Power System Analysis Chapter 6 Example applications

EE/CS/EST 135 Caltech (Oct 31, 2024) **Steven Low**

Outline

- 1. Economic dispatch
- 2. Voltage control
- 3. Radial network identification

Outline

- 1. Economic dispatch
 - Economic dispatch
 - LMP and properties
- 2. Voltage control
- 3. Radial network identification

Electricity market

Goal: to illustrate the use of DC power flow model that is widely used for market applications Setup

- 2. *p* : real power injections p_i at buses *j*
 - generator: $p_i > 0$, incurs $\operatorname{cost} f_i(p_i)$
 - load: $p_i < 0$, enjoys utility $-f_i(p_i)$
 - capacity limits: $p^{\min} \le p \le p^{\max}$
 - supply = demand: $\mathbf{1}^{\mathsf{T}} p = 0$
- 3. $P := BC^{\mathsf{T}}L^{\dagger}p =: S^{\mathsf{T}}p$: line power flows

 - line limits: $P^{\min} \leq P = BC^{\mathsf{T}}L^{\dagger}p \leq P^{\max}$
 - $S = (\partial P / \partial p)^{T}$ shift factor that maps line vars (e.g. line congestion prices) to nodal var (e.g. nodal congestion prices)

1. A connected network $G := (\overline{N}, E)$ with N + 1 buses and M lines modeled by DC power flow

• $B := \text{diag}(b_l, l \in E) > 0, C$: incidence matrix, L^{\dagger} : pseudo-inverse of Laplacian $L := CBC^{\dagger}$

Economic dispatch LMP

$$\min_{\substack{p^{\min} \le p \le p^{\max}}} \sum_{j \in \overline{N}} f_j(p_j)$$
subject to
$$\mathbf{1}^{\mathsf{T}} p = 0$$

$$P^{\min} \le S^{\mathsf{T}} p \le P^{\max}$$

- *p* : primal variable
- marginal price (LMP):

$$\lambda^* := \gamma^* \mathbf{1} - L^\dagger CB \kappa^* = \gamma^* \mathbf{1} + \mathbf{1}$$
 where $\kappa^* := \kappa^{-*} - \kappa^{+*}$

$[\gamma]$ $[\kappa^-, \kappa^+]$

• Associated with each constraint is a Lagrange multiplier: $\gamma \in \mathbb{R}, \ \kappa^- \in \mathbb{R}^M_+, \ \kappa^+ \in \mathbb{R}^M_+$ • Given an optimal dispatch p^* and optimal Lagrange multiplier $(\gamma^*, \kappa^{-*}, \kappa^{+*})$, define locational

 $+S\kappa^*$

Economic dispatch Settlement rule

Locational marginal price (LMP):

$$\lambda^* := \gamma^* \mathbf{1} + S \kappa^*$$

Settlement rule

- $(\gamma^*, \kappa^{-*}, \kappa^{+*})$, and compute LMP λ^*
- Generator that generates $p_i > 0$: is paid
- Load that consumes $-p_i > 0$: pays $-\lambda_i^2$
- Some markets allow participants to choore (e.g. many US markets)

• System operator (SO) solves economic dispatch to obtain optimal dispatch p^* and

d
$$\lambda_j^* p_j$$

 $\lambda_j^* p_j$ ose their own p_j , some markets dispatch binding p_i^*

Optimality condition

Assume: cost functions f_i are convex and optimal value of ED is finite

- Optimal Lagrange multiplier $(\gamma^*, \kappa^{-*}, \kappa^{+*})$ and hence LMP λ^* exist; moreover strong duality holds
- p^* is an optimal dispatch if and only if p^*
 - Primal feasibility: $p^{\min} \le p^* \le p^{\max}$, **1**

• Dual feasibility: $\kappa^{-*} \ge 0, \ \kappa^{+*} \ge 0$

Stationarity: $f'_{j}(p_{j}^{*})$ $\begin{cases}
= \lambda_{j}^{*} \text{ if} \\
> \lambda_{j}^{*} \text{ only i} \\
< \lambda_{j}^{*} \text{ only i}
\end{cases}$

• Complementary slackness:

$$\left(\kappa^{-*}\right)^{\mathsf{T}}\left(P^{\min} - BC^{\mathsf{T}}L^{\dagger}p^{*}\right) = 0, \quad \left(\kappa^{+*}\right)^{\mathsf{T}}\left(BC^{\mathsf{T}}L^{\dagger}p^{*} - P^{\max}\right) = 0$$

and
$$(\gamma^*, \kappa^{-*}, \kappa^{+*})$$
 satisfy the KKT condition:
 ${}^{\mathsf{T}}p^* = 0, P^{\min} \leq BC^{\mathsf{T}}L^{\dagger}p^* \leq P^{\max}$

$$p_j^{\min} < p_j^* < p_j^{\max} \qquad \text{marginal unit}$$
if
$$p_j^* = p_j^{\min}$$
if
$$p_j^* = p_j^{\max}$$

LMP properties

We study properties of optimal dispatch p^* and LMP λ^*

- Competitive equilibrium
- Nodal and line congestion price κ^*
- Revenue adequacy
- Price reference bus

These properties are consequences of DC power flow equation and KKT condition

Competitive equilibrium

a competitive equilibrium:

- Market clearing: supply = demand, $\mathbf{1}^{\mathsf{T}}p^* = 0$
- Power flows satisfy line limits: $P^{\min} \leq S^{\mathsf{T}}p \leq P^{\max}$
- Welfare optimization: p^* solves economic dispatch
- Incentive compatibility: individually optimal p_i^* that solve

$$\max_{p_j^{\min} \le p_j \le p_j^{\max}} \quad \lambda_j^* p_j - f_j(p_j)$$

turn out to be socially optimal

LMP consists of Lagrange multipliers associated with non-local constraints (only) that couple individual decisions p_i

• It prices externalities of unit j's decisions and aligns individual optimality with social optimality

- An important justification for pricing according to LMP is that optimal dispatch and LMP (p^*, λ^*) is

Nodal and line congestion prices

LMP: $\lambda^* := \gamma^* \mathbf{1} + S \kappa^*$

Energy price γ^*

- Same prices $\lambda_j^* = \gamma^*$ at all buses *j* if no congestion ($P^{\min} < BC^T L^{\dagger} p < P^{\max} \Rightarrow \kappa^* = 0$)
- In general, energy price $\gamma^* = \frac{1}{N+1} \mathbf{1}\lambda^*$, the average LMP (system λ)

Nodal and line congestion prices

LMP: $\lambda^* := \gamma^* \mathbf{1} + S \kappa^*$

Line congestion price κ^*

- Interpret κ* := κ^{-*} κ^{+*} as line congestion prices, for two reasons
 κ_l*: shadow price of line capacities (P_l^{min}, P_l^{max}) at *l* because (Envelop Theorem)
- κ_l^* : shadow price of line capacities (P_l^{\min}, P_l^{\max}) at l because (Envelop Theorem) $\frac{\partial f^*}{\partial P_l^{\min}}(P^{\min}, P^{\max}) = \kappa_l^{-*}$ $\frac{\partial f^*}{\partial P_l^{\max}}(P^{\min}, P^{\max}) = -\kappa_l^{+*}$ i.e., each unit of additional capacities reduces optimal cost f^* by $(\kappa^{-*}, \kappa^{+*}) \ge 0$
- $-\kappa_l^* P_l \ge 0$: cost of carrying P_l on line l (due to complementary slackness)

Nodal and line congestion prices

LMP: $\lambda^* := \gamma^* \mathbf{1} + S \kappa^*$

Nodal congestion price $c^* := S\kappa^*$

- c_i^* : marginal cost of serving 1 additional load at node j• Main observation : $S = \left(\frac{\partial P}{\partial n}\right)^{T}$ because $P = S^{T}p$
 - $\frac{\partial P_l}{\partial p_i} \Delta p_j = S_{jl} \Delta p_j$ = increase in power flow at line *l* due to additional injection Δp_j at node *j*
 - $-\kappa_l^* \left(S_{jl} \Delta p_j \right) =$ increase in congestion cost at line *l* due to additional injection Δp_j at node *j*
 - $\cdot \sum S_{jl} \kappa_l^* \Delta p_j$ = increase in congestion cost over network due to additional injection Δp_j at node j

• $c_j^* := \sum S_j \kappa_l^*$ = increase in congestion cost over network due to 1 additional unit of load at node j

Nodal and line congestion prices **Negative price**

LMP: $\lambda_i^* := \gamma^* + c_i^*$

- Since the nodal congestion price c_i^* can be positive or negative, λ_i^* can be negative • Negative λ_i^* are not uncommon in practice, e.g., in CAISO market during daytime when there is
- a lot of solar generation
- Negative λ_i^* can be due to congestion or nonzero generation limit $p_i^{\min} > 0$

Revenue adequacy

System operator collects payment $\lambda_i^*(-p_i^*)$ from load *j* and pays $\lambda_i^*p_i^*$ to generator *j* The residue is merchandizing surplus

$$MS := -\sum_{j} \lambda_j^* p_j^* = -(\lambda^*)^{\mathsf{T}} p^*$$

- Substituting $\lambda^* := \gamma \mathbf{1} + S \kappa^*$ and complementary slackness yield $MS = (\kappa^{+*})^{T} P^{\max} + (\kappa^{-*})^{T} (-P^{\min}) \ge 0$ i.e., SO will not run cash negative. This is called revenue adequate
- MS > 0 if and only if there is congestion ($\kappa^{-*} > 0$ or $\kappa^{+*} > 0$)

Price reference bus Summary

and always by p_r at bus r, so that $p_r = -\mathbf{1}^T p_{-r}$

May be different from angle reference bus 0 where $\theta_0 := 0$

Can write everything in terms of injections p_{-r} and shift factor S_r at non-price-ref buses only • DC power flow equations, economic dispatch (DC OPF), LMP λ^*

Optimal dispatch p^* , LMP λ^* , and line flows P do not depend on choice of r

• Lagrange multiplier γ^* does

Disadvantages of designating a price reference bus *r*

- Somewhat arbitrary (typically a bus where there is large generator that is rarely bottlenecked)
- Reduced Laplacian matrix $L_r := C_{-r}BC_{-0}^{sfT}$ is not principal submatrix of L, hence may not be symmetric nor nonsingular (unless r = 0)
- Reduced shift factor $S_r := L_r^{-1}C_{-0}B$ depends on r (when L_r is nonsingular)
- Seems unnecessary (can express DC power flow, economic dispatch, and LMP in terms of L^{\dagger}

- Price reference (slack) bus r : injections p_{-r} at non-price-reference buses can be arbitrarily chosen

Price reference bus In terms of p_{-r} and S_r

Partition node-by-line incidence matrix

$$C =: \begin{bmatrix} c_0^{\mathsf{T}} \\ C_{-0} \end{bmatrix}, \qquad C =: \begin{bmatrix} C_{-r} \\ c_r^{\mathsf{T}} \end{bmatrix}$$

DC power flow equations become

$$\begin{bmatrix} p_{-r} \\ p_r \end{bmatrix} = \begin{bmatrix} C_{-r} \\ c_r^{\mathsf{T}} \end{bmatrix} P, \qquad P = B \begin{bmatrix} c_0 G \\ c_0 G \end{bmatrix}$$

leading to

$$P = (BC_{-0}^{\mathsf{T}}L_{r}^{-1})p_{-r} =: S_{r}^{\mathsf{T}}p_{-r}$$

Economic dispatch becomes:

 $\begin{bmatrix} C_{-0}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_{-0} \end{bmatrix}$

$[\gamma]$

 $P^{\min} \leq S_r^{\mathsf{T}} p_{-r} \leq P^{\max} \qquad [\kappa^-, \kappa^+]$

Price reference bus In terms of p_{-r} and S_r LMP: $\lambda^* = \gamma^* + \begin{bmatrix} S_r \kappa^* \\ 0 \end{bmatrix}$ where $S_r := L_r^{-T} C_{-0} B$ and $\kappa^* := \kappa^{-*} - \kappa^{+*}$

Theorem

Suppose cost functions f_i are convex (and hence differentiable), so that KKT is N&S optimality condition. Fix p^* and let

$$\tilde{\gamma}^* = \gamma^* - s_r^{\mathsf{T}} \kappa^*, \quad \tilde{\kappa}^{-*} = \kappa^{-*}, \quad \tilde{\kappa}^{-*}$$

1. $\tilde{\lambda} := \tilde{\gamma}^* \mathbf{1} + S \kappa^* = \lambda^*$
2. $(p^*, \tilde{\lambda}^*)$ is primal-dual optimal for original
3. $P^* = S^{\mathsf{T}} p = S_r^{\mathsf{T}} p_{-r}$

 $\kappa^{+*} = \kappa^{+*}$

ED iff (p^*, λ^*) is primal-dual optimal for reduced ED

Outline

- 1. Economic dispatch
- Voltage control 2.
- Radial network identification 3.
 - Linear DistFlow model
 - Decentralized control: convergence and optimality

volt/var control

Stabilize voltages on distribution grid by adapting reactive power injections

• e.g., at inverters, capacitor banks

Questions we will study

- How to design simple control schemes?
- What is the dynamic behavior of closed-loop system?
- What is the optimality of closed-loop system?

Design and analysis method

• Use LinDistFlow model due to its analytical properties

volt/var control **Network model**

At each bus *j*, there are

- Fixed and given active and reactive load $\left(p_{j}^{0}, q_{j}^{0}\right)$
- Possibly a DER (e.g. inverter) with fixed p_i (e.g. PV generation) and controllable q_i **Notation**: write $s = (p, q) \in \mathbb{R}^{2N}$ and $v \in \mathbb{R}^N$ at non-reference buses, instead of (\hat{s}, \hat{v})

From linear solution theorem:

$$v = v_0 \mathbf{1} + 2 \left(R(p - p^0) + X(q - q^0) \right)$$

$$v(q) = 2Xq + \tilde{v}$$

Or

where $\tilde{v} := v_0 \mathbf{1} + 2R(p - p^0) - 2Xq^0$ independent of the control q

volt/var control **Inverter model**

At each bus j, the reactive power q_j is constrained to stay in the intersection of

• Capacity limt $\{q_i : p_i^2 + q_i^2 \le \sigma^2\}$ which depends on p_i (e.g. PV generation), and

• Power factor limit $-\phi_i \le \tan^{-1}(q_i/p_i) \le \phi_i$

Hence q_i must lie in

$$\begin{split} U_j &:= U_j(p_j) \left\{ \begin{array}{l} q_j : \underline{q}_j \leq q_j \leq \overline{q}_j \end{array} \right\} \\ \text{where } \overline{q}_j &:= \min \left\{ p_j \tan \phi_j, \sqrt{\sigma^2 - p_j^2} \right\} \text{ and } \underline{q}_j &:= \max \left\{ -p_j \tan \phi_j, -\sqrt{\sigma^2 - p_j^2} \right\} \end{split}$$

volt/var control Local memoryless control Let v^{ref} = given vector of reference voltages at buses i > 0

Control goal: design $q \in U$ to drive voltages towards v^{ref}

- Local control: $q_i(t+1)$ depends only on $v_i(t)$, not voltages $v_k(t)$ at buses $k \neq j$
- Memoryless control: $q_j(t+1)$ depends only on $v_j(t)$, not on $\left(v_j(s), s < t\right)$

Restrict control law $u_i : \mathbb{R} \to \mathbb{R}$ to depend on voltage error $v_i(t) - v_i^{ret}$

$$q_j(t+1) = \left[u_j \left(v_j(t) - v_j^{\text{ref}} \right) \right]_{U_j},$$

$$j = 1, ..., N$$

i.e. we are to design u_j that map voltage errors $v_j(t) - v_j^{\text{ref}}$ to reactive power settings $q_i(t+1)$

volt/var control Local memoryless control Example:

(a) Piecewise linear control $u_j(v_j)$

Closed-loop system

Closed-loop system is discrete-time dynamical system:

$$q(t+1) = \left[u \left(v(q(t)) - v_j^{\text{ref}} \right) \right]$$

- $v(q) := 2Xq + \tilde{v}$: maps linearly reactive power control q to network voltage
- $u\left(v-v^{\text{ref}}\right)$: maps voltage error to potential control action
- $[u]_{II}$: projects potential control action to its feasibility region U

Questions:

- Stability: will (q(t), v(t)) converge to an equilibrium point (q^*, v^*) ? • Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

U

Closed-loop system

Closed-loop system is discrete-time dynamical system:

$$q(t+1) = \left[u \left(v(q(t)) - v_j^{\text{ref}} \right) \right]$$

where $v(q) := 2Xq + \tilde{v}$

Definition:

 q^* is an **equilibrium point** if it is a fixed point

Assumptions:

- 1. u_j are differentiable; $\exists \alpha_j$ s.t. $\left| u'_j(v_j) \right| \leq \alpha_j$
- 2. u_j are strictly decreasing

U

nt, i.e.,
$$q^* = \left[u \left(v(q^*) - v_j^{\text{ref}} \right) \right]_U$$

$$A := \operatorname{diag}\left(\alpha_{j}, j \in N\right)$$

Convergence

Theorem [Convergence]

Suppose Assumption 1 holds. If largest singular value $\sigma_{max}(AX) < 1/2$ then

- 1. \exists unique equilibrium point $q^* \in U$
- 2. q(t) convergest to q^* geometrically, i.e., $\|q(t) - q^*\| \le \beta^t \|q(0) - q^*\| \to 0$ for some $\beta \in [0,1)$

 $A := \operatorname{diag}\left(\alpha_{j}, j \in N\right)$

Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point q^* of the dynamical system is the unique minimizer of

$$\min_{q \in U} \sum_{j} c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} (\tilde{v} - v^{\mathsf{ref}})$$

where $c_j(q_j) := -\int_0^{q_j} u_j^{-1}(\hat{q}_j) d\hat{q}_j$

Closed-loop behavior

Questions:

- Stability: will (q(t), v(t)) converge to an equilibrium point (q^*, v^*) ?
- Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

Answer: under assumptions 1 and 2

- (q(t), v(t)) converges geometrically to a unique equilibrium point (q^*, v^*)
- The unique equilibrium point (q^*, v^*) minimizes a cost function determined by control law u_i

 $c_j(q_j)$ that the closed-loop equilibrium optimizes

<u>Reverse engineering</u>: by choosing a control function u_j , we implicitly choose a cost function

Closed-loop behavior

Questions:

- Stability: will (q(t), v(t)) converge to an equilibrium point (q^*, v^*) ?
- Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

Answer: under assumptions 1 and 2

- (q(t), v(t)) converges geometrically to a unique equilibrium point (q^*, v^*)
- The unique equilibrium point (q^*, v^*) minimizes a cost function determined by control law u_i

Forward engineering: Choose a cost function $c_j(q_j)$ and derive control functions u_j as distributed algorithm to solve the optimization problem

Mean v $\lambda \in [0]$

Hence

value theorem
$$\implies u_j(v_j) - u(\hat{v}_j) = u'_j(w)(u - \hat{u}) \text{ where } w := \lambda u + (1 - \lambda)\hat{u} \text{ for som}$$

$$Assumption 1 \text{ and } MVT$$

$$\|u(v) - u(\hat{v})\|_2^2 = \sum_j \left\|u_j(v_j) - u_j(\hat{v}_j)\right\|^2 \leq \sum_j \left\|\alpha_j(v_j - \hat{v}_j)\right\|^2 = \left\|A(v - \hat{v})\|_2^2$$

Therefore

$$\left\| u\left(v(q) - v^{\mathsf{ref}}\right) - u\left(v(\hat{q}) - v^{\mathsf{ref}}\right)\right\|$$

$$\leq \| Av(q) - Av(\hat{q}) \|_{2}$$

Vector-function mean value theorem: if $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable then I

$$\|f(y) - f(x)\| \le \|\frac{\partial f}{\partial x}(z)\| \|y - x$$

for any induced matrix norm $\|\cdot\|$ where $z := \mu x + (1 - \mu)y$ for some $\mu \in [0,1]$ Hence

$$\left\| Av(q) - Av(\hat{q}) \right\|_{2} \leq \left\| \frac{\partial Av}{\partial q} \right\|_{2}$$

because
$$\frac{\partial Av}{\partial q}(q) = A \frac{\partial v}{\partial q}(q) = 2AX$$

 $\|q - \hat{q}\|_2 \leq \|2AX\|_2 \|q - \hat{q}\|_2$

Therefore

$$\left\| u \left(v(q) - v^{\text{ref}} \right) - u \left(v(\hat{q}) - v^{\text{ref}} \right) \right\|_{2} \leq \|2AX\|_{2} \|q - \hat{q}\|_{2}$$

nduced matrix norm $\|AX\|_{2} = \sigma_{\max}(AX)$, if $\beta = 2\sigma_{\max}(AX) < 1$ then
 $\left\| u \left(v(q) - v^{\text{ref}} \right) - u \left(v(\hat{q}) - v^{\text{ref}} \right) \right\|_{2} \leq \beta \|q - \hat{q}\|_{2}$

Since in

i.e. u(q) is a contraction mapping.

Since projection $[u]_U$ is non-expansive, i.e., $||[u]_U - [\hat{u}]_U|_2 \le ||u - \hat{u}||_2$, the mapping $\left[u \left(v(q) - v^{\text{ref}} \right) \right]_{U}$ is a contraction mapping in q

Contraction theorem implies, for the dynamical system

$$q(t+1) = \left[u \left(v(q(t)) - v_j^{\mathsf{ref}} \right) \right]$$

that

- \exists unique fixed point q^*
- q(t) converges to q^* geometrically

U

Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point q^* of the dynamical system is the unique minimizer of

$$\min_{q \in U} \sum_{j} c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} (\tilde{v} - v^{\mathsf{ref}})$$

where $c_j(q_j) := -\int_0^{q_j} u_j^{-1}(\hat{q}_j) d\hat{q}_j$

Assumption 1 implies that there is a unique equilibrium pt q^*

Let
$$C(q) := \sum_{j} c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} \Delta \tilde{v}$$
 will

unique

We will show this in 3 steps:

1. Obtain optimality condition (necessary and sufficient because of convexity)

2. Relate
$$[\nabla C(q^*)]_j$$
 to $u_j \left(v_j(q_j^*) - v_j^{\text{ref}} \right)$

3. Conclude optimality condition is equival

- here $\Delta \tilde{v} := \tilde{v} v^{\text{ref}}$
- Assumption 2 and X > 0 imply that C(q) is strictly convex and hence, if an optimal q^* exists, it is
- It thus suffices to show that q^* is the unique equilibrium pt if and only if q^* is the unique minimizer

and q^*

lent to
$$q^* = \left[u \left(v(q^*) - v^{\text{ref}} \right) \right]_U$$

Step 1: By convexity, $q^* \in U$ is optimal iff

$$\left(\nabla C(q^*)\right)^{\mathsf{T}}\left(q-q^*\right) \ge 0 \qquad \forall a$$

This is equivalent to

$q_j^* \in (\underline{q}_j, \overline{q}_j)$	\implies	$\nabla C($
$q_j^* = \underline{q}_j$	\longleftarrow	$\left[\nabla C(\cdot)\right]$
$q_j^* = \overline{q}_j$	\longleftarrow	$\left[\nabla C(\cdot)\right]$

$q \in U$

 $(q^*)]_j = 0$ $(q^*)]_j > 0$ $(q^*)]_j < 0$

Step 2: Evaluate

 $\nabla C(q^*) = \nabla c(q^*) + 2Xq^* + \Delta \tilde{v}$

where
$$\nabla c(q^*) = (c'_j(q^*_j) = -u_j^{-1}(q^*_j), i \in N)$$

Hence
$$[\nabla C(q^*)]_j = -u_j^{-1}(q^*) + (v_j(q^*))$$

Since u_j is strictly decreasing (Assumption 2), we have

$$\begin{split} \left[\nabla C(q^*) \right]_j &= 0 \iff u_j \left(v_j(q_j^*) - v_j^{\mathsf{ref}} \right) = q_j^* \\ \left[\nabla C(q^*) \right]_j &> 0 \iff u_j \left(v_j(q_j^*) - v_j^{\mathsf{ref}} \right) < q_j^* \\ \left[\nabla C(q^*) \right]_j &< 0 \iff u_j \left(v_j(q_j^*) - v_j^{\mathsf{ref}} \right) > q_j^* \end{split}$$

$$= \nabla c(q^*) + \left(v(q^*) - v^{\text{ref}}\right)$$

$$-v_j^{\text{ref}}$$

Step 3: Use $[\nabla C(q^*)]_i$ to combine the conditions in Steps 1 and 2 into:

$$\begin{split} q_{j}^{*} &\in (\underline{q}_{j}, \overline{q}_{j}) \implies \left[\nabla C(q^{*}) \right]_{j} = 0 \qquad \Longleftrightarrow \qquad u_{j} \left(v_{j}(q_{j}^{*}) - v_{j}^{\mathsf{ref}} \right) = q_{j}^{*} \\ q_{j}^{*} &= \underline{q}_{j} \qquad \Longleftrightarrow \qquad \left[\nabla C(q^{*}) \right]_{j} > 0 \qquad \Longleftrightarrow \qquad u_{j} \left(v_{j}(q_{j}^{*}) - v_{j}^{\mathsf{ref}} \right) < \underline{q}_{j} \\ q_{j}^{*} &= \overline{q}_{j} \qquad \Longleftrightarrow \qquad \left[\nabla C(q^{*}) \right]_{j} < 0 \qquad \Longleftrightarrow \qquad u_{j} \left(v_{j}(q_{j}^{*}) - v_{j}^{\mathsf{ref}} \right) > \overline{q}_{j} \end{split}$$

But this is equivalent to:

$$q^* = \left[u \left(v(q^*) - v^{\mathsf{ref}} \right) \right]_U$$

i.e. q^* is the unique equilibrium point Therefore q^* is the unique equilibrium pt if and only if q^* is the unique minimizer

Outline

- 1. Economic dispatch
- 2. Voltage control
- 3. Radial network identification
 - Linearized polar-form AC model
 - Covariances of voltage magnitudes

Recall: radial networks

When $y_{jk}^{s} = y_{kj}^{s}$ and $y_{jk}^{m} = y_{kj}^{m} = 0$

Theorem 10

Apply this result to topology identification problem

Suppose G is connected, Y is complex symmetric $(y_{ik}^s = y_{ki}^s)$ and

Reduced incidence matrix \hat{C} is nonsingular

$$\left[\begin{array}{c} -1 \\ j \end{array} \right]_{lj} = \begin{cases} -1 & l \in \mathsf{P}_j \\ 1 & -l \in \mathsf{P}_j \\ 0 & \text{otherwise} \end{cases}$$

Reduced admittance matrix \hat{Y} is nonsingular, and

$$:= \hat{Y}^{-1} = \hat{C}^{-\mathsf{T}} D_z^s \hat{C}^{-1}$$

$$= \sum_{l \in \mathsf{P}_j \cap \mathsf{P}_k} z_l^s$$

Topology identification

- 1. Distribution grid typically consists of a meshed network with sectionalizing and tie switches on some lines
- 2. At any time switch are configured s.t. operational network is a spanning tree (substation at its root)
- 3. System operator knows the meshed network, but may not always know accurately switch status and hence operational network

Goal: Identify operational radial network from measurements of voltage magnitudes

Linearized power flow model Linearization of polar form

Assumptions: For all $(j, k) \in E$

1. $y_{jk}^s = y_{kj}^s = g_{jk}^s + ib_{jk}^s$; $y_{jk}^m = y_{kj}^m = 0$

2.
$$g_{jk}^s > 0$$
 and $b_{jk}^s < 0$

Consider flat voltage profile: $V_i^{\text{flat}} = \mu e^{i\theta}$ =

• All voltages have same magnitude (e.g. $\mu = 1$ pu) and angle Let

- $(|\hat{V}|, \hat{\theta})$: perturbation variable around V^{flat} at non-reference buses

$$\Rightarrow \left(p^{\mathsf{flat}}, q^{\mathsf{flat}} \right) = (0,0)$$

• (\hat{p}, \hat{q}) : perturbation variable around $(p^{\text{flat}}, q^{\text{flat}}) = (0,0)$ at non-reference buses

Linearized power flow model Linearization of polar form

Polar form power flow model

$$p_{j} = \sum_{k:k\sim j} \left(g_{jk}^{s} + g_{jk}^{m} \right) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| \left(g_{jk}^{s} \cos \theta_{jk} + b_{jk}^{s} \sin \theta_{jk} \right)$$
$$q_{j} = -\sum_{k:k\sim j} \left(b_{jk}^{s} + b_{jk}^{m} \right) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| \left(g_{jk}^{s} \sin \theta_{jk} - b_{jk}^{s} \cos \theta_{jk} \right)$$

Linearized power flow model Linearization of polar form

Polar form power flow model

$$p_{j} = \sum_{k:k\sim j} \left(g_{jk}^{s} + g_{jk}^{m} \right) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| \left(g_{jk}^{s} \cos \theta_{jk} + b_{jk}^{s} \sin \theta_{jk} \right)$$
$$q_{j} = -\sum_{k:k\sim j} \left(b_{jk}^{s} + b_{jk}^{m} \right) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| \left(g_{jk}^{s} \sin \theta_{jk} - b_{jk}^{s} \cos \theta_{jk} \right)$$

Linearize around $(V^{\text{flat}}, p^{\text{flat}}, q^{\text{flat}})$ yields a linear model from $|\hat{V}|$ to (\hat{p}, \hat{q}) at non-reference buses: $|\hat{V}| = \hat{R}\hat{p} + \hat{X}\hat{q} + \hat{v}_0$

where

$$\hat{R} := \hat{C}^{-T} D_1 \hat{C}^{-1} > 0, \quad \hat{X} := -\hat{C}^{-T} D_2 \hat{C}^{-1} > 0$$

 \hat{C} is reduced incidence matrix and

$$\begin{split} D_g &:= \operatorname{diag}\left(g_l^s, l \in E\right) \succ 0, \qquad D_b &:= \operatorname{diag}\left(D_{l} &:= \left(D_g + D_b D_g^{-1} D_b\right)^{-1} \succ 0, \qquad D_2 &:= \left(D_b + D_b D_g^{-1} D_b\right)^{-1} \right) \end{split}$$

 $(b_l^s, l \in E) \prec 0$ $+ D_g D_b^{-1} D_g)^{-1} \prec 0$

Suppose injections (p,q) vary randomly and induce random fluctuations in $|\hat{V}|$

Define covariance and cross-covariance matrices

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{v}} &:= E[|\hat{V}| - E(|\hat{V}|)][(|V| - E(|\hat{V}|)]][(|V| - E(|\hat{V}|)]][(|V| - E(|\hat{V}|)]] \\ \boldsymbol{\Sigma}_{\boldsymbol{p}} &:= E[\hat{p} - E\hat{p}][\hat{p} - E\hat{p}]^{\mathsf{T}}, \\ \boldsymbol{\Sigma}_{\boldsymbol{p}\boldsymbol{q}} &:= E[\hat{p} - E\hat{p}][\hat{q} - E\hat{q}]^{\mathsf{T}}, \end{split}$$

Then

$$\Sigma_{v} = \hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}} + \hat{X}\Sigma_{q}\hat{X}^{\mathsf{T}} + \hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}$$

- $|V|\rangle$

 $\Sigma_q := E[\hat{q} - E\hat{q}][\hat{q} - E\hat{q}]^{\mathsf{T}}$ $\Sigma_{ap} := E[\hat{q} - E\hat{q}][\hat{p} - E\hat{p}]^{\mathsf{T}}$

Assumptions: power injections at same bus are positively correlated, those at different buses are uncorrelated

3. For all $j \in N$: $\Sigma_p[j,j] > 0$, $\Sigma_q[j,j] > 0$,

4. For all $j \neq k$: $\Sigma_p[j,k] = \Sigma_q[j,k] = \Sigma_{pq}[j,k]$

$$\Sigma_{pq}[j,j] = \Sigma_{qp}[j,j] > 0 ; y_{jk}^{m} = y_{kj}^{m} = 0$$

$$j,k] = \Sigma_{qp}[j,k] = 0$$

Assumptions: power injections at same bus are positively correlated, those at different buses are uncorrelated

3. For all $j \in N$: $\Sigma_p[j,j] > 0$, $\Sigma_q[j,j] > 0$,

4. For all $j \neq k$: $\Sigma_p[j,k] = \Sigma_a[j,k] = \Sigma_{pa}[j,k]$

Theorem

Under assumptions 1-4:

- 1. If a non-reference bus $j \in N$ is a descendant of bus i, then var $(|V_i|) > var(|V_i|)$
- 2. If bus *i* is a parent of bus *j* then the variance of $|V_i| |V_j|$ is given by:

$$E\left((|V_i| - |V_j|) - E(|V_i| - |V_j|)\right)^2 = \sum_{k \in \mathsf{T}_j} \left(r_{ij}^2 \operatorname{var}(p_k) + x_{ij}^2 \operatorname{var}(q_k) + 2r_{ij}x_{ij}\operatorname{cov}(p_k, q_k)\right)$$

$$\Sigma_{pq}[j,j] = \Sigma_{qp}[j,j] > 0 ; y_{jk}^{m} = y_{kj}^{m} = 0$$

$$i, k] = \Sigma_{qp}[j,k] = 0$$

Theorem

Under assumptions 1-4:

- 1. If a non-reference bus $j \in N$ is a descendant of bus i, then var $(|V_i|) > var(|V_i|)$
- 2. If bus *i* is a parent of bus *j* then the variance of $|V_i| |V_j|$ is given by:

$$E\left((|V_i| - |V_j|) - E(|V_i| - |V_j|)\right)^2 = \sum_{k \in \mathsf{T}_j} \left(r_{ij}^2 \operatorname{var}(p_k) + x_{ij}^2 \operatorname{var}(q_k) + 2r_{ij}x_{ij}\operatorname{cov}(p_k, q_k)\right)$$

Implications

Property 1 identifies a leaf node j as one with max var($|V_j|$) Property 2 identifies j's parent i as one that most closely satisfies the formula

<u>Algorithm</u>

- 1. Identify a leaf node *j* among unidentified nodes.
- 2. Identify *j*'s parent. 3. Remove *j* from set of unidentified nodes and goto 1

Proof: part 1

Theorem 10 implies

$$\hat{R}_{jk} = \sum_{l \in \mathsf{P}_j \cap \mathsf{P}_k} r_l > 0, \qquad \hat{X}_{jk} = \sum_{l \in \mathsf{P}_j \cap \mathsf{P}_k} x_l$$

Hence

 $k \notin \mathsf{T}_i$ *-JK*7 ^{-}lK Use these to evaluate the diagonal entries of var $(|V_i|) - var(|V_i|) = \sum_{v} [j, j] - \sum_{v} [i, i]$, for each of the four terms in

$$\Sigma_{\nu} = \hat{R} \Sigma_{p} \hat{R}^{\mathsf{T}} + \hat{X} \Sigma_{q} \hat{X}^{\mathsf{T}} + \hat{R} \Sigma_{pq} \hat{X}^{\mathsf{T}} + \hat{X}$$

> 0

 $k \in \mathsf{T}_i$

 $\hat{X} \Sigma_{qp} \hat{R}^{\mathsf{T}}$

Due to covariances Σ_p, Σ_q :

$$\left(\hat{R} \Sigma_p \hat{R}^{\mathsf{T}} \right) [j, j] - \left(\hat{R} \Sigma_p \hat{R}^{\mathsf{T}} \right) [i, i] = \sum_{k \in \mathsf{T}_j} \Sigma_p [k, k] \left(2 \sum_{l \in \mathsf{P}_i} r_l + r_{ij} \right) r_{ij} > 0$$

similarly: $\left(\hat{X} \Sigma_q \hat{X}^{\mathsf{T}} \right) [j, j] > \left(\hat{X} \Sigma_q \hat{X}^{\mathsf{T}} \right) [i, i]$

Due to cross-covariances Σ_{pq}, Σ_{qp} :

$$\begin{pmatrix} \hat{R} \Sigma_{pq} \hat{X}^{\mathsf{T}} \end{pmatrix} [j,j] - \begin{pmatrix} \hat{R} \Sigma_{pq} \hat{X}^{\mathsf{T}} \end{pmatrix} [i,i] = \sum_{k} \Sigma_{pq} [k,k] \begin{pmatrix} \hat{R}_{jk} \hat{X}_{jk} - \hat{R}_{ik} \hat{X}_{ik} \end{pmatrix} > 0$$
similarly: $(\hat{X} \Sigma_{qp} \hat{R}^{\mathsf{T}}) [j,j] > (\hat{X} \Sigma_{qp} \hat{R}^{\mathsf{T}}) [i,i]$
yielding: $\Sigma_{\nu} [j,j] > \Sigma_{\nu} [i,i]$

Proof: part 2

If bus *i* is a parent of bus *j*, then variance of $|V_i| - |V_j|$ is: $E\left((|V_i| - E|V_j|) - (|V_i|) - |V_j|)\right)^2 = \Sigma_v[i, i] + \Sigma_v[j, j] - 2\Sigma_v[i, j]$

Again use

$$\hat{R}_{jk} = \hat{R}_{ik} + r_{ij}, \qquad \hat{R}_{ik} = \sum_{l \in P_i} r_l, \qquad \text{if } k$$

$$\hat{R}_{ik} = \hat{R}_{jk}, \qquad \qquad \text{if } k$$

to show that the first term of

$$\Sigma_{v} = \hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}} + \hat{X}\Sigma_{q}\hat{X}^{\mathsf{T}} + \hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}} + \hat{X}\Sigma_{pq}\hat{X}^{\mathsf{T}} + \hat{X}\Sigma_{pq}\hat{X}^{\mathsf{T}}$$

yields a simple expression:

$$\sigma_1 := \left(\hat{R}\Sigma_p \hat{R}^{\mathsf{T}}\right)[i,i] + \left(\hat{R}\Sigma_p \hat{R}^{\mathsf{T}}\right)[j,j] -$$

- $x \in \mathsf{T}_i$
- if $k \notin T_i$
 - $\Sigma_{ap} \hat{R}^{\mathsf{T}}$

 $2\left(\hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}}\right)[i,j] = r_{ij}^{2}\sum_{k\in\mathsf{T}_{j}}\Sigma_{p}[k,k]$

Similarly, the other terms of

yield

$$\begin{split} \sigma_{1} &:= \left(\hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}}\right)[i,i] + \left(\hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}}\right)[j,j] - 2\left(\hat{R}\Sigma_{p}\hat{R}^{\mathsf{T}}\right)[i,j] = r_{ij}^{2}\sum_{k\in\mathsf{T}_{j}}\Sigma_{p}[k,k]\\ \sigma_{2} &:= \left(\hat{X}\Sigma_{q}\hat{X}^{\mathsf{T}}\right)[i,i] + \left(\hat{X}\Sigma_{q}\hat{X}^{\mathsf{T}}\right)[j,j] - 2\left(\hat{X}\Sigma_{q}\hat{X}^{\mathsf{T}}\right)[i,j] = r_{ij}^{2}\sum_{k\in\mathsf{T}_{j}}\Sigma_{q}[k,k]\\ \sigma_{3} &:= \left(\hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}\right)[i,i] + \left(\hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}\right)[j,j] - 2\left(\hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}\right)[i,j] = r_{ij}x_{ij}\sum_{k\in\mathsf{T}_{j}}\Sigma_{pq}[k,k]\\ \sigma_{4} &:= \left(\hat{X}\Sigma_{qp}\hat{R}^{\mathsf{T}}\right)[i,i] + \left(\hat{X}\Sigma_{qp}\hat{R}^{\mathsf{T}}\right)[j,j] - 2\left(\hat{X}\Sigma_{qp}\hat{R}^{\mathsf{T}}\right)[i,j] = r_{ij}x_{ij}\sum_{k\in\mathsf{T}_{j}}\Sigma_{qp}[k,k] \end{split}$$

 $\hat{X} \Sigma_{qp} \hat{R}^{\mathsf{T}}$

Summing:

$$\Sigma_{v}[i,i] - \Sigma_{v}[i,j] = \sum_{k=1}^{4} \sigma_{k} = \sum_{k \in \mathsf{T}_{j}} \left(r_{ij}^{2} \Sigma_{k} \right)$$

 $\Sigma_p[k,k] + x_{ij}^2 \Sigma_q[k,k] + 2r_{ij} x_{ij} \Sigma_{pq}[k,k] \right)$