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Network model

State estimation is a key building block for numerous power system applications
* e.g. energy management systems for dispatch of generations and loads, voltage control, ...

1. Network G := (N, E)
e« N:={0}UN:={0}u/{l,...,N} : buses/nodes/terminals
« E C N X N :lines/branches/links/edges

2. Network state

» Given: reference angle 6,
. State:x 1= (6, V]) = (6| Vol 1Vj].j € N) € R*V!

3. State estimation

. Estimate state x € R*"*! from partial and noisy measurements y & RE



Network model

Noisy measurements

Partial measurements with additive noise z typically consist of:

1. Voltages (0, | V;|) at subset N; C N of buses:
Y2j = ‘9]""22]'» Voj+1 = \Vj\ T Djt15 J EN,
2. Real and reactive power injections (pj, qj) at subset N, C N of buses:

Yoj = PjT Zjs Vvl = 4it jt1s JEN,

where the injections (pj, qj) satisfy power flow equations (polar form)

p; = [{x) = Z (g]:;c_l_g]?;{l)”/j‘z _ Z U/J.\\Vk\(g]icosé}k+b]t§csin6’jk)

k:k~j k:k~j
g = g(x) = — Z (b]§6+ bj’};) Z | Vi Vil (gksmé’k— b]?}ccos «9]k)
k:k~j k:k~j



Network model

Noisy measurements

3. Real and reactive powers (P;, Q) on subset £, C E of lines:

Yoy = Px) + 2y, Vorr1 = Q%) + 25415 l € E,

where
P(x) 1= (g];+g]f;@)\xg|2 _ \VjHVk\(g]icos@k+b]?}csin6}k>
0xx) = = (b + b ) IV;> = [V;11V, ] (g} sin 6 — b cos 0 )



State estimation

Given partial and noisy measurements

y = fix)+z

where

e x € R*M1 . hetwork state

. 7 € R" : additive noise
. y € R" : measurement

. £ R*M! 5 RE: network model

State estimation computes an estimate X of the state x from measurement y by solving:

£ = arg min (y—f(x))'R™(y - f(x))

xe R2N+l

where R is positive definite normalization matrix



State estimation

State estimation computes an estimate X of the state x from measurement y by solving:

£ = arg min (y—f(0))'R™'(y - fx)

xE[RZN“
where R is positive definite normalization matrix
. e.9. R := E(z — E?)(z — E7)' is covariance matrix of noise 7

* This problem is called least square estimation or nonlinear regression



State estimation

Linear regression

Linearize power flow model f(x) around operating point x;:

of
Yo T Ay :=y :f(x()) + E(XO)AX 4+ Z

Assume: X, / are known and y, = f(x)

Then

Ay = FAx+z
where F := g—j:(xo) is K X (2N + 1) Jacobian matrix of f at x;,
State estimation becomes linear regression:

Ax = are min (Ay— FAx)'R™Y(Ay — FAx)

Axe R2N+1



State estimation

Linear regression
State estimation becomes linear regression:

Ax = are min (Ay— FAx)'R™!(Ay — FAx)
AXERZN_H
Estimation error:
€’ := min z'R7!'z = min (Ay — FAx)"R™Y(Ay — FAx)
AXx AXx

To simplify notation, consider normalized quantities:

Ay = R™?Ay, F := R7°F

State estimation becomes:

min z'R™'z = min || Ay — FAx
Ax Ax 2




State estimation

Solution
State estimation:

min || Ay — FAx
Ax 2

(General solution:

Ax = FTAy where F'is pseudo-inverse of normalized Jacobian F := R~V2F



State estimation

Special cases

1. More measurements than state vars K > 2N + 1: When columns of F (and hence F) are
linearly independent, the unique optimal estimate is:

Ax = (FF)” F"Ay

with minimum estimation error:

e2 = || Ay — FAx z — ” Ay ” 2 — <FTF>_1/2FTA)‘; )

The estimated state iIs:

%o+ Ax = xy + (FTR™'F)” FTR™'Ay

Redundant measurements enable state estimation



State estimation

Special cases

2. Fewer measurements than state vars K < 2N + 1: When rows of F' (and hence F) are linearly
independent, the uniqgue optimal estimate is:

A S |
Ax = F'(FF") Ay
with zero estimation error €2 = ()

There is a subspace of solutions to the linear regression and Ax is minimum-norm solution.

Typically, insufficient measurement produces poor state estimate



Outline

2. \oltage control
* Linear DistFlow model
 Decentralized control: convergence and optimality

3. Radial network identification



volt/var control

Stabilize voltages on distribution grid by adapting reactive power injections

* e.g., at inverters, capacitor banks

Questions we will study
 How to design simple control schemes?
 What is the dynamic behavior of closed-loop system?

 What is the optimality of closed-loop system?

Design and analysis method

* Use LinDistFlow model due to its analytical properties



volt/var control

Network model

At each bus J, there are

. Fixed and given active and reactive load (pjo, q ].O>

« Possibly a DER (e.g. inverter) with fixed p; (e.g. PV generation) and controllable q;

Notation: write s = (p, g) € R* and v € R¥ at non-reference buses, instead of (§, D)

From linear solution theorem:
v = 142 (R(pp-p*)+X@g-q"))
Or
v(g) = 2Xg + Vv
where V := vy1 + 2R(p — pY) — 2Xg" independent of the control ¢



volt/var control

Inverter model

At each bus J, the reactive power q; Is constrained to stay in the intersection of
« Capacity limt {qj : pj2 + qu < 02} which depends on p; (e.g. PV generation), and
. —1
- Power factor limit —¢h; < tan™ (g,/p;) < ¢;

Hence g; must lie In

Uj = Uj(pj){ 90 4. =9 S ‘_Ij}

where ¢; := min {pj tan gbj, \/02 —p].2} and g = max {—pj tan @., — \/02 —p].z}
—J




volt/var control

Local memoryless control

ref

Let v'™' = given vector of reference voltages at buses j > 0

Control goal: design g € U to drive voltages towards pret

» Local control: g (7 + 1) depends only on v,(7), not voltages v(#) at buses k # j

. Memoryless control: qj(t + 1) depends only on vj(t), not on (vj(s), s < t)

Restrict control law u; : R — R to depend on voltage error vj(t) — yret

J J

qj(t+ 1) = [uj (Vj(t) — eref)] ] j=1,....N

Uj

.e. we are to design u; that map voltage errors vj(t) — V€T 4o reactive power settings qj(t + 1)

J



volt/var control

Local memoryless control
Example:

u; (v;)

—a
\\\\\\\\3eadband
| | -V
%) 0 g
2 2\

(a) Piecewise linear control u;(v;)

u; 1A(q j)
|
o
0
2
0
2
|
o

(b) Inverse u;l (q7)

Qﬂ¥b)

(c) Implied cost c(q;)



Closed-loop system

| V() = 2Xq(1) + 7|

control g(1) 3‘ | measurement V(1)

'controller: |

g+ 1) = [u (V(t) B vref)]

)

U :
"

3




Closed-loop system

Closed-loop system is discrete-time dynamical system:

qt+1) = [u (v<q(t)>—v}ef)]

U

« V(q) := 2Xqg + v : maps linearly reactive power control g to network voltage

o U (v — Vref) . maps voltage error to potential control action

 |u],, : projects potential control action to its feasibility region U

Questions:
o Stability: will (g(#), v(f)) converge to an equilibrium point (g*, v*) ?

« Optimality: is the equilibrium point (g™, v*) optimal, in what sense?



Closed-loop system

Closed-loop system is discrete-time dynamical system:

qt+1) = [u (v<q(t)>—v}ef)]

U

where v(q) := 2Xqg + V

Definition:

q* is an equilibrium point if it is a fixed point, i.e., ¢* = [u (V(q*) - Vfref)]
U

Assumptions:

IN
K

1. u; are differentiable; Ja; s.t. | u(v))

; A :=diag <aj,j c N)

2. U; are strictly decreasing



Convergence

Theorem [Convergence]

Suppose Assumption 1 holds. If largest singular value .., (AX) < 1/2 then

ax
1. 3 unique equilibrium point g* € U A := diag <aj, i N)
2. ¢(t) convergest to g* geometrically, i.e.,
lg(®) —g*II < p'llg0) —g*|| — O
for some f € |0,1)



Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point g* of the dynamical system is
the unigue minimizer of

min D () + q'Xq + q"(3 "
q .
J

qj
.« _1 /\ /\
where c(q;) = — J'O u, (9, dg;



Closed-loop behavior

Questions:
o Stability: will (g(#), v()) converge to an equilibrium point (g™, v*) ?

 Optimality: is the equilibrium point (g™, v*) optimal, in what sense?

Answer: under assumptions 1 and 2
* (g(1), v(1)) converges geometrically to a unique equilibrium point (g*, v¥*)

 The unique equilibrium point (g™*, v*) minimizes a cost function determined by control law U;

Reverse engineering: by choosing a control function 1., we implicitly choose a cost function

C; (qj) that the closed-loop equilibrium optimizes



Closed-loop behavior

Questions:
o Stability: will (g(#), v()) converge to an equilibrium point (g™, v*) ?

 Optimality: is the equilibrium point (g™, v*) optimal, in what sense?

Answer: under assumptions 1 and 2
* (g(1), v(1)) converges geometrically to a unique equilibrium point (g*, v¥*)

 The unique equilibrium point (g™*, v*) minimizes a cost function determined by control law U;

Forward engineering: Choose a cost function C; (qj) and derive control functions U; as

distributed algorithm to solve the optimization problem



Convergence proof
Sketch

Mean value theorem =— u(v) — u(f/j) = u]f(w)(u — i) where w := Au + (1 — A)ii for some

A € [0,1] Assumption 1 and MVT

Hence l
2 ¥ 2
lu) —u®3 = Y {u)—u®)| < Y |a,—=9)| = ||[Aw-9)
J

J

2
2

Therefore

i« (v =) = (v@) - o) < [ vo-2@

2




Convergence proof
Sketch

Vector-function mean value theorem: if f: R" — R" is continuously differentiable then

0
/() —f)|| < —af(z) |y — x||
X

for any induced matrix norm || - || where z := ux + (1 — u)y for some u € [0,1]

Hence

0AV R .
| < lg —4qll, < [12AX], llg — 4ll,
2 dq ,

| Av(g) — Av(§)

0AV ov
because (g) =A—(q) = 2AX

aq oq




Convergence proof

Sketch
Therefore
u (i) =) —u (v@) - o) | < 124X, llg - gl
2
Since induced matrix norm [|AX||, = 6,,.,(AX), if f = 206,,.,(AX) < 1 then
u (vi) =) —u (v@ - o) | < pllg-all,
2

i.e. u(q) is a contraction mapping.

Since projection [u];; is non-expansive, i.e., ||[[u]; — U]y, < ||lu — i]|,, the mapping

[u (v(q) — Vref)] is a contraction mapping in g
U



Convergence proof
Sketch

Contraction theorem implies, for the dynamical system

g(t+1) = [u (V(q(t)) — eref)]

U
that

 d unique fixed point g*

 g(t) converges to g* geometrically



Optimality

Theorem [Optimality]

Suppose Assumptions 1 and 2 hold. The unique equilibrium point g* of the dynamical system is
the unigue minimizer of

min D () + q'Xq + q"(3 "
q .
J

qj
.« _1 /\ /\
where c(q;) = — J'O u, (9, dg;



Optimality proof

Sketch
Assumption 1 implies that there is a unique equilibrium pt g*
Let C(g) = Z c(q;) + g'Xg + q' AV where AV 1= — pref
J
Assumption 2 and X > O imply that C(q) is strictly convex and hence, if an optimal g* exists, it is
unigque

It thus suffices to show that g™ is the unique equilibrium pt if and only if g™ is the unique minimizer

We will show this in 3 steps:

1. Obtain optimality condition (hecessary and sufficient because of convexity)

2. Relate [ VC(g™)]; to u; (vj(q]?k) — vj'fef> and g*

3. Conclude optimality condition is equivalent to g™ = [u (V(Q*) — vref)]
U



Optimality proof

Sketch
Step 1: By convexity, g* € U is optimal iff

(VC@™) (g—g*) >0 VgeU

This is equivalent to

ife @i = VO] =0
4" = 4 = [VCg9)| >0
g = G = | VC(g®)] <0



Optimality proof

Sketch
Step 2: Evaluate

VC(g*) = Ve(g*) +2Xg* + AV = Ve(g*) + (v(q*) — Vref)
where Vc(g™) = (c]f(q]?k) = — uj_l(q]?k),i e N)
Hence [VC(g*)];, = —u'(g%) + (vj(q*) — v]'-ref)

Since U; is strictly decreasing (Assumption 2), we have

[VC(q*)]ij = U (vj(q]?k) — eref> = g*
VC@9] >0 = u(vgn - ) < g

[VC@9] <0 = u(vgn - ) > g



Optimality proof

Sketch
Step 3: Use [VC(q*)]j to combine the conditions in Steps 1 and 2 into:

e @y = [VagI] =0 = u(vgn - ) = g

J —j :
aF = q = [Vagn] >0 = (v]-(qf) _ V]ref) <q

But this is equivalent to:

q* = [u (V(q*) — vref)]

i.e. g™ is the unique equilibrium point

U

Therefore g™ is the unique equilibrium pt if and only if g™ is the unique minimizer



Outline

3. Radial network identification
* Linearized polar-form AC model

 (Covariances of voltage magnitudes



Recall: radial networks
When ik = Vi; and Ve =Y =0

Theorem 10

Suppose G is connected, Y is complex symmetric ()’j;c = y;;.) and

Yie = Y; = 0.
1. Reduced incidence matrix C is nonsingular
P; ] ] —1 [ € Pj
é_l — | A= Pj
- -l
0 otherwise

| 2. Reduced admittance matrix Y is nonsingular, and
T, : subtree rooted T, : unique path

at bus 1 from O to ¢ 7=V 1= CTpsc!
' Z
7 s
L = <

[ePnP,

Apply this result to topology identification problem



Topology identification

1. Distribution grid typically consists of a meshed network with sectionalizing and tie switches
on some lines

2. At any time switch are configured s.t. operational network is a spanning tree (substation at
its root)

3. System operator knows the meshed network, but may not always know accurately switch
status and hence operational network

Goal: |dentify operational radial network from measurements of voltage magnitudes



Linearized power flow model

Linearization of polar form
Assumptions: For all (j, k) € E
LY== gt bl v = =0

2. g]f‘}c> 0 and b]?}{< 0

Consider flat voltage profile: V]ﬂat = ue? = (pﬂat, qﬂat) = (0,0)

« All voltages have same magnitude (e.g. # = 1 pu) and angle
Let

o (| ‘A/\ ] é’) : perturbation variable around vilat 5t non-reference buses

. (P, q) : perturbation variable around (pﬂat, qﬂat) = (0,0) at non-reference buses



Linearized power flow model

Linearization of polar form

Polar form power flow model

s m 2 s S o
p= X (gjk+gjk)\vj\ = D IVIIVil (g cos 6 + by sind )

kik~j kik~j

== 2 (B+or) VI = D IVI1Vil (ghsin6y — b cos o)

kik~j k:k~j




Linearized power flow model

Linearization of polar form

Polar form power flow model

p; = 2 (gjk+gjk) Z |V HVk\ (gkcos bj?}{sin@k)

kikrj kikrj
== 2 (B+or) VI = D IVI1Vil (ghsin6y — b cos o)
k:k~j k:k~j

Linearize around Vﬂat, pﬂat, qﬂat> yields a linear model from | \A/\ to (p, g) at non-reference buses:

C is reduced incidence matrix and

—1 —1
D,:= (Dg DbD‘lDb> ~0, Dy= (Db Dng‘ng> <0



Covariance of voltages and powers

Suppose injections (p, g) vary randomly and induce random fluctuations in | ‘A/\

Define covariance and cross-covariance matrices
= E[| V] = EQ VDI V] = EQVDIT
> = E[p — Ep][p — Ep]', >,= Elq - Eqllg - Eq)'
>,.:= Elp— Epllg — EqI", >,,= ElG — Eql[p — EpI”
Then
%, = RER" + X X" + RE, X" + XT_R'

v



Covariance of voltages and powers

Assumptions: power injections at same bus are positively correlated, those at different buses are
uncorrelated

3. Forallje N: 2 [7,j1 >0, 2 [j,j1>0, 2, [7j]l=2,1jj1>0; yjz“:yg:()
4. Forallj #k: 2 |j,kl =2 ), kl =2, ), k]l =2 ), k]l =0



Covariance of voltages and powers

Assumptions: power injections at same bus are positively correlated, those at different buses are
uncorrelated

3. Forallje N: 2 [7,j1 >0, 2 [j,j1>0, 2, [7j]l=2,1jj1>0; yjz“:yg:()
4. Forallj #k: 2 |j,kl =2 ), kl =2, ), k]l =2 ), k]l =0

Theorem

Under assumptions 1-4:

1. If a non-reference bus j € N is a descendant of bus i, then var(| V;|) > var(| V;])

2. If bus i is a parent of bus j then the variance of | V.| — | Vj\ is given by:

2
E(UVI=1VD=EAViI=1V,D) = X (rvarpy + xvar(gy) + 2rpx00u(pi. 40 )

kETj



Covariance of voltages and powers

Theorem

Under assumptions 1-4:

1. If a non-reference bus j € N is a descendant of bus i, then var(| V;|) > var(| V;])

2. If bus i is a parent of bus j then the variance of | V;| — | V;]| is given by:
2
E(UVI=1VD=EAViI=1V,D) = ¥ (rdvarpy + xjvar(gy) + 2rx00(p;,9)))
kETj

Implications

Property 1 identifies a leaf node j as one with max var( | Vi )

Property 2 identifies j's parent 1 as one that most closely satisfies the formula

Algorithm

1. ldentify a leaf node j among unidentified nodes.

2. ldentify j’'s parent. 3. Remove j from set of unidentified nodes and goto 1



Covariance of voltages and powers

Proof: part 1

Theorem 10 implies

Ry= ) n>0 X;= > x>0

leP.NP; leP.NP;
Hence
R]k — le + I”l--, le — Z I’l, |f k & T]
[EP;

Use these to evaluate the diagonal entries of var(| V;|) — var(| V;|) = Z |, j] — Z,[i, i], for each of the four
terms in

— Py pT ¢ 4l » 4l v DT
S, = RERT+ X= X" + R, X" + X=_R

v




Covariance of voltages and powers

Due to covariances Zp, Zq ;

<IA€Zp]A€T>[j’j] — (IAQZPIAQT)[Z’, 1| = Z 2 [k k][Z Z 1+ rl]] 7

kel 1eP,

similarty: (X2, 7)), /1 > (X2, A7)1i.i

Due to cross-covariances qu Eqp

(R2, X7V 1j.d1 = (RE, &7 )il = 22 o KRy Ry = RyRy) > 0

similarly: (X, )(j,/1 > (f(quﬁT> i, ]

yielding: 2 [j,7] > 2[4, 1]



Covariance of voltages and powers

Proof: part 2

If bus i is a parent of bus j, then variance of | V;| — | V;] is:

2
E(UVI=EIV;D=(VD=1VD) = i+, 25,

Again use

[eP;

to show that the first term of

— Py pT v 4l 5 4l v DT
T, = RERT + X= X" + R, X" + X=_ R

v

yields a simple expression:

o = (RS0 + (RERT)U 1 - 2 (RERT) ) = 72 Y 2 Ik K
kETj



Covariance of voltages and powers

Similarly, the other terms of

— Py pT Y 4l » 4l v T
Y, = RERT + X= X" + R, X" + X=_ R

. o= (RE Rl + (RE RV - 2 (RERT)IL)) = 72 k;z [k, K]
o= (X2 A7)0l + (R A7)0 - 2 (X2 X710 )] = xzk;z [k, K]
oy = (RS, XNl il + (RZ,XT)U) = 2 (RE, XTIl = rpx, k;Zq[k,k]
o= (XZ R+ (RELRTVG A = 2 (RELRT)A) = rpgy D 2l K

kel



Covariance of voltages and powers

Summing:

4
Sl =Tl = Yo = 2 (BTl + 22 kK] + 20, kK] )
k=1 kel



