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Overview
Central challenge
Balance supply & demand second-by-second everywhere on grid

• While satisfying operational constraints, e.g. injection/voltage/line limits

• Unlike usual commodities, electricity cannot (yet) be stored in large quantity



Overview
Traditional approach
Bulk generators generate 79% of electricity in US (2023)

• Fossil (gas, coal): 60%, nuclear: 18.5%

• Hydro: 5.9%, renewables: 15.5%


They are fully dispatchable and centrally controlled

• ISO determines in advance how much each generates when & where


They mostly determine dynamics and stability of entire network

• System frequency, voltages, prices



Overview
Traditional approach
Challenges

• Large startup/shutdown time and cost

• Uncertainty in future demand (depends mostly on weather)

• Contingency events such as generator/transmission outages


Elaborate electricity markets and hierarchical control

• Schedule generators and (large) controllable loads/batteries

• Day-ahead (12-36 hrs in advance): unit commitment

• Real-time (5-15 mins in advance): economic dispatch

• Ancillary services (secs - hours): frequency control, reserves



Overview
Future challenges
Sharply increased uncertainty makes balancing more difficult


• Renewable sources such as wind and solar

• Random large frequent fluctuations in net load, e.g., Duck Curve due to PV

• Contingency events such as generator/transmission outages

• Response: real-time feedback control, better monitoring & forecast, stochastic OPF


Low-inertia system

• Bulk generators have large inertia that is bedrock of stability

• They will be replaced by inverter-based resources with low or zero inertia, e.g., PV

• Response: dynamics and stability need to be re-thought (both risk and opportunity)


Indispatchable renewable generation resources

• Response: More active dynamic feedback control of flexible loads to match fluctuating supply  



Hierarchical control
Unit commitment and real-time dispatch
Unit comment

• Computed in day-ahead market 12-36 hrs in advance of energy delivery

• Determine which generators will be online (and their generation levels) for each hour or 1/2 

hour over 24-hr horizon

• … assuming generation levels will be optimal given commitment decisions

• … based on forecast of loads and variable generations

• Commitment decisions are binding; generation levels may be advisory


Real-time dispatch

• Computed in real-time market 5-15mins in advance of energy delivery

• Adjust generation or consumption levels to the schedules produced by day-ahead market 

• … as uncertainty in generation, consumption, network state is resolved



Hierarchical control
Frequency control
Frequency deviation from nominal indicated power imbalance

• Excess supply accelerates rotating machines in bulk generators —> frequency rise

• Excess demand decelerates rotating machines in bulk generators —> frequency drop


Primary control

• Generators use governors to automatically adjust power in proportion to local frequency 

deviations 

• Rebalance power and stabilizes frequency to a new equilibrium (generally not nominal) in 

~30 secs

• Decentralized control



Hierarchical control
Frequency control
Frequency deviation from nominal indicated power imbalance

• Excess supply accelerates rotating machines in bulk generators —> frequency rises

• Excess demand decelerates rotating machines in bulk generators —> frequency drops


Secondary control

• Generators adjust their set points around real-time dispatch values in order to 

• … restore frequency to nominal value

• … restore tie-line powers between balancing areas to their scheduled values 

• … in a few minutes 

• Setpoint adjustment is computed centrally within each balancing area

• … based on real-time measurements of tie-line flows and frequency deviations in the area



Pricing electricity
Security constrained economic dispatch/UC
Real-time dispatch determines not only optimal generation/consumption levels, but 
also electricity prices

• Prices are locational dependent, called locational marginal prices (LMP) or nodal prices

• They measure both marginal production costs/user utilities and network congestion

• They maximizes social welfare and are incentive compatible


Secure operation

• System operator needs to deal with uncertainties

• … discrete uncertainty: outages of generators, lines, transformers

• … continuous uncertainty: random fluctuations of renewable generations and loads

• Security constrained economic dispatch jointly optimizes energy and reserves

• … can be incorporated as stage-two decisions in security constrained unit commitment



Basic optimization concepts
Many power system applications can be formulated as an optimization problem

Constrained optimization:





• Optimization vars: 


• Cost function:  


• Constraint functions:  


• Feasible set: 


• Feasible solution: 


• (Primal) optimal solution or minimizer:  s.t. 


Optimality condition: suppose  is convex

• Unconstrained opt:  is optimal    

• Constrained opt: KKT condition

min
x∈ℝn

f(x)  s.t.  g(x) = 0, h(x) ≤ 0

x
f(x)

f(x), g(x)
X := {x ∈ ℝn : g(x) ≤ 0, h(x) ≤ 0}

x ∈ X
x* ∈ X f(x*) ≤ f(x) ∀x ∈ X

f
x* ⟺ ∇f(x*) = 0



Basic optimization concepts
Optimality (KKT) condition
Associate with the constraints dual variable 


• Equality constraint : dual var 


• Inequality constraint : dual var 


Suppose  are convex functions


Optimality (KKT) condition:  is optimal     dual optimum  s.t.





where , ,  

(λ, μ) ∈ ℝm × ℝl
+

gj(x) = 0 λj ∈ ℝ
hj(x) ≤ 0 μj ∈ ℝ+

f, g, h
x* ∈ ℝn ⟺ ∃ (λ*, μ*) ∈ ℝm × ℝl

+

Stationarity : ∇f(x*) + ∇g(x*)λ* + ∇h(x*)μ* = 0
Primal feasibility : g(x*) = 0, h(x*) ≤ 0
Dual feasibility : μ* ≥ 0
Complementary slackness : μ*𝖳h(x*) = 0

∇f(x) := ( ∂f
∂xi

, ∀i) ∈ ℝn ∇g(x) := ( ∂gi

∂xj
, ∀i, j) ∈ ℝm×n ∇h(x) := ( ∂hi

∂xj
, ∀i, j) ∈ ℝl×n



Optimal power flow
We will formulate various control and pricing mechanisms as constrained optimization:


• Equality constraint : dual var 


• Inequality constraint : dual var 


Suppose  are convex functions


Optimality (KKT) condition:  is optimal     dual optimum  s.t.





where , ,  
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Optimal power flow
We will formulate various control and pricing mechanisms as constrained optimization:





• Optimization vars: control , network state 


• Cost function:  


• Constraint functions:  

• They depend on the application under study

min
u,x

f(u, x)  s.t.  g(u, x) = 0, h(u, x) ≤ 0

u x
f(u, x)

g(u, x), h(u, x)
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Unit commitment

Solved by ISO in day-ahead market 12-36 hrs in advance

• Determine which generators will be on (commitment) and their output levels (dispatch)

• For each hour (or half hour) over 24-hour period 

• Commitment decisions are binding

• Dispatch decisions may be binding or advisory


Two-stage optimization

• Determine commitment, based on assumption that dispatch will be optimized



Unit commitment
Problem formulation
Model


• Network: graph 


• Time horizon: , e.g., 1 hour, 


Optimization vars

• Control: 


• Commitment: on/off status ,  


• Dispatch: real & reactive power injections 


• Network state: 

• Voltages 


• Line flows 

G = (N, E)
T := {1,2,…, T} t = T = 24

κ(t) := (κj(t), j ∈ N) κj(t) ∈ {0,1}

u(t) := (uj(t), j ∈ N)

V(t) := (Vj(t), j ∈ N)

S(t) := (Sjk(t), Skj(t), ( j, k) ∈ E)



Unit commitment
Problem formulation
Capacity limits: injection is bounded if it is turned on





Startup and shutdown incur costs regardless of injection level





Once turned on/off, a bulk generator must stay in the same state for a min amount time:


uj(t)κj(t) ≤ uj(t) ≤ uj(t)κj(t)

djt(κj(t − 1), κj(t)) =

startup cost  if  κj(t) − κj(t − 1) = 1
shutdown cost  if  κj(t) − κj(t − 1) = − 1
0  if  κj(t) − κj(t − 1) = 0

κj(t) − κj(t − 1) ≤ κτ
j , ∀τ ∈ {t + 1, t + upj − 1}

κj(t − 1) − κj(t) ≤ 1 − κτ
j , ∀τ ∈ {t + 1, t + downj − 1}



Unit commitment
Problem formulation
Two-stage optimization





where  is optimal dispatch cost over entire horizon :





•  : dispatch cost


• Each time  constraint includes injection limits, power 


•  can include ramp rate limits

min
κ∈{0,1}(N+1)T ∑

t
∑

j

djt (κj(t − 1), κj(t)) + f*(κ) s.t. min up/down time constraints

f*(κ) T

f*(κ) := min
(u,x) ∑

t

ft(u(t), x(t); κ(t))

 s.t.  gt(u(t), x(t); κ(t)) = 0, ht(u(t), x(t); κ(t)) ≤ 0, t ∈ T
g̃(u, x) = 0, h̃(u, x) ≤ 0

ft
t

f̃(u, x) = 0, g̃(u, x) ≤ 0



Unit commitment
Problem formulation
UC in practice

• Binary variable makes UC computationally difficult for large networks

• Typically use linear model, e.g., DC power flow, and solve mixed integer linear program


Serious effort underway in R&D community to scale UC solution with AC model 

• e.g., ARPA-E Grid Optimization Competition Challenge 2




Real-time dispatch

Solved by ISO in real-time market every 5-15 mins

• Determine injection levels of those units that are online

• Adjustment to dispatch schedule from day-ahead market (unit commitment)




Real-time dispatch
Problem formulation
Model

• Network: graph 


Optimization vars

• Control: 


• Dispatch: real & reactive power injections 


• Network state: 


• Voltages 


• Line flows 

G = (N, E)

u := (uj, j ∈ N)

V := (Vj, j ∈ N)

S := (Sjk, Skj, ( j, k) ∈ E)



Real-time dispatch
Problem formulation
Parameters


• Uncontrollable injections 


Generation cost is quadratic in real power 





σ := (σj, j ∈ N)

f(u, x) = ∑
generators j

(aj (Re(uj))
2

+ bj Re(uj))



Real-time dispatch
Constraints

Power flow equations: 


• Complex form:  


• Polar form:     





Power balance: 

S = S(V)

Sjk(V) = (ys
jk)

H

( |Vj |
2 − VjVH

k ) + (ym
jk)

H
|Vj |

2

Pjk(V) = (gs
jk + gm

jk) |Vj |
2 − |Vj | |Vj |(gs

jk cos(θj − θk) − bs
jk sin(θj − θk))

Qjk(V) = (bs
jk + bm

jk) |Vj |
2 − |Vj | |Vk |(bs

jk cos(θj − θk) + gs
jk sin(θj − θk))

uj + σj = ∑
k:j∼k

Sjk(V)



Real-time dispatch
Constraints

Injection limits:   


Voltage limits:   


Line limits:   

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj



Real-time dispatch

  


 : optimal dispatch driven by 

min
u,x

f(u, x)

s.t. uj + σj = ∑
k:j∼k

Sjk(V)

uj ≤ uj ≤ uj

vj ≤ |Vj |
2 ≤ vj

|Sjk(V) | ≤ Sjk, |Skj(V) | ≤ Skj

uopt(σ) σ



Real-time dispatch

Interpretation


• ISO dispatches  to unit  as generation setpoint (needs incentive compatibility)


• Resulting network state  satisfies operational constraints


Economic dispatch in practice

• Real-time market use linear approximation, e.g., DC power flow, instead of AC (nonlinear) power 

flow equations

• ISO solves linear program for dispatch and wholesale prices

• AC power flow equations are used to verify that operational constraints are satisfied if dispatched

• If not, DC OPF is modified and procedure repeated


uopt
j j

xopt



Intra-interval imbalance

In theory, power is balanced at all points of network, since  satisfies 





Intra-interval imbalance, however, arises due to 

• Random error 


• Discretization error 


• Prediction error 


(uopt, xopt)
uj + σj = ∑

k:j∼k

Sjk(V)

Δ1(ξ, t)
Δ2(t)

Δ3(ξ, t)



Intra-interval imbalance
Error model

Uncontrollable injections  : continuous-time stochastic process


 : injection needed to maintain power balance over network


Imbalance:   





•  : random, continuous


•  : fixed for th interval, based on estimate  of 

σ := (σ(t), t ∈ ℝ+)
u (σ(ξ, t))

Δu(ξ, t) := u (σ(ξ, t)) − uopt (m̂(n)), t ∈ [nδ, (n + 1)δ), n = 0,1,…

u (σ(ξ, t))
uopt (m̂(n)) n m̂(n) σ

injection

needed for 

balance

dispatch on

th control

interval

n



Intra-interval imbalance
Error model
Imbalance:   





• Random error  : tends to have zero mean


• Discretization error  : time avg over control interval tends to be small


• Prediction error  : tends to be small if  is slow-varying

Δu(ξ, t) = Δ1(ξ, t) + Δ2(t) + Δ3(ξ, t)

Δ1(ξ, t)
Δ2(t)

Δ3(ξ, t) σ(t)
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System security

• System security refers to ability to withstand contingency events


• A contingency event is an outage of a generator, transmission line, or transformer


• Contingency events are rare, but can be catastrophic 


• NERC’s (North America Electricity Reliability Council)  rule the outage of a 
single piece of equipment should not result in violation of voltage or line limits

N − 1



System security

Secure operation


• Analyze credible contingencies that may lead to voltage or line limit violations


• Account for these contingencies in optimal commitment and dispatch schedules 
(security constrained UC/ED)


• Monitor system state in real time and take corrective actions when contingency 
arises



Optimal dispatch

Recall: OPF without security constraints (base case):





where


•  : dispatch in base case


•  : network state in base case


•  : power flow equations, etc.


•  : operational constraints, etc.

min
(u0,x0)

f0 (u0, x0)
 s.t. g0 (u0, x0) = 0, h0 (u0, x0) ≤ 0

u0

x0

g0 (u0, x0)
h0 (u0, x0)



Security constrained OPF
Preventive approach

Basic idea 

• Augment optimal dispatch (OPF) with additional constraints …


• … so that the (new) network state under optimal dispatch  will satisfy 
operational constraints after contingency events


• Dispatch remains unchanged until next update period, even if a contingency 
occurs in the middle of control interval 

uopt



Security constrained OPF
Preventive approach
Security constrained OPF (SCOPF)





where


•  : new state under same dispatch  after contingency 


•  : power flow equations for post-contingency network


•  : (more relaxed) emergency operational constraints after contingency  

min
(u0,x0, x̃k, k≥1)

f0 (u0, x0)
 s.t. g0 (u0, x0) = 0, h0 (u0, x0) ≤ 0

g̃k (u0, x̃k) = 0, h̃k (u0, x̃k) ≤ 0

x̃k u0 k

g̃k (u0, x̃k)
h̃k (u0, x̃k) k

base case constraints

constraints after cont.  k



Security constrained OPF
Corrective approach

Basic idea 

• Compute optimal dispatch not only for base case, but also for each contingency 


• System operator can dispatch a response immediately after contingency without 
waiting till next dispatch period  

k



Security constrained OPF
Corrective approach
Security constrained OPF (SCOPF)





where


•  : dispatch & state in base case  and after contingency 


•  : power flow equations & operational constraints for 


•  : ramp rate limits

min
(uk,xk, k≥0) ∑

k≥0

wk fk (uk, xk)

 s.t. gk (uk, xk) = 0, hk (uk, xk) ≤ 0, k ≥ 0
∥uk − u0∥ ≤ ρk, k ≥ 1

(uk, xk) k = 0 k ≥ 1

(gk, hk) k ≥ 0

∥uk − u0∥

ramp rate limits
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Frequency control
Overview
Power delivered by thermal generator is determined by mechanical output of turbine 

• Mechanical output of turbine controlled by opening or closing of valves that regulate steam 

or water flow

• If load increases, valves will be opened wider to generate more power to balance


Power imbalance   frequency deviates from nominal

• Excess supply: rotating machines speed up  frequency rises


• Shortage: rotating machines slow down  frequency drops

• If power is not re-imbalanced, frequency excursion will continue and may disconnect 

generators to protect them from damage

• Can lead to load shedding (blackout) or even system collapse

⟹
⇒

⇒



Frequency control
Overview
Power delivered by thermal generator is determined by mechanical output of turbine 

• Mechanical output of turbine controlled by opening or closing of valves that regulate steam 

or water flow

• If load increases, valves will be opened wider to generate more power to balance


Power imbalance   frequency deviates from nominal

• Excess supply: rotating machines speed up  frequency rises


• Shortage: rotating machines slow down  frequency drops

• If power is not re-balanced, frequency excursion will continue and may disconnect 

generators to protect them from damage

• Can lead to load shedding (blackout) or even system collapse

⟹
⇒

⇒



Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Primary (droop) control: stabilize frequency in ~30 secs


• Uses governor to adjust valve position and control mechanical output of turbine 

• Control proportional to local frequency deviation

• Decentralized



Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Secondary control: restore nominal frequency within a few mins 


• Adjust generator setpoints around dispatch values 

• Interconnected system: also restore scheduled tie-line flows between areas (need 

non-local info of tie-line flow deviations)

• Each area is controlled centrally by an operator



Frequency control
Overview
Frequency deviation is global control signal for participating generators and loads 


Automatic generation control (AGC) : hierarchical control

• Tertiary control: real-time optimal dispatch every 5-15 mins


• Determine generator setpoints and schedule inter-area tie-line flows 

• Optimize across areas for economic efficiency

• Restore reserve capacities of primary & secondary control so that they are available 

for contingency response 



Frequency control
Model
Primary and secondary control model

• Fix control interval 


• Fix random realization  of 


Assumptions (DC power flow)


• Lossless lines 


• Fixed voltage magnitudes (voltage control operates at faster timescale)


• Small angle difference 


 Linearized dynamic model on 

• How real power control voltage angles & local frequencies (derivatives)

n
ξ σ(t)

ys
jk = ibjk

sin (θjk) ≈ θjk

⟹



Frequency control
Model
Linearized around operating point, defined by



u0
j + σ0

j = ∑
k:j∼k

P0
jk
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(C) of the turbine-governor into electric power that serves the local load

�f9 (C) and injects power
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:
% 9: (C) into the transmission system; and (iii) two feed-

back control mechanisms for primary and secondary frequency control. It describes the

networkuj(t)

generating unit j
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Pjk(t)

pMj (t)

Figure 6.1 Generating unit 9 , its setpoint D 9 (C), local injection f9 (C), and line power %
9:
(C).

dynamics of the incremental variables �\ 9 , �l 9 , etc. In the following we will describe
dynamic models for the turbine-governor and the generator in Figure 6.1, leading to
Figure 6.4.

6.3.2 Primary control

Turbine-governor model

A second-order model of the turbine-governor with droop control is:

)6 9 §0 9 = �0 9 (C) + D 9 (C)�
�l 9 (C)

A 9

, 9 2 #

)C 9 §?"

9
= �?"

9
(C) + 0 9 (C), 9 2 #

where the states 0 9 (C) and %
"

9
(C) are the valve position and mechanical power output

of the turbine respectively. The constant A 9 is called a regulation constant or a droop
constant. The term �l 9 (C)/A 9 increases the valve position when the frequency drops
below l

0 and decreases it otherwise. This is referred to as the droop control or the
primary frequency control. This model makes several simplifying assumptions, e.g., it
ignores the saturation of the valve position 0 9 (C), but is reasonable when the frequency
deviation �l 9 (C) is small.

We define
⇣
0

0
9
,%"0

9

⌘
to be the equilibrium point, defined by §0 9 = §?"

9
= 0, when

frequency deviations �l 9 (C) = 0 and setpoint D 9 (C) = D
0
9

is the optimal dispatch, i.e.,

?
"0 = 0

0
9

= D
0
9
, 9 2 #

Then the incremental variable
⇣
�0 9 ,�%"

9

⌘
:=

⇣
0 9 � 0

0
9
, %"

9
�%

"0
9

⌘
satisfies the same



Primary frequency control
Turbine-governor model
2nd order model with droop control





where

•  : valve position of turbine-governor


•  : mechanical power output of turbine


•  : generator setpoint (operating point  is from tertiary control)


•  : frequency deviation from operating-point frequency 

Tgj
·aj = − aj(t) + uj(t) −

Δωj(t)
Rj

Ttj
·pM

j = − pM
j (t) + aj(t)

aj(t)

pM
j (t)

uj(t) u0
j

Δωj(t) = Δ ·θj(t) ω0
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Primary frequency control
Turbine-governor model
Linearized around operating point





incremental vars:


•  : deviation of valve position of turbine-governor


•  : deviation of mechanical power output of turbine


•  : adjustment to dispatched setpoint

Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

Δaj(t) := aj(t) − a0
j

ΔpM
j (t) := pM

j (t) − PM0
j

Δuj(t) := uj(t) − u0
j



Primary frequency control
Turbine-governor model
Linearized around operating point




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −

Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

328 System operation: power balance

equations:

)6 9 � §0 9 = ��0 9 (C) + �D 9 (C) �
�l 9 (C)

A 9

, 9 2 # (6.14a)

)C 9 � §?"

9
= ��?"

9
(C) + �0 9 (C), 9 2 # (6.14b)

This incremental model is what we will use. The block diagram representation of
(6.14) is in Figure 6.2.

turbine governor

∆ωj

∆uj

Ftj(s)

∆pMj

1
rj

(1+ sTgj) (1+ sTtj)
1

Figure 6.2 Block diagram in Laplace domain of the turbine-governor dynamic (6.14).

As we will see in Chapter 6.3.3 the setpoint adjustment �D 9 (C) is changed by the
secondary control at a much slower timescale (several minutes) than that of the primary
control (approximately 30 secs). (5) Hence a quasi steady-state of (6.14) is defined
by a constant value of the setpoint adjustment �D 9 (C) = �D 9 . In this steady state, the
frequency deviation �l⇤

9
is generally nonzero and the incremental mechanical power
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is related to the frequency deviation by

�?"⇤
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, 9 2 #

Remark 6.4. The time constants )68 ,)C8 characterize the responsiveness of the gover-
nor and turbine respectively to a change in their input. Typical value of )68 and )C8 are
approximately 0.1 second and 0.5 second respectively. Since the governor responds
much faster than the turbine the model is sometimes simplified to a first-order model

)C 9 � §?"

9
= ��?"

9
(C) + �D 9 (C)�

�l 9 (C)
A 9

, 9 2 #

⇤

Generator model.

The frequency deviation �l 9 (C) is determined by the rotating speed of a generator
driven by the mechanical power output ?"

9
(C) of the turbine. A dynamic model of the

5 Rigorous justification is perturbation analysis.
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Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

For primary control,  is constant

•  is adjusted by secondary control on a slower timescale

Δuj(t) = Δuj
Δuj(t)
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Figure 6.2 Block diagram in Laplace domain of the turbine-governor dynamic (6.14).
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Therefore 

Δ ·aj(t) = Δ ·pM

j = 0

ΔpM*
j = Δa*j = Δuj −

1
Rj

Δω*j ,
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Tgj Δ ·aj = − Δaj(t) + Δuj(t) −

Δωj(t)
Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

Equilibrium of turbine-governor (primary control):

• Frequency deviation 


• Incremental mechanical power  depends on  

Δω*j ≠ 0
ΔpM*

j Δω*j
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Generator model




where


•  : incremental angle relative to rotating frame of 


•  : deviation of uncontrollable injection from its forecast 


•  : line flow deviation

Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

Δθj(t) := θj(t) − θ0
j ω0

Δσj(t) σ0
j

ΔPjk(t) := Pjk(t) − P0
jk
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converts ?
"

8
(C) of the turbine-governor into electric power that serves the local load

�f9 (C) and injects power
Õ

:
% 9: (C) into the transmission system; and (iii) two feed-

back control mechanisms for primary and secondary frequency control. It describes the

networkuj(t)

generating unit j

generatorturbine
governor

σj(t)

Pjk(t)

pMj (t)

Figure 6.1 Generating unit 9 , its setpoint D 9 (C), local injection f9 (C), and line power %
9:
(C).

dynamics of the incremental variables �\ 9 , �l 9 , etc. In the following we will describe
dynamic models for the turbine-governor and the generator in Figure 6.1, leading to
Figure 6.4.

6.3.2 Primary control

Turbine-governor model

A second-order model of the turbine-governor with droop control is:

)6 9 §0 9 = �0 9 (C) + D 9 (C)�
�l 9 (C)

A 9

, 9 2 #

)C 9 §?"

9
= �?"

9
(C) + 0 9 (C), 9 2 #

where the states 0 9 (C) and %
"

9
(C) are the valve position and mechanical power output

of the turbine respectively. The constant A 9 is called a regulation constant or a droop
constant. The term �l 9 (C)/A 9 increases the valve position when the frequency drops
below l

0 and decreases it otherwise. This is referred to as the droop control or the
primary frequency control. This model makes several simplifying assumptions, e.g., it
ignores the saturation of the valve position 0 9 (C), but is reasonable when the frequency
deviation �l 9 (C) is small.

We define
⇣
0

0
9
,%"0

9

⌘
to be the equilibrium point, defined by §0 9 = §?"

9
= 0, when

frequency deviations �l 9 (C) = 0 and setpoint D 9 (C) = D
0
9

is the optimal dispatch, i.e.,

?
"0 = 0

0
9

= D
0
9
, 9 2 #

Then the incremental variable
⇣
�0 9 ,�%"

9

⌘
:=

⇣
0 9 � 0

0
9
, %"

9
�%

"0
9

⌘
satisfies the same
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Generator model




where

•  : inertia constant of synchronous machine


•  : damping and frequency-sensitive load 

Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

Mj

Dj
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networkuj(t)

generating unit j

generatorturbine
governor

σj(t)

Pjk(t)

pMj (t)

Figure 6.1 Generating unit 9 , its setpoint D 9 (C), local injection f9 (C), and line power %
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(C).
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of the turbine respectively. The constant A 9 is called a regulation constant or a droop
constant. The term �l 9 (C)/A 9 increases the valve position when the frequency drops
below l

0 and decreases it otherwise. This is referred to as the droop control or the
primary frequency control. This model makes several simplifying assumptions, e.g., it
ignores the saturation of the valve position 0 9 (C), but is reasonable when the frequency
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Model for instantaneous line flow





Linear approximation





Linearized model





where 

Pjk(t) = |Vj | |Vk |(−bjk) sin (θj(t) − θk(t))

Pjk(t) = |Vj | |Vk |(−bjk) sin (θ0
j − θ0

k )
P0

jk

+ Tjk (Δθj(t) − Δθk(t))

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Tjk := |Vj | |Vk |(−bjk) cos (θ0

j − θ0
k )
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Model for instantaneous line flow





Linear approximation
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where 

Pjk(t) = |Vj | |Vk |(−bjk) sin (θj(t) − θk(t))
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k )
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k )
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Generator model



Δ ·θj = Δωj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)
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generator in terms of the incremental variables is:

� §\ 9 = �l 9 (C), 9 2 # (6.15a)

" 9� §l 9 + ⇡ 9�l 9 (C) = �?"

9
(C) + �f9 (C) �

’
:: 9⇠:

�% 9: (C), 9 2 # (6.15b)

where �f9 (C) is the deviation of the uncontrollable injection from its forecast f0
9

and
�% 9: (C) are the incremental line flows given by (6.13). The block diagram represen-
tation of (6.15) is in Figure 6.3. Here " 9 is the inertia constant of generator 9 , and

∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

∆pM
j

Fgj(s)

1
sDj  + sMj

1

generator

Tjnj

Tj1∆pj1

∆pjnj

Figure 6.3 Block diagram in Laplace domain of the generator dynamic (6.15).

⇡ 9 is the sum of damping constant of generator 9 and the frequency sensitivity of
motor-type injection at bus 9 , as we now explain.

If f9 (C) < 0 represents a load, a common model consists of both frequency sensitive

load f1 9

⇣
l

0
9
+l 9 (C)

⌘
such as a motor and frequency insensitive load f2 9 (C) due

to the switching on or o� of an electrical device that draws a specified amount of
power. Approximate the frequency sensitive load by its linear approximationf1 9

�
l

0� +
mf1 9

ml 9

�
l

0��l 9 (C) and write the frequency insensitive load as f2 9 (C) = f
0
2 9 +�f2 9 (C).

Then the deviation mf1 9

ml 9

�
l

0��l 9 (C) of the frequency sensitive load is absorbed into
⇡ 9�l 9 (C) in (6.15b). The uncontrollable load f9 (C) is then the sum of the remaining
terms:

f9 (C) =
⇣
f1 9

⇣
l

0
⌘
+f0

2 9

⌘
|               {z               }

f
0
9

+ �f2 9 (C)|   {z   }
�f 9 (C)

In summary the primary frequency control is modeled by (6.13)(6.14)(6.15) repro-
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Turbine-governor-generator model




Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Δ ·θj = Δωj(t)



Primary frequency control
Turbine-governor-generator model

Input: 

•  : uncontrollable injection


•  : setpoint adjusted by secondary control


•  : line flows to other areas

Δσj(t)
Δuj(t)
ΔPjk(t)
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duced here:

)6 9 � §0 9 = ��0 9 (C) + �D 9 (C) �
�l 9 (C)

A 9

, 9 2 # (6.16a)

)C 9 � §?"

9
= ��?"

9
(C) + �0 9 (C), 9 2 # (6.16b)

" 9� §l 9 + ⇡ 9�l 9 (C) = �?"

9
(C) + �f9 (C) �

’
:: 9⇠:

�% 9: (C), 9 2 # (6.16c)

�% 9: (C) = )9:

�
�\ 9 (C)��\: (C)

�
, ( 9 , :) 2 ⇢ (6.16d)

� §\ 9 = �l 9 (C), 9 2 # (6.16e)

This closes the droop control loop. The block diagram representation combines those in
Figures 6.2 and 6.3 and is shown in Figure 6.4 (which is a detailed version of Figure 6.1).
The input to the system are external disturbance �f9 (C) at each each generating unit

∆ωj

∆uj
∆pMj

1
rj

∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

1
s

Tjnj

Tj1∆pj1

∆pjnj

Ftj(s) Fgj(s)

generating unit j

Figure 6.4 Block diagram of primary frequency control (6.16).

9 and the adjustment �D 9 (C) to the dispatch setpoint. Since the secondary control that
updates the setpoint operates at a much slower timescale than the primary frequency
control timescale, we can understand the behavior of the (quasi) steady state of the
primary control by assuming a constant setpoint adjustment �D 9 (C) = �D 9 .

Consider then a step disturbance in the uncontrollable injection where �f9 (C)
changes at time C = 0 from 0 to a constant value �f9 . We say that G

⇤ :=�
�l⇤,�%⇤,�\⇤,�0⇤,�?"⇤� is an equilibrium point of (6.16) driven by the step change
�f and constant setpoint �D 9 if, at G⇤,

� §l 9 = � §0 9 = � §?"

9
= 0, 9 2 #

We do not require � §\ = 0 in the definition of equilibrium point. Indeed � §\ is generally
nonzero when primary control converges. Recall the bus-by-line incidence matrix ⇠
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Tgj Δ ·aj = − Δaj(t) + Δuj(t) −
Δωj(t)

Rj

Ttj Δ ·pM
j = − ΔpM

j (t) + Δaj(t)

MjΔ ·ωj + DjΔωj(t) = ΔpM
j (t) + Δσj(t) − ∑

k:j∼k

ΔPjk(t)

ΔPjk(t) = Tjk (Δθj(t) − Δθk(t))
Δ ·θj = Δωj(t)

Equilibrium of primary control:    (does not require )Δ ·ωj = Δ ·aj = Δ ·pM
j = 0 Δ ·θ = 0



Primary frequency control
Equilibrium
Bus-by-line incidence matrix  :





Stiffness matrix: 


Laplacian matrix:   and its pseudo-inverse 


C

Cjl :=
1  if  l = j → k for some bus k

−1  if  l = i → j for some bus i
0  otherwise

T := diag(Tjk, ( j, k) ∈ E)

L := CTCT L†



Primary frequency control
Equilibrium
Theorem 

Let  be an equilibrium driven by step change 
 and constant setpoint 

1. Local frequency deviations converge to





2. Line flow deviations converge to





  where 

x* := (Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ Δu

Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)
d := (Dj + 1/Rj, j ∈ N)
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Primary frequency control
Equilibrium
Theorem 

Let  be an equilibrium driven by step change 
 and constant setpoint 

1. Local frequency deviations converge to





2. Line flow deviations converge to





  where 

x* := (Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ Δu

Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)
d := (Dj + 1/Rj, j ∈ N)

Secondary control: 
• Adjusting  to drive 

  and  to 0
Δu

Δω*j ΔP*jk



Primary frequency control
Example: interconnected system
Model

•  areas each modeled as a bus


•  for all 


• Step change: at time 0,  changes from 0 to a constant value 


• Suppose  are iid random variables with mean  and variance 


Compare the mean & variance of equilibrium frequency deviation  :


• Case 1: the areas (buses) are not connected and operate independently.


• Case 2: the areas (buses) are connected into a network

N + 1
Δuj = 0 j

σj(t) Δσj

Δσj Δσ̄j v2
j

Δω*j



Primary frequency control
Example: interconnected system
Case 1: independent operation 

       where 


with        ,     var        


Case 2: interconnected system 

             where 


with         ,       var        where  are avgerages

Δω*j =
Δσj

dj
dj := Dj + 1/Rj

EΔω*j =
Δσ̄j

dj
(Δω*j ) =

v2
j

d2
j

Δω* =
∑j Δσj

∑j dj
=

1
N + 1 ∑

j

Δσj

̂d
̂dj :=

1
N + 1 ∑

j

dj

EΔω* =
Δ ̂σ

̂d
(Δω*) =

1
N + 1

̂v2

̂d2
Δ ̂σ, ̂v2



Frequency control
Model
Linearized around operating point, defined by





Incremental variables (full list)


•  : adjustment to dispatched setpoint


•  : incremental angle relative to rotating frame of 


•  : frequency deviation from operating-point frequency 


•  : line flow deviation


•  : deviation of mechanical power output of turbine


•  : deviation of valve position of turbine-governor

u0
j + σ0

j = ∑
k:j∼k

P0
jk

Δuj(t) := uj(t) − u0
j

Δθj(t) := θj(t) − θ0
j ω0

Δωj(t) = Δ ·θj(t) ω0

ΔPjk(t) := Pjk(t) − P0
jk

ΔpM
j (t) := pM

j (t) − PM0
j

Δaj(t) := aj(t) − a0
j



Outline

1. Background

2. Unit commitment & real-time dispatch

3. Frequency control


• Model and assumptions

• Primary control

• Secondary control


4. Pricing electricity & reserves



Secondary frequency control
Objectives
1. Restore frequency to nominal value

• Drive 


2.  Restore tie-line flows to scheduled values (scheduled by tertiary control)

• Drive   (each bus represents a control area)

Δω* = 0

ΔP* = 0



Secondary frequency control
Objectives 
At equilibrium of primary control : 








Δω*j = Δω* :=
∑k (Δuk + Δσk)
∑k (Dk + 1/Rk)

ΔP* = TCTL† (Δu + Δσ − Δω*d)

Therefore, need to adjust setpoints  


•  if  


•  if  

Δu(t)

Δω*j = 0 ∑
k

(Δuk + Δσk) = 0

ΔP*jk = 0 Δuj + Δσj = 0



Secondary frequency control
Area control error (ACE) 





Setpoint adjustment





Implementation


• Real-time measurements of  with neighboring areas  are sent to system operator


• System operator centrally computes  and dispatch setpoint adjustments  to 
participating generators  in areal  (   with  are called participation factors)

ACEj(t) := ∑
k:j∼k

ΔPjk(t) + βjΔωj(t)

Δ ·uj = − γj ∑
k:j∼k

ΔPjk(t) + βjΔωj(t)

Pjk(t) k

Δ ·uj αjiΔuj(t)
i j αji ≥ 0 ∑

i

αji = 1



Secondary frequency control
Overall (primary & secondary) model 




Tg Δ ·a = − Δa(t) + Δu(t) − R−1Δω(t)

Tt Δ ·pM = − ΔpM(t) + Δa(t) }
MΔ ·ω + DΔω(t) = ΔpM(t) + Δσ(t) − CΔP(t)

ΔP(t) = TCTΔθ(t)
Δ ·θ = Δω(t)
Δ ·u = − Γ (CΔP(t) + BΔω(t))

turbine-

governor

generator

Equilibrium of secondary control:    

(does not req )

Δ ·u = Δ ·ω = Δ ·a = Δ ·pM = 0
Δ ·θ = 0



Secondary frequency control
Overall (primary & secondary) model 

turbine-

governor

generator

primary

control

secondary

control

tie-line flow
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flows are maintained. If each bus in (6.16) models an entire area this requires driving
�%(C) to zero.

Theorem 6.1 suggests that the objectives of the secondary control can only be
achieved by adjusting the setpoints D(C) of the generators to cancel the disturbances
(see Remark 6.5). Suppose each bus 9 in (6.16) represents an area and the setpoint
adjustment �D 9 (C) represents an aggregate adjustment that will then be shared by all
generators in area 9 that participate in the secondary control. The adjustment is based
on the area control error (ACE) which is a weighted sum of frequency and line flow
deviations:

ACE 9 (C) :=
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C), 9 2 #

where V 9 > 0 is called a frequency bias setting. The setpoint adjustment �D 9 (C) inte-
grates ACE 9 in order to drive it to zero:

� §D 9 = �W 9

©≠
´
’
:: 9⇠:

�% 9: (C) + V 9�l 9 (C)™Æ
¨

, 9 2 # (6.17)

The computation (6.17) requires real-time measurement of tie-line flow deviations
�% 9: (C) with all neighboring areas : . This information is sent to area 9’s system
operator which centrally computes the aggregate adjustment �D 9 (C) for the entire
area using (6.17). It then dispatches in real time setpoint adjustments U 98�D 9 (C) with
U 98 � 0 and

Õ
8
U 98 = 1 to participating generators 8 in area 9 . The weights U 98 are called

participation factors.

In summary the primary and secondary frequency control in area 9 is modeled by
the system (6.16)(6.17). It is driven by the uncontrollable injection �f9 (C) and consists
of two feedback control mechanisms, the droop control with regulation parameter A 9
and setpoint adjustment based on ACE 9 (C). Its block diagram is shown in Figure 6.5.

∆ωj

∆uj
ACEj

∆pMj

1
rj

−γj
s

∆ωj ∆θj

∆θnj

∆θ1

∆Pjk∑
k : j~k

∆σj

1
s

Tjnj

Tj1

ßj

∆pjnj

Ftj(s) Fgj(s)

generating unit j

Figure 6.5 Block diagram of primary and secondary frequency control (6.16) (6.17) in area 9 .
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Equilibrium
Theorem 

Let  be an equilibrium driven by step 
change 


1. Frequencies are restored to  : 


2. Line flow are restored to  : 

3. Disturbances are compensated for locally at each bus (i.e., in each area) : 

x* := (Δu*, Δω*, ΔP*, Δθ*, Δa*, ΔpM*)
Δσ

ω0 Δω* = 0
P0 ΔP* = 0

Δu*j + Δσj = 0
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DC power flow model
Goal: to illustrate the use of DC power flow model that is widely used for market applications


Setup 
1. A connected network  with  buses and  lines modeled by DC power flow


2.  : real power injections  at buses 


• generator:  , incurs cost 


• load: , enjoys utility 


• capacity limits:    

• supply = demand:  


3.  : line power flows

• ,  : incidence matrix,  : pseudo-inverse of Laplacian 


• line limits: 


•  shift factor that maps line vars (e.g. line congestion prices) to nodal var (e.g. 
nodal congestion prices)

G := (N, E) N + 1 M
p pj j

pj > 0 fj(pj)
pj < 0 −fj(pj)

pmin ≤ p ≤ pmax

1𝖳p = 0
P := BC𝖳L†p =: S𝖳p

B := diag (bl, l ∈ E) ≻ 0 C L† L := CBC𝖳

Pmin ≤ P = BC𝖳L†p ≤ Pmax

S = (∂P/∂p)𝖳



Economic dispatch
LMP




•  : primal variable

• Associated with each constraint is a Lagrange multiplier: ,  ,  


• Given an optimal dispatch  and optimal Lagrange multiplier , define locational 
marginal price (LMP):




  where 

min
pmin≤p≤pmax ∑

j∈N

fj(pj)

subject to 1𝖳p = 0 [γ]
Pmin ≤ S𝖳p ≤ Pmax [κ−, κ+]

p
γ ∈ ℝ κ− ∈ ℝM

+ κ+ ∈ ℝM
+

p* (γ*, κ−*, κ+*)
λ* := γ*1 + L†CBκ* = γ*1 + Sκ*

κ* := κ−* − κ+*



Economic dispatch
Settlement rule
Locational marginal price (LMP):





Settlement rule 
• System operator (SO) solves economic dispatch to obtain optimal dispatch  and 

, and compute LMP 


• Generator that generates  : is paid 


• Load that consumes  : pays 


• Some markets allow participants to choose their own , some markets dispatch binding  
(e.g. many US markets)

λ* := γ*1 + Sκ*

p*
(γ*, κ−*, κ+*) λ*

pj > 0 λ*j pj

−pj > 0 −λ*j pj

pj p*j



Optimality condition
Assume: cost functions  are convex and optimal value of ED is finite


• Optimal Lagrange multiplier  and hence LMP  exist;  moreover strong 
duality holds


•  is an optimal dispatch if and only if  and  satisfy the KKT condition:


• Primal feasibility: 


• Dual feasibility: 


•
Stationarity:      


• Complementary slackness:


 

fj
(γ*, κ−*, κ+*) λ*

p* p * (γ*, κ−*, κ+*)
pmin ≤ p* ≤ pmax, 1𝖳p* = 0, Pmin ≤ S𝖳p* ≤ Pmax

κ−* ≥ 0, κ+* ≥ 0

f′￼j(p*j )

= λ*j  if  pmin
j < p*j < pmax

j

> λ*j  only if  p*j = pmin
j

< λ*j  only if  p*j = pmax
j

(κ−*)𝖳 (Pmin − S𝖳p*) = 0, (κ+*)𝖳 (S𝖳p* − Pmax) = 0

marginal unit



LMP properties
We study properties of optimal dispatch  and LMP 

• Competitive equilibrium

• Nodal and line congestion price 

• Revenue adequacy

• Price reference bus


These properties are consequences of DC power flow equation and KKT condition


p* λ*

κ*



Competitive equilibrium
An important justification for pricing according to LMP is that optimal dispatch and LMP  is 
a competitive equilibrium:

• Market clearing: supply = demand, 

• Power flows satisfy line limits:  

• Welfare optimization:  solves economic dispatch 


• Incentive compatibility: individually optimal  that solve





  turn out to be socially optimal


LMP consists of Lagrange multipliers associated with non-local constraints (only) that couple 
individual decisions 


• It prices externalities of unit ’s decisions and aligns individual optimality with social optimality

(p*, λ*)

1𝖳p* = 0
Pmin ≤ S𝖳p ≤ Pmax

p*
p*j

max
pmin

j ≤pj≤pmax
j

λ*j pj − fj(pj)

pj
j



Nodal and line congestion prices
LMP:  


Energy price 


• Same prices  at all buses  if no congestion ( ) 


• In general, energy price , the average LMP (system )


λ* := γ*1 + Sκ*

γ*
λ*j = γ* j Pmin < S𝖳p < Pmax ⇒ κ* = 0

γ* =
1

N + 1
1λ* λ



Nodal and line congestion prices
LMP:  


Line congestion price 

• Interpret   as line congestion prices, for two reasons

•  : shadow price of line capacities  at  because (Envelop Theorem)





i.e., each unit of additional capacities reduces optimal cost  by 


•  : cost of carrying  on line  (due to complementary slackness)

λ* := γ*1 + Sκ*

κ*
κ* := κ−* − κ+*

κ*l (Pmin
l , Pmax

l ) l
∂f*

∂Pmin
l

(Pmin, Pmax) = κ−*
l

∂f*
∂Pmax

l
(Pmin, Pmax) = − κ+*

l

f* (κ−*, κ+*) ≥ 0

−κ*l Pl ≥ 0 Pl l



Nodal and line congestion prices
LMP:  


Nodal congestion price 


•  : marginal cost of serving 1 additional load at node 


• Main observation :  because 


•   = increase in power flow at line  due to additional injection  at node 


•     = increase in congestion cost at line  due to additional injection  at node 


•    = increase in congestion cost over network due to additional injection  at node 


•     = increase in congestion cost over network due to 1 additional unit of load at node 


λ* := γ*1 + Sκ*

c* := Sκ*
c*j j

S = ( ∂P
∂p )

𝖳

P = S𝖳p
∂Pl

∂pj
Δpj = SjlΔpj l Δpj j

∴ −κ*l (SjlΔpj) l Δpj j

∴ −∑
l

Sjlκ*l Δpj Δpj j

∴ c*j := ∑
l

Sjκ*l j



Nodal and line congestion prices
Negative price
LMP:  


• Since the nodal congestion price  can be positive or negative,  can be negative


• Negative  are not uncommon in practice, e.g., in CAISO market during daytime when there is 
a lot of solar generation


• Negative  can be due to congestion or nonzero generation limit 

λ*j := γ* + c*j
c*j λ*j

λ*j

λ*j pmin
j > 0



Revenue adequacy
System operator collects payment  from load  and pays  to generator 

The residue is merchandizing surplus 


MS 


• Substituting  and complementary slackness yield




 i.e., SO will not run cash negative.  This is called revenue adequate


•  if and only if there is congestion (  or )


λ*j (−p*j ) j λ*j p*j j

:= − ∑
j

λ*j p*j = − (λ*)𝖳 p*

λ* := γ1 + Sκ*
MS = (κ+*)𝖳 Pmax + (κ−*)𝖳(−Pmin) ≥ 0

MS > 0 κ−* > 0 κ+* > 0



Price reference bus
Summary
Price reference (slack) bus  : injections  at non-price-reference buses can be arbitrarily chosen 
and always by  at bus , so that 


May be different from angle reference bus 0 where 


Can write everything in terms of injections  and shift factor  at non-price-ref buses only

• DC power flow equations, economic dispatch (DC OPF), LMP 


Optimal dispatch , LMP  , and line flows  do not depend on choice of 

• Lagrange multiplier  does


Disadvantages of designating a price reference bus 

• Somewhat arbitrary (typically a bus where there is large generator that is rarely bottlenecked)


• Reduced Laplacian matrix  is not principal submatrix of , hence may not be symmetric nor 
nonsingular (unless )


• Reduced shift factor  depends on  (when  is nonsingular)

• Seems unnecessary (can express DC power flow, economic dispatch, and LMP in terms of )

r p−r
pr r pr = − 1𝖳p−r

θ0 := 0
p−r Sr

λ*

p* λ* P r
γ*

r

Lr := C−rBCsfT
−0 L

r = 0
Sr := L−1

r C−0B r Lr
L†



Price reference bus
In terms of  and p−r Sr
Partition node-by-line incidence matrix 





DC power flow equations become





leading to





Economic dispatch becomes:





C =: [ c𝖳
0

C−0], C =: [
C−r

c𝖳
r ]

[p−r
pr] = [

C−r

c𝖳
r ] P, P = B [c0C𝖳

−0] [ θ0

θ−0]
P = (BC𝖳

−0L−1
r ) p−r =: S𝖳

r p−r

min
pmin≤p≤pmax ∑

j∈N

fj(pj) s.t. 1𝖳p = 0 [γ]

Pmin ≤ S𝖳
r p−r ≤ Pmax [κ−, κ+]



Price reference bus
In terms of  and p−r Sr

LMP:   


where  and 


Theorem 

Suppose cost functions  are convex (and hence differentiable), so that KKT is N&S optimality condition.


Fix  and let





1. 


2.  is primal-dual optimal for original ED  iff   is primal-dual optimal for reduced ED


3.

λ* = γ* + [Srκ*
0 ]

Sr := L−𝖳
r C−0B κ* := κ−* − κ+*

fj
p*

γ̃* = γ* − s𝖳
r κ*, κ̃−* = κ−*, κ̃+* = κ+*

λ̃ := γ̃*1 + Sκ* = λ*
(p*, λ̃*) (p*, λ*)
P* = S𝖳p = S𝖳

r p−r
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Secure operation
System operator needs to deal with uncertainties

• … discrete uncertainty: outages of generators, lines, transformers

• … continuous uncertainty: random fluctuations of renewable generations and loads


Security constrained economic dispatch jointly optimizes energy and reserves

• Can be formulated as two-stage optimization with recourse



Dispatch & reserve decisions
Uncertain generation and demand take one of  values  with probability 

  


• 


First-stage decision before  is realized 


• Dispatch   and  reserve capacities 


• Capacity constraints: 


Second-stage decision after  is realized 


• Adjustment   if   is realized so that actual injection is  


• Capacity constraints: 

K (gk, dk) ∈ ℝ2(N+1)
+

wk > 0

∑
k

wk = 1

(g, d)
pj (rmin

j , rmax
j )

pmin
j ≤ pj + rmin

j ≤ pj + rmax
j ≤ pmax

j

(g, d)
rkj (gk, dk) pj + rkj

rmin
j ≤ rkj ≤ rmax

j



System reserve requirement
System-wide reliability requirements on reserve capacities  imposed by SO





• In general,  can be positive or negative


For example: total reserve must cover outage of largest generator


•   where  


• Can be expressed as:   for   with   

(rmin
j , rmax

j )

hk(rmin, rmax) := ∑
j

hkj(rmin
j , rmax

j ) ≥ 0

hkj

∑
j≠jk

rmin
j ≥ max

j
pmax

i jk := arg max
j

pmax
j

hkj(rmin
j , rmax

j ) = rmin
j − αjpmax

jk j ≠ jk αj ≥ 0 and ∑
j≠jk

αj = 1



Security constrained ED
SCED can be formulated as two-stage optimization with recourse: 1st-stage problem





• 1st-stage constraints (energy+reserve capacity, rsystem eliability requirement) do not involve 
uncertainty


• Min expected 2nd-stage dispatch cost 


• For each scenario ,  solves economic dispatch after uncertainty is realized

min
p,rmin,rmax

K

∑
k=1

wk Qk(p, rmin, rmax)

s.t. pmin ≤ p + rmin, p + rmax ≤ pmax [α−, α+]

hk (rmin, rmax) := ∑
j

hkj (rmin
j , rmax

j ) ≥ 0 [μk]

Qk

k Qk



Security constrained ED
2nd-stage problem:  solves economic dispatch in scenario  after uncertainty is realized





• 2nd-stage problem optimizes reserve decisions  in response to , given 1st-stage decision 



• Same as economic dispatch capacity constraint, power balance, and line limits


Qk k

Qk(p, rmin, rmax) := min
rk

fk(p + rk) := ∑
j

fkj(pj + rkj)

s.t. 1𝖳(p + rk + gk − dk) = 0 [γk]
Pmin ≤ S𝖳(p + rk + gk − dk) ≤ Pmax [κ−

k , κ+
k ]

rmin ≤ rk ≤ rmax [β−
k , β+

k ]

rk (gk, dk)
(pj, rmin

j , rmax
j )



LMP
Since 2nd-stage problem is separable in , SCED is equivalent to single-stage optimization





Define LMP for each scenario :





where 


Let  denote an optimal dual variable (vector)

k

min
p, rmin, rmax

(rk, k ≥ 1)

∑
k

wk fk(p + rk) := ∑
k

wk ∑
j

fkj(pj + rkj)

s.t. 1st and 2nd-stage constraints

k
λ*k := γ*k 1 + Sκ*k

κ*k := κ−*
k − κ+*

k

ξ*



Optimality condition
Assume  are convex, optimal cost is finite, and Slater condition ( ) is satisfied


Then 
1. LMP exists


2. A feasible  is (primal-dual) optimal if and only if 


• Stationarity: 





• Complementary slackness: for decentralized constraints


fkj, hkj pmin
j < pmax

j

(x*, ξ*)

wk ∇fk(p* + r*k ) = λ*k + β*k , ∑
k

μ*k ∇hk (rmin *, rmax *) = 0, α* = ∑
k

β*k

(α−*)𝖳 (pmin − p* − rmin *) = 0, (α+*)𝖳 (p* + rmax * − pmax) = 0

(β−*
k )𝖳 (rmin * − r*k ) = 0, (β+*

k )𝖳 (r*k − rmax *) = 0



Optimality condition
Assume  are convex, optimal cost is finite, and Slater condition ( ) is satisfied


Then 
1. LMP exists


2. A feasible  is (primal-dual) optimal if and only if 


• Stationarity: 





• Complementary slackness: for coupled constraints


fkj, hkj pmin
j < pmax

j

(x*, ξ*)

wk ∇fk(p* + r*k ) = λ*k + β*k , ∑
k

μ*k ∇hk (rmin *, rmax *) = 0, α* = ∑
k

β*k

μ*k hk (rmin *, rmax *) = 0

(κ−*)𝖳 (Pmin − S𝖳(p* + r*k + gk − dk)) = 0

(κ+*)𝖳 (S𝖳(p* + r*k + gk − dk) − Pmax) = 0



ICRA settlement rule
1. Energy prices (scenario-dependent LMP)  


• In scenario , unit  that provides energy  is paid 


2. Reserve payment 


• Regardless of scenario at delivery time, unit  that provides reserve capacities  is paid 

λ*k /wk

k j p + rkj λ*kj (p + rkj)/wk

∑k μ*k hkj (rmin
j , rmax

j )
j (rmin

j , rmax
j )

∑
k

μ*k hkj (rmin
j , rmax

j )



ICRA settlement rule
1. Incentive compatible in expectation


• Unit  prefers  that max its expected (energy & reserve) surplus





• Settlement rule is incentive compatible in expectation if socially optimal  also max every unit ’s expected 
surplus


2. Revenue adequate


• Merchandizing surplus in scenario  is:





• Settlement rule is revenue adequate in each scenario  if 

j x*j := (p*j , rmin *
j , rmax *

j , r*kj ∀k)
max

xj
∑

k

wk(λ*kj(pj + rkj)/wk − fkj(pj + rkj)) +∑
k

μ*k hkj(rmin
j , rmax

j )

s.t. pmin
j ≤ pj + rmin

j ≤ pj + rmax
j ≤ pmax

j , rmin
j ≤ rkj ≤ rmax

j

x* j

k

MSk := − ∑
j

1
wk

λ*kj(p*j + r*kj) − ∑
i

∑
j

μ*i hij (rmin
j , rmax

j )
k MSk ≥ 0



ICRA settlement rule
3. Reserve payment balance 


• Settlement rule is reserve payment balance if





• i.e., units that need more reliability exactly compensate those that can provide more reliability


∑
j

∑
k

μ*k hkj (rmin
j , rmax

j ) = 0



ICRA settlement rule
Theorem 

Suppose cost functions  and reserve requirement functions  are convex and differentiable, 
the 2-stage problem has a finite optimal value. Then the settlement rule is 


1. Incentive compatible in expectation (and in each scenario)


2. Revenue adequate in each scenario , i.e., 


3. Balanced reserved payment, i.e., 


fkj hkj

k MSk ≥ 0

∑
j

∑
k

μ*k hkj (rmin
j , rmax

j ) = 0



Summary
Central challenge: balance supply & demand second-by-second


• While satisfying operational constraints, e.g. injection/voltage/line limits

• Unlike usual commodities, electricity cannot (yet) be stored in large quantity


This is achieved through a complex set of control and pricing mechanisms that 
operate in concert across multiple timescales


• Slow timescale mechanisms (minutes and up) can be formulated as OPF problems

• Fast timescales (seconds to minutes) can be formulated as feedback control problems



