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Chapter 5  Branch flow models: radial networks
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Line model
1. Network 


•  : buses/nodes/terminals

•  : lines/branches/links/edges


2. Each line  is parameterized by  and 


•  : series and shunt admittances from  to 

•  : series and shunt admittances from  to 

• Models transmission or distribution lines, single-phase transformers

G := (N, E)
N := {0} ∪ N := {0} ∪ {1,…, N}
E ⊆ N × N

( j, k) (ys
jk, ym

jk) (ys
kj, ym

kj)
(ys
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jk) j k

(ys
kj, ym

kj) k j
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(a) One-line diagram

ỹ s13

y1 y2ỹm13 ỹm31

V2V3V1
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y

generator transformer line load

(b) Equivalent circuit model

Figure 4.6: Generator, transformer, transmission line and load. Changes: ỹs
13 ! ys

13, ỹm
13 ! ym

13 and ỹm
31 !

ym
31.

network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.

j k
Vj VkIjk ,Sjk

Ij , sj
Skj , Ikj

sk , Ik
( ysjk , y

m
jk ) , ( yskj , y

m
kj )

Figure 4.7: Network graph and notations.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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2 from k
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13 ! ys

13, ỹm
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can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
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For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances
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2 from k

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

kj(Vk − Vj) + ym
kj Vk,
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2. Current source
�
Jj,y j

�
. This is a device with a constant internal current Jj in parallel with an

admittance y j as shown in Figure 1.3(b). Its external model is the relation I j = Jj �y jVj between its
terminal voltage and current

�
Vj, I j

�
. This yields a relation s j = VjIHj = Vj

�
Jj � y jVj

�H between the
terminal variables

�
Vj,s j

�
.

3. Power source
�
s j,z j

�
. This is a device with a constant internal power s j in series with an impedance

z j. Its external model is the relation s j =
�
Vj � z jI j

�
IHj between (Vj, I j). Its terminal power is

s j = VjIHj = s j + z j|I j|2.

4. Impedance z j. The external (and internal) model is Vj = z jI j and s j =
��Vj

��2
/zHj .

We often assume the voltage, current, or power sources are ideal in which case z j and y j are zero.

4.1.2 Single-phase line

In Chapter 2.2.2 we describe the P circuit model of a single-phase transmission or distribution line. It
is also a per-phase model of balanced three-phase lines. A line has two terminals ( j,k) and is specified
by a three-tuple (ys

jk,y
m
jk,y

m
k j) 2 C

3 where ys
jk = ys

k j is the series admittance of the line, ym
jk is the shunt

admittance of the line at terminal j, and ym
k j is the shunt admittance of the line at terminal k; see Figure 4.1.

Recall that (ym
jk,y

m
k j) models the line capacitance, called line charging or shunt admittances of line ( j,k),

Vj

Ijk ,Sjk

Vk

Skj , Ikj

reference point

ymjk

ysjk

ymkj

Figure 4.1: P circuit model of a single-phase line.

and the currents through these shunt admittances model the current supplied to the line capacitance called
the charging current.

Associated with terminal j is the terminal voltage Vj, and the sending-end line current I jk and power
S jk from j to k. Similarly, associated with terminal k is (Vk, Ik j,Sk j) 2C

3. Unlike in Chapter 2.2.2 we have
defined here Ik j to be the current injected from the right terminal into the line. A line is characterized by
the relation between the terminal voltages (Vj,Vk) and line currents

�
I jk, Ik j

�
or that between (Vj,Vk) and

line powers
�
S jk,Sk j

�
, which we now explain.

V I relation. The terminal voltages with respect to, and the sending-end currents flowing from the termi-
nals to, the reference point are related by

I jk = ys
jk(Vj �Vk) + ym

jk Vj, Ik j = ys
k j(Vk �Vj) + ym

k j Vk (4.1a)

If  : same relation but equivalent to  circuit: ys
jk = ys

kj Π
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network can therefore be modeled by an admittance matrix Y that relates nodal current injections and
nodal voltages (setting I3 = 0):
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The external behavior can be modeled by a 2⇥2 admittance matrix that relates (I1, I2) and (V1,V2) which
can be obtained from Y through Kron reduction making use of the fact that the internal injection I3 = 0;
see Chapter 4.2.6.

4.2.2 Line model

In general we model a power network by a connected undirected graph G = (N,E) where N := {0}[ N,
N := {1,2, . . . ,N} and E ✓ N ⇥ N. Each node j in N may represent a bus and each edge ( j,k) in E may
represent a transmission or distribution line or transformer. We also write j ⇠ k instead of ( j,k) 2 E. We
use “bus, node, terminal” interchangeably and “line, branch, link, edge” interchangeably.
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Figure 4.7: Network graph and notations.

For each line ( j,k) 2 E let
�
Vj,Vk

�
denote the terminal (or nodal) voltages at each end of the line. Let

I jk denote the sending-end line current from j to k and Ik j the sending-end line current from k to j. Each
line ( j,k) 2 E is characterized by four admittances

⇣
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jk

⌘
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2 from j to k and
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ys
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m
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⌘
2 C

2 from k

Recall: bus injection models relate nodal variables  and are suitable for general networks
(s, V)

sj = ∑
k:j∼k

(ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jj )

H
|Vj |

2

Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

kj(Vk − Vj) + ym
kj Vk,
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Sending-end currents

Ijk = ys

jk(Vj − Vk) + ym
jk Vj, Ikj = ys

kj(Vk − Vj) + ym
kj Vk,

Branch flow models: key features

• Involve branch variables as well

• Particularly suitable for distribution systems which are mostly radial networks

• Variables contain no voltage/current phase angles (only magnitudes)

• Can recover voltage/current angles due to tree topology

• Equivalent to bus injection model



Radial network
With shunt admittances: variables
For each bus 


•  or  : power injection


•  : squared voltage magnitude


For each branch 


•  : squared magnitude of sending-end current , and 


•   or   : sending-end power ; also  from 

j
sj := (pj, qj) sj := pj + iqj

vj

( j, k)

(ℓjk, ℓkj) j → k k → j
Sjk := (Pjk, Qjk) Sjk := Pjk + iQjk j → k Skj k → j

The variables  and  contain no angle information

Angles must be recovered from a power flow solution 


• This is easy for radial networks; trickier for meshed networks

vj (ℓjk, ℓkj)
x := (s, v, ℓ, S) ∈ ℝ3(N+1)+6M



Radial network
With shunt admittances

For each line   let:





  if and only if  


 if and only if 

( j, k)
αjk := 1 + zs

jk ym
jk , αkj := 1 + zs

kj ym
kj

αjk = αkj ym
jk = ym

kj

αjk = αkj = 1 ym
jk = ym

kj = 0

zs
jk := (ys

jk)
−1

, zs
kj := (ys

kj)
−1



Radial network
With shunt admittances

sj = ∑
k:j∼k

Sjk

Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

power balance

branch power magnitude

Ohm’s law, KCL (magnitude)

cycle condition



Radial network
With shunt admittances
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The complex notation is only shorthand for real equations


pj = ∑
k

Pjk, qj = ∑
k

Qjk

vjℓjk = P2
jk + Q2

jk, vkℓkj = P2
kj + Q2

kj



Radial network
With shunt admittances
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VjV̄k = (VkV̄j)𝖧



Radial network
With shunt admittances
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 real equations in  real vars 2(N + 1) + 6M 3(N + 1) + 6M x := (s, v, ℓ, S) ∈ ℝ3(N+1)+6M

cycle condition: 
VjV̄k = (VkV̄j)𝖧



Radial network
With shunt admittances

sj = ∑
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power balance

branch power magnitude

Ohm’s law, KCL (magnitude)

cycle condition: 
VjV̄k = (VkV̄j)𝖧

Any  that satisfies these equations with  is a power flow solutionx := (s, v, ℓ, S) ∈ ℝ3(N+1)+6M (v, ℓ) ≥ 0



Radial network
With shunt admittances

All equations are linear in , except the quadratic equalities 





There may be 0, 1, or  >1 power flow solutions

This can be relaxed to second-order cone constraint in OPF (later)

x

Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj



Example
2-bus network
Buses  and  connected by a transformer characterized by  (voltage gain  may be complex)


Line parameters are:





BFM:


j k (K, ỹs, ỹm) K

ys
jk :=

ỹs

K
, ym

jk := (1 −
1
K ) ỹs, ys

kj :=
ỹs

K̄
ym

kj :=
1

|K |2 ((1 − K)ỹs + ỹm)

vj − vk / K
2 = 2 Re ((z̃s)𝖧 sj) − z̃s 2

ℓjk

α̃/K
2

vk − vj = 2 Re (α̃ (z̃s)𝖧 sk) − Kz̃s 2
ℓkj

sj
2

= vj ℓjk, sk
2

= vk ℓkj

vj − (z̃s)𝖧 sj = (α̃/ |K |2 ) vk − z̃ss̄k

z̃s:= (ỹs)−1

α̃:= (1 + z̃sỹm)



Radial network
Without shunt admittances
Assume:    and  


Then


1. 


2.   and  


Can use directed graph with vars  defined only in direction of lines 


Substitute  in terms of  into previous power flow equations yields original 

DistFlow equations of [Baran-Wu 1989]

ys
jk = ys

kj ym
jk = ym

kj = 0

αjk = αkj = 1
ℓkj = ℓjk Skj + Sjk = zs

jkℓjk

(ℓjk, Sjk) j → k ∈ E

(ℓkj, Skj) (ℓjk, Sjk)



Radial network
Without shunt admittances
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6.2.2 Without shunt admittances

Consider a radial network where lines have zero shunt admittances. A consequence of substituting ym
jk =

ym
k j = 0 into (6.4) for all lines ( j,k) 2 E is the relation between the sending-end power flows S jk and Sk j

(see Exercise 6.4):

S jk + Sk j = zs
jk` jk = zs

jk`k j (6.6)

It says that the sum of sending-end power flows is equal to the complex line loss across the series
impedance zs

jk. We can use this relation to express `k j = ` jk and Sk j = zs
jk` jk � S jk in terms of (` jk,S jk)

and eliminate branch variables (`k j,Sk j) in the opposite direction from (6.4). This leads to a simpler set of
equations based on a directed, rather than undirected, graph G, as we now explain.

In this subsection we assume G = (N,E) is directed. We denote a line in E from bus j to bus k either
by ( j,k) 2 E or j ! k 2 E. Associated with each line j ! k 2 E are branch variables (` jk,S jk). It is
important to remember that, unlike models in the previous sections, (`k j,Sk j) in the opposite direction are
not defined in the models in this subsection, unless otherwise specified. Let (s,v) := (si,vi, i 2 N) and
(`,S) := (` jk,S jk, j ! k 2 E). Let x := (s,v,`,S) in R

3(N+1+M) with M = N since G is a tree. Without loss
of generality we take bus 0 as the root of the tree. Even though the graph orientation can be arbitrary we
discuss two particularly convenient graph orientations: one where every line points away from bus 0 and
the other where every line points towards bus 0; see Figure 6.2. For every bus j there is a unique node i

0

i

j

k

0

i

j

k

(a) All lines point away from bus 0 (b) All lines point towards bus 0

Figure 6.2: Notation for BFM for radial networks.

that is adjacent to j on the path from bus 0 to bus j. We present two sets of power flow equations, one for
each graph orientation. These two models are equivalent in the sense that there is a bijection F that maps
x to x̂ = F(x) such that x is a solution to the first set of equations if and only if x̂ is a solution to the second
set of equations. Given a power flow solution x in either model, the voltage and current phasors can be
obtained using (6.5) with a jk = 1 in the definition of b jk(x). To simplify notation we omit the superscript

and write z jk = (r jk,x jk) =
⇣

ys
jk

⌘�1
as the series impedance of line ( j,k).

DistFlow equations [Baran-Wu 1989]:


  

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zs
ijℓij) + sj

vj − vk = 2 Re (zs𝖧
jk Sjk) − |zs

jk |2 ℓjk

vjℓjk = |Sjk |2

power balance

Ohm’s law (magnitude)

branch power magnitude

• Cycle condition becomes vacuous (because )


•  real equations in  real vars


• e.g. given , there are  equations in  vars 

Skj := zs
jkℓjk − Sjk

2(N + 1) + 2M 3(N + 1) + 3M
(v0, sj, j ∈ N) 4N + 2 4N + 2 (s0, vj, j ∈ N, ℓ, S)



Radial network
Without shunt admittances

All equations are linear in , except the quadratic equalities 





There may be 0, 1, or  >1 power flow solutions

This can be relaxed to second-order cone constraint in OPF (later)

x

vjℓj = Sjk
2



Angle recovery
Given power flow solution , define nonlinear functions





Cycle condition ensures that  are angle differences across line , i.e., 


x := (s, v, ℓ, S)

βjk(x) := ∠(αH
jk vj − (zs

jk)
H

Sjk)
βkj(x) := ∠(αH

kj vk − (zs
jk)

H
Skj)

(βjk(x), βkj(x)) ( j, k)
∃ voltage angles θ  s.t.  β(x) = C𝖳θ

Angle recovery:  

1. Tree topology 


2.

⟹ θ = C (C𝖳C)−1 β(x) + ϕ1

Vj := vjeiθj, Ijk := ℓjke i(θj − ∠Sjk)



Summary
BFM for radial network

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zijℓij) + sj

vj − vk = 2 Re (z𝖧
jkSjk) − |zjk |2 ℓjk

vjℓjk = |Sjk |2

 
ys
jk = ys

kj
ym

jk = ym
kj = 0

BFM-radial

DistFlow



Example: power flow solution
2-bus network
Two buses 0 and 1 connected by a line with series impedance  (graph orientation: up)





Given:  and ,  find  and show that  forms an ellipse

z = r + ix
p0 − rℓ = − p1, q0 − xℓ = − q1

v1 − v0 = 2 (rp1 + xq1) − (r2 + x2)ℓ

p2
1 + q2

1 = v1ℓ

r = x = 1 v0 = 1, q1 = 0 (p0, q0, v1, ℓ) (v1(p1), p1)

Solution 

Eliminate .  Hence  
v1 ⇒ 2ℓ2 − (1 + 2p1)ℓ + p2
1 = 0 (Δ := 4p1(1 − p1) + 1)

ℓ =
1
4 (1 + 2p1 ± Δ), p0 =

1
4 (1 − 2p1 ± Δ), q0 =

1
4 (1 + 2p1 ± Δ)

v1 =
1
2 (1 + 2p1 ∓ Δ)



Example: power flow solution
2-bus network
Solution 

The solution   is equivalent to:





Points  satisfying 





form an ellipse if  is real (symmetric) and positive definite

v1 = (1 + 2p1 ∓ Δ)/2

[p1 v1] [ 8 −4
−4 4 ]

A

[p1
v1] − 2 [0 2]

cT
[p1

v1] + 1 = 1

x ∈ ℝn

(x − c)T A(x − c) = xT Ax − 2cTx + ∥c∥2 = 1
A
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2. Let D := 4p1(1� p1)+1. We have from (5.13)

` =
1
4

⇣
1+2p1 ±

p
D
⌘

Hence

p0 = `� p1 =
1
4

⇣
1�2p1 ±

p
D
⌘

q0 = ` =
1
4

⇣
1+2p1 ±

p
D
⌘

v1 = 1+2p1 �2` =
1
2

⇣
1+2p1 ⌥

p
D
⌘

3. The set of points x 2 R
n that satisfy

(x� c)T A(x� c) = xT Ax � 2cT x +kck2 = 1

is an ellipse if c 2 R
n and A is a real (symmetric) positive definite matrix. Substitute v1` = p2

1 + q2
1

into (5.12b) to get v1 �1 = 2p1 �2 p2
1

v1
, i.e.,

�
2p2

1 �2p1v1 + v2
1
�

� v1 = 0
⇥
p1 v1

⇤
2 �1

�1 1

�
p1
v1

�
�

⇥
0 1

⇤
p1
v1

�
= 0

⇥
p1 v1

⇤
8 �4

�4 4

�

| {z }
A


p1
v1

�
� 2

⇥
0 2

⇤
| {z }

cT


p1
v1

�
+ 1 = 1

Since A � 0 is positive definite, (p1,v1) traces out an ellipse. It is shown in Figure 5.3 as the high
voltage solution and the low voltage solution for v1 as functions of p1.

Figure 5.3: High and low voltage solutions v1 as functions of injection p1.

4. The figure confirms that the lowest voltage solution is attained at v1 = 0 pu (point A when p1 = 0)
and the highest voltage is attained at v1 = 2 pu (point B when p1 = 1 pu). This can also be proved
analytically, as follows.



Hollow solution set
Let





Theorem 

Suppose network graph  is connected. If  and  are distinct solutions in  with , 
then no convex combination of  and  can be in .  In particular,  is nonconvex.

𝕏df := {x := (s, v, ℓ, S) ∈ ℝ6N+3 : x satisfies DistFlow equations }

G ̂x x̃ 𝕏df ̂v0 = ṽ0
̂x x̃ 𝕏df 𝕏df



Outline
1. Radial network

2. Equivalence


• Extension to general network

• Equivalence of BFM and BIM


3. Backward forward sweep

4. Linear power flow model



Power flow models
Bus injection model


sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

Branch flow models


sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧 • Different vars and equations


• Both describe Kirchhoff’s and Ohm’s laws

• Are they equivalent?  In what sense?



Power flow models

BIM applies to general networks

BFM applies to radial networks only


To show their equivalence, we first need to extend BFM to general networks with cycles



General network
Complex form

Let    and  


BFM for general network:


ỹjk := ys
jk + ym

jk ỹkj := ys
kj + ym

kj

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

Does not assume   nor  


This model looks similar to BIM complex form!

• It is a bridge between BFM and BIM

ys
jk = ys

kj ym
jk = ym

kj = 0



General network
Real form

sj = ∑
k:j∼k

Sjk

Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

power balance

branch power magnitude

Ohm’s law, KCL (magnitude)

cycle condition

 real equations in  real vars 2(N + 1) + 6M 3(N + 1) + 6M x := (s, v, ℓ, S) ∈ ℝ3(N+1)+6M

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj



General network
Real form
Major simplification for radial network: nonlinear cycle condition becomes linear in 

All other equations remain the same

x




  for some 

βjk(x) := ∠(α𝖧
jk vj − (zs

jk)
𝖧

Sjk)
βkj(x) := ∠(α𝖧

kj vk − (zs
jk)

𝖧
Skj)

β(x) = [ CT

−CT] θ θ ∈ ℝN+1

general network

  α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

radial network



sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

BFM-radial

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zs
ijℓij) + sj

vj − vk = 2 Re (zs𝖧
jk Sjk) − |zs

jk |2 ℓjk

vjℓjk = |Sjk |2

 
ys
jk = ys

kj
ym

jk = ym
kj = 0

DistFlow

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

radial 
network sj = ∑

k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

BFM-complex

Equivalence

sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

BIM-complex



sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

BFM-radial

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zs
ijℓij) + sj

vj − vk = 2 Re (zs𝖧
jk Sjk) − |zs

jk |2 ℓjk

vjℓjk = |Sjk |2

 
ys
jk = ys

kj
ym

jk = ym
kj = 0

DistFlow

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

radial 
network

proof focuses on these two

sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

BIM-complex

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

BFM-complex

Equivalence



Equivalence
Branch flow models have been most useful for radial networks


• Different variants have different vars and different equations

• Are they equivalent, in what sense?


All BFM variants are equivalent to each other, and to BIM

• BFM-radial: tree topology (cycle condition: linear)


• DistFlow: tree topology with  and  (cycle condition: vacuous)


• BFM-real: BFM for general topology (cycle condition: nonlinear)

• BFM-complex: bridge to BIM-complex


We next state and prove these equivalence relations

ys
jk = ys

kj ym
jk = ym

kj = 0



Equivalence
Solution set
BIM-complex





Solution set


sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

𝕍 := {(s, V) ∈ ℂ2(n+1) | V satisfies BIM}



Equivalence
Solution set
Branch flow models: solution sets


𝕏̃ := {x̃ : (s, V, I, S) ∈ ℂ2(N+1)+4M | x̃ satisfies BFM complex}
𝕏meshed := {x : (s, v, ℓ, S) ∈ ℝ3(N+1)+6M) | x satisfies BFM real}

𝕏tree := {x : (s, v, ℓ, S) ∈ ℝ9N+3 | x satisfies BFM radial}

𝕏df := {x : (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies BFM radial, ys
jk = ys

kj, ym
jk = ym

kj = 0}

Definition: Two sets  and  are equivalent  if there is a bijection between them


•  is a power flow solution of  iff  is a power flow solution of 

A B (A ≡ B)
x A g(x) B



Equivalence

Theorem 

Suppose  is connected


1. 


2. If  is a tree,  then  


3. If  is a tree and ,  ,  then  

G
𝕍 ≡ 𝕏̃ ≡ 𝕏meshed

G 𝕏meshed ≡ 𝕏tree
G ys

jk = ys
kj ym

jk = ym
kj = 0 𝕏tree ≡ 𝕏df



Equivalence
Bus injection models and branch flow models are equivalent


• Any result proved in one model holds also in another model


Some results are easier to formulate / prove in one model than the other

• BIM: semidefinite relaxation of OPF (later)

• BFM: some exact relation proofs


Should freely use whichever is more convenient for problem at hand

BFM is particularly suitable for modeling distribution systems

• Tree topology allows efficient computation of power flows (BFS)

• Models and relaxations extend to unbalanced 3  networks 

• Seems to be much more numerically stable than BIM for large networks

ϕ



sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

𝕏tree

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zs
ijℓij) + sj

vj − vk = 2 Re (zs𝖧
jk Sjk) − |zs

jk |2 ℓjk

vjℓjk = |Sjk |2

 
ys
jk = ys

kj
ym

jk = ym
kj = 0

𝕏df

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

𝕍

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

𝕏̃

Equivalence

𝕏meshed

radial 
network

proof focuses on these two



Equivalence proof
Proof  and 𝕍 ≡ 𝕏̃ 𝕏tree ≡ 𝕏df

Straightforward.


sj = ∑
k:j∼k

(ys
jk)

𝖧

( |Vj |
2 − VjV𝖧

k ) + (ym
jj )

𝖧
|Vj |

2

𝕍

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

𝕏̃

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

α𝖧
jk vj − (zs

jk)
𝖧

Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

𝕏tree

∑
k:j→k

Sjk = ∑
i:i→j

(Sij − zs
ijℓij) + sj

vj − vk = 2 Re (zs𝖧
jk Sjk) − |zs

jk |2 ℓjk

vjℓjk = |Sjk |2

 
ys
jk = ys

kj

𝕏df



Equivalence proof
Proof 𝕏̃ ≡ 𝕏meshed

Fix .   Define




Will show 

It suffices to show 





For the 1st equation, write  and taking square magnitude on both sides.

x̃ := (s, V, I, S) ∈ 𝕏̃
vj := |Vj |

2 , ℓjk := | Ijk |2 , ℓkj := | Ikj |
2

x := (s, v, ℓ, S) ∈ 𝕏meshed

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

Vk = αjkVj − zs
jk (

Sjk

Vj )
𝖧

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

𝕏̃
𝕏meshed



Equivalence proof
Proof 𝕏̃ ≡ 𝕏meshed

Fix .   Define




Will show 

For the 2nd equation, we have


 


Recall the nonlinear functions





x̃ := (s, V, I, S) ∈ 𝕏̃
vj := |Vj |

2 , ℓjk := | Ijk |2 , ℓkj := | Ikj |
2

x := (s, v, ℓ, S) ∈ 𝕏meshed

VjV𝖧
k = α𝖧

jk |Vj |
2 − (zs

jk)
𝖧

Sjk, VkV𝖧
j = α𝖧

kj |Vk |2 − (zs
kj)

𝖧
Skj

βjk(x) := ∠(αH
jk vj − (zs

jk)
H

Sjk) = ∠Vj − ∠Vk

βkj(x) := ∠(αH
kj vk − (zs

jk)
H

Skj) = ∠Vk − ∠Vj

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

𝕏̃
𝕏meshed



Equivalence proof
Proof 𝕏̃ ≡ 𝕏meshed

Fix .   Define




Will show 

For the 2nd equation, we have


 


Recall the nonlinear functions





  

x̃ := (s, V, I, S) ∈ 𝕏̃
vj := |Vj |

2 , ℓjk := | Ijk |2 , ℓkj := | Ikj |
2

x := (s, v, ℓ, S) ∈ 𝕏meshed

VjV𝖧
k = α𝖧

jk |Vj |
2 − (zs

jk)
𝖧

Sjk, VkV𝖧
j = α𝖧

kj |Vk |2 − (zs
kj)

𝖧
Skj

βjk(x) := ∠(αH
jk vj − (zs

jk)
H

Sjk) = ∠Vj − ∠Vk

βkj(x) := ∠(αH
kj vk − (zs

jk)
H

Skj) = ∠Vk − ∠Vj

∴ θj := ∠Vj

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

sj = ∑
k:j∼k

Sjk,

Ijk = ỹjkVj − ys
jkVk, Ikj = ỹkjVk − ys

kjVj

Sjk = Vj I𝖧
jk, Skj = Vk I𝖧

kj

𝕏̃
𝕏meshed



Equivalence proof
Proof 𝕏̃ ≡ 𝕏meshed

Conversely, fix .   Construct  from :





Will show 

It suffices to show 





For the 1st equation, we have from   and  construction of :


 


i.e., 

x := (s, v, ℓ, S) ∈ 𝕏meshed (V, I) x

Vj := vjeiθj, Ijk := ℓjke i(θj − ∠Sjk)

x̃ := (s, V, I, S) ∈ 𝕏̃

Sjk = Vj I𝖧
jk, Ijk = ỹjkVj − ys

jkVk,

Sjk
2

= vj ℓjk (V, I)

|Sjk | = |VjI𝖧
jk | , ∠Sjk = ∠Vj − ∠Ijk

Sjk = VjI𝖧
jk

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
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Equivalence proof
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jk, Ijk = ỹjkVj − ys

jkVk,

Sjk
2

= vj ℓjk (V, I)

|Sjk | = |VjI𝖧
jk | , ∠Sjk = ∠Vj − ∠Ijk

Sjk = VjI𝖧
jk

sj = ∑
k:j∼k

Sjk, Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj

αjk
2

vj − vk = 2 Re (αjk (zs
jk)

𝖧
Sjk) − zs

jk

2
ℓjk

αkj
2

vk − vj = 2 Re (αkj (zs
kj)

𝖧
Skj) − zs

kj

2
ℓkj

∃θ ∈ ℝN+1 s.t. βjk(x) = θj − θk, βkj(x) = θk − θj

sj = ∑
k:j∼k

Sjk,
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Equivalence proof
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Equivalence proof
Proof 𝕏̃ ≡ 𝕏meshed

Conversely, fix .   Construct  from :
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Equivalence proof
Proof 𝕏meshed ≡ 𝕏tree

Suppose  is a tree.  

Will show  

It suffices to show nonlinear cycle condition becomes linear:
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Equivalence proof
Proof 𝕏meshed ≡ 𝕏tree

Suppose  is a tree.  

Will show  

It suffices to show nonlinear cycle condition becomes linear:





Sufficiency: suppose  satisfies RHS.
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Backward forward sweep
General formulation
Efficient solution method for power flow equations


• Special Gauss-Seidel method that is applicable only to radial networks


Partition variables into two groups  and 

• Typically,  are branch variables (e.g. line currents) and  are nodal variables (bus voltages)


Design power flow equations as fixed points:  

• Choose  to have a spatially recursive structure enabled by tree topology


Consists of an outer loop where each outer iteration is implemented by two inner loops

• Outer loop: temporal update over  of  to converge to a fixed point


• Backward sweep at  : spatial Gauss-Seidel update over nodes  of , with  held fixed


• Forward sweep at  : spatial Gauss-Seidel update over nodes  of , with newly computed  held fixed


Different BFS algorithms differ in choice of variables  and design of 

•  that is spatially recursive automatically translates into a BFS algorithm

x y
x y

x = f(x, y), y = g(x, y)
( f, g)

t (x(t), y(t))
t j xj(t) y(t − 1)

t j yj(t) x(t)

(x, y) ( f, g)
( f, g)



Backward forward sweep
Spatially recursive Gauss-Seidel
At each outer iteration , spatial Gauss-Seidel update over  normally takes the form





Functions  are spatially recursive if

• Given ,  depends on  only through   (  : subtree rooted at )


• Given ,  depends on  only through   (  : path from  to )


Gauss-Seidel update at  with spatially recursive  


t j
xj(t) := fj(x1(t), …, xj−1(t), xj(t − 1), …, xn1

(t − 1); y(t − 1))
yj(t) := gj(x(t); y1(t), …, yj−1(t), yj(t − 1), …, yn2

(t − 1))

( f, g)
y fj x xT∘

j
T∘

j j

x gj y yP∘
j

P∘
j 0 j

t ( f, g)
BS: xj(t) := fj (xT∘

j
(t); y(t − 1))

FS: yj(t) := gj (x(t); yP∘
j
(t))
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i

0

spatial initialization
xj = fj (y)

Ti

xi = fi (x   ; y)Tºi

(a) Backward sweep

i

y0
spatial initialization

yi = gi (y0 ; x)

yi = gi (y   ; x)Pºi

Pº
i

(b) Forward sweep

Figure 5.5: General backward forward sweep 10/26/2024: (1) Ti should be T�
j . (2) Change xi = fi(xT�

i
;y)

to “x j(t) := f j

⇣
xT�

j
(t); y(t �1)

⌘
”. (3) Change x j = f j(y) to “xk(t) := fk(y(t �1)), y(0) given”. (4) Change

yi = gi(yP�
i
;x) to y j(t) := g j

⇣
x(t); yP�

j
(t)

⌘
. (5) Change all remaining i to j, except yi = gi(y0;x) which

should be changed to yi(t) := gi (x(t); y0).

At each outer iteration t, starting from the children of the root and propagating towards leaf nodes, y j can
be successively updated given vector x(t):

Forward sweep at t: y j(t) := g j

⇣
x(t); yP�

j
(t)

⌘
, j 2 N

as illustrated in Figure 5.5(b). The recursion is initialized at children i of the root bus 0 where P�
i := {0}

so that yi(t) := gi (x(t); y0(t)) := gi (x(t); y0) for all outer iterations t, given y0.

Summary. Let x := (x j, j 2 N) and y := (y j(t), j 2 N). A pair (x,y) is a power flow solution if it satisfies
the following power flow equations that have a spatially recursive structure:

x j = f j

⇣
xT�

j
; y

⌘
, j 2 N, y j = g j

⇣
x; yP�

j

⌘
, j 2 N (5.26a)

T�
i = /0 for all leaf nodes j y0 given (5.26b)

A BFS algorithm is a special Gauss-Seidel algorithm that computes a fixed point of (5.26) in which each
outer iteration t consists of two inner loops:

Backward sweep at t: x j(t) := f j

⇣
xT�

j
(t); y(t �1)

⌘
, j 2 N (5.27a)

Forward sweep at t: y j(t) := g j

⇣
x(t); yP�

j
(t)

⌘
, j 2 N (5.27b)

starting from the spatial initial conditions in (5.26b) and given temporal initial conditions y(0) and y0(t) =
y0 for all t. A more detailed description is in Algorithm 1. If the algorithm converges and the update
functions ( f ,g) are continuous then the limit point is a fixed point of (5.26) and therefore a power flow
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Example: complex form BFM

Assumptions: radial network and 

• Can use directed graph (with down orientation) and involve line variables only in direction of the lines

• Can uniquely identify a line variable by its from-node or to-node


Then complex form BFM becomes





Given: , find 


zs
jk = zs

kj

sj = ∑
k:j∼k

Vj I𝖧
jk, Ijk = ỹjkVj − ys

jkVk

(V0, sj, j ∈ N) (s0, Vj, j ∈ N, Ijk, Sjk, j → k ∈ E)



Example: complex form BFM

Complex form BFM





Given: , find 


Design partitioning  and corresponding spatially recursive power flow equations  

•  : line currents  across impedance 


•  : nodal voltages 


• Given a solution , all other quantities (e.g. ) can be computed


• Can also design BFS that computes sending-end line currents  instead of   (Exercise)

sj = ∑
k:j∼k

Vj I𝖧
jk, Ijk = ỹjkVj − ys

jkVk

(V0, sj, j ∈ N) (s0, Vj, j ∈ N, Ijk, Sjk, j → k ∈ E)

(x, y) ( f, g)
x Is

jk zs
jk

y Vj

(Vj, Is
jk) Ijk, Sjk

Ijk Is
jk

198 EE 135 Notes October 20, 2021

Figure 6.1: Notation for BFM complex form.

The branch flow model (BFM) in the complex form is defined by the following power flow equations
in the variables (s,V, I,S) 2 C

2(N+1)+4M (from (5.4)(5.17)):

s j = Â
k: j⇠k

S jk, j 2 N (6.1a)

S jk = Vj IH
jk, Sk j = Vk IH

k j, ( j,k) 2 E (6.1b)
I jk = ys

jk(Vj �Vk) + ym
jkVj, ( j,k) 2 E (6.1c)

Ik j = ys
k j(Vk �Vj) + ym

k jVk, ( j,k) 2 E (6.1d)

where (6.1a) imposes power balance at each bus, (6.1b) defines branch power in terms of the associated
voltage and current, and (6.1c)(6.1d) describes Kirchhoff’s and Ohm’s laws. For convenience we include
V0 in the vector variable V := (Vj, j 2 N) with the understanding that V0 := 1\0� is fixed.

As we will see in Chapter 6.3 this model serves as a bridge between the bus injection model of Chapter
5 in complex form and the branch flow models in real domain in the rest of this chapter.

Real form. A branch flow model, called the DistFlow equations, is proposed in [20, 21] for radial
networks. Its key feature is that it does not involve phase angles of voltage and current phasors. For each
bus j let

• si := (pi,qi) and si := (pi + iqi) represent the real and reactive power injections at bus j;2

• vi represent the squared voltage magnitude at bus j.

For each line ( j,k) let

• S jk = (Pjk,Q jk) and S jk = Pjk + iQ jk represent the sending-end real and reactive branch power flow
from bus j to bus k, and Sk j represent the sending-end power from k to j;

2We abuse notation and use s to denote both the complex power injection s = (p+ iq) and the real pair s = (p,q), depending
on the context. Similarly for S = (P+ iQ) and S = (P,Q), and for z = (r + ix) and z = (r,x).



Example: complex form BFM
Spatially recursive ( f, g)

Since , KCL at each bus 





Spatially recursive power flow equations :





where  is unique parent of  and 


Is
jk := Ijk − ym

jkVj j

(
sj

Vj )
𝖧

+ (Is
ij − ym

ji Vj) = ∑
k:j→k

(Is
jk + ym

jkVj)
( f, g)

Is
ij = ∑

k:j→k

Is
jk − (

sj

Vj )
𝖧

− ym
jj Vj =: fj (xT∘

j
; y)

Vj = Vi − zs
ijI

s
ij =: gj (x; yP∘

j)
i := i( j) j ym

jj := ym
ji + ∑k ym
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current injection at bus j is (s j/Vj)H. Hence KCL at each non-reference bus j is (see Figure 5.6)
✓
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, j 2 N

This is the basis for the BFS algorithm of [46] which adopts the power flow equations:

k

I sjk

I sij

Vi

Vj
sj

Figure 5.6: Spatially recursive structure of power flow equations (5.29).
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where i := i( j) denotes the unique parent of j and ym
j j := ym

ji + Âk: j!k ym
jk is the total shunt admittance

incident on bus j. The boundary conditions are

Is
jk := 0 for all leaf nodes j, V0 is given , Vj(0) := V0, j 2 N (5.29c)

This defines the partitioning (x,y) and the update functions ( f ,g) in (5.26) (recall that the injections s j at
all non-reference buses j are given):

• x j := Is
i j for j 2 N are the complex line currents across the series impedance zs

i j from buses i to j.

The backward sweep functions f j are given by (5.29a). Let x :=
⇣

Is
i( j) j, j 2 N

⌘
= (Is

jk, j ! k 2 E)

and f := ( f j, j 2 N).

• y j := Vj for j 2 N are the complex voltages at buses j. The forward sweep functions g j are given by
(5.29b). Let y :=

�
Vj, j 2 N

�
and g := (g j, j 2 N).

• The initialization is given by (5.29c).

The update function f is linear in x given y, but not jointly linear in (x,y). The function g is linear in (x,y).

The functions ( f ,g) are spatially recursive because f j depends on x :=
⇣

Is
i( j) j, j 2 N

⌘
only through xT�

j

and g j depends on y :=
�
Vj, j 2 N

�
only through yP�

j
. This translates automatically into a BFS algorithm



Example: complex form BFM
BFS
Spatially recursive power flow equations :





This translates automatically to a BFS algorithm with inner loops:


( f, g)

Is
ij = ∑

k:j→k

Is
jk − (

sj

Vj )
𝖧

− ym
jj Vj =: fj (xT∘

j
; y)

Vj = Vi − zs
ijI

s
ij =: gj (x; yP∘

j)

BS: xj(t) := fj (xT∘
j
(t); y(t − 1))

FS: yj(t) := gj (x(t); yP∘
j
(t))
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current injection at bus j is (s j/Vj)H. Hence KCL at each non-reference bus j is (see Figure 5.6)
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incident on bus j. The boundary conditions are
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jk := 0 for all leaf nodes j, V0 is given , Vj(0) := V0, j 2 N (5.29c)

This defines the partitioning (x,y) and the update functions ( f ,g) in (5.26) (recall that the injections s j at
all non-reference buses j are given):
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i j for j 2 N are the complex line currents across the series impedance zs

i j from buses i to j.
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• The initialization is given by (5.29c).
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Example: complex form BFM
Outer loop
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solution. An advantage of BFS is that it does not need to calculate derivatives of power flow equations and
tends to converge quickly in practice.

The design of BFS boils down to the choice of ( f ,g) and the partitioning (x,y) that define the power
flow equations in (5.26). Given ( f ,g) with the spatial recursive structure in (5.26), the iterative algorithm is
defined by the inner loops (5.27). These design choices are not unique and may have different convergence
properties. We will study two examples in Chapters 5.3.2 and 5.3.3. Most BFS algorithms compute line
currents or power flows in the backward sweep and voltages in the forward sweep. Typically the voltage at
the substation (the root of the tree) is specified and that the line current or power out of a leaf node is zero.
These two boundary conditions mean that the computation of line currents or powers must start from the
leaf nodes and propagate backward, while that of voltages must start from the root and propagate forward.

Algorithm 1: Backward forward sweep
Input: ( f j,T�j , j 2 N), (g j,P�j , j 2 N), y0 and y(0).
Output: a solution (x,y) of (5.26).

1. Initiatization:

• T�j := /0 for all leaf notes j.

• y0(t) y0 for t = 0,1, . . . .

• t 0.

2. while stopping criterion not met do

(a) t t +1;

(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

x j(t)  f j

⇣
xT�j (t); y(t�1)

⌘
, j 2 N

(c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

y j(t)  g j

⇣
x(t); yP�j (t)

⌘
, j 2 N

3. Return: x := x(t), y := y(t).

Remark 5.1. 1. We assume for notational simplicity that each x j or y j is a scalar, but the description
remains unchanged if x j and y j are vectors and the update functions f j and g j are vector-valued; see
Example 5.4 below.

2. If ( f j,g j) in (5.26a) depend not only on (xT�j ,yP�j ), but also on (x j,y j), then the update functions



Example: complex form BFM

Given all voltages 

Given all currents  in previous layer (in )


Update all currents  in present layer (reverse breadth-first search)


V(t − 1)
Is
jk(t) T∘

j

Is
ij(t)
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defined by the inner loops (5.27) and Algorithm 1. Given voltages y(t�1), propagating (5.29a) backward
from the leaf nodes towards the root (bus 0) in the reverse breadth-first search order, the current Is

i j(t)
can be updated once all the currents Is

jk(t) in the previous level have been determined; see Figure 5.6.
In the forward direction, given currents x(t), propagating (5.29b) from the root towards the leaf nodes,
the voltage Vj(t) can be updated once its parent Vi(t) has been determined. The detailed instantiation of
Algorithm 1 for (5.29) is given in Algorithm 2. A stopping criterion for Algorithm 2 can be based on the

Algorithm 2: BFS for (5.29)
Input: voltage V0 and injections (si, i 2 N).
Output: currents x := (Is

jk, j! k 2 E) and voltages y :=
�
Vj, j 2 N

�
that are a solution of (5.29).

1. Initiatization:

• Is
jk(t) := 0 for all leaf nodes j for all iterations t = 1,2, . . . .

• Vj(0) := V0 at all buses j 2 N.

• V0(t) := V0 at bus j = 0 for all t = 0,1, . . . .

2. while stopping criterion not met (see below) do

(a) t t +1;

(b) Backward sweep: for j starting from leaf nodes and iterating towards bus 0 do

Is
i j(t)  Â

k: j!k
Is

jk(t) �
 ✓

s j

Vj(t�1)

◆H

� ym
j j Vj(t�1)

!
, i! j 2 E

where ym
j j := ym

ji +Âk: j⇠k ym
jk and i := i( j) is the unique parent of j.

(c) Forward sweep: for j starting from children of bus 0 and iterating towards leaf nodes do

Vj(t) = Vi(t) � zs
i j Is

i j(t), j 2 N

where zs
i j :=

⇣
ys

i j

⌘�1
and i := i( j) is the unique parent of j.

3. Return: x := (Is
jk(t), j! k 2 E), y :=

�
Vj(t), j 2 N

�
.

discrepancy between the given injections s j and the injections s j(t) implied by x(t) := (Is
jk(t), j! k 2 E)

and y(t) := (Vj(t), j 2 N) at the end of each outer iteration t. Motivated by (5.29a), let

s j(t) := Vj(t)

 

Â
k: j!k

Is
jk(t)� Is

i j(t)

!H

+ ymH

j j
��Vj(t)

��2 , j 2 N



Example: complex form BFM

Given all currents 

Given voltage  at parent of  (in )


Update  (breadth-first or depth-first search)

Is(t − 1)
Vi(t) j P∘

j

Vj(t)
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defined by the inner loops (5.27) and Algorithm 1. Given voltages y(t�1), propagating (5.29a) backward
from the leaf nodes towards the root (bus 0) in the reverse breadth-first search order, the current Is

i j(t)
can be updated once all the currents Is

jk(t) in the previous level have been determined; see Figure 5.6.
In the forward direction, given currents x(t), propagating (5.29b) from the root towards the leaf nodes,
the voltage Vj(t) can be updated once its parent Vi(t) has been determined. The detailed instantiation of
Algorithm 1 for (5.29) is given in Algorithm 2. A stopping criterion for Algorithm 2 can be based on the
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Example: DistFlow model

Assumptions: radial network,  and 

• Can use directed graph (with up orientation) and involve line variables only in direction of the lines

• Can uniquely identify a line variable by its from-node or to-node


Given: , find 


Design partitioning  and corresponding spatially recursive power flow equations  


• Line flows: 


• Nodal voltages: 


• Given a solution ,  can be computed


zs
jk = zs

kj ym
jk = ym

kj = 0

(V0, sj, j ∈ N) (s0, vj, j ∈ N, ℓjk, Sjk, j → k ∈ E)

(x, y) ( f, g)
x := (Sji( j), ℓji( j), j ∈ N) = (Sjk, ℓjk, j → k ∈ E)

y := (vj, j ∈ N)
(x, y) s0



Example: DistFlow model
Spatially recursive ( f, g)

Backward sweep function :





Forward sweep function :





This translates automatically to a BFS algorithm with inner loops:


fj (xT∘
j
; y)

Sji = sj + ∑
k:k→j

(Skj − zs
kjℓkj), ℓji =

|Sji |
2

vj

g (x, yP∘
j)

vj = vi + 2 Re (zs𝖧
ji Sji) − |zs

ji |
2 ℓji

BS: xj(t) := fj (xT∘
j
(t); y(t − 1))

FS: yj(t) := gj (x(t); yP∘
j
(t))



Outline
1. Radial network

2. Equivalence

3. Backward forward sweep

4. Linear power flow model


• With shunt admittances

• Without shunt admittances

• Linear solution and properties



Linear models
Advantages
Linear approximations of BFM have two advantages 


1. Given nodal injections , voltages  and line flows  can be solved explicitly


2. The linear solution  provides bounds on  from power flow solutions to 

nonlinear DistFlow models


Linear approximations are reasonable when line losses  are small compared with line flows 


s vlin Slin

(vlin, Slin) (v, S)

zjkℓjk Sjk



With shunt admittances
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2
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BFM-radial

BFM-linear

ℓ := 0



With shunt admittances




sj = ∑
k:j∼k

Sjk

αjk
2

vj − vk = 2 Re (αjk (zs
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αkj
2

vk − vj = 2 Re (αkj (zs
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jk vj − (zs
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Sjk = (α𝖧
kj vk − (zs

kj)
𝖧

Skj)
𝖧

BFM-linear

 linear equations in  real 
variables 


Power flow problem: given , solve 
for remaining  vars 


More equations than unknowns, but they are 
typically linearly dependent


6N + 2 7N + 3
(s, v, S)

(v0, sj, j ∈ N)
5N + 2 (s0, vj, j ∈ N)



Example
2-bus network
Buses  and  connected by a transformer characterized by  (voltage gain  may be 
complex).  Let .


Linear BFM: 4 linear equations in 6 vars 


j k (K, ỹs, ỹm) K
α̃ := (1 + z̃sỹm)

(s, v)

vj − vk / K
2 = 2 Re ((z̃s)𝖧 sj)

α̃/K
2

vk − vj = 2 Re (α̃ (z̃s)𝖧 sk)
vj − (z̃s)𝖧 sj = (α̃/ |K |2 ) vk − z̃ss̄k



Example
2-bus network
Power flow problem: given , find 


Assume:   s.t.  .  Then





Elementary row operation reduces  to a rank-3 matrix:  

(pk, qk, vj) (pj, qj, vk)
ỹm = 0 α̃ = 1

2r̃ 2x̃ −1/ |K |2

0 0 1/ |K |2

r̃ x̃ 1/ |K |2

−x̃ r̃ 1/ |K |2

A

pj
qj
vk

=

0 0 1
2r̃ 2x̃ 1
r̃ x̃ 1
x̃ −r̃ 0

pk
qk
vj

A

(r̃/x̃)(r̃2 + x̃2) 0 0
0 r̃2 + x̃2 0
0 0 1/ |K |2

0 0 0



Without shunt admittances
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DistFlow

LinDistFlow
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Without shunt admittances
LinDistFlow in vector form
Let 

•  : bus-by-line  incidence matrix


•  : diagonal matrix of line resistances


•  : diagonal matrix of line reactances


Then LinDistFlow is:





Important features because of tree topology

•  is of rank 1 with null 

• Reduced  incidence matrix  is nonsingular

•  has a simple structure

C (N + 1) × N
Dr := diag (rl, l ∈ E) ≻ 0
Dx := diag (xl, l ∈ E) ≻ 0

s = CS, C𝖳v = 2 (DrP + DxQ)

C (C) = span(1)
N × N Ĉ

Ĉ−1 These features allow explicit linear solutions 
and structural properties



Linear solution

Let   


Then LinDistFlow is:





Given , the remaining variables  can be obtained explicitly 

C =: [c𝖳
0

Ĉ ]
̂s = ĈS, s0 = c𝖳

0 S

v0c0 + C𝖳 ̂v = 2 (DrP + DxQ)
(v0, sj, j ∈ N) (s0, vj, j ∈ N, Sl, l ∈ E)



Linear solution
Theorem [linear solution]


1. Linear solution is:





where    and  


2.   and    are positive matrices with


S = Ĉ−1 ̂s, s0 = c𝖳
0 Ĉ−1 ̂s

̂v = v01 + 2 (R ̂p + X ̂q)
R := Ĉ−𝖳DrĈ−1 X := Ĉ−𝖳DxĈ−1

R ≻ 0 X ≻ 0

Rjk = ∑
l∈Pj∩Pk

rl, Xjk = ∑
l∈Pj∩Pk

xl

voltages =  + correction term v0 ( ̂p, ̂q)

Since entries of  are nonnegative,

positive injections  always increase 

(R, X)
(p, q) v



Analytical properties
Special graph orientations
Down orientation: pointing away from bus 0


∑
k:j→k

Slin
jk = Slin

ij + sj

vlin
j − vlin

k = 2 Re (z𝖧
jkSlin
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Figure 5.2: Graph orientations for radial networks.

Down orientation: lines point away from bus 0. When all lines point away from bus 0, the DistFlow
equations (5.7) reduce to:

Â
k: j!k

S jk = Si j � zi j`i j + s j, j 2 N (5.10a)

v j � vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j ! k 2 E (5.10b)

v j` jk = |S jk|2, j ! k 2 E (5.10c)

where, in (5.10a), Si j � zi j`i j is the receiving-end power at bus j from i, and bus i := i( j) denotes the
unique adjacent node of j on the path from node 0 to node j, with the understanding that when j = 0 then
Si0 = 0 and `i0 = 0. When j is a leaf node2, all S jk = 0 in (5.10a).

Up orientation: lines point towards bus 0. When the graph orientation is opposite to that in Case 1,
BFM is specified by the following equations in x := (s,v,`,S) 2 R

3(2N+1):

S ji = Â
k:k! j

�
Sk j � zk j`k j

�
+ s j, j 2 N (5.11a)

vk � v j = 2Re
⇣

zHk jSk j

⌘
� |zk j|2`k j, k ! j 2 E (5.11b)

vk`k j = |Sk j|2, k ! j 2 E (5.11c)

where i := i( j) in (5.11a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by S ji = 0 in (5.11a) when j = 0 and Sk j = 0,`k j = 0 in (5.11a) when
j is a leaf node. For an advantage of this orientation see Remark 5.1.

2A node j is a leaf node if there exists no k such that j ! k 2 E.
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Up orientation: pointing towards bus 0


Slin
ji = ∑

k:k→j

Slin
kj + sj

vlin
k − vlin

j = 2 Re(z𝖧
kjS

lin
kj )



Analytical properties
Corollary


1. For lines , .  Moreover





2. For buses , 

(i, j) ∈ E Slin
ij = Slin

ji

Slin
ij = − ∑

k∈𝖳𝗃

sk, i → j

Slin
ji = ∑

k∈𝖳𝗃

sk, j → i

j ∈ N vlin
j = vlin

j = v0 + 2∑
k

(Rjk pk + Xjkqk)

line flow  to  supplies all loads  in subtree Slin
ij j −sk 𝖳𝗃

line flow  from  come from all injections  in subtree Slin
ij j sk 𝖳𝗃

Draft: EE 135 Notes October 25, 2024 279

i

0

j

k

(a) Down orien-
tation

i

0

j

k

(b) Uporienta-
tion

Figure 5.2: Graph orientations for radial networks.

Down orientation: lines point away from bus 0. When all lines point away from bus 0, the DistFlow
equations (5.7) reduce to:

Â
k: j!k

S jk = Si j � zi j`i j + s j, j 2 N (5.10a)

v j � vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j ! k 2 E (5.10b)

v j` jk = |S jk|2, j ! k 2 E (5.10c)

where, in (5.10a), Si j � zi j`i j is the receiving-end power at bus j from i, and bus i := i( j) denotes the
unique adjacent node of j on the path from node 0 to node j, with the understanding that when j = 0 then
Si0 = 0 and `i0 = 0. When j is a leaf node2, all S jk = 0 in (5.10a).

Up orientation: lines point towards bus 0. When the graph orientation is opposite to that in Case 1,
BFM is specified by the following equations in x := (s,v,`,S) 2 R

3(2N+1):

S ji = Â
k:k! j

�
Sk j � zk j`k j

�
+ s j, j 2 N (5.11a)

vk � v j = 2Re
⇣

zHk jSk j

⌘
� |zk j|2`k j, k ! j 2 E (5.11b)

vk`k j = |Sk j|2, k ! j 2 E (5.11c)

where i := i( j) in (5.11a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by S ji = 0 in (5.11a) when j = 0 and Sk j = 0,`k j = 0 in (5.11a) when
j is a leaf node. For an advantage of this orientation see Remark 5.1.

2A node j is a leaf node if there exists no k such that j ! k 2 E.

Draft: EE 135 Notes October 25, 2024 279

i

0

j

k

(a) Down orien-
tation

i

0

j

k

(b) Uporienta-
tion

Figure 5.2: Graph orientations for radial networks.

Down orientation: lines point away from bus 0. When all lines point away from bus 0, the DistFlow
equations (5.7) reduce to:

Â
k: j!k

S jk = Si j � zi j`i j + s j, j 2 N (5.10a)

v j � vk = 2Re
⇣

zHjkS jk

⌘
� |z jk|2` jk, j ! k 2 E (5.10b)

v j` jk = |S jk|2, j ! k 2 E (5.10c)

where, in (5.10a), Si j � zi j`i j is the receiving-end power at bus j from i, and bus i := i( j) denotes the
unique adjacent node of j on the path from node 0 to node j, with the understanding that when j = 0 then
Si0 = 0 and `i0 = 0. When j is a leaf node2, all S jk = 0 in (5.10a).

Up orientation: lines point towards bus 0. When the graph orientation is opposite to that in Case 1,
BFM is specified by the following equations in x := (s,v,`,S) 2 R

3(2N+1):

S ji = Â
k:k! j

�
Sk j � zk j`k j

�
+ s j, j 2 N (5.11a)

vk � v j = 2Re
⇣

zHk jSk j

⌘
� |zk j|2`k j, k ! j 2 E (5.11b)

vk`k j = |Sk j|2, k ! j 2 E (5.11c)

where i := i( j) in (5.11a) denotes the node adjacent to j on the unique path between node 0 and node j.
The boundary condition is defined by S ji = 0 in (5.11a) when j = 0 and Sk j = 0,`k j = 0 in (5.11a) when
j is a leaf node. For an advantage of this orientation see Remark 5.1.

2A node j is a leaf node if there exists no k such that j ! k 2 E.



Analytical properties
Nonlinear DistFlow solution
Linear DistFlow model ignores line losses    simple relation between line flows  and 
injections 


Given nonlinear DistFlow solutions  satisfy the recursion in up orientation





and solutions  satisfy the recursion in down orientation





⟹ (Sij, Sji)
sk

s, (v, ℓ, S)

Sij = − ∑
k∈Tj

sk + zijℓij + ∑
l∈Tj

zlℓl , vj = v0 − ∑
l∈Pj

(2 Re (z𝖧
l Sl) − |zl |

2 ℓl)
(v, ℓ, S)

Sji = ∑
k∈Tj

sk − ∑
l∈Tj

zlℓl, vj = v0 + ∑
l∈Pj

(2 Re (z𝖧
l Sl) − |zl |

2 ℓl)

line losses



Bounds on nonlinear solutions
Corollary [bounds on nonlinear solutions]


1. For , 


2. For , 


3. For , 

i → j ∈ E Sij ≥ Slin
ij

j → i ∈ E Sji ≥ Slin
ji

j ∈ N vj = vj ≤ vlin
j = vlin

j

LinDistFlow ignores losses and underestimates 
required power to supply loads

proving  is easy;

proving directly  is not

vj ≤ vlin
j

vj ≤ vlin
j



Summary
1. Radial network


• BFM with and without shunt admittances

• Nonlinear (quadratic) power flow equations


2. Equivalence

• BFM variants are all equivalent, and equivalent to BIM


3. Backward forward sweep

•  Gauss-Seidel method that exploits spatially recursive structure enabled by tree topology


4. Linear power flow model

• Linear BFM with and without shunt admittances

• Explicit linear solution and bounds on nonlinear solutions


5. Application: volt/var control

• Local and memoryless control can stabilize voltages and implicitly minimizes cost determined by 

control design


