Power System Analysis

Chapter 5 Branch flow models: radial networks

Steven Low Caltech (Dec 13, 2024)
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Outline

1. Radial network
* Line model
e With shunt admittances
* Without shunt admittances
* Power flow solution

2. Equivalence
3. Backward forward sweep
4. Linear power flow model



Line model

1. Network G := (N, E)
« N:={0}UN :={0}U/{l,...,N} : buses/nodes/terminals
« E C N X N : lines/branches/links/edges

2. Each line (J, k) is parameterized by (y;{, yﬁj) and (ygj, y}?)
* (Vi Yjx) : series and shunt admittances from j to k
* (Vij» Vi) © series and shunt admittances from & to j
* Models transmission or distribution lines, single-phase transformers
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Line model

v
Ij’S/ ‘] > s m K m
(yjkay/k)a(yk/aykj)

Sending-end currents

I'k = ;}c(vj_vk) T y]]:lv

j J’ Iy =

J

If yﬁ( = y,fj : same relation but equivalent to I1 circuit:

s
y Jk

reference point



Line model

Ij’S/ J > s m s m ~ k Sk i
(yjkay/k)a(yk/aykj)

Sending-end currents

Ijk = ;C(VJ-—V,{) T yj}'j VJ”

Li = yi(Vi=V) + yi Vi

Recall: bus injection models relate nodal variables (s, V') and are suitable for general networks

H H
s= 2 () (WF=vv) + () 1y

k:j~k



Line model

Sending-end currents

L = yp(Vi=V) + i

f %

(Y

J

Branch flow models: key features
* |nvolve branch variables as well

Equivalent to bus injection model

= i Vi=V) + ¥ Vi

Particularly suitable for distribution systems which are mostly radial networks
Variables contain no voltage/current phase angles (only magnitudes)
Can recover voltage/current angles due to tree topology



Radial network
With shunt admittances: variables
For each bus J
* 5, 1= (p;,q;) or s; := p; + iq; : power injection
* Vil squared voltage magnitude

For each branch (J, k)
. (fjk, fkj> : squared magnitude of sending-end currentj — k, and k — j
* Sjx 1= (ij, ij> or Sy = Py +10Q; : sending-end power j — k; also S;; from k — j

J J

The variables v; and (f-k, fkj> contain no angle information
Angles must be recovered from a power flow solution x := (s, v, Z, S) € R3WV+D+6M

* This is easy for radial networks; trickier for meshed networks



Radial network

With shunt admittances

For each line (J, k) let:
@y = 1+ 2z vy, ;= 1+,
ay. = ay; if and only if yi' = yi;

ay = oy, = Lifandonly if yi' = yi; =0



Radial network

With shunt admittances

S; = Z S]'k power balance
kij~k



Radial network

With shunt admittances

§; = Z Sjk power balance
kij~k
2 2
‘ S]k‘ =V Z’ﬂjka ‘ Skj ‘ Vi fkj branch power magnitude

The complex notation is only shorthand for real Vequa’tions‘
P = ZPJk’ q; = Zij
k k

2 2 _ p2 2
= P+ 0g VWly = P+ 0
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Radial network

With shunt admittances

§; = Z Sjk power balance
kij~k
2 2
‘ Sjk ‘ =V Z’ﬂjka ‘ Skj ‘ Vi fkj branch power magnitude
2 H 2
Q| Vi— Ve = 2 Re <ajk (Z]Sk> S]k) — zj}{ fjk Ohm'’s law, KCL (magnitude)




Radial network

With shunt admittances

5= D, Si
k:j

Jj~k
2 2
‘Sjk‘ = Vil ‘Skj‘ Vi Oy
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2(N + 1) + 6M real equations in 3(N + 1) + 6M real vars x := (s, v, £, S) € R3N+D+6M

power balance

branch power magnitude

Ohm'’s law, KCL (magnitude)

cyczle condition:
ViV =V V)"



Radial network

With shunt admittances

55 = Z Sjk power balance
kij~k
2 2
‘ Sjk ‘ =V fjk, ‘ Skj ‘ Vi fkj branch power magnitude
2 H 2
I S S ’ .
a]k Vj — Vk = 2 Re a]k (ij> ‘S]k - ij f]k Ohm'’s |aW, KCL (magnltude)
2 H 2
— s _ S
akj Vk — VJ = 2 Re akj (ij> Sk] Zk] fk]
H H H H H cycle condition:
— S — _ s - — 4
Fik Vi (ij> SJ = | %Yk <ij> Skj ViVi=ViV)

Any x = (s,v, 7, S) € R3WNTD+OM ypat satisfies these equations with (v, £) > 0 is a power flow solution



Radial network

With shunt admittances

All equations are linear in x, except the quadratic equalities

2
5]

There may be 0, 1, or >1 power flow solutions

2
‘ Vi fkj

= Vil ‘ Sk

This can be relaxed to second-order cone constraint in OPF (later)



Example

2-bus network

Buses j and k connected by a transformer characterized by (K, y°, ") (voltage gain K may be complex)

Line parameters are:

j‘)S 1 _ 5’]S
Vi = o Vi = <1——>ys, Yo = Vg

K K

BFM:
Vj_Vk/|K|2: 2Re<(ZS)HSJ) - |7 2fjk
|alk| v, v, = 2Re(a (ZS)Hsk) - k2|4,

2
‘sj‘ = V;Cy, |sk| = Wy
= (2) s = (@K1?) v -25

(1 = K)y* +3)

|K|?

ZS:= (j}S)—l
a:= (1 + 75



Radial network

Without shunt admittances
Assume: yﬁ{ = yg]. and yji =y; =0
Then

2. Z/ﬂkabﬂ]k and Sk] + Sjk = jgklxﬂjk

J
Substitute <fkj, Skj> in terms of <fjk, Sjk) into previous power flow equations yields original
DistFlow equations of [Baran-Wu 1989]

Can use directed graph with vars (z,”-k, S]k> defined only in direction of linesj = k € E



Radial network

Without shunt admittances

DistFlow equations [Baran-Wu 1989]:

—_ S
Z Sjk = Z (Sij — szﬂj) + S; power balance
kij—k i:i—j
v, — vy = 7 Re (ZﬁcHSjk> _ |Z]:S]; |2Lﬂjk Ohm’s law (magnitude)
ij'k = | Sjk |2 branch power magnitude

» Cycle condition becomes vacuous (because S;; := Zﬁfjk — S

« 2(N+ 1) 4+ 2M real equations in 3(N + 1) + 3M real vars
- e.g. given (v, s;,j € N), there are 4N + 2 equations in 4N + 2 vars (sp, v;,j € N, 7, S)



Radial network

Without shunt admittances

All equations are linear in x, except the quadratic equalities
2
Vit = ‘ Sjk‘
There may be 0, 1, or >1 power flow solutions

This can be relaxed to second-order cone constraint in OPF (later)



Angle recovery

Given power flow solution x := (s, v, £, S), define nonlinear functions

H
ﬂjk(x) = 4<a]¥vj— (Z]s) S] >

. H
A(akj v — (st) Skj>

Cycle condition ensures that (,Bjk(x), ﬂkj(x)) are angle differences across line (Jj, k), i.e.,

3 voltage angles @ s.t. f(x) =C'0

ﬂkj(x) :

Angle recovery:

1. Tree topology =—> 6 = C(CTC)_I,B(X) + 1

2. VJ = \/Vjeiej, Ijk = fjkei<9-i_45ik>



Summary

BFM for radial network

5= 2 Sie |Sjk
kij~k
2 H 2 Yik = Yy Z Sik = 2 (Sij - Zijfi') T
q
2 A\H 2 vi—v = 2 Re (
_ 2
H TN Vil = | Syl

“j'/j Vi T (Zﬁc) Six = <0‘/'; Vi — <sz]> Skj) DistFlow

BFM-radial

H 2
ijSjk> — 2"




Example: power flow solution

2-bus network
Two buses 0 and 1 connected by a line with series impedance z = r + ix (graph orientation: up)

po—1C =—p;, qo—x =—q
Vi—Vvy= 2 (rpl + qu) — (rP+x3¢
pi+ai = vt
Given:r=x=1landvy,=1, g, =0, find (py, gy, v;, ) and show that (v;(p,), p;) forms an ellipse

Solution
Eliminate v, = 2¢% — (14 2p)¢ + pf = 0. Hence (A :=4p,(1 —p,) + 1)

1 1
¢ = 4<1+2p1+\/ ) Py = 4(1—2p1+\/ ) do = Z<1+2le_r\/A>
1
— 5<1+2p11\/A>



Example: power flow solution

2-bus network

Solution
The solution v, = (1 +2p, F \/X)/Z is equivalent to:
8 —4] |~ P1
v - 2 I =1
[P1 V1] [_4 4] [vll [0 21, | +
CT
A

Points x € R" satisfying

x—o)TAx—¢) = xTAx — 2cTx + || = 1

form an ellipse if A is real (symmetric) and positive definite

P o

=l VV[/'L!?&& h

—
—oan A

L2



Hollow solution set

Let
Xgi = {x:=(,0,7,95) € RON+3 . y satisfies DistFlow equations }

Theorem

Suppose network graph G is connected. If X and X are distinct solutions in Xy with vV = ¥,
then no convex combination of X and X can be in Xqs. In particular, Xgs is nonconvex.



Outline

2. Equivalence
« Extension to general network
* Equivalence of BFM and BIM

3. Backward forward sweep
4. Linear power flow model



Power flow models

Bus injection model

H H
y= 2 (n) (1r-vw) + () e

kij~k

Branch flow models
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H H H « Different vars and equations
Hy — < s > S. = Hy — ( S) S » Both describe Kirchhoff’s and Ohm’s laws
a.,. V. Z: . = a,.V 7. .
JkT k) Ik < ki ok K Y « Are they equivalent? In what sense?



Power flow models

BIM applies to general networks
BFM applies to radial networks only

To show their equivalence, we first need to extend BFM to general networks with cycles



General network

Complex form

Let y :=yy + vy and §; == yi + ¥

BFM for general network:

— Z S,
J & Jk Does not assume yjfjC = y,ij nor yﬁj = y,?} =0
o~ S _ o~ s This model looks similar to BIM complex form!
L = $uVi = VaVio Ly = SV =gV, « Itis a bridge between BFM and BIM

— H — H
Se= V1Y, Sy = Vil



General network

Real form
S = Z Sjk power balance
kij~k
2 2 _
‘ Sjk‘ = v fjk’ ‘ Skj‘ Vi fkj branch power magnitude
g : 2 Ohm’s law, KCL (magnitude)
v — s _ s : e

30 € R"™! st fu(x) = 6,-0,, P = 6,—0, cycle condition

2(N + 1) + 6M real equations in 3(N + 1) + 6M real vars x := (s, v, 2, S) € R3V+D+6M



General network

Real form

Major simplification for radial network: nonlinear cycle condition becomes linear in x

All other equations remain the same

i = 2= () )

H | H H H
Pi(x) = 4(“/;!%— <Zj§<> Skj> | * 05%‘9‘(%5() Sk = (“E“’k—<z/fj> Skj>

radial network

px) = o 0 for some 6 € RN+ |
= |

general network



Equivalence

BFM-radial
: ” — ‘ |
5= S |Sjk = V%o |Skj Vi ly DistFlow
kijke e :
2 H 2 | Y= ZSJ'k: Z(Sij—zi;-fij)+sj
fﬁ‘ H 2
) y y— v, = 2Re<zr‘ S-)—Iz-sl l
’akj| v —v; = 2Re <akj <z;;> Skj) - sz a" ik ik Djk LT jik
_ 2
y N Vit = 1Sul”
H s — H s
L Vi — <ij) Sik = (%-Vk - (ij> Skj)
radial BFM-complex
network proee ,
5= 2 S
_ ﬁ _ ~ _ _ ~ _
5= Z Sjke |SJk| = Vil |Skj| Vi Ly L= 54Vi=viVie Ly = Vi =Y
ek _ H _ H
2 H 2 Sie = Vil Sy = Vily
’ajk‘ vi—v, = 2Re <ajk <zj§€> Sjk> - zjsk Ci
’ 2 R H 2
“kj‘ Ve v = 2 e(“kj <Zi§]> Skj) — %] % H - .
v= 2 0a) (e -w) + () e
10 € R s.t. ,Bjk(x) = 9J — 0, ﬁkj(x) = 0, — GJ kijrck , ,
' BIM-complex




Equivalence

BFM-radial
2 ' 7 ‘ .
5= Sjk’ |Sjk Vi ko |Skj Vi ly DistFlow
kejimk — ,
: : 2 | %= Y% 2 5= Z<Sz’j—z§fﬁ)+%
’“ﬂc‘ vi—v = 2Re <0‘j <Zj§<> Sjk) — % ik W= =0 ik jtims]
fﬁ‘ Y
2 H 2 Vi— V= 2Re<Z:;CS.k) |Z |

2
| Six |~

radial
network

proof focuses on these two

/ BFM-complex
2 2 : kij~k
_ ﬁ _ = _ o~ _
5= 2 Se |ka| = Vil |Skj| iy lie= iV =iV lkj = yijk YY)
kij~k
2 J H 2 S = Vilis Sy =
’ajk‘ V=V = 2Re <ajk <zj§€> Sjk> — zjsk fjk
’ 2 R H 2
- 4t 8 b= SO o) + (e
30 € RV sit. fux) = 6,—6,, Bx) = 6,—6, _kik
' BIM—compIex




Equivalence

Branch flow models have been most useful for radial networks
» Different variants have different vars and different equations
* Are they equivalent, in what sense?

All BFM variants are equivalent to each other, and to BIM
» BFM-radial: tree topology (cycle condition: linear)
. DistFlow: tree topology with yJSk = ylij and yi' = y;; = 0 (cycle condition: vacuous)
* BFM-real: BFM for general topology (cycle condition: nonlinear)
 BFM-complex: bridge to BIM-complex

We next state and prove these equivalence relations



Equivalence

Solution set

BIM-complex

H H
_ S 2 m 2
5j = 2(yj> <|Vj| ‘VijH) + <ij-) Vil

kij~k

Solution set

V:= {(s, V) e C*"D | Vsatisfies BIM}



Equivalence

Solution set

Branch flow models: solution sets

~

X = {%:(s,V,1,8) € C*W+D+M | 3 satisfies BFM complex }
Xmeshed = 1x: (5,,7,8) € RIWVHDTOM) |+ satisfies BFM real }
{x:(s,v,¢,S) € RON*3 | x satisfies BFM radial }

Xtree -
de .

{x : (5,v,4,8) € ROV | x satisfies BFM radial, 5 = Y, Vi = ;! = ()}

Definition: Two sets A and B are equivalent (A = B) if there is a bijection between them

X is a power flow solution of A iff g(x) is a power flow solution of B



Equivalence

Theorem

Suppose G is connected

1. V=X = Xineshed

2. If Gisatree, then Xmeshed = Xtree

3. IfGisatreeandy; =y, yi =Y = 0, then Xiree = Xyf



Equivalence

Bus injection models and branch flow models are equivalent
* Any result proved in one model holds also in another model

Some results are easier to formulate / prove in one model than the other
» BIM: semidefinite relaxation of OPF (later)
* BFM: some exact relation proofs

Should freely use whichever is more convenient for problem at hand

BFM is particularly suitable for modeling distribution systems
* Tree topology allows efficient computation of power flows (BFS)

« Models and relaxations extend to unbalanced 3¢ networks
* Seems to be much more numerically stable than BIM for large networks



Equivalence

Xtree
' 2 ' 2 ]
5= S |Sjk Vi e |Skj Vil Xdf
kijrk - :
z : z i X S= X (Siat)
’ajk‘ vi—v.= 2Re <ajk <Zﬁ<> SJk) - Zﬁc ik Vie=y =0 lkj-k iii—j
fﬁ‘ H )
) y ’ y— v, = 2Re<zr‘ S-)—Iz-sl l
| "=y = 2Re (ay (1) 54) - || 4 i o) LGl
2
y N Vit = 1Sul”
_H s — H s
X Vi — <ij) Six = (akjvk - (ij> Skj)
proof focuses on these two -
radial / X
network | T
| Xmeshed l S; = Z Siks
2 2 ' ’ kij~k
_ ﬁ _ ~ _ _ ~ _
5= 2 S |ka| = Vilje |Skj| Vi L L= 5ilVi = Ve Ly = TV =DV
kj~k _ H _ H
2 H 2 Sjk . leik’, Skj - Vklkj
’ajk‘ vi—v, = 2Re <ajk <zj§€> Sjk> — % ik
’ 2 R H 2
5= 2 (yﬁc) <|‘G|2—VV1'?) + (y,’f) Vi |?
N+1 _ _ —
30 € RYt' s.t. ,Bjk(x) S ¢9j—9k, ,Bk]-(x) = ek—ej ke y ,




Equivalence proof
Proof V = X and Xtree = Xdf

Straightforward.

X
5 = Z S
kijk
Bie= 3V =2V By = TgVie= V]
Sy = VJI; Skj Vkllg.

Xdf

kij—k

i:i—j

2
‘jifik, = |Sjk|

Z S]k _ Z <S,],;Zi~]‘.fi.> +Sj;

sH
Zx Sjk

2
>—|Z}}c| ‘i




Xmeshed 5= L Sieo
Kjk
2 2 M _ s _ .5
5= D S ‘Sjk‘ = vl ‘Skj‘ = nly G = 5iVi= Ve L = TV =y
kejk Sp = VIl S, = VI

Equivalence proof ... s
Proof X = Xmeshed e - = 200 (o (2)'2) - [

|
30 € RV st fu(0) = 6,-6, B0 = 6,6
Fix X :=(s,V,1,S) € X. Define
— 2 . 2 . 2
v = | Vi]7, Co = L™, Cri = 1l
Will show x := (5,v,7,S) € Xmeshed

It suffices to show

2 H
‘ajk‘ Vi— Vg = 2Re<ajk (z;}() S]> _

0,6, [y(x) = 6,—6

2

S
Zie| T

30 € RM! st f,(0)

Sik

For the 1st equation, write V;, = a;V; — zj}{ — | and taking square magnitude on both sides.

i
Vi

X

V.

i



X

Xmeshed = L Sje
Kk
2 2 M - & s - & \8
5= Zsjk’ ‘Sjk‘ = Vil ‘Skj‘ = Wty i = JiV; = ViVee Ly = SV Vi
ik Sp= VI S, = VI

Equivalence proof | ... -
Proof X = Xieshed oy 20w (o, )"5) - [af %

30 € RV st fu(0) = 6,-6, B0 = 6,6

2
s
Zjk | Cik

Fix ¥ := (s, V,1,S) € X. Define
. 2 . 2 L 2
vj.—|Vj| , fjk.—lljkl , fkj.—|lkj|
Will show x := (5,v,7,S) € Xmeshed
For the 2nd equation, we have

H H
2 2 s
Wi = allviP=(5) Se vV = vl - () S



Xmeshed %= L Sje

2 2 —p - A g s
5= 2 Se ‘S.fk‘ = V% ‘Skf‘ = Wty o= 5V =5V g = FgVi— Dy

Equivalence proof |.;..-(.cis)- . e

|
Proof X = Xmeshed ] == 2R (s ()" 5,) - [a]

30 € RV st fu(0) = 6,-6, B0 = 6,6

Fix ¥ := (s, V,1,S) € X. Define
. 2 e 2 o 2
Vj'_lvjl ) fjk-—|1jk| ) Z’ﬂkj'_llkjl
Will show x := (5,v,7,S) € Xmeshed

For the 2nd equation, we have

- -
2 s 2 s
Ve = allViE-(z) S vV = allviP- () S,

Recall the nonlinear functions

H
Pi(x) = 4<%‘IZVJ‘_ <Zﬁc> S]k> = £V, =2V,

H
ﬂkj(x) = 4<agvk— <Z]§<> Skj) = LVk—LVj

QJ = AVJ-

kijk

X

V.

i



Xmeshed = L Sje
kejk
2 2 M - s - & \8
5= 2 S ‘Sjk‘ = Viljes ‘Skj‘ = wly = V=9V by = FgVi—y
kejk S, =V, 11_';, Sy = Vi 1;,.

a/k

Equivalence proof | ... ...«(.crs) -
Proof X = Xmeshed e - = 200 (o (2)'2) - [

10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (5,v,7,S) € Xmesheg- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje J, Iy == [Cye

Will show X := (s, V, I, S) € X
It suffices to show

S = Vil i = 5V = Vi

X

Vi



Xmeshed 5= L Sieo
Kk
2 2 M _ s _ .5
5= D S ‘Sjk‘ = vl ‘Skj‘ = nly G = 5iVi= Ve L = TV =y
kejk Sp = VIl S, = VI

A

Equivalence proof | ... ...«(.crs) -
Proof X = Xmeshed e - = 200 (o (2)'2) - [

10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (5,v,7,S) € Xmesheg- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje i, Iy = 1/fjke

Will show X := (s, V, I, S) € X
It suffices to show
— H %
Sk = Vils e = FuVi = ViV
2
For the 1st equation, we have from ‘ S]k‘
— H —
ISl = VI, 28, = 2Vi— 2y

- H
i.e., Sjk lejk

= fjk and construction of (V, I):

X

V}



Xmeshed 5= kLA ik
-

2 2 < > _
5= 25 ‘S.ik‘ = Yl ‘Skf‘ = il lie = V=0V lg = IV

kj~k Sy = VI

Equivalence proof | ... ...«(.crs) -
Proof X = Xmeshed e - = 200 (o (2)'2) - [

10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (s,v,7,S) € Xmesheq- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje i, Iy = 1/fjke

Will show X := (s, V, I, S) € X
It suffices to show

S = Vil i = 5V = Vi

A

Note that the 2nd equation is equivalent to (recall j/;k = f;c + yjf}:):

. H
5 (50v)" = a-ve = W = aty-(3)'s

H
We now show that V]V,'C'I and ajgvj — <zj§(> Sjk have equal magnitudes and angles.

X

J
Sy = Vil



Xmeshed

2 2 M ~ S 5 K
5= D S ‘S.ik‘ = vl ‘Skj‘ = nly L= 3uVi=%Ve Iy = JgVi—yy

Sy = Vil

A

Equivalence proof | ... ...«(.crs) -
Proof X = Xmeshed e - = 200 (o (2)'2) - [

10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (s,v,7,S) € Xmesheq- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje i, Iy = 1/fjke

Will show X := (s, V, I, S) € X
It suffices to show

S = Vil i = 5V = Vi

H
By definition, f;(x) := 4<aj¢vj— <ZJ§<> S]k> = 0-0, = L<VJVE>

5= 2 S

kijk

S = Vili';’

X

Vj



Xmeshed = L Sje
2 2 M - & s - & s
5= 2 Se ‘Sjk‘ = Viljes ‘Skj‘ = wly = FuVi =%V By = Vi =y

Equivalence proof |. . ..«(.rs)-

s
Proof X = Xeshed o] == 2Re (a ()" 50) - [ 0

10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (s,v,7,S) € Xmesheq- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje J, Iy == [Cye

Will show X := (s, V, I, S) € X
It suffices to show

S = Vil i = 5V = Vi

For magnitude:

2

H
XikVi — Lk

kijk

Vf Ii‘;’

X

Sy = Vi I;j.

Vi



X

Xmeshed = L Sje
kijk
2 2 M 5 s 0 X
5= 2 Se ‘Sjk‘ = Vil ‘Skj‘ = ity B = 3V; =0V g = JgVe= 3]
kejk S, =V, 11_';, Sy = Vi 1;,.

A

Equivalence proof
Proof X = Xmeshed

‘zv v = 2Re< (zj-.;,)HS,,{> - ‘z/:‘,;rf,k
‘2‘) -V = 2Re<ak]. (%)H Skf) - |Zlfj|2fkj
10 e RV st fi(0) = 6,-6. Py = 6,—6

Conversely, fix x := (5,v,7,S) € Xmesheg- Construct (V, I) from x:

_ i0; . i<9j—45jk>
= \/Vje i, Iy = 1/fjke

Will show X := (s, V, I, S) € X
It suffices to show

S = Vil i = 5V = Vi

(Xk]

This completes the proof of X = Xmeshed



Equivalence proof o (o)

Proof X eshed = Xtree - () 5= (- (2)'s,)

Suppose G is a tree. radial networkt Xmeshed

Will show x := (S, V, f, S) S XmeShed — XE Xtree 5 = k:z:‘ijk’ ‘Sik‘z = Vil ‘Skj‘z = Wl
% zfjk

It suffices to show nonlinear cycle condition becomes linear: Jau] v = 2R (ae (51)"s4) -
ﬂ_]k(-x) = Q] - ek - - ﬁk](—x) ‘ 2vk—vj: 2Re <0’sz (z,fj)H Skj> - ‘z,ﬁj‘szj

H H H 30 € RM! st fi(0) = 0,- 6, Bx) = 6,-6
H, _ —_ H _ s
= G (ij> Sik = (akj Vi <ij> Skj)

Necessity: suppose x satisfies LHS. Then angles of RHS satisfy:

2(afy—58,) = B = — B0 = — (v~ 5,

We now show that they have equal magnitudes as well:

H 2 2
H, _ s
Fji Vj (ij> Sik

H
2 2 H H
= lay v} + 125171 Si|* = 2vRe <0‘ij]§< Sjk> = V% A (Zé) %




Equivalence proof

Proof Xmeshed = Xtree

Suppose G is a tree.
Will show x := (5,v,7,5) € Xmeshed < X € Xyree

It suffices to show nonlinear cycle condition becomes linear:

Pi(x) = 4(%?"]' - ZﬁHSjk) = 0,6
H : H ; "
= v - (z]*z) Sjk = <akj v — (Z;;> Skj>

Sufficiency: suppose x satisfies RHS.

Xtree

Z Z
5= 2 S ‘S/k‘ = Vil ‘Sk/‘ = Wiy
kijmk

2 A\H
vi—v. = 2Re <{ljk (z/‘l\) S/k) -

H 2
v—v;= 2Re <akj (z,fj) Skj> - ‘z,fl| Gy
H

2
ik

s
ij

ak]-

" H H H
X Vi — (Z,’Yk) Si = (akjvk - (Z/f,) Skf>
radial network X
meshed
2 2
5= 2 S ‘Sik‘ = Vil ‘Skj‘ = nly

kij~k

2 H
a k‘ vi—v, = 2Re <(l]k (Z/\A) S/k> —
2 H 2
Ve — Vs <ak,- (z,fj) Skj> - ‘z,ﬁj‘ Cij

30 € R st fu(0) = 6,-6, fyx) = 6,-6

2

5
G| G

&

Recall the angle recovery procedure where, since G is a tree, there is a unique voltage angle (up to

a reference angle) @ := C(CTC)™'f(x) + ¢1 st. p(x) = C'0

i.e., x satisfies the LHS.
This completes the equivalence proof.



Outline

3. Backward forward sweep
* General BFS
« Example algorithms

4. Linear power flow model



Backward forward sweep

General formulation

Efficient solution method for power flow equations
» Special Gauss-Seidel method that is applicable only to radial networks

Partition variables into two groups x and y

» Typically, x are branch variables (e.g. line currents) and y are nodal variables (bus voltages)
Design power flow equations as fixed points: x = f(x,y), y = g(x,y)
« Choose (f, g) to have a spatially recursive structure enabled by tree topology

Consists of an outer loop where each outer iteration is implemented by two inner loops
 Quter loop: temporal update over ¢ of (x(), y(?)) to converge to a fixed point

« Backward sweep at ¢ : spatial Gauss-Seidel update over nodes j of xj(t), with y(f — 1) held fixed

. Forward sweep at ¢ : spatial Gauss-Seidel update over nodes j of yj(t), with newly computed x(¢) held fixed

Different BFS algorithms differ in choice of variables (x, y) and design of (f, g)

 (f, g) that is spatially recursive automatically translates into a BFS algorithm



Backward forward sweep

Spatially recursive Gauss-Seidel

At each outer iteration 7, spatial Gauss-Seidel update over j normally takes the form
x(0) = [0 (@), ..., % (@), x(t — 1), ..., x, (= 1); y(r—1))
W) = g@); (D, s ¥y D, = Dy o3, (0 = 1)

Functions (f, g) are spatially recursive if 0 %

spatial initialization
yi=8 (o3 x)

. Given y,j;- depends on x only through XT: (T]‘? : subtree rooted at j)

. Given x, 8 depends on y only through VP (PJ‘3 : path from O to j) X=f(ry) P

Gauss-Seidel update at t with spatially recursive (f, )

Bs: x() = f(xr; ye-1D)
/ T \ Yi=8 (Ve X)
s (0 = g (x0: e A

(a) Backward sweep (b) Forward sweep



Example: complex form BFM

Assumptions: radial network and zﬁc = z,fj

» (Can use directed graph (with down orientation) and involve line variables only in direction of the lines
» Can uniquely identify a line variable by its from-node or to-node

Then complex form BFM becomes
— H _ 5
5 = 2Vl L = V-V
kij~k
Given: (Vo, Sj’j € N), find (So, ‘/],] € N, Ijk’ Sjk’j — k = E)



Example: complex form BFM

Complex form BFM

_ H _ = . <.
s = X VI L= BVi- v P N -y B s
kij~k JT } !m T
8- ]1 ¥ s
Given: (V,, Sj,j € N), find (s, Vj,j eN, Ijk, Sjk,j — k€E) J 3 g x

Design partitioning (x, y) and corresponding spatially recursive power flow equations (f, g)

« X :line currents Ijsk across impedance zﬁ{

- Y :nodal voltages V;

« Given a solution (Vj, I]Sk) all other quantities (e.g. Ijk, Sjk) can be computed

. Can also design BFS that computes sending-end line currents Ijk instead of I]Sk (Exercise)



Example: complex form BFM
Spatially recursive (f, 2)

Since I]”}C =1 — yJTZVj, KCL at each bus j

H
S'] S m S m
(v + (5-0v) = X (o)
J kij—k

Spatially recursive power flow equations (f, g):

H
S
J . .
= Yoo <7) | = g ()
kijj—k J
V= V- gl = g(xom)

where i := i(j) is unique parent of j and yI := yi' + 3} yI!




Example: complex form BFM
BFS

Spatially recursive power flow equations (f, g): oy %
H
-yl = 5 ()

s
I ¥

S
I

|l
e

|
< |

Vi= Vil = g(xom)

This translates automatically to a BFS algorithm with inner loops:

Bs: x50 = f(vr: ya- 1)

method for weakly meshed distribution and transmission networks. IEEE Transactions on Power
Systems, 3(2):753-762, May 1988.

FS' y](t) = gj (’x( [) ; yP;(t) > D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo. A compensation-based power flow



Example: complex form BFM

Outer loop

while stopping criterion not met do

(a) t < t+1;
(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

5() « fi(am@ye-1),  jeN
(c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

i)« g (x0sym0),  jeN



Example: complex form BFM

(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

S H
L(t) Z w(r) — <(V](t]1)) y’}}%—(tl)), i — jeE

k:j—k

Given all voltages V(r — 1)

Given all currents I]tz(t) in previous layer (in T;)

Update all currents Ig.(t) in present layer (reverse breadth-first search)



Example: complex form BFM

(¢c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

Vilt) = Vilt) - 150, JEN

Given all currents I°(t — 1)
Given voltage V/(7) at parent of j (in P})
Update VJ-(Z) (breadth-first or depth-first search)



Example: DistFlow model

. . . S __ -8 m __ \,m __
Assumptions: radial network, Zip = % and Vik =W = 0

» (Can use directed graph (with up orientation) and involve line variables only in direction of the lines
* Can uniquely identify a line variable by its from-node or to-node

Given: (V,, Sj,j € N), find (s, vj,j e N, fjk, Sjk,j —k€E)

Design partitioning (x, y) and corresponding spatially recursive power flow equations (f, g)

- Nodal voltages: y := (v;,j € N)

« Given a solution (x, y), s, can be computed



Example: DistFlow model
Spatially recursive (f, 2)

Backward sweep function f; (ij§ y):

- ., ISP
Si = 8 + 2 (Skj‘zkj kj>’ Cji = V)
k:k—j J

Forward sweep function g (x,yp;>:

_ H 2
v, = v + 2Re<z.sl. Sji)—lz;il fji

This translates automatically to a BFS algorithm with inner loops:

Bs: x() = f(xr; Y- D)

Fs: 0 = g (x0: yp0)



Outline

4. Linear power flow model
« With shunt admittances
* Without shunt admittances
e Linear solution and properties



Linear models

Advantages

Linear approximations of BFM have two advantages
1. Given nodal injections s, voltages v/ and line flows S'" can be solved explicitly
2. The linear solution (v"n, S"n) provides bounds on (v, §) from power flow solutions to

nonlinear DistFlow models

Linear approximations are reasonable when line losses ijfjk are small compared with line flows S



With shunt admittances

kj~k kij~k
| 2 R " ’ 2 H
a]k| Vj — Vk = 2 e <a]k <Zi> S]k> — S Lﬂ]k
! G| Vi—vie= 2Re| ay |z ) Si
2 H 2 4 =0
‘ akj ’ Vi V] = 2 Re <Olk] <ij> Sk_]> _W]ﬁ 2 H

BFM-radial

BFM-linear



With shunt admittances

6N + 2 linear equations in 7N + 3 real
variables (s, v, S)

Power flow problem: given (vy, s;,j € N), solve

for remaining SN + 2 vars (s, V;,J € N)

More equations than unknowns, but they are
typically linearly dependent

H, _
Ay Vj <

BFM-linear

5

Vj - Vk
H

k) SJk



Example

2-bus network

Buses j and k connected by a transformer characterized by (K, y°, ") (voltage gain K may be
complex). Let a := (1 + Z°y™).

Linear BFM: 4 linear equations in 6 vars (s, V)

Vj—Vk/|K|2 = 2Re<<5S)HSj>

|a/K| v - v, = 2Re (a(2)"s,)

~s\ H ~ 2 g
vj—(zs) s; = (a/lKl )vk—zssk



Example

2-bus network
Power flow problem: given (py, g;, v)), find (p;, ¢, v)

Assume: " =0 s.t. a = 1. Then

- - _ _
2F 2X 1/|K2| » 0 0 1 e
il = | 2 =
Fox UIKP | |y FoxoL| ],
€ -7 0] L7
-% 7 UIK| : i
A
(FRHFE+D) 0 0 |
=2 4 =2
Elementary row operation reduces A to a rank-3 matrix: 0 X 0
0 0 /K|

0 0 0



Without shunt admittances



BFM-radial

. .
= V%o

5

5= 2 Sk |Sjk

kejmk

2 H 2
— N _ N

2 H 2
— N _ N

’ H
= (a,;!vk — (z,i}) Skj)

o

Vi DistFlow
S — = v — § .. .
b Y= Yy Z SJ'k - Z (SU Zijfl]) T 5
y]',’f = y,’;? =0 kij—k ii—j

| _ sH s 12
V=V = 2Re<zijjk)—|zjk| C

2
Vit = 18"

2 Sk= 2 Sits
kij—k iii—j

— H |
ViV = 72'Re (zj}( Sjk>

LinDistFlow




BFM-radial

5= 2 S
kij~k
2
Ay| vi—vp= 2Re|a

ik
y .

BFM-linear

2 o ' j
2 Sk | Sic| = Vil |Skj Vil
kejk
2 ] yjék = ylij
|ajk| vi—v, = 2Re | ay Sjk y=yr=0
, —
H " H "
s —
T Vi~ (ij> Sk =\ @V (ij S

=i
Vg = 0

DistFlow
Y osi= Y, (Sij—zi;fij) s
kijj—k iii—j

2
| S|

2 Sk= 2 Sty
k:j—k i:i—j ’
LinDistFlow




Without shunt admittances

LinDistFlow in vector form
Let

e C :bus-by-line (N + 1) X N incidence matrix

« D, = diag (rl,l S E) > (0 : diagonal matrix of line resistances

- D, :=diag (xl,l S E) > 0 : diagonal matrix of line reactances
Then LinDistFlow is:

s=CS, C'v=2(DP+D,Q)

Important features because of tree topology

« (Cis of rank 1 with null(C) = span(1)

« Reduced N X N incidence matrix C is nonsingular

A

e« C lhasa simple structure These features allow explicit linear solutions
and structural properties



Linear solution

T
Let C =: C?
C

Then LinDistFlow is:
S = CA’S, Sg = COT S
VOCO + CT"} — 2 <DI’P + DXQ)

Given (v, Sj,j € N), the remaining variables (so, vj,j eEN,S,l e E) can be obtained explicitly



Linear solution

Theorem [linear solution]

1. Linear solution is:
S = (Af_lf, S = COT(A?_lﬁ
b= vyl +2(Rp+X9)
where R := CA’_TDrCA’_1 and X := C_TDxé‘_l

2. R> 0 and X > 0 are positive matrices with

Ry = Z’”Z, Xjp = sz

lePNP, lePNP,

voltages = v, + correction term (]5, @)

Since entries of (R, X)) are nonnegative,
positive injections (p, g) always increase v



Analytical properties
Special graph orientations
Down orientation: pointing away from bus 0

lin _ olin
Z S = S 5

kij—k

lin lin _ Hclin
()
(/)

Up orientation: pointing towards bus O

alin _ alin
Sji = Skj + 5
k:k—j
—lin  <lin _ Halin

/
\
~
N

)
s
-
I
\
~
N
)
I
( (
N N
~ ~
N N
s s
-



Analytical properties

Corollary

1. Forlines (i,j) € E, Sl!}n = gjl.iin. Moreover

SlI-JI-n = — Z Sier I =] line flow Sll.]i.n to j supplies all loads — s, in subtree T,
keTj
olin _ . . . <lin . . . .
Sji — Z Sk J =1 line flow Sl.j from j come from all injections s, in subtree TJ-
keTj

> @
( /
N \
\ AN
/ )
P .

( ’
~ N
~ ~
\ N
/ )
° /
2 2 : i
N N (
N N S
7 7 )}
- - B
- - L
< <
A A S

(
\

-

N

N =li
2. Forbusesj € N, vj'n = vj'n =V, + 22 (Rjkpk + Xjqu>
k



Analytical properties
Nonlinear DistFlow solution

Linear DistFlow model ignores line losses = simple relation between line flows (Sl-j, gji) and
injections s,

Given s, nonlinear DistFlow solutions (v, £, .S) satisfy the recursion in up orientation

Sl'j= —_ ZSk + Zl]fzj-l_ Zzlfl , Vj= Vo —Z(zRe(ZlHSD—llezbﬂl)

kETj ZETJ le PJ

and solutions (v, L7, §) satisfy the recursion in down orientation

Si= X5 -2l | v=w+ > (2Re(4f5) - 121°7)

keT; leT; leP;

AN

line losses



Bounds on nonlinear solutions

Corollary [bounds on nonlinear solutions]

; ; lin
1. Fori—>j€E€ES;2 Sij LinDistFlow ignores losses and underestimates
required power to supply loads

e Ny — 5 < Sin _ lin
3. ForjeN,v;=V; <V, =V,

proving 7; < V]l-'n is easy;

proving directly v; < v]!in is not



Summary

1. Radial network
 BFM with and without shunt admittances
* Nonlinear (quadratic) power flow equations

2. Equivalence
 BFM variants are all equivalent, and equivalent to BIM

3. Backward forward sweep
» Gauss-Seidel method that exploits spatially recursive structure enabled by tree topology

4. Linear power flow model
* Linear BFM with and without shunt admittances
» Explicit linear solution and bounds on nonlinear solutions

5. Application: volt/var control

* Local and memoryless control can stabilize voltages and implicitly minimizes cost determined by
control design



