Power System Analysis

Chapter 4 Bus injection models

Steven Low Caltech (Dec 13, 2024)

Outline

- 1. Component models
- 2. Network model: *IV* relation
- 3. Network model: sV relation
- 4. Computation methods
- 5. Linear power flow model

Outline

- 1. Component models
 - Sources, impedance
 - Transmission or distribution line
 - Transformer
- 2. Network model: *IV* relation
- 3. Network model: sV relation
- 4. Computation methods
- 5. Linear power flow model

Overview

single-phase or 3-phase

Steven Low Caltech Overview

- 1. Single-terminal device j
 - Voltage source (E_j, z_j) , current source (J_j, y_j) , power source (σ_j, z_j) , impedance z_j
 - Terminal variables $\left(V_{j}, I_{j}, s_{j}\right)$
 - External model: relation between $\left(V_{j}, I_{j}\right)$ or $\left(V_{j}, s_{j}\right)$
- 2. Two-terminal device (j, k)
 - Line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$, transformer $\left(K_{jk}(n), \tilde{y}_{jk}^{s}, \tilde{y}_{jk}^{m}\right)$
 - Terminal variables $\left(V_{j}, I_{jk}, S_{jk}\right)$ and $\left(V_{k}, I_{kj}, S_{kj}\right)$
 - External model: relation between $(V_j, V_k, I_{jk}, I_{kj})$ or $(V_j, V_k, S_{jk}, S_{kj})$

- 1. Voltage source (E_j, z_j)
 - Constant internal voltage E_i with series impedance z_i
 - Models for Thevenin equivalent circuit of a balanced synchronous machine, secondary side of transformer, gridforming inverter
 - External model: $V_j = E_j z_j I_j$
 - External model: $s_j = V_j I_j^{\mathsf{H}} = y_j^{\mathsf{H}} V_j \left(E_j V_j \right)^{\mathsf{H}}$

- 2. Current source (J_j, y_j)
 - Constant internal current J_j with shunt admittance y_j
 - Models for Norton equivalent circuit of ^Ea ynchronous ^V generator, load (e.g. electric vehicle charger), grid-following inverter

• External model:
$$I_j = J_j - y_j V_j$$

• External model: $s_j = V_j I_j^{\mathsf{H}} = V_j \left(J_j - y_j V_j\right)^{\mathsf{T}}$

- 3. Power source $\left(\sigma_{j}, z_{j}\right)$
 - Constant internal power σ_j in series with impedance z_j
 - Models for load, generator, secondary side of transformer

• External model:
$$\sigma_j = \left(V_j - z_j I_j\right) I_j^{\mathsf{H}}$$

• External model:
$$s_j = V_j I_j^{\mathsf{H}} = \sigma_j + z_j I_j I_j^{\mathsf{H}}$$

- 4. Impedance z_j
 - Constant impedance *z*
 - Models for load
 - External model: $V_j = z_j I_j$

• External model:
$$s_j = V_j I_j^{\mathsf{H}} = \frac{|V_j|^2}{z_j^{\mathsf{H}}}$$

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$

VI relation: Π circuit and admittance matrix Y_{line}

$$\begin{bmatrix} I_{jk} \\ I_{kj} \end{bmatrix} = \underbrace{\begin{bmatrix} y_{jk}^s + y_{jk}^m & -y_{jk}^s \\ -y_{jk}^s & y_{jk}^s + y_{kj}^m \end{bmatrix}}_{Y_{\text{line}}} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$$

admittance matrix Y_{line} :

- complex symmetric
- $[Y]_{ik} = -$ series admittance

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j},$$
$$I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k}$$

Steven Low Caltech Component models

T

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$

VI relation: Π circuit and admittance matrix Y_{line}

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m} V_{j},$$

$$I_{kj} = y_{jk}^{s}(V_{k} - V_{j}) + y_{kj}^{m} V_{k}$$

Their sum is total line current loss

$$I_{jk} + I_{kj} = y_{jk}^m V_j + y_{kj}^m V_k \neq 0$$

If $y_{jk}^m = y_{kj}^m = 0$, then $I_{jk} = -I_{kj}$

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ *Vs* relation

quadratic equations

Single-phase line $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ *Vs* relation

$$S_{jk} + S_{kj} = \left(y_{jk}^{s}\right)^{H} \left|V_{j} - V_{k}\right|^{2} + \left(y_{jk}^{m}\right)^{H} \left|V_{j}\right|^{2} + \left(y_{kj}^{m}\right)^{H} \left|V_{k}\right|^{2}$$
series loss shunt loss

Single-phase transformer $\left(K\left(n_{jk}\right), \tilde{y}_{jk}^{s}, \tilde{y}_{jk}^{m}\right)$ **Complex** $K\left(n_{jk}\right)$

$$\begin{bmatrix} I_{jk} \\ I_{kj} \end{bmatrix} = \begin{bmatrix} y_{jk}^s & -y_{jk}^s / K_{jk}(n) \\ -y_{jk}^s / \bar{K}_{jk}(n) & \left(y_{jk}^s + y_{jk}^m \right) / |K_{jk}(n)|^2 \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix}$$

^Ytransformer

- *Y*transformer : *not* symmetric
- Has no equivalent Π circuit
- Use admittance or transmission matrix for analysis

Single-phase transformer $(K(n_{jk}), \tilde{y}_{jk}^s, \tilde{y}_{jk}^m)$ Complex $K(n_{jk})$

Single-phase transformer $\left(K\left(n_{jk}\right), \tilde{y}_{jk}^{s}, \tilde{y}_{jk}^{m}\right)$ **Real** $K\left(n_{jk}\right) = n_{jk}$

$$I_{jk} = y_{jk}^{s} \left(V_{j} - a_{jk} V_{k} \right)$$
$$I_{jk} = y_{jk}^{m} a_{jk} V_{k} + n_{jk} (-I_{kj})$$

$$y_{jk}^{s} := a_{jk} \tilde{y}_{jk}^{s} = y_{kj}^{s}$$
$$y_{jk}^{m} := (1 - a_{jk})\tilde{y}_{jk}^{s} \qquad \tilde{y}_{jk}^{m} \neq \tilde{y}_{kj}^{m}$$
$$y_{kj}^{m} := a_{jk}(a_{jk} - 1)\tilde{y}_{jk}^{s} + a_{jk}^{2} \tilde{y}_{jk}^{m}$$

Outline

1. Component models

- 2. Network model: *IV* relation
 - Example and network model
 - Admittance matrix *Y* and properties
 - Kron reduction Y/Y_{22} and properties
 - Radial network
- 3. Network model: sV relation
- 4. Computation methods
- 5. Linear power flow model

Example

System

- Generator: current source $\left(I_{1},y_{1}
 ight)$
- Transformer $(n, \tilde{y}^s, \tilde{y}^m)$
- Transmission line with series admittance y
- Load: current source (I_2, y_2)

Derive

• Derive network model (admittance matrix *Y*)

Derive Y in 2 steps

Example Step 1: transformer + line

Nodal current balance (KCL):

$$I_{1} = I_{13}$$

$$I_{3} = I_{31} + I_{32} = 0$$

$$I_{2} = I_{23}$$

Example Step 1: transformer + line

Eliminate branch currents:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \tilde{y}^s & 0 & -a\tilde{y}^s \\ 0 & y & -y \\ -a\tilde{y}^s & -y & y + a^2\left(\tilde{y}^s + \tilde{y}^m\right) \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

 Y_1

- Y_1 : complex symmetric
- Hence: admittance matrix with $\boldsymbol{\Pi}$ circuit
- Unequal shunt elements (even if $\tilde{y}^m = 0$)

Example Step 1: transformer + line

Eliminate branch currents:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \tilde{y}^s & 0 & -a\tilde{y}^s \\ 0 & y & -y \\ -a\tilde{y}^s & -y & y + a^2\left(\tilde{y}^s + \tilde{y}^m\right) \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

$$y_{13}^{s} := a\tilde{y}^{s}$$

$$y_{13}^{m} := (1-a)\tilde{y}^{s}$$

$$y_{31}^{m} := a(a-1)\tilde{y}^{s} + a^{2}\tilde{y}^{m}$$

 Y_1

Example Step 2: overall system

generator/load

Example Step 2: overall system generator/load admittances $\begin{bmatrix} I_1 \\ I_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \tilde{y}^s + \tilde{y}_1 & 0 & -a\tilde{y}^s \\ 0 & y + \tilde{y}_2 & -y \\ -a\tilde{y}^s & -y & y + a^2 \left(\tilde{y}^s + \tilde{y}^m \right) \end{bmatrix}$ V_2 transformer transmission line generator load V_2 V_3 ny -0 y_{13}^{s} y Overall network model: ideal current SOL rces +connected by network • Network: admittance matrix Y• Y includes admittances of non-ideal current y_{13}^m y_{31}^m I_2 y_1 \mathcal{Y}_2 aI_1 $(1-n)_{y}$ V_2 nV_1 sources line load generator o transformer

Line model

- 1. Network $G := (\overline{N}, E)$
 - $\overline{N} := \{0\} \cup N := \{0\} \cup \{1, \dots, N\}$: buses/nodes/terminals
 - $E \subseteq \overline{N} \times \overline{N}$: lines/branches/links/edges
- 2. Each line (j, k) is parameterized by $\left(y_{jk}^{s}, y_{jk}^{m}\right)$ and $\left(y_{kj}^{s}, y_{kj}^{m}\right)$
 - (y_{jk}^s, y_{jk}^m) : series and shunt admittances from j to k
 - (y_{kj}^s, y_{kj}^m) : series and shunt admittances from k to j
 - Models transmission or distribution lines, single-phase transformers

Line model

Sending-end currents

$$I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}, \qquad I_{kj} = y_{kj}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k},$$

If $y_{jk}^s = y_{kj}^s$: same relation but equivalent to Π circuit:

Nodal current balance

$$I_j = \sum_{k:j\sim k} I_{jk}$$

Nodal current balance

$$I_{j} = \sum_{k:j \sim k} I_{jk} = \left(\sum_{k:j \sim k} y_{jk}^{s} + y_{jj}^{m}\right) V_{j} - \sum_{k:j \sim k} y_{jk}^{s} V_{k}$$

total shunt admittance: $y_{jj}^{m} := \sum_{k:j \sim k} y_{jk}^{m}$

Admittance matrix Y

$$I_{j} = \sum_{k:j \sim k} I_{jk} = \left(\sum_{k:j \sim k} y_{jk}^{s} + y_{jj}^{m}\right) V_{j} - \sum_{k:j \sim k} y_{jk}^{s} V_{k}$$

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

Admittance matrix Y

Y can be written down by inspection of network graph

- Off-diagonal entry: series admittance
- Diagonal entry: \sum series admittances + total shunt admittance

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

A matrix *Y* has a Π circuit representation

• if it is complex symmetric $\left(y_{jk}^{s} = y_{kj}^{s}\right)$

In vector form:

$$I = YV \text{ where } Y_{jk} = \begin{cases} -y_{jk}^s, & j \sim k \ (j \neq k) \\ \sum_{l:j \sim l} y_{jl}^s + y_{jj}^m, & j = k \\ 0 & \text{otherwise} \end{cases}$$

Outline

- 1. Component models
- 2. Network model: VI relation
 - Example and network model
 - Admittance matrix *Y* and properties
 - Kron reduction Y/Y_{22} and properties
 - Radial network
- 3. Network model: Vs relation
- 4. Computation methods
- 5. Linear power flow model

total shunt admittance: $y_{jj}^m := \sum_{k:j \sim k} y_{jk}^m$

Admittance matrix *Y* In terms of incidence matrix *C*

bus-by-line incidence matrix

$$C_{jl} = \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \\ 0 & \text{otherwise} \end{cases}$$

Admittance matrix *Y* In terms of incidence matrix *C*

bus-by-line incidence matrix

$$C_{jl} = \begin{cases} 1 & \text{if } l = j \to k \text{ for some bus } k \\ -1 & \text{if } l = i \to j \text{ for some bus } i \\ 0 & \text{otherwise} \end{cases}$$

 $Y = CD_{y}^{s}C^{\mathsf{T}} + D_{y}^{m}$ where $D_{y}^{s} := \operatorname{diag}\left(y_{l}^{s}, l \in E\right), \ D_{y}^{m} := \operatorname{diag}\left(y_{jj}^{m}, j \in \overline{N}\right)$

Y is a complex Laplacian matrix when $Y^m = 0$

Properties of *Y*

- 1. The inverse $Z := Y^{-1}$, if exists, is called a bus impedance matrix or an impedance matrix
 - Useful for fault analysis
 - Solving I = YV for V
 - Advantages of Y: Y can be constructed by inspection of one-line diagram and inherits sparsity structure of G. Z can/does not.
- 2. Next: study existence of Z
 - Derive (Schur complement) expressions for Z, when Y is nonsingular
 - 4 sufficient conditions for Y to be nonsingular based on the expressions for Z
Inverse of *Y* If exists

Let Y := G + iB, Z := R + iX

 $Y \text{ nonsingular } \iff \exists (R, X) \text{ s.t. } YZ = ZY = \mathbb{I}$ $\iff YZ = (GR - BX) + i(GX + BR) = \mathbb{I}$ $\iff \underbrace{\begin{bmatrix} G & -B \\ B & G \end{bmatrix}}_{M} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix}$

Suppose *G* is nonsingular. Then *Y* nonsingular \iff Schur complement $M/G := G + BG^{-1}B$ nonsingular

Then
$$M^{-1} = \begin{bmatrix} (M/G)^{-1} & (M/G)^{-1}BG^{-1} \\ -G^{-1}B(M/G)^{-1} & G^{-1} - G^{-1}B(M/G)^{-1}BG^{-1} \end{bmatrix}$$
 and hence $\begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} (M/G)^{-1} \\ -G^{-1}B(M/G)^{-1} \end{bmatrix}$

Theorem 1

Suppose *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$.

If $\operatorname{Re}(Y) > 0$, then Y^{-1} exists, is symmetric, and $\operatorname{Re}(Y^{-1}) > 0$

Proof

ZY = YZ = I to get:

Let Y = G + iB with G > 0. Then $M/G := G + BG^{-1}B > 0$ because $G, G^{-1} > 0$ and $B = B^{\mathsf{T}}$. Therefore both G and M/G are nonsingular, which implies that Y is nonsingular (from previous slide).

Moreover $\begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} (M/G)^{-1} \\ -G^{-1}B(M/G)^{-1} \end{bmatrix}$ implies Re $(Y^{-1}) = (M/G)^{-1} > 0$ since M/G > 0. Finally, to prove $Z := Y^{-1}$ is symmetric: substitute $Z^{\mathsf{T}}Y^{\mathsf{T}} = Z^{\mathsf{T}}Y$ and $Y^{\mathsf{T}}Z^{\mathsf{T}} = YZ^{\mathsf{T}}$ into (transpose of)

 $Z^{\mathsf{T}}Y = Z^{\mathsf{T}}Y^{\mathsf{T}} = Y^{\mathsf{T}}Z^{\mathsf{T}} = YZ^{\mathsf{T}} = \mathbb{I}$ i.e., $Z^{\mathsf{T}} = Y^{-1} = Z$

Let
$$y_{jk}^s =: g_{jk}^s + ib_{jk}^s$$
, $y_{jk}^m =: g_{jk}^m + ib_{jk}^m$, $y_{kj}^m =: g_{kj}^m + ib_{kj}^m$

Conditions

- 1. $g_{jk}^{s}, g_{jk}^{m}, g_{kj}^{m} \geq 0$ for all lines $(j, k) \in E$, i.e., nonnegative conductances
- 2. $\sum_{k:k\sim j} g_{jk}^m \neq 0$ for all buses $j \in \overline{N}$, i.e., there is a shunt conductance incident on every bus
- 3. $g_{jk}^s \neq 0$ for all lines $(j,k) \in E$, and $\exists (j',k') \in E$ s.t. $g_{j'k'}^m \neq 0$, i.e., all series conductances are nonzero and there is at least one nonzero shunt conductance

Theorem 2

Suppose *G* is connected and *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$. If conditions 1 and either 2 or 3 are satisfied, then

- 1. $\operatorname{Re}(Y) \succ 0$
- 2. Y^{-1} exists, is symmetric, and $\operatorname{Re}(Y^{-1}) > 0$

Theorem 2

Suppose *G* is connected and *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$. If conditions 1 and either 2 or 3 are satisfied, then

- 1. $\operatorname{Re}(Y) \succ 0$
- 2. Y^{-1} exists, is symmetric, and $\operatorname{Re}\left(Y^{-1}\right) \succ 0$

Proof

For any nonzero $\boldsymbol{\rho} \in \mathbb{R}^{N+1},$ these conditions imply

$$\rho^{\mathsf{T}} G \rho = \sum_{j} \sum_{k} \rho_{j} \rho_{k} G_{jk} = \sum_{j} \left(\sum_{k:j \sim k} -\rho_{j} \rho_{k} g_{jk}^{s} + \rho_{j}^{2} \sum_{i:j \sim i} (g_{ji}^{s} + g_{ji}^{m}) \right)$$
$$= \sum_{(j,k) \in E} \left(\rho_{j}^{2} - 2\rho_{j} \rho_{k} + \rho_{k}^{2} \right) g_{jk}^{s} + \sum_{j \in \overline{N}} \rho_{j}^{2} \sum_{i:j \sim i} g_{ji}^{m}$$
$$= \sum_{(j,k) \in E} \left(\rho_{j} - \rho_{k} \right)^{2} g_{jk}^{s} + \sum_{j \in \overline{N}} \rho_{j}^{2} \sum_{i:j \sim i} g_{ji}^{m} > 0$$

Inverse of *Y* If exists

Let Y := G + iB, Z := R + iX

$$Y \text{ nonsingular } \Longleftrightarrow \underbrace{\begin{bmatrix} G & -B \\ B & G \end{bmatrix}}_{M} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix} \text{ which is the same as: } \underbrace{\begin{bmatrix} B & G \\ G & -B \end{bmatrix}}_{M'} \begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

Suppose *B* is nonsingular. Then *Y* nonsingular \iff Schur complement $M/B := -(B + GB^{-1}G)$ nonsingular

Then
$$M'^{-1} = \begin{bmatrix} B^{-1} + B^{-1}G(M'/B)^{-1}GB^{-1} & -B^{-1}G(M'/B)^{-1} \\ -(M'/B)^{-1}GB^{-1} & (M'/B)^{-1} \end{bmatrix}$$
 and hence $\begin{bmatrix} R \\ X \end{bmatrix} = \begin{bmatrix} -B^{-1}G(M'/B)^{-1} \\ (M'/B)^{-1} \end{bmatrix}$

This leads to 2 analogous sufficient conditions in terms of Im(Y) and $\left(b_{jk}^{s}, b_{jk}^{m}, b_{kj}^{m}\right)$ with similar proofs.

Theorem 3

Suppose *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$.

If $Im(Y) \prec 0$, then Y^{-1} exists, is symmetric, and $Im(Y^{-1}) \succ 0$

Let
$$y_{jk}^s =: g_{jk}^s + ib_{jk}^s$$
, $y_{jk}^m =: g_{jk}^m + ib_{jk}^m$, $y_{kj}^m =: g_{kj}^m + ib_{kj}^m$

Conditions

- 1. $b_{jk}^{s}, b_{jk}^{m}, b_{kj}^{m} \leq 0$ for all lines $(j, k) \in E$, i.e., nonpositive susceptances
- 2. $\sum_{k:k\sim j} b_{jk}^m \neq 0$ for all buses $j \in \overline{N}$, i.e., there is a shunt susceptances incident on every bus
- 3. $b_{jk}^s \neq 0$ for all lines $(j,k) \in E$, and $\exists (j',k') \in E$ s.t. $b_{j'k'}^m \neq 0$, i.e., all series susceptances are nonzero and there is at least one nonzero shunt susceptance

Theorem 4

Suppose *G* is connected and *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$. If conditions 1 and either 2 or 3 are satisfied, then

- 1. $Im(Y) \prec 0$
- 2. Y^{-1} exists, is symmetric, and Im $(Y^{-1}) > 0$

Invertibility of *Y* Sufficiency only

These conditions on are sufficient only

- Conditions $\left(g_{jk}^{s}, g_{jk}^{m}, g_{kj}^{m}\right)$ in Theorem 2 are usually satisfied by transmission/distribution lines
- ... but not by transformers

Example:

Example 1 with node 3 at the primary side of the ideal transformer has an admittance matrix

$$Y = \begin{bmatrix} \tilde{y}^s & 0 & -\tilde{y}^s \\ 0 & y & -ny \\ -\tilde{y}^s & -ny & \tilde{y}^s + \tilde{y}^m + n^2y \end{bmatrix}$$

Suppose $g^s, \tilde{g}^s > 0, b^s, \tilde{b}^s \le 0, \tilde{b}^m \ge 0$. Then $g_{23}^m := (1 - n)g^s$ and $g_{32}^m := n(n - 1)g^s$ have opposite signs $(n \ne 1)$ Hence *Y* does not satisfy conditions in Theorem 2. But *Y* is nonsingular if and only if $\tilde{b}_m > 0$

Outline

1. Component models

2. Network model: VI relation

- Example and network model
- Admittance matrix *Y* and properties
- Kron reduction Y/Y_{22} and properties
- Radial network
- 3. Network model: Vs relation
- 4. Computation methods
- 5. Linear power flow model

Kron reduction

- $N_{\text{red}} \subseteq \overline{N}$: buses of interest, e.g., terminal buses
- Want to relate current injections and voltages at buses in $N_{\rm red}$

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \underbrace{\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}}_{Y} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \xleftarrow{N_{\text{red}}} \overline{N} \setminus N_{\text{red}}$$

- Eliminate $V_2 = -Y_{22}^{-1}Y_{21}V_1 + Y_{22}^{-1}I_2$
- giving $(Y_{11} Y_{12}Y_{22}^{-1}Y_{21}) V_1 = I_1 Y_{12}Y_{22}^{-1}I_2$ Schur complement

Kron reduction

If internal injections $I_2 = 0$:

$$Y/Y_{22} := (Y_{11} - Y_{12}Y_{22}^{-1}Y_{21})V_1 = I_1$$

Schur complement

• Describes effective connectivity and line admittances of reduced network

(b) Kron reduced network

Existence of Kron reduction

Admittance matrix $Y = CY^{s}C$ where $Y^{s} := \text{diag}\left(y_{jk}^{s}\right)$

When Y is real, it is called a real Laplacian matrix

- $(N+1) \times (N+1)$ real symmetric matrix
- Row sum = column sum = 0
- rank(Y) = N, null(Y) = span(**1**) when all y_{jk}^s are (real &) of the same sign (otherwise rank(Y) can be < N)
- Any principal submatrix is invertible, i.e., Y/Y_{22} always exists (we will study later in more detail for linear models)

When *Y* is a complex symmetric, but not Hermitian, these properties may not hold In particular, Y_{22} may not be invertible and Y/Y_{22} may not exist

Existence of Kron reduction

Next: Properties of Y_{22} and Y/Y_{22}

- Conditions on $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ for Y_{22} to be nonsingular, hence existence of Y/Y_{22}
- Conditions on $\left(y_{jk}^{s}, y_{jk}^{m}, y_{kj}^{m}\right)$ for Y/Y_{22} to be nonsingular

Invertibility of *Y*₂₂

When $y_{jk}^s = y_{kj}^s$

Recall proof of Theorem 2:

Invertibility of Y_{22}

When $y_{jk}^s = y_{kj}^s$

Recall proof of Theorem 2:

$$\rho^{\mathsf{T}} G \rho = \sum_{(j,k)\in E} \left(\rho_j - \rho_k\right)^2 g_{jk}^s + \sum_{j\in\overline{N}} \rho_j^2 \sum_{i:j\sim i} g_{ji}^m > 0$$

Similar structure for strict principal submatrix Y_{22} :

$$\operatorname{Re}\left(\alpha^{\mathsf{H}}Y_{22}\alpha\right) = \sum_{i} \left(\sum_{j,k\in C_{i}:(j,k)\in E} g_{jk}^{s} \left|\alpha_{j}-\alpha_{k}\right|^{2} + \sum_{j\in C_{i}} G_{j} \left|\alpha_{j}\right|^{2}\right)$$
$$\operatorname{Im}\left(\alpha^{\mathsf{H}}Y_{22}\alpha\right) = \sum_{i} \left(\sum_{j,k\in C_{i}:(j,k)\in E} b_{jk}^{s} \left|\alpha_{j}-\alpha_{k}\right|^{2} + \sum_{j\in C_{i}} B_{j} \left|\alpha_{j}\right|^{2}\right)$$

Invertibility of Y_{22} Derivation

For strict principal submatrix:

$$\begin{split} Y_{22}[j,j] &= \sum_{k \notin A: (j,k) \in E} y_{jk}^{s} + \sum_{k \in A: (j,k) \in E} y_{jk}^{s} + y_{jj}^{m} \\ \text{Hence} \\ \\ & \alpha^{H}Y_{22}\alpha = \sum_{j \in A} \left(\left(\sum_{k \notin A: (j,k) \in E} y_{jk}^{s} + \sum_{k \in A: (j,k) \in E} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} - \sum_{k \in A: (j,k) \in E} y_{jk}^{s} \alpha_{j}^{H} \alpha_{k} \right) \\ & = \sum_{j,k \in A: (j,k) \in E} \left(y_{jk}^{s} |\alpha_{j}|^{2} - y_{jk}^{s} \alpha_{j}^{H} \alpha_{k} - y_{kj}^{s} \alpha_{k}^{H} \alpha_{j} + y_{kj}^{s} |\alpha_{k}|^{2} \right) + \sum_{j \in A} \left(\sum_{k \notin A: (j,k) \in E} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} \\ & = \sum_{j,k \in A: (j,k) \in E} y_{jk}^{s} |\alpha_{j} - \alpha_{k}|^{2} + \sum_{j \in A} \left(\sum_{k \notin A: (j,k) \in E} y_{jk}^{s} + y_{jj}^{m} \right) |\alpha_{j}|^{2} \end{split}$$

Invertibility of Y_{22} Derivation

For strict principal submatrix:

$$Y_{22}[j,j] = \sum_{k \notin A: (j,k) \in E} y_{jk}^{s} + \sum_{k \in A: (j,k) \in E} y_{jk}^{s} + y_{jj}^{m}$$

Hence
$$\operatorname{Re}\left(\alpha^{\mathsf{H}}Y_{22}\alpha\right) = \sum_{i} \left(\sum_{j,k \in C_{i}: (j,k) \in E} g_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j \in C_{i}} G_{j} \left|\alpha_{j}\right|^{2}\right)$$
$$\operatorname{Im}\left(\alpha^{\mathsf{H}}Y_{22}\alpha\right) = \sum_{i} \left(\sum_{j,k \in C_{i}: (j,k) \in E} b_{jk}^{s} \left|\alpha_{j} - \alpha_{k}\right|^{2} + \sum_{j \in C_{i}} B_{j} \left|\alpha_{j}\right|^{2}\right)$$
Similar conditions to Theorem 2:

$$\rho^{\mathsf{T}} G \rho = \sum_{(j,k)\in E} \left(\rho_j - \rho_k\right)^2 g_{jk}^s + \sum_{j\in \overline{N}} \rho_j^2 \sum_{i:j\sim i} g_{ji}^m > 0$$

Invertibility of Y₂₂

When $y_{jk}^{s} = y_{kj}^{s}$ Let $y_{jk}^{s} =: g_{jk}^{s} + ib_{jk}^{s}, \quad y_{jk}^{m} =: g_{jk}^{m} + ib_{jk}^{m}, \quad y_{kj}^{m} =: g_{kj}^{m} + ib_{kj}^{m}$

Conditions

- 1. For all lines $(j, k) \in E$, $g_{jk}^s \ge 0$; for all buses $j \in \overline{N}$, $G_j \ge 0$
- 2. For all buses $j \in \overline{N}$, $G_j \neq 0$
- 3. For all lines $(j,k) \in E$, $g_{jk}^s \neq 0$; for each connected component C_i , $\exists j_i \in C_i$ s.t. $G_{j_i} \neq 0$

Theorem 5

Suppose *G* is connected and *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$. If conditions 1 and either 2 or 3 are satisfied, then

- 1. $\text{Re}(Y_{22}) > 0$
- 2. Y_{22}^{-1} exists, is symmetric, and $\operatorname{Re}\left(Y_{22}^{-1}\right) > 0$

Invertibility of Y₂₂

When $y_{jk}^{s} = y_{kj}^{s}$ Let $y_{jk}^{s} =: g_{jk}^{s} + ib_{jk}^{s}, \quad y_{jk}^{m} =: g_{jk}^{m} + ib_{jk}^{m}, \quad y_{kj}^{m} =: g_{kj}^{m} + ib_{kj}^{m}$

Conditions

- 1. For all lines $(j, k) \in E$, $b_{jk}^s \le 0$; for all buses $j \in \overline{N}$, $B_j \le 0$
- 2. For all buses $j \in \overline{N}$, $B_j \neq 0$
- 3. For all lines $(j,k) \in E$, $b_{jk}^s \neq 0$; for each connected component C_i , $\exists j_i \in C_i$ s.t. $B_{j_i} \neq 0$

Theorem 6

Suppose *G* is connected and *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$. If conditions 1 and either 2 or 3 are satisfied, then

- 1. $Im(Y_{22}) \prec 0$
- 2. Y_{22}^{-1} exists, is symmetric, and Im $(Y_{22}^{-1}) > 0$

Invertibility of Y_{22} When $y_{jk}^s = y_{kj}^s$ and $y_{jk}^m = y_{kj}^m = 0$

Corollary 7

Suppose *G* is connected, *Y* is complex symmetric $(y_{jk}^s = y_{kj}^s)$ and $y_{jk}^m = y_{kj}^m = 0$.

- 1. If $g_{ik}^s > 0$ for all $(j,k) \in E$, then Y_{22}^{-1} exists, is symmetric. Moreover $\text{Re}(Y_{22}) > 0$ and $\text{Re}(Y_{22}^{-1}) > 0$
- 2. If $b_{ik}^s < 0$ for all $(j,k) \in E$, then Y_{22}^{-1} exists, is symmetric. Moreover $Im(Y_{22}) < 0$ and $Im(Y_{22}^{-1}) > 0$

Theorem 8

Suppose G is connected, Y is complex symmetric $(y_{jk}^s = y_{kj}^s)$ and $y_{jk}^m = y_{kj}^m = 0$. If $g_{jk}^s \ge 0$ and $b_{jk}^s \le 0$ $\forall (j,k) \in E$ then

- 1. $\operatorname{Re}(Y_{22}) \geq 0$, $\operatorname{Im}(Y_{22}) \leq 0$, $\operatorname{Re}(Y_{22}) \operatorname{Im}(Y_{22}) > 0$
- 2. Y_{22}^{-1} exists and is symmetric

Invertibility of Y/Y_{22} When $y_{jk}^s = y_{kj}^s$

Theorem 9

Suppose Y_{22} is nonsingular.

- 1. If $\operatorname{Re}(Y) > 0$, then $(Y/Y_{22})^{-1}$ exists and is symmetric. Moreover $\operatorname{Re}(Y/Y_{22}) > 0$ and $\operatorname{Re}((Y/Y_{22})^{-1}) > 0$
- 2. If $Im(Y) \prec 0$, then $(Y/Y_{22})^{-1}$ exists and is symmetric. Moreover $Im(Y/Y_{22}) \prec 0$ and $Im((Y/Y_{22})^{-1}) \succ 0$

Outline

1. Component models

2. Network model: VI relation

- Example and network model
- Admittance matrix *Y* and properties
- Kron reduction Y/Y_{22} and properties
- Radial network
- 3. Network model: Vs relation
- 4. Computation methods
- 5. Linear power flow model

Radial networks

When $y_{jk}^s = y_{kj}^s$ and $y_{jk}^m = y_{kj}^m = 0$

$$\begin{split} (N+1)\times N \text{ incidence matrix } C, D_y^s &:= \text{diag } \left(y_l^s, l \in E\right): \\ Y &= CD_y^s C^{\mathsf{T}} \qquad \text{admittance matrix} \\ N\times N \text{ reduced incidence matrix } \hat{C}, D_y^s &:= \text{diag } \left(y_l^s, l \in E\right): \\ \hat{Y} &= \hat{C}D_y^s \hat{C}^{\mathsf{T}} \qquad \text{reduced admittance matrix} \end{split}$$

Main property: \hat{C} and hence \hat{Y} are always nonsingular. Moreover $\hat{Z} := \hat{Y}^{-1}$ has a simple and useful structure

This property has been applied for topology identification, voltage control, ...

Outline

- 1. Component models
- 2. Network model: *IV* relation
- 3. Network model: sV relation
 - Complex form
 - Polar form
 - Cartesian form
 - Types of buses
 - Application: topology identification
- 4. Computation methods
- 5. Linear power flow model

General network

Branch currents

Sending-end currents $I_{jk} = y_{jk}^{s}(V_{j} - V_{k}) + y_{jk}^{m}V_{j}$ $I_{kj} = y_{kj}^{s}(V_{k} - V_{j}) + y_{kj}^{m}V_{k}$

Power flow models Complex form

Using
$$S_{jk} := V_j I_{jk}^H$$
:
 $S_{jk} = (y_{jk}^s)^H (|V_j|^2 - V_j V_k^H) + (y_{jk}^m)^H |V_j|^2$
 $S_{kj} = (y_{kj}^s)^H (|V_k|^2 - V_k V_j^H) + (y_{kj}^m)^H |V_k|^2$

Power flow models Complex form

Bus injection model
$$s_j = \sum_{k:j \sim k} S_{jk}$$
:

$$s_j = \sum_{k:j \sim k} \left(y_{jk}^s \right)^H \left(|V_j|^2 - V_j V_k^H \right) + \left(y_{jj}^m \right)^H |V_j|^2$$

In terms of admittance matrix Y

$$s_j = \sum_{k=1}^{N+1} Y_{jk}^H V_j V_k^H$$

N + 1 complex equations in 2(N + 1) complex variables $\left(s_j, V_j, j \in \overline{N}\right)$

Power flow models Polar form

Write
$$s_j =: p_j + iq_j$$
 and $V_j =: |V_j| e^{i\theta_j}$ with $y_{jk}^s =: g_{jk}^s + ib_{jk}^s, y_{jk}^m =: g_{jk}^m + ib_{jk}^m$:
 $p_j = \sum_{k:k\sim j} \left(g_{jk}^s + g_{jk}^m\right) |V_j|^2 - \sum_{k:k\sim j} |V_j| |V_k| \left(g_{jk}^s \cos \theta_{jk} + b_{jk}^s \sin \theta_{jk}\right)$
 $q_j = -\sum_{k:k\sim j} \left(b_{jk}^s + b_{jk}^m\right) |V_j|^2 - \sum_{k:k\sim j} |V_j| |V_k| \left(g_{jk}^s \sin \theta_{jk} - b_{jk}^s \cos \theta_{jk}\right)$

 $2(N+1) \text{ real equations in } 4(N+1) \text{ real variables } \left(p_j, q_j, \left|V_j\right|, \theta_j, j \in \overline{N}\right)$

Power flow models Cartesian form

Write
$$s_j =: p_j + iq_j$$
 and $V_j =: c_j + id_j$ with $c_j = |V_j| \cos \theta_j$ and $d_j = |V_j| \sin \theta_j$:

$$p_j = \sum_{k:k\sim j} \left(g_{jk}^s + g_{jk}^m \right) \left(c_j^2 + d_j^2 \right) - \sum_{k:k\sim j} \left(g_{jk}^s (c_j c_k + d_j d_k) + b_{jk}^s (d_j c_k - c_j d_k) \right)$$

$$q_j = -\sum_{k:k\sim j} \left(b_{jk}^s + b_{jk}^m \right) \left(c_j^2 + d_j^2 \right) - \sum_{k:k\sim j} \left(g_{jk}^s (d_j c_k - c_j d_k) - b_{jk}^s (c_j c_k + d_j d_k) \right)$$

2(N+1) real equations in 4(N+1) real variables $\left(p_j, q_j, c_j, d_j, j \in \overline{N}\right)$

Power flow models Types of buses

Power flow equations specify 2(N+1) real equations in 4(N+1) real variables

• Power flow (load flow) problem: given 2(N+1) values, determine remaining vars

Types of buses

- PV buses : $(p_j, |V_j|)$ specified, determine (q_j, θ_j) , e.g. generator PQ buses : (p_j, q_j) specified, determine V_j , e.g. load
- Slack bus $0: V_0 := 1 \angle 0^\circ$ pu specified, determine (p_0, q_0)

Outline

- 1. Component models
- 2. Network model: *IV* relation
- 3. Network model: sV relation
- 4. Computation methods
 - Gauss-Seidel algorithm
 - Newton-Raphson algorithm
 - Fast decoupled algorithm
- 5. Linear power flow model

Computation methods Gauss-Seidel algorithm

Case 1: given V_0 and (s_1, \ldots, s_N) , determine s_0 and (V_1, \ldots, V_N)

Power flow equations

$$s_0 = \sum_{k} Y_{0k}^H V_0 V_k^H$$

$$s_j = \sum_{k} Y_{jk}^H V_j V_k^H, \qquad j \in N$$

- First compute $(V_1, ..., V_N)$
- Then compute s_0

Computation methods Gauss-Seidel algorithm

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$

Rearrange 2nd equation:

$$\frac{s_j^H}{V_j^H} = Y_{jj}V_j + \sum_{\substack{k=0\\k\neq j}}^N Y_{jk}V_k, \quad j \in N$$
$$V_j = \frac{1}{Y_{jj}} \left(\frac{s_j^H}{V_j^H} - \sum_{\substack{k=0\\k\neq j}}^N Y_{jk}V_k \right) =: f_j (V_1, \dots, V_N), \quad j \in N$$

Computation methods Gauss-Seidel algorithm

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ 2nd power flow equation:

$$V = f(V)$$
 where $V := \left(V_j, j \in N\right), \ f := \left(f_j, j \in N\right)$

Gauss algorithm is the fixed point iteration

V(t+1) = f(V(t))
Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ Gauss algorithm:

$$\begin{aligned} V_1(t+1) &= f_1\left(V_1(t), \dots, V_N(t)\right) \\ V_2(t+1) &= f_2\left(V_1(t), \dots, V_N(t)\right) \\ &\vdots \\ V_N(t+1) &= f_N\left(V_1(t), \dots, V_{N-1}(t), V_N(t)\right) \end{aligned}$$

Case 1: given V_0 and $(s_1, ..., s_N)$, determine s_0 and $(V_1, ..., V_N)$ Gauss-Seidel algorithm:

$$\begin{split} V_1(t+1) &= f_1\left(V_1(t), \dots, V_N(t)\right) \\ V_2(t+1) &= f_2\left(V_1(t+1), \dots, V_N(t)\right) \\ &\vdots \\ V_N(t+1) &= f_N\left(V_1(t+1), \dots, V_{N-1}(t+1), V_N(t)\right) \end{split}$$

Case 2: given $(V_0, ..., V_m)$ and $(s_{m+1}, ..., s_N)$, determine $(s_j, j \le m)$ and $(V_j, j > m)$

Power flow equations

$$s_{j} = \sum_{k} Y_{jk}^{H} V_{j} V_{k}^{H}, \qquad j \le m$$
$$s_{j} = \sum_{k} Y_{jk}^{H} V_{j} V_{k}^{H}, \qquad j > m$$

• First compute $(V_{m+1}, ..., V_N)$ from 2nd set of equations using the same algorithm

• Then compute $(s_j, j \le m)$ from 1st set of equations

If algorithm converges, the limit is a fixed point and a power flow solution

Algorithm converges linearly to unique fixed point if f is a contraction mapping

• Contraction is sufficient, but not necessary, for convergence

In general, algorithm may or may not convergence depending on initial point

To solve f(x) = 0where $f : \mathbb{R}^n \to \mathbb{R}^n$, e.g. $\nabla F(x) = 0$ for unconstrained optimization

<u>ldea</u>:

Linear approximation

 $\hat{f}(x(t+1)) = f(x(t)) + J(x(t)) \Delta x(t)$

• Choose $\Delta x(t)$ such that $\hat{f}(x(t+1)) = 0$, i.e., solve

$$J(x(t))\Delta x(t) = -f(x(t))$$

• Next iterate $x(t+1) := x(t) + \Delta x(t)$
$$J(x) := \frac{\partial f}{\partial x}(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{bmatrix}$$

To solve f(x) = 0

where $f : \mathbb{R}^n \to \mathbb{R}^n$, e.g. $\nabla F(x) = 0$ for unconstrained optimization

$$x(t+1) := x(t) - (J(x(t)))^{-1} f(x(t))$$

Kantorovic Theorem

Consider $f: D \to \mathbb{R}^n$ where $D \subseteq \mathbb{R}^n$ is an open convex set. Suppose

- *f* is differentiable and ∇f is Lipschitz on *D*, i.e., $\|\nabla f(y) \nabla f(x)\| \leq L \|y x\|$
- $x_0 \in D$ and $\nabla f(x_0)$ is invertible

Let
$$\beta \ge \left\| \left(\nabla f(x_0) \right)^{-1} \right\|, \quad \eta \ge \left\| \left(\nabla f(x_0) \right)^{-1} f(x_0) \right\|$$
 and
 $h := \beta \eta L, \quad r := \frac{1 - \sqrt{1 - 2h}}{h} \eta$

Kantorovic Theorem

Consider $f: D \to \mathbb{R}^n$ where $D \subseteq \mathbb{R}^n$ is an open convex set. Suppose

- *f* is differentiable and ∇f is Lipschitz on *D*, i.e., $\|\nabla f(y) \nabla f(x)\| \leq L \|y x\|$
- $x_0 \in D$ and $\nabla f(x_0)$ is invertible

If the closed ball $B_r(x_0) \subseteq D$ and $h \leq 1/2$, then Newton iteration $x(t+1) := x(t) - (\nabla f(x(t)))^{-1} f(x(t))$ converges to a solution $x^* \in B_r(x_0)$ of f(x) = 0

Newton-Raphson converges if it starts close to a solution, often quadratically

Apply to power flow equations in polar form:

 $p_{j}(\theta, |V|) = p_{j}, \qquad j \in N$ $q_{j}(\theta, |V|) = q_{j}, \qquad j \in N_{pq}$

where

$$p_{j}(\theta, |V|) := \left(\sum_{k=0}^{N} g_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk}\right)$$
$$q_{j}(\theta, |V|) := -\left(\sum_{k=0}^{N} b_{jk}\right) |V_{j}|^{2} - \sum_{k \neq j} |V_{j}| |V_{k}| \left(g_{jk} \sin \theta_{jk} - b_{jk} \cos \theta_{jk}\right)$$

Define
$$f : \mathbb{R}^{N+N_{qp}} \to \mathbb{R}^{N+N_{qp}}$$

$$f(\theta, |V|) := \begin{bmatrix} \Delta p(\theta, |V|) \\ \Delta q(\theta, |V|) \end{bmatrix} := \begin{bmatrix} p(\theta, |V|) - p \\ q(\theta, |V|) - q \end{bmatrix}$$

with

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

- 1. Initialization: choose $(\theta(0), |V(0)|)$
- 2. Iterate until stopping criteria

(a) Determine $\left(\Delta\theta(t), \Delta | V|(t)\right)$ from

$$J\left(\theta(t), |V|(t)\right) \begin{bmatrix} \Delta\theta(t) \\ \Delta |V|(t) \end{bmatrix} = -\begin{bmatrix} \Delta p(\theta(t), |V|(t)) \\ \Delta q(\theta(t), |V|(t)) \end{bmatrix}$$

(b) Set

$$\begin{bmatrix} \theta(t+1) \\ |V|(t+1) \end{bmatrix} := \begin{bmatrix} \theta(t) \\ |V|(t) \end{bmatrix} + \begin{bmatrix} \Delta \theta(t) \\ \Delta |V|(t) \end{bmatrix}$$

Key observation: the Jacobian is roughly block-diagonal

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix} \approx \begin{bmatrix} \frac{\partial p}{\partial \theta} & 0 \\ 0 & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

i.e., decoupling between p and $\mid V \mid$, and between q and θ

Key observation: the Jacobian is roughly block-diagonal

$$J(\theta, |V|) := \begin{bmatrix} \frac{\partial p}{\partial \theta} & \frac{\partial p}{\partial |V|} \\ \frac{\partial q}{\partial \theta} & \frac{\partial q}{\partial |V|} \end{bmatrix} \approx \begin{bmatrix} \frac{\partial p}{\partial \theta} & 0 \\ 0 & \frac{\partial q}{\partial |V|} \end{bmatrix}$$

i.e., decoupling between p and |V|, and between q and θ This simplifies the computation of $(\Delta\theta(t), \Delta |V|(t))$

$$\frac{\partial p}{\partial \theta}(\theta(t), |V|(t)) \ \Delta \theta(t) = -\Delta p(\theta(t), |V|(t))$$
$$\frac{\partial q}{\partial |V|}(\theta(t), |V|(t)) \ \Delta |V|(t) = -\Delta q(\theta(t), |V|(t))$$

$$\begin{array}{l} \underline{\text{Decoupling assumption:}} \quad g_{jk} = 0, \, \sin \theta_{jk} = 0 \\ \\ \frac{\partial p_j}{\partial |V_k|} = \begin{cases} -|V_j| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk} \right), & j \neq k \\ \\ \frac{p_j(\theta, |V|)}{|V_j|} + \left(\sum_i g_{ji} \right) |V_j|, & j = k \end{cases} \\ \\ g_{jk} = 0, \, \sin \theta_{jk} = 0, \, p_j(\theta, |V|) = 0 \quad \Rightarrow \quad \frac{\partial p}{\partial |V|} = 0 \end{array}$$

$$\begin{array}{l} \underline{\text{Decoupling assumption:}} \quad g_{jk} = 0, \, \sin \theta_{jk} = 0 \\ \\ \frac{\partial q_j}{\partial \theta_k} = \begin{cases} |V_j| \, |V_k| \left(g_{jk} \cos \theta_{jk} + b_{jk} \sin \theta_{jk} \right), & j \neq k \\ \\ p_j(\theta, |V|) - \left(\sum_i g_{ji} \right) |V_j|^2, & j = k \end{cases} \\ \\ g_{jk} = 0, \, \sin \theta_{jk} = 0, \, p_j(\theta, |V|) = 0 \quad \Rightarrow \quad \frac{\partial q}{\partial \theta} = 0 \end{cases} \end{array}$$

Outline

- 1. Component models
- 2. Network model: *IV* relation
- 3. Network model: sV relation
- 4. Computation methods
- 5. Linear power flow model
 - Laplacian matrix *L*
 - DC power flow model

Laplacian matrix L

Given a graph G := (V, E) with $n \times m$ node-by-line incidence matrix C and line susceptances $B := \text{diag}(b_l, l \in E)$, the Laplacian matrix is

 $L := CBC^{\mathsf{T}}$

Assumptions:

- *L* is real symmetric
- · All row and column sums are zero
- $b_l > 0$ for all $l \in E$

Lemma

For all
$$x \in \mathbb{R}^n$$
, $x^T L x = \sum_{(j,k)\in E} b_{jk}(x_j - x_k)^2 \ge 0$
Proof: $x^T L x = \sum_j \sum_k L_{jk} x_j x_k = \sum_{(i,j)\in E} b_{ij} \left(x_i^2 - 2x_i x_j + x_j^2 \right) = \sum_{(i,j)\in E} b_{ij} (x_i - x_j)^2$

Laplacian matrix L

Theorem

Suppose G contains $K \ge 1$ connected components.

- 1. L is positive semidefinite
- 2. rank(*L*) = N K with null(*L*) = { $x : x_j = x_k, \forall j, k \in \text{each connected component}$ }
- 3. Suppose K = 1. Then

• rank(L) =
$$n - 1$$
 with null(L) = span(1)
• Pseudo-inverse of L is $L^{\dagger} = \left(L + \frac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}}\right)^{-1} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}} = \sum_{j=2}^{n} \frac{1}{\lambda_{j}}v_{j}v_{j}^{\mathsf{T}}$

- Both L and L^{\dagger} are symmetric and have zero row (and column) sums
- For x with $\mathbf{1}^{\mathsf{T}} x = 0$, $LL^{\dagger}x = L^{\dagger}Lx = x$

Laplacian matrix L

Theorem

- 4. Suppose K = 1. Then
 - Any $k \times k$ principal submatrix M of L is nonsingular for $k \le n-1$
 - Both M and M^{-1} are symmetric

in contrast to **complex** symmetric admittance matrix $Y = CD_y^s C^T$ whose submatrix Y_{22} may be singular

Laplacian matrix L Summary: comparison

Invertibility of admittance matrices:

- 1. Complex symmetric Y
 - A strict principal submatrix Y_{22} is not always nonsingular
 - Y_{22} is nonsingular if $\operatorname{Re}(Y) > 0$ or if $\operatorname{Im}(Y) < 0$
- 2. Complex symmetric Y for connected radial network
 - \hat{Y} corresponding to removing any leaf node is always nonsingular
 - Any strict principal submatrix Y_{22} corresponding to a (connected) subtree is always nonsingular (by induction)
- 3. Real symmetric Laplacian matrix *L* with zero row sums and B > 0
 - Any strict principal submatrix M is nonsingular

DC power flow model

Consider power network modeled by a connected graph $G := (\overline{N}, E)$ with N + 1 buses and M lines

Assumptions

- Lossless: series conductances $\tilde{g}_{l}^{s} = 0$, shunt admittances $\tilde{y}_{jk}^{m} = \tilde{y}_{kj}^{m} = 0$; $\tilde{b}_{jk}^{s} < 0$
- Small angle differences: $\sin(\theta_j \theta_k) \approx \theta_j \theta_k$
- Voltage magnitudes $|V_i|$ are fixed and given
- Ignore reactive power

These assumptions are reasonable for transmission networks (not for distribution networks)

Substituting directly into polar form power flow equation yields

$$p_j = \sum_{k:j \sim k} \left(-\tilde{b}_{jk}^s |V_j| |V_k| \right) (\theta_j - \theta_k) \quad =: \quad \sum_{k:j \sim k} b_{jk} (\theta_j - \theta_k), \qquad b_{jk} > 0$$

(When $|V_j| = \mu$, $\forall j$, DC power flow is also linearization of polar form power flow equation around flat voltage profile)

DC power flow model In vector form

Let

- $C: (N+1) \times M$ incidence matrix
- $B := \operatorname{diag} \left(b_l, l \in E \right) \succ 0$
- *P* : line flow (*M*-vector)

DC power flow model:

$$p = CP, \qquad P = BC^{\mathsf{T}}\theta$$

 $p = CBC^{\mathsf{T}}\theta =: L\theta$ Eliminate P \implies

Given p with $\mathbf{1}^{\mathsf{T}} p = 0$ (power balance), solution:

$$P = BC^{\mathsf{T}}L^{\dagger}p, \qquad \theta = L^{\dagger}p + a\mathbf{1}$$

These are equivalent specification of DC power flow model

DC power flow model

In vector form

Remarks

- $\mathbf{1}^{\mathsf{T}}p = \mathbf{1}^{\mathsf{T}}CP = 0$: generation = demand, due to lossless assumption
- $\theta = L^{\dagger}p + a\mathbf{1}$: arbitrary constant a can be fixed by choosing a reference node, e.g., $\theta_0 := 0$
- *P* : line flow (*M*-vector)
- Most of DC power flow properties (as well as DC OPF, PTDF, LODF, \dots) originates from properties of Laplacian matrix L

DC power flow model In terms of \hat{L}^{-1}

Remarks

Let

- \hat{C} , \hat{L} : the reduced incidence matrix and reduced Laplacian matrix respectively
- $(\hat{p}, \hat{\theta})$: power injections and voltage angles at non-reference buses

Then \hat{L}^{-1} exists

Given arbitrary \hat{p} at non-reference buses, power flow solution is often expressed in terms of \hat{L}^{-1} in the literature:

 $P = B\hat{C}^{\mathsf{T}}\hat{L}^{-1}\hat{p}, \qquad \hat{\theta} = \hat{L}^{-1}\hat{p}$

c.f. $P = BC^{\mathsf{T}}L^{\dagger}p$, $\theta = L^{\dagger}p + a\mathbf{1}$

This solution is uqniue and assumes $\theta_0 := 0$ at bus 0.

This model is a special case of the solution in terms of the pseudo-inverse L^{\dagger} with a s.t. $\theta_0 := 0$, and therefore less flexible because \hat{L} depends on the choice of reference bus

DC power flow model In terms of \hat{L}^{-1}

Lemma

 $P = B\hat{C}^{\mathsf{T}}\hat{L}^{-1}\hat{p} = BC^{\mathsf{T}}L^{\dagger}p, \qquad \hat{\theta} = \hat{L}^{-1}\hat{p}$

i.e. line flows P are independent of choice of reference bus or \hat{L}

This result can be generalized to the case where price reference (slack) bus $r(p_r = -\mathbf{1}^T p_{-r})$ and angle reference bus 0 ($\theta_0 := 0$) are different

- Optimal dispatch and locational marginal prices are independent of the choice of (angle or price) reference buss
- It is easier however to use L^{\dagger} instead of \hat{L}

Summary

- 1. Component models
 - Single-phase devices, line, transformer
- 2. Network models
 - *IV* relation (admittance matrix *Y*), *sV* relation (power flow equations)
 - Radial network: inverse of reduced admittance matrix has simple structure
- 3. Computation methods
 - Gauss-Seidel algorithm, Newton-Raphson algorithm, Fast decoupled algorithm
- 4. Linear power flow models
 - Laplacian matrix *L*, DC power flow model