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Chapter 9  Optimal power flow
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Single-phase OPF

Optimal power flow (OPF) is fundamental because it underlies numerous power system 
applications


• Unit commitment, optimal dispatch, state estimation, contingency analysis, voltage control, …


OPF is a constrained optimization problem


• Control  : generation commitment, generation set points, transformer taps, EV charging levels, inverter 
reactive power, … 


• Network state  : voltages, line currents, power flows, … 

• Cost function  : generation cost, voltage deviation, power loss, user disutility, …

• Equality constraint  : power flow equations, …

• Inequality constraint  : operation constraints, e.g., generation/consumption limits, voltage 

limits, line limits, security constraints, …

u

x
c(u, x)

f(u, x) = 0
g(u, x) ≤ 0

min
u,x

c(u, x)  subject to  f(u, x) = 0, g(u, x) ≤ 0



Single-phase devices
Voltage source 


• Ideal voltage source: terminal voltage  = internal voltage 


•  is variable if the source is controllable, or fixed and given otherwise


Current source 


• Ideal current source: terminal current  = internal current


•  is variable if the source is controllable, or given otherwise


Power source 


• Ideal power source: terminal power  = internal power


•  is variable if the source is controllable, or given otherwise


Impedance 


• Impedance : constrains its terminal voltage & current 

Vj ∈ ℂ
Vj

Vj

Ij ∈ ℂ
Ij

Ij

sj ∈ ℂ
sj

sj

zj ∈ ℂ
zj Vj = − zjIj

• Nodal vars at each bus  :  

• Nodal vars at different buses : 


• Current balance: 

• Power balance: 

j sj = VjĪj

I = YV
sj = fj(V )



Single-phase OPF
Assumptions 
Network:   with  buses in  and  lines in 


• Line  : characterized by 


• Special case:  ;  


Assume WLOG

• Single-phase devices: voltage sources and power sources only


• Each bus has a single device with 


Formulate the simplest OPF to study general computational properties

G := (N, E) N + 1 N := {0,1,…, N} M E
( j, k) ∈ E (ys

jk, ym
jk) ∈ ℂ2  and  (ys

kj, ym
kj) ∈ ℂ2

ys
jk = ys

kj ym
jk = ym

kj = 0

(sj, Vj)



Single-phase OPF
Simplest formulation 
Optimization variable: 


• Represents voltage sources   and power sources  only


Cost function 


• Fuel cost :   


• Total real power loss:   

(s, C) := (sj, Vj, j ∈ N)
Vj sj

C(s, V)
C(s, V ) := ∑

j:gens
cj Re(sj)

C(s, V ) := ∑
j

Re(sj)



Single-phase OPF
Simplest formulation 
Power flow equations in BIM


• Equality constraints on 





where 


• Derivation: 





• Can also use polar form and Cartesian form

• Nonlinear and global equality constraints, resulting in nonconvexity of OPF

(V, s)

sj = ∑
k:j∼k

Sjk(V) := ∑
k:j∼k

ȳs
jk ( |Vj |

2 − VjV̄k) + ȳm
jj |Vj |

2 , j ∈ N

ym
jj := ∑

k:j∼k

ym
jk

Ijk(V) := ys
jk(Vj − Vk) + ym

jk Vj

Sjk(V) := VjĪjk(V) := ȳs
jk ( |Vj |

2 − VjV̄k) + ȳm
jk |Vj |

2



Single-phase OPF
Simplest formulation 
Operational constraints


• Injection limits (e.g. gen. or load capacity limits):   


• Voltage limits:   


• Line limits:  





Line limits can also be on line powers  or apparent powers 

smin
j ≤ sj ≤ smax

j

vmin
j ≤ |Vj |

2 ≤ vmax
j

| Ijk(V ) |2 ≤ ℓmax
jk , | Ikj(V ) |2 ≤ ℓmax

kj

ys
jk(Vj − Vk) + ym

jk Vj

2
≤ ℓmax

jk , ( j, k) ∈ E

ys
kj(Vk − Vj) + ym

kj Vk

2
≤ ℓmax

kj , ( j, k) ∈ E

(Sjk(V ), Skj(V )) ( Sjk(V ) , Skj(V ) )



Single-phase OPF
Simplest formulation 
OPF in BIM





• Does not need assumption  

• Can accommodate single-phase transformers with complex turns ratios


• Can allow voltages or power injections be fixed and given; e.g., 


• … or unconstrained, e.g., 

min
(s,V)

C(s, V)

subject to f(s, V) = 0
g(s, V) ≤ 0

ys
jk = ys

kj

smin
j = smax

j

smin
0 := − ∞ − i∞, smax

0 := ∞ + i∞

power flow equations

operational  constraints



Single-phase OPF
1.  Other devices


• Can include other devices such as current sources, impedances, capacity taps

• Allow multiple devices connected to same bus


2.  Can formulate OPF in terms of  only

• Use power flow equations to express injections  as functions of 


• Eliminate  and power flow equations (equality constraints)

V
sj(V) V

sj

Next: explain each in turn



Single-phase OPF
Including other devices
Examples


• Current source (controllable): variable  with local constraints  


• Impedance : imposes additional constraint   


• Capacitor tap (controllable): variable  with local constraints  


• Multiple devices: injection variables  with local constraints  


Including other devices at bus  imposes additional local constraints 


• Additional optimization var  may be introduced


• Equality constraints relating  and  (if present) :    


• Inequality (operational) constraints (e.g., capacity limits):   

Ij | Ij |
2 ≤ Imax

j , sj = VjĪj

zj sj = |Vj |
2 /z̄j

yj ymin
j ≤ yj ≤ ymax

j , sj = ȳj |Vj |
2

sjk smin
jk ≤ sjk ≤ smax

jk , sj = ∑
k

sjk

j
uj

(sj, Vj) uj fj (uj, sj, Vj) = 0

gj(uj) ≤ 0



Single-phase OPF
In terms of  onlyV
Equality constraints (BIM in complex form)


• Expresses  in terms of voltages 





Cost  expressed as function of 

• Fuel cost: 





• Total real power loss: 


sj V

sj(V) = ∑
k:j∼k

Sjk(V) := ∑
k:j∼k

ȳs
jk ( |Vj |

2 − VjV̄k) + ȳm
jj |Vj |

2 , j ∈ N

C(V) := C(s(V), V) V

C(V) := ∑
j:gens

cj Re(sj(V)) = ∑
j:gens

cj Re ∑
k:j∼k

ȳs
jk ( |Vj |

2 − VjV̄k) + ȳm
jj |Vj |

2

C(V) := ∑
j

Re(sj(V))



Single-phase OPF
Operational constraints
Injection limits (e.g. generation or load capacity limits)   :





• Or in polar form: 


smin
j ≤ sj(V) ≤ smax

j

smin
j ≤ ∑

k:j∼k

ȳs
jk ( |Vj |

2 − VjV̄k) + ȳm
jj |Vj |

2 ≤ smax
j , j ∈ N

pmin
j ≤ ∑

k:k∼j
(gs

jk + gm
jk) |Vj |

2 − ∑
k:k∼j

|Vj | |Vk |(gs
jk cos θjk + bs

jk sin θjk) ≤ pmax
j

qmin
j ≤ − ∑

k:k∼j
(bs

jk + bm
jk) |Vj |

2 − ∑
k:k∼j

|Vj | |Vk |(gs
jk sin θjk − bs

jk cos θjk) ≤ qmax
j



Single-phase OPF
Operational constraints
Voltage limits (same as before):





Line limits (same as before):





• Line limits can also be on line powers  or apparent powers 

vmin
j ≤ |Vj |

2 ≤ vmax
j , j ∈ N

ys
jk(Vj − Vk) + ym

jk Vj

2
≤ ℓmax

jk , ( j, k) ∈ E

ys
kj(Vk − Vj) + ym

kj Vk

2
≤ ℓmax

kj , ( j, k) ∈ E

(Sjk(V), Skj(V)) ( Sjk(V) , Skj(V) )



Single-phase OPF
In terms of  onlyV
Feasible set





OPF in BIM





• Does not need assumption  

• Can accommodate single-phase transformers with complex turns ratios

𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}

min
V∈𝕍

C(V)

ys
jk = ys

kj



Single-phase OPF
In terms of  onlyV
Feasible set





OPF in BIM


𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}

min
V∈𝕍

C(V)

We will mostly study this simple OPF

Can express it as a QCQP
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OPF as QCQP
QCQP
Quadratically constrained quadratic program:





•  :  Hermitian matrix  

• 

• Homogeneous QCQP : all monomials are of degree 2

min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n ⇒ x𝖧Clx ∈ ℝ
bl ∈ ℝ



OPF as QCQP
QCQP
Inhomogeneous QCQP





Homogenization: introduce scalar var 

• Set   and require  (i.e.,  for some ).   Then 


min
x∈ℂn

x𝖧C0x + (c𝖧
0 x + x𝖧c0)

s.t. x𝖧Clx + (c𝖧
l x + x𝖧cl) ≤ bl, l = 1,…, L

t ∈ ℂ
x := ̂xt̄ | t |2 = 1 t = eiθ θ

x𝖧Clx + c𝖧
l x + x𝖧cl = ̂x𝖧Cl ̂x + c𝖧

l ( ̂xt̄ ) + ( ̂xt̄ )𝖧cl = [ ̂x𝖧 t𝖧] [
Cl cl

c𝖧
l 0] [ ̂x

t]



OPF as QCQP
QCQP
Equivalent homogeneous QCQP





• If  is optimal for homogeneous QCQP, then product  is optimal for original 
inhomogeneous QCQP

min
̂x∈ℂn, t∈ℂ

[ ̂x𝖧 t𝖧] [
C0 c0

c𝖧
0 0 ] [ ̂x

t]

s.t. [ ̂x𝖧 t𝖧] [
Cl cl

c𝖧
l 0] [ ̂x

t] ≤ bl, l = 1,…, L

[ ̂x𝖧 t𝖧] [0 0
0 1] [ ̂x

t] = 1

( ̂xopt, topt) xopt := ̂xopt topt

Steven Low     OPF      Bus injection model



Even though OPF is often formulated in , it is converted to  before being solved iterativelyℂ ℝ

Steven Low     OPF      Optimization algorithms

QCQP 




•  :  complex Hermitian matrix 

• 


min
x∈ℂn

x𝖧C0x

s.t. x𝖧Clx ≤ bl, l = 1,…, L

Cl n × n
bl ∈ ℝ

Equivalent to: 




•  real symmetric matrices


min
(xr,xi)∈ℝ2n [xr

xi]
𝖳

[C0r −C0i

C0i C0r ] [xr
xi]

s.t. [xr
xi]

𝖳

[Clr −Cli

Cli Clr ] [xr
xi] ≤ bl, l = 1,…, L

2n × 2n

OPF as QCQP
Equivalent real QCQP



OPF as QCQP
To write OPF as QCQP:  


• Assume cost function  can be written as a quadratic form 

• Need to rewrite operational constraints in terms of quadratic forms

C(V) = V𝖧C0V

Steven Low     OPF      Bus injection model



OPF as QCQP
Injection limits  smin

j ≤ sj(V) ≤ smax
j



sj(V) = Vj I𝖧

j = (e𝖧
j V) (e𝖧

j I)
𝖧

= e𝖧
j VV𝖧Y𝖧ej

sj(V) = tr (e𝖧
j VV𝖧Y𝖧ej) = tr ((Y𝖧eje𝖧

j ) VV𝖧) =: V𝖧Y𝖧
j V

Steven Low     OPF      Bus injection model



OPF as QCQP
Injection limits  smin

j ≤ sj(V) ≤ smax
j




•   is not Hermitian so   is generally complex


• Define     


• Then      


Hence    is equivalent to:   


sj(V) = Vj I𝖧
j = (e𝖧

j V) (e𝖧
j I)

𝖧
= e𝖧

j VV𝖧Y𝖧ej

sj(V) = tr (e𝖧
j VV𝖧Y𝖧ej) = tr ((Y𝖧eje𝖧

j ) VV𝖧) =: V𝖧Y𝖧
j V

Yj V𝖧Y𝖧
j V

Φj :=
1
2 (Y𝖧

j + Yj), Ψj :=
1
2i (Y𝖧

j − Yj)
Re(sj) = V𝖧ΦjV, Im(sj) = V𝖧ΨjV

smin
j ≤ sj(V) ≤ smax

j

pmin
j ≤ V𝖧ΦjV ≤ pmax

j , qmin
j ≤ V𝖧ΨjV ≤ qmax

j

Steven Low     OPF      Bus injection model



OPF as QCQP
Voltage limits
Voltage magnitude is:     where    


Hence voltage limits are:   

|Vj |
2 = V𝖧EjV Ej := eje𝖳

j

vmin
j ≤ V𝖧EjV ≤ vmax

j

Steven Low     OPF      Bus injection model



OPF as QCQP
Line limits
Write  in terms of voltage vector :    


  


Hence current limit is:      where


Ijk V

Ijk = ys
jk(Vj − Vk) + ym

jkVj = (ys
jk(ej − ek)𝖳 + ym

jk e𝖳
j ) V

| Ijk |2 = V𝖧 ̂YjkV ≤ ℓmax
jk

̂Yjk := (ȳs
jk(ej − ek) + ȳm

jk ej) (ys
jk(ej − ek)𝖳 + ym

jk e𝖳
j )

Steven Low     OPF      Bus injection model



OPF as QCQP
Simplest formulation

  


min
V∈ℂN+1

V𝖧C0V

s.t. pmin
j ≤ V𝖧ΦjV ≤ pmax

j , j ∈ N

qmin
j ≤ V𝖧ΨjV ≤ qmax

j , j ∈ N

vmin
j ≤ V𝖧EjV ≤ vmax

j , j ∈ N

V𝖧 ̂YjkV ≤ ℓmax
jk , ( j, k) ∈ E

V𝖧 ̂YkjV ≤ ℓmax
kj , ( j, k) ∈ E

Steven Low     OPF      Bus injection model
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Radial network
Assumptions: DistFlow model 
Radial network


• BFM most useful for modeling distribution systems which are mostly radial (and unbalanced)


  or equivalently  

• Does not apply to 3-phase transformers in  or  configuration or their per-phase equivalent with 

complex gains


  


• Reasonable assumption for distribution line where 


Includes only voltage sources and power sources 

• Optimization variables are voltages (squared magnitudes)  and power injections  respectively

• Can include current sources or an impedances with additional vars and constraints.

zs
jk = zs

kj ys
jk = ys

kj
ΔY YΔ

ym
jk = ym

kj = 0
|ym

jk | , |ym
kj | ≪ |ys

jk |

vj sj



DistFlow model
Power flow equations


• All lines point away from bus 0 (root)





Operational constraints


∑
k:j→k

Sjk = Sij − zs
ijℓij + sj, j ∈ N

vj − vk = 2 Re (z̄s
jkSjk) − |zs

jk |2 ℓjk, j → k ∈ E

vjℓjk = |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j

vmin
j ≤ vj ≤ vmax

j

ℓjk ≤ ℓmax
jk



Single-phase OPF

Feasible set





OPF in BFM


𝕏df := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies PF equations & operational constraints}

min
x

C(x) s.t. x ∈ 𝕏df

DistFlow model



Single-phase OPF
Equivalence
Recall for BIM:


• Feasible set:   


• OPF:      


OPF in BFM is equivalent to OPF in BIM:

• Feasible sets  and  are equivalent (Ch 5)

• … provided cost functions  and  are the same

𝕍 := {V ∈ ℂN+1 | V satisfies operational constraints}
min
V∈𝕍

C(V)

𝕏df 𝕍
C(x) C(V)



General radial network
Does not assume    nor   


Need branch quantities in both directions


• ,  


• 


BFM for general radial network 


zs
jk = zs

kj ym
jk = ym

kj = 0

ℓ := (ℓjk, ℓkj, ( j, k) ∈ E) S := (Sjk, Skj, ( j, k) ∈ E)
αjk := 1 + zs

jk ym
jk , αkj := 1 + zs

kj ym
kj

sj = ∑
k:j∼k

Sjk, j ∈ N

|αjk |2 vj − vk = 2 Re (αjkz̄s
jkSjk) − |zs

jk |2 ℓjk, ( j, k) ∈ E

|αkj |
2 vk − vj = 2 Re (αkj z̄s

kjSkj) − |zs
kj |

2 ℓkj, ( j, k) ∈ E

Sjk
2

= vj ℓjk, Skj
2

= vk ℓkj, ( j, k) ∈ E

ᾱjkvj − z̄s
jkSjk = (ᾱkjvk − z̄s

kjSkj)
𝖧
, ( j, k) ∈ E



Single-phase OPF

Operational constraints (same as before but line limits in both directions)





Feasible set





OPF in BFM





OPF in BFM is equivalent to OPF in BIM:

• Feasible sets  and  are equivalent (Ch 5)

• … provided cost functions  and  are the same

smin
j ≤ sj ≤ smax

j , vmin
j ≤ vj ≤ vmax

j , ℓjk ≤ ℓmax
jk , ℓkj ≤ ℓmax

kj

𝕏tree := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies PF equations & operational constraints}

min
x

C(x) s.t. x ∈ 𝕏tree

𝕏tree 𝕍
C(x) C(V)

General radial network
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OPF feasibility
Tree network
Star network  with  buses and  lines 


•   and  


• Fixed voltage magnitudes  pu


• Fixed and given injections 


• Dispatchable generation  with ,  


• Line limits:  


Each instance of OPF feasibility problem is specified by

• Tree network 


• Line admittances 


• Line limits 


• Fixed injections 

(N, E) N + 1 M = N
ys

jk = ys
kj ym

jk = ym
kj = 0

|Vj | := 1
(pj, qj), j ∈ NL ⊂ N

(pj, qj) pj ≥ 0 j ∈ NG ⊂ N
|θj − θk | ≤ θ ∈ (0,π/2], ( j, k) ∈ E

(NG ∪ NL, E)
(gjk, bjk, ( j, k) ∈ E)

θ ∈ (0,π/2]
(pj, qj, j ∈ NL)



OPF feasibility
Tree network
Find 


• Real power generations 


• Voltage angles 


• Line flows 


that satisfy the polar form power flow equation and line limits:


(pj, j ∈ NG) ≥ 0

(θj, j ∈ N)
(Pjk, Qjk, ( j, k) ∈ E)

OPF feasibility: pj = ∑
k:j∼k

Pjk, qj = ∑
k:j∼k

Qjk, j ∈ NL

pj ≥ 0, j ∈ NG

Pjk = gjk(1 − cos θjk) − bjk sin θjk, ( j, k) ∈ E
Qjk = − bjk(1 − cos θjk) − gjk sin θjk, ( j, k) ∈ E

|θj − θk | ≤ θ, ( j, k) ∈ E



NP-hardness
P and NP
Let 


•  : finite set of symbols 

•  : set of all finite strings of symbols in 

•  : language over 


Deterministic Turing machine (DTM): computation model that takes an input , performs 
computation (read, write, state transition), and either halts in “yes” or “no” state, or does not halt


Given DTM , time complexity function  :





 is called a polynomial time DTM if  a polynomial  s.t.  for all 


Language recognized by (DTM or NDTM)  is


Σ
Σ* Σ
L ⊆ Σ* Σ

σ ∈ Σ*

M cM : ℕ+ → ℕ+

cM(n) := max{m : ∃σ ∈ Σ* with  |σ | = n s.t. M takes m steps to halt on σ}

M ∃ p cM(n) ≤ p(n) n

M
LM := {σ ∈ Σ* : M halts on σ in "yes" state}



NP-hardness
P and NP
The class P of languages is 





Informally: P consists of all language over  that are recognized by a DTM in polynomial time


While P captures “solvability” of a problem, NP captures “verifiability”

• It is difficult (NP-complete) to find a cycle in an arbitrary graph that visits every node exactly once, but easy to verify if a 

candidate  is a solution


Given NDTM , time complexity function  :





 is called a polynomial time NDTM if  a polynomial  s.t.  for all 


The class NP of languages is 




Informally: NP consists of all language recognized by a NDTM (or verifiable by a DTM) in polynomial time

P := {L ⊆ Σ* : ∃ polynomial time DTM M for which L = LM}

Σ

M cM : ℕ+ → ℕ+

cM(n) := max{m : ∃σ ∈ Σ* with  |σ | = n s.t. M takes m steps to halt on σ in "yes" state}

M ∃ p cM(n) ≤ p(n) n

NP := {L ⊆ Σ* : ∃ polynomial time NDTM M for which L = LM} P  NP⊆



NP-hardness
NP-hard and NP-complete
A function  is a language 


DTM  computes  if 


A polynomial reduction from  to  is a function   which can be 
computed by a polynomial time DTM s.t. 





A language  is NP-hard if for every  there exists a polynomial reduction from  to 


It is NP-complete if  is NP-hard and 

• NP-complete languages are in a sense the “hardest” languages in NP


f : Σ*1 → Σ*2 Lj := {(σ, f(σ)) : σ ∈ Σ*1 } ⊆ Σ*1 × Σ*2
M f LM = Lf

L1 ⊆ Σ*1 L2 ⊆ Σ*2 f : Σ*1 → Σ*2

σ ∈ L1 ⟺ f(σ) ∈ L2, σ ∈ Σ1

L L′￼ ∈ NP L′￼ L

L L ∈ NP



NP-hardness
Decision problems
A decision problem is a problem whose solution is either “yes” or “no”


• It is defined by a set of finite instances, e.g. specified in terms of sets, graphs, functions, real numbers


Let  be a decision problem (or its instances) that can be “encoded” into a language problem 
over some alphabet 


• Informally, an encoding is   that maps each instance  to a string 


Let  be the subset of instances whose solutions are “yes” 

• We will refer to  either as a set of problem instances or simply a problem by itself


Let  be the language defined by instances in 

• Solution of instance  is “yes” if and only if  if and only if 


Hardness properties of  are then defined in terms of hardness properties of its encoding 

• e.g.  is in P if ,   is NP-complete if  is NP-complete

• OPF feasibility problem is such a decision problem

Π
Σ

σ : Π → Σ* y ∈ Π σ(y) ∈ Σ*

Y ⊆ Π
Y

LY := {σ(y) : y ∈ Y} Y
y ∈ Π y ∈ Y σ(y) ∈ LY

Y LY
Y LY ∈ P Y LY



NP-hardness
Theorem 

OPF feasibility problem on a tree network is NP-hard


Remarks:

• OPF feasibility is not proved to be in NP, because solution can be irrational

• Proved by polynomial reduction of NP-complete subset sum problem to OPF feasibility

• OPF feasibility can be proved to be strongly NP-hard by polynomial reduction of strongly NP-complete 

one-in-three 3SAT problem to OPF feasibility


NP-hardness is worst-case result

• Subclasses of OPF cane polynomial time solvable

• e.g., those satisfied sufficient conditions for exact relaxations or global optimaiity



Outline

1. Bus injection model


2. Branch flow model


3. NP-hardness


4. Global optimality

• Convex relaxation

• Lyapunov-lik condition for global optimality

• Application to OPF on radial network



Optimization and relaxation
Consider





•  : nonempty, compact (not necessarily convex)

•  : compact and convex superset 

•  is convex (and hence continuous) function on 


Optimal solutions exist for both problems P1 and P2


Nonconvex optimization P1: min
x

f(x) s.t. x ∈ X ⊆ ℝn

Convex relaxation P2: min
x

f(x) s.t. x ∈ X̂ ⊆ ℝn

X
X̂ X̂ ⊇ X
f : ℝn → ℝ ℝn

No spurious local optima
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

Convex relaxation:

!" : compact, convex, " ⊆ !" ⊆ $!
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instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

" : compact, nonconvex

% : continuous, convex
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(Potentially) non-convex optimization:

min
x

f (x)

s.t. x 2 X (O)

convex relaxation:

min
x

f (x)

s.t. x 2 X̂ (R)

Assumptions

• X ✓ X̂ ✓ Rn or Cn

• both X and X̂ are non-empty and compact (i.e., closed and bounded)

• X̂ is a convex set while X is generally not

• f is convex and continuous over X̂

Definition

Problem (R) is exact w.r.t. (O) i↵ any optimal point of (R) is feasible, and hence
globally optimal, for (O).
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Exact relaxation
Definition 

1.  is a local optimum of P1 if  s.t.  for all 


2.  is a global optimum of P1 if  for all 


3. P2 is exact wrt P1 if every optimal  of P2 is feasible (and hence optimal) for P1


x* ∈ X ∃δ > 0 f(x*) ≤ f(x) ∥x − x*∥ < δ

x* ∈ X f(x*) ≤ f(x) x ∈ X

x*

No spurious local optima

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2

instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

Convex relaxation:

!" : compact, convex, " ⊆ !" ⊆ $!

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2

instances which have no spurious local optima. In contrast,
many real-world non-convex problems do fall within such
intersection, either provably or empirically, and it is hard to
explain why those nice properties, though seemingly different,
sometimes occur simultaneously. Besides, most literature on
local optimality focus on the problems without constraints or
with tractable constraints. This is usually the case for problems
with the learning background. However, for problems arising
in cyber-physical systems, the constraints could include non-
convex functions enforced by physical laws, as we will see
in power systems. As a result, in general either the feasible
set is not a Riemannian manifold, or the Riemannian gradient
and Hessian are very hard to derive. Those questions motivate
us to study conditions, sufficient or necessary, for problems
to simultaneously have exact relaxation and no spurious local
optima. Those conditions can also help us to study the local
optimality from properties of its relaxation, instead of its
landscape.

Our conditions have two parts. The first part, which also
appeared in [18], is on the sufficient condition. Roughly speak-
ing, if for any relaxed point, there exists a path connecting it
to the non-convex feasible set and the path satisfies

• along the path the cost is non-increasing,
• along the path the ‘distance’ to the non-convex feasible

set is non-increasing,
then the problem must have exact relaxation and no spurious
local optima simultaneously. Here the ‘distance’ can be any
properly constructed function, as we will define later as a
Lyapunov-like function (Definition 10). The second part is on
the necessary condition, which says that if a problem does have
exact relaxation and no spurious local optima simultaneously,
then there must exist such Lyapunov-like function and paths
satisfying the requirements above. 1

Though Lyapunov-like functions and paths are guaranteed
to exist, for specific problems it could still be difficult to find
or construct them. We then derive certain rules to construct
the Lyapunov-like function and paths of a new problem from
primitives problems with known Lyapunov-like function and
paths. This process allows us to reuse and extend known
results as the problem changes and grows. Finally, we apply
the proposed approach to two specific problems, Optimal
Power Flow and low rank SDP. Our work proves the first
known condition (that can be checked a priori) for OPF
to have no spurious local optima, and it helps explain the
widespread empirical experience that local algorithms for OPF
problems often work extremely well.

C. Background for Power Systems
As one of the applications and main motivation of this work,

Optimal Power Flow (OPF) is a core problem studied in the
area of power systems. First proposed in [19], OPF is a class
of optimization problems that minimizes certain cost subject
to nonlinear physical laws and operational constraints. It is
known to be non-convex and NP-hard in its AC formulation
[9], [20], [21]. Therefore, there is no known efficient algorithm

1The necessary condition is based upon some stronger assumptions so the
second part is not the exact converse of the first part.

that can solve all the problem instances in polynomial time.
Traditional approaches to solve OPF are usually based on
local algorithms such as Newton-Raphson, see [22], [23], [24]
for examples. Over the past decade, techniques on convex
relaxation have also been introduced to solve OPF [25], [26].
A surprising empirical finding in the literature shows that
despite the non-convexity, both local algorithms and convex
relaxations can very often yield global optimum of the original
non-convex problem [25], [26], [9], [27]. In the recent years,
there have been considerable analytical works on the provable
conditions for the relaxation exactness, which are summarized
in the reviews [28], [29] and references therein. However, few
analytical results were known about the performance guarantee
of local algorithms. In this paper, we show that a known
sufficient condition for relaxation exactness is also sufficient
for local optima to be globally optimal. To the best of the
authors’ knowledge, this is the first analytical result of its kind,
and we hope that the approaches proposed in this paper can
help derive more sufficient conditions along this direction.

II. PRELIMINARIES

In this paper, we will use K to denote the set R of real
numbers or the set C of complex numbers. For any finite
interger n, Kn is a Banach space.

Consider a (potentially non-convex) optimization problem

minimize
x

f(x) (1a)

subject to x 2 X (1b)

and its convex relaxation

minimize
x

f(x) (2a)

subject to x 2 X̂ . (2b)

Here X is a nonempty compact subset of Kn, not necessarily
convex, while X̂ ✓ Kn is an arbitrary compact and convex
superset of X . The cost function f : X̂ ! R is convex and
continuous over X̂ . We do not require the relaxation X̂ to be
efficiently represented.

Definition 1. A point xlo
2 X is called a local optimum of

(1) if there exists a � > 0 such that f(xlo)  f(x) for all
x 2 X with kx� xlo

k < �.

Definition 2 (Strong Exactness). We say the relaxation (2) is
exact with respect to (1) if any optimal point of (2) is feasible,
and hence globally optimal, for (1).

Unless otherwise specified, we will always use the term
exact to refer to such strong exactness. Definition 2 implies
in particular that, if (2) is exact, then 8x̂ 2 X̂ \ X , f(x̂) >
minx2X̂

f(x).

Definition 3. A path in S ✓ Kn connecting point a to point
b is a continuous function h : [0, 1] ! S such that h(0) = a
and h(1) = b.

We may refer to a path by the corresponding function h in
the remainder of the paper.

Lemma 1. The following are equivalent:

" : compact, nonconvex

% : continuous, convex
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Setup and Preliminaries

(Potentially) non-convex optimization:

min
x

f (x)

s.t. x 2 X (O)

convex relaxation:

min
x

f (x)

s.t. x 2 X̂ (R)

Assumptions

• X ✓ X̂ ✓ Rn or Cn

• both X and X̂ are non-empty and compact (i.e., closed and bounded)

• X̂ is a convex set while X is generally not

• f is convex and continuous over X̂

Definition

Problem (R) is exact w.r.t. (O) i↵ any optimal point of (R) is feasible, and hence
globally optimal, for (O).
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Path
Definition 

1. A path in  connecting  to be  in  is a continuous function 
  s.t.  and 


2. An arbitrary set  of paths in  is called


• uniformly bounded if  finite  s.t.  for all  
and 


• uniformly equicontinuous if for any ,   s.t. 
 for all  whenever 


Example: If all paths in  are linear, then  is both 
uniformly bounded and uniformly equicontinuous

Y ⊆ ℝn a b Y
h : [0,1] → Y h(0) = a h(1) = b

{hi : i ∈ I} Y

∃ H ∥hi(t)∥∞ ≤ H t ∈ [0,1]
i ∈ I

ϵ > 0 ∃ δ > 0
∥hi(t2) − hi(t1)∥∞ ≤ ϵ i ∈ I | t2 − t1 | < δ

{hi : i ∈ I} {hi : i ∈ I}

No spurious local optima

Definition: A path from ! ∈ #$ ∖ $ to $ is a continuous 
function ℎ!: 0,1 → #$ such that ℎ! 0 = ! and ℎ! 1 ∈ $

Lemma [Zhou 2022]
(2) is exact ⟺ ∀# ∈ %& ∖ & there is a path ℎ! from # to & such that 

• ! ℎ!($) nonincreasing in $
• ! ℎ!(1) < ! ℎ!(0)



Lyapunov-like function
Definition 

A Lyapunov-like function associated with problems P1 and P2 is a continuous function 
  s.t.  if   and   if V : X̂ → ℝ+ V(x) = 0 x ∈ X V(x) > 0 x ∈ X̂∖X

No spurious local optima

Definition: A Lyapunov-like function is a continuous 
function !: #$ → ℝ! such that 

! ' (= 0 ' ∈ $
> 0 ' ∈ #$ ∖ $
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Definition

A Lyapunov-like function associated with (O) and (R) is a continuous function
V : X̂ ! R such that V (x) = 0 for x 2 X and V (x) > 0 for x 2 X̂ \ X .

Matlab logo: https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
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Global optimality
Optimality conditions
1. There is a Lyapunov-like function  and, for every infeasible point ,  path  s.t.


(a) 


(b) Both  and  are nonincreasing for 


2. The set  of paths in 1 is uniformly bounded and uniformly equicontinuous


3. At least one of the following holds:


(d) All local optima of P1 are isolated (i.e., every local optimum has a neighborhood with no other 
local optimum)


(e) For  in 1,  s.t. for all  and all ,





for some norm 

V x ∈ X̂∖X ∃ hx

hx(0) = x, hx(1) ∈ X, f(hx(1)) < f(x)

f(hx(t)) V(hx(t)) t ∈ [0,1]

{hx : x ∈ X̂∖x}

{hx : x ∈ X̂∖x} ∃α > 0 x ∈ X̂∖X 0 ≤ s < t ≤ 1

f(hx(s)) − f(hx(t)) ≥ α∥hx(s) − hx(t)∥

∥ ⋅ ∥

Every infeasible pt  can be brought 

back to  with a lower cost

x
X

Nonincreasing cost or certificate 

along path to feasibility

Cost must decrease sufficiently

along path to feasibility



Global optimality
Theorem [Sufficiency]  

Suppose conditions 1, 2, 3 hold.  


1. The convex relaxation P2 is exact wrt P1


2. Every local optimum of P1 is a global optimum


Moreover if condition 3(a) holds, then the optimal point is unique


Remarks


• Exactness    existence of  that satisfies condition 1

• Other conditions are to prove that there is no spurious local optimum

⟺ {hx : x ∈ X̂∖x}



Global optimality

A set  is semianalytic if every  has a neighborhood  s.t.  can be 
represented as a finite Boolean combination of sets  and  for 
some analytic functions  (usually satisfied by engineering problems)


Theorem [Necessity]  

Suppose  is semianalytic and  is analytic. If 


1. The convex relaxation P2 is exact wrt P1, and


2. Every local optimum of P1 is a global optimum


then  Lyapunov-like function  and a family of paths  that satisfy cond 1 and 2

y ⊆ ℝn x ∈ ℝn U Y ∩ U
{x : g(x) = 0} {x : h(x) < 0}

g, h

X f

∃ V {hx : x ∈ X̂∖x}

No spurious local optima

Conditions: ∃ paths ℎ!: $ ∈ &' ∖ ' and a Lyapunov-like
function ) such that 

n C1: both ! ℎ!($) and & ℎ!($) are non-increasing for $ ∈ 0, 1 , and 
! ℎ!(0) > ! ℎ!(1)

n C2: ℎ!: - ∈ ./ ∖ / is uniformly bounded and uniformly equicontinuous

n C3: ∃ 2 > 0 such that 
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Lemma 3. If (1) is exact with respect to (2) and (1) has no
genuine local optima, then the feasible set of (1) is connected.

Proof. If X is not connected, then by definition X can be
partitioned into two disjoint non-empty closed sets X1 and X2

with X = X1[X2, which are hence both compact. Further we
let xi be any global optimum of minx2Xi f(x) for i = 1, 2.
Clearly x1 6= x2 and they are both local optima of (1).

If f(x1) = f(x2), then any convex combination of x1,
x2 must be a global optimum to (2). Since there is no path
in X that connects x1 and x2, there must be some convex
combination that is outside X . This contradicts the exactness
of relaxation.

If f(x1) 6= f(x2), without loss of generality we assume
f(x1) < f(x2), i.e., x2 is not a global optimum of (1). But
x2 is not a pseudo local optimum of (1) either, contradicting
Theorem 1. To see this, note that any point x0

2 X which is
connected to x2 via a path in X must also be a point in X2

and if f(x0) = f(x2) then x0 must be a local optimum of (1)
as well.

Corollary 2. Condition (C) implies that the feasible set of (1)
is connected.

Now we are in a good position to discuss some conditions
that rule out pseudo local optima and therefore guarantee that
any local optimum must be a global optimum.

Corollary 3. If all local optima of (1) are isolated, then
Condition (C) implies that any local optimum of (1) is a global
optimum.

Here, local optima being isolated means any local optimum
of (1) has an open neighborhood which contains no other local
optimum. The proof is straightforward as by definition isolated
local optimum could not be pseudo local optimum. In fact, in
this case the optimum can be proved to be also unique.

Another way to eliminate pseudo local optima is by
strengthening the monotonicity of f(hx(t)) in Condition (C).
Consider the following condition which is slightly stronger
than (C).

(C’) Condition (C) holds, and there exists k > 0 such that
8x 2 X̂ \ X , 80  t < s  1 we have

f(hx(t))� f(hx(s)) � kkhx(t)� hx(s)k. (3)

In Condition (C’), k · k could be any norm on Kn. As a
caveat, `0-“norm” is not allowed here as it is not a norm
since it does not satisfy k↵xk = |↵|kxk. Note that Condition
(C) already implies f(hx(t)) � f(hx(s)) � 0, while (C’)
strengthens this condition by enforcing a positive lower bound
depending on hx.

Theorem 2. If (C’) holds, then any local optimum of (1) must
be a global optimum.

Proof. Following the proof of Theorem 1, suppose x 2 X is a
local but not global optimum for (1). Then we have x = `(t†)
and could obtain a limit point of the sequence hm, denoted as
h. Since both sides of (3) are continuous in hm(t) and hm(s),

and the limits of hm(t) and hm(s) are h(t) and h(s), we must
have whenever h(t) 6= h(s),

f(h(t))� f(h(s)) � kkh(t)� h(s)k > 0.

Taking t = 0 we can conclude that h(0) (which is the same
point as x) is not a local optimum of (1).

IV. NECESSARY CONDITIONS

In this section we will study the necessary conditions for a
non-convex problem to have exact relaxation and no spurious
local optima simultaneously. It turns out the results are not
exactly the converses of Theorem 1 or Theorem 2, but in a
slightly weaker sense. Specifically, we show that if a non-
convex problem is known to have exact relaxation and no
spurious local optima simultaneously, then the Lyapunov-like
function and paths satisfying Condition (C) are guaranteed to
exist. However, it still may or may not be easy to find those
functions or paths in practice for a specific problem.

A. Results
Assumption 1. The feasible set X is semianalytic and the
cost function f is analytic.

We refer to [31] for more detailed definitions and properties
of semianalytic sets. This assumption is not restrictive for most
of the engineering problems. If K is chosen as C, then we
suggest to view all the complex functions as functions of real
variables by separating the real and imaginary parts, and the
space of Cn can be viewed as a shorthand for R2n in this
section.

Theorem 3 (necessary condition). If (2) is exact to (1) and
any local optimum of (1) is also globally optimal, then there
always exists a Lyapunov-like function V and a corresponding
family of paths {hx}x2X̂\X

satisfying (C1) and (C2).

Remark 3. Note that Theorem 3 is NOT the converse of The-
orem 1 in the very precise sense. There are a few differences
in their settings.

• Theorem 1 allows pseudo local optimum (in the conclu-
sion) of the theorem, while Theorem 3 disallows it (in the
premise).

• Theorem 3 relies on Assumption 1 while Theorem 1 does
not.

B. Proof Setup
In the rest of the section, we will prove Theorem 3.

From now on, we assume (2) is exact to (1) and any local
optimum of (1) is also globally optimal. We first have the
following definition and lemmas, which are the main reasons
we introduced Assumption 1.

Definition 11 (Whitney regularity [31], [32], [33]). For a
compact set U ⇢ Kn and a positive integer p, we say U

is p-regular if there exists C > 0 such that 8x, y 2 U ,
x, y can be joined by a rectifiable curve h in U satisfying
L(h)  Ckx� yk1/p.
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Lyapunov-like optimality condition
Comparison with Lyapunov stability
Consider the dynamical system





Let  be an equilibrium point where 


Lyapunov stability theory 
1. Lyapunov function  is a continuously differentiable function s.t.  and  

for all  in 


2.  certifies stability of  :  is globally asymptotically stable if a Lyapunov function  exists


Lapunov-like optimality condition 
1.  certifies global optimality of a local optimum 


2. No dynamics to specify path : no requirement on differentiability of , but


3. Need to construct both  and paths  (no general method known)

·x = f(x(t)), t ≥ 0, x(0) = x0

x* f(x*) = 0

V(x) V(x) > V(x*) ·V(x) < 0
x ≠ x* ℝn

V x* x* V(x)

V x* ∈ X
V

V {hx : x ∈ X̂∖x}



Application to OPF
Recall: OPF in DistFlow model
DistFlow equations (radial network):





Operational constraints:





Feasible set


∑
k:j→k

Sjk = Sij − zs
ijℓij + sj, j ∈ N

vj − vk = 2 Re (z̄s
jkSjk) − |zs

jk |2 ℓjk, j → k ∈ E

vjℓjk = |Sjk |2 , j → k ∈ E

smin
j ≤ sj ≤ smax

j , vmin
j ≤ vj ≤ vmax

j , ℓjk ≤ ℓmax
jk

X := {x := (s, v, ℓ, S) ∈ ℝ6N+3 | x satisfies DistFlow equations & operational constraints}

Nonconvex constraint



Application to OPF
Convex relaxation
Replace 





by




Convex superset




Consider


vjℓjk = |Sjk |2 , j → k ∈ E

vjℓjk ≥ |Sjk |2 , j → k ∈ E

X̂ := {x : x satisfies constraints with SOC replacement}

Nonconvex optimization P1: min
x

f(x) s.t. x ∈ X ⊆ ℝn

Convex relaxation P2: min
x

f(x) s.t. x ∈ X̂ ⊆ ℝn

Convex second-order cone (SOC) constraint



Optimality conditions

4.  is nonempty compact,  is compact, cost function  is convex and continuous


5. Cost function  is independent of , continuously differentiable 

with .  Moreover  s.t.  for all  and all  


6. No lower bounds on injections: 


7.   and  line limit satisfies 


Remarks

• Differentiability is not necessary and can be replaced by subgradient (which always exist since 

 is convex)

X X̂ f

f(x) = f(p, q, v, ℓ) S = (P, Q)
∇f(x) ≥ 0 ∃c > 0

∂f
∂ℓl

(x) ≥ 0 l ∈ E x ∈ X̂

smin
j = − ∞ − i∞

zjk =: (rjk, xjk) > 0 |zjk |2 ℓmax ≤ vmin
j

f

strongly inc. in ℓ

usually satisfied

demand large enough not to pose constraints

OPF in DistFlow model



Global optimality

Theorem 

Suppose conditions 4-7 hold on radial network.

1. Convex relaxation P2 is exact wrt P1

2. Every local optimum of P1 is a global optimum


Remarks

• Exactness is proved in Ch 11 on Semidefinite relaxations of OPF in BFM

OPF in DistFlow model



Global optimality

Proof requires construction of Lyapunov-like function  and family of paths 


Lyapunov-like function:





•  for all , with “=“ iff 


V {hx : x ∈ X̂∖x}

V(x) := ∑
j→k∈E

(vjℓjk − |Sjk |2 )
V(x) ≥ 0 x ∈ X̂ x ∈ X

Construction: V



Global optimality
Define quadratic function





Define positive root of  if ,  or  otherwise


For infeasible pt , define path   for :


ϕjk(a) :=
|zjk |2

4
a2 + (vj − Re (z̄jkSjk)) a + ( |Sjk |2 − vjℓjk)

Δjk := ϕjk(a) = 0 vjℓjk > |Sjk |2 Δjk := 0

x ∈ X̂∖X hx(t) := (s̃(t), ṽ(t), ℓ̃(t), S̃(t)) = x − tAΔ(x) t ∈ [0,1]

s̃j(t) := sj −
t
2 ∑

i:i→j

zijΔij −
t
2 ∑

k:j→k

zjkΔjk, j ∈ N

ṽj(t) := vj, j ∈ N

ℓ̃jk(t) := ℓjk − tΔjk, j → k ∈ E

S̃jk(t) := Sjk −
t
2

zjkΔjk, j → k ∈ E

Construction: hx



Global optimality

Prove the Lyapunov-like function  and family of paths  defined above satisfy 
conditions 1, 2, 3

V {hx : x ∈ X̂∖x}

Proof idea


