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Overview
Central challenge

Balance supply & demand second-by-second everywhere on grid
* While satisfying operational constraints, e.g. injection/voltage/line limits
* Unlike usual commodities, electricity cannot (yet) be stored in large quantity



Overview
Traditional approach

Bulk generators generate 79% of electricity in US (2023)

* Fossil (gas, coal): 60%, nuclear: 18.5%
 Hydro: 5.9%, renewables: 15.5%

They are fully dispatchable and centrally controlled
* |SO determines in advance how much each generates when & where

They mostly determine dynamics and stability of entire network
e System frequency, voltages, prices



Overview
Traditional approach

Challenges
* Large startup/shutdown time and cost
* Uncertainty in future demand (depends mostly on weather)
* (Contingency events such as generator/transmission outages

Elaborate electricity markets and hierarchical control
 Schedule generators and (large) controllable loads/batteries
 Day-ahead (12-36 hrs in advance): unit commitment
* Real-time (5-15 mins in advance): economic dispatch
* Ancillary services (secs - hours): frequency control, reserves



Overview
Future challenges

Sharply increased uncertainty makes balancing more difficult
* Renewable sources such as wind and solar
 Random large frequent fluctuations in net load, e.g., Duck Curve due to PV
* (Contingency events such as generator/transmission outages
 Response: real-time feedback control, better monitoring & forecast, stochastic OPF

Low-Inertia system
 Bulk generators have large inertia that is bedrock of stability
 They will be replaced by inverter-based resources with low or zero inertia, e.g., PV
 Response: dynamics and stability need to be re-thought (both risk and opportunity)

Indispatchable renewable generation resources
 Response: More active dynamic feedback control of flexible loads to match fluctuating supply



Hierarchical control

Unit commitment and real-time dispatch

Unit comment
« Computed in day-ahead market 12-36 hrs in advance of energy delivery

* Determine which generators will be online (and their generation levels) for each hour or 1/2
hour over 24-hr horizon

* ... assuming generation levels will be optimal given commitment decisions
* ... based on forecast of loads and variable generations
« Commitment decisions are binding; generation levels may be advisory

Real-time dispatch
 Computed In real-time market 5-15mins in advance of energy delivery
* Adjust generation or consumption levels to the schedules produced by day-ahead market
* ... as uncertainty in generation, consumption, network state is resolved



Hierarchical control

Frequency control

Frequency deviation from nominal indicated power imbalance

* EXcess supply accelerates rotating machines in bulk generators —> frequency rise
 EXxcess demand decelerates rotating machines in bulk generators —> frequency drop

Primary control

* (Generators use governors to automatically adjust power in proportion to local frequency
deviations

* Rebalance power and stabilizes frequency to a new equilibrium (generally not nominal) in
~30 secs

e Decentralized control



Hierarchical control

Frequency control

Frequency deviation from nominal indicated power imbalance
 EXcess supply accelerates rotating machines in bulk generators —> frequency rises
 EXxcess demand decelerates rotating machines in bulk generators —> frequency drops

Secondary control
 (Generators adjust their set points around real-time dispatch values in order to
* ... restore frequency to nominal value
* ... restore tie-line powers between balancing areas to their scheduled values
 ...In afew minutes
e Setpoint adjustment is computed centrally within each balancing area
* ... based on real-time measurements of tie-line flows and frequency deviations in the area



Pricing electricity

Security constrained economic dispatch/UC

Real-time dispatch determines not only optimal generation/consumption levels, but
also electricity prices

* Prices are locational dependent, called locational marginal prices (LMP) or nodal prices
* They measure both marginal production costs/user utilities and network congestion
* They maximizes social welfare and are incentive compatible

Secure operation
 System operator needs to deal with uncertainties
* ... discrete uncertainty: outages of generators, lines, transformers
* ... continuous uncertainty: random fluctuations of renewable generations and loads
e Security constrained economic dispatch jointly optimizes energy and reserves
* ... can be incorporated as stage-two decisions in security constrained unit commitment



Basic optimization concepts

Many power system applications can be formulated as an optimization problem

Constrained optimization:

min f(x) st gx)=0, hx) <0

xeR”
o Optimization vars: x

« Cost function: f(x)

» Constraint functions: f(x), g(x)

» Feasibleset: X :={x e R": g(x) <0,hx) <0}
e Feasible solution: x € X

e (Primal) optimal solution or minimizer: x* € X s.t. f(x*) < f(x) Vx e X

Optimality condition: suppose f is convex

« Unconstrained opt: x* is optimal < V/f(x™*) =0
 (Constrained opt: KKT condition



Basic optimization concepts
Optimality (KKT) condition

Associate with the constraints dual variable (4, ) € R X [R{ﬂr
- Equality constraint g(x) = 0: dual var 4; € R

- Inequality constraint 21(x) < O: dual var y; € R

Suppose f, g, h are convex functions

Optimality (KKT) condition: x* € R"is optimal <= 3 dual optimum (4*, u*) € R" X [R{fF s.t.

Stationarity : VIx™)+ Vg(x™)A* + VAx*)u* = 0
Primal feasibility : g(x*) = 0, h(x*) < 0
Dual feasibility : u* >0
Complementary slackness : w Th(x*) = 0

af : agz . ahl .o ]
where Vf(x) = —,Vi | e R?, Vgx) .= —,Vi,j | € R™" Vhx) =| —,Vi,j | € R*

axi ox ]



Optimal power flow

We will formulate various control and pricing mechanisms as constrained optimization:
- Equality constraint g;(x) = 0: dual var 4, € R

. Inequality constraint hj(x) < 0: dual var pi€ Ry

Suppose f, g, h are convex functions

Optimality (KKT) condition: x* € R" is optimal <= d dual optimum (4*, u*) € R™ X Ri s.t.

Stationarity : VIxX™) + Va(x®)A* + Vax®)u* = 0
Primal feasibility : g(x*) = 0, h(x*) < 0
Dual feasibility : u* > 0
Complementary slackness : w Th(x*) = 0

af . agz . . ahl .. ]
where Vf(x) .= | —.,Vi | € R", Vg(x) := Vi,j | € R™" Vh(x) = Vi,j | € R

OX; 0X; 0x;



Optimal power flow

We will formulate various control and pricing mechanisms as constrained optimization:

min f(u,x) st g(u,x)=0, h(u,x) <0

Uu,x
e Optimization vars: control u, network state x
« Cost function: f(u, x)

« Constraint functions: g(u, x), h(u, x)
* They depend on the application under study
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Unit commitment

Solved by ISO in day-ahead market 12-36 hrs in advance
 Determine which generators will be on (commitment) and their output levels (dispatch)
 For each hour (or half hour) over 24-hour period
 Commitment decisions are binding

* Dispatch decisions may be binding or advisory

Two-stage optimization

 Determine commitment, based on assumption that dispatch will be optimized



Unit commitment

Problem formulation

Model
e Network: graph G = (N, E)
e Time horizon: T :={1,2,...,T},e.g.,t = 1hour, T = 24

Optimization vars
* Control:

. Commitment: on/off status k(f) := (Kj(t),j = N), k(1) € {0,1]
- Dispatch: real & reactive power injections u(?) := (u(1), ] € N)

e Network state:
. Voltages V(1) := (V(1),j € N)

. Line flows S(7) := (S].k(r),skj(z), (. k) € E)



Unit commitment

Problem formulation

Capacity limits: injection is bounded if it is turned on
u(t) < u(t) < @K

Startup and shutdown incur costs regardless of injection level

startup cost if k(1) —k(t—1)=1
djt(Kj(t — 1),x(¢)) = < shutdown cost if Kj(t) — Kj(t —1)=-1
0 if k(1) —x(t—1)=0

Once turned on/off, a bulk generator must stay in the same state for a min amount time:

k(1) — kit — 1) < KjT, er{t+1,t+upj—1}

k(t—1)—x() < 1 —x, Ve {t+ 1, t+down; — 1}



Unit commitment
Problem formulation
Two-stage optimization

min Z 2 djt <Kj(t — 1), K‘j(t)) + f*(x) s.t. min up/down time constraints
t

KE{O,] }(N+1)T

where f*(k) is optimal dispatch cost over entire horizon T

féG) = min D f(u(o), x(0; k(1)

S.1. gt(u(t),x(t); K‘(t)) — (), ht(u(t),X(t); K(t)) < O, e T
g(u,x) =0, h(u,x) <0
» f.: dispatch cost

 Each time 7 constraint includes injection limits, power

o f(u,x) =0, 2(u,x) <0 can include ramp rate limits



Unit commitment

Problem formulation

UC in practice
* Binary variable makes UC computationally difficult for large networks

* Typically use linear model, e.g., DC power flow, and solve mixed integer linear program

Serious effort underway in R&D community to scale UC solution with AC model
* e.g., ARPA-E Grid Optimization Competition Challenge 2



Real-time dispatch

Solved by ISO in real-time market every 5-15 mins
 Determine injection levels of those units that are online
* Adjustment to dispatch schedule from day-ahead market (unit commitment)



Real-time dispatch

Problem formulation

Model
 Network: graph G = (N, E)

Optimization vars
* Control:

. Dispatch: real & reactive power injections u := (u;,j € N)
* Network state:
+ Voltages V := (V,,j € N)

. Line flows § := (S/k’ Sii» (J, k) € E)



Real-time dispatch

Problem formulation

Parameters

. Uncontrollable injections ¢ := (Gj,j S N)

Generation cost is quadratic in real power

fux = Y (aj(Re(uj)>2 + b Re(uj)>

generators j



Real-time dispatch

Constraints

Power flow equations: S = S(V)

H H
. Complex form: k(V) ( ]k) ( | V ‘2 _ V]Vf) n (y](z) | v ‘2
 Polar form:

PuV) = (gi+gr) V12 = 1YVl (ghcos®—6) — bysin(6,-6p)
0(V) = (b]§€+b]$)wj|2 VANA (b];cos(ej—ek) + g]?}{sin(é’j—ﬁk)>

Power balance: U; + o, = Z jk(V)

k:j~k



Real-time dispatch

Constraints

Injection limits: u. < u. < Uu;
—] J J

Voltage limits: v, < \Vj\z <V

Line limits: | S;(V)| < Sy 1SV < S,



Real-time dispatch

min  f(u,x)
UX

st.u; + 0 = ) Sy(V)
k:j~k

2 —
v. < |ViI" =9

1SN < Sie 1S,V < S

uopt((f) . optimal dispatch driven by o



Real-time dispatch

Interpretation
opt

« |ISO dispatches uj to unit j as generation setpoint (needs incentive compatibility)

opt

* Resulting network state x~~" satisfies operational constraints

Economic dispatch in practice

* Real-time market use linear approximation, e.g., DC power flow, instead of AC (nonlinear) power
flow equations

* |SO solves linear program for dispatch and wholesale prices
 AC power flow equations are used to verify that operational constraints are satisfied if dispatched
* |f not, DC OPF is modified and procedure repeated



Intra-interval imbalance

In theory, power is balanced at all points of network, since(uopt,xopt) satisfies
G+ 6 = ), SV
k:j~k
Intra-interval imbalance, however, arises due to
» Random error A(¢&, 1)

» Discretization error A,(1)

e Prediction error A5(&, 1)



Intra-interval imbalance

Error model

Uncontrollable injections o := (a(t),t c | +) - continuous-time stochastic process

u (0(5, t)) - injection needed to maintain power balance over network

Imbalance:
. __opt (2 _
Au(é, 1) = u(o(& 1) —u®P (m(n)), te[ns, (n+1)8),n=0,1,...
injection dispatch on
needed for nth control
balance interval

¢ U (0(5, t)) : random, continuous

. 1OPt (nAfz(n)) - fixed for nth interval, based on estimate m(n) of o



Intra-interval imbalance

Error model

Imbalance:

AM(CE, t) — Al(éa t) + AZ(t) + A3(5a t)

« Random error A (&, 1) : tends to have zero mean
» Discretization error A,(1) : time avg over control interval tends to be small

» Prediction error A;(&, f) : tends to be small if o(¢) is slow-varying



Outline

2. Unit commitment & real-time dispatch

* Secure operation
3. Frequency control

4. Pricing electricity & reserves



System security

o System security refers to ability to withstand contingency events

* A contingency event is an outage of a generator, transmission line, or transformer

 Contingency events are rare, but can be catastrophic

« NERC'’s (North America Electricity Reliability Council) N — 1 rule the outage of a
single piece of equipment should not result in violation of voltage or line limits



System security

Secure operation
* Analyze credible contingencies that may lead to voltage or line limit violations

* Account for these contingencies in optimal commitment and dispatch schedules
(security constrained UC/ED)

 Monitor system state in real time and take corrective actions when contingency
arises



Optimal dispatch

Recall: OPF without security constraints (base case):

min 1o (uo, xo)
(10%)
s.t 20 (uo,xo) = 0, hy (uo,xo)

where

* U, :dispatch in base case
* X, : network state in base case
¢ g (uo, xO) . power flow equations, etc.

e hy (uo, xo) . operational constraints, etc.



Security constrained OPF

Preventive approach

Basic idea

 Augment optimal dispatch (OPF) with additional constraints ...

e ... so that the (hew) network state under optimal dispatch Mopt

operational constraints after contingency events

will satisfy

* Dispatch remains unchanged until next update period, even if a contingency
occurs in the middle of control interval



Security constrained OPF

Preventive approach

Security constrained OPF (SCOPF)

min fo (40, %o)
(utg:X0> Fpo k1)
S.1. 50 (u()vx()) = 0, hy (MO,XO) < 0 base case constraints
8k Mo,)zk) =0, h (uo,)"ék) < () constraints after cont. k

where

* X, : new state under same dispatch i, after contingency k

¢ 9 (uo, )"ék) : power flow equations for post-contingency network

~J/

. hy (uo, )“ék) : (more relaxed) emergency operational constraints after contingency k



Security constrained OPF

Corrective approach

Basic idea

« Compute optimal dispatch not only for base case, but also for each contingency &

e System operator can dispatch a response immediately after contingency without
waiting till next dispatch period



Security constrained OPF

Corrective approach

Security constrained OPF (SCOPF)

min Z Wy Jr (uk, xk)

(X k>0) >0
s.t. f (uk,xk) = 0, h, (uk,xk) <0, £>20
lu, —upll < pr, k21 ramp rate limits
where

. (uk, xk) : dispatch & state in base case k = () and after contingency k > 1
. (gk, hk) . power flow equations & operational constraints for k > 0

o |lu, — uyl| : ramp rate limits



Outline
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Frequency control

Overview

Power delivered by thermal generator is determined by mechanical output of turbine

 Mechanical output of turbine controlled by opening or closing of valves that regulate steam
or water flow

* |f load increases, valves will be opened wider to generate more power to balance



Frequency control

Overview

Power delivered by thermal generator is determined by mechanical output of turbine

 Mechanical output of turbine controlled by opening or closing of valves that regulate steam
or water flow

* |f load increases, valves will be opened wider to generate more power to balance

Power imbalance — frequency deviates from nominal
 EXcess supply: rotating machines speed up = fregquency rises

* Shortage: rotating machines slow down = frequency drops

* |f power is not re-balanced, frequency excursion will continue and may disconnect
generators to protect them from damage

 (Can lead to load shedding (blackout) or even system collapse



Frequency control

Overview

Frequency deviation is global control signal for participating generators and loads

Automatic generation control (AGC) : hierarchical control
* Primary (droop) control: stabilize frequency in ~30 secs
 Uses governor to adjust valve position and control mechanical output of turbine
e (Control proportional to local frequency deviation
 Decentralized

Frimémf Feha :j @E,fh,o,e a }
Condrol A@cow(acmj Cpmh&é{

! \

—————

~T fwe
30 e¢ [0 Min ( 5 ¢




Frequency control

Overview

Frequency deviation is global control signal for participating generators and loads

Automatic generation control (AGC) : hierarchical control
* Secondary control: restore nominal frequency within a few mins
* Adjust generator setpoints around dispatch values

* |nterconnected system: also restore scheduled tie-line flows between areas (need
non-local info of tie-line flow deviations)

 Each area is controlled centrally by an operator

Frimarlj‘ ( Feha :j COE,',‘LOZ a §
Condrol Aeﬁondacmj Cpmh&e{

L !

—————

~> hwe
30 et [0 Min ( 5 wun¢




Frequency control

Overview

Frequency deviation is global control signal for participating generators and loads

Automatic generation control (AGC) : hierarchical control
* Tertiary control: real-time optimal dispatch every 5-15 mins
* Determine generator setpoints and schedule inter-area tie-line flows
* Optimize across areas for economic efficiency

* Restore reserve capacities of primary & secondary control so that they are available
for contingency response

Frimarlj‘ ( Feha :j COE,',‘LOZ a §
Condrol Ae;ondacmj Cpmh&é{

! !

—————

~ fime
30 8¢ [0 Miu ¢ 5 ¢




Frequency control
Model

Primary and secondary control model
* Fix control interval n

» Fix random realization & of o(¢)

Assumptions (DC power flow)
. s
+ Lossless lines y; = ib;
* Fixed voltage magnitudes (voltage control operates at faster timescale)

. Small angle difference sin ((9] ) ~ 6}

—> Linearized dynamic model on
 How real power control voltage angles & local frequencies (derivatives)



Frequency control
Model

Linearized around operating point defined by

u]0+0 Z

k:j~k
M
. turbine P; (1) :
u; (1) > oovernor » generator [— o network
generating unit j




Primary frequency control

Turbine-governor model

2nd order model with droop control

| Awj(t) T——

Tg] a. —m — a](t) + l/t](t) - R] " —’ gt: i’iﬁf}r p/(@ [ encrator
M __ M ........................... e.‘.l.e.r?‘.ﬁf.l..‘.l.“.i.t.'.é
T, 0% = —pM0) + a e

where

. aj(t) : valve position of turbine-governor
o p]M(t) : mechanical power output of turbine

. uj(t) . generator setpoint (operating point ujO is from tertiary control)

o Aa)j(t) = Aéj(t) - frequency deviation from operating-point frequency "

network




Primary frequency control

Turbine-governor model

Linearized around operating point
Aa)j(t)

K;

-M __ M
T, ApY = — ApM(D) + Aa(r)
Incremental vars:
. Aait) = aft) - ajo : deviation of valve position of turbine-governor
. Ap]M(t) 1= p]M(t) — P]MO : deviation of mechanical power output of turbine

o Auj(t) = uj(t) — ujo - adjustment to dispatched setpoint



Primary frequency control

Turbine-governor model

Linearized around operating point

T, Ap; =

— ApM(1) + Aafp)

Aa)j(t)

Aw,
v turbine governor :
|
B i A
; | A sT,) (14T [ P

F.(s)

4]



Primary frequency control

Turbine-governor model

Linearized around operating point

| Aa)j(t)
J
T, Ap] = — ApM(t) + Aa(r)
For primary control, Au;(t) = Au, is constant Au,

o Auj(t) IS adjusted by secondary control on a slower timescale

Aw;
v turbine governor :
N
: i 1
- >

(1+s7,;) (1+5sT))




Primary frequency control

Turbine-governor model

Linearized around operating point
Aa)j(t)

K;

T, Apj.” = — Ap]M(t) + Aa(r)

Equilibrium of turbine-governor (primary control):

. - - M -
Aa(t) = Apj = (

Therefore
ApM* = Aa* = Au — 1 Aws
J J J R.  J°

J

Aw;
..... "
0
-
(1+sT,,) (1+sT,,)
. £(s)



Primary frequency control

Turbine-governor model

Linearized around operating point

| Aa)j(t)
J
T, Apj.” = — Ap]M(t) + Aa(r)
Equilibrium of turbine-governor (primary control): Au,

. Frequency deviation Aa)]?" * 0

. K
. Incremental mechanical power Ap]M depends on Aa)j*

Aw;
: e i
|7
-
(1+sT,,) (1+sT,,)
. £(s)



Primary frequency control

Generator model

Ab. = Aw|l)
. _ M
MA®; + DAo() = ApM(©) + Ao(t) — Z AP, (1)
k:j~k
where
o A(?’]-(t) 1= Ql-(t)—@.o:incremental angle relative to rotating frame of "
5 Adj(t) - deviation of uncontrollable injection from its forecast 0].0
. APy(1) := ij(t)—P]%: line flow deviation o0
(1) —iy| twb P generator / ne
 eeeereseeneensoseenenn generating unit %

)

C




Primary frequency control

Generator model

AG. = Aol
MA®; + DAo() = ApM(©) + Ao(t) — Z AP, (1)
k:j~k
where
. M] . inertia constant of synchronous machine
o Dj : damping and frequency-sensitive load
0
oy wone PO P / .
s susaennas: generating unit; ?N

)

C




Primary frequency control

Generator model

Model for instantaneous line flow

Pu® = V11Vl (=by ) sin (60 - 6,0))



Primary frequency control

Generator model

Model for instantaneous line flow
Pu®) = V11Vl (=by)sin (60 - 6,0)
Linear approximation

Pt = VIV, (—bjk) sin (.9;)— 9,9) + Tjk(Aej(t) _ AHk(t)>

50
ij



Primary frequency control

Generator model

Model for instantaneous line flow
Pt) = V] Vk\( ]k) sin (e(z) _ ek(z))
Linear approximation

it = VIVl (~b )sm (00— 62) + Ty (860 - AG0))

Linearized model

APy(1) = Ty (860 - A6

where T := \V||Vk\( ]k) coS (90 90)



Primary frequency control

Generator model

\ M
MAd; + DAw() = ApM(1) + Ac(t) — ), AP(1)
k:j~k
Ag;
Apj D+1SM E i "
Fy(s) generator :
I |e e AG
Lo N
o AP T, B A




Primary frequency control

Turbine-governor-generator model
Aw (1)

K;

1 Apj.” = — Ap]M(t) + Aaj(t)

. _ M
MA®; + DiAw(t) = ApM(1) + Ac() - 2 AP, (1)
k:j~k

AP(1) = T, (A@j(z) _ Aé’k(t))



Primary frequency control

Turbine-governor-generator model

A Input:
................................................................ » Ac(?) : uncontrollable injection
Aw, generating unit ; - Au(?) : setpoint adjusted by secondary control
! o Aij(t) - line flows to other areas
7}.

- ApY Aw, AG;
Au; — Jﬁ o [:(s) p]@ o Fi(s) - 1 —

2
e

AG,




Primary frequency control

Turbine-governor-generator model
Aw (1)

K;

T, Ap] — Ap] (1) + Aa?)

MA®; + DiAw(t) = ApM(1) + Ac() - Z AP (1)
k:j~k

AP,(1) = T, (AH (1) — A@k(t))
Aé’j = Aw(1)

Equilibrium of primary control: Ad)j = Adj = Apjw — () (does not require A9 = 0)



Primary frequency control

Equilibrium
Bus-by-line incidence matrix C :
1 if [ =j — kfor some bus k
C; = -1 if [ =1 — jforsome bus i
0 otherwise

Stiffness matrix: 7' := diag(7y, (J, k) € E)

Laplacian matrix: L := CTC! and its pseudo-inverse L"



Primary frequency control

Equilibrium
Theorem

Let x* = (Aa)*, AP*, AO*, Aa*, ApM*) be an equilibrium driven by step change
Ao and constant setpoint Au



Primary frequency control

Equilibrium
Theorem

Let x* = (Aa)*, AP*, AO*, Aa*, ApM*) be an equilibrium driven by step change
Ao and constant setpoint Au

1. Local frequency deviations converge to
Z Al/lk —+ AUk
> (Dy+ 1/Ry)



Primary frequency control

Equilibrium
Theorem

Let x* = (Aa)*, AP*, AO*, Aa*, ApM*) be an equilibrium driven by step change
Ao and constant setpoint Au

1. Local frequency deviations converge to

Au, + Ao
Aot = A o (At Ad)
J > (Dy+ 1/Ry)
2. Line flow deviations converge to
AP* = TC'L"(Au + Ac — Aw*d)

where d := (Dj + l/Rj,j e N)



Primary frequency control

Equilibrium
Theorem

Let x* = (Aa)*, AP*, AO*, Aa*, ApM*) be an equilibrium driven by step change
Ao and constant setpoint Au

1. Local frequency deviations converge to
Z Auk —+ AGk
> (Dy+ 1/Ry)

2. Line flow deviations converge to
AP* = TC'L"(Au + Ac — Aw*d)
where d := (D;+ 1/R;,] € N)

|+ Adjusting Au to drive

. Aw* and AP¥to0 |




Primary frequency control

Example: interconnected system
Model

« N + 1 areas each modeled as a bus

» Au; = 0forallj

- Step change: at time 0, 6(f) changes from 0 to a constant value Ao;

e Suppose Aaj are Iid random variables with mean A5j and variance v.2

J

Compare the mean & variance of equilibrium frequency deviation Aa)]?I< :

 Case 1: the areas (buses) are not connected and operate independently.

 (Case 2: the areas (buses) are connected into a network



Primary frequency control

Example: interconnected system

Case 1: independent operation

Ag
Aw* = where d; := D. + 1/R,
J d, J J ;
A5j ij
with EAw* = , var(Aa).*) = —
J d- J d?
J J
Case 2: interconnected system
Ao
Aw™* = ZJ ! — : Z AGJ
2..d N+ 1 d
J J
Aé P

with EAw* —,  var(Aw*) = —

n 1
wheredj — N+ ;d]

where A&, 9” are avgerages



Frequency control

Model
Linearized around operating point, defined by
0 0 _ 0
uf + o) = ), Py
k:j~k

Incremental variables (full list)
o Auj(t) = uj(t) — ujo : adjustment to dispatched setpoint
. AO(1) = 0,1) - 6}.()  incremental angle relative to rotating frame of @"
» Aw((?) = Aé’j(t)  frequency deviation from operating-point frequency @"

o Aij(t) 1= ij(t) — P;}{: line flow deviation

o Ap]M(t) = p]M(t) — P]MO : deviation of mechanical power output of turbine

. Aaj(t) = aj(t) — ajo : deviation of valve position of turbine-governor



Outline

3. Frequency control

* Secondary control

4. Pricing electricity & reserves



Secondary frequency control

Objectives

1. Restore frequency to nominal value

e Drive Aw™ = ()

2. Restore tie-line flows to scheduled values (scheduled by tertiary control)

* Drive AP* = 0 (each bus represents a control area)



Secondary frequency control

Objectives

At equilibrium of primary control :
Au, + Ao
Aw* = Aw* = Z, (A + o)

J > (Dy+ 1/Ry)
AP* = TC'L'(Au + Ao — Aw*d)

Therefore, need to adjust setpoints Au(?) ,
Ao =0if ) (Au+Ac) =0
k



Secondary frequency control

Area control error (ACE)

ACE;(1)

) AP + BAw)
k:j~k
Setpoint adjustment

) AP + BAw)

k:j~k
Implementation

» Real-time measurements of P k(t) with neighboring areas k are sent to system operator

» System operator centrally computes Au and dispatch setpoint adjustments -l-Auj(t) to
participating generators 1 in areal J (o 2 0 with Z = | are called participation factors)



Secondary frequency control

Overall (primary & secondary) model

T,Ad =

T, ApY

MAw + DAw(t)
AP(1)

AQ
Al

— Aa(®) + Au(® — R 'Aw()
— ApM(@t) + Aa(®)

ApM(t) + Aoc(f) — CAP(®)
TCTAO(r)

Aw(t)

—T'(CAP(t) + BAw(?))

Equilibrium of secondary control: Au = — —

(does not req A8 = 0)

}

turbine-
governor

generator



Secondary frequency control

Overall (primary & secondary) model

Ag,
Aw; generating unit ; ;
p : 1 | primary
Py . | r, | control
—v. |Au; i Ap? Aw:. AB.
@ > i - o [(s) P; >{I> M Fi(s) A GEEN 1 /.
: turbine- generator :
SeCCOOnrl(:Oairy oooooooooooo g. (’)Véfn'éf ooooooooooooooooooooooooooooooooooooooooooo
/— & -
Z APy Z\— °
k:j~k Din.
: : ” ]}”j
tie-line flow

AG,



Secondary frequency control

Equilibrium
Theorem

Let x* = (Au*, Aw*, AP*, AG*, Aa*, ApM*) be an equilibrium driven by step
change Ao

1. Frequencies are restored to w" : Aw* = 0



Secondary frequency control

Equilibrium
Theorem

Let x* = (Au*, Aw*, AP*, AG*, Aa*, ApM*) be an equilibrium driven by step
change Ao

1. Frequencies are restored to w" : Aw* = 0

2. Line flow are restored to PY: AP* = ()



Secondary frequency control

Equilibrium
Theorem

Let x* = (Au*, Aw*, AP*, AG*, Aa*, ApM*) be an equilibrium driven by step
change Ao

1. Frequencies are restored to w" : Aw* = 0

2. Line flow are restored to PY: AP* = ()

3. Disturbances are compensated for locally at each bus (i.e., in each area) :
Al/t]?X< + Aaj = (



Outline

4. Pricing electricity & reserves
» DC power flow model
 Economic dispatch and LMP
 LMP properties
* Security constrained economic dispatch



DC power flow model

Goal: to illustrate the use of DC power flow model that is widely used for market applications

Setup
1. A connected network G := (N, E) with N + 1 buses and M lines modeled by DC power flow
2. p :real power injections p; at buses j

- generator: p; > 0, incurs cost ]j-(pj)

» load: p; < 0, enjoys utility —f.(p;)

 capacity limits: p™" < p < p™M**

» supply = demand: 1'p =0

3. P:=BC'L'p =: S"p : line power flows
« B :=diag (bl,l & E) > 0, C : incidence matrix, L': pseudo-inverse of Laplacian L := CBC"
« line limits: P™" < P = BC'Lp < pm

L . . . .
¢ 5 = ((3P/ 6p) shift factor that maps line vars (e.g. line congestion prices) to nodal var (e.g.
nodal congestion prices)



Economic dispatch

LMP
min 310
mln<p<pmax
jEN
subjectto 1'p = 0 7]

Pmm S D < pmax [K_,K+]

e p :primal variable

. Associated with each constraint is a Lagrange multiplier: y € R, k~ € RY, x* € RY
( S

« Given an optimal dispatch p* and optimal Lagrange multiplier (7™, k™, K+*), define locational
marginal price (LMP):
AT = ;/*1 + LTCBx* = y*1 + Sx*

>X<

where k* =k~ — k™



Economic dispatch
Settlement rule

Locational marginal price (LMP):
A = y*1 + Sk*

Settlement rule

« System operator (SO) solves economic dispatch to obtain optimal dispatch p* and
(}/*, K™, K+*), and compute LMP A%

. Generator that generates p; > 0 : is paid /I]. p;
. Load that consumes —p; > 0 : pays —/ijkpj

. Some markets allow participants to choose their own p;, some markets dispatch binding p].>I<
(e.g. many US markets)



Optimality condition
Assume: cost functions ]§ are convex and optimal value of ED is finite

« Optimal Lagrange multiplier (y*, K‘_*, K+*) and hence LMP A* exist; moreover strong
duality holds

« p™is an optimal dispatch if and only if p * and (;/*, K_*, K+*) satisfy the KKT condition:
+ Primal feasibility: p™" < p* < p™, {Tp* =0, p™n < §Tp* < pma
* Dual feasibility: KT> 0, k>0

= AFIif pjmin <pFf<p™ marginal unit
J J
Stationarity: f]f(p]*) > /1].* only if pj>1< _ pjmin
o >I< . >I< — maX
< /1]. only if P =p;

 Complementary slackness:

(K—*>T (Pmin _ STP*) = 0, <K+*>T (STP* _ Pmax) — 0



LMP properties

We study properties of optimal dispatch p* and LMP A*
 Competitive equilibrium
» Nodal and line congestion price k*

 Revenue adequacy
* Price reference bus

These properties are conseqguences of DC power flow equation and KKT condition



Competitive equilibrium

An important justification for pricing according to LMP is that optimal dispatch and LMP (p™, A*) is
a competitive equilibrium:

» Market clearing: supply = demand, 1'p* = 0

. Power flows satisfy line limits; P™" < STp < pmax
 Welfare optimization: p* solves economic dispatch

« Incentive compatibility: individually optimal pj>I< that solve

minmaX max /l]*p] - ‘];‘(p ] )

p;i =DPi<p;
turn out to be socially optimal

LMP consists of Lagrange multipliers associated with non-local constraints (only) that couple
individual decisions p;

* |t prices externalities of unit j’s decisions and aligns individual optimality with social optimality



Nodal and line congestion prices

LMP: A% := p*1 + Sk*

Energy price y*
. Same prices /ljfk = ¥* at all buses j if no congestion (P™" < S'p < PM¥X = x* = ())

. In general, energy price y* = N1 14, the average LMP (system A)
_|_



Nodal and line congestion prices

LMP: A% := y*1 + Sk*

Line congestion price k*

K *

e Interpret k* := k=~ — kT asline congestion prices, for two reasons

. Kl* : shadow price of line capacities (lein, P;"*") at [ because (Envelop Theorem)
of *
gpmin

af* (Pmin PmaX) — _ K.+*
opmax ’
.e., each unit of additional capacities reduces optimal cost f* by (k= ,k+") > 0

(Pmin, PmaX) — Kl—*

" —KZ*PZ > () : cost of carrying P, on line [ (due to complementary slackness)



Nodal and line congestion prices

LMP: A% := p*1 + Sk*

Nodal congestion price c* := Sk*

. c]?k : marginal cost of serving 1 additional load at node

| | oP\ "
. Main observation: S = | — | because P=S§'p
op
op, . . . . L :
. g p; = lepj = increase in power flow at line [ due to additional injection Apj at node J
J
. . —Kl* (S]-lApj> = increase in congestion cost at line [ due to additional injection Ap; at node j

J.— Z S]-ZKZ*Apj = increase in congestion cost over network due to additional injection Ap; at node j

[

o cj* L= 2 Sk = increase in congestion cost over network due to 1 additional unit of load at node j
l



Nodal and line congestion prices
Negative price
LMP: /1]* = y* 4+ c]?’<

J

« Negative /ijk are not uncommon in practice, e.g., in CAISO market during daytime when there is

a lot of solar generation

. Since the nodal congestion price ¢* can be positive or negative, /1].* can be negative

. Negative /1].* can be due to congestion or nonzero generation limit pjmin > ()



Revenue adequacy

System operator collects payment /IJ*(— pj*) from load j and pays ﬂ]*p]?k to generator j

The residue is merchandizing surplus

MS 1= — ) ApF = — (%) p*
J

 Substituting A* := y1 + Sk™* and complementary slackness yield
£\ | £\ | :
MS = (k) P g (k%) T(=pminy > 0
.e., SO will not run cash negative. This is called revenue adequate

.+ MS > 0 if and only if there is congestion (k= > 0 or k™ > 0)



Price reference bus

Summary

Price reference (slack) bus r : injections p_, at non-price-reference buses can be arbitrarily chosen
and always by p, atbus r,sothatp. = — 1!

—r

May be different from angle reference bus 0 where &, := 0

Can write everything in terms of injections p_, and shift factor . at non-price-ref buses only
« DC power flow equations, economic dispatch (DC OPF), LMP A*

Optimal dispatch p*, LMP A* , and line flows P do not depend on choice of r
 Lagrange multiplier y* does

Disadvantages of designhating a price reference bus r
 Somewhat arbitrary (typically a bus where there is large generator that is rarely bottlenecked)

 Reduced Laplacian matrix L, := C_,,BCf];T is not principal submatrix of L, hence may not be symmetric nor
nonsingular (unless r = 0)
- Reduced shift factor S. := L~'C_,B depends on r (when L. is nonsingular)

 Seems unnecessary (can express DC power flow, economic dispatch, and LMP in terms of LT)



Price reference bus

In terms of p_. and S,
Partition node-by-line incidence matrix

T C_.
“0 : C =: T
C_, C

— r

C =:

DC power flow equations become

_ C_, 0
[ pr] = | I|P, P= BleCT [ 9_21

leading to
P= (BCLL)p_, = S/p_,

Economic dispatch becomes:

min Zf(p] st. 1'7p =0 7]

1’IllIl< < max
<p<p ieN

Pmin < S’:I'p_r < pmax [K_,K+]



Price reference bus

In terms of p_. and S,

S,,K*]
0

where S. ;= L~'C_jBand k* := k= —

LMP: A* = y* +

Theorem

Suppose cost functions]j- are convex (and hence differentiable), so that KKT is N&S optimality condition.

Fix p™* and let

T

LK, K- = K, KT = K

7= rt=s
1. A= 7*1 + Sk* = 2*
2. (p*, %) is primal-dual optimal for original ED iff (p*, A*) is primal-dual optimal for reduced ED

3. P =S"p=S"p

—r



Outline

4. Pricing electricity & reserves

* Security constrained economic dispatch



Secure operation

System operator needs to deal with uncertainties
* ... discrete uncertainty: outages of generators, lines, transformers
* ... continuous uncertainty: random fluctuations of renewable generations and loads

Security constrained economic dispatch jointly optimizes energy and reserves
 (Can be formulated as two-stage optimization with recourse



Dispatch & reserve decisions

Uncertain generation and demand take one of K values (g, d,) € IR%F(N D with probability
wy, > 0

) Zwk=1
k

First-stage decision before (g, d) is realized

. Dispatch p; and reserve capacities (r.min, rar)

Jjo
. Capacity constraints: pjmin <p+ If].min <pj+r" <p™
Second-stage decision after (g, d) is realized
- Adjustment r;; if (g, d)) is realized so that actual injection is p; + 1,

« Capacity constraints: I}Imn <r; < ;}.max



System reserve requirement

System-wide reliability requirements on reserve capacities (r]min, rjnlax) imposed by SO

hk(rmin, rmaX) . — Z hkj(rjmin9 I:I.maX) > ()
J

- In general, /;; can be positive or negative

For example: total reserve must cover outage of largest generator

Z lf,-mm > maxp. " where j, 1= argmax pjmaX
° = J J
JFIk

: min ,maxy _ ..min __ max : : : _
Can be expressed as: iy (r;", 1;"") =1, ;p; - forj # i with a; > 0 and Z a; =1

JF i



Security constrained ED

SCED can be formulated as two-stage optimization with recourse: 1st-stage problem

p , rmm’ rmax

K
min Z W, Qk( D, rmin, rmaX)
k=1

St pmin < p i rmin, p n max < pmax [(1_, a+]
hk (rrmn’ rmax) Z hkj (Gmln’ rjmax) > 0 [ //tk]
J

» Tst-stage constraints (energy+reserve capacity, rsystem eliability requirement) do not involve
uncertainty

« Min expected 2nd-stage dispatch cost O,

« For each scenario £, Qk solves economic dispatch after uncertainty is realized



Security constrained ED

2nd-stage problem: (J, solves economic dispatch in scenario k after uncertainty is realized

Qup. ™™, F™) = min f(p+r) = ) filpi+ny)
J

k

S.1. 1T(p + Iy + 8r — dk) = 0 [}/k]
p™ < S p+r+g—d) < P™ [k«
rmin S ]/.k S rmax [ﬁk—9ﬁ]:_]

» 2nd-stage problem optimizes reserve decisions r;, in response to (g;, d,), given 1st-stage decision

(pj, Gmln, }/‘.].IIlaX)

 Same as economic dispatch capacity constraint, power balance, and line limits



LMP

Since 2nd-stage problem is separable in k, SCED is equivalent to single-stage optimization

min Z Wi il{p + 1) = Z wkZ]ij(pj + 1%)
k J

p ] rmln’ rmax k

(rkak Z 1)
S.1. 1st and 2nd-stage constraints

Define LMP for each scenario k:

% e % %
AT =y + 5K

% . K . 4 ¥
where K° 1= K K,

Let &* denote an optimal dual variable (vector)



Optimality condition

Assume f};, hy; are convex, optimal cost is finite, and Slater condition (pjmin < p;") is satisfied
Then
1. LMP exists

2. A feasible (x*, &*) is (primal-dual) optimal if and only if

o Stationarity:

W VAP + %) = 245 ) pEVR (™ ) = 0, o
k

2B

k
« Complementary slackness: for decentralized constraints

(a—*)T (pmin _p>x< _ rmin*) = 0, (a+*)T (p>x< 4 rmax* _pmax) — 0
(ﬁk_*)T (rmin* — 7’;) = (), (ﬁ]:*)-r (rlzk — rmax*) — 0




Optimality condition

Assume fy;, hy; are convex, optimal cost is finite, and Slater condition (pjmin < p;"") is satisfied
Then
1. LMP exists

2. A feasible (x*, £*) is (primal-dual) optimal if and only if
o Stationarity:
W VAP +r5) = XE4BE Y pEVR (Fm ) = 0, a* = )
k k
 Complementary slackness: for coupled constraints

1 K b S
min max): 0

Hhy (r , T

(K_*>T (Pmin _ ST(p* 1 r]zk + g, — dk)> = ()

()" (ST@* + 7 + g = d — P™) = 0



ICRA settlement rule

1. Energy prices (scenario-dependent LMP) /Ilzk/ Wy

. In scenario &, unit j that provides energy p + r;; is paid /12;. (p + rkj)/wk

2. Reserve payment Zk //tlzk hk] (],:imin, r:]max)

. Regardless of scenario at delivery time, unit j that provides reserve capacities (r.min, r.max) is paid

J J
% I min max
Z'Mk g (r] 7 )
k



ICRA settlement rule

1. Incentive compatible in expectation

. Unit j prefers x* := ( p*, pM0™ pMax™ % k) that max its expected (energy & reserve) surplus
J p] J J kj

J
Mmax Z W;(%fj(l?j + 1)/ Wy — fif(p; + rkj)> +z //t;hkj(rjmin, ")
¥ I P

st pjmm < pj n rjmin < pj + pmax < pjmax, rjmin < rkj < rjmax

 Settlement rule is incentive compatible in expectation if socially optimal x™* also max every unit j’s expected
surplus

2. Revenue adequate
» Merchandizing surplus in scenario £ is:
1 .
o %[+ k) k I min .max
MSy 2= ZW P ) ZZ% h (’f/ 7 )
k i

J
 Settlement rule is revenue adequate in each scenario k if MS; > 0O



ICRA settlement rule

3. Reserve payment balance

o Settlement rule is reserve payment balance if
ZZ/" hk(mln max) — 0
. T —

* |.e., units that need more reliability exactly compensate those that can provide more reliability



ICRA settlement rule

Theorem

Suppose cost functions fkj and reserve requirement functions hkj are convex and differentiable,
the 2-stage problem has a finite optimal value. Then the settlement rule is

1. Incentive compatible in expectation (and in each scenario)

2. Revenue adequate in each scenario k, i.e., MS; > 0

3. Balanced reserved payment, i.e., 2 Z "y ( ;}min, rjmax> — 0
j ok



Summary

Central challenge: balance supply & demand second-by-second
* While satisfying operational constraints, e.g. injection/voltage/line limits
* Unlike usual commodities, electricity cannot (yet) be stored in large quantity

This is achieved through a complex set of control and pricing mechanisms that
operate in concert across multiple timescales

* Slow timescale mechanisms (minutes and up) can be formulated as OPF problems
* Fast timescales (seconds to minutes) can be formulated as feedback control problems



