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Outline
1. Voltage control


• Linear DistFlow model

• Decentralized control: convergence and optimality


2. Radial network identification



volt/var control
Stabilize voltages on distribution grid by adapting reactive power injections

• e.g., at inverters, capacitor banks


Questions we will study

• How to design simple control schemes?

• What is the dynamic behavior of closed-loop system?

• What is the optimality of closed-loop system?


Design and analysis method 

• Use LinDistFlow model due to its analytical properties




volt/var control
Network model
At each bus , there are


• Fixed and given active and reactive load 


• Possibly a DER (e.g. inverter) with fixed  (e.g. PV generation) and controllable 


Notation: write  and  at non-reference buses, instead of 

From linear solution theorem:





Or





where  independent of the control 

j

(p0
j , q0

j )
pj qj

s = (p, q) ∈ ℝ2N v ∈ ℝN ( ̂s, ̂v)

v = v0 1 + 2 (R(p − p0) + X(q − q0))

v(q) = 2Xq + ṽ
ṽ := v01 + 2R(p − p0) − 2Xq0 q



volt/var control
Inverter model
At each bus , the reactive power  is constrained to stay in the intersection of 


• Capacity limt  which depends on  (e.g. PV generation), and


• Power factor limit 


Hence  must lie in 





where    and  

j qj

{qj : p2
j + q2

j ≤ σ2} pj

−ϕj ≤ tan−1(qj /pj) ≤ ϕj

qj

Uj := Uj(pj){ qj : q
j

≤ qj ≤ qj }
qj := min {pj tan ϕj, σ2 − p2

j } q
j
:= max {−pj tan ϕj, − σ2 − p2

j }



volt/var control
Local memoryless control
Let  = given vector of reference voltages at buses 


Control goal: design  to drive voltages towards 


• Local control:  depends only on , not voltages  at buses 


• Memoryless control:  depends only on , not on 


Restrict control law  to depend on voltage error 





i.e. we are to design  that map voltage errors  to reactive power settings 

vref j > 0
q ∈ U vref

qj(t + 1) vj(t) vk(t) k ≠ j

qj(t + 1) vj(t) (vj(s), s < t)
uj : ℝ → ℝ vj(t) − vref

j

qj(t + 1) = [uj (vj(t) − vref
j )]

Uj

, j = 1,…, N

uj vj(t) − vref
j qj(t + 1)



volt/var control
Local memoryless control
Example:304 Draft: EE 135 Notes October 25, 2024
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Figure 5.7: Piecewise linear control with a deadband (�d/2,d/2).

We now analyze the convergence and optimality of the dynamical system (5.42) for a class of u j that
satisfies the following assumptions:

C5.2: The control functions u j are differentiable on R and there exist a j such that
���u0

j(v j)
���  a j for

all v j 2 R.

C5.3: The control functions ui are strictly decreasing on R.

The differentiability assumption in C5.2 can be relaxed to allow control functions with a deadband and
saturation as shown in Figure 5.7(a) (see [51]). Let A := diag(a j, j 2 N). (Oct 25, 2024: Proof uses
theorems in Chapter 10 Convex optimization!)

Theorem 5.6 (Convergence). Suppose assumption C5.2 holds. If the largest singular value smax(AX) <
1/2 then there exists a unique equilibrium point q⇤ 2 U and the volt/var control (5.42) converges to q⇤

geometrically, i.e.,

kq(t)�q⇤k  b t kq(0)�q⇤k ! 0

for some b 2 [0,1).

Proof. Applying the mean value theorem to the control function u j(v j) we have

u j(v j)�u j(v̂ j) = u0
j(w)(v j � v̂ j)

where w = lv j +(1�l )v̂ j for some l 2 [0,1]. Therefore

ku(v)�u(v̂)k2
2 = Â

j

��u j(v j)�u j(v̂ j)
��2  Â

j

��a j(v j � v̂ j)
��2

= kA(v� v̂)k2
2

where the inequality follows from the mean value theorem and assumption C5.2. Hence ku(v)�u(v̂)k2 
kA(v� v̂)k2. Applying the chain rule to Av = Av(q) as a vector-valued function of q we have

∂Av
∂q

(q) = A
∂v
∂q

= 2AX

deadband



Closed-loop system

network:   


  v(t) = 2Xq(t) + ṽ

measurement v(t)

controller:   


  q(t + 1) = [u (v(t) − vref)]
U

control q(t)



Closed-loop system
Closed-loop system is discrete-time dynamical system:





•  : maps linearly reactive power control  to network voltage


•  : maps voltage error to potential control action


•  : projects potential control action to its feasibility region 


Questions:


• Stability: will  converge to an equilibrium point  ?


• Optimality: is the equilibrium point  optimal, in what sense?

q(t + 1) = [u (v(q(t)) − vref
j )]

U

v(q) := 2Xq + ṽ q

u (v − vref)
[u]U U

(q(t), v(t)) (q*, v*)
(q*, v*)



Closed-loop system
Closed-loop system is discrete-time dynamical system:





where 


Definition:


 is an equilibrium point if it is a fixed point, i.e.,  


Assumptions:


1.  are differentiable;  s.t. 


2.  are strictly decreasing

q(t + 1) = [u (v(q(t)) − vref
j )]

U

v(q) := 2Xq + ṽ

q* q* = [u (v(q*) − vref
j )]

U

uj ∃αj u′￼j(vj) ≤ αj

uj

A := diag (αj, j ∈ N)



Convergence
Theorem [Convergence]


Suppose Assumption 1 holds.  If largest singular value  then 


1.  unique equilibrium point 


2.  convergest to  geometrically, i.e., 





  for some 


σmax (AX) < 1/2

∃ q* ∈ U

q(t) q*

∥q(t) − q*∥ ≤ βt ∥q(0) − q*∥ → 0

β ∈ [0,1)

A := diag (αj, j ∈ N)



Optimality
Theorem [Optimality]


Suppose Assumptions 1 and 2 hold.  The unique equilibrium point  of the dynamical system is 
the unique minimizer of  





where 


q*

min
q∈U ∑

j

cj(qj) + q𝖳Xq + q𝖳(ṽ − vref)

cj(qj) := − ∫
qj

0
u−1

j ( ̂qj) d ̂qj



Closed-loop behavior
Questions:


• Stability: will  converge to an equilibrium point  ?


• Optimality: is the equilibrium point  optimal, in what sense?


Answer: under assumptions 1 and 2 


•  converges geometrically to a unique equilibrium point  


• The unique equilibrium point  minimizes a cost function determined by control law 

(q(t), v(t)) (q*, v*)
(q*, v*)

(q(t), v(t)) (q*, v*)
(q*, v*) uj

Reverse engineering: by choosing a control function , we implicitly choose a cost function 

 that the closed-loop equilibrium optimizes

uj

cj (qj)



Closed-loop behavior
Questions:


• Stability: will  converge to an equilibrium point  ?


• Optimality: is the equilibrium point  optimal, in what sense?


Answer: under assumptions 1 and 2 


•  converges geometrically to a unique equilibrium point  


• The unique equilibrium point  minimizes a cost function determined by control law 

(q(t), v(t)) (q*, v*)
(q*, v*)

(q(t), v(t)) (q*, v*)
(q*, v*) uj

Forward engineering: Choose a cost function  and derive control functions  as 

distributed algorithm to solve the optimization problem

cj (qj) uj



Convergence proof
Sketch
Mean value theorem    where  for some 




Hence





Therefore


⟹ uj(vj) − u( ̂vj) = u′￼j(w)(u − ̂u) w := λu + (1 − λ) ̂u
λ ∈ [0,1]

∥u(v) − u( ̂v)∥2
2 = ∑

j

uj(vj) − uj( ̂vj)
2

≤ ∑
j

αj(vj − ̂vj)
2

= A(v − ̂v)
2

2

u (v(q) − vref) − u (v( ̂q) − vref)
2

≤ Av(q) − Av( ̂q)
2

Assumption 1 and MVT



Convergence proof
Sketch
Vector-function mean value theorem: if    is continuously differentiable then





for any induced matrix norm  where   for some 

Hence





because 

f : ℝn → ℝn

∥f(y) − f(x)∥ ≤
∂f
∂x

(z) ∥y − x∥

∥ ⋅ ∥ z := μx + (1 − μ)y μ ∈ [0,1]

Av(q) − Av( ̂q)
2

≤
∂Av
∂q

2

∥q − ̂q∥2 ≤ ∥2AX∥2 ∥q − ̂q∥2

∂Av
∂q

(q) = A
∂v
∂q

(q) = 2AX



Convergence proof
Sketch
Therefore





Since induced matrix norm , if  then





i.e.  is a contraction mapping.


Since projection  is non-expansive, i.e., , the mapping 

  is a contraction mapping in 

u (v(q) − vref) − u (v( ̂q) − vref)
2

≤ ∥2AX∥2 ∥q − ̂q∥2

∥AX∥2 = σmax(AX) β = 2σmax(AX) < 1

u (v(q) − vref) − u (v( ̂q) − vref)
2

≤ β∥q − ̂q∥2

u(q)
[u]U ∥[u]U − [ ̂u]U∥2 ≤ ∥u − ̂u∥2

[u (v(q) − vref)]
U

q



Convergence proof
Sketch
Contraction theorem implies, for the dynamical system





that


•  unique fixed point 


•  converges to  geometrically

q(t + 1) = [u (v(q(t)) − vref
j )]

U

∃ q*
q(t) q*



Optimality
Theorem [Optimality]


Suppose Assumptions 1 and 2 hold.  The unique equilibrium point  of the dynamical system is 
the unique minimizer of  





where 


q*

min
q∈U ∑

j

cj(qj) + q𝖳Xq + q𝖳(ṽ − vref)

cj(qj) := − ∫
qj

0
u−1

j ( ̂qj) d ̂qj



Optimality proof
Sketch
Assumption 1 implies that there is a unique equilibrium pt 


Let   where 


Assumption 2 and  imply that  is strictly convex and hence, if an optimal  exists, it is 
unique


It thus suffices to show that  is the unique equilibrium pt  if and only if   is the unique minimizer

We will show this in 3 steps:


1. Obtain optimality condition (necessary and sufficient because of convexity)


2. Relate  to  and 


3. Conclude optimality condition is equivalent to 

q*
C(q) := ∑

j

cj(qj) + q𝖳Xq + q𝖳Δṽ Δṽ := ṽ − vref

X ≻ 0 C(q) q*

q* q*

[∇C(q*)]j uj (vj(q*j ) − vref
j ) q*

q* = [u (v(q*) − vref)]
U



Optimality proof
Sketch
Step 1: By convexity,  is optimal iff 





This is equivalent to


q* ∈ U

(∇C(q*))𝖳 (q − q*) ≥ 0 ∀q ∈ U

q*j ∈ (q
j
, qj) ⟹ [∇C(q*)]j

= 0

q*j = q
j

⟸ [∇C(q*)]j
> 0

q*j = qj ⟸ [∇C(q*)]j
< 0



Optimality proof
Sketch
Step 2: Evaluate 





where 


Hence  


Since  is strictly decreasing (Assumption 2), we have


∇C(q*) = ∇c(q*) + 2Xq* + Δṽ = ∇c(q*) + (v(q*) − vref)
∇c(q*) = (c′￼j(q*j ) = − u−1

j (q*j ), i ∈ N)

[∇C(q*)]j = − u−1
j (q*) + (vj(q*) − vref

j )
uj

[∇C(q*)]j
= 0 ⟺ uj (vj(q*j ) − vref

j ) = q*j

[∇C(q*)]j
> 0 ⟺ uj (vj(q*j ) − vref

j ) < q*j

[∇C(q*)]j
< 0 ⟺ uj (vj(q*j ) − vref

j ) > q*j



Optimality proof
Sketch
Step 3: Use  to combine the conditions in Steps 1 and 2 into:





But this is equivalent to:





i.e.  is the unique equilibrium point


Therefore  is the unique equilibrium pt  if and only if   is the unique minimizer

[∇C(q*)]j

q*j ∈ (q
j
, qj) ⟹ [∇C(q*)]j

= 0 ⟺ uj (vj(q*j ) − vref
j ) = q*j

q*j = q
j

⟸ [∇C(q*)]j
> 0 ⟺ uj (vj(q*j ) − vref

j ) < q
j

q*j = qj ⟸ [∇C(q*)]j
< 0 ⟺ uj (vj(q*j ) − vref

j ) > qj

q* = [u (v(q*) − vref)]
U

q*

q* q*



Outline
1. Voltage control

2. Radial network identification


• Linearized polar-form AC model

• Covariances of voltage magnitudes



Recall: radial networks
When  and ys

jk = ys
kj ym

jk = ym
kj = 0

 : subtree rooted 

at bus 
Ti

i
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Each xi can be a vector and fi a vector-valued function. This means that, starting from the leaf nodes and
working towards the root (bus 0) in the reverse breadth-first search order, xi can be recursively updated
given a vector y. The boundary condition for the recursion is that, if i is a leaf node, then T�

i := /0 and
xi = fi ( /0,y) =: fi(y). This relation starts the backward sweep working from the leaf nodes towards the
root, as illustrated in Figure 5.4(a).

i

0

spatial initialization
xj = fj (y)

Ti

xi = fi (x   ; y)Tºi

(a) Backward sweep

i

y0
spatial initialization

yi = gi (y0 ; x)

yi = gi (y   ; x)Pºi

Pº
i

(b) Forward sweep

Figure 5.4: General backward forward sweep

Similarly x and y are chosen so that, given x, the components yi depends on the other components y�i
only through variables y j in the path from the root to node i. Specifically let P�

i denote the set of buses in
the unique path from the root to bus i, including bus 0 but not including i. Let yP�

i
:=

�
y j, j 2 P�

i
�
. The

variable y satisfies a spatially recursive structure if, given x, yi depends on y�i only through yP�
i
✓ y�i, in

the form:

yi = gi

⇣
yP�

i
; x

⌘
, i 2 N

Each yi can be a vector and gi a vector-valued function. The boundary condition for the recursion is that,
if i is a child of the root bus 0, then P�

i := {0} and y0 at bus 0 is given and hence yi = gi(y0; x). This
relation starts the forward sweep to recursively update yi, working from the root towards the leaf nodes in
the breadth-first search order; see Figure 5.4(b).

In summary let x := (xi, i 2 N) and y := (yi(t), i 2 N). A pair (x,y) is a power flow solution if it satisfies

xi = fi

⇣
xT�

i
; y

⌘
, i 2 N, yi = gi

⇣
yP�

i
; x

⌘
, i 2 N (5.24a)

T�
i = /0 for all leaf nodes i y0 given (5.24b)

Let the update functions be f := ( fi, i = 1, . . . ,N) and g := (gi, i = 1, . . . ,N). A BFS algorithm is a special
Gauss-Seidel algorithm that computes a fixed point of (5.24a) starting from the initial conditions in (5.24b).
It is defined by the update functions ( f ,g) and described in Algorithm 1. If it converges and ( f ,g) are
continuous then the limit point is a fixed point and therefore a power flow solution. An advantage of BFS
is that it does not need to calculate derivatives of power flow equations and tends to converge quickly in
practice.
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 : unique path 

from 0 to 
Ti

i

Theorem 10 

Suppose  is connected,  is complex symmetric  and 
. 


1. Reduced incidence matrix  is nonsingular





2. Reduced admittance matrix  is nonsingular, and 





G Y (ys
jk = ys

kj)
ym

jk = ym
kj = 0

Ĉ

[Ĉ−1]lj
=

−1 l ∈ Pj

1 −l ∈ Pj

0  otherwise

̂Y
̂Z := ̂Y−1 = Ĉ−𝖳Ds

z Ĉ−1

̂Zjk = ∑
l∈Pj∩Pk

zs
l

Apply this result to topology identification problem



Topology identification
1. Distribution grid typically consists of a meshed network with sectionalizing and tie switches 

on some lines

2. At any time switch are configured s.t. operational network is a spanning tree (substation at 

its root)

3. System operator knows the meshed network, but may not always know accurately switch 

status and hence operational network


Goal: Identify operational radial network from measurements of voltage magnitudes




Linearized power flow model
Linearization of polar form
Assumptions: For all 


1.  ;  


2.   and  


Consider flat voltage profile:   


• All voltages have same magnitude (e.g.  pu) and angle


Let 


•  : perturbation variable around  at non-reference buses


•  : perturbation variable around  at non-reference buses

( j, k) ∈ E

ys
jk = ys

kj = gs
jk + ibs

jk ym
jk = ym

kj = 0

gs
jk > 0 bs

jk < 0

Vflat
j = μeiθ ⟹ (pflat, qflat) = (0,0)

μ = 1

( | ̂V | , ̂θ) Vflat

( ̂p, ̂q) (pflat, qflat) = (0,0)



Linearized power flow model
Linearization of polar form
Polar form power flow model





Linearize around  yields a linear model from  to  at non-reference buses:




where


,   


 is reduced incidence matrix and


pj = ∑
k:k∼j

(gs
jk + gm

jk) |Vj |
2 − ∑

k:k∼j

|Vj | |Vk |(gs
jk cos θjk + bs

jk sin θjk)
qj = − ∑

k:k∼j
(bs

jk + bm
jk) |Vj |

2 − ∑
k:k∼j

|Vj | |Vk |(gs
jk sin θjk − bs

jk cos θjk)

(Vflat, pflat, qflat) | ̂V | ( ̂p, ̂q)

| ̂V | = R̂ ̂p + X̂ ̂q + ̂v0

R̂ := Ĉ−TD1Ĉ−1 ≻ 0 X̂ := − Ĉ−TD2Ĉ−1 ≻ 0
Ĉ

Dg:= diag (gs
l , l ∈ E) ≻ 0, Db:= diag (bs

l , l ∈ E) ≺ 0

D1:= (Dg + DbD−1
g Db)

−1
≻ 0, D2:= (Db + DgD−1

b Dg)
−1

≺ 0



Linearized power flow model
Linearization of polar form
Polar form power flow model
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,   
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g Db)
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≻ 0, D2:= (Db + DgD−1

b Dg)
−1

≺ 0



Covariance of voltages and powers

Suppose injections  vary randomly and induce random fluctuations in 


Define covariance and cross-covariance matrices





Then


(p, q) | ̂V |

Σv:= E[ | ̂V | − E( | ̂V | )][( |V | − E( |V | )]𝖳

Σp:= E[ ̂p − E ̂p][ ̂p − E ̂p]𝖳, Σq:= E[ ̂q − E ̂q][ ̂q − E ̂q]𝖳

Σpq:= E[ ̂p − E ̂p][ ̂q − E ̂q]𝖳, Σqp:= E[ ̂q − E ̂q][ ̂p − E ̂p]𝖳

Σv = R̂ΣpR̂𝖳 + X̂ΣqX̂𝖳 + R̂ΣpqX̂𝖳 + X̂ΣqpR̂𝖳



Covariance of voltages and powers
Assumptions: power injections at same bus are positively correlated, those at different buses are 
uncorrelated


3. For all :   ;  


4. For all  :  


Theorem 
Under assumptions 1-4:


1. If a non-reference bus  is a descendant of bus , then 


2. If bus  is a parent of bus  then the variance of  is given by:


j ∈ N Σp[ j, j] > 0, Σq[ j, j] > 0, Σpq[ j, j] = Σqp[ j, j] > 0 ym
jk = ym

kj = 0

j ≠ k Σp[ j, k] = Σq[ j, k] = Σpq[ j, k] = Σqp[ j, k] = 0

j ∈ N i var( |Vj | ) > var( |Vi | )

i j |Vi | − |Vj |

E (( |Vi | − |Vi | ) − E( |Vj | − |Vj | ))
2

= ∑
k∈Tj

(r2
ijvar(pk) + x2

ijvar(qk) + 2rijxijcov(pk, qk))
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jk = ym

kj = 0

j ≠ k Σp[ j, k] = Σq[ j, k] = Σpq[ j, k] = Σqp[ j, k] = 0

j ∈ N i var( |Vj | ) > var( |Vi | )

i j |Vi | − |Vj |

E (( |Vi | − |Vj | ) − E( |Vi | − |Vj | ))
2

= ∑
k∈Tj

(r2
ijvar(pk) + x2

ijvar(qk) + 2rijxijcov(pk, qk))



Covariance of voltages and powers
Theorem 
Under assumptions 1-4:


1. If a non-reference bus  is a descendant of bus , then 


2. If bus  is a parent of bus  then the variance of  is given by:





Implications 

Property 1 identifies a leaf node  as one with max 

Property 2 identifies ’s parent  as one that most closely satisfies the formula


Algorithm 

1. Identify a leaf node  among unidentified nodes. 

2. Identify ’s parent.      3.  Remove  from set of unidentified nodes and goto 1

j ∈ N i var( |Vj | ) > var( |Vi | )

i j |Vi | − |Vj |

E (( |Vi | − |Vj | ) − E( |Vi | − |Vj | ))
2

= ∑
k∈Tj

(r2
ijvar(pk) + x2

ijvar(qk) + 2rijxijcov(pk, qk))

j var( |Vj | )
j i

j
j j



Covariance of voltages and powers
Proof: part 1 
Theorem 10 implies





Hence





Use these to evaluate the diagonal entries of ,  for each of the four 
terms in 


R̂jk = ∑
l∈𝖯j∩𝖯k

rl > 0, X̂jk = ∑
l∈𝖯j∩𝖯k

xl > 0

R̂jk = R̂ik + rij, R̂ik = ∑
l∈Pi

rl,  if k ∈ Tj

R̂ik = R̂jk,  if k ∉ Tj

var( |Vj | ) − var( |Vi | ) = Σv[ j, j] − Σv[i, i]

Σv = R̂ΣpR̂𝖳 + X̂ΣqX̂𝖳 + R̂ΣpqX̂𝖳 + X̂ΣqpR̂𝖳



Covariance of voltages and powers
Due to covariances  :





similarly: 


Due to cross-covariances  :





similarly: 


yielding:   

Σp, Σq

(R̂ΣpR̂𝖳)[ j, j] − (R̂ΣpR̂𝖳)[i, i] = ∑
k∈Tj

Σp[k, k] 2 ∑
l∈Pi

rl + rij rij > 0

(X̂ΣqX̂𝖳)[ j, j] > (X̂ΣqX̂𝖳)[i, i]

Σpq, Σqp

(R̂ΣpqX̂𝖳)[ j, j] − (R̂ΣpqX̂𝖳)[i, i] = ∑
k

Σpq[k, k](R̂jkX̂jk − R̂ikX̂ik) > 0

(X̂ΣqpR̂𝖳)[ j, j] > (X̂ΣqpR̂𝖳)[i, i]

Σv[ j, j] > Σv[i, i]



Covariance of voltages and powers
Proof: part 2 

If bus  is a parent of bus , then variance of  is:





Again use





to show that the first term of





yields a simple expression:


i j |Vi | − |Vj |

E (( |Vi | − E |Vj | ) − ( |Vi | ) − |Vj | ))
2

= Σv[i, i] + Σv[ j, j] − 2Σv[i, j]

R̂jk = R̂ik + rij, R̂ik = ∑
l∈Pi

rl,  if k ∈ Tj

R̂ik = R̂jk,  if k ∉ Tj

Σv = R̂ΣpR̂𝖳 + X̂ΣqX̂𝖳 + R̂ΣpqX̂𝖳 + X̂ΣqpR̂𝖳

σ1 := (R̂ΣpR̂𝖳)[i, i] + (R̂ΣpR̂𝖳)[ j, j] − 2 (R̂ΣpR̂𝖳)[i, j] = r2
ij ∑

k∈Tj

Σp[k, k]



Covariance of voltages and powers
Similarly, the other terms of





yield


Σv = R̂ΣpR̂𝖳 + X̂ΣqX̂𝖳 + R̂ΣpqX̂𝖳 + X̂ΣqpR̂𝖳

σ1 := (R̂ΣpR̂𝖳)[i, i] + (R̂ΣpR̂𝖳)[ j, j] − 2 (R̂ΣpR̂𝖳)[i, j] = r2
ij ∑

k∈Tj

Σp[k, k]

σ2 := (X̂ΣqX̂𝖳)[i, i] + (X̂ΣqX̂𝖳)[ j, j] − 2 (X̂ΣqX̂𝖳)[i, j] = x2
ij ∑

k∈Tj

Σq[k, k]

σ3 := (R̂ΣpqX̂𝖳)[i, i] + (R̂ΣpqX̂𝖳)[ j, j] − 2 (R̂ΣpqX̂𝖳)[i, j] = rijxij ∑
k∈Tj

Σpq[k, k]

σ4 := (X̂ΣqpR̂𝖳)[i, i] + (X̂ΣqpR̂𝖳)[ j, j] − 2 (X̂ΣqpR̂𝖳)[i, j] = rijxij ∑
k∈Tj

Σqp[k, k]



Covariance of voltages and powers
Summing:


Σv[i, i] − Σv[i, j] =
4

∑
k=1

σk = ∑
k∈Tj

(r2
ijΣp[k, k] + x2

ijΣq[k, k] + 2rijxijΣpq[k, k])


