bs
jk(cjck + djdk))

 real equations in  real variables 2(N + 1) 4(N + 1) (pj, qj, cj, dj, j ∈ N)



Power flow models
Types of buses

Power flow equations  specify  real equations in  real variables

• Power flow (load flow) problem: given  values, determine remaining vars 

2(N + 1) 4(N + 1)
2(N + 1)

Types of buses


•  buses :   specified, determine , e.g. generator


•  buses :   specified, determine , e.g. load


• Slack bus  :   pu specified, determine 

PV (pj, |Vj |) (qj, θj)
PQ (pj, qj) Vj

0 V0 := 1∠0∘ (p0, q0)



Outline
1. Component models

2. Network model:  relation


3. Network model:  relation

4. Computation methods


• Gauss-Seidel algorithm

• Newton-Raphson algorithm

• Fast decoupled algorithm


5. Linear power flow model

IV
sV



Computation methods
Gauss-Seidel algorithm

Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Power flow equations





• First compute  

• Then compute 

s0 = ∑
k

YH
0k V0 VH

k

sj = ∑
k

YH
jk Vj VH

k , j ∈ N

(V1, …, VN)
s0



Gauss-Seidel algorithm

Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Rearrange 2nd equation: 


sH
j

VH
j

= YjjVj +
N

∑
k = 0
k ≠ j

YjkVk, j ∈ N

Vj =
1
Yjj

sH
j

VH
j

−
N

∑
k = 0
k ≠ j

YjkVk =: fj (V1, …, VN), j ∈ N

Computation methods



Gauss-Seidel algorithm

Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

2nd power flow equation: 





where 

V = f(V)

V := (Vj, j ∈ N), f := (fj, j ∈ N)
Gauss algorithm is the fixed point iteration


V(t + 1) = f(V(t))

Computation methods



Gauss-Seidel algorithm

Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Gauss algorithm:


V1(t + 1) = f1 (V1(t), …, VN(t))
V2(t + 1) = f2 (V1(t), …, VN(t))

⋮
VN(t + 1) = fN (V1(t), …, VN−1(t), VN(t))

Computation methods



Gauss-Seidel algorithm

Case 1: given  and , determine  and V0 (s1, …, sN) s0 (V1, …, VN)

Gauss-Seidel algorithm:


V1(t + 1) = f1 (V1(t), …, VN(t))
V2(t + 1) = f2 (V1(t + 1), …, VN(t))

⋮
VN(t + 1) = fN (V1(t + 1), …, VN−1(t + 1), VN(t))

Computation methods



Gauss-Seidel algorithm

Case 2: given  and , determine  and (V0, …, Vm) (sm+1, …, sN) (sj, j ≤ m) (Vj, j > m)

Power flow equations





• First compute  from 2nd set of equations using the same algorithm


• Then compute  from 1st set of equations

sj = ∑
k

YH
jk Vj VH

k , j ≤ m

sj = ∑
k

YH
jk Vj VH

k , j > m

(Vm+1, …, VN)
(sj, j ≤ m)

Computation methods



Gauss-Seidel algorithm

If algorithm converges, the limit is a fixed point and a power flow solution


Algorithm converges linearly to unique fixed point if  is a contraction mapping 

• Contraction is sufficient, but not necessary, for convergence


In general, algorithm may or may not convergence depending on initial point

f
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x

f (x) = x2

y = x

x0x1x2x* = 0

(a) Convergence

x0
x

f (x) = x2

y = x

x1 x2

(b) Divergence

Figure 5.10: The fixed point iteration x(t + 1) = f (x(t)) := x2(t) is not a contraction mapping and its
convergence depends on the initial point x(0) = x0.

5.4.2 Newton-Raphson algorithm

The Newton-Raphson algorithm is popular for iteratively solving the equation

f (x) = 0

where x 2 R
n and f is a vector-valued function f : R

n ! R
n. The iteration is motivated by the Taylor

series expansion of f . Suppose we have computed x(t) and wish to determine the next iterate x(t +1) =:
x(t)+Dx(t). The Taylor series of f around x(t) is

f (x(t)+Dx(t)) = f (x(t)) + J(x(t))Dx(t) + higher-order terms

where J(x(t)) is the Jacobian of f evaluated at x(t):

J(x) :=
∂ f
∂x

(x) =

2

664

∂ f1
∂x1

(x) · · · ∂ f1
∂xn

(x)
...

...
...

∂ fn
∂x1

(x) · · · ∂ fn
∂xn

(x)

3

775

If we ignore the higher-order terms in the Taylor expansion and set f (x(t +1)) = 0 then we have

J(x(t))Dx(t) = � f (x(t)) (5.24)

This is illustrated in Figure 5.11. If J(x(t)) is invertible then Dx(t) = �J�1(x(t)) f (x(t)), yielding the
Newton-Raphson iteration:

x(t +1) = x(t) � J�1(x(t)) f (x(t)) (5.25)

In practice we usually do not evaluate the inverse J�1(x(t)) except for very small systems. Instead we
solve the linear equation (5.24) for Dx(t). The next iterate is then x(t +1) = x(t)+Dx(t).

Computation methods



Computational methods
Newton-Raphson algorithm

To solve                           


where  ,  e.g.  for unconstrained optimization

f(x) = 0
f : ℝn → ℝn ∇F(x) = 0

Idea: 

• Linear approximation





• Choose  such that  , i.e., solve





• Next iterate  

̂f(x(t + 1)) = f(x(t)) + J(x(t)) Δx(t)

Δx(t) ̂f(x(t + 1)) = 0

J(x(t))Δx(t) = − f(x(t))

x(t + 1) := x(t) + Δx(t)
J(x) :=

∂f
∂x

(x) =

∂f1
∂x1

(x) ⋯ ∂f1
∂xn

(x)

⋮ ⋮ ⋮
∂fn
∂x1

(x) ⋯
∂fn
∂xn

(x)



Computational methods
Newton-Raphson algorithm
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!" # = " # % + '(# % )(# − # % )

!

"(#)

#(%)#(% + 1)#(% + 2)

Figure 5.11: Newton-Raphson algorithm: The next iterate x(t + 1) is obtained by approximating f by its
linear approximation at x(t) and setting the linear approximation f̂ (x) = 0.

x(t + 1) := x(t) − (J(x(t)))−1 f(x(t))

To solve                           


where  ,  e.g.  for unconstrained optimization

f(x) = 0
f : ℝn → ℝn ∇F(x) = 0



Computational methods
Newton-Raphson algorithm

Kantorovic Theorem 


Consider    where  is an open convex set.  Suppose


•  is differentiable and  is Lipschitz on , i.e., 


•  and  is invertible

f : D → ℝn D ⊆ ℝn

f ∇f D ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥
x0 ∈ D ∇f(x0)

Let   and 
β ≥ (∇f(x0))−1 , η ≥ (∇f(x0))−1 f(x0)

h := βηL, r :=
1 − 1 − 2h

h η



Computational methods
Newton-Raphson algorithm

If the closed ball  and , then Newton iteration 





converges to a solution  of 

Br(x0) ⊆ D h ≤ 1/2
x(t + 1) := x(t) − (∇f(x(t)))−1 f(x(t))

x* ∈ Br (x0) f(x) = 0

Kantorovic Theorem 


Consider    where  is an open convex set.  Suppose


•  is differentiable and  is Lipschitz on , i.e., 


•  and  is invertible

f : D → ℝn D ⊆ ℝn

f ∇f D ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥
x0 ∈ D ∇f(x0)

Newton-Raphson converges if it starts close to a solution, often quadratically



Computational methods
Newton-Raphson algorithm

Apply to power flow equations in polar form:                         


 


where


pj(θ, |V | ) = pj, j ∈ N
qj(θ, |V | ) = qj, j ∈ Npq

pj(θ, |V | ) := (
N

∑
k=0

gjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk cos θjk + bjk sin θjk)

qj(θ, |V | ) := − (
N

∑
k=0

bjk) |Vj |
2 − ∑

k≠j

|Vj | |Vk |(gjk sin θjk − bjk cos θjk)



Computational methods
Newton-Raphson algorithm

Define 


 


with


f : ℝN+Nqp → ℝN+Nqp

f(θ, |V | ) := [Δp(θ, |V | )
Δq(θ, |V | )] := [p(θ, |V | ) − p

q(θ, |V | ) − q]

J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |



Computational methods
Newton-Raphson algorithm

1. Initialization: choose  


2. Iterate until stopping criteria


(a) Determine  from 





(b) Set


(θ(0), |V(0) |)

(Δθ(t), Δ |V | (t))
J (θ(t), |V | (t)) [ Δθ(t)

Δ |V | (t)] = − [Δp(θ(t), |V | (t))
Δq(θ(t), |V | (t))]

[ θ(t + 1)
|V | (t + 1)] := [ θ(t)

|V | (t)] + [ Δθ(t)
Δ |V | (t)]



Computational methods
Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal





i.e., decoupling between  and , and between  and 


This simplifies the computation of 


J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |

≈

∂p
∂θ 0

0 ∂q
∂ |V |

p |V | q θ
Δx(t)

∂p
∂θ

(θ(t), |V | (t)) Δθ(t) = − Δp(θ(t), |V | (t))

∂q
∂ |V |

(θ(t), |V | (t)) Δ |V | (t) = − Δq(θ(t), |V | (t))



Computational methods
Fast Decoupled algorithm

Key observation: the Jacobian is roughly block-diagonal





i.e., decoupling between  and , and between  and 


This simplifies the computation of 


J(θ, |V | ) :=

∂p
∂θ

∂p
∂ |V |

∂q
∂θ

∂q
∂ |V |

≈

∂p
∂θ 0

0 ∂q
∂ |V |

p |V | q θ

(Δθ(t), Δ |V | (t))
∂p
∂θ

(θ(t), |V | (t)) Δθ(t) = − Δp(θ(t), |V | (t))

∂q
∂ |V |

(θ(t), |V | (t)) Δ |V | (t) = − Δq(θ(t), |V | (t))



Computational methods
Fast Decoupled algorithm

Decoupling assumption:  , 





gjk = 0 sin θjk = 0

∂pj

∂ |Vk |
=

− |Vj |(gjk cos θjk + bjk sin θjk), j ≠ k

pj(θ, |V | )
|Vj |

+ (∑
i

gji) |Vj | , j = k

gjk = 0, sin θjk = 0, pj(θ, |V | ) = 0 ⇒ ∂p
∂ |V |

= 0



Computational methods
Fast Decoupled algorithm

Decoupling assumption:  , 





gjk = 0 sin θjk = 0

∂qj

∂θk
=

|Vj | |Vk |(gjk cos θjk + bjk sin θjk), j ≠ k

pj(θ, |V | ) − (∑
i

gji) |Vj |
2 , j = k

gjk = 0, sin θjk = 0, pj(θ, |V | ) = 0 ⇒ ∂q
∂θ = 0



Outline
1. Component models

2. Network model:  relation


3. Network model:  relation

4. Computation methods

5. Linear power flow model


• Laplacian matrix 

• DC power flow model

IV
sV

L



Laplacian matrix L
Given a graph  with  node-by-line incidence matrix  and line susceptances 

, the Laplacian matrix is




Assumptions:


•  is real symmetric

• All row and column sums are zero


•  for all 


Lemma 
For all ,  


Proof:   

G := (V, E) n × m C
B := diag (bl, l ∈ E)

L := CBC𝖳

L

bl > 0 l ∈ E

x ∈ ℝn x𝖳Lx = ∑
( j,k)∈E

bjk(xj − xk)2 ≥ 0

x𝖳Lx = ∑
j

∑
k

Ljkxjxk = = ∑
(i,j)∈E

bij (x2
i − 2xixj + x2

j ) = ∑
(i,j)∈E

bij (xi − xj)2



Laplacian matrix L
Theorem

Suppose  contains  connected components.

1.  is positive semidefinite

2. rank  with null 

3. Suppose .  Then


• rank  with null 


• Pseudo-inverse of  is  


• Both  and  are symmetric and have zero row (and column) sums


• 


• For  with ,  

G K ≥ 1
L

(L) = N − K (L) = {x : xj = xk, ∀j, k ∈ each connected component}
K = 1

(L) = n − 1 (L) = span(1)

L L† = (L +
1
n

11𝖳)
−1

−
1
n

11𝖳 =
n

∑
j=2

1
λj

vjv𝖳
j

L L†

LL† = L†L = 𝕀n −
1
n

11𝖳

x 1𝖳x = 0 LL†x = L†Lx = x



Laplacian matrix L
Theorem


4. Suppose .  Then

• Any  principal submatrix  of  is nonsingular for 

• Both  and  are symmetric

K = 1
k × k M L k ≤ n − 1
M M−1

in contrast to complex symmetric admittance matrix   whose submatrix  may be singularY = CDs
yC𝖳 Y22



Laplacian matrix L
Summary: comparison
Invertibility of admittance matrices:


1. Complex symmetric 

• A strict principal submatrix  is not always nonsingular

•  is nonsingular if Re  or if Im 


2. Complex symmetric  for connected radial network

•  corresponding to removing any leaf node is always nonsingular

• Any strict principal submatrix  corresponding to a (connected) subtree is always 

nonsingular (by induction)


3. Real symmetric Laplacian matrix  with zero row sums and 

• Any strict principal submatrix  is nonsingular

Y
Y22

Y22 (Y) ≻ 0 (Y) ≺ 0

Y
̂Y

Y22

L B ≻ 0
M



DC power flow model
Consider power network modeled by a connected graph  with  buses and M 
lines 


Assumptions 

• Lossless: series conductances ,  shunt admittances ;  


• Small angle differences: 


• Voltage magnitudes are fixed and given

• Ignore reactive power 


These assumptions are reasonable for transmission networks (not for distribution networks)


Substituting directly into polar form power flow equation yields


G := (N, E) N + 1

g̃s
l = 0 ỹm

jk = ỹm
kj = 0 b̃s

jk < 0
sin(θj − θk) ≈ θj − θk

|Vj |

pj = ∑
k:j∼k

(−b̃s
jk |Vj | |Vk |)(θj − θk) =: ∑

k:j∼k

bjk(θj − θk), bjk > 0

(When ,  DC power flow is also linearization of polar form power flow equation around flat voltage profile)|Vj | = μ, ∀j



DC power flow model
In vector form
Let

•  :  incidence matrix

• 


•  : line flow ( -vector)


DC power flow model:





Eliminate 


Given  with  (power balance), solution:     

C (N + 1) × M
B := diag (bl, l ∈ E) ≻ 0
P M

p = CP, P = BC𝖳θ

P ⟹ p = CBC𝖳θ =: Lθ

p 1𝖳p = 0 P = BC𝖳L†p, θ = L†p + a1

These are equivalent specification of DC power flow model



DC power flow model
In vector form
Remarks 
•  : generation = demand, due to lossless assumption

•  : arbitrary constant  can be fixed by choosing a reference node, e.g., 

•  : line flow ( -vector)

• Most of DC power flow properties (as well as DC OPF, PTDF, LODF, … ) originates from 

properties of Laplacian matrix 


1𝖳p = 1𝖳CP = 0
θ = L†p + a1 a θ0 := 0
P M

L



DC power flow model
In terms of L̂−1

Remarks 
Let 

• ,  : the reduced incidence matrix and reduced Laplacian matrix respectively

•  : power injections and voltage angles at non-reference buses


Then  exists


Given arbitrary  at non-reference buses, power flow solution is often expressed in terms of 
 in the literature:





This solution is uqniue and assumes  at bus 0. 


This model is a special case of the solution in terms of the pseudo-inverse  with  s.t. 
, and therefore less flexible because  depends on the choice of reference bus

Ĉ L̂
( ̂p, ̂θ)

L̂−1

̂p
L̂−1

P = BĈ𝖳L̂−1 ̂p, ̂θ = L̂−1 ̂p

θ0 := 0

L† a
θ0 := 0 L̂

c.f.    P = BC𝖳L†p, θ = L†p + a1



DC power flow model
In terms of L̂−1

Lemma 



i.e. line flows  are independent of choice of reference bus or 


This result can be generalized to the case where price reference (slack) bus  ( ) and 
angle reference bus 0  are different

• Optimal dispatch and locational marginal prices are independent of the choice of (angle or 

price) reference buss

• It is easier however to use  instead of 

P = BĈ𝖳L̂−1 ̂p = BC𝖳L†p, ̂θ = L̂−1 ̂p

P L̂

r pr = − 1𝖳p−r
(θ0 := 0)

L† L̂



Summary
1. Component models


• Single-phase devices, line, transformer


2. Network models

•  relation (admittance matrix ),  relation (power flow equations)

• Radial network: inverse of reduced admittance matrix has simple structure


3. Computation methods

• Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm


4. Linear power flow models

• Laplacian matrix , DC power flow model

IV Y sV

L


