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Outline

1. Voltage control
e Linear DistFlow model
» Decentralized control: convergence and optimality

2. Radial network identification



volt/var control

Stabilize voltages on distribution grid by adapting reactive power injections

* e.g., at inverters, capacitor banks

Questions we will study
* How to design simple control schemes?
* What is the dynamic behavior of closed-loop system?
* What is the optimality of closed-loop system?

Design and analysis method

* Use LinDistFlow model due to its analytical properties



volt/var control

Network model

At each bus j, there are

. Fixed and given active and reactive load (pjo, qjo>
« Possibly a DER (e.g. inverter) with fixed D (e.g. PV generation) and controllable q;

Notation: write s = (p, q) € RN and v € R" at non-reference buses, instead of (5, V)
P-4

From linear solution theorem:
v = v1+2(R(p-p")+Xg-q")
Or
v(g) =2Xqg+V
where V :=vy1 + 2R(p — 1Y) — 2Xq" independent of the control ¢



volt/var control
Inverter model

At each bus j, the reactive power q; is constrained to stay in the intersection of
« Capacity limt {qj :pj2 + qu < 02} which depends on p; (e.g. PV generation), and
o -1
- Power factor limit —¢; < tan™ (g;/p;) < ¢;

Hence g; must lie in
Uj = Uj(pj){ 9 -4, %9 =9 }

where 7; := min {pj tan ¢,  /o° _pjz} and ¢ := max {—pj tan g, —+ /0’ _pjz}
=j



volt/var control
Local memoryless control

Let v® = given vector of reference voltages at buses j > 0
Control goal: design g € U to drive voltages towards vref

« Local control: qj(t + 1) depends only on vj(t), not voltages v,(f) at buses k # j
. Memoryless control: qj(t + 1) depends only on vj(t), not on (vj(s), s < t)

Restrict control law U; R — R to depend on voltage error vj(t) — vjref

qj(t+ 1) = [uj <vj(t) — eref)] ; j=1,...,N
U.

J

i.e. we are to design u; that map voltage errors vj(z‘) — vjref to reactive power settings qj(t + 1)



volt/var control

Local memoryless control

Example:
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(a) Piecewise linear control u;(v;)

”fl‘(q./)

(b) Inverse u;l (q/)
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Cj (qu)

(c) Implied cost c;(g;)
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Closed-loop system

control g(?)

network:

P
v(t) =2Xq(t) + Vv

controller:

g+ 1) = [u <v(t)—vref>]

U

measurement v(?)



Closed-loop system

Closed-loop system is discrete-time dynamical system:

qgit+1) = [u (v(q(t))—v}ef)]

U

* v(q) := 2Xq + V : maps linearly reactive power control g to network voltage

o U <v — vref) : maps voltage error to potential control action

« [u]y : projects potential control action to its feasibility region U

Questions:
« Stability: will (g(7), v(¥)) converge to an equilibrium point (g*, v*) ?

« Optimality: is the equilibrium point (g*, v*) optimal, in what sense?



Closed-loop system

Closed-loop system is discrete-time dynamical system:
qt+1) = [u (v(q(t)) — v}ef)]
U

where v(q) := 2Xqg + V

Definition:

g* is an equilibrium point if it is a fixed point, i.e., g* = [u (v(q*) — vjref)]

U

Assumptions:

1. u; are differentiable; da; s.t. ‘u]f(vj)‘ < A := diag (aj,j € N)

2. u; are strictly decreasing



Convergence

Theorem [Convergence]
Suppose Assumption 1 holds. If largest singular value 6,,,,, (AX) < 1/2 then
1. 3 unique equilibrium point g* € U A := diag <0!j,j c N)
2. q(t) convergest to g* geometrically, i.e.,
lg(®) = g*ll < p'lIq0) —g*| - O
for some f# € [0,1)



Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point g* of the dynamical system is
the unigue minimizer of
min Z clg) + 9'Xqg + q'(V - yref)
qeU ;
qj

.— —1/A A



Closed-loop behavior

Questions:
« Stability: will (g(z), v(¢)) converge to an equilibrium point (g™, v*) ?

 Optimality: is the equilibrium point (g*, v*) optimal, in what sense?

Answer: under assumptions 1 and 2
 (g(1), v(t)) converges geometrically to a unique equilibrium point (g*, v*)

« The unique equilibrium point (g*, v*) minimizes a cost function determined by control law U;

Reverse engineering: by choosing a control function u;, we implicitly choose a cost function

C; (qj) that the closed-loop equilibrium optimizes



Closed-loop behavior

Questions:
« Stability: will (g(z), v(¢)) converge to an equilibrium point (g™, v*) ?

 Optimality: is the equilibrium point (g*, v*) optimal, in what sense?

Answer: under assumptions 1 and 2
 (g(1), v(t)) converges geometrically to a unique equilibrium point (g*, v*)

« The unique equilibrium point (g*, v*) minimizes a cost function determined by control law U;

Forward engineering: Choose a cost function C; (qj> and derive control functions u; as

distributed algorithm to solve the optimization problem



Convergence proof
Sketch

Mean value theorem = u(v;) — u(V;) = u(w)(u — it) where w := Au + (1 — )i for some

A€ [0,1]

Hence

w3 = 3 oy -up|” < Flaw-5)| = | av-9
J J

Assumption 1 and MVT

2
2

Therefore

u(vig =) —u(v@ - | < [ave-av@ |

2




Convergence proof
Sketch

Vector-function mean value theorem: if f: R" — R" is continuously differentiable then

of
) =fOll < || =@ || lly—xI
0x
for any induced matrix norm || - || where z := ux + (1 — u)y for some u € [0,1]
Hence
R 0Av R R
| Ave) - 4v@ || | < o | Mgl < 124Xz llq — 4,
2

0AV v
because —(q) = A—(q) = 2AX
dq dq



Convergence proof
Sketch

Therefore

u (vig) =) —u (v@ - ) | < 124X, llg - g1l

2
Since induced matrix norm |[AX]||, = 6., (AX), if f = 26,,,,(AX) < 1 then
u(vig =) —u (v@ - ) | < Bllg-al,
2

i.e. u(q) is a contraction mapping.

Since projection [u]; is non-expansive, i.e., ||[ul, — [i]lyll, < ||u — i]|,, the mapping

[u (V(q) — Vref)] is a contraction mapping in g
U



Convergence proof
Sketch

Contraction theorem implies, for the dynamical system

git+1) = [u (v(q(t)) — VJ@‘)]

U
that

« 1 unique fixed point g*

« (1) converges to g* geometrically



Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point g* of the dynamical system is
the unigue minimizer of
min Z clg) + 9'Xqg + q'(V - yref)
qeU ;
qj

.— —1/A A



Optimality proof
Sketch

Assumption 1 implies that there is a unique equilibrium pt g*

Let C(q) = Z c(q) + q'Xq + q' AV where AV := 7 — pref

J

Assumption 2 and X > O imply that C(q) is strictly convex and hence, if an optimal g* exists, it is
unique

It thus suffices to show that g™ is the unique equilibrium pt if and only if g™ is the unique minimizer

We will show this in 3 steps:
1. Obtain optimality condition (necessary and sufficient because of convexity)

2. Relate [V C(g*)]; to ; <vj(q]?‘<) — eref) and g*

3. Conclude optimality condition is equivalent to g* = [u <v(q*) — vref)]
U



Optimality proof
Sketch
Step 1: By convexity, g* € U is optimal iff

(VC@»)' (g—¢*) > 0 VgeU

This is equivalent to

¢ € 4.q) = :VC(q*):j =0
= q — VC(g®)|.>0
J =y : I

q" = G — VC(g®)] <0

J



Optimality proof

Sketch
Step 2: Evaluate

VC(g¥) = Ve(g®) +2Xg* + AV = Ve(g®) + (v(g®) - vef)
where Vc(g*) = (cj’(qj*) = — uj_l(qj*),i e N)
Hence [VC(¢%)]; = — uj_l(q*) + (vj(q*) — vjref)
Since U; is strictly decreasing (Assumption 2), we have
VN =0 = uw(ygn - ) = g

[ ' ref
Vo] >0 = (v - ) < g

[ ' ref
Vo] <0 = (v - ) > g



Optimality proof

Sketch
Step 3: Use [VC(q*)]j to combine the conditions in Steps 1 and 2 into:

g 9j | )| = A vy — ref) — o«
qj = (_qj’ q]) — VC(q )-j 0 =i u] <vj(q]) V] ) q]
"= | *)] xy — yref

4 =4, = [vag] >0 = u(veg) - ) <g
g = 7 = :VC(q*):j<O = (Vj(qj*) _ eref) > 7

But this is equivalent to:

q* = [u (v - vref)]

i.e. g* is the unique equilibrium point

U

Therefore g* is the unique equilibrium pt if and only if g™ is the unique minimizer



Outline

2. Radial network identification
» Linearized polar-form AC model
« Covariances of voltage magnitudes



Recall: radial networks
When Yik = i and Ve =Y =0

Theorem 10

Suppose G is connected, Y is complex symmetric (yjsk = ylij) and

=g =0
1. Reduced incidence matrix C is nonsingular
i —1 [ €P;
[6‘1] =11 ~l € P
! 0 otherwise

. 2. Reduced admittance matrix Y is nonsingular, and
T, : subtree rooted T; : unique path

at bus i fromOto i 7=y 1=CTpsC-!
: Z

Apply this result to topology identification problem



Topology identification

1. Distribution grid typically consists of a meshed network with sectionalizing and tie switches
on some lines

2. At any time switch are configured s.t. operational network is a spanning tree (substation at
its root)

3. System operator knows the meshed network, but may not always know accurately switch
status and hence operational network

Goal: Identify operational radial network from measurements of voltage magnitudes



Linearized power flow model

Linearization of polar form
Assumptions: For all (j, k) € E

1. y]k ykj— ]k-l—lbk' yjk y,’;f‘=0
2. ng}c > (0 and bﬁc <0

Consider flat voltage profile: V]ﬂat = e’ = (pﬂat flat) (0,0)

« All voltages have same magnitude (e.g. # = 1 pu) and angle

Let

Vﬂ at

e (| Vl , 9) . perturbation variable around at non-reference buses

. (D, g) : perturbation variable around (pﬂat, qﬂat) = (0,0) at non-reference buses



Linearized power flow model

Linearization of polar form
Polar form power flow model

P, = Z (gj'é}c"‘g%) |Vj|2 _ Z |V Vi (gﬁccos@k+b;}€sin0jk)
k:k~j k:k~j

g ==X ()1 = 3 11Vl (ghsin 6~ b cosd, )
k:k~j kik~j



Linearized power flow model
Linearization of polar form

Polar form power flow model

P, = Z (gji+81$>|vj|2 _ Z |Vj||Vk|(gﬁccosﬁjk+bjr‘}csin9jk)

k:k~j k:k~j
2 .
g ==X ()1 = 3 11Vl (ghsin 6~ b cosd, )
k:k~j kik~j

Linearize around (Vﬂat,pﬂat, qﬂat> yields a linear model from | V| to (P, §) at non-reference buses:

VI = Rp + Xg + ¥,

where

ﬁ = é_TDlé_l > 0, X = - é_TDzé_l > 0
(Af is reduced incidence matrix and
Dg:= diag (gls,l € E) > 0, D,:= diag (bls,l (S E) <0

-1 -1
D= (Dg+Dng‘1Db> =0, Dy= <Db+Dng‘1Dg> <0



Covariance of voltages and powers

Suppose injections (p, g) vary randomly and induce random fluctuations in | ‘A/|

Define covariance and cross-covariance matrices
Z:= E[V] = EQVDIA VI = E(VDIT
%= E[p— Ep[p — EP]", >,= Elg - Eql[q — EqI
%= Elp — Epllg — Eq1", == E[q — Eql[p — EpT"
Then

— Py pT v 4l 3 4l Y pT
%, = RE,RT + X X" + R, X" + XZ R



Covariance of voltages and powers

Assumptions: power injections at same bus are positively correlated, those at different buses are
uncorrelated

3. Forallj € N: Z,[.j1> 0, £,[.j1> 0, £,,[j,j1 =Ll >0; yr =y =0
4. Forallj# k: L0kl =2 [,k =2, [kl =Z,[j,kl =0



Covariance of voltages and powers

Assumptions: power injections at same bus are positively correlated, those at different buses are
uncorrelated

3. Forallj € N: Zp[j,j] > 0, Zq[j,j] > 0, qu[j,j] = qu[j,j] > 0; yﬁz = y,’;? =0
4. Forallj # k: Zp[j, k] = Zq[j, k] = qu[j, k] = qu[j, k] =0

Theorem

Under assumptions 1-4:

1. If a non-reference bus j € N is a descendant of bus i, then var( | V; |) > var(|V;])

2. If bus i is a parent of bus j then the variance of | V;| — | V]| is given by:

2
E(UViI=1VD=EQVI=1V,D) = ¥ (rhver(p + xivar(gy) + 2rpx000(p 00 )
kETj



Covariance of voltages and powers

Theorem

Under assumptions 1-4:

1. If a non-reference bus j € N is a descendant of bus i, then var(| V;|) > var(| V; )

2. If bus i is a parent of bus j then the variance of | V;| — | V;| is given by:
2
E(UVI=1VD=EAVI=1VD) = 3 (rdvarp + var(g) + 2ryx,000(p 00 )
kGTj

Implications

Property 1 identifies a leaf node j as one with max var( | VJ 1)

Property 2 identifies j’s parent i as one that most closely satisfies the formula

Algorithm
1. Identify a leaf node j among unidentified nodes.

2. ldentify j’s parent. 3. Remove j from set of unidentified nodes and goto 1



Covariance of voltages and powers

Proof: part 1
Theorem 10 implies

Ry= Y n>0  Xy= ) x>0

leP,NPy leP NP,
Hence
leP;
Ry = Ry, ifk &7,

Use these to evaluate the diagonal entries of var(| V;|) — var(| V;|) = Z,[J,j] — Z,[i, i], for each of the four
terms in

— D pT % dl D T % pT
2, = RXR" + X2 X' +Rx, X + X2 R



Covariance of voltages and powers

Due to covariances Zp, Zq :

<IA€2P1§T>[]',]°] — <I§Zp[§T)[i, | = 2 Zp[k, k][2 Z r+ rl-j] rp > 0
keT;

lEPi
similarly: ()A(Zq)A(T>[j,j] > ()A(Zq)A(T>[i,i]

Due to cross-covariances qu, Eqp ,

(R2, X)) = (RE, 8T V10i) = 3 2,k k(R = Ry ) > 0
k

similarly: ()A(ZQPIAQT>[j,j] > ()A(quIAQT>[i, ]

yielding: X[, /] > X [i, 1]



Covariance of voltages and powers

Proof: part 2

If bus i is a parent of bus j, then variance of | V;| — | le is:

2
E(UViI=EIVD=(ViD=1VD) = Zliil+ 1./ - 2510/

Again use

Ri= Ry+ry  Ry= )on itk €T,
lep;
Ry = Ry, ifk &T;

to show that the first term of
— py pT oy UT D T % DT
ZV = RZPR + XZqX + RquX + XquR
yields a simple expression:

o = (kszT>[i, il + (I?ZPI?T)[J‘,J'] -2 (ﬁZPﬁT>[i,j] = r; ) Zlkkl
kETj



Covariance of voltages and powers

Similarly, the other terms of

— Py pT Y T P T Y pT
T, = RER" + = X" + RY, X" + X= R

yield
o) = (fezp T)[z il + (Rz RT>[] il - 2(Rz RT>[1 il = erEZTz [k, k]
&, 1= ()“(zq T)[z il + ( )[] il - 2<X2 XT>[1 1= 2 Y 5 kK
keT;
oy = (fezquﬂ)[i, i+ (fe )[] il - 2(RZ XT>[1 il = rx, 2 5 kK]
o= (RZ R0 + (X2, RT) ) = 2 (K2 RV )] = rpy Z %, [k, K]



Covariance of voltages and powers

Summing:

4
Sl =Slifl = Yo = Y (FBE KK + ZE k] + 2n%, [k K )
k=1 keT;



