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Single-phase OPF

Optimal power flow (OPF) is fundamental because it underlies numerous power system
applications
* Unit commitment, optimal dispatch, state estimation, contingency analysis, voltage control, ...

OPF is a constrained optimization problem

min c(u, x) subject to flu,x) =0, g(u,x) <0

u,x

« Control u : generation commitment, generation set points, transformer taps, EV charging levels, inverter
reactive power, ...

* Network state x : voltages, line currents, power flows, ...
« Cost function c(u, x) : generation cost, voltage deviation, power loss, user disutility, ...
 Equality constraint f(u, x) = O : power flow equations, ...

« Inequality constraint g(u, x) < O : operation constraints, e.g., generation/consumption limits, voltage
limits, line limits, security constraints, ...



Single-phase devices

Voltage source V; € C

« Ideal voltage source: terminal voltage VJ = internal voltage

. V.is variable if the source is controllable, or fixed and given otherwise

J

Current sourcelj e C

o Ideal current source: terminal current I] = internal current

. I] is variable if the source is controllable, or given otherwise

Power source s; € C

« Ideal power source: terminal power §; = internal power

.« S is variable if the source is controllable, or given otherwise

Impedance z; € C

« Impedance Zj: constrains its terminal voltage & current V] = —

} Nodal vars at each busj : s; = VJI_J
|« Nodal vars at different buses :
e Current balance: I =YV

Zjlj - Power balance: s; = f(V)




Single-phase OPF

Assumptions

Network: G := (N, E) with N+ 1 busesin N := {0,1,...,N} and M lines in E
. Line (J, k) € E : characterized by (yji{, yj’}j) e C? and (y,fj, y,?}) e C?

. Special case: y]”‘}( = y,jj ; yj’,’: = y,’;? =0

Assume WLOG
* Single-phase devices: voltage sources and power sources only

. Each bus has a single device with <sj, VJ)

Formulate the simplest OPF to study general computational properties



Single-phase OPF

Simplest formulation
Optimization variable: (s, C) := (Sj, Vj,j S ZV)

« Represents voltage sources VJ and power sources S; only

Cost function C(s, V)
Fuelcost: C(s,V) = 2 che(sj)
j:gens
. lotal real power loss: C(s,V) := ZRG(SJ‘)
J



Single-phase OPF
Simplest formulation

Power flow equations in BIM

« Equality constraints on (V, s)

. ¥ — 2 . 7
Y s = Y u(IE-vR) + BIvE jen
kj~k kij~k
where y;' 1= Z Vi
kij~k

e Derivation:
L(V) = yi(Vi= V) + ymV,

T =S 2 [ / —m 2
SiV) = VLW = 5 (1P = Vi) + 51V

* (Can also use polar form and Cartesian form
* Nonlinear and global equality constraints, resulting in nonconvexity of OPF



Single-phase OPF
Simplest formulation

Operational constraints

« Injection limits (e.g. gen. or load capacity limits): sj”flin < 5 < sjm"‘X

max

. Voltage limits: v < |V,|* < v

J J
. Line limits: |, (V)| < £ | TV) 2 < g
2
V=V + Vil < % G EE
2
VW=V + y,g.’vk‘ < (j,k) EE

Line limits can also be on line powers (SJ-k(V), Skj(V)> or apparent powers ( |Sjk(V) ‘ , ‘Skj(V) | >



Single-phase OPF

Simplest formulation

OPF in BIM
min  C(s, V)
(s,V)
subjectto  f(s,V) =0 power flow equations

g(s, V) <0 operational constraints

Does not need assumption yjsk = y]fj

Can accommodate single-phase transformers with complex turns ratios

Can allow voltages or power injections be fixed and given; e.g., sjmm = Sjmax

min max

... Or unconstrained, e.g., s, := — 00 — (00, Sy =00+ 100



Single-phase OPF

1. Other devices
« Can include other devices such as current sources, impedances, capacity taps
* Allow multiple devices connected to same bus

2. Can formulate OPF in terms of V only
« Use power flow equations to express injections sj(V) as functions of V

« Eliminate S; and power flow equations (equality constraints)

Next: explain each in turn



Single-phase OPF
Including other devices

Examples
« Current source (controllable): variable /; with local constraints |Ij|2 < Ijmax, T VJI_J

- Impedance z;: imposes additional constraint s; = |V, |2/ZJ-
. o . : i - 2
- Capacitor tap (controllable): variable y; with local constraints yjmm <y < yjmax, s; =¥Vl
Multiple devices: injection variables s; with local constraints s;™ < s < 3™, 5;= ) s;
k

Including other devices at bus j imposes additional local constraints

« Additional optimization var u; may be introduced

. Equality constraints relating (sj, V~> and U; (if present) : j; <uj, S

V) =0

« Inequality (operational) constraints (e.g., capacity limits): gj(uj) <0



Single-phase OPF
In terms of V only

Equality constraints (BIM in complex form)

- Expresses s; in terms of voltages %

sV = X5W = Xn(IVP-v) + Ve jeN
k:jmk ek

Cost C(V) := C(s(V), V) expressed as function of V
* Fuel cost:

C(V) = ) ¢Re(s(V) = ). ¢Re Zy;k(lvjlz—vjvk) + 3 V|
j:gens j:gens kij~k

» Total real power loss:

C(V) := ) Re(s(V))
J



Single-phase OPF

Operational constraints

Injection limits (e.g. generation or load capacity limits) Sjmi“ < s(V) < Sjmax :

mm Z ka< _ _ V]Vk> + y]] | | Jmax, ] c N
kij~k

* Orin polar form:

pjmin < Z <g ) Z |V||Vk < 0089 +b]§€sin9jk) < pjmax
k:k~j k:k~j
g < = Y (B ) IV = X VIV (ghsin6 - bycosy) < g™

k:k~j k:k~j



Single-phase OPF
Operational constraints

Voltage limits (same as before):

vjmin < |VJ|2 < vjmax, ]EN

Line limits (same as before):

2
V=V + yrvi| < e (k) EE

wVi=V) + Vil £ 65 GO EE

. Line limits can also be on line powers (Sjk(V), Skj(V)) or apparent powers < ‘Sjk(V) ‘ , ‘Skj(V) ‘ >



Single-phase OPF
In terms of V only

Feasible set

V= {V e CN*! | V satisfies operational constraints}

OPF in BIM
min  C(V)
VeV

+  Does not need assumption y; = y;

« (Can accommodate single-phase transformers with complex turns ratios



Single-phase OPF
In terms of V only

Feasible set

V= {V e CN*! | V satisfies operational constraints}

OPF in BIM
min  C(V)
VeV

We will mostly study this simple OPF
Can express it as a QCQP
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OPF as QCQP
QCQP

Quadratically constrained quadratic program:

min  x"Cyx
xeC"

s.t. XHClx S bl’ [ = 1,...,L

. C;:n X n Hermitian matrix = x"Cx € R
i bl c R
» Homogeneous QCQP : all monomials are of degree 2



OPF as QCQP
QCQP

Inhomogeneous QCQP

min x"Cyx + (c(')"x+x"'c0)
xeC"

s.t. xHClx + (cle+ch,) < b, [=1,...,L

Homogenization: introduce scalar var t € C

« Setx := Xt and require |t|2 =1 (i.e., t = ¢ for some ). Then

H H H AH o~ 4 He a7 ~7\H AH  .H G oal s
X'Cx + ¢gx+x"c = XCX + ¢ (Xt) + (Xf)¢; = [x t] H ool L
€



OPF as QCQP
QCQP

Equivalent homogeneous QCQP

CO CO_ M AT
min sH (H X
£eC", teC [x t] C(|)_| 0 [
G Cl_ (2]
s.t gH o (H < b, [=1,...,L

[X ! ] ClH 0 | 7] l
0 o] [z

[ ] [o 1] =1

o If ()%Opt, tOpt> is optimal for homogeneous QCQP, then product xOPt .= {0Pt 0Pt jg optimal for original
inhomogeneous QCQP

Steven Low OPF Bus injection model



OPF as QCQP

Equivalent real QCQP

Even though OPF is often formulated in C, it is converted to R before being solved iteratively

QCQP Equivalent to:
. T
min xHC()x min 5 [Cor —Cai [
xeC" (x.x)ER™" i Coi Cor | 1%
H T _CT T
st. x'Cx < b [=1,....L Gl (G =G| | _
l = &) ’ ’ s.t. X; Cll' Clr X, < bl’ [=1,...,L

« C;:n X ncomplex Hermitian matrix

e 2n X 2n real symmetric matrices

Steven Low OPF  Optimization algorithms



OPF as QCQP

To write OPF as QCQP:

« Assume cost function C(V) = VHCOV can be written as a quadratic form
* Need to rewrite operational constraints in terms of quadratic forms

Steven Low OPF Bus injection model



OPF as QCQP

Injection limits sjmin < s(V) < s

H
s(V)= VI = <ejHV> <e].H1) = M VVHYHe,

s(V) = tr (ejHVVHYHej> = tr((YHejejH> VVH> =: VHyHy

Steven Low OPF Bus injection model



OPF as QCQP

Injection limits sjmin < s(V) < s

H
s(V)= VI = <ejHV> <e].H1) = M VVHYHe

_ Hy/ y/HyH _ H, H HY _. yHyH
sj(V)— tr(ej vviy ej> = tr((Y eje; )VV) =V YJ-V

. Y] is not Hermitian so VHYJ.HV is generally complex

: . 1 H . 1 H
. Define <I)j = 5 <X] + Yj>, \Pj — 2_1 <X] — YJ)

Hence Sj-min < Sj(V) < SjmaX is equivalent to:

pjmin < VHCDjV < pjmax’ qjmin < VH\PJ_V < qjmax

Steven Low OPF Bus injection model



OPF as QCQP

Voltage limits
.

Voltage magnitude is: | le2 = VHEJ-V where E; := eje;

Hence voltage limits are: vjmin < VHE]-V < ijax

Steven Low OPF Bus injection model



OPF as QCQP

Line limits

Write [;; in terms of voltage vector V:

Hence current limit is: |Ijk|2= VHIA/jkV < £ where

f/jk = <y}?k(ej —e) + yie <yjf}<(ej —e)' + Vi ejT)

Steven Low OPF Bus injection model



OPF as QCQP

Simplest formulation

min ~ VHC,V
VECN+1
s.t. pjmin < VHCDJ-V < pjmax, jEN
qjmin < VH\PjV < qjmax’ jE N
v < VREY < v jEN
VY < e G EE
VYV < o, (j.k) €E

Steven Low OPF Bus injection model
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Radial network

Assumptions: DistFlow model

Radial network
« BFM most useful for modeling distribution systems which are mostly radial (and unbalanced)

S — S5S ; S — 1,8
Zyy = g, orequivalently y, =y

« Does not apply to 3-phase transformers in AY or YA configuration or their per-phase equivalent with
complex gains

Ve =Yg =0

« Reasonable assumption for distribution line where |y}}j , |y,?j1| < |yj§€|

Includes only voltage sources and power sources
« Optimization variables are voltages (squared magnitudes) Vj and power injections S; respectively
« Can include current sources or an impedances with additional vars and constraints.



DistFlow model

Power flow equations
» All lines point away from bus 0 (root)

k:j—k

yn= 2R (5) < 15iPl  JokeE
vl = 1Sl J—okeE

Operational constraints

S < gmax
= 5

max

Vi

max
‘G

<
2
=
IA
<
IA

D
bl
IA



Single-phase OPF

DistFlow model

Feasible set

Xqgf = {x = (s,v,7,S) € RON*3 | x satisfies PF equations & operational constraints}

OPF in BFM

min  C(x) s.t. X € Xgf
X



Single-phase OPF
Equivalence
Recall for BIM:

» Feasible set: V:= {VE CN*! | V satisfies operational constraints}

. OPF:  min C(V)
vev

OPF in BFM is equivalent to OPF in BIM:

« Feasible sets Xg4f and V are equivalent (Ch 5)
e ... provided cost functions C(x) and C(V) are the same



General radial network

Does not assume Z;k = z,‘:j nor y]?;j = y,’g; =0
Need branch quantities in both directions
= (406 G0 €E), S = (835, Gb) € E)

ey = 14 g]?}cyjf,lq, a; = 1+ z,gjyg
BFM for general radial network
S; = Z S]-k, jE N
kij~k
2 - :
|ty |“v, — vy = 2Re <ajkz;ijk> - Izﬁclzfjk, (j,k) € E

jayPy=v = 2Re (ayzSy) = 125176 b EE
2
=yl |S| =wh  GoeE

H
AV — Z}(?ijk = (0_‘ij1< - Zij&cj) ) (j,k) e E



Single-phase OPF

General radial network
Operational constraints (same as before but line limits in both directions)
Sjmln S Sj S Sjmax, ijm S Vj S ijax, f S f] rl?ax’ f ki = f max

Feasible set

Xtree = {x =(s,v,70,5) € [RON+3 | x satisfies PF equations & operational constraints}

OPF in BFM
min  C(x) s.t. X € Xtree
X

OPF in BFM is equivalent to OPF in BIM:

« Feasible sets Xygg and V are equivalent (Ch 5)
e ... provided cost functions C(x) and C(V) are the same



Outline

3. NP-hardness
» OPF feasibility
* OPF is NP-hard

4. Global optimality



OPF feasibility

Tree network

Star network (N, E) with N + 1 buses and M = N lines

o= and o =y =0

Fixed voltage magnitudes | V;| := 1 pu

Fixed and given injections (p;, q;), ] € N, C N
Dispatchable generation (p;, g;) withp; > 0, j € No C N
Line limits: |9] —-0,1 <0 € (0,n/2], (j,k)€E

Each instance of OPF feasibility problem is specified by

Tree network (Ng U N, E)

Line admittances (gjk, bjk, (j,k) € E)
Line limits @ € (0,7/2]

Fixed injections (p;, g;,J € Np)



OPF feasibility

Tree network
Find

. Real power generations (pj, JE NG> >0
. Voltage angles <8j,j S N)

. Line flows ( o Qi (Jj,k) € E>

that satisfy the polar form power flow equation and line limits:

OPF feasibility: p= ) Pp g =) O JEN,
kejmk kejmk
piz 0, J € Ng
Py = gy(l —cosBy) — by sin6 (J,k) € E
Qi = — by(1 — cos0y) — g sin 6y, (J,k) €EE
16— 6,1 < 0. (k) € E



NP-hardness
P and NP

Let
« 2 :finite set of symbols
« 2% : set of all finite strings of symbols in X
« L C X* :language over X

Deterministic Turing machine (DTM): computation model that takes an input 6 € X*, performs
computation (read, write, state transition), and either halts in “yes” or “no” state, or does not halt

Given DTM M, time complexity function ¢;, : N, — N, :

cy(n) = max{m : o € X* with | 6| = n s.t. M takes m steps to halt on o}
M is called a polynomial time DTM if 3 a polynomial p s.t. ¢;,(n) < p(n) for all n

Language recognized by (DTM or NDTM) M is
Ly, = {o € X*: Mhaltson oin "yes" state}



NP-hardness
P and NP

The class P of languages is
P := {L C 2* : 3 polynomial time DTM M for which L = L,,}

Informally: P consists of all language over X that are recognized by a DTM in polynomial time

While P captures “solvability” of a problem, NP captures “verifiability”
« Itis difficult (NP-complete) to find a cycle in an arbitrary graph that visits every node exactly once, but easy to verify if a
candidate is a solution

Given NDTM M, time complexity function ¢;, : N, — N :
cy(n) = max{m : o € X* with | 6| = n s.t. M takes m steps to halt on ¢ in "yes" state }
M is called a polynomial time NDTM if 3 a polynomial p s.t. ¢;,(n) < p(n) for all n
The class NP of languages is S
NP := {L C Z* : 3 polynomial time NDTM M for which L = L,,} ‘ﬂ‘P C NP|

Informally: NP consists of all language recognized by a NDTM (or verifiable by a DTM) in polynomial time




NP-hardness
NP-hard and NP-complete

A function f : ZT — Z;‘ is a language L; := {(0,f(0)) : 0 € Zik} C ZT X Z;
DTM M computes fif Ly, = Ly

A polynomial reduction from L; € 2¥ to L, € 27 is a function f: 2 — 27 which can be
computed by a polynomial time DTM s.t.

cel, < f(o) €l,, o E X,
A language L is NP-hard if for every L’ € NP there exists a polynomial reduction from L'to L

It is NP-complete if L is NP-hard and L € NP
 NP-complete languages are in a sense the “hardest” languages in NP



NP-hardness

Decision problems

A decision problem is a problem whose solution is either “yes” or “no”
» ltis defined by a set of finite instances, e.g. specified in terms of sets, graphs, functions, real numbers

Let I1 be a decision problem (or its instances) that can be “encoded” into a language problem
over some alphabet X
+ Informally, an encoding is o : Il — X* that maps each instance y € Il to a string 6(y) € X*

Let Y C II be the subset of instances whose solutions are “yes”
« We will refer to Y either as a set of problem instances or simply a problem by itself

Let Ly := {o(y) : ¥y € Y} be the language defined by instances in Y
« Solution of instance y € Il is “yes” if and only if y € Yif and only if 6(y) € Ly

Hardness properties of Y are then defined in terms of hardness properties of its encoding Ly
« eg.YisinPif Ly € P, Yis NP-complete if Ly is NP-complete
» OPF feasibility problem is such a decision problem



NP-hardness

Theorem

OPF feasibility problem on a tree network is NP-hard

Remarks:
* OPF feasibility is not proved to be in NP, because solution can be irrational
* Proved by polynomial reduction of NP-complete subset sum problem to OPF feasibility

» OPF feasibility can be proved to be strongly NP-hard by polynomial reduction of strongly NP-complete
one-in-three 3SAT problem to OPF feasibility

NP-hardness is worst-case result
» Subclasses of OPF cane polynomial time solvable
* e.g., those satisfied sufficient conditions for exact relaxations or global optimaiity



Outline

4. Global optimality
« Convex relaxation
* Lyapunov-lik condition for global optimality
» Application to OPF on radial network



Optimization and relaxation

Consider
Nonconvex optimization P1: min f(x) s.t. xeXCR”
X
Convex relaxation P2: min f(x) s.t. xeXCR"
X

e X : nonempty, compact (not necessarily convex)
. X: compact and convex superset X X
« f:R" - Ris convex (and hence continuous) function on R"

Optimal solutions exist for both problems P1 and P2




Exact relaxation

Definition
1. x* € Xis alocal optimum of P1if 36 > 0 s.t. f(x*) < f(x) forall ||x —x*|| < o
2. x* € Xis a global optimum of P1 if f(x*) < f(x) forallx € X

3. P2is exact wrt P1 if every optimal x* of P2 is feasible (and hence optimal) for P1




Path

Definition

1. A pathin Y C R” connecting a to be b in Y is a continuous function

h:[0,1] > Y st.h(0)=aand h(l) =b
2. An arbitrary set {/; : i € I} of paths in Y is called

« uniformly bounded if 3 finite H s.t. |||l < H forall ¢ € [0,1]
andi €1

« uniformly equicontinuous if forany € > 0, 4 6 > 0O s.t.
|h(ty) — h(t)l|l, < €foralli € I whenever |[f, — 1| <6

Example: If all paths in {/; : i € I} are linear, then {A; : i € I} is both
uniformly bounded and uniformly equicontinuous



Lyapunov-like function

Definition
A Lyapunov-like function associated with problems P1 and P2 is a continuous function
V:X—> R, st V(x) =0ifx € X and V(x) >O|fxEX\X

V(x)




Global optimality

Optimality conditions

1. There is a Lyapunov-like function V and, for every infeasible point x € )A(\X d path A, s.t.
Every infeasible pt x can be brought

@ n(0) =x, h(1) € X, f(h(1)) <f(x) back to X with a lower cost

(b) Both f(h,(?)) and V(A (t)) are nonincreasing for ¢ € [0,1] Nonincreasing cost or certificate
along path to feasibility

2. Theset {h, :x € )A(\x} of paths in 1 is uniformly bounded and uniformly equicontinuous

3. At least one of the following holds:

(d) All local optima of P1 are isolated (i.e., every local optimum has a neighborhood with no other
local optimum)

() For {h.: x € X\x}in1, Ja > Ostforalx € X\Xandal0 <s <t <1,

fh(s)) = f(h (1) = al|h(s) — h(D]| Cost must decrease sufficiently
along path to feasibility

for some norm || - ||



Global optimality

Theorem [Sufficiency]

Suppose conditions 1, 2, 3 hold.

1. The convex relaxation P2 is exact wrt P1

2. Every local optimum of P1 is a global optimum

Moreover if condition 3(a) holds, then the optimal point is unique

Remarks

 Exactness <= existence of {h, : x € )A(\x} that satisfies condition 1

« Other conditions are to prove that there is no spurious local optimum



Global optimality

A set y C R" is semianalytic if every x € R" has a neighborhood U s.t. Y N U can be
represented as a finite Boolean combination of sets {x : g(x) =0} and {x : hA(x) < 0} for
some analytic functions g, & (usually satisfied by engineering problems)

l.o. are g.o. orp.l.o

C1,C2
Relaxation

is exact

Theorem [Necessity]
l.o. are g.o.

Suppose X is semianalytic and f is analytic. If
1. The convex relaxation P2 is exact wrt P1, and

2. Every local optimum of P1 is a global optimum

then 3 Lyapunov-like function V and a family of paths {A, : x € )A(\x} that satisfy cond 1 and 2



Lyapunov-like optimality condition
Comparison with Lyapunov stability
Consider the dynamical system

x = f(x(1)), t >0, x(0) =x,

Let x* be an equilibrium point where f(x*) = 0

Lyapunov stability theory

1. Lyapunov function V(x) is a continuously differentiable function s.t. V(x) > V(x*) and V(x) < 0
forall x # x* in R"

2. V certifies stability of x* : x* is globally asymptotically stable if a Lyapunov function V(x) exists

Lapunov-like optimality condition
1. V certifies global optimality of a local optimum x* € X
2. No dynamics to specify path : no requirement on differentiability of V, but

3. Need to construct both V and paths {A, : x € )A(\x} (no general method known)



Application to OPF
Recall: OPF in DistFlow model

DistFlow equations (radial network):

Z Sk = Sj—zL;+s) JEN
kij—k
v—vk—2Re<kaS> |z| . j—okeE
ijjk — |S]k| , j—okekE Nonconvex constraint

Operational constraints:

mm < < max mll’l < < max . < max
J 5i = SJ J Vi , L Jk = “jk

Feasible set
X = {x = (s,v,7,S5) € RON*3 | x satisfies DistFlow equations & operational constraints}



Application to OPF

Convex relaxation

Replace

vy = |1Sl?, jok€E
by

Vil 2 |Sjk|2, j—o>keEE Convex second-order cone (SOC) constraint

Convex superset

X = {x : x satisfies constraints with SOC replacement }

Consider

Nonconvex optimization P1: min f(x) s.t. xeXCR"
X

A

Convex relaxation P2: min f(x) s.t. xeXCR"
X



Optimality conditions
OPF in DistFlow model

4. X is nonempty compact, Xis compact, cost function f'is convex and continuous

5. Cost function f(x) = f(p, g, v, ) is independent of § = (P, Q), continuously differgntiable . |,

with Vf(x) > 0. Moreover dc > 0 s.t. y(x) > Oforalll € Eandallx € X

l demand large enough not to pose constraints

6. No lower bounds on injections: sjmln = —00—1I00
usually satisfied

_. - . o 2 pmax min
7. Zy = (Fj X3) > 0 and line limit satisfies |z |"£™" < v,

Remarks

 Differentiability is not necessary and can be replaced by subgradient (which always exist since
fis convex)



Global optimality

OPF in DistFlow model

Theorem

Suppose conditions 4-7 hold on radial network.
1. Convex relaxation P2 is exact wrt P1
2. Every local optimum of P1 is a global optimum

Remarks
* Exactness is proved in Ch 11 on Semidefinite relaxations of OPF in BFM



Global optimality

Construction: V

Proof requires construction of Lyapunov-like function V and family of paths {4, : x € )A(\x}

Lyapunov-like function:
2
Vix) = Z (ijﬂjk_lsjkl )
j—keE

e V(x)>0forallx € )A( with “=“iff x € X



Global optimality
Construction: /i,

Define quadratic function

Pula) = lZJZ;lz a’ + (Vj_ Re (ijSjk>> <| (I~ >

Define A, := positive root of ¢y (a) = 0if vi£'y > | Sy %, or Ay = 0 otherwise

For infeasible pt x € )A(\X define path h,(f) := (E(l), (1), (1), S(l)) = x—tAA(x) fort € [0,1]:

o t -
ii—j k]—)k
~ 5 .



Global optimality

Proof idea

Prove the Lyapunov-like function V and family of paths {4, : x € )A(\x} defined above satisfy
conditions 1,2, 3



