Power System Analysis

Chapter 4 Bus injection models
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Outline

1. Component models
« Sources, impedance
* Transmission or distribution line
e Transformer

Network model: IV relation

Network model: sV relation
Computation methods

o & 0 N

Linear power flow model



Overview

nodal
device models =¥ current/power - network models
balance

f

line/transformer
models

single-phase or 3-phase
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Single-phase devices

1. Single-terminal device j

. Voltage source <E], zj>, current source (JJ, yj>, power source (0]-, zj), impedance 3

. Terminal variables (Vj, L, Sj)

. External model: relation between <V],I]> or (VJ, Sj>

2. Two-terminal device (j, k)
. Line (yﬁ(, y]?};‘, y,?}) transformer <Kjk(n), )7;.,{, )77;{)

. Terminal variables <V], Iy, S;k) and <Vk, L, Skj>

. External model: relation between <V], Vi I ij) or (VJ, Vi S Skj>
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Single-phase devices

1. Voltage source <E], Z;

* Constant internal voltage EJ with series impedance £

* Models for Thevenin equivalent circuit of a balanced
synchronous machine, secondary side of transformer, grid-
forming inverter

o External model: VJ = EJ — zjlj

H
. External model: s; = VJIJH = ylv (E-—V-)
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Single-phase devices

2. Current source <J], yj>

« Constant internal current JJ with shunt admittance Y

* Models for Norton equivalent circuit of a synchronous
generator, load (e.g. electric vehicle charger), grid-following
inverter

- External model: [; = J; — y;V;

H
. — H _
. External model: s; = VJI] =V <J-—ij->
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Single-phase devices

3. Power source (aj, zj)

Constant internal power of in series with impedance g

Models for load, generator, secondary side of transformer

D . H
External model: 0; = (VJ ZJ-IJ-) I]

L H _ H
External model: s; = VJIJ = Gj+zjljlj
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Single-phase devices

4. Impedance Z

* Constant impedance 7
* Models for load

« External model: VJ = zjlj

) — H _
. External model: §; = VJI] =
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Single-phase line (y:. 7. ;!)

VI relation: 11 circuit and admittance matrix Yjjne

Lixs Sj Sij» Ly
<

+o0—» yjk

O +

V; Vik Vi Vi

reference point

~
b
I

YalVi=Vo + vV,
Li= yiVie=V) + yi Vi
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Ijk . yjsk + y]nkq _yJLS}C

Yine

admittance matrix Y)jne :
e complex symmetric
e [Y ]jk = — series admittance



Single-phase line (y:. 7. ;!)

VI relation: 11 circuit and admittance matrix Yjjne

Lixs Sj Sij» Ly
<

+0 > yjk

O +

V; Vik Vi Vi

reference point

~
b
I

YalVi=Vo + vV,
Li= yiVie=V) + yi Vi
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Their sum is total line current loss

L+ 1Ly = Yy VitygVe # 0



Single-phase line (yjk, Vi yk])

Vs relation

+0 > yjk

<

O +

Vi

reference point

95!
=
Il
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H H
s 2 m 2
vt = (i) (1vP=vvE) + () 1yl

H H
sg = Vit = () (IGP-v) + (o) 1P

quadratic equations



Single-phase line (3, v,y

Vs relation

Lixs Sj Sij» Ly
<

+ O > y]k

O +

Vi Vit Vi Vi

reference point

Line loss
S H 2 m H 2 m H 2
Scrsy= () [vi-v| + () v+ (1) 1wl

series loss shunt loss
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Single-phase transformer <K <njk) Ve y};’;)
Complex K <njk>

Ijk, ‘S'/k = ; ....... .. ..... ; ....... 5 Sk/’lk/
+o0—» Yik : < O +
4 Vi Ve
-0 : - 0 —
reference 1 K(n].k)
POINE  %oiuiveeeeeeeennnienes
s S . .
= > 2 « Has no equivalent II circuit
Iy iRy (49 ) K P | | Ve
» Use admittance or transmission matrix
Ytransformer for analysis
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Single-phase transformer <K <njk) Ve y};’;)
Complex K (njk>

....................... V] I/‘kajk abStraCt line mOdel Sk/>1k/ Vk
I_/‘k:S/‘k poe : . . : Sk/‘ilk/‘ I,s; Jj)r— —~—(k Si> I
+o—> Vjk 5 : +—o+ ‘ (Yi> Vi) (Vg Vi)
4 Vi Ve
— - - /\
’ rege(fieliltce 1 : K(”;A) ° _/
>
s s W= ey R (1 T )y
I Vik — V! K(n) v, Ky Kix(n) )~
| = 5 : 7 1= Ky(n) 1
Ly — i/ Ky (n) (yjsk + y}}?)/ | Ky(m) |7 | [ Vi Vo= =, Y= T+ i
Kj(n) | Kix(n) | | Kjy(n) |

Yiransformer
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Single-phase transformer<1< (njk),y;k, yﬁ)
Real K(njk> = ny,

....................... I.,S S..1
o L vl vy 7 93 s
! . g 1 i Z
) reference 1 : K(ny) i -0 S
point e eeeeeeieeneieeeaaaan reference point
S . ~S . 4,S
/ s (Vi 4 v ik = G Yie = Yy
L = . eor ~
jk Yik ( J ik k) m ._ AR ~m s ~m
! yjk = (1 a]k)yjk Yik o Ykj
L, = yl'a,V,+n,(—1)
Jk k ik ¥ k jk kj m ._ _ B R 2 ~m
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Outline

2. Network model: 1V relation
 Example and network model

« Admittance matrix Y and properties

« Kron reduction Y/Y,, and properties
* Radial network

3. Network model: sV relation

4. Computation methods
5. Linear power flow model



Example

() 3¢ System
3 E transmission line
EENETAOT transformer « Generator: current source (Il, )’1>

load ~s ~m
« Transformer (n,y Y )

« Transmission line with series admittance y

* Load: current source (12, yz)

Derive
 Derive network model (admittance matrix Y)

Derive Y in 2 steps



Example

Step 1: transformer + line

Nodal current balance (KCL):

I = I3

L= 5L+ =0
relate branch currents with [L, [y —y] Vv, L, = I
nodal voltages Ly, -y Y1V,



Example

Step 1: transformer + line

Eliminate branch currents:

I y 0 —ay’ _ Vi
I3 —ay* -y y+a* (¥+3")| | Vs

Y,

Y| : complex symmetric
» Hence: admittance matrix with I circuit
 Unequal shunt elements (even if y"* = 0)



Example

Step 1: transformer + line

Eliminate branch currents:

I, ¥ 0 —aj’
12 — O y _y
L —ay* -y y+a* (¥ +5")

Y,

13:0
11:113 ; 131 132 123:12
+o0—> Vi3 “— »> y +«—oO+
Vi Vi Y31 Vs v,
%—J ¥ﬁﬁ
transformer line
S — =8
Vi3 .= ay
m — =8
Y3 = (I —a)y
m o .__ ~S 2=m
y31 = ala— 1Dy +ay



Example

Step 2: overall system

~>—3§
¢ 3 E transmission line
enerator
8 transformer

load

[1<T> Y1 Y2 (T 1

generator load

generator/load

admittances

I ) 0 —ay v,

12 = O y + -y V2

0 —ay’ -y y+a*(F+3")| | V3
Vi ; Vs £

Vi3 y
L1 [»n] 4 » @b
- o~ N ~ _
generator transformer line load



Example

Step 2: overall system

8 ————

generator transformer transmission line load
oa

e Qverall network model: ideal current sources
connected by network

e Network: admittance matrix Y

e Y includes admittances of non-ideal current
sources

generator/load
admittances

—ay v,
L| = R -y v,
0 —ay’ -y y+a*(F+3")| | V3
v, . 2 v,
Vi3 Yy
L1 |[» v v » @b

~

generator

transformer



Example

Step 2: overall system

8 ————

generator transformer transmission line load
oa

Kron reduction (see below)

« Internal bus has zero injection I; = 0

« Can eliminate (V;, I3)

- External behavior: relation between (1, 1,) and

(Vlv V2)

generator/load
admittances

I P 0 —ay v,
12 = O y + -y V2
0 —ay’ -y y+a (¥+7") | | V3
2 g 2 v,
Vi3 y
L [»] Dn] [ HROL
- . : ,

generator

transformer



Line model

1. Network G := (N, E)
« N:={0}UN :={0}U/{l,...,N} : buses/nodes/terminals
« E C N X N : lines/branches/links/edges

2. Each line (J, k) is parameterized by (y;{, yﬁj) and (ygj, y}?)
* (Vi Yjx) : series and shunt admittances from j to k
* (Vij» Vi) © series and shunt admittances from & to j
* Models transmission or distribution lines, single-phase transformers

%
L L, Si Sii> Ly

L,s; J

Ve
k Sis Iy

—~
/



Line model

Sk Ly

4
. ’ j
IJ’S/ J > s m s m
(Vies Vi )s(Vii» Vi)

Sending-end currents

L = V=V + ynv,

Iy,

If y]t;c = y;;. : same relation but equivalent to I1 circuit:

YViilVi = V) + yii Vi

Ijkas}k - Skj)[kj

N
Vik ——<— O+

reference point



Network model

Nodal current balance



Network model

Nodal current balance

l; = lek = Zyﬁc_i'yj? Vi - ny;cvk

kej~k kej~k I kej~k

total shunt admittance: y}}1 = Zk,ijyﬁ;’



Network model

Admittance matrix Y

D i =

kej~k

In vector form:

I =

Y'V where Y =

A\

Zyji T yj? Vi =

kij~k

-

Jk’
Z yjl + y]] ’
[;j~I

0

u

Z yj;cvk

kej~k

j~k G#B)
j=k

otherwise



Network model

Admittance matrix Y

Y can be written down by inspection of network graph
» Off-diagonal entry: — series admittance

» Diagonal entry: Zseries admittances + total shunt admittance

In vector form:

-

¥ j~k G#R
I = YV where ¥ = <Zy]z+y]], Jj=k
lj~l1
0 otherwise




Network model

Admittance matrix Y

A matrix Y has a II circuit representation

. ifitis complex symmetric <y yk])

In vector form:

-

Jj~k (J#Fk)

Jk’
Z yjl + y]] ’ J=k
lj~l1

I = YV where ij=

A\

0 otherwise

"



Outline

2. Network model: VI relation

« Admittance matrix Y and properties

« Kron reduction Y/Y,, and properties
* Radial network

3. Network model: Vs relation

4. Computation methods
5. Linear power flow model



Admittance matrix Y

Example
Il
_11_ Yi2 + Y13 + V11 —Vi2 —V13 _Vl_
L| = —Y1> Yia + Y23+ V) —¥23 v,
1 BIE —¥%3 yis+yn+ys| | Vs

total shunt admittance: yJT = Zk,ijy}}g



Admittance matrix Y

In terms of incidence matrix C

bus-by-line incidence matrix

(1 if | = j — k for some bus k
C; = 4-1 if | =i — jfor some bus i
0 otherwise

example:




Admittance matrix Y

In terms of incidence matrix C

bus-by-line incidence matrix
(

1 if | = j — k for some bus k
C; = 4-1 if | =i — j for some bus i
0 otherwise

_ T m
Y = CD:CT + D!

where Dy := diag (yls,l e E) Dy := diag (y;}",j S N)

Y is a complex Laplacian matrix when Y”* = 0



Properties of Y

1. Theinverse Z := Y‘l, if exists, is called a bus impedance matrix or an impedance

matrix
» Useful for fault analysis
* Solvingl =YVforV
« Advantages of Y: Y can be constructed by inspection of one-line diagram and inherits
sparsity structure of G. Z can/does not.

2. Next: study existence of Z
 Derive (Schur complement) expressions for Z, when Y is nonsingular

« 4 sufficient conditions for Y to be nonsingular based on the expressions for Z



Inverse of Y

If exists

letY :=G+iB, Z:=R+iX

Y nonsingular <= 3J(R,X)st. YZ=Z7ZY =1

& YZ = (GR-BX) + i(GX+BR) =

=[5 26 -1

Suppose G is nonsingular. Then Y nonsingular <= Schur complement M/G := G + BG~'B nonsingular

M/G)™! (M/G)~'BG™!

R —
—-1 -1 -1 _ -1 _1 _1 and hence [X] =
G 'B(M/G)™" G™' -G 'B(M/G)"'BG

M/G)™!
—G'B(M/IG)!

Then M~! = [



Invertibility of Y

Theorem 1

Suppose Y is complex symmetric ()’j;c = y,fj).

If Re(Y) > 0, then Y~! exists, is symmetric, and Re (Y‘l) >0

Proof
Let Y =G + iBwith G > 0. Then M/G := G + BG™'B > 0 because G,G™! > 0and B = B".

Therefore both G and M/G are nonsingular, which implies that Y is nonsingular (from previous slide).

G~ 'BM/IG)!

Finally, to prove Z := Y-lis symmetric: substitute Z'Y"'=Z"Y and Y'ZT = YZ" into (transpose of)
7Y =YZ =l to get:

Z'Y=Z2"Y"=Y"ZT=YZ"=1 ie, ZT=Yl=Z

M/G)™!
Moreover [ﬂ = [ ( ) ] implies Re( ) (M/G)~! > 0 since M/G > 0.



Invertibility of Y

A S m __. m m __. m M
Let Yy = ]k + lb]k, Vi = Jk + lb]k, Vi = 8y + lbk].
Conditions

1. gﬁ{, gﬁ:, g,?]? > 0 for all lines (j, k) € E, i.e., nonnegative conductances

2. Z ngl’: # 0 for all buses j € N, i.e., there is a shunt conductance incident on every bus
k:k~j

3. gﬁ{ # O for all lines (j, k) € E, and A(j, k') € E s.t. g]?}c, # 0, i.e., all series conductances are nonzero and
there is at least one nonzero shunt conductance

Theorem 2

Suppose G is connected and Y is complex symmetric (yji( = y;;.). If conditions 1 and either 2 or 3 are satisfied, then

1. Re(Y) >0
2. Y~ ! exists, is symmetric, and Re (Y_l) >0



Invertibility of Y

Theorem 2

Suppose G is connected and Y is complex symmetric (yjsk = y]fj). If conditions 1 and either 2 or 3 are satisfied, then

1. Re(Y) >0
2. Y !exists, is symmetric, and Re (Y‘l) >0

Proof

For any nonzero p € [RNH, these conditions imply

piGp =Y, XrnGx = 2| X -rngi + 5 X &+ e
ik

J o\ kj~k isj~i

= Z <pj2_2pjpk+pk2> 8 + Z_pjz Zgj’?

(j.k)EE JjEN  ij~i

Y, (n-n) s+ Xt Tap > 0

(j,k)EE jEN ijj~i



Inverse of Y

If exists
letY:=G+iB, Z:=R+iX

| G —B|[R] _ [1] iy B G|[R] _ 0]
Y nonsingular < [B G] [X] = [0] which is the same as: [G —B] [X] = [1
M M

Suppose B is nonsingular. Then Y nonsingular <= Schur complement M/B := — (B + GB~'G) nonsingular

B '+ B 'GMm'/B)"'GB™! —B-lG(M'/B)-1] R —B~'G(M'/B)~!
and hence [ ] =

Then M1 =
—(M'/B)"'GB™! (M'/B)~! (M'/B)~!

This leads to 2 analogous sufficient conditions in terms of Im(Y) and (bﬁ{, b]f;j, b,?]”) with similar proofs.



Invertibility of Y

Theorem 3

Suppose Y is complex symmetric ()’j;c = y,fj).

If Im(Y) < 0, then Y~! exists, is symmetric, and Im (Y_1> >0



Invertibility of Y

S S m __. m m __. m 1.m
Let Yy = &y + iby, yi =t gy + by, yi =i g + iy
Conditions
bjsk, b]’]’f, bm O for all lines (j, k) € E, i.e., nonpositive susceptances

2. Z bjfl’: # 0 forall buses j € N, i.e., there is a shunt susceptances incident on every bus
k:k~j

3. bs # O for all lines (j, k) € E,and 3(j, k") € E s.t. b}, 1t # 0, i.e., all series susceptances are nonzero and
there is at least one nonzero shunt susceptance

Theorem 4

Suppose G is connected and Y is complex symmetric (yji( = y;;.). If conditions 1 and either 2 or 3 are satisfied, then

1. Im(Y) <0
2. Y~ ! exists, is symmetric, and Im (Y_l) >0



Invertibility of Y

Sufficiency only

These conditions on are sufficient only

. Conditions <g]:§<, gﬁj, g,?) in Theorem 2 are usually satisfied by transmission/distribution lines

... but not by transformers

Example:
Example 1 with node 3 at the primary side of the ideal transformer has an admittance matrix
70 -7
Y =1|0 y —ny

=5 —ny F+3"+ny
Suppose g°,2° > 0, b°, b*<0, 0" >0. Then g5 = (1 —n)g’ and g3, := n(n — 1)g’ have opposite signs (n # 1)

Hence Y does not satisfy conditions in Theorem 2. But Y is nonsingular if and only if l;m > 0



Outline

2. Network model: VI relation

« Kron reduction Y/Y,, and properties
* Radial network

3. Network model: Vs relation

4. Computation methods
5. Linear power flow model



Example

Step 2: overall system

8 ————

generator transformer transmission line load
oa

Kron reduction (see below)

« Internal bus has zero injection I; = 0

« Can eliminate (V;, I3)

- External behavior: relation between (1, 1,) and

(Vlv V2)

generator/load
admittances

I P 0 —ay v,
12 = O y + -y V2
0 —ay’ -y y+a (¥+7") | | V3
2 g 2 v,
Vi3 y
L [»] Dn] [ HROL
- . : ,

generator

transformer



Kron reduction

Nyeg € N : buses of interest, e.g., terminal buses

Want to relate current injections and voltages at buses in N,gg

[11] _ [Yn le] [VII
12 Y21 Y22 V2

Y

A

N red
N \N red

A

Eliminate V, = — Y'Y,V + Y5,'L,
giving (Y11 — Y5V V= 1) — Y,¥55

Schur complement



Kron reduction

If internal injections I, = 0 :
YIYy = (Y =YY Vo) Vi = [

Schur complement
* Describes effective connectivity and line admittances of reduced network

Example:

2 3

(a) Original network (b) Kron reduced network



Existence of Kron reduction

Admittance matrix Y = CY’C where Y’ := diag (yfk>
When Yis real, it is called a real Laplacian matrix
e« (N+ 1) X (N + 1) real symmetric matrix
¢ Row sum = column sum =0
« rank(Y) = N, null(Y) = span(1) when all yﬁ{ are (real &) of the same sign (otherwise
rank(Y) can be < N)

« Any principal submatrix is invertible, i.e., Y/Y,, always exists (we will study later in more
detail for linear models)

When Y is a complex symmetric, but not Hermitian, these properties may not hold
In particular, Y,, may not be invertible and Y/Y,, may not exist



Existence of Kron reduction

Next: Properties of ¥,, and Y/Y,,

. Conditions on <y]§€, y]?}j, y,’jj) for ¥,, to be nonsingular, hence existence of Y/Y,,

. Conditions on <yj§€, yﬁj, y,’;") for Y/Y,, to be nonsingular



Invertibility of Y,
When Yie = i
Recall proof of Theorem 2:

pGo= X (nn) g+ T2 Tap > 0

(J,k)EE JEN  iij~i

T T

term associated with lines term associated with nodes



Invertibility of Y,
When Yie = i

Recall proof of Theorem 2:

p'Gp = Z (pf—pk>2gj§< + 2%22%’? > 0

(J,k)EE JEN  iij~i

Similar structure for strict principal submatrix Y,,:

(@) =3 T gila-al + Talar

i J.keCi:(j.k)EE JEC,

2
Im (aHYzza) = Z Z by ‘aj—ak‘ + Zleaj|2

i J.keCi:(j.k)EE JEC,




Invertibility of Y,

Derivation
For strict principal submatrix:
Yolijl = ) v+ D i+
k&A:(j,k)eE keA:(j,k)eE
Hence
H _ 2 H
arpa= PN 2w+ 2w+ ap[lel’ - 2 vial
JEA kEA:(j,k)EE keA:(j,k)EE keA:(j,k)EE

_ s 2 s H_ s H s 2 s m 2
= X (%‘k'“f' Y ¥ = Y0 % + Vg o | ) + 2 X |l
J-kEA:(jK)EE jeA \ kgA:(j.k)EE

= Z yf;c‘aj_ak‘z * Z Z y]?}c+y];?1 |aj|2

JkEA:(jk)EE jeA \ kgA:(jk)EE



Invertibility of Y,

Derivation

For strict principal submatrix:

alidl = X vt 2w+
k&A:(j,k)EE keA:(j,k)eE

Hence

2
Re(aHY22a> =2 2 g]t‘k‘aj—ak‘ + ZGJIOCJ-I2

i \ jkeC:(jbeE jec,

m(@a) = Y| Y b |g-al + BieP

i J.keCi:(j,k)EE JEC,

Similar conditions to Theorem 2:

2
pior=3 (n-n) g+ Zo La > 0
(J,k)EE jEN  iij~i




Invertibility of Y,,

When Yie = Yy

Let Y5 =t g + ibj, YR =t g+ b,y = gl + b
Conditions

1. Foralllines (j, k) € E, gjsk > 0; forall busesj € N, G =20
2. Forallbusesj € N, G #0

3. Foralllines (j, k) € E, gﬁc # 0; for each connected component C;, 3j; € C; s.t. GJ} £ 0

Theorem 5

Suppose G is connected and Y is complex symmetric (yji( = y;;.). If conditions 1 and either 2 or 3 are satisfied, then

1. Re(Y,,) > 0

2. Y2_21 exists, is symmetric, and Re (Yz_zl) >0



Invertibility of Y,,

When Yie = Yy

Let Y5 =t g + ibj, YR =t g+ b,y = gl + b
Conditions

1. Foralllines (j, k) € E, bjs < 0; forallbusesj € N, B; <0
2. Forallbusesj € N, B; #0
3. Foralllines (j, k) € E, by # 0; for each connected component C;, 3j; € C; st. B; #0

Theorem 6

Suppose G is connected and Y is complex symmetric (yji( = y;;.). If conditions 1 and either 2 or 3 are satisfied, then
1. Im(Y,,) <0

2. Y2_21 exists, is symmetric, and Im (Yz_zl) > 0



Invertibility of Y,

When Yik = i and Ve =Y =0

Corollary 7

Suppose G is connected, Y is complex symmetric (yk qu) and y y,?]? = 0.
f gk > (O forall (j, k) € E, then Y22 exists, is symmetric. Moreover Re(Y,,) > 0 and Re(Y, >0

f bs < Oforall (j, k) € E, then Y -, exists, is symmetric. Moreover Im(Y,,) < 0 and Im(Y,, >0

Theorem 8

Suppose G is connected, Y is complex symmetric (yk ykj) and y]k y,’;? =0. If gk > (0 and bs <0
V(j, k) € E then

1. Re(Yy,) = 0, Im(Ys,) < 0, Re(Ys,) — Im(Ysy) > 0

2. Y2_21 exists and is symmetric



Invertibility of Y/Y,,

When Yie = i

Theorem 9

Suppose Y,, is nonsingular.
1. If Re(Y) > 0, then (Y/Yzz)_l exists and is symmetric. Moreover Re(Y/Y,,) > 0 and Re ((Y/Y22>_1> >0

2. fIm(Y) < 0, then (Y/Y22>_1 exists and is symmetric. Moreover Im(Y/Y,,) < 0 and Im ((Y/Yzz)_l> >0



Outline

2. Network model: VI relation

 Radial network
3. Network model: Vs relation

4. Computation methods
5. Linear power flow model



Radial networks

When Yik = i and Ve =Y =0

(N + 1) X N incidence matrix C, Dy := diag (yls,l S E):
Y= CDySCT admittance matrix
N X N reduced incidence matrix é Dys := diag (yls,l S E):

A

Y = CA’D;CA’T reduced admittance matrix

Main property: C and hence Y are always nonsingular. Moreover Z:=Y'hasa simple and useful structure



Radial networks

When Yik = i and Ve =Y =0

T, : subtree rooted
at bus i

T; : unique path
fromOtoi

Theorem 10

Suppose G is connected, Y is complex symmetric (yjsk = ylij) and
=y =0

1. Reduced incidence matrix C is nonsingular

-1 [ €P;
[6_1] - 1 —l -~ Pj
p
’ 0 otherwise

2. Reduced admittance matrix f/ is nonsingular, and

A [ N
L= Z le sum of z; = l/y].k on common segment
1eP AP, of paths from ref bus 0 to j and k

This property has been applied for topology identification, voltage control, ...



Outline

3. Network model: sV relation
 Complex form
* Polar form
» Cartesian form
* Types of buses
» Application: topology identification

4. Computation methods
5. Linear power flow model



General network

Branch currents

ﬁ; ™
e

(b) IT equivalent circuit if y;){ = y,f/

Sending-end currents

I = y,g(vk V) + y};ﬁ Vk



Power flow models

Complex form

Using S 1= VJIJIZ

H
Se= () (IWP-vv) + (

H 2
) 1Vl

H
sg= (o) (v2=vr) + (s



Power flow models

Complex form

Bus injection model 5; = Zk:ij Sy :

H H
5= 2 (h) (WF=vw) + () 1%F

kij~k

In terms of admittance matrix Y
N+1

_ H s \H
85 = ZY]/C Vi Vi
k=1

N + 1 complex equations in 2(/N + 1) complex variables <Sj, Vi,J€ N)



Power flow models

Polar form

: __. . - 0; o . : . m .
Write s; =: p;+ig; and V; =: |V, €™ with yﬁc =: Jf}(+ lbﬁc, yJ?}'j =: J?}j + lb]?”k".

p; = Z (gﬁ('l'g;;:)l‘/jl Z AMANA ( chosek+bﬁcsin9jk>
kik~j k:k~j

6== 2 (B+ ) IV = 3 111V (ghsing, - bjcosdy)
k:ke~j k:k~j

2(N + 1) real equations in 4(N + 1) real variables (pj, qjs | Vv |,0 b, J € N)



Power flow models

Cartesian form

Write s, =: p;+iq; and V; =: ¢; + id; with¢; = | V;[cos 6, and d; = | V;| sin 6, :

p= X (sirgr) (F+a?) = X (siqoc+dd +bide, — odp

k:k~j k:k~j

o= (B+op) (F+a) = X (gide—cdo - bt +ddy)

k:k~j k:k~j

2(N + 1) real equations in 4(N + 1) real variables <pj, q» ¢ d;, j € N)



Power flow models

Types of buses

Power flow equations specify 2(N + 1) real equations in 4(N + 1) real variables

« Power flow (load flow) problem: given 2(/N + 1) values, determine remaining vars

Types of buses

. PVbuses: <pj, | le ) specified, determine (qj, 9]) e.g. generator
PO buses: (pj, qj) specified, determine VJ e.g. load

« Slack bus 0: V| := 1£0° pu specified, determine (p(), qo)



Outline

4. Computation methods
« Gauss-Seidel algorithm
* Newton-Raphson algorithm

» Fast decoupled algorithm

5. Linear power flow model



Computation methods

Gauss-Seidel algorithm

Case 1: given V,, and (Sl, s SN), determine syand (V, ..., Vy)

Power flow equations

5o = Z Y(I)Lllchvl?
k

— H H .
s = Y YHvvi  jen
k

« First compute (V,..., Vy)

« Then compute s,



Computation methods

Gauss-Seidel algorithm

Case 1: given Vy and (Sl, ..

Rearrange 2nd equation:

S

S
|

.,SN), determine syand (V, ..., Vy)
N
= YV + 2 ViV JEN
k=0
k)
1| s Al
vH PR AA R ALN)
J k=0
k)




Computation methods

Gauss-Seidel algorithm

Case 1: given V,, and (Sl, s SN), determine syand (V, ..., Vy)
2nd power flow equation:

V= V)
where V := (vj,j c N), = <f-,j c N)

Gauss algorithm is the fixed point iteration

Ve +1) = (VD)



Computation methods

Gauss-Seidel algorithm

Case 1: given V,, and (Sl, s SN), determine syand (V, ..., Vy)

Gauss algorithm:
Vit+ 1) = f; (Vi(@), ..., Vpy(®)
Vot + 1) = fo (Vi(@), ..., Vp(®)

Vit + 1) = fy (Vi@), ..., Vy_ (D), V(D)



Computation methods

Gauss-Seidel algorithm

Case 1: given V,, and (Sl, s SN), determine syand (V, ..., Vy)

Gauss-Seidel algorithm:
Vit+ 1) = f; (Vi(@), ..., Vpy(®)
Vot +1) = fo(Vit+1),..., V(@)

Vit + 1) = fiy (Vit+ 1), ..., Vy_ t + 1), V()



Computation methods

Gauss-Seidel algorithm

Case 2: given (VO, ees Vm) and (Sm+1, ees SN), determine (Sj,j < m) and (Vj,j > m)

Power flow equations

s = Y YRV j<m
k

s = Y YRVVE  j>m
k

« First compute (Vm+1, o VN) from 2nd set of equations using the same algorithm

e Then compute (sj,j < m) from 1st set of equations



Computation methods

Gauss-Seidel algorithm

If algorithm converges, the limit is a fixed point and a power flow solution
Algorithm converges linearly to unique fixed point if f is a contraction mapping
« Contraction is sufficient, but not necessary, for convergence

In general, algorithm may or may not convergence depending on initial point

f)=x* fe)=2

x =0 X, Xx X XoX, X,

(a) Convergence (b) Divergence



Computational methods

Newton-Raphson algorithm

To solve fx) =0

where f: R" - R", e.g. VF(x) = 0O for unconstrained optimization

Idea:

* Linear approximation

@+ 1) = fx(t) + J(x(t)) Ax(?)
« Choose Ax(¢) such that f(x(t + 1)) =0, i.e., solve

JX(D)Ax(1) = — f(x(D)
« Nextiterate x(r + 1) = x(¥) + Ax(?)



Computational methods

Newton-Raphson algorithm

To solve fx) =0

where f: R" - R", e.g. VF(x) = 0O for unconstrained optimization

f)

FOO = f(x(@®) +J () (x = x(0)

x(t+ 1) = x() — () Ax(@)

x(t.-‘l-.Z) (t+1) x(t)



Computational methods

Newton-Raphson algorithm
Kantorovic Theorem
Consider f: D — R" where D C R" is an open convex set. Suppose
« fis differentiable and Vfis Lipschitzon D, i.e., [|[Vf(y) — Vf(x)|| < Ll|ly — x||
« Xy € D and Vf(xy) is invertible

and

oz | (VAs) ! o

1 —+/1=2h
h:=pnlL, r:.= p n

Let > H (Vf(xo))‘1




Computational methods

Newton-Raphson algorithm
Kantorovic Theorem
Consider f: D — R" where D C R" is an open convex set. Suppose
« fis differentiable and Vfis Lipschitzon D, i.e., [|[Vf(y) — Vf(x)|| < Ll|ly — x||
« Xy € D and Vf{(x,) is invertible

If the closed ball B,(xy) C D and h < 1/2, then Newton iteration

Xr+1) = x() — (V@) fx)

converges to a solution x* € B, (xo) of f(x) =0

Newton-Raphson converges if it starts close to a solution, often quadratically



Computational methods

Newton-Raphson algorithm

Apply to power flow equations in polar form:
p@.1V))= p, jJEN

where

k=0

(ié’jk>leI2 =AANA

kZj

(

gix €08 0 + by sin ij)

N
Qj(9a|v|) = —<ijk>|vj|2 — Zlvjllvkl(gijinejk_bj

k=0

ki

; COS 9]k>



Computational methods

Newton-Raphson algorithm

Define f: RN Mo — RNy

Ap@,|V]) p@,|V])—-p
0,|V]) = =
e 1vDh [Aq(e,wnl [qw,wn—q]
with

J@O,|V]) =




Computational methods

Newton-Raphson algorithm

1. Initialization: choose (6(0), | V(0)] )

2. lterate until stopping criteria
(a) Determine (A@(t), AlV] (t)) from

AH(t)] _ [Ap(ﬁ(t), V] (t))]
AlVI®) Aq(0®), | V](©®)

- [ e(t)] N [ Ae(t)]
LIV AlV]()

J (00, VI®) [

(b) Set

o+ 1)
|V + 1)




Computational methods

Fast Decoupled algorithm
Key observation: the Jacobian is roughly block-diagonal

P o ® 0
00 9|V| 00
J@©O,|V]) = ~
’ 0 0 0
7 A 0 2
00 9|V| i olv]

i.e., decoupling between p and | V|, and between g and 6



Computational methods

Fast Decoupled algorithm
Key observation: the Jacobian is roughly block-diagonal

dp dp _6p 0 |
0 a|V| 20
J@O,|V]) = S S ~ ;
A 0 2
00 0|V| ol V] |

i.e., decoupling between p and | V|, and between g and 6

This simplifies the computation of (AH(t), AlV] (t))

0

0
ﬁ(em, [VI(0) AVI(@) = — AgOQ), | V] (D)



Computational methods

Fast Decoupled algorithm

Decoupling assumption: gy = 0, sinf; = 0

_|Vj|<gjkcosﬁjk+bjksin9jk), J#k
dpj

=
pi0,|V]) ,
9| Vil ]|V| + Zgji | Vil J=k
J i

"

. 0
g =0, sinfy=0,p@0,|V)=0 = —===0



Computational methods

Fast Decoupled algorithm

Decoupling assumption: gy = 0, sinf; =0

| Vil Vil (8jkCOS 0 + Dy sin 9]k>
aq; _
W pj(99|V|) — (Zgji>|vj|2,
. 7)
gy =0, sin@ =0, p(0,|V])=0 = —=0



Outline

5. Linear power flow model

« Laplacian matrix L

 DC power flow model



Laplacian matrix L

Given a graph G := (V, E) with n X m node-by-line incidence matrix C and line susceptances
B := diag (bl,l S E) the Laplacian matrix is
L:=CBC'
Assumptions:
e L is real symmetric

* All row and column sums are zero

« b;>0forall e E

Lemma
Forallx € R", x"Lx = Z bi(x; — x)* >0
(j,k)eE

Proof: x'Lx = 2 Z Lyxx, = = Z b;; <xl.2 — 2xx; + sz) = 2 b (x; — xj)2
j ok

(i,))EE (i,))EE



Laplacian matrix L

Theorem

Suppose G contains K > 1 connected components.

1. L is positive semidefinite

2. rank(L) = N — K with null(L) = {x : X; =X, VJ, k € each connected component}

3. Suppose K = 1. Then
. rank(L) = n — 1 with nuII(L) — Span(1)

~1
1 1 LA |
Pseudo-inverseof Lis LT = | L+ —11T — —117 = Z —vjv.T
n ) ed ).
]=2 J
Both L and LT are symmetric and have zero row (and column) sums

1
LLT=LL=1,——11T

n
Forxwith1'x =0, LL'x = L'Lx = x



Laplacian matrix L

Theorem

4. Suppose K = 1. Then
« Any k X k principal submatrix M of L is nonsingular fork < n — 1
. Both M and M~! are symmetric

in contrast to complex symmetric admittance matrix ¥ = CDySCT whose submatrix Y,, may be singular



Laplacian matrix L

Summary: comparison
Invertibility of admittance matrices:

1. Complex symmetric Y
« A strict principal submatrix Y,, is not always nonsingular
» Y,, is nonsingular if Re(Y) > 0 orif Im(Y) < O

2. Complex symmetric Y for connected radial network
. f/corresponding to removing any leaf node is always nonsingular
« Any strict principal submatrix Y,, corresponding to a (connected) subtree is always
nonsingular (by induction)
3. Real symmetric Laplacian matrix L with zero row sums and B > 0
 Any strict principal submatrix M is nonsingular



DC power flow model

Consider power network modeled by a connected graph G := (N, E) with N + 1 buses and M
lines

Assumptions
. Lossless: series conductances g, = 0, shunt admittances 5)]’7,2 = 572’]‘. = 0; b;k <0

- Small angle differences: sin(9j - 0,) ~ HJ — 0,

- Voltage magnitudes | V;|are fixed and given
* Ignore reactive power

These assumptions are reasonable for transmission networks (not for distribution networks)
Substituting directly into polar form power flow equation yields
=2 (“BIVIV)G-0) = Y bu6-6),  b;>0
kj~k kij~k

(When | le = u, Vj, DC power flow is also linearization of polar form power flow equation around flat voltage profile)



DC power flow model

In vector form

Let
e« C:(N+ 1) X M incidence matrix
« B := diag (bl,l S E) > 0
e P :line flow (M-vector)

DC power flow model:

p = CP, P = BC'0

Eliminate P = |p = CBC'0 =: L0

Given p with 17p = 0 (power balance), solution: P=BCTL' , |

O=L'p+al

These are equivalent specification of DC power flow model




DC power flow model

In vector form
Remarks

. 1Tp = 1TCP = 0 : generation = demand, due to lossless assumption
« 0= LTp + a1 : arbitrary constant a can be fixed by choosing a reference node, e.g., 6, := 0

e P :line flow (M-vector)
* Most of DC power flow properties (as well as DC OPF, PTDF, LODF, ... ) originates from
properties of Laplacian matrix L



DC power flow model

In terms of !

Remarks
Let
« C, L : the reduced incidence matrix and reduced Laplacian matrix respectively

. (P, é) : power injections and voltage angles at non-reference buses

Then Z_l exists

Given arbitrary D at non-reference buses, power flow solution is often expressed in terms of
L1 in the literature:

P=BCLp, o=1"1p cf. P=BCL'p, 0=L'p+at

This solution is ugniue and assumes 6, := 0 at bus 0.

This model is a special case of the solution in terms of the pseudo-inverse L7 with a s.t.
90 := 0, and therefore less flexible because L depends on the choice of reference bus



DC power flow model

In terms of !

Lemma
P= BC'L'p = BC"LTp, 0= L'p

i.e. line flows P are independent of choice of reference bus or L

Tp_)and

This result can be generalized to the case where price reference (slack) bus r (p, = — 1
angle reference bus 0 (6, := 0) are different
* Optimal dispatch and locational marginal prices are independent of the choice of (angle or
price) reference buss

e It is easier however to use LT instead of L



Summary

1. Component models
» Single-phase devices, line, transformer

2. Network models

« [V relation (admittance matrix Y), sV relation (power flow equations)
* Radial network: inverse of reduced admittance matrix has simple structure

3. Computation methods
» Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm

4. Linear power flow models
« Laplacian matrix L, DC power flow model



