Power System Analysis

Chapter 6 Example applications

Steven Low Caltech (Dec 13, 2024)

Outline

- 1. Voltage control
- 2. Radial network identification

Outline

- 1. Voltage control
	- Linear DistFlow model
	- Decentralized control: convergence and optimality
- 2. Radial network identification

volt/var control

Stabilize voltages on distribution grid by adapting reactive power injections

• e.g., at inverters, capacitor banks

Questions we will study

- How to design simple control schemes?
- What is the dynamic behavior of closed-loop system?
- What is the optimality of closed-loop system?

Design and analysis method

• Use LinDistFlow model due to its analytical properties

volt/var control Network model

At each bus j , there are

- \bullet Fixed and given active and reactive load $\left(p_{j}^{0},q_{j}^{0}\right)$
- Possibly a DER (e.g. inverter) with fixed p_j (e.g. PV generation) and controllable q_j

 $\mathsf{Notation:}$ write $s = (p, q) \in \mathbb{R}^{2N}$ and $v \in \mathbb{R}^N$ at non-reference buses, instead of (\hat{s}, \hat{v}) From linear solution theorem:

$$
v = v_0 \mathbf{1} + 2 \left(R(p - p^0) + X(q - q^0) \right)
$$

Or

 $v(q) = 2Xq + \tilde{v}$

where $\tilde{v} := v_0 \mathbf{1} + 2R(p - p^0) - 2Xq^0$ independent of the control q

volt/var control Inverter model

At each bus j , the reactive power q_j is constrained to stay in the intersection of

- Capacity limt $\{q_j : p_j^2 + q_j^2 \leq \sigma^2\}$ which depends on p_j (e.g. PV generation), and
- Power factor limit $-\phi_j \le \tan^{-1}(q_j/p_j) \le \phi_j$

Hence q_j must lie in

$$
U_j := U_j(p_j) \left\{ q_j : \underline{q}_j \le q_j \le \overline{q}_j \right\}
$$

where $\overline{q}_j := \min \left\{ p_j \tan \phi_j, \sqrt{\sigma^2 - p_j^2} \right\}$ and $\underline{q}_j := \max \left\{ -p_j \tan \phi_j, -\sqrt{\sigma^2 - p_j^2} \right\}$

volt/var control

Local memoryless control

Let v^{ref} = given vector of reference voltages at buses $j > 0$

Control goal: design $q \in U$ to drive voltages towards v^{ref}

- Local control: $q_j(t+1)$ depends only on $v_j(t)$, not voltages $v_k(t)$ at buses $k \neq j$
- Memoryless control: $q_j(t + 1)$ depends only on $v_j(t)$, not on $\left(\nu_j(s), s < t\right)$

 ${\sf Restrict\ control\ law\ } u_j:\mathbb{R}\to\mathbb{R}$ to depend on voltage error $v_j(t)-v_j^{\sf ref}$

$$
q_j(t+1) = \left[u_j \left(v_j(t) - v_j^{\text{ref}} \right) \right]_{U_j}, \quad j = 1,...,N
$$

i.e. we are to design u_j that map voltage errors $v_j(t) - v_j^{\sf ref}$ to reactive power settings $q_j(t+1)$

volt/var control Local memoryless control

Example: 304 *Draft: Example:* 304 *Draft: Example: 304 Draft: Example: 304 Draft: 2024* Draft: 2024

Closed-loop system

Closed-loop system

Closed-loop system is discrete-time dynamical system:

$$
q(t+1) = \left[u \left(v(q(t)) - v_j^{\text{ref}} \right) \right]_U
$$

- $v(q) := 2Xq + \tilde{v}$: maps linearly reactive power control q to network voltage • $u\left(v - v^{\text{ref}}\right)$: maps voltage error to potential control action
- $\left[u\right]_U$: projects potential control action to its feasibility region U

Questions:

- Stability: will $(q(t), v(t))$ converge to an equilibrium point (q^*, v^*) ?
- Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

Closed-loop system

Closed-loop system is discrete-time dynamical system:

$$
q(t+1) = \left[u \left(v(q(t)) - v_j^{\text{ref}} \right) \right]_U
$$

where $v(q):=2Xq+\tilde{v}$

Definition:

equilibrium point if it is a fixed point, i.e.,
$$
q^* = \left[u \left(v(q^*) - v_j^{\text{ref}} \right) \right]_U
$$

Assumptions:

1.
$$
u_j
$$
 are differentiable; $\exists \alpha_j$ s.t. $|u'_j(v_j)| \leq \alpha_j$
 $A := \text{diag}(\alpha_j, j \in N)$

2. u_j are strictly decreasing

Convergence

Theorem [Convergence]

Suppose Assumption 1 holds. If largest singular value $\sigma_{\text{max}}\left(AX\right) < 1/2$ then

- 1. \exists unique equilibrium point $q^* \in U$
- 2. $q(t)$ convergest to q^* geometrically, i.e.,

$$
\|q(t) - q^*\| \le \beta^t \|q(0) - q^*\| \to 0
$$

for some $\beta \in [0,1)$

$$
A:=\mathsf{diag}\left(\alpha_j, j\in N\right)
$$

Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point q^* of the dynamical system is the unique minimizer of

$$
\min_{q \in U} \sum_{j} c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} (\tilde{v} - v^{\text{ref}})
$$
\n
$$
\text{where } c_j(q_j) := -\int_0^{q_j} u_j^{-1}(\hat{q}_j) \, d\hat{q}_j
$$

Closed-loop behavior

Questions:

- Stability: will $(q(t), v(t))$ converge to an equilibrium point (q^*, v^*) ?
- Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

Answer: under assumptions 1 and 2

- $(q(t), v(t))$ converges geometrically to a unique equilibrium point (q^*, v^*)
- The unique equilibrium point (q^*, v^*) minimizes a cost function determined by control law u_j

Reverse engineering: by choosing a control function u_j , we implicitly choose a cost function $\left(c_j\left(q_j\right)$ that the closed-loop equilibrium optimizes

Closed-loop behavior

Questions:

- Stability: will $(q(t), v(t))$ converge to an equilibrium point (q^*, v^*) ?
- Optimality: is the equilibrium point (q^*, v^*) optimal, in what sense?

Answer: under assumptions 1 and 2

- $(q(t), v(t))$ converges geometrically to a unique equilibrium point (q^*, v^*)
- The unique equilibrium point (q^*, v^*) minimizes a cost function determined by control law u_j

Forward engineering: Choose a cost function $c_j\left(\, q_j\,\right)$ and derive control functions u_j as distributed algorithm to solve the optimization problem

Mean value theorem $\implies u_j(v_j) - u(\hat{v}_j) = u'_j(w)(u - \hat{u})$ where $w := \lambda u + (1 - \lambda)\hat{u}$ for some $\lambda \in [0,1]$ Assumption 1 and MVT

Hence

$$
||u(v) - u(\hat{v})||_2^2 = \sum_j |u_j(v_j) - u_j(\hat{v}_j)|^2 \le \sum_j |a_j(v_j - \hat{v}_j)|^2 = ||A(v - \hat{v})||_2^2
$$

Therefore

$$
\| u(v(q) - v^{\text{ref}}) - u(v(\hat{q}) - v^{\text{ref}}) \|_{2} \leq \| Av(q) - Av(\hat{q}) \|_{2}
$$

Vector-function mean value theorem: if $f\colon\mathbb{R}^n\to\mathbb{R}^n$ is continuously differentiable then

$$
||f(y) - f(x)|| \le ||\frac{\partial f}{\partial x}(z)|| ||y - x||
$$

for any induced matrix norm $\| \cdot \|$ where $z := \mu x + (1 - \mu) y$ for some $\mu \in [0,1]$ **Hence**

$$
\left\| A v(q) - A v(\hat{q}) \right\|_2 \le \left\| \frac{\partial A v}{\partial q} \right\|_2 \|\hat{q} - \hat{q}\|_2 \le \|2AX\|_2 \|\hat{q} - \hat{q}\|_2
$$

because ∂*Av* ∂*q* $(q) = A$ ∂*v* ∂*q* $(q) = 2AX$

Therefore

$$
\left| u \left(v(q) - v^{\text{ref}} \right) - u \left(v(\hat{q}) - v^{\text{ref}} \right) \right| \right|_2 \leq ||2AX||_2 ||q - \hat{q}||_2
$$

Since induced matrix norm $||AX||_2 = \sigma_{\max}(AX)$, if $\beta = 2\sigma_{\max}(AX) < 1$ then

$$
\left| u \left(v(q) - v^{\text{ref}} \right) - u \left(v(\hat{q}) - v^{\text{ref}} \right) \right|_{2} \leq \beta \| q - \hat{q} \|_{2}
$$

i.e. $u(q)$ is a contraction mapping.

Since projection $[u]_U$ is non-expansive, i.e., $\left\| [u]_U - [\hat{u}]_U \right\|_2 \leq \| u - \hat{u} \|_2$, the mapping is a contraction mapping in $\left| u \left(v(q) - v^{\text{ref}} \right) \right|$ *U q*

Contraction theorem implies, for the dynamical system

$$
q(t+1) = \left[u \left(v(q(t)) - v_j^{\text{ref}} \right) \right]_U
$$

that

- \exists unique fixed point q^*
- $q(t)$ converges to q^* geometrically

Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point q^* of the dynamical system is the unique minimizer of

$$
\min_{q \in U} \sum_{j} c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} (\tilde{v} - v^{\text{ref}})
$$
\n
$$
\text{where } c_j(q_j) := -\int_0^{q_j} u_j^{-1}(\hat{q}_j) \, d\hat{q}_j
$$

Assumption 1 implies that there is a unique equilibrium pt q^*

Let
$$
C(q) := \sum_j c_j(q_j) + q^{\mathsf{T}} X q + q^{\mathsf{T}} \Delta \tilde{\nu}
$$
 where $\Delta \tilde{\nu} := \tilde{\nu} - \nu^{\text{ref}}$

Assumption 2 and $X \succ 0$ imply that $C(q)$ is strictly convex and hence, if an optimal q^* exists, it is unique

It thus suffices to show that q^* is the unique equilibrium pt $\,$ if and only if $\,q^*$ is the unique minimizer We will show this in 3 steps:

- 1. Obtain optimality condition (necessary and sufficient because of convexity)
- 2. Relate $[\,\nabla\, C(q^*)\,]_j$ to $u_j\left(\,v_j(q_j^*) v_j^{\mathsf{ref}}\,\right)$ and q^*
- 3. Conclude optimality condition is equivalent to $q^* = \left\lceil u\left(\nu(q^*) \nu^{\text{ref}}\right)\right\rceil$ *U*

Step 1: By convexity, $q^* \in U$ is optimal i

$$
\left(\nabla C(q^*)\right)^{\mathsf{T}}\left(q-q^*\right) \geq 0 \qquad \forall q \in U
$$

This is equivalent to

$$
q_j^* \in (q_j, \overline{q}_j) \qquad \Longrightarrow \qquad [\nabla C(q^*)]_j = 0
$$

$$
q_j^* = q_j \qquad \Longleftarrow \qquad [\nabla C(q^*)]_j > 0
$$

$$
q_j^* = \overline{q}_j \qquad \Longleftarrow \qquad [\nabla C(q^*)]_j < 0
$$

Step 2: Evaluate

$$
\nabla C(q^*) = \nabla c(q^*) + 2Xq^* + \Delta \tilde{v} = \nabla c(q^*) + \left(v(q^*) - v^{\text{ref}}\right)
$$
\nwhere\n
$$
\nabla c(q^*) = (c_j'(q_j^*) = -u_j^{-1}(q_j^*), i \in N)
$$
\nHence\n
$$
[\nabla C(q^*)]_j = -u_j^{-1}(q^*) + \left(v_j(q^*) - v_j^{\text{ref}}\right)
$$
\nSince *u* is strictly decreasing (Assumption 2), we have

Since u_j is strictly decreasing (Assumption 2), we have

$$
[\nabla C(q^*)]_j = 0 \iff u_j \left(v_j(q_j^*) - v_j^{\text{ref}} \right) = q_j^*
$$

\n
$$
[\nabla C(q^*)]_j > 0 \iff u_j \left(v_j(q_j^*) - v_j^{\text{ref}} \right) < q_j^*
$$

\n
$$
[\nabla C(q^*)]_j < 0 \iff u_j \left(v_j(q_j^*) - v_j^{\text{ref}} \right) > q_j^*
$$

Step 3: Use $[\,\nabla\, C(q^*)]_j$ to combine the conditions in Steps 1 and 2 into:

$$
q_j^* \in (q_j, \overline{q}_j) \qquad \Longrightarrow \qquad [\nabla C(q^*)]_j = 0 \qquad \Longleftrightarrow \qquad u_j \left(v_j(q_j^*) - v_j^{\text{ref}}\right) = q_j^*
$$
\n
$$
q_j^* = q_j \qquad \Longleftarrow \qquad [\nabla C(q^*)]_j > 0 \qquad \Longleftrightarrow \qquad u_j \left(v_j(q_j^*) - v_j^{\text{ref}}\right) < q_j^*
$$
\n
$$
q_j^* = \overline{q}_j \qquad \Longleftarrow \qquad [\nabla C(q^*)]_j < 0 \qquad \Longleftrightarrow \qquad u_j \left(v_j(q_j^*) - v_j^{\text{ref}}\right) > \overline{q}_j
$$

But this is equivalent to:

$$
q^* = \left[u \left(v(q^*) - v^{\text{ref}} \right) \right]_U
$$

i.e. q^{\ast} is the unique equilibrium point

Therefore q^* is the unique equilibrium pt $\,$ if and only if $\,q^*$ is the unique minimizer

Outline

1. Voltage control

- 2. Radial network identification
	- Linearized polar-form AC model
	- Covariances of voltage magnitudes

only through variables *y ^j* in the path from the root to node *i*. Specifically let P $\overline{}$ is denoted the set of buses in the set of buses i Apply this result to topology identification problem

Topology identification

- 1. Distribution grid typically consists of a meshed network with sectionalizing and tie switches on some lines
- 2. At any time switch are configured s.t. operational network is a spanning tree (substation at its root)
- 3. System operator knows the meshed network, but may not always know accurately switch status and hence operational network

Goal: Identify operational radial network from measurements of voltage magnitudes

Linearized power flow model Linearization of polar form

 $\boldsymbol{ {\mathsf{Assumptions:}} }$ For all $(j,k) \in E$

1.
$$
y_{jk}^s = y_{kj}^s = g_{jk}^s + ib_{jk}^s
$$
; $y_{jk}^m = y_{kj}^m = 0$

2. $g_{jk}^s > 0$ and $b_{jk}^s < 0$

Consider flat voltage profile: $V^{\textsf{flat}}_j = \mu e^{i\theta} \implies \left(p^{\textsf{flat}},q^{\textsf{flat}}\right) = (0,0)$

• All voltages have same magnitude (e.g. $\mu=1$ pu) and angle

Let

- $(|\hat{V}|, \hat{\theta})$: perturbation variable around V^{flat} at non-reference buses
- \bullet (\hat{p},\hat{q}) : perturbation variable around $\left(p^{\mathsf{flat}},q^{\mathsf{flat}}\right)=\left(0,0\right)$ at non-reference buses

Linearized power flow model Linearization of polar form

Polar form power flow model

$$
p_{j} = \sum_{k:k\sim j} (g_{jk}^{s} + g_{jk}^{m}) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| (g_{jk}^{s} \cos \theta_{jk} + b_{jk}^{s} \sin \theta_{jk})
$$

$$
q_{j} = -\sum_{k:k\sim j} (b_{jk}^{s} + b_{jk}^{m}) |V_{j}|^{2} - \sum_{k:k\sim j} |V_{j}| |V_{k}| (g_{jk}^{s} \sin \theta_{jk} - b_{jk}^{s} \cos \theta_{jk})
$$

Linearized power flow model Linearization of polar form

Polar form power flow model

$$
p_{j} = \sum_{k:k \sim j} (g_{jk}^{s} + g_{jk}^{m}) |V_{j}|^{2} - \sum_{k:k \sim j} |V_{j}| |V_{k}| (g_{jk}^{s} \cos \theta_{jk} + b_{jk}^{s} \sin \theta_{jk})
$$

$$
q_{j} = - \sum_{k:k \sim j} (b_{jk}^{s} + b_{jk}^{m}) |V_{j}|^{2} - \sum_{k:k \sim j} |V_{j}| |V_{k}| (g_{jk}^{s} \sin \theta_{jk} - b_{jk}^{s} \cos \theta_{jk})
$$

Linearize around $\left(V^{\text{flat}},p^{\text{flat}},q^{\text{flat}}\right)$ yields a linear model from | \hat{V} | to (\hat{p},\hat{q}) at non-reference buses: $|\hat{V}| = \hat{R}\hat{p} + \hat{X}\hat{q} + \hat{v}_0$

where

$$
\hat{R} := \hat{C}^{-T} D_1 \hat{C}^{-1} > 0, \quad \hat{X} := -\hat{C}^{-T} D_2 \hat{C}^{-1} > 0
$$

 \hat{C} is reduced incidence matrix and

$$
D_g := \text{diag}(g_i^s, l \in E) > 0, \qquad D_b := \text{diag}(b_i^s, l \in E) < 0
$$

$$
D_1 := \left(D_g + D_b D_g^{-1} D_b\right)^{-1} > 0, \qquad D_2 := \left(D_b + D_g D_b^{-1} D_g\right)^{-1} < 0
$$

Suppose injections (p,q) vary randomly and induce random fluctuations in $|\hat{V}|$

Define covariance and cross-covariance matrices

$$
\Sigma_{v} := E[|\hat{V}| - E(|\hat{V}|)][(|V| - E(|V|)]^{T}
$$

\n
$$
\Sigma_{p} := E[\hat{p} - E\hat{p}][\hat{p} - E\hat{p}]^{T},
$$

\n
$$
\Sigma_{pq} := E[\hat{p} - E\hat{p}][\hat{q} - E\hat{q}]^{T},
$$

\n
$$
\Sigma_{qp} := E[\hat{q} - E\hat{q}][\hat{p} - E\hat{p}]^{T}
$$

\n
$$
\Sigma_{qp} := E[\hat{q} - E\hat{q}][\hat{p} - E\hat{p}]^{T}
$$

Then

$$
\Sigma_{v} = \hat{R} \Sigma_{p} \hat{R}^{T} + \hat{X} \Sigma_{q} \hat{X}^{T} + \hat{R} \Sigma_{pq} \hat{X}^{T} + \hat{X} \Sigma_{qp} \hat{R}^{T}
$$

Assumptions: power injections at same bus are positively correlated, those at different buses are uncorrelated

- 3. For all $j \in N$: $\Sigma_p[j,j] > 0$, $\Sigma_q[j,j] > 0$, $\Sigma_{pq}[j,j] = \Sigma_{qp}[j,j] > 0$; $y_{jk}^m = y_{kj}^m = 0$
- 4. For all $j \neq k$: $\ \Sigma_p[j,k] = \Sigma_q[j,k] = \Sigma_{pq}[j,k] = \Sigma_{qp}[j,k] = 0$

Assumptions: power injections at same bus are positively correlated, those at different buses are uncorrelated

- 3. For all $j \in N$: $\Sigma_p[j,j] > 0$, $\Sigma_q[j,j] > 0$, $\Sigma_{pq}[j,j] = \Sigma_{qp}[j,j] > 0$; $y_{jk}^m = y_{kj}^m = 0$
- 4. For all $j \neq k$: $\ \Sigma_p[j,k] = \Sigma_q[j,k] = \Sigma_{pq}[j,k] = \Sigma_{qp}[j,k] = 0$

Theorem

Under assumptions 1-4:

- 1. If a non-reference bus $j \in N$ is a descendant of bus i , then var $(|V_j|)$ $>$ var $(|V_i|)$
- $2.$ If bus i is a parent of bus j then the variance of $\mid V_i \mid \mid V_j \mid$ is given by:

$$
E((|V_i| - |V_j|) - E(|V_i| - |V_j|))^{2} = \sum_{k \in T_j} (r_{ij}^{2} \text{var}(p_k) + x_{ij}^{2} \text{var}(q_k) + 2r_{ij} x_{ij} \text{cov}(p_k, q_k))
$$

Theorem

Under assumptions 1-4:

- 1. If a non-reference bus $j \in N$ is a descendant of bus i , then var $(|V_j|)$ $>$ var $(|V_i|)$
- $2.$ If bus i is a parent of bus j then the variance of $\mid V^{}_i \mid \mid V^{}_j \mid$ is given by:

$$
E((|V_i| - |V_j|) - E(|V_i| - |V_j|))^{2} = \sum_{k \in T_j} (r_{ij}^{2} \text{var}(p_k) + x_{ij}^{2} \text{var}(q_k) + 2r_{ij} x_{ij} \text{cov}(p_k, q_k))
$$

Implications

Property 1 identifies a leaf node j as one with max var($\mid V_j \mid$)

Property 2 identifies j 's parent i as one that most closely satisfies the formula

Algorithm

- 1. Identify a leaf node j among unidentified nodes.
- 2. Identify j 's parent. $\;\;\;$ 3. Remove j from set of unidentified nodes and goto 1

Proof: part 1

Theorem 10 implies

$$
\hat{R}_{jk} = \sum_{l \in P_j \cap P_k} r_l > 0, \qquad \hat{X}_{jk} = \sum_{l \in P_j \cap P_k} x_l > 0
$$

Hence

$$
\hat{R}_{jk} = \hat{R}_{ik} + r_{ij}, \qquad \hat{R}_{ik} = \sum_{l \in P_i} r_l, \qquad \text{if } k \in T_j
$$
\n
$$
\hat{R}_{ik} = \hat{R}_{jk}, \qquad \text{if } k \notin T_j
$$

Use these to evaluate the diagonal entries of var($|V_j|$) $-$ var($|V_i|$) $= \Sigma_v[j,j] - \Sigma_v[i,i]$, for each of the four terms in

$$
\Sigma_{v} = \hat{R} \Sigma_{p} \hat{R}^{T} + \hat{X} \Sigma_{q} \hat{X}^{T} + \hat{R} \Sigma_{pq} \hat{X}^{T} + \hat{X} \Sigma_{qp} \hat{R}^{T}
$$

Due to covariances Σ_p, Σ_q :

$$
\left(\hat{R}\Sigma_p \hat{R}^\mathsf{T}\right)[j,j] - \left(\hat{R}\Sigma_p \hat{R}^\mathsf{T}\right)[i,i] = \sum_{k \in \mathsf{T}_j} \Sigma_p[k,k] \left(2 \sum_{l \in \mathsf{P}_i} r_l + r_{ij}\right) r_{ij} > 0
$$

similarly:
$$
\left(\hat{X}\Sigma_q \hat{X}^\mathsf{T}\right)[j,j] > \left(\hat{X}\Sigma_q \hat{X}^\mathsf{T}\right)[i,i]
$$

Due to cross-covariances Σ_{pq}, Σ_{qp} :

$$
\left(\hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}\right)[j,j] - \left(\hat{R}\Sigma_{pq}\hat{X}^{\mathsf{T}}\right)[i,i] = \sum_{k} \Sigma_{pq}[k,k] \left(\hat{R}_{jk}\hat{X}_{jk} - \hat{R}_{ik}\hat{X}_{ik}\right) > 0
$$

similarly:
$$
\left(\hat{X}\Sigma_{qp}\hat{R}^{\mathsf{T}}\right)[j,j] > \left(\hat{X}\Sigma_{qp}\hat{R}^{\mathsf{T}}\right)[i,i]
$$

yielding: $\Sigma_{\nu}[j,j] > \Sigma_{\nu}[i,i]$

Proof: part 2

If bus i is a parent of bus j , then variance of $|V_i| - |V_j|$ is:

$$
E((|V_i| - E|V_j|) - (|V_i|) - |V_j|))^{2} = \Sigma_{\nu}[i, i] + \Sigma_{\nu}[j, j] - 2\Sigma_{\nu}[i, j]
$$

Again use

$$
\hat{R}_{jk} = \hat{R}_{ik} + r_{ij}, \qquad \hat{R}_{ik} = \sum_{l \in P_i} r_l, \qquad \text{if } k \in T_j
$$
\n
$$
\hat{R}_{ik} = \hat{R}_{jk}, \qquad \text{if } k \notin T_j
$$

to show that the first term of

$$
\Sigma_{v} = \hat{R} \Sigma_{p} \hat{R}^{T} + \hat{X} \Sigma_{q} \hat{X}^{T} + \hat{R} \Sigma_{pq} \hat{X}^{T} + \hat{X} \Sigma_{qp} \hat{R}^{T}
$$

yields a simple expression:

$$
\sigma_1 := (\hat{R}\Sigma_p \hat{R}^\top)[i,i] + (\hat{R}\Sigma_p \hat{R}^\top)[j,j] - 2(\hat{R}\Sigma_p \hat{R}^\top)[i,j] = r_{ij}^2 \sum_{k \in \mathsf{T}_j} \Sigma_p[k,k]
$$

Similarly, the other terms of

$$
\Sigma_{v} = \hat{R} \Sigma_{p} \hat{R}^{T} + \hat{X} \Sigma_{q} \hat{X}^{T} + \hat{R} \Sigma_{pq} \hat{X}^{T} + \hat{X} \Sigma_{qp} \hat{R}^{T}
$$

yield

$$
\sigma_1 := (\hat{R}\Sigma_p \hat{R}^\mathsf{T})[i, i] + (\hat{R}\Sigma_p \hat{R}^\mathsf{T})[j, j] - 2(\hat{R}\Sigma_p \hat{R}^\mathsf{T})[i, j] = r_{ij}^2 \sum_{k \in \mathsf{T}_j} \Sigma_p[k, k]
$$

\n
$$
\sigma_2 := (\hat{X}\Sigma_q \hat{X}^\mathsf{T})[i, i] + (\hat{X}\Sigma_q \hat{X}^\mathsf{T})[j, j] - 2(\hat{X}\Sigma_q \hat{X}^\mathsf{T})[i, j] = x_{ij}^2 \sum_{k \in \mathsf{T}_j} \Sigma_q[k, k]
$$

\n
$$
\sigma_3 := (\hat{R}\Sigma_{pq} \hat{X}^\mathsf{T})[i, i] + (\hat{R}\Sigma_{pq} \hat{X}^\mathsf{T})[j, j] - 2(\hat{R}\Sigma_{pq} \hat{X}^\mathsf{T})[i, j] = r_{ij}x_{ij} \sum_{k \in \mathsf{T}_j} \Sigma_{pq}[k, k]
$$

\n
$$
\sigma_4 := (\hat{X}\Sigma_{qp} \hat{R}^\mathsf{T})[i, i] + (\hat{X}\Sigma_{qp} \hat{R}^\mathsf{T})[j, j] - 2(\hat{X}\Sigma_{qp} \hat{R}^\mathsf{T})[i, j] = r_{ij}x_{ij} \sum_{k \in \mathsf{T}_j} \Sigma_{qp}[k, k]
$$

Summing:

$$
\Sigma_{\nu}[i, i] - \Sigma_{\nu}[i, j] = \sum_{k=1}^{4} \sigma_k = \sum_{k \in T_j} \left(r_{ij}^2 \Sigma_p[k, k] + x_{ij}^2 \Sigma_q[k, k] + 2r_{ij} x_{ij} \Sigma_{pq}[k, k] \right)
$$