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ABSTRACT
The congestion control mechanism has been responsible for maintaining stability as the

Internet scaled up in size, speed, traffic volume, coverage, and complexity by many orders

of magnitude over the last three decades. In this book we develop a coherent theory of

congestion control from the ground up to help understand and design these algorithms.

We model network traffic as fluids that flow from sources to destinations and model con-

gestion control algorithms as feedback dynamical systems. We show that the model is well

defined, characterize its equilibrium points, and prove their stability. We will use several

real protocols for illustration but the emphasis will be on various mathematical techniques

for algorithm analysis.

Specifically we are interested in four questions:

1. How to model congestion control algorithms?

2. Are the models well defined?

3. How to characterize the equilibrium points of a congestion control model?

4. How to analyze the stability of these equilibrium points?

For each topic we first present analytical tools, from convex optimization, to control and

dynamical systems, Lyapunov and Nyquist stability theorems, and to projection and con-

traction theorems. We then apply these basic tools to congestion control algorithms and

prove rigorously their equilibrium and stability properties. A notable feature of this book is

the careful treatment of projected dynamics that introduces discontinuity in our differential

equations.

Even though our development is carried out in the context of congestion control, the

set of system theoretic tools employed and the process of understanding a physical system,

building mathematical models, and analyzing these models for insights have a much wider

applicability than to congestion control.

KEYWORDS
Communication networks, congestion control, projected dynamics, convex opti-

mization, network utility maximization, Lyapunov stability, passivity, gradient

projection algorithm, contraction mapping, Nyquist stability
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Preface

PURPOSES OF BOOK

The congestion control mechanism has been responsible for maintaining stability as the

Internet scaled up in size, speed, traffic volume, coverage, and complexity by many orders

of magnitude over the last three decades. Our primary goal is to develop a coherent the-

ory of Internet congestion control from the ground up to help understand and design the

equilibrium and stability properties of large-scale networks under end-to-end control.

In addition, we have two broader purposes in mind. First we wish to introduce a

set of system theoretic tools and illustrate their application to concrete problems. Second

we wish to demonstrate in depth the entire process of understanding a physical system,

building mathematical models of the system, analyzing the models, exploring the practical

implications of the analysis, and using the insights to improve a design. Even though our

development is carried out in the context of congestion control, these basic analytical tools

and the research process are much more broadly applicable.

The Internet, called ARPANet at the time, was born in 1969 with four nodes. The

Transmission Control Protocol (TCP) was published by Vinton Cert and Robert Kahn in

1974 [14], split into TCP/IP (Transmission Control Protocol/Internet Protocol) in 1978,

and deployed as a standard on the ARPANet by 1983. An Internet congestion collapse was

detected in October 1986 on a 32 kbps link between the University of California Berkeley

campus and the Lawrence Berkeley National Laboratory that is 400 yards away, during

which the throughput dropped by a factor of almost 1,000 to 40 bps. Two years later Van

Jacobson implemented and published the congestion control algorithm in the Tahoe version

of TCP [26] based on an idea of Raj Jain, K.K. Ramakrishnan and Dah-Ming Chiu [27]. Be-

fore Tahoe, there were mechanisms in TCP to prevent senders from overwhelming receivers,

but no effective mechanism to prevent the senders from overwhelming the network. This

was not an issue because there were few hosts, until the mid-1980s. By November 1986 the

number of hosts was estimated to have grown to 5,089 [1], but most of the backbone links

have remained 50 – 56 bps (bits per second) since the beginning of the ARPANet. Jacob-

son’s scheme adapts sending rates to the congestion level in the network, thus preventing

the senders from overwhelming the network.

Jacobson anticipated even in his original paper [26] the network environments in

which his algorithm will perform poorly: “... TCP spans a range from 800 Mbps Cray

channels to 1200 bps packet radio links.” The algorithm worked very well over a network

with relatively low transmission capacity, small delay, and few random packet losses. This

was mostly the case in the 1990s, but as the network speed underwent rapid upgrades
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(see Figure 1), as Internet exploded onto the global scene beyond research and education,
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Figure 1: Highest link speed of US Department of Energy’s Energy Sciences Network (ESnet)

from 1987 (56 kbps) to 2012 (100Gbps) [2].

and as wireless infrastructure was integrated with and mobile services proliferated on the

Internet, the strain on the original design started to show. This motivated a flurry of

research activities on TCP congestion control in the 1990s. A mathematical understanding

of Internet congestion control started in the late 1990s with Frank Kelly’s work on network

utility maximization [28]. An intensive effort ensued and lasted for a decade to develop a

theory to reverse engineer existing algorithms and understand structural properties of large-

scale networks under end-to-end congestion control, systematically design new algorithms

based on analytical insights, and deploy some of these innovations in the field.

This book is a personal account of that effort, focusing on the theory development.

SUMMARY

We start in Chapter 1 with a summary of classical Internet congestion control protocols.

We explain how to model them as dynamical systems using ordinary differential equations:

ẋ = f(x(t), q(t)), q(t) = RT p(t)

ṗ = g(y(t), p(t)), y(t) = Rx(t)

and its variants, where x(t), q(t) ∈ RN , p(t), y(t) ∈ RL, and R ∈ {0, 1}L×N for a network

with N nodes and L links. The graph structure is described by the routing matrix R. The

decentralized nature of the system manifests itself in the structure of f and g:

ẋi = fi(xi(t), qi(t)), qi(t) =
∑
l

Rlipl(t)

ṗl = gl(yl(t), pl(t)), yl(t) =
∑
i

Rlixi(t)
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i.e., each node i (link l) updates its state xi(t) (pl(t)) based only on local variables

(xi(t), qi(t)) (yl(t), pl(t)). We prove the existence and uniqueness of solution trajectories

to these equations. This ensures that the models are well defined. This class of network

models is more general than congestion control and therefore the techniques developed

here may be of wider applicability.

We prove in Chapter 2 that the equilibrium point of an arbitrary network under

congestion control is the unique optimal solution of a simple convex optimization problem,

called network utility maximization. Hence we can interpret congestion control as a dis-

tributed algorithm carried out by traffic sources and network resources to maximize utility

over the Internet in real time. We explain several implications of this insight.

We present in Chapters 3 through 5 three different methods to study the global

asymptotic stability of the equilibrium point, assuming there is no feedback delay. These

methods are based on Lyapunov stability theorems, passivity theorems, gradient descent

and contraction mapping theorems. The Lyapunov method is the basic tool for proving

stability of general nonlinear systems. The passivity method allows one to analyze the

stability of an interconnection of multiple dynamical systems in terms of the passivity

of the component systems in open loop. The last method treats congestion control as a

gradient algorithm for solving the dual of the network utility maximization.

Finally we describe in Chapter 6 the Nyquist stability method for analyzing local

stability around the equilibrium point in the presence of feedback delay.

There is a large literature on congestion control and we have not attempted to pro-

vide a survey. Pointers are provided at the end of each chapter only to some papers that

are directly related to or extend materials covered in that chapter. We present proofs for

some, but not all, of these classical results to illustrate techniques or concepts that we find

particularly useful.

Many applications, including congestion control, can be modeled by a system of

nonlinear differential equations of the form:

ẋ = (f(x(t))
+
x(t)

where the projection operation (·)+(·) on the right-hand side ensures that the state variable

x(t) remains nonnegative. For example x(t) may represent the sending rates of traffic sources

or the prices of an economy. The projection introduces discontinuity to the vector field, even

when f itself is continuous, and complicates analysis. Analytical models often ignore pro-

jection even though nonnegative dynamics is prevalent in reality. A notable feature of this

book is the careful treatment of the projected dynamics. In particular we include detailed

proofs that extend standard results on the existence, uniqueness, equilibrium and stabil-

ity properties of smooth unprojected systems to discontinuous projected systems. Some of

the stability proofs for congestion control algorithms modeled by projected dynamics in

Chapters 3 and 4 are new. As we will see projection mostly preserves these properties.
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Lund University in Sweden with my extended family. That was a memorable summer! It

was also when my research switched from Internet to power systems, so writing again went

onto the backburner after the first draft at Lund. Major revisions were done during the

summer of 2015 when I visited Janusz Bialek at Skoltech in Russia to give a short course on

analytical methods for Internet and power systems, and during spring 2016 when I visited

Jiming Chen, Youxian Sun and Zaiyue Yang at Zhejiang University in China. I thank the

tremendous encouragement and patience of Jean Walrand and the gentle prodding of the

publisher Michael Morgan over more than a decade. It’s a relief to have paid my debt. I

also thank the warm hospitality of my hosts at Lund University, Skoltech, and Zhejiang

University.

This book is a product of our FAST project at Caltech from 2000–2007 and I have

learnt a lot from my collaborators, especially John Doyle, Harvey Newman, and Fernando

Paganini, and from the first generation of Netlab members, including Lachlan Andrew,

Lijun Chen, Cheng Jin, George Lee, Lun Li, Mortada Mehyar, Christine Ortega, A. Kevin

Tang, Jiantao Wang, David Wei, Bartek Wydrowski. I thank the US National Science

Foundation (especially Darleen Fisher), Army Research Office, Air Force Office of Scientific

Research, Cisco, and Caltech’s Lee Center for Advanced Networking for their generous

financial support. Some of us took the effort to deploy our research in the real world

through a startup FastSoft. Since 2014, FastTCP has been accelerating more than 1TB of

Internet traffic every second. I experienced first hand the thrill and the challenge in crossing

the gap from theory to practice and I thank my colleagues and supporters at FastSoft.

Linqi Guo has worked through the entire draft carefully and corrected numerous

errors. I thank him for his meticulous reading and helpful suggestions. Teaching assistants

of my networking course (cs/ee 143) at Caltech have contributed some of the exercises,

especially Lingwen Gan, Ben Yuan, and Changhong Zhao.

Finally I thank my family, Jenny, Zhi, Zhiyou, my parents and my sister’s family for

their unwavering support and trust.

S. H. Low

Pasadena, CA, June 2017



CONTENTS i

NOTATIONS

We collect some of the notational conventions in this book.

Let Rn, n ≥ 1, be the set of n-dimensional real vectors, Rn+ the set of n-dimensional

nonnegative real vectors, and Rn×m the set of n×m real matrices. If x is a vector or matrix

then xT denotes its transpose. By default a vector x is taken to be a column vector and

can be specified as either

x =

x1...
xn

 or x = (x1, . . . , xn) or x = (xi, i = 1, . . . , n)

Inequalities are taken componentwise, i.e., x ≥ 0 (x > 0) means xi ≥ 0 (xi > 0) for i =

1, . . . , n. If xi ∈ Rni , i = 1, . . . , k, are defined then, unless otherwise specified, x denotes

the vector x := (xi, i = 1, . . . , k) with dimension n :=
∑
i ni. Conversely if a vector x is

defined then xi denotes its ith component in Rni . Similarly for functions fi : Rki → Rmi ,
i = 1, . . . , n, and f := (fi, i = 1, . . . , n) : RK → RM where K :=

∑
i ki and M :=

∑
imi.

For a scalar function f : Rn → R, ∂f
∂x is the row vector and ∇f(x) is the column

vector, both with components ∂f
∂xi

. For a vector function f : Rn → Rn, ∂f
∂x is the n× n

Jacobian matrix defined by [
∂f

∂x

]
ij

:=
∂fi
∂xj

Given a set of utility functions Ui(xi) : R→ R, i = 1, . . . , N , U ′i(xi) denote their derivatives.

We sometimes use U : RN → R to denote the sum U(x) :=
∑
i Ui(xi). Since U is separable

in xi we use U ′(x) to denote the vector U ′(x) := (U ′i(xi), i = 1, . . . , N).

For a scalar a ∈ R, (a)+ := max{a, 0}; for a vector a, (a)+ is defined componentwise,

i.e.,

(a)+ :=
(
[ai]

+, ∀i
)

For scalars a, b ∈ R

(a)+b :=

{
a if a > 0 or b > 0

0 otherwise

If a, b ∈ Rn are vectors of the same dimension then (a)+b is defined componentwise, i.e.,[
(a)+b

]
i

:= (ai)
+
bi

∀i

We use ‖ · ‖ to denote an arbitrary norm and ‖x‖2 :=
√∑

i x
2
i the Euclidean norm.

Bδ(x
∗) := {x|‖x− x∗‖ ≤ δ} is a closed ball around x∗ in Rn unless otherwise specified.

A ⊆ B means A is a subset of B and A ⊂ B means A is a strict subset of B. Given

ai, i = 1, . . . , n, diag(ai, i = 1, . . . , n) denotes the diagonal matrix with ai as its ith diagonal

entry.
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C H A P T E R 1

Congestion control models

We consider a network under end-to-end congestion control as a deterministic feedback

dynamical system described by a set of ordinary differential equations (ODEs). In Chapter

1.1 we present a simple model that treats data packets in the network as fluids that flow from

their sources to their destinations. In Chapter 1.2 we describe classical Internet congestion

control protocols. In Chapter 1.3 we illustrate how to model these protocols as feedback

dynamical systems. In Chapter 1.4 we present general ODE models of congestion control

algorithms and discuss limitations and extensions of these models. In Chapter 1.5 we discuss

conditions that guarantee the existence and uniqueness of the solution to an ODE model.

Finally we show that these conditions are satisfied by the ODE models of congestion control,

ensuring that these models are well defined.

1.1 NETWORK MODEL

A network is an interconnected set of computing, storage, or communication resources

shared by competing users. For our purposes, a user is typically not a human, but a traffic

flow from a source to a destination through a subset of these resources. A computing or

communication resource is characterized by how fast it can process or transmit information,

in units of bits per second or packets per second. A storage resource queues up packets while

they wait to be processed or transmitted. We will model each resource abstractly as a “link”

that consists of a single server with a buffer (waiting space); see Figure 1.1(a). We often

assume that the buffer capacity is infinite. We will call the users “sources” or “flows”.

Formally, a network is a set of L links with finite capacities c = (cl, l ∈ L) in packets

per second (pps). They are shared by a set of N sources. We abuse notation and use L and

N to both denote sets and their cardinalities. Each source i uses a set Li ⊆ L of links. The

sets Li define an L×N routing matrix R with entries:

Rli =

{
1 if l ∈ Li
0 otherwise

We refer to the set Li of links as source i’s path.

Each source i adapts its transmission rate xi(t) at time t, in pps, according to an

algorithm based on some measure of congestion locally observed at source i. This local

measure of congestion, denoted by qi(t) at time t, summarizes the congestion information

on the path of source i. Each link l adapts, implicitly or explicitly, a congestion measure
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cl yl(t) 

pl(t) 

link%l 

(a) Link model

c1, p1(t) 

x3(t), 

c2, p2(t) 

x1(t) x2(t) 

y1(t) = x1(t) + x3(t) 

q3(t) = p1(t) + p2(t) 

(b) Network model

Figure 1.1: (a) A link is modeled as a fluid queue with link capacity cl, infinite buffer size,

input rate yl(t) at time t, and a congestion price pl(t) at time t. (b) A network is modeled as a

collection of links l shared by a set of sources i with sending rates xi(t) at time t. The routing

matrix in this example is R =

[
1 0 1

0 1 1

]
. Source i observes the sum qi(t) =

∑
lRlipl(t) of link

prices in its path and link l observes the aggregate rate yl(t) =
∑
iRlixi(t) from sources sharing

the link.
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pl(t) at time t in response to the aggregate input traffic rate yl(t) locally at link l. Due to

its economic interpretation, we call pl(t) the congestion price at link l or the link price.

We will model below the source algorithms that update the source rates xi(t) and

link algorithms that update link prices pl(t) by a set of differential and algebraic equations.

These local algorithms are interconnected by the routing matrix R that aggregates the link

prices pl(t) on the path of source i into a scalar price qi(t) observed at source i:

qi(t) :=
∑
l

Rlipl(t), i ∈ N

The routing matrix R also aggregates the source rates xi(t) of flows i that traverse link l

into an aggregate flow rate yl(t) at link l:

yl(t) :=
∑
i

Rlixi(t), l ∈ L

These definitions are illustrated in Figure 1.1(b).

1.2 CLASSICAL TCP/AQM PROTOCOLS

To model the algorithms adapting the source rates and link prices, we start by summarizing

the basic mechanism of window-based congestion control. We then describe several classical

congestion control protocols. In the next section we will present mathematical models of

these algorithms.

1.2.1 WINDOW-BASED CONGESTION CONTROL

Transmission Control Protocol (TCP) is one of the transport layer protocols on the Internet

(the other being User Datagram Protocol (UDP)). It provides a reliable bit stream end-

to-end from a source to a destination over an unreliable datagram service provided by

the Internet Protocol (IP) layer. It hides bit errors, packet losses and reordering in the

underlying network and delivers to the destination a bit stream that is free of error, loss or

duplicate, in the same order it has been sent by the source. A TCP connection operates in

three phases. In phase one a virtual circuit is set up between two end points. In phase two

they exchange data and acknowledgment packets. Both end points can send data packets,

and receive acknowledgments, regardless of which of them initiated the connection. In

phase three, the connection is terminated; either end point can initiate the termination. An

application that exchanges a large amount of data, e.g., video streaming, usually spends

most of its time in phase two. Congestion control is used in phase two to regulate the

sending rate of a sender. This is achieved through a window mechanism, as we now explain.

Consider a sender that wishes to send a large data file, e.g. a video server transferring

a movie to a subscriber. The movie is broken into small chunks and control information is

added to each chunk to form a packet. Examples of control information include sender and
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receiver information (IP addresses and TCP port numbers), control bits for error detection,

sequence number to detect packet loss and to enable the assembly of the original movie at

the destination from received packets. These packets are numbered consecutively and then

sent into the network one by one from the source towards the destination.1 An idealized

operation is illustrated in Figure 1.2. When a packet is correctly received at the destination

RTT%

-me%

-me%

source%

des-na-on%

1% 2% W%

1% 2% W%

1% 2% W%

data% ACKs%

1% 2% W%

t0 t1 

t1+Δt 

t0+RTT%

Figure 1.2: Window control mechanism (idealized). Packets are numbered 1, 2, .... W is the

window size. In the first cycle, the transmission of packet 1 starts at time t0 and finishes at

t0 + ∆t. The first bit of packet 1 is received at t1 and the last bit at t1 + ∆t. Immediately

packet 2 starts to be transmitted at time t0 + ∆ and received at time t1 + ∆. The ACK for

packet 1 is sent at t1 + ∆ and received at the sender at time t0+RTT. The cycle then repeats.

an ACK is sent from the destination towards the source. Figure 1.2 assumes an ACK packet

has a negligible size compared with a data packet and incurs zero transmission time.2 The

time between sending of a data packet and the arrival of its ACK at the source is called

the round-trip time (RTT). If a packet is lost in the network or incurs an excessive delay,

the source will not receive its ACK in time and will retransmit the packet after a timeout.

This is the basic mechanism to compensate for bit errors and packet losses.

If the original packet was not lost but only delayed, the receiver will receive duplicate

packets. The sequence number in the packet will indicate that the packet is a duplicate

1TCP is actually a “byte stream” where a packet is identified by the byte numbers the packet
contains. This works in the face of packet fragmentation, but it is simpler for our purpose to
think of packets being numbered by consecutive integers.

2If both end points send and receive data packets (two-way transfer) then each end point can
piggybak its ACK in the data packet it sends to the other end. The header of a TCP packet
contains both the field sequence number that indexes the data packet an end point originates
and the field ack number that acknowledges the data packet it has received from the other
end.
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and will be discarded. The receiver will send an ACK for each duplicate packet in case the

duplicate packets were sent because their ACKs were lost. Duplicate ACKs at the sender

will be discarded.

As shown in Figure 1.2, a source keeps a variable called window size W that deter-

mines the maximum number of outstanding packets that are allowed to be transmitted but

not yet acknowledged. When the window size is exhausted (i.e., the number of outstand-

ing packets reaches W ), the source must wait for an ACK before sending a new packet.

The new packet can be sent only after the next ACK arrives correctly. In reality packets

may incur bit errors, they can be dropped in the network, the RTTs can be random and

packets may arrive at the destination out of order. Figure 1.2 ignores these complications

and depicts an idealized scenario where all packets are of the same size and arrive at the

destination correctly with constant RTT. In this idealized scenario the data transfer process

is deterministic and periodic where exactly W packets are sent and acknowledged in each

RTT. Moreover, in each RTT, the sender sends packets 1, 2, . . . ,W back-to-back, waits for

their ACKs to return, and these ACKs trigger the next batch of W packets in the next

RTT, and the cycle repeats.

Two features are important for our purpose. The first is the “self-clocking” feature

that automatically slows down the source when a network becomes congested and ACKs

are delayed. The second is that the window size controls the source sending rate: roughly

W packets are sent every RTT (see Figure 1.2). Before Jacobson’s proposal in 1988 the

window size W was fixed by each TCP connection and the self-clocking feature was the

only congestion control mechanism on the Internet. Jacobson’s idea is to dynamically adapt

W to network congestion.

By a congestion control algorithm we mean an algorithm that infers congestion and

adjusts W during phase two of a TCP connection. Since data transfer can be in both

directions such an algorithm can be executed in both directions. We will however fix the

direction of a TCP connection in our mathematical model so we do not take into account the

interaction of data transfers in both directions between the same pair of end points. Even

though TCP congestion control is source-based, a congestion control algorithm actually

involves two components: a source algorithm that dynamically adjusts sending rate (or

window size) in response to congestion in its path, and a link algorithm that updates,

implicitly or explicitly, a congestion measure and sends it back, implicitly or explicitly, to

sources that use that link.

On the current Internet, the source algorithm is carried out by TCP, and the link

algorithm is carried out by (active) queue management (AQM) schemes such as DropTail

or RED in e.g. routers. Different protocols use different metrics to measure congestion,

e.g. as we will see below, TCP Reno and its variants use loss probability as a congestion

measure, and TCP Vegas and FAST use queueing delay as a congestion measure. Both are

implicitly updated at the links and implicitly fed back through end-to-end loss or delay
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measurements at the sources. The equilibrium and dynamics of the network depend on the

TCP/AQM protocol pair.

We now summarize some of the classical TCP protocols (Section 1.2.2) and AQM

protocols (Section 1.2.3). We then derive mathematical models of these protocols in Section

1.3. These models will be used in the rest of the book to illustrate various methods to analyze

congestion control algorithms.

1.2.2 TCP ALGORITHMS

TCP Tahoe and Reno

The first congestion control algorithm on the Internet was implemented by Jacobson in

Tahoe (1988) and Reno (1990) versions of TCP. The window adjustment algorithm is

based on an idea of Jain, Ramakrishnan and Chiu that a source should gently probe the

network for spare capacity by linearly increasing its window and exponentially reduce its

window when congestion is detected. This is called Additive Increase Multiplicative De-

crease (AIMD). Congestion is detected when the source detects a packet loss.

Specifically the Tahoe protocol works as follows. A connection starts cautiously with

a small window size of one packet and the source increments its window size by one every

time it receives an ACK. This roughly doubles the window size every round-trip time and is

called the slow-start phase. When the window size reaches a threshold the source enters

the congestion avoidance phase where it increases its window size by the reciprocal of the

current window size every time it receives an acknowledgment. This increases the window

size by one packet in each RTT and is referred to as additive increase. The threshold, called

the slow-start threshold ssthreshold, that determines the transition from slow-start to

congestion avoidance is meant to indicate the available capacity in the network and is

adjusted each time a packet loss is detected. On detecting a loss the source sets ssthreshold

to half of the current window size, retransmits the lost packet, and re-enters slow-start

by resetting its window size to one packet.

A packet is deemed lost in one of two ways by TCP Tahoe. The first is if the sender

does not receive its ACK within a pre-specified time called a timeout period. The second is

if the sender receives three duplicate ACKs. Suppose the sender sends packets 0, 1, 2, 3, 4

back to back. Packet 0 is received correctly, packet 1 is lost, and packets 2, 3, 4 are received

correctly. The receiver sends an ACK for packet 0. Each packet 2, 3, 4 that arrives at the

receiver triggers a duplicate ACK for packet 0, indicating that the receiver is expecting

packet 1. When these three duplicate ACKs arrive at the sender, packet 1 is deemed lost.

Often, especially when window size is large, a packet loss is detected through duplicate

ACKs much sooner than a timeout.

Two refinements were subsequently implemented in TCP Reno to recover from packet

losses more efficiently. Call the time from detecting a loss (through three duplicate ACKs)

to receiving the ACK for the retransmitted packet the fast retransmit/fast recover
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(fr/fr) phase. In TCP Tahoe the window size is frozen in the fr/fr phase. This means

that a new packet can be transmitted only a round-trip time later. Moreover the “pipe”

from the source to the destination is cleared when the retransmitted packet reaches the

receiver and some of the routers in the path may become idle during this period, resulting

in a loss of efficiency. The first refinement allows a Reno source to temporarily increment

its window size by one on receiving each duplicate ACK while it is in the fr/fr phase.

The rationale is that each duplicate ACK signals that a packet has left the network. When

the window size becomes larger than the number of outstanding packets, a new packet can

be transmitted in the fr/fr phase while the soure is waiting for a (nonduplicate) ACK

for the retransmitted packet. The second refinement essentially sets the window size at

the end of the fr/fr phase to half of the window size when fr/fr starts and then enters

congestion avoidance directly. Hence slow-start is entered only rarely in TCP Reno

when the connection first starts and when a loss is detected by a timeout rather than three

duplicate ACKs.

%for every ACK { 
     W += 1/W   (AI)   
 } 
%for every loss { 
  W = W/2   (MD) 
 } 

%

(a) Pseudocode

CA#SS#

Fast%retransmission/fast%recovery%

(b) Window trajectory

Figure 1.3: Congestion avoidance behavior of TCP Reno.

The pseudocode for the congestion avoidance phase of Reno is shown in Figure

1.3(a) and the resulting window trajectory in Figure 1.3(b).

TCP Vegas

TCP Vegas improves upon TCP Reno through three main techniques. The first is a modified

retransmission mechanism where timeout is checked on receiving the first duplicate ACK,

rather than waiting for the third duplicate ACK (as Reno would), and results in a more

timely detection of loss when the clock resolution was low back in the early 1990s (e.g.

500ms). The second technique is a more prudent way to grow the window size during the

initial use of slow-start when a connection starts up and it results in fewer losses.

The third technique is a new congestion avoidance algorithm that corrects the os-

cillatory behavior of Reno. The pseudocode is shown in Figure 1.4(a) and the resulting
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window trajectory in Figure 1.4(b). Here W is the current window size, RTT is the current

for every ACK 
{ 

   if W/RTTmin – W/RTT < α then W += 1/W  

   if W/RTTmin – W/RTT > β  then W -= 1/W  

} 
for every loss { 
  W = W/2    

} 
%

(a) Pseudocode

DelayDbased%TCP:%Vegas%%
(Brakmo%&%Peterson%1994)%

•  Reno%with%a%new%conges-on%avoidance%algorithm%
•  Converges%(provided%buffer%is%large)%!%

SS%
-me%

window%

CA%

(b) Window trajectory

Figure 1.4: Congestion avoidance behavior of TCP Vegas.

round-trip time, RTTmin is the minimum round-trip time observed so far, and α < β are

protocol parameters in packets/second.

To understand the pseudocode, consider a source i. The round-trip time Ti(t) a packet

of source i experiences is the sum of a fixed component di and a variable component

qi(t), i.e., Ti(t) = di + qi(t). The fixed component di, we call round-trip propagation delay,

accounts for signal propagation time and fixed processing time along its path. The variable

component qi(t) accounts for queueing delay at routers in its path. The quantity RTTmin
(mint Ti(t)) is an estimate of a source’s round-trip propagation delay di. Let wi(t) be source

i’s window size, xi(t) be its sending rate, and di be its round-trip propagation delay. Then

the pseudocode in Figure 1.4(a) increments or decrements the window size by 1 packet

according as (multiplying both sides of the conditionals by di)

wi(t) − xi(t) di < αi di or wi(t) − xi(t) di > βi di

The quantity xi(t)di represents the number of source i’s packets propagating in the com-

munication channel (e.g. fiber optic cables) from source to destination. Hence the quantity

wi(t)− xi(t)di represents the number of i’s packets queued at some routers in i’s path

when there are wi(t) outstanding packets. A Vegas source estimates the number of its own

packets buffered in the path and tries to keep this number between α := αidi (originally 1

packet) and β := βidi (originally 3 packets) by adjusting its window size. The window size

is incremented or decremented by approximately 1 packet in each round-trip time accord-

ing as the current estimate is less than α or greater than β. Otherwise the window size is

unchanged. The rationale is that each source should maintain a small number of its own

packets in the pipe to take advantage of extra capacity when it becomes available.

Another interpretation of Vegas observes that

wi(t)− xi(t)di = xi(t)(Ti(t)− di) = xi(t)qi(t)
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where qi(t) is the round-trip queueing delay. Then the conditional in the pseudocode of

Vegas becomes

xi(t) < αi
di
qi(t)

or xi(t) > βi
di
qi(t)

i.e., a Vegas source sets its rate to be proportional to the ratio of its round-trip propagation

delay to queueing delay, the proportionality constant being between αi and βi. The more

congested its path is, the higher the queueing delay and hence the lower the rate.

TCP FAST

TCP FAST can be thought of as a high-speed version of Vegas. The pseudocode for the

congestion avoidance phase is shown in Figure 1.5. Both use queueing delay as the measureConges-on%avoidance%

FAST 
Jin, Wei, Low 
2004 

 periodically 
 {                        

 

    

  

 }    

W   =   γ baseRTT
RTT

 W  +  α
!

"
#

$

%
&  + 1−γ( )W

Figure 1.5: The pseudocode of TCP FAST congestion avoidance agorithm.

of congestion (price) and both have the same equilibrium point. Vegas works well when

the network is slow or small, but its response is too sluggish in high-speed long-distance

networks because, regardless of how far the network state is from its equilibrium, Vegas

adjusts the window by the same amount (one packet per RTT). In contrast the size of the

window adjustment in FAST is proportional to the distance of the network state from its

equilibrium. It converges rapidly towards the equilibrium when it is far away and smooths

into the equilibrium when it is close. See Chapter 1.3 for more details.

1.2.3 AQM ALGORITHMS

DropTail

Congestion control on the Internet is still predominantly source-based in that the link

algorithm is implicit. A link (router) simply drops a packet that arrives at a full buffer.

This is called DropTail (or Tail Drop) and the implicit link algorithm is carried out by the

queue process. The congestion measure it updates depends on the TCP algorithm.

For TCP Reno and its variants, the congestion measure is packet loss probability. The

end-to-end loss probability is observed at the source and is a measure of congestion on the

end-to-end path. For TCP Vegas and FAST the congestion measure turns out to be link

queueing delay when first-in-first-out service discipline is used. The congestion measure of

a path is the sum of queueing delays at all constituent links.
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RED

Random Early Detection (RED) is an alternative way to generate packet loss as a congestion

measure. Instead of dropping only at a full buffer, RED maintains an exponentially weighted

queue length and drops (or marks) packets with a probability that increases with the

weighted queue length. When the weighted queue length is less than a minimum threshold

no arrival packets are dropped. When it exceeds a maximum threshold all packets are

dropped. When it is in between, a packet is dropped with a probability that is a piecewise

linear and increasing function of the weighted queue length. See Figure 1.6(a).
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(a) RED
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(b) REM

Figure 1.6: Loss probabilities of RED and REM as functions of (weighted) queue length.

REM

Random Exponential Marking (REM) consists of two simple ideas. First, in RED, the

link price (loss probability) pl(t) depends on the queue length bl(t). As the number of

flows sharing the link increases the steady-state price and hence queue length must also

increase, leading to large delay. REM in contrast maintains a steady-state queue length

around a target regardless of the number of flows sharing the link, thus decoupling the

steady-state link delay from its congestion price. It achieves this by adjusting the link price

pl(t) according to

ṗl =
(
αl (yl(t)− cl) + βl

(
bl(t)− b0l

))+
pl(t)

ḃl = (yl(t)− cl)+bl(t)

where

(a)+b :=

{
a if a > 0 or b > 0

0 otherwise
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where yl(t) and cl are respectively the input rate and link capacity at link l, and bl(t)

and b0l ≥ 0 are respectively the queue length and its target at link l. Hence yl(t)− cl is

a rate mismatch and bl(t)− b0l is a queue mismatch. REM increases pl(t) if the weighted

sum of the rate mismatch and queue mismatch is positive, and decreases it otherwise. In

equilibrium where ṗ = 0, REM matches rate and queue length to their target values:

y∗l = cl and b∗l = b0l

unless l is not a bottleneck link in which case pl = 0, y∗l ≤ cl and b∗l = 0.

The second idea of REM is a novel way to convey the link prices pl(t) to the sources

through loss probability. Specifically REM explicitly embeds the sum of link prices along

a path into the end-to-end loss probability that can be observed at the source, as follows.

Like RED, REM drops a packet that arrives at a link with a probability independently of

all other packets. Unlike RED whose loss probability is a piecewise linear function of the

weighted queue length, the loss probability p̃l(t) of REM however is exponential in the link

price (see Figure 1.6(b)):

p̃l(t) := 1− φ−pl(t)

Then the end-to-end probability q̂i(t) that a packet of source i is lost in its path is expo-

nential in the end-to-end price qi(t) =
∑
lRlipl(t):

q̂i(t) := 1 −
∏
l

(1− p̃l(t))Rli = 1 − φ−qi(t)

Hence if source i estimates its end-to-end loss probability q̂i(t) it can compute the end-to-

end price qi(t) as

qi(t) = − logφ (1− q̂i(t))

As we will see below, the end-to-end price qi(t) can be useful for general TCP algorithms.

1.3 MODELS OF CLASSICAL ALGORITHMS

Even though TCP is a source-based mechanism, we must consider congestion control as a

feedback system where source rates x(t) interact with link prices p(t). Different protocols

choose different algorithms to adapt (x(t), p(t)). In this section we present mathematical

models of the protocol pairs Reno/RED, Vegas/DropTail, and FAST/DropTail. The model

captures the congestion avoidance phase of these protocols.

1.3.1 RENO/RED

We only model the average behavior of the additive increase multiplicative decrease (AIMD)

algorithm used to control the window size and does not differentiate between TCP Reno
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and its variants such as NewReno, SACK, etc. All these protocols (henceforth referred to

as “Reno”) increase the window by one packet every round-trip time if there is no loss in

the round-trip time, and halve the window otherwise.

Let wi(t) be the window size of source i. Let Ti be the round-trip time (propagation

plus queueing delay), which we assume to be constant. Let xi(t) := wi(t)/Ti be the source

rate at time t. The time unit is on the order of several round-trip times and source rate xi(t)

should be interpreted as the average rate over this timescale. Dynamics smaller than the

timescale of a round-trip time is not captured by the fluid model. Let pl(t) be the loss (or

marking) probability at link l at time t. We make the key assumption that the end-to-end

loss (or marking) probability qi(t) to which source algorithm reacts is the sum of link loss

probabilities: qi(t) =
∑
lRlipl(t). This is reasonable when pl(t) are small, in which case

qi(t) = 1−
∏
l

(1− pl(t))Rli '
∑
l

Rlipl(t)

Consider the pseudocode of AIMD in Figure 1.3(a). In period t it transmits at rate

xi(t) packets per unit time and receives (positive and negative) ACKs at approximately

the same rate, assuming every packet is acknowledged. Hence on average source i receives

xi(t)(1− qi(t)) number of positive ACKs per unit time and each positive ACK increases

the window wi(t) by 1/wi(t). It receives on average xi(t)qi(t) negative ACKs (losses) per

unit time and each halves the window. Hence the net change to the window in period t is

roughly

ẇi = xi(t)(1− qi(t))
1

wi(t)
− xi(t)qi(t)

wi(t)

2

Since Ti are assumed to be constant the sending rate xi(t) := wi(t)/Ti has the same dynam-

ics as the window wi(t) except for a constant scaling. Hence we will model the dynamics of

the sending rate directly, as:

ẋi =

(
1− qi(t)
T 2
i

− 1

2
qi(t)x

2
i (t)

)+

xi(t)

(1.1a)

where

(a)+b :=

{
a if a > 0 or b > 0

0 otherwise

The quadratic term in (1.1a) captures the property that, if the rate doubles, the multiplica-

tive decrease occurs at twice the frequency with twice the amplitude. The operation (·)+xi(t)
ensures that xi(t) stays nonnegative, i.e., ẋi stays 0 when xi(t) = 0 and the quantity in the

bracket is negative.
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There are variants of this model. One is that the window increases deterministically

by 1 every round-trip time. This modifies the additive increase term in (1.1a) into:

ẋi =

(
1

T 2
i

− 1

2
qi(t)x

2
i (t)

)+

xi(t)

(1.1b)

It is approximately the same as (1.1a) when the loss probabilities pl(t) are small.

Another variant is that, instead of halving the window on each negative acknowledg-

ment, the window is halved once in each round-trip time that contains one or more negative

acknowledgments. This modifies the multiplicative decrease term in (1.1a) into:

ẋi =

(
1− qi(t)
T 2
i

− 1

2Ti
qi(t)xi(t)

)+

xi(t)

RED updates the queue length bl(t) according to:

ḃl = (yl(t)− cl)+bl(t) (1.1c)

The queue length bl(t) is an internal variable and (a “gentle” version of) RED drops (or

marks) a packet with a probability pl(t) that is a piecewise linear increasing function of

bl(t) (see Figure 1.6(a)):

pl(t) =


0, bl(t) ≤ b1
ρ1(bl(t)− b1), b1 ≤ bl(t) ≤ b2
ρ2(bl(t)− b2) +m, b2 ≤ bl(t) ≤ b3
1, bl(t) ≥ b3

(1.1d)

where m ∈ (0, 1) is the nonzero loss probability at the break point,

ρ1 =
m

b2 − b1
and ρ2 =

1−m
b3 − b2

In summary the dynamical system that models Reno/RED consists of equations (1.1).3

The AQM model (1.1c)–(1.1d) contains internal variables bl(t) that are not observed

at TCP sources. We can eliminate bl(t) and derive the dynamics of pl(t) from (1.1c) (see

Figure 1.6(a)):

ṗl(t) =

{
ρ1(yl(t)− cl)+pl(t), 0 ≤ pl(t) ≤ m
ρ2(yl(t)− cl)pl(t)−1− , m < pl(t) ≤ 1

(1.2)

3In practice, the loss probability in RED depends not directly on the instantaneous queue length
bl(t), but on an exponentially weighted average rl(t), modeled by

ṙl = −αl(rl(t)− bl(t))
where αl ∈ (0, 1) is an exponential weight. Then the loss probability pl(t) is given by (1.1d)
with bl(t) replaced by rl(t).
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where

(a)+b :=

{
a if a > 0 or b > 0

0 otherwise
and (a)b− :=

{
a if a < 0 or b < 0

0 otherwise

Then Reno/RED can be modeled by ordinary differential equations (1.1a)(1.2) without

internal variables and algebraic equations. Most of our analysis will be on models of this

type.

1.3.2 VEGAS/DROPTAIL

Consider the pseudocode in Figure 1.4(a) of the congestion avoidance mechanism of TCP

Vegas. Let di denote the round-trip propagation delay of source i, qi(t) the round-trip

queueing delay, Ti(t) := di + qi(t) the round-trip time, wi(t) the window size and xi(t) :=

wi(t)/Ti(t) the sending rate of flow i. For simplicity assume α = β. As discussed earlier the

conditional in the pseudocode is

wi(t)− xi(t) di < αi di or wi(t)− xi(t) di > αi di

The quantity xi(t)di represents the number of source i’s packets propagating in the com-

munication channel (e.g. fiber optic cables) from source to destination, and the quantity

wi(t)− xi(t)di represents the number of i’s packets buffered at the routers in its path. A

Vegas source estimates the number of its own packets buffered in the path and tries to keep

this number at α := αidi packets by incrementing or decrementing its window size wi(t) by

1 packet per round-trip time. Since

wi(t)− xi(t) di = xi(t)(Ti(t)− di) = xi(t) qi(t)

i.e., xi(t)qi(t) is the number of i’s own packets buffered in the queues in its path, we model

the window dynamics as:

ẇi =
1

di + qi(t)
sign (αidi − xi(t)qi(t))

+
wi(t)

(1.3a)

xi(t) =
wi(t)

di + qi(t)
(1.3b)

where sign(z) is −1 if z < 0, 0 if z = 0, and 1 if z > 0. The operation (·)+wi(t) ensures that

wi(t) ≥ 0. Hence (1.3a) says that the window is adjusted by 1 packet per round-trip time

by comparing the number xi(t)qi(t) of packets buffered in its path with the target αidi. In

equilibrium each source i maintains αidi packets in its path.

Hence Vegas uses as its congestion price the queueing delay at a link l

pl(t) :=
bl(t)

cl
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where bl(t) is the queue length and evolves according to (1.1c). The price dynamics is

therefore (dividing both sides of (1.1c) by cl):

ṗl =
1

cl
(yl(t)− cl)+pl(t) (1.3c)

where yl(t) :=
∑
i Rli xi(t). In summary the dynamical system that models Ve-

gas/DropTail consists of equations (1.3).

The TCP model (1.3a)–(1.3b) contains algebraic equations. To reduce the model to

ordinary differential equations, we can eliminate x(t) by substituting (1.3b) into (1.3a)(1.3c)

to obtain:

ẇi =
1

di + qi(t)
sign

(
αidi −

wi(t)qi(t)

di + qi(t)

)+

wi(t)

ṗl =
1

cl

(∑
i

Rliwi(t)

di + qi(t)
− cl

)+

pl(t)

1.3.3 FAST/DROPTAIL

TCP Reno and Vegas were designed in the late 1980s and early 1990s when network ca-

pacities are much smaller and a large majority of network traffics are relatively local. The

window adjustment by one packet per round-trip time was adequate then, but much too

slow as networks scale up in capacity and geographical coverage. This has motivated a large

effort in the 2000s to develop an understanding of the mathematical structure of congestion

control and a theory-aided design approach where performance analysis was done before,

as opposed to after, implementation and deployment. TCP FAST came out of that effort.

Even though the implementation of FAST is very different from that of Vegas (com-

pare their pseudocodes in Figure 1.5 and Figure 1.4(a)), the FAST design was inspired

by the underlying mathematical structure of Vegas. In particular FAST attains the same

equilibrium of Vegas and therefore achieves proportional fairness (see Chapter 2). It speeds

up the dynamics of Vegas by adjusting the window size by an amount proportional to the

deviation of the queue length in the path from its target value, instead of by one packet

per round-trip time as Vegas does in (1.3a).

Specifically consider the FAST pseudocode in Figure 1.5. It can be modeled by

ẇi = γ (αi − xi(t)qi(t))+wi(t) (1.4a)

xi(t) =
wi(t)

di + qi(t)
(1.4b)

where qi(t) :=
∑
l Rli pl(t). Like Vegas, FAST also uses as its congestion price the queueing

delay at a link l whose dynamics is described by:

ṗl =
1

cl
(yl(t)− cl)+pl(t) (1.4c)
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where yl(t) :=
∑
i Rli xi(t). In summary the dynamical system that models

FAST/DropTail consists of equations (1.4).

FAST can be interpreted as a high-speed version of Vegas in the following sense.

Compare (1.3a) for Vegas and (1.4a) for FAST (replacing αidi in (1.3a) by αi). While Vegas

increments/decrements the window by 1 packet depending on the sign of αi − xi(t)qi(t),
FAST updates the window by an amount proportional to αi − xi(t)qi(t). For high-speed

long-distance networks the magnitude of αi − xi(t)qi(t) can be big during transient, in

which case FAST closes the gap faster than Vegas.

The FAST model (1.4a)–(1.4b) contains algebraic equations. As for Vegas, we can

eliminate x(t) by substituting (1.4b) into (1.4a)(1.4c) to obtain a model consisting of ordi-

nary differential equations:

ẇi = γ

(
αi −

wi(t)qi(t)

di + qi(t)

)+

wi(t)

(1.5a)

ṗl =
1

cl
(yl(t)− cl)+pl(t) (1.5b)

An alternative model is to replace the dynamic link model (1.5b) by a static model

where the link queueing delay vector p(t) is determined implicitly by the window sizes w(t):

ẇi = γ

(
αi −

wi(t)qi(t)

di + qi(t)

)+

wi(t)

(1.6a)∑
i

Rli
wi(t)

di + qi(t)

{
= cl if pl(t) > 0

≤ cl if pl(t) = 0
(1.6b)

It can be proved that the model (1.6) is well defined: given w(t), there is a unique queueing

delay vector p(t) that satisfies (1.6b) provided R has full row rank.

Another alternative model is to replace the dynamic source model (1.5a) by a static

model (obtained by setting ẇ = 0 in (1.4a) and using xi(t) = wi(t)/(di + qi(t))):

ṗl =
1

cl
(yl(t)− cl)+pl(t) (1.7a)

xi(t) =
αi
qi(t)

(1.7b)

1.4 A GENERAL SETUP

1.4.1 THE BASIC MODELS

We have seen in Chapter 1.3 that one can model a physical system in multiple ways, each

making different assumptions. All the models there take the form of differential algebraic
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equations:

˙̃xi = f̃i(xi(t), x̃i(t), qi(t)), i ∈ N
xi(t) = f(xi(t), x̃i(t), qi(t)), i ∈ N

˙̃pl = g̃l(yl(t), pl(t), p̃l(t)), l ∈ L
pl(t) = gl(yl(t), pl(t), p̃l(t)), l ∈ L

where (x̃(t), p̃(t)) are (generally vector) internal variables and (x(t), p(t)) are source rates

and link prices. The most important feature of this model is its decentralized nature: user i

adapts its rate xi(t) based only on local information (xi(t), x̃i(t)) and the locally observed

congestion measure qi(t), and link l adapts its price pl(t) based only on local information

(yl(t), pl(t), p̃l(t)). We represent this set of differential algebraic equations in vector form as

˙̃x = f̃(x(t), x̃(t), q(t))

x = f(x(t), x̃(t), q(t))
˙̃p = g̃(y(t), p(t), p̃(t))

p = g(y(t), p(t), p̃(t))

where q(t) = RT p(t), y(t) = Rx(t). As we have seen in Chapter 1.3 above, while including

internal variables (x̃(t), p̃(t)) is convenient for modeling, it is usually easy for practical

protocols to eliminate these internal variables to obtain a model involving only (x(t), p(t)).

Such a model is usually more convenient for analysis.

Our analysis will therefore focus on the following three special cases without the

internal variables.

1. Primal algorithms. This is the class of algorithms that have dynamics (memory) in

the source rates (or window sizes) but not in the link prices:

ẋ = f(x(t), q(t)) (1.8a)

p = g(y(t), p(t)) (1.8b)

2. Dual algorithms. This is the class of algorithms that have dynamics in the link prices

but not in the source rates (or window sizes):

ṗ = g(y(t), p(t)) (1.9a)

x = f(x(t), q(t)) (1.9b)

3. Primal-dual algorithms. This is the class of algorithms with dynamics in both source

rates and link prices:

ẋ = f(x(t), q(t)) (1.10a)

ṗ = g(y(t), p(t)) (1.10b)
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We will refer to any of (1.8), (1.9), (1.10) together with

q(t) = RT p(t) and y(t) = Rx(t) (1.11)

as the basic model. The structure of these models is illustrated in Figure 1.7. For example,

 R 

f1 

fN 

g1 

gL 

 RT 

TCP% AQM%

x 
y 

q 
p 

Figure 1.7: The basic model: a multi-source multi-link network.

FAST/DropTail can be modeled as either a primal, a dual, or a primal-dual algorithm; see

Chapter 1.3.3.

For primal algorithms, we can often express p(t) in terms of x(t) using (1.8b) because

the Jacobian ∂g
∂p − I is often nonsingular for TCP/AQM models. Substituting p(t) = p(x(t))

as a function of x(t) into (1.8a)(1.11) then reduces the primal algorithm into a set of ODEs

in x(t). Similarly for dual algorithms, we can often express x(t) in terms of p(t) using

(1.9b) and reduce the dual algorithm into a set of ODEs in p(t) (substitute x(p(t)) into

(1.9a)(1.11)). Therefore all three basic models can be described by ODEs. We hence often

cast our discussion in terms of primal-dual algorithms (1.10) as the prototypical model,

knowing that it applies to all three models.

Since the source rates x(t) and prices p(t) are nonnegative, hidden in the notation of

the functions (f, g) is the projection to the nonnegative quadrant. We sometimes make this

explicit by writing, instead of (1.10):

ẋ = (f(x(t), q(t)))
+
x(t)

ṗ = (g(y(t), p(t)))
+
p(t)
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where for any vectors a, b ∈ Rn, the vector (a)+b is defined componentwise, i.e., for all

i = 1, . . . , n, [
(a)+b

]
i

:= (ai)
+
bi

:=

{
ai if ai > 0 or bi > 0

0 otherwise
(1.12)

As we will see later, the projection on the right-hand side of the differential equations mostly

preserves the existence, uniqueness, equilibrium and stability properties of the unprojected

system, but the analysis is considerably more complicated because of the discontinuity

introduced by the projection. A notable feature of this book is the careful treatment of the

projected dynamics.

We are interested in three questions:

1. Under what condition does the basic model (1.10) have a unique solution

(x(t), p(t), t ≥ 0), given any initial point (x(0), p(0))?

2. Does equilibrium of (1.10) exist? Is it unique? How do we characterize it?

3. Is an equilibrium of (1.10) stable?

We answer question 1 in this Chapter, question 2 in Chapter 2, and question 3 in Chapters

3 through 6.

1.4.2 LIMITATIONS AND EXTENSIONS

We now discuss some limitations of our fluid models and various extensions.

1. No feedback delay. The basic models ignore feedback delay, i.e., they assume that

a change in a link price pl(t) is instantly observed at all the sources that use that link,

and a change in a source rate xi(t) affects the aggregate flow rates at all the links

in the path of the source. In reality, of course, there is feedback delay due to signal

propagation between links and sources, and due to packet queueing and processing

in the network. Feedback delay can be modeled by replacing (1.11) with

qi(t) =
∑
l

Rlipl(t− τ bli), i ∈ N

yl(t) =
∑
i

Rlixi(t− τfli), l ∈ L

Here τ bli models the backward delay from link l to source i and τfli models the forward

delays from source i to link l, both assumed to be constant. It is the time it takes

for a change in the price at link l to affect the rate at source i, and the time it takes

for a change in the rate at source i to affect the price at link l, respectively.

We will use this delayed model in Chapter 6 to study linear stability in the presence

of feedback delay.
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2. Window control. A window-based control does not adapt its sending rate xi(t)

directly, but rather its window size wi(t). This is modeled using the relationship

between xi(t) and wi(t)

xi(t) =
wi(t)

Ti(t)
=

wi(t)

di + qi(t)

as in (1.3) for Vegas and in (1.4) for FAST. For convenience however we often assume

the round-trip time Ti to be constant and model the dynamics of xi(t) directly as in

(1.1) for Reno.

3. Round-trip timescale. The basic models ignore flow arrivals and departures and

fix set of flows and their routing matrix. They focus on the network dynamics at the

round-trip timescale. This amounts to ignoring short-duration TCP flows.

4. Heterogeneous protocols. The basic models assume that, while different sources

i can adapt their rates using different algorithms fi, they all react to the same type

of congestion prices pl(t). For instance all sources react to packet loss probabilities in

their paths as in Reno, or all sources react to packet delay in their paths as in Vegas

or FAST. If sources that use different types of congestion prices (e.g. Reno and Vegas)

share the same network, the network behavior can be much more complicated. For

instance while a network of homogeneous sources typically has a unique equilibrium

point, a network of heterogeneous sources may not.

5. Deterministic fluid. We model traffic as a deterministic fluid and ignore random-

ness in, e.g. packet processing and queueing times, packet arrival process, or flow

arrivals and departures.

6. Queue output process. The basic models assume a flow maintains its rate along

its path so that every link in its path sees the source rate. In reality however as a

flow goes through a queue, its output rate depends on the buffering process and is

generally different from its input rate, except when the network is in a steady state

where all queues are stabilized.

1.5 SOLUTION OF THE BASIC MODELS

The ODE model (1.10) describes the protocol action in the congestion avoidance phase.

In this section we discuss conditions on the TCP/AQM models (f, g) that guarantee the

existence of a unique solution trajectory (x(t), p(t), t ≥ 0) given any initial point (x(0), p(0)).

We first summarize sufficient conditions for the existence and uniqueness of the solution

to general ODE systems. We then illustrate how to use these results to prove that the

TCP/AQM models of Chapter 1.3 are well defined.
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Consider a system of projected ordinary differential equations:

ẋ = (f(x(t)))
+
x(t) , t ≥ 0 (1.13a)

x(0) = x0 ≥ 0 given (1.13b)

where f : Rn → Rn, and the projection (f(x))+x is defined in (1.12).4 Even though the pro-

jection function g(a, b) := (a)+b , a, b in R, is continuous in a given any b, it is discontinuous

in b for a < 0. To visualize the effect of projection see Figure 1.8. Therefore the right-hand

side of (1.13a) is discontinuous in x(t) even if f is continuous. It turns out that this is a

g(a,b) := a( )b
+

b a

(a) g(a, b)

x

f (x) = x −1( )x
+

(b) f(x)

Figure 1.8: (a) The function g(a, b) = (a)+b is discontinuous along the line b = 0 for a < 0. (b)

The function f(x) := (x− 1)+x is discontinuous at x = 0.

simple type of discontinuity in that the projection preserves the existence and uniqueness

properties, i.e., the conditions we describe below that guarantee the existence of a unique

solution to unprojected dynamics ẋ = f(x(t)) will also guarantee the existence of a unique

solution to projected dynamics ẋ = (f(x(t)))
+
x(t).

We hence first consider a system of ODEs without projection:

ẋ = f(x(t)), t ≥ 0 (1.14a)

x(0) = x0 given (1.14b)

where f : Rn → Rn. We explain different notions of Lipschitz continuity. We then state

Lipschitz conditions on f that guarantee the existence and uniqueness of solutions to the

unprojected dynamics (1.14). Finally we state precisely the result that projection preserves

these properties.

4We abuse notation to use f to denote either a generic function or a TCP algorithm and x to
denote either a generic variable or source rates, depending on the context.
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1.5.1 EXISTENCE AND UNIQUENESS THEOREMS

Definition 1.1 Lipschitz continuity. The function f(x) is said to be:

1. locally Lipschitz at x0 if there exist r = r(x0) > 0 and L = L(x0) such that ‖f(x)−
f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Br(x0).

2. locally Lipschitz on a domain 5 D ⊆ Rn if it is locally Lipschitz at each point in D.

3. Lipschitz on a domain D if the Lipschitz constant L is uniform at each point in D,

i.e., there exists L such that ‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ D.

4. globally Lipschitz if it is Lipschitz on D = Rn, i.e., there exists L such that ‖f(x)−
f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Being Lipschitz is stronger than continuity. Here ‖ · ‖ can be any norm in Rn, such as

p-norms defined by:

‖x‖p := (|x1|p + · · ·+ |xn|p)
1/p

, 1 ≤ p <∞
‖x‖∞ := max

i
|xi|

The three most commonly used norms are ‖x‖1, ‖x‖2 (Euclidean norm), and ‖x‖∞. Since

all norms are equivalent in Rn, Lipschitz continuity can be defined using any norm. Different

choices of norms differ only in their Lipschitz constants.

Example 1.2

1. f(x) = x2 is Lipschitz on any bounded domain of R, but only locally Lipschitz on R.

To see this note that, by the mean value theorem, for any finite x, y ∈ R there exists

x ≤ z ≤ y such that

|f(x)− f(y)| = |f ′(z)| |x− y| ≤ sup
z∈C

(2z)|x− y| ≤ L |x− y|

where supz∈C(2z) is finite for any bounded set C ⊂ R and L is an upper bound.

2. f(x) = x−1 is locally Lipschitz everywhere in R except at x = 0 and Lipschitz on any

compact set C that does not contain x = 0. Again

|f(x)− f(y)| = |f ′(z)| |x− y| ≤ max
z∈C

1

z2
|x− y| ≤ L |x− y|

where maxz∈C z
−2 is finite and L is an upper bound.

5A domain is an open and connected set.



1.5. SOLUTION OF THE BASIC MODELS 23

3. f(x) = sinx is globally Lipschitz on R since |f(x)− f(y)| = | cos(z)||x− y| ≤ |x− y|.

Lemma 1.3

1. Let f be continuously differentiable on a domain (connected open set) D ⊆ Rn. Then

f is locally Lipschitz on D.

2. Suppose f is continuously differentiable on a convex domain D ⊆ Rn and let L :=

supy∈D ‖
∂f
∂x (y)‖. Then f is Lipschitz on D with Lipschitz constant L if and only if

L is finite.

3. Suppose f is continuously differentiable on a convex and compact set D ⊆ Rn. Then

L := supy∈D ‖
∂f
∂x (y)‖ is finite and f is Lipschitz on D with Lipschitz constant L.

4. Let f be continuously differentiable on Rn. Then f is globally Lipschitz on Rn if and

only if ∂f
∂x is uniformly bounded on Rn.

The proof of the lemma, given in Appendix 1.5.3, illustrates several useful techniques.

The next result says that global Lipschitz continuity guarantees the existence and

uniqueness of the solution to the unprojected dynamic (1.14).

Theorem 1.4 If f is globally Lipschitz on Rn, i.e., there exists an L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn

then (1.14) has a unique solution (x(t), t ≥ 0).

Example 1.5 Consider ẋ = Ax+ b =: f(x) for t ≥ 0. Then

‖f(x)− f(y)‖ = ‖A(x− y)‖ ≤ ‖A‖ · ‖x− y‖ ∀x, y ∈ Rn

where ‖x‖ is any norm on Rn and ‖A‖ is the induced matrix norm. Therefore f is globally

Lipschitz on Rn and the system has a unique solution x(t), t ≥ 0 by Theorem 1.4.

Global Lipschitz continuity is often too stringent. Local Lipschitz continuity is often

enough. For instance we model FAST/DropTail as a dual algorithm in (1.7). The unpro-

jected dynamics is

ṗl =
1

cl
(yl(t)− cl)

xi(t) =
αi
qi(t)
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Substituting x = x(p) and y = y(p) as functions of p, this becomes:

ṗl =
1

cl

(∑
i

Rliαi∑
k Rkipk(t)

− cl

)

The function on the right-hand side is not globally Lipschitz over p > 0, but is locally

Lipschitz. This system has a unique solution (p(t), t ≥ 0) given any p(0) according to the

next result (see Chapter 1.5.2 for details).

Theorem 1.6 Suppose f is locally Lipschitz on a domain D ⊆ Rn. Let W := W (x0) be a

compact (closed and bounded) subset of D that contains the given initial state x0. Suppose

every solution of (1.14), if exists, lies entirely in W , i.e., x(t) ∈W for all t ≥ 0. Then

(1.14) has a solution (x(t), t ≥ 0) and it is unique.

Example 1.7 Consider ẋ = −x3 =: f(x). Note that f(x) is not globally Lipschitz on R,

but it is locally Lipschitz at all x ∈ R. Moreover given any x(0) = x0, a solution x(t), if

it exists, stays in the compact set W := {x ∈ R | |x| ≤ |x0|}. Hence there exists a unique

solution by Theorem 1.6. Indeed the solution is x(t) =
(
2t+ x−20

)−1/2
if x0 6= 0 and x(t) ≡ 0

if x0 = 0.

In general the conditions in Theorems 1.4 and 1.6 are sufficient but not necessary. If

f is only locally Lipschitz on Rn (but there is no compact set W that contains any solution

trajectory as required in Theorem 1.6), then a unique solution x(t) always exists over [0, T ]

for some T > 0, but T may be finite.6 Indeed not even continuity is necessary for a solution

to exist over some finite interval, as the next example shows.

Example 1.8 Discontinuous right-hand side with classical solution. Consider ẋ =

f(x(t)), t ≥ 0, over R where

f(x) :=


−1 if x > 0

0 if x = 0

1 if x < 0

6More generally, if f is continuous then, given x(0), a (classical) solution x(t) exists over some
interval [0, T ] for some possibly finite T > 0, but it may not be unique. If, in addition, f is
also locally one-sided Lipschitz (i.e. for all x ∈ Rn there exists an L <∞ and a neighborhood

Bε(x) such that (f(y)− f(y′))
T

(y − y′) ≤ L ‖y − y′‖2 for all y, y′ ∈ Bε(x)) then the solution
x(t) is also unique. Continuity and one-sided Lipschitz continuity do not imply each other,
but Lipschitz continuity implies both and hence implies the existence and uniqueness of the
solution. See also Condition C1.1 in Appendix 1.5.4.
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Since f is discontinuous at x = 0 it satisfies neither Theorem 1.4 nor Theorem 1.6 (not

locally Lipschitz at x = 0). Yet, given any initial point x(0) = x0, it has a unique contin-

uously differentiable solution over a time interval t ∈ [0, T ) for some possibly finite T > 0.

If x0 > 0 then the solution is x(t) = x0 − t for t ∈ [0, x0). If x0 < 0 then x(t) = x0 + t for

t ∈ [0,−x0). If x0 = 0 then x(t) = 0 for t ∈ [0,∞).

When f is Lipschitz, the unique solution x(t) to (1.14), if exists, is continuously

differentiable (in t). For projected dynamics (1.13a) whose right-hand side is however dis-

continuous, a solution even if it exists, is generally not differentiable everywhere. To allow

projected dynamics (1.13a) we relax the classical solution notion. Formally we define a func-

tion x : [0,∞)→ Rn+ to be a (Carathéodory) solution to (1.13) if it is absolutely continuous

and satisfies (1.13) almost everywhere (i.e., except possibly for a set of time instances

t ∈ [0,∞) that has Lebesgue measure zero).7

Example 1.9 Carathéodory solution. Consider ẋ = f(x(t)), t ≥ 0, over R where

f(x) :=

{
1 if x 6= 0

a if x = 0

where a > 0 and a 6= 1 so that f is discontinuous at x = 0 (though not due to projection).

A unique (Carathéodory) solution is x(t) = t for t ∈ [0,∞). If x(0) > 0 then this solution

satisfies ẋ = f(x(t)) at all t. If x(0) ≤ 0 then it satisfies ẋ = f(x(t)) except at one time t

where x(t) = 0.

If a = 0 then f is still discontinuous at x = 0, but for x(0) = 0, there are two

Carathéodory solutions: x(t) = 0 for t ∈ [0,∞) and x(t) = t for t ∈ [0,∞). It turns out

one can define another solution notion, called a Filippov solution, for which x(t) = t is the

unique solution. In general neither Carathéodory solution nor Filippov solution includes

the other.

The next result generalizes Theorems 1.4 and 1.6 to the case of projected dynamical

systems. Its proof is given in Appendix 1.5.4.

7This is called a Carathéodory solution for an ordinary differential equation system with a
discontinuous right-hand side (vector field). A function f : I → Rn where I is an interval in R
is absolutely continuous if given any ε > 0 there exists δ > 0 such that for any finite sequence
of pairwise disjoint subintervals [sk, tk] of I we have∑

k

|tk − sk| < δ ⇒
∑
k

‖f(tk)− f(sk)‖ < ε

Continuous differentiability implies Lipschitz continuity implies absolute continuity implies
uniform continuity implies continuity. Absolute continuity also implies bounded variation im-
plies differentiability almost everywhere.
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Theorem 1.10 Consider the projected dynamical system (1.13) where f : Rn → Rn.

1. If f is Lipschitz on the nonnegative quadrant Rn+, i.e., there exists L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn+

then (1.13) has a unique solution (x(t), t ≥ 0).

2. Suppose f is locally Lipschitz on a domain D ⊆ Rn+. Let W := W (x0) be a compact

(closed and bounded) subset of D that contains the given initial state x0. Suppose

every solution of (1.13), if exists, lies entirely in W , i.e., x(t) ∈W for all t ≥ 0.

Then (1.13) has a unique solution for all t ≥ 0.

The norm in the theorem can be any norm in Rn.

1.5.2 APPLICATION TO TCP/AQM MODELS

We now apply Theorem 1.10 to show that a basic model of TCP/AQM is well defined.

Consider the following dual algorithm in Chapter 1.3.3 that models FAST/DropTail:

ṗl =
1

cl
(yl(t)− cl)+pl(t) (1.16a)

xi(t) =
αi
qi(t)

(1.16b)

where for any a, b ∈ R, (a)+b := a if a > 0 or b > 0 and 0 otherwise. Here

qi(t) =
∑
l

Rlipl(t), yl(t) =
∑
i

Rlixi(t)

We now prove that (1.16) has a unique solution trajectory.

Write xi(qi) := xi(p) := αi/qi as a function of qi or p. Similarly write yl(p) :=∑
iRlixi(p) as a function of p. Consider then the following system with p(t) as its state:

ṗl =
1

cl
(yl(p(t))− cl)+pl(t) =:

1

cl
(gl(p(t)))

+
pl(t)

(1.17a)

p(0) = p0 given (1.17b)

where g(p) := y(p)− c and

yl(p) :=
∑
i

Rli xi(p) :=
∑
i

Rli
αi∑

k Rkipk
(1.17c)

Clearly g(p) is continuously differentiable over RL+ at p > 0. Hence it is locally Lipschitz

on any domain D ⊆ RL+ with p > 0.8 Theorem 1.10.2 then guarantees the existence and

8It is not globally Lipschitz because ∂g
∂p is not uniformly bounded on RL+; see Lemma 1.3.4.
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uniqueness of solution to (1.17) if we can construct a compact set W := W (p0) ⊆ D that

contains the given initial point p0 such that every solution (p(t), t ≥ 0) of (1.17), if exists,

lies in W . We now construct such an W in two steps.

First consider the function

V (p) :=
∑
i

αi log xi(p) +
∑
l

pl (cl − yl(p))

We claim that if there is a solution (p(t), t ≥ 0) to (1.17) then V is nonincreasing along

the trajectory p(t). To see this we have

∂V

∂pl
(p) =

∑
i

αi
xi(p)

∂xi
∂pl

(p) + (cl − yl(p)) −
∑
k

pk
∑
i

Rki
∂xi
∂pl

(p)

= (cl − yl(p)) +
∑
i

(
αi
xi(p)

− qi(p)
)
∂xi
∂pl

(p)

= cl − yl(p)

where the last equality follows from (1.16b). Hence

d

dt
V (p(t)) =

∂V

∂p
ṗ =

∑
l

1

cl
(cl − yl(p(t))) (yl(p(t))− cl)+pl(t)

For each l we have

(cl − yl(p(t))) (yl(p(t))− cl)+pl(t) =

{
− (cl − yl(p(t)))2 if yl(p(t)) > cl or pl(t) > 0

0 if yl(p(t)) ≤ cl and pl(t) = 0

Hence for all p(t) ≥ 0 on the solution trajectory we have

d

dt
V (p(t)) ≤ 0

Second define W := W (p0) by

W := W (p0) :=
{
p ∈ RL+ | p ≥ 0, V (p) ≤ V (p0)

}
Clearly W contains p0 and any solution (p(t), t ≥ 0), if exists, must lie in W since V̇ (p(t))

is nonincreasing. Moreover W is closed. We claim that it is also bounded and hence is a

compact set. To see this substitute (1.17c) into V (p) to get

V (p) =
∑
i

αi

(
logαi − log

(∑
l

Rlipl

))
+
∑
l

pl

(
cl −

∑
i

Rlixi(p)

)

=
∑
i

αi logαi +
∑
l

clpl −
∑
i

qi(p)xi(p) −
∑
i

αi log

(∑
l

Rlipl

)

=
∑
i

αi (logαi − 1) +
∑
l

clpl −
∑
i

αi log

(∑
l

Rlipl

)
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where the second and last equalities follow from∑
l

∑
i

Rli pl xi(p) =
∑
i

qi(p)xi(p) =
∑
i

αi

If W is unbounded there must exists a link k and a sequence of prices p1, p2, . . . , such

that pj ∈W and pjk > j for all integers j, i.e., the sequence p1, p2, . . . , in W marches off

to infinity along its link k component. The linear term ckpk in the V (p) expression above

dominates over the log term and hence V (pj) will become unbounded as j →∞. This

contradicts V (pj) ≤ V (p0) and hence the sequence pj cannot be in W , a contradiction.9

In summary g in (1.17a) is locally Lipschitz on any domain D and we have constructed

a compact set W dependent on the given initial point p0 that contains any solution of (1.17)

if it exists. Theorem 1.10.2 therefore guarantees that indeed a unique solution (p(t), t ≥ 0)

exists.

1.5.3 APPENDIX: PROOF OF LEMMA 1.3

Since all norms in Rn are equivalent we can without loss of generality assume the norm

‖ · ‖ is Euclidean (see Footnote 11). We however present a more involved proof with general

norm because it illustrates several techniques that are useful in applications, especially

a generalization of the mean value theorem for vector-valued functions under any norm

(Lemma 1.12).

Dual norm. Consider any norm ‖ · ‖ on Rn and define its dual norm ‖ · ‖∗ by: for any

x ∈ Rn

‖x‖∗ := max
y:‖y‖=1

xT y

The maximization is attained since inner product is continuous and the feasible set is

compact. If we think of xT as an 1× n matrix then ‖x‖∗ is the matrix norm induced by

the general vector norm ‖ · ‖ on Rn. A very useful inequality is:

xT y ≤ ‖x‖ · ‖y‖∗ ∀x, y ∈ Rn (1.18a)

which follows directly from the definition of the dual norm. Since this holds for all x, y, it

is equivalent to ∣∣xT y∣∣ ≤ ‖x‖ · ‖y‖∗ ∀x, y ∈ Rn (1.18b)

because one can always choose −x in place of x if necessary. Moreover, given any x ∈ Rn,

there is a normalized y(x) ∈ Rn that attains equality, i.e.,

xT y(x) = ‖x‖∗ and ‖y(x)‖ = 1 (1.18c)

9This proves that V (p) is radially unbounded; see also Remark 3.17 in Chapter 3.2.
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A crucial fact for Rn is that the dual of a dual norm is the original norm, i.e., ‖ · ‖∗∗ = ‖ · ‖.
This and (1.18c) imply: given any x ∈ Rn there exists an y(x) ∈ Rn such that

xT y(x) = ‖x‖ and ‖y(x)‖∗ = 1 (1.18d)

because

‖x‖ = ‖x‖∗∗ = max
y:‖y‖∗=1

xT y = xT y(x)

where y(x) is a maximizer (which clearly exists).10 The inequalities (1.18a)(1.18b) say that

the inner product of any two vectors are upper bounded by the product of the norm of one

of the vectors and its dual norm of the other vector. For Euclidean norm this is the Cauchy-

Schwarz inequality, but (1.18a) holds for any norm. More remarkably, (1.18c)(1.18d) say

both the norm and its dual norm of any vector can be attained by the inner product of the

vector with some other vector, again for any norm that, unlike the Euclidean norm, may

not be defined by inner product.

These properties (1.18) are useful in applications and we use them to prove Lemma

1.3. For instance, together with the Hölder inequality, (1.18a) implies that p and q norms

are dual of each other where p, q ∈ [1,∞] and 1/p+ 1/q = 1 (if p =∞ then q := 1).

Lemma 1.11 Let p, q ∈ [1,∞] and 1/p+ 1/q = 1. The p-norm and the q-norm are dual of

each other.

Proof of Lemma 1.11. We prove the case of 1 < p <∞; the case of p = 1 or p =∞
follows a similar idea. For Rn, the Hölder inequality is∑

i

|xiyi| ≤ ‖x‖q ‖y‖p ∀x, y ∈ Rn

Hence

‖x‖q ≥ max
y:‖y‖p=1

∑
i

|xiyi| ≥ max
y:‖y‖p=1

∑
i

xiyi = ‖x‖∗

Therefore ‖x‖q ≥ ‖x‖∗. To prove the reverse inequality we have from (1.18a)

‖x‖∗ ≥ (‖y‖p)−1
∑
i

xiyi =

(∑
i

|yi|p
)−1/p∑

i

xiyi ∀y ∈ Rn

10For the p-norm the dual is the q-norm with p−1 + q−1 = 1 (see Lemma 1.11) and

(y(x))i :=
xp−1i

‖x‖p−1p

sign ((xi)
p)

so that xT y(x) = ‖x‖p and ‖y(x)‖q = 1.
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Since q = 1 + q
p , choose

yi := |xi|q/p sign(xi)

so that the above inequality becomes:

‖x‖∗ ≥

(∑
i

|xi|q
)−1/p∑

i

|xi|1+q/p =

(∑
i

|xi|q
) 1
q

= ‖x‖q

Hence ‖x‖∗ = ‖x‖q when ‖ · ‖ = ‖ · ‖p.
Lemma 1.11 and (1.18a) imply the following useful special cases:

xT y ≤ ‖x‖p ‖y‖q
(
p−1 + q−1 = 1

)
xT y ≤ ‖x‖2 ‖y‖2 (p = q = 2, Cauchy-Schwarz inequality)

‖x‖22 ≤ ‖x‖1 ‖x‖∞ (y := x, p = 1, q =∞)

We now use (1.18a) and (1.18d) to prove the mean value theorem for vector-valued

functions, which implies Lemma 1.3.

Lemma 1.12 Consider any differentiable function f : Rn → Rm. Given any x, y, w in Rn
we have

wT (f(y)− f(x)) = wT
∂f

∂x
(z) (y − x) (1.19a)

‖f(y)− f(x)‖ ≤
∥∥∥∥∂f∂x (z)

∥∥∥∥ ‖y − x‖ (1.19b)

where z := αx+ (1− α)y for some α ∈ [0, 1], ‖ · ‖ is any norm, and for matrix, it denotes

the induced norm.

Proof of Lemma 1.12. Fix any x, y, w in Rn. Let z(α) := (1− α)x+ αy for α ∈ [0, 1]

so that z(0) = x and z(1) = y, and z(α) traces the straight path from x to y. Define the

function

g(α) := gw(α) := wT f(z(α))

as a function of α ∈ [0, 1]. Since g is from R to R the standard mean value theorem implies

that

g(1)− g(0) = g′(β)

for some β ∈ [0, 1] that depends on w. Since g(0) = wT f(x) and g(1) = wT f(y) this becomes

(using chain rule)

wT (f(y)− f(x)) = wT
∂f

∂x
(z(β)) (y − x)
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proving (1.19a).

To prove (1.19b), use (1.18d) to choose w ∈ Rn such that11

wT (f(y)− f(x)) = ‖f(y)− f(x)‖ and ‖w‖∗ = 1

Substituting this w into (1.19a) yields

‖f(y)− f(x)‖ = wT (f(y)− f(x)) = wT
∂f

∂x
(z(β)) (y − x)

≤ ‖w‖∗ ·
∥∥∥∥∂f∂x (z(β))(x− y)

∥∥∥∥
≤

∥∥∥∥∂f∂x (z(β))

∥∥∥∥ · ‖x− y‖
proving (1.19b). In the above, the first inequality follows from (1.18a) and the second

inequality follows from the definition of the induced norm of ∂f
∂x . This completes the proof

of Lemma 1.12.

Proof of Lemma 1.3. To prove Lemma 1.3.1 fix any x0 ∈ D. Take any r > 0 such that

the convex and compact set Br(x0) ⊆ D. For any x, y ∈ Br(x0) we have from (1.19b)

‖f(y)− f(x)‖ ≤
∥∥∥∥∂f∂x (z)

∥∥∥∥ ‖y − x‖
for some z ∈ Br(x0) between x and y and for any norm ‖ · ‖. By assumptions in Lemma

1.3, ∂f∂x not only exists but is also continuous. Since Br(x0) is compact the maximization in

L := L(x0) := max
z∈Br(x0)

∥∥∥∥∂f∂x (z)

∥∥∥∥
is attained. Hence f is locally Lipschitz at x0 with Lipschitz constant L, as desired.

For Lemma 1.3.2, let

L := sup
z∈D

∥∥∥∥∂f∂x (z)

∥∥∥∥
Suppose L is finite. Since D is convex, the above argument goes through with Br(x0)

replaced by D to prove that f is Lipschitz with L. Conversely suppose f is Lipschitz with a

11 If the norm ‖ · ‖ is Euclidean then the argument below simplifies to: setting w := f(y)− f(x)
in (1.19a) yields

‖f(y)− f(x)‖22 = (f(y)− f(x))T
∂f

∂x
(z(β)) (y − x)

≤ ‖f(y)− f(x)‖2 ·
∥∥∥∥∂f∂x (z(β))

∥∥∥∥
2

‖y − x‖2

proving (1.19b). This is done in [23].
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Lipschitz constant K, i.e., ‖f(x)− f(y)‖ ≤ K‖x− y‖ for all x, y ∈ D. We now argue that

L must be finite. Assume for the sake of contradiction that for each integer k > 0 there

exists an xk ∈ D such that the induced norm∥∥∥∥∂f∂x (xk)

∥∥∥∥ := max
‖y‖6=0

∥∥∥∂f∂x (xk) y
∥∥∥

‖y‖
> k

Let yk 6= 0 attain the maximization above, i.e., for all integers k > 0, there exist xk ∈ D
and yk ∈ Rn such that ∥∥∥∥∂f∂x (xk) yk

∥∥∥∥ > k ‖yk‖ (1.20a)

Apply (1.18d) to (1.20a) to choose an wk ∈ Rn such that

wTk
∂f

∂x
(xk) yk =

∥∥∥∥∂f∂x (xk) yk

∥∥∥∥ and ‖wk‖∗ = 1

i.e., for all integers k > 0 there exist xk ∈ D and yk, wk in Rn such that

wTk
∂f

∂x
(xk) yk > k ‖yk‖ and ‖wk‖∗ = 1 (1.20b)

Fix any ε > 0. Since ∂f
∂x is continuous there is a δk > 0 such that for all integers k > 0∥∥∥∥∂f∂x (z)− ∂f

∂x
(xk)

∥∥∥∥ < ε for any z ∈ Bδk(xk) ⊆ D (1.20c)

Note that yk in (1.20a) can be chosen with arbitrarily small norm ‖yk‖ > 0. Hence we can

choose x̂k in the ball Bδk(xk) such that x̂k − xk = yk for an 0 < ‖yk‖ < δk. Then we have

by (1.19a)

wTk (f(x̂k)− f(xk)) = wTk
∂f

∂x
(ẑk) (x̂k − xk)

= wTk
∂f

∂x
(xk) yk + wTk

(
∂f

∂x
(ẑk)− ∂f

∂x
(xk)

)
yk (1.21)

for some ẑk ∈ Bδk(xk) between x̂k and xk.

We now examine each term in (1.21). On the left-hand side, (1.18a) implies

wTk (f(x̂k)− f(xk)) ≤ ‖wk‖∗ · ‖f(x̂k)− f(xk)‖ = ‖f(x̂k)− f(xk)‖ (1.22)

by the choice of wk. On the right-hand side, the first term is lower bounded in (1.20b). The

magnitude of the second term can be upper bounded by:∣∣∣∣wTk (∂f∂x (ẑk)− ∂f

∂x
(xk)

)
yk

∣∣∣∣ ≤ ‖w‖∗ ·
∥∥∥∥(∂f∂x (ẑk)− ∂f

∂x
(xk)

)
yk

∥∥∥∥
≤

∥∥∥∥∂f∂x (ẑk)− ∂f

∂x
(xk)

∥∥∥∥ · ‖yk‖
< ε ‖yk‖
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where the first inequality follows from (1.18b), the second inequality from the definition of

matrix norm, and the last inequality from (1.20c) since ẑk ∈ Bδk(xk). Hence the right-hand

side of (1.21) satisfies

wT
∂f

∂x
(xk) yk + wT

(
∂f

∂x
(ẑk)− ∂f

∂x
(xk)

)
yk > (k − ε) ‖yk‖

Substituting this and (1.22) into (1.21), we have, for all integers k > 0 there exist xk, x̂k ∈
Bδk(xk) ⊆ D such that

‖f(x̂k)− f(xk)‖ > (k − ε)‖x̂k − xk‖

For large enough k, this contradicts that f is Lipschitz with Lipschitz constant K. This

completes the proof of Lemma 1.3.2.

Lemma 1.3.3 follows from Lemma 1.3.2 since L is finite if D is compact. Lemma 1.3.4

follows from Lemma 1.3.2 with D = Rn. This completes the proof of the lemma.

1.5.4 APPENDIX: PROOF OF THEOREM 1.10

Consider the projected dynamical system

ẋ = πK(x(t), f(x(t))), x(0) = x0 given (1.23)

where f : Rn → Rn and π denotes the projection such that x(t) stays in the closed convex

polyhedron K. Informally π(x, v) = v if x is in the interior of K or if v points into K, and,

if x is on the boundary of K and v points out of K, π(x, v) = v + γ where γ is an inward

normal to K at x such that a solution of (1.23) stays in K. 12 The system (1.13) is a special

case of (1.23) where K is the nonnegative quadrant Rn+, i.e.,

ẋ = πRn+(x(t), f(x(t))) = (f(x(t)))
+
x(t)

For the proof in this subsection we assume K ⊆ Rn+. Consider the following condition:

C1.1: There exists an B <∞ such that f satisfies

1. ‖f(x)‖ ≤ B(1 + ‖x‖) for all x ∈ K, and

2. (f(x)− f(y))T (x− y) ≤ B‖x− y‖2 for all x, y ∈ K.

Here ‖ · ‖ can be any norm since all norms are equivalent in Rn (the constant B may de-

pend on the chosen norm). These conditions are called the linear growth condition and the

one-sided Lipschitz condition. The standard Lipschitz condition ‖f(x)− f(y)‖ ≤ L‖x− y‖

12See [20, equation (5)] for a precise definition of π.
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implies both the one-sided Lipschitz condition and continuity of f , but the one-sided Lips-

chitz condition and continuity do not imply each other. In particular f can be discontinuous

and satisfies C1.1. Hence the right-hand side of (1.23) can be discontinuous both because

of the projection π and because f(x) is discontinuous (even though Theorem 1.10 assumes

f to be either globally or locally Lipschitz).

Recall that a solution to (1.23) is defined to be a function (x(t), t ≥ 0) that is ab-

solutely continuous and satisfies (1.23) almost everywhere. Theorem 1.10 follows from the

next result proved in [20, Theorems 2 and 3].

Lemma 1.13 Suppose C1.1 holds. Then there is a unique solution (x(t), t ≥ 0) to (1.23).

To prove Theorem 1.10 we first show that if f is Lipschitz over the nonnegative

quadrant then f satisfies C1.1 with K = Rn+ and hence a unique solution to (1.13) exists

(Theorem 1.10.1). Then we show that if f is only locally Lipschitz but any solution, when

exists, stays in a compact set then a unique solution exists as well (Theorem 1.10.2).

Proof of Theorem 1.10.1. First suppose f in (1.13) is Lipschitz over the nonnegative

quadrant K := Rn+, i.e., there exists L <∞ such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, x, y ∈ K

under any norm ‖ · ‖. Since f is defined on Rn, f(0) is finite. Hence we have for any x ∈ K

‖f(x)‖ ≤ ‖f(x)− f(0)‖+ ‖f(0)‖ ≤ L‖x‖+ ‖f(0)‖ ≤ B(1 + ‖x‖)

for any finite B ≥ max{L, ‖f(0)‖}, where the second inequality follows from the Lipschitz

continuity of f . Moreover, for any x, y ∈ K, the Cauchy-Schwarz inequality implies

(f(x)− f(y))T (x− y) ≤ ‖f(x)− f(y)‖2 · ‖x− y‖2

Since all norms are equivalent in Rn we can convert the above inequality from the Euclidean

norm ‖ · ‖2 to the norm that defines the Lipschitz continuity of f to obtain

(f(x)− f(y))T (x− y) ≤ a ‖f(x)− f(y)‖ · ‖x− y‖ ≤ aL‖x− y‖2

for some finite constant a, where the second inequality follows from the Lipschitz continuity

of f . Hence f satisfies condition C1.1, and Theorem 1.10.1 follows from Lemma 1.13.

Proof of Theorem 1.10.2. Suppose now that f is only locally Lipschitz over a domain

D ⊆ Rn+ under any norm, but any solution to (1.13), if exists, lies entirely in a compact set

W ⊆ D that contains the initial point x0. We will prove the theorem through two lemmas.

Lemma 1.14 The function f is Lipschitz on the compact set W ⊆ D, i.e., there exists

L <∞ such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, x, y ∈W
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Lemma 1.15 Suppose f is Lipschitz on W under any norm. There is a function f̂ : Rn+ →
Rn+ that is Lipschitz on Rn+ (with possibly a different Lipschitz constant if ‖ · ‖ is not the

Euclidean norm) and coincides with f over W , i.e.,

f̂(x) = f(x), x ∈W

Then since any solution (x(t), t ≥ 0) to (1.13), if it exists, lies entirely in W , the

solutions to the system (1.13) coincide with the solutions to the following system

ẋ =
(
f̂(x(t))

)+
x(t)

, x(0) = x0 given (1.24)

Since f̂ is Lipschitz on Rn+ (with possibly a different Lipschitz constant from that of f),

by Theorem 1.10.1, there is indeed a unique solution (x(t), t ≥ 0) to (1.24) and hence to

(1.13). Therefore the proof of the theorem will be complete after Lemmas 1.14 and 1.15 are

proved.

Proof of Lemma 1.14. Since W is compact, D is open, W ⊆ D, and f is locally Lipschitz

in D we can construct an open cover in D of W such that f is Lipschitz on each open set

in the cover, as follows. For each x ∈W there is an r(x) > 0 and L(x) <∞ such that the

open ball Br(x)(x) ⊆ D and

‖f(y)− f(z)‖ ≤ L(x)‖y − z‖, y, z ∈ Br(x)(x)

Clearly the collection {Br(x)(x) : x ∈W} is such an open cover with W ⊂ ∪x∈WBr(x)(x) ⊆
D. Since W is compact there is a finite subcover, i.e., there exists a finite collection {Bi :=

Br(xi)(xi), xi ∈W} such that

W ⊆ ∪iBi ⊆ D

We now prove by contradiction that f is Lipschitz on the compact set W .

Suppose not and for any integer k > 0 there are yk 6= zk in W such that ‖f(yk)−
f(zk)‖ > k ‖yk − zk‖. Since W is compact there exists convergent subsequences ykj and

zkj such that limj ykj = y and limj zkj = z with y, z ∈W .13 This implies three mutually

exclusive cases illustrated in Figure 1.9, each of which we now argue violates

‖f(ykj )− f(zkj )‖ > kj ‖ykj − zkj‖ for all j (1.25)

leading to a contradiction.

13Even though ykj 6= zkj for all j, it is possible that all convergent subsequences have y = z.
Hence we cannot take limit in (1.25) and use ‖f(y)− f(z)‖ ≥ limj kj ‖ykj − zkj‖.
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Figure 1.9: Proof of Lemma 1.14.
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(a) Suppose y, z ∈ Bi for some Bi over which f is Lipschitz. Since limj ykj = y and

limj zkj = z, Bi contains all but finitely many ykj , zkj . The Lipschitz continuity of f

over Bi then violates (1.25) since ykj 6= zkj for all j.

(b) Suppose y and z are in different covering sets but y, z are “close”. Specifically since

f is locally Lipschitz at y, there is an Ly and a δy > 0 such that ‖f(a)− f(b)‖ ≤
Ly‖a− b‖ for all a, b in Bδy(y). Similarly there is an Lz and a δz > 0 such that

‖f(a)− f(b)‖ ≤ Lz‖a− b‖ for all a, b in Bδz(z). If either z ∈ Bδy(y) or y ∈ Bδz(z)
then (1.25) is violated (since Bδy(y) or Bδz(z) contains all but finitely many ykj , zkj ).

(c) Suppose finally that y and z are in different covering sets B1 and Bk respectively

and ‖y − z‖ > min{δy, δz} =: r > 0. Then taking limit in j on both sides of (1.25)

yields

‖f(y)− f(z)‖ ≥
(

lim
j
kj

)(
lim
j
‖ykj − zkj‖

)
≥ r

(
lim
j
kj

)
(1.26)

Since W is connected (because D is connected by definition) there is a sequence of

covering sets, say, B1, . . . , Bk and w1, . . . , wk−1 such that

y ∈ B1, w1 ∈ B1 ∩B2, w2 ∈ B2 ∩B3, . . . , wk−1 ∈ Bk−1 ∩Bk, z ∈ Bk

By construction f is Lipschitz with Lipschitz constant L(xi) over each open ball Bi
of radius r(xi). We have

‖f(y)− f(z)‖ = ‖(f(y)− f(w1)) + (f(w1)− f(w2)) + · · ·+ (f(wk−1)− f(z))‖
≤ ‖f(y)− f(w1)‖+ ‖f(w1)− f(w2)‖+ · · ·+ ‖f(wk−1)− f(z)‖
≤ L(x1)‖y − w1‖+ L(x2)‖w1 − w2‖+ · · ·+ L(xk)‖wk−1 − z‖
≤ 2 (L(x1)r(x1) + · · ·+ L(xk)r(xk)) < ∞

This contradicts (1.26).

This proves that f is Lipschitz on the compact set W , as desired.

Proof of Lemma 1.15. Given a function g : A→ H2 where A is a subset of a Hilbert space

H1 and H2 is another Hilbert space.14 If g is Lipschitz on A under the norm induced by the

inner product (Euclidean norm for Rn), then there is a function ĝ : H1 → H2 that extends

g (i.e., ĝ(x) = g(x) for x ∈ A) and is Lipschitz on H1 with the same Lipschitz constant as

g. This is called the Kirszbraun theorem. We now apply this to our problem.

14A Hilbert space is a inner product space that is complete under the norm induced by the inner
product. Examples are Rn,Rn+ or any linear subspace of Rn endowed with the Euclidean norm
(induced by the inner product on Rn).
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Lemma 1.14 shows that f is Lipschitz on W ⊆ Rn+ under some norm. Since all norms

are equivalent in Rn, f is Lipschitz on W under the Euclidean norm with a possibly dif-

ferent Lipschitz constant. The Kirszbraun theorem then implies that there is a Lipschitz-

continuous extension f̂ : Rn+ → Rn+ with f̂ ≡ f on W .

Applying Theorem 1.10.1 to f̂ completes the proof of Theorem 1.10.2.

1.6 BIBLIOGRAPHICAL NOTES

The Transmission Control Protocol (TCP) was published by Vinton Cert and Robert Kahn

in 1974 [14] and deployed as the TCP/IP standard on the ARPANet (precursor of the Inter-

net) by 1983. There are many textbooks that describe in detail transport protocol services

and different congestion control protocols in TCP e.g. [16, 45, 31]. The first congestion

control algorithm on the Internet was implemented by Jacobson in Tahoe (1988) and Reno

(1990) versions of TCP [26] based on the Additive Increase Multiplicative Decrease (AIMD)

idea of [27]. The TCP Vegas is proposed in [12]. A mathematical model is introduced, val-

idated and analyzed in [37]. TCP FAST is proposed and analyzed in [50] (including that

the link model (1.6b) is well defined). The RED algorithm is proposed in [22] and REM in

[4]. There are many other AQM proposals, including the PI controller [25] and AVQ [30].

Heterogeneous protocols where sources react to different types of congestion prices, e.g.

some react to packet loss and others to packet delay are analyzed in [46, 47]. See [36] for

an overview of Internet congestion control models.

There are many good texts on dynamical systems described by ordinary differential

equations. The materials in Chapter 1.5.1 on the existence and uniqueness of solutions

to Lipschitz continuous ODEs are mainly taken from [29, Chapter 3]. Its application to

the TCP/AQM algorithm in Chapter 1.5.2 is new. Projected dynamics (1.13) is a simple

kind of discontinuous ODE systems. For projection onto any closed convex polyhedron, the

existence and uniqueness of the solution are established in [20, Theorems 2 and 3]. This is

used to prove Theorem 1.10 in Appendix 1.5.4 (see [24] for the Kirszbraun theorem). It is

also proved in [20, Lemma 2] that the solution is continuous in its initial state, which is

used to prove LaSalle’s invariance principle in Chapter 3.1 for projected dynamics. See [17]

for a tutorial on general discontinuous ODE systems, from which Examples 1.8 and 1.9 are

taken.

1.7 PROBLEMS

Exercise 1.1. Show that if f is locally Lipschitz at x0 then it is continuous at x0, i.e.,

given any ε > 0 there exists a δ = δ(ε) > 0 such that ‖f(x)− f(x0)‖ < ε for all x ∈ Bδ(x0).

Exercise 1.2. Consider ẋ = f(x(t)) for t ≥ 0 where f(x) =
√
x, x ≥ 0.

1. Show that f(x) is not locally Lipschitz around 0.
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2. Suppose x(0) = 0. Since f is continuous, solutions exists. Show that it is not unique

by exhibiting two distinct solutions (x(t), t ≥ 0).

Exercise 1.3. Suppose functions f1 and f2 are globally Lipschitz with constants L1 and

L2 respectively, i.e.,

‖f1(y)− f1(x)‖ ≤ L1‖y − x‖ and ‖f2(y)− f2(x)‖ ≤ L2‖y − x‖

Prove

1. f1 + f2 is Lipschitz;

2. f2 ◦ f1 is Lipschitz;

3. f1f2 is not necessarily Lipschitz, unless both are bounded.

Exercise 1.4. Consider the following simplified version of the Reno/RED model:

ẋi =

(
1

T 2
i

− 1

2
qi(t)x

2
i (t)

)+

xi(t)

ḃl = (yl(t)− cl)+bl(t)
pl(t) = min{ρlbl(t), 1}

where for any a, b ∈ R, (a)+b := a if a > 0 or b > 0 and 0 otherwise, and qi(t) =
∑
lRlipl(t)

and yl(t) :=
∑
iRlixi(t). We can eliminate the prices pl(t) to obtain an ODE model involv-

ing only (x(t), b(t)):

ẋi =

(
1

T 2
i

− 1

2
x2i (t)

∑
l

Rli min{ρlbl(t), 1}

)+

xi(t)

=: [fi (xi(t), b(t))]
+
xi(t)

(1.27a)

ḃl =

(∑
i

Rlixi(t)− cl

)+

bl(t)

=: [gl (x(t), bl(t))]
+
bl(t)

(1.27b)

Prove that the function (f, g) defined by the right-hand side of (1.27) is Lipschitz on any

compact D ∈ RN+L.15

15To prove that given any initial state (x(0), b(0)) = (x0, b0) the system (1.27) has a unique
solution (x(t), b(t), t ≥ 0), we need to show, in addition, that there exists a compact subset
W := W (x0, b0) of D containing (x0, b0) such that every solution (x(t), b(t), t ≥ 0) of (1.27),
if exists, lies in W . Theorem 1.10.2 then guarantees the existence and uniqueness of solution
to (1.27) given any initial state (x0, b0).
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C H A P T E R 2

Equilibrium structure

Consider a set of ordinary differential equations (ODEs):

ẋ = f(x(t)), t ≥ 0, x(0) = x0 (2.1)

where f : D → Rn and D ⊆ Rn is a domain (open and connected set). Here f may not be

continuous, e.g., (2.1) can be a projected dynamical system.

Definition 2.1 A point x∗ ∈ D is an equilibrium of (2.1) if f(x∗) = 0.

In this chapter we study the equilibria of the family of primal-dual algorithms modeled

by a set of ODEs (the basic model (1.10)). It turns out that, under mild assumptions, the

equilibrium (x∗, p∗) of a primal-dual algorithm has a very simple characterization: x∗ is the

unique maximizer of the following convex problem called network utility maximization:

max
x≥0

∑
i

Ui(xi) subject to Rx ≤ c

and p∗ is a minimizer of the associated Lagrangian dual problem. In this chapter we explain

this equilibrium structure and explore some of its implications.

2.1 CONVEX OPTIMIZATION

We start by introducing some basic concepts in convex optimization.

2.1.1 CONVEX PROGRAM

A convex program is defined by a convex set and a convex function, as we now define.

Convex set. A set is called convex if, given any two points in the set, every point in

between lies in the set.

Definition 2.2 A set D ⊆ Rn is convex if, given any x, y ∈ D,

αx+ (1− α)y ∈ D, ∀α ∈ [0, 1]

For instance for any x0 ∈ D there exists r > 0 such that the r-ball around x0,
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Br(x0) := { x ∈ D | ‖x− x0‖2 ≤ r }

is contained in D, where ‖x‖2 :=
√
x21 + x22 + · · ·+ x2n is the Euclidean norm. Moreover

Br(x0) is convex for any r > 0, x0 ∈ D. The definition is illustrated in Figure 2.1.

.#
x 

.#y 

(a) Convex set.

.#
x 

.#y 

(b) Nonconvex set.

Figure 2.1: Definition of a convex set: every point in between two points in the set lies in the

set.

Three types of convex sets are the most useful in engineering applications. First is a

set specified by linear inequalities:

Affine set: C := {x ∈ Rn | Ax ≤ b}, n ≥ 1

where A ∈ Rm×n and b ∈ Rm, m ≥ 1. The second is a second-order cone (SOC) defined as:

SOC: C := {(x, t) ∈ Rn+1 | ‖x‖2 ≤ t}, n ≥ 1

A ball Bt(0) is a cross section of the second-order cone defined by ‖x‖2 ≤ t for a fixed

t. The third is a set of semidefinite matrices defined as follows. A real matrix X ∈ Rn×n
is symmetric if X = XT , i.e., Xij = Xji for all i, j = 1, . . . , n. A real matrix X is positive

semidefinite (psd) if X is symmetric and xTXx =
∑
i,j Xijxixj ≥ 0 for all x ∈ Rn. We write

X � 0 to denote that X is positive semidefinite. Given a symmetric matrix X ∈ Rn×n the

following are equivalent:

1. X is positive semidefinite.

2. All eigenvalues of X are nonnegative.

3. X = BBT for some matrix B ∈ Rn×m and some natural number m.

The set of all positive semidefinite matrices is:

psd matrices: Sn+ := {X ∈ Rn×n | X � 0}, n ≥ 1
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The proof that these three types of sets are convex is left as an exercise. Efficient algorithms

exist to solve constrained optimization problems that minimize a certain cost function over

an affine set, second-order cones, or semidefinite matrices.

Given these three basic convex sets we can create other convex sets through simple

convexity-preserving operations. Let X and Y be linear subspaces. For example X := Rn
and Y := Rm.

1. Linear transformation: Let f : X→ Y be linear.

(a) If A ⊆ X is convex then f(A) := {f(x) | x ∈ A} ⊆ Y is convex.

(b) If B ⊆ Y is convex then f−1(B) = {x | f(x) ∈ B} ⊆ X is convex.

2. Direct product: Let A ⊆ X, B ⊆ Y be convex. Then A×B := {(x, y) | x ∈ A, y ∈ B}
is convex. In fact the direct product of an arbitrary (e.g., uncountably many) number

of convex sets is convex.

3. Finite sum: Let A,B ⊆ X be convex. Then A+B := {a+ b | a ∈ A, b ∈ B} is convex.

Therefore the sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B ⊆ X be convex. Then the intersection A ∩B is con-

vex. In fact the intersection of an arbitrary collection of (e.g., uncountably many)

convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. In contrast to

intersection the union of two convex sets can be nonconvex.

Example 2.3 Consider the ellipsoid

E := {x ∈ Rn | xTAx ≤ c}

where A ∈ Rn×n is a psd matrix and c > 0. E is convex because it can be derived from an

application of convexity-preserving operation on a convex set as follows. Since A is psd it

can be expressed as A := BBT for some B ∈ Rn×m. Hence xTAx = xTBBTx = ‖BTx‖22.

Let y = BTx. Then the set C := {(y, t) ∈ Rm+1 | ‖y‖2 ≤ t} is a (convex) SOC. Hence

the set D := {y ∈ Rm | ‖y‖2 ≤ c} is convex since it is the intersection of two convex sets:

D = C ∩ (Rm × {t = c})

Then E = f−1(D) where f(x) := BTx is a linear function from Rn to Rm. Hence E is

convex as desired.

Convex function.
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Definition 2.4 A function f : D → R defined over a convex domain D ⊆ Rn is convex if,

for all x, y ∈ D and all α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

It is strictly convex if the inequality is strict for x 6= y and α ∈ (0, 1). A function f is concave

(strictly concave) if −f is convex (strictly convex).

The definition says that the straight line connecting f(x) and f(y) lies above the function

f between x and y, as illustrated in Figure 2.2(a).

f(x) 

x ∈ D
x y

α f (x)+ (1−α) f (y)

(a) Convex function.

f(x) 

x ∈ D

(b) Nonconvex function.

f(x) 

x ∈ D
x y

f y( )− f x( )
∇f x( )T y− x( )

(c) Differentiable convex function.

Figure 2.2: Definition of a convex function: The straight line connection f(x) and f(y) lies

above f between x and y. The linear approximation of a differentiable convex function f lies

below f .

Example 2.5 If f(x) = x2 then for any x, y and α ∈ [0, 1]

αf(x) + (1− α)f(y)− f(αx+ (1− α)y) = α(1− α) (x− y)
2
> 0
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for x 6= y and α ∈ (0, 1). Hence f is strictly convex.

Checking if a function is convex by verifying the convexity definition is often difficult.

The following theorem provides three different ways to check the convexity of a function.

Consider f : D → R over a convex domain D ⊆ Rn. Let ∇f(x) denote the column vector

of partial derivatives of f (whereas ∂f
∂x denotes the row vector of partial derivatives). Let

∇2f(x) :=
∂2f

∂x2
:=

[
∂2f

∂xi ∂xj

]
denote the n× n Hessian matrix.

Theorem 2.6 The function f is convex on D if and only if any one of the following holds:

1. For a differentiable function f ,

f(y)− f(x) ≥ ∇f(x)T (y − x), ∀x, y ∈ D

2. For a twice differentiable function f ,

∇2f(x) � 0, ∀x ∈ D

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).

3. For x ∈ D and all v ∈ Rn the function

g(t) := f(x+ tv)

is convex on {t ∈ R | x+ tv ∈ D}.

The first-order condition in Theorem 2.6.1 says that the function f always lies above its

linear approximation, i.e., f(y) is always greater than or equal to the tangent plane to f

at any point x. This is illustrated in Figure 2.2(c). See Appendix 5.4 for a proof of the

first-order condition. The second-order condition in Theorem 2.6.2 roughly says that the

gradient at any point x is increasing around x. The condition in Theorem 2.6.3 does not

require differentiability of f and says that, if we take any cross section of the surface f

defined by (x, v), i.e., from x in the direction of v or −v, the corresponding scalar function

g(t) is convex.

Theorem 2.6 provides an exact characterization for convexity, but not for strict con-

vexity. For instance if ∇2f(x) � 0 for all x ∈ D then f is strictly convex in D, but the

converse may not hold; e.g., f(x) = x4 is strictly convex but f ′′(x) = 0 at x = 0.
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A common mistake is to confuse the second-order condition in Theorem 2.6.2 that

∇2f(x) is positive semidefinite with the condition that

xT∇2f(x)x ≥ 0 for all x ∈ D

For any x ∈ D, ∇2f(x) � 0 if and only if

yT∇2f(x)y ≥ 0 for all y ∈ Rn

i.e., regardless of what D is, the test on ∇2f(x) is for all y ∈ Rn. This is illustrated in the

next example.

Example 2.7 Consider the function

f(x1, x2) = x1x2

over the domain

D :=
{

(x1, x2) ∈ R2 | x1 > 0, x2 > 0
}

with

∇2f(x) =

[
0 1

1 0

]
We have

xT∇2f(x)x = 2x1x2 > 0 for all x ∈ D

This however does not imply that f is strictly convex over D. The eigenvalues of ∇2f(x)

are 1 and −1, and hence f is neither convex nor concave. Indeed the function value along

the direction x1 = x2 corresponding to the eigenvalue-eigenvector pair
(
1, [1 1]T

)
is given

by

g(t) := f

([
x1
x2

]
+ t ·

[
1

1

])
= (x1 + t)(x2 + t), t > −min{x1, x2}

Hence g(t) is convex in t, i.e. f is convex along x1 = x2. Along the direction x1 = −x2
corresponding to the eigenvalue-eigenvector pair

(
−1, [1 − 1]T

)
the function value is

g(t) := f

([
x1
x2

]
+ t ·

[
1

−1

])
= (x1 + t)(x2 − t), −x1 ≤ t ≤ x2

Therefore g(t) is concave in t, i.e., f is concave along x1 = −x2. This is illustrated in Figure

2.3.

Example 2.8 We illustrate Theorem 2.6 using f(x) = log x for x > 0.
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Figure 2.3: Contour plot of f(x) = x1x2 which is neither convex nor concave over D :=

{(x1, x2) |x1 > 0, x2 > 0}.
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1. We have f ′(x) = x−1 and for x 6= y > 0 (such that y
x 6= 1)

f(y)− f(x) = log
y

x
<

y

x
− 1 =

1

x
(y − x) = f ′(x)(y − x)

where the inequality follows from log z < z − 1 for z > 0 and z 6= 1. Hence f is strictly

concave by Theorem 2.6.1.

2. To use Theorem 2.6.2 we have

f ′′(x) = − 1

x2
< 0

implying strict concavity of f .

Example 2.9 We illustrate the three sufficient conditions of Theorem 2.6 using the convex

f : R2 → R defined by:

f(x) := f(x1, x2) := x21 − 4x1x2 + 4x22 = (x1 − 2x2)2

For the first-order condition we have

∇f(x) := ∇f(x1, x2) = 2(x1 − 2x2)

[
1

−2

]
and hence

f(y)− f(x)−∇f(x)T (y − x)

= (y1 − 2y2)2 − (x1 − 2x2)2 − 2(x1 − 2x2)((y1 − x1)− 2(y2 − x2))

= (y1 − 2y2)2 − 2(x1 − 2x2)(y1 − 2y2) + (x1 − 2x2)2

= ((y1 − 2y2)− (x1 − 2x2))
2 ≥ 0

satisfying the condition of Theorem 2.6.1.

For Theorem 2.6.2 we have

∇2f(x) = 2

[
1

−2

] [
1 −2

]
Therefore ∇2f(x) is positive semidefinite as

yT∇2f(x) y = 2

(
[y1 y2]

[
1

−2

])2

≥ 0

for any y ∈ R2.



48 2. EQUILIBRIUM STRUCTURE

For Theorem 2.6.3 we have

g(t) := f(x+ tv) = ((x1 + tv1)− 2(x2 + tv2))
2

= ((v1 − 2v2) t+ (x1 − 2x2))
2

which is clearly a convex function in t for any fixed x and v.

The addition, multiplication by a positive constant, and supremum operations pre-

serve convexity. Specifically suppose f1 and f2 are two convex functions on the same domain.

Then

1. f := αf1 + βf2, α, β ≥ 0, is convex.

2. f := max{f1, f2} is convex. In fact f(x) := supy∈Y f(x; y) is convex in x for arbitrary

set Y , provided that, for every y ∈ Y fixed, f(x; y) is convex in x.

3. f(x, y) := |x|+ |y| defined on R2 is convex as it can be expressed in terms of the

supremum and addition operations (f(x, y) = max{x,−x}+ max{y,−y}).

Convex functions define another important class of convex sets. Let f : D → R where

D ⊆ Rn. If D is a convex set and f a convex function then for each α ∈ R the level set

{x ∈ D | f(x) ≤ α} is convex. Let f : D → Rm where D ⊆ Rn be a vector-valued function

where f := (f1, . . . , fm) with fi : D → R. Then the set specified by:

X := {x ∈ D | f(x) ≤ b} for some b ∈ Rm

is convex if each fi is convex. This is because the level sets

Xi := {x ∈ D | fi(x) ≤ bi}, i = 1, . . . ,m

are all convex and X = ∩mi=1Xi and hence is convex since intersection preserves convexity.

Convex program. Consider an optimization problem of the form:

min
x

f(x) subject to x ∈ X (2.2)

X ⊆ Rn is called the feasible set and f : Rn → R the objective function. The problem (2.2)

is called a convex program/problem if f is a convex function and X is a convex set. For

instance

X := {x ∈ Rn | g(x) ≤ b} for some b ∈ Rm

for a vector-valued convex function g : Rn → Rm. An x ∈ X is called a feasible solution of

(2.2). A feasible solution x∗ that attains the minimum of f over X (i.e., f(x∗) ≤ f(x) for

all x ∈ X) is called a (global) optimal solution/optimum or a (global) minimizer. A feasible
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solution x∗ that attains the minimum of f over a neighborhood of x∗ (i.e., f(x∗) ≤ f(x)

for all x ∈ Br(x∗) ∩X for some r > 0) is called a local optimal solution/optimum or a local

minimizer. By setting U(x) = −f(x), the following maximization problem is called a convex

program if U(x) is a concave function and X is a convex set:

max
x

U(x) subject to x ∈ X

An optimal solution may not exist and when it does, it may not be unique.

Theorem 2.10 Consider the problem (2.2).

1. An optimal solution x∗ exists if X is nonempty and compact (closed and bounded)

and f is continuous.

2. The optimal solution x∗ is unique if f is strictly convex.

Note that the existence of an optimal solution x∗ requires only that f be continuous, not

necessarily convex.

Convexity is important for the efficient computation of an optimal solution. This is

because for a convex objective function, local optimality implies global optimality. Moreover

only the first-order condition is required to guarantee local optimality. Specifically, for an

unconstrained minimization problem

min
x∈Rn

f(x)

a necessary condition for a point x∗ to be a local minimizer is (assuming f is differentiable)

∇f(x∗) = 0

If f is convex then this is also sufficient for x∗ to be globally optimal, as illustrated in Figure

2.2. For constrained minimization problem (2.2) where X is nonempty, closed and convex,

the first-order necessary condition for x∗ ∈ X to be a local minimizer becomes: there is a

neighborhood Br(x
∗) for some r > 0 such that

(∇f(x∗))
T

(x− x∗) ≥ 0 ∀x ∈ Br(x∗) ∩X (2.3)

i.e., moving away from x∗ to any other feasible point x inBr(x
∗) can only locally increase the

function value f . If f is convex then this is both necessary and sufficient for x∗ to be globally

optimal. To see this, suppose (2.3) holds but there is another x̂ ∈ X such that f(x̂) < f(x∗).

Consider z(α) := αx̂+ (1− α)x∗. Since X is convex z(α) is feasible for α ∈ [0, 1]. Since f

is convex we have, for any α ∈ (0, 1],

f(z(α)) ≤ αf(x̂) + (1− α)f(x∗) < f(x∗)
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But, for small enough α > 0 so that z(α) ∈ Br(x∗), this contradicts

f(z(α)) ≥ f(x∗) +∇T f(x∗)(z(α)− x∗) ≥ f(x∗)

where the first inequality follows from Theorem 2.6.1 and the second inequality from (2.3).

Hence x∗ is globally optimal in X.

Example 2.11 Consider

min
x∈R

f(x) := x2 subject to x ≥ a

See Figure 2.4. It is clear from the figure that the unique minimizer is 0 where f ′(0) = 0

f(x) 

a1
x[%

a2
[%

∇f x2
*( ) > 0

∇f x1
*( ) = 0

Figure 2.4: Example 2.11: minx≥a x
2. If a ≤ 0 then the unique minimizer is x∗1 = 0 where

f ′(x∗) = 0. If a > 0 then the unique minimizer is x∗2 = a where f ′(x∗) > 0.

if a ≤ 0 and a where f ′(a) > 0 if a > 0. We will derive this conclusion from the optimality

condition (2.3) which is

f ′(x∗)(x− x∗) ≥ 0, ∀x ≥ a (2.4)

First suppose a ≤ 0. If a ≤ x∗ < 0 then f ′(x∗) < 0 and there exists a feasible x > x∗ where

(2.4) cannot be satisfied. Similarly if x∗ > 0 ≥ a then f ′(x∗) > 0 and there exists a feasible

a ≤ x < x∗ where (2.4) cannot be satisfied. Hence the unique optimal is x∗ = 0 where

f ′(x∗) = 0. Suppose next a > 0. Then f ′(x) > 0 for any feasible x ≥ a. Then the only way

(2.4) can be satisfied is if x∗ = a.

Therefore the optimality condition reduces for this example (for any a ∈ R) to: x∗ is

optimal if and only if there exists a p∗ such that

x∗ ≥ a, p∗ ≥ 0, f ′(x∗) = p∗, p∗(x∗ − a) = 0

This is called the Karush-Kuhn-Tucker (KKT) condition for optimality.
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2.1.2 KKT THEOREM AND DUALITY

For our purposes a special case of (2.2) is sufficient where the objective function f is

separable in xi and the feasible set X is specified by a set of linear inequalities (i.e., an

affine set). It is also more convenient for the application to TCP/AQM to consider, without

loss of generality, maximization instead of minimization.

Specifically consider

max
x≥0

N∑
i=1

Ui(xi) subject to Rx ≤ c (2.5)

where R ∈ RL×N is any L×N matrix, c ∈ RL is any vector, and Ui are concave. The main

result Theorem 2.12 in this subsection holds for general linear constraints. After stating

the theorem we will then specialize to TCP/AQM applications where entries of R are

nonnegative and c > 0 is strictly positive. Hence there are L linear (or affine) constraints:∑
i

Rlixi ≤ cl, l = 1, . . . , L

Even though the objective function is separable in the decision variables xi, these variables

are coupled through the constraint Rx ≤ c. A direct solution will therefore require the

coordination among the xi’s. When (2.5) models TCP congestion control (see below), this

means that all TCP sources must coordinate in deciding their sending rates. This is clearly

impractical on a large network like the Internet. The simple structure of (2.5) – separable

objective linear constraints – however means that a distributed solution can be derived by

considering the Lagrangian dual (or the dual) problem of (2.5).

To derive the dual problem define the Lagrangian of (2.5) to be the following function:

L(x, p) :=
∑
i

Ui(xi)− pT (Rx− c) for p ≥ 0

To interpret, note that the Lagrangian L(x, p) contains L terms each of the form:

pl

(∑
i

Rlixi − cl

)
, l = 1, . . . , L

one for each constraint
∑
iRlixi ≤ cl. Since pl ≥ 0, this term is nonnegative if x violates

the constraint. Hence one can interpret L(x, p) as the sum of the primal objective function∑
i Ui(xi) and a penalty when any of the constraints in (2.5) is violated. Indeed if we mini-

mize over each pl ≥ 0 the penalty term pl(
∑
iRlixi − cl) we will ensure that no constraints

can be violated. Hence the problem (2.5), also called the primal problem, is equivalent to

max
x : x≥0,Rx≤c

∑
i

Ui(xi) = max
x≥0

min
p≥0

L(x, p)
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The dual objective function is defined to be:

D(p) := max
x≥0

L(x, p) =
∑
i

max
xi≥0

(
Ui(xi)− xi

∑
l

Rlipl

)
+
∑
l

clpl, p ≥ 0

where the last equality follows because the separability of the objective function allows us

to interchange the order of maxx≥0 and
∑
i. The maximization over x in the definition

of the dual objective function D(p) is unconstrained (i.e., x may not satisfy Rx ≤ c but

still satisfied the constraint x ≥ 0 that has not been dualized) and decoupled, and typically

much easier to solve than the original constrained problem (2.5). Note that a maximizer

xi in the definition of D(p) can be unbounded, e.g. when qi :=
∑
lRlipl ≥ 0 is smaller

than limxi→∞ U
′
i(xi). In this case we define the maximizer xi :=∞ and D(p) :=∞. The

(Lagrangian) dual problem is defined to be:

min
p≥0

D(p) :=
∑
i

max
xi≥0

(
Ui(xi)− xi

∑
l

Rlipl

)
+
∑
l

clpl (2.6)

Hence the dual problem is equivalent to:

min
p≥0

D(p) = min
p≥0

max
x≥0

L(x, p)

It is a convex problem whether or not Ui are concave.

It is easy to show that any primal feasible x ∈ X and dual feasible p ≥ 0 satisfy

U(x) ≤ D(p)

i.e., maxx≥0 minp≥0 L(x, p) ≤ minp≥0 maxx≥0 L(x, p). Hence the optimal primal value is

upper bounded by the optimal dual value:

max
x : x≥0,Rx≤c

∑
i

Ui(xi) ≤ min
p≥0

D(p)

This inequality is called the weak duality theorem. It holds whether or not the primal is

a convex problem. It also holds when the optimal primal and dual objective values are

unbounded: if the primal optimal value is ∞ then the dual problem is feasible; if the

dual optimal value is −∞ then the primal problem is infeasible. For general nonlinear

optimization the inequality can be strict in which case the gap

min
p≥0

D(p) − max
x:x≥0,Rx≤c

∑
i

Ui(xi)

is called the duality gap. For our convex program (2.5)–(2.6), strong duality holds and the

duality gap is zero.1 The dual problem (2.6) is sometimes called the Lagrange relaxation

1If, in addition to the linear constraints, there are nonlinear convex inequality constraints in
(2.5), then strong duality holds provided Slater’s condition, or other constraint qualifications,
hold. Slater’s condition is not needed for linear inequality constraints [11].
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because, in the maximization of L(x, p) over x, the hard constraint Rx ≤ c has been relaxed

into a penalty term in the Lagrangian function. It is therefore not surprising that the relaxed

problem (2.6) yields an upper bound on the original problem (2.5).

The key results on convex optimization that we will use are summarized in the fol-

lowing theorem.

Theorem 2.12 Consider the convex problem (2.5) and its Lagrangian dual problem (2.6)

and suppose that Ui are continuously differentiable and concave. A vector x∗ ∈ RN+ is primal

optimal if and only if there exists a p∗ ∈ RL such that

1. primal feasibility: Rx∗ ≤ c, x∗ ≥ 0.

2. dual feasibility: p∗ ≥ 0.

3. stationarity: U ′i(x
∗
i ) ≤

∑
lRlip

∗
l , with equality if x∗i > 0, for i = 1, . . . , N .

4. complementary slackness: p∗l (
∑
iRlix

∗
i − cl) = 0 for l = 1, . . . , L.

In that case p∗ is dual optimal, i.e., p∗ minimizes (2.6). The primal optimal solution x∗ is

unique if Ui are strictly concave. If, in addition, R has full row rank then the dual optimal

solution p∗ is unique provided x∗ > 0.

The complementary slackness condition means that if p∗l > 0 then the constraint must

be active
∑
iRlix

∗ = cl; equivalently if the constraint is inactive
∑
iRlix

∗ < cl then p∗l = 0.

2.2 NETWORK UTILITY MAXIMIZATION

We now apply the theory of convex optimization to understand the equilibrium structure

of TCP/AQM algorithms. The idea is to identify equilibrium conditions of these dynam-

ical systems with the KKT condition and derive the underlying utility functions that an

equilibrium point implicitly optimizes. We first apply Theorem 2.12 to example systems

Reno/RED, Vegas/DropTail and FAST/DropTail. We then prove the result for a class of

dual algorithms and for general primal-dual algorithms. We discuss implications of network

utility maximization on these algorithms.

We first specialize Theorem 2.12 to congestion control applications by imposing ad-

ditional assumptions on the routing matrix R, the link capacity vector c, and the utility

functions Ui that typically hold in practice. We explain these assumptions and their impli-

cations.

For congestion control models, the entries of R are assumed nonnegative, c > 0 is

assumed to be strictly positive. This implies that the feasible set of (2.5) is compact and

has nonempty interior, i.e., (2.5) is strictly feasible. Since Ui are continuous and the feasible
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set is compact, a primal optimal x∗ always exists (assuming Ui are defined on the feasible set;

see below). Strict feasibility is called the Slator’s condition and it implies strong duality.

Moreover, since the optimal primal value is finite, the dual problem is feasible and the

Slator’s condition implies that a dual optimal p∗ exists. Hence the existence of primal-dual

optimal (x∗, p∗) is always guaranteed for congestion control algorithms.

As we will see below the utility functions Ui for TCP are usually strictly concave

increasing and continuously differentiable. For p ∈ RL+ such that

qi(p) ∈
[

lim
xi→∞

U ′i(xi), lim
xi→0

U ′i(xi)

]
the unique maximizer xi in (2.6) is given explicitly by xi(p) = U ′−1i (qi(p)), possibly ∞. If

qi(p) > limxi→0 U
′
i(xi) ≥ 0, we define xi(p) := 0 and if qi(p) < limxi→∞ U

′
i(xi), we define

xi(p) :=∞. In the rest of this book we denote this maximizer (when Ui are strictly concave

increasing and continuously differentiable) by

xi := xi(p) :=

[
U ′−1i

(∑
l

Rlipl

)]+
, p ∈ RL+ (2.7)

where [a]+ := max{a, 0} for any a ∈ R, U ′i are the derivatives of Ui and U ′−1i are their

inverses.2 If Ui is not defined on the entire feasible set, e.g., Ui(xi) = log xi for TCP Vegas

and FAST, we will assume that limxi→0 U
′
i(xi) =∞ in which case xi(p) = U ′−1i (qi(p)) > 0

without projection. Moreover this implies that, given any qi ≥ 0, a unique maximizer

xi(p) = U ′−1i (qi(p)) > 0 exists (without projection) and the dual function D(p) is continu-

ously differentiable.

Example 2.13 If Ui(xi) = log(xi + ai) for xi ≥ 0 with ai > 0 then U ′−1i (qi) = 1
qi
− ai for

qi > 0, which can be negative for qi > 1/ai. The projection in (2.7) then sets xi(p) = 0. In

the context of congestion control, this means that if the end-to-end congestion price qi is

sufficiently large then set the sending rate xi to zero.

2If Ui is concave (not necessarily strictly so) and continuously differentiable then the inverse of
Ui may not exist in which case U ′−1i is defined to be the generalized inverse:

U ′−1i (p) := inf

{
xi ∈ R | U ′i(xi) =

∑
l

Rlipl

}
If Ui is concave and differentiable then U ′i is not necessarily continuous in which case the
generalized inverse U ′−1i is:

U ′−1i (p) := inf

{
xi ∈ R | U ′i(xi) ≤

∑
l

Rlipl

}
In the above it is understood that the infimum of an empty set is defined to be ∞.
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2.2.1 EXAMPLE: RENO/RED

From (1.1b) in Chapter 1.3.1 Reno is modeled by

ẋi =

(
1

T 2
i

− 1

2
qi(t)x

2
i (t)

)+

xi(t)

where q(t) := RT p(t) and for any a, b ∈ R, (a)+b = a if a > 0 or b > 0 and 0 otherwise. Here,

as in the rest of this chapter, R denotes a routing matrix. We take a simpler model of RED

where the loss probability is linear in the backlog until it saturates at 1:

ḃl = (yl(t)− cl)+bl(t)
pl(t) = min {ρbl(t), 1}

where y(t) := Rx(t) and c := (cl, l ∈ L) > 0 is a link capacity vector.

The equilibrium of Reno/RED is defined by ẋi = 0 and ḃl = 0 for all i, l. By the

definition of (a)+b , ẋi can only be zero if the equilibrium rate x∗i > 0 and

1

T 2
i

− 1

2
q∗i (x∗i )

2 = 0

since Ti > 0. Similarly ḃl = 0 implies y∗l ≤ cl with equality if b∗l > 0. Hence the equilibrium

of Reno/RED is characterized by:

x∗i =
1

Ti

√
2√
q∗i

and y∗l

{
≤ cl
= cl if b∗l > 0

for all i, l (2.8)

where p∗l = min{ρlb∗l , 1}. Hence we have

1

T 2
i

2

(x∗i )
2

= q∗i =
∑
l

Rli p
∗
l

Define a function Ui(xi) such that its derivative equals the left-hand side expression:

U ′i(xi) :=
1

T 2
i

2

x2i

so that

Ui(xi) := − 1

T 2
i

2

xi

and U(x) :=
∑
i Ui(xi).

Theorem 2.12 then implies that a point (x∗, p∗) ∈ RN+L is an equilibrium of

Reno/RED if and only if it is an optimal solution of

max
x≥0

U(x) := −
∑
i

2

T 2
i

1

xi
subject to Rx ≤ c (2.9)
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and its Lagrangian dual. To see this, note that, from Theorem 2.12, (x∗, p∗) is an optimal

solution of (2.9) and its dual if and only if

x∗ ≥ 0, Rx∗ ≤ c, p∗ ≥ 0,
2

T 2
i (x∗i )

2
=
∑
l

Rlip
∗
l = q∗i , y∗l = cl if b∗l > 0

These conditions coincide with the definition of equilibrium for Reno/RED.

Finally we claim that (x∗, p∗) is unique if the routing matrix R has full row rank.

Since Ui are strictly concave the optimal x∗ is unique. Hence the optimal q∗i is unique since

q∗i =
2

T 2
i (x∗i )

2

Since R has full row rank, RRT is invertible and hence

q∗ = RT p∗ =⇒ Rq∗ = RRT p∗ =⇒ p∗ =
(
RRT

)−1
Rq∗

which is unique.

Implications. From (2.8) the steady-state throughput of Reno is inversely proportional to

the round-trip time Ti and inversely proportional to the square root of the end-to-end loss

probability qi. This means that a long-distance connection (where the propagation delay is

long) has a smaller steady-state throughput than a local connection. It also means that a

TCP flow whose path has a high loss probability suffers a low throughput, even if the losses

are not due to buffer overflow (congestion) but due to random bit error or interference over

a wireless link.

2.2.2 EXAMPLES: VEGAS/DROPTAIL; FAST/DROPTAIL

Vegas is modeled by (writing αi instead of αidi):

ẇi =
1

di + qi(t)
sign (αi − xi(t)qi(t))

+
wi(t)

, xi(t) =
wi(t)

di + qi(t)
(2.10a)

ṗl =
1

cl
(yl(t)− cl)+pl(t) (2.10b)

where q(t) := RT p(t), y(t) := Rx(t), and sign(a) := 1 if a > 0, −1 if a < 0 and 0 if a = 0.

Let Ti(t) := di + qi(t) be the round-trip time of TCP flow i at time t.

Equilibrium (x∗, p∗) (or equivalently (w∗, p∗)) is defined by:

ẇi = 0 and ṗl = 0 for all i, l

yielding

x∗i q
∗
i = αi and y∗l

{
≤ cl
= cl if p∗l > 0

for all i, l
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FAST is modeled by:

ẇi = γ (αi − xi(t)qi(t))+wi(t) , xi(t) =
wi(t)

di + qi(t)
(2.11a)

ṗl =
1

cl
(yl(t)− cl)+pl(t) (2.11b)

It has the same equilibrium as Vegas.

At equilibrium we have ∑
l

Rlip
∗
l = q∗i =

αi
x∗i

Hence equating

U ′i(xi) =
∑
l

Rlipl =
αi
xi

yields the utility function Ui(xi) = αi log xi. A point (x∗, p∗) ∈ RN+L is an equilibrium of

Vegas or FAST if and only if it is an optimal solution of

max
x≥0

∑
i

αi log xi subject to Rx ≤ c (2.12)

and its Lagrangian dual. This is because Theorem 2.12 states that (x∗, p∗) is an optimal

solution of (2.12) if and only if

x∗ ≥ 0, Rx∗ ≤ c, p∗ ≥ 0,
αi
x∗i

=
∑
l

Rlip
∗
l =: q∗i , y∗l = cl if b∗l > 0

These conditions coincide with the definition of equilibrium for Vegas or FAST. Finally

(x∗, p∗) is unique if the routing matrix R has full row rank.

Implications. As mentioned before, FAST can be considered a high-speed version of Vegas

in the following sense. Vegas adjusts its window by 1 packet per round-trip time based

on the sign of αi − xi(t)qi(t) but regardless of how far xi(t)qi(t) is from its target value

αi (compare (2.10a) and (2.11a)). FAST on the other hand adjusts its window based on

both the sign and the magnitude of αi − xi(t)qi(t). Hence under FAST xi(t)qi(t) converges

rapidly to a neighborhood of the target αi when it is far away and slows down when it is

close.

Unlike Reno, Vegas/FAST do not discriminate long-distance flows that have a large

propagation delay. As explained in Chapter 1.3.2 the parameter αi represents the target

(steady-state) number of flow i’s own packets in buffers along its path, not including packets

that are propagating in the links. It determines both the throughput x∗ (primal variable)

and queueing delay p∗ (dual variable): a larger αi generally leads to a higher throughput

x∗i and larger queueing delay p∗.
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2.2.3 EQUILIBRIUM OF DUAL ALGORITHMS

Consider the class of general dual algorithms:

ṗl = γl (yl(t)− cl)+pl(t) := gl(yl(t), pl(t)) (2.13a)

xi(t) =
(
U ′−1i (qi(t))

)+
(2.13b)

where for any a ∈ R, (a)+ := max{a, 0} and U ′−1i are the inverses of the derivatives U ′i of

the utility functions Ui. For any a ∈ R and b ≥ 0, (a)+b := a if a > 0 or b > 0 and (a)+b := 0

if a ≤ 0 and b = 0. As before,

qi(t) =
∑
l

Rlipl(t) and yl(t) =
∑
i

Rlixi(t)

The previous examples suggest that the link algorithm (2.13a) can model congestion prices

that are proportional to queue length or queueing delay under first-in-first-out queueing

discipline.

Dual algorithms have dynamics only in the congestion prices, not in the source rates.

Since x(t), and hence y(t), are statically determined by p(t) through (2.13b), we also write

x(p) = x(q) and y(p) to mean, componentwise (see (2.7)),

xi(p) := xi(qi) :=
(
U ′−1i (qi)

)+
and yl(p) :=

∑
l

Rli xi(p)

where qi :=
∑
iRlipl. We call p∗, as opposed to (x∗, p∗), an equilibrium of the dual algorithm

(2.13) if

g(y(p∗), p∗) = 0

where g is defined in (2.13a). Consider the network utilization maximization:

max
x≥0

∑
i

Ui(xi) subject to Rx ≤ c (2.14a)

and its Lagrangian dual:

min
p≥0

D(p) :=
∑
i

max
xi≥0

(Ui(xi)− xiqi) +
∑
l

plcl (2.14b)

We make the following assumptions:

C2.1: The link capacities are positive and finite, i.e. c > 0. R has no zero column

(every flow uses at least one link).
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C2.2: Ui are twice continuously differentiable and strictly concave increasing on R+,

with U ′′i (xi) < 0 for xi ≥ 0.3 If an Ui is not defined on the entire feasible set, we will

assume that limxi→0 U
′
i(xi) =∞.

As discussed near the beginning of Chapter 2.2, the fact that all entries of R are nonnegative

and the condition c > 0 in C2.1 imply that (2.14a) is strictly feasible. Hence the primal

optimal value is attained by an x∗ (Ui are continuous), Slater’s condition is satisfied, the

dual problem is feasible, and a dual optimal solution p∗ is attained. The condition C2.2 on

the second derivative of Ui serves two purposes. First it ensures that the primal optimal x∗

is unique and when R has full row rank, the dual optimal p∗ will also be unique when x∗ > 0.

Second it ensures that the dual dynamic g(y(p), p), though discontinuous in p, is a projection

of a locally Lipschitz function to a closed convex set. This allows the application of Theorem

1.10.2 to guarantee the existence and uniqueness of solution to (2.13); see Remark 3.17

in Chapter 3.2. If Ui is not defined over the entire feasible set, e.g., Ui(xi) = log xi for

TCP Vegas or FAST, the condition in C2.2 on U ′i(xi) ensures that, given any qi ≥ 0, a

unique xi(p) = U ′−1i (qi(p)) > 0 exists (without projection) and the dual function D(p) is

continuously differentiable.

Theorem 2.14 Suppose conditions C2.1 and C2.2 hold. Then the dual algorithm (2.13)

has an equilibrium p∗ that is an optimal solution of the dual problem (2.14b). Moreover the

equilibrium source rate x(p∗) is the unique optimal solution of the primal problem (2.14a).

If the routing matrix R has full row rank and x∗ > 0 then p∗ is unique.

Proof. The discussion preceding the theorem shows that a dual optimal solution p∗ exists.

Theorem 2.12 implies that x∗ := x(p∗) is the unique primal optimal solution. Moreover they

satisfy:

U ′(x∗) ≤ q∗, x∗ ≥ 0, (x∗)
T

(U ′(x∗)− q∗) = 0

y∗ = Rx∗ ≤ c, p∗ ≥ 0, (p∗)
T

(y∗ − c) = 0

This is exactly the condition for g(y(p∗), p∗) = 0, i.e., for p∗ to be an equilibrium of (2.13).

To prove the uniqueness of p∗, note that x∗ > 0 implies q∗i = U ′i(x
∗
i ) holds for all i.

Hence q∗ is unique since x∗ is unique. Then

q∗ = RT p∗ =⇒ Rq∗ = RRT p∗ =⇒ p∗ =
(
RRT

)−1
Rq∗

where
(
RRT

)−1
exists since R has full row rank. Hence p∗ is unique when R has full row

rank and x∗ > 0. This proves the existence and uniqueness of the equilibrium p∗ and the

primal-dual optimality of p∗ and the associated source rates x∗ := x(p∗).

3We explicitly require U ′′i (xi) < 0 because we will use U ′−1i (qi) = (U ′′i (xi(qi)))
−1

later. Strict
concavity (which is implied by U ′′i (xi) < 0) is insufficient because a strictly concave function
f(x) can have f ′′(x) = 0, e.g., f(x) = −x4 at x = 0.
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In the proof above for the uniqueness of p∗ we have assumed that q∗ that is determined

by U ′i(x
∗) is in the row space of R (q∗ = RT p∗ for some p∗); see Exercise 2.9 when this

assumption does not hold. The condition x∗ > 0 is needed for the uniqueness of p∗ because

otherwise it is possible to have multiple equilibrium p∗ even when R has full row rank; see

Exercise 2.11.

2.2.4 EQUILIBRIUM OF PRIMAL-DUAL ALGORITHMS

The examples above suggest that different TCP congestion control algorithms all solve the

same prototypical network utility maximization (NUM) problem but may have different

utility functions. This is indeed the case as long as the end-to-end congestion measure qi to

which the congestion control algorithm adapts is the sum of the link congestion measures

pl.

Consider the class of primal-dual algorithms:

ẋ = (f(x(t), q(t)))
+
x(t) (2.15a)

ṗ = (g(y(t), p(t)))
+
p(t) (2.15b)

where

q(t) = RT p(t) and y(t) = Rx(t) (2.15c)

A point (x, p) ≥ 0 is an equilibrium of (2.15) if and only if ẋ = 0 and ṗ = 0. Since

(fi(xi, qi))
+
xi

:=

{
fi(xi, qi) if fi(xi, qi) > 0 or xi > 0

0 if fi(xi, qi) ≤ 0 and xi = 0

ẋi = 0 if and only if

fi(xi, qi) ≤ 0 with equality if xi > 0, ∀i (2.16a)

Similarly ṗl = 0 if and only if

gl(yl, pl) ≤ 0 with equality if pl > 0, ∀l (2.16b)

Formally we say that a point (x, p) is an equilibrium of the basic model (2.15) if and only

if x ≥ 0, p ≥ 0 and (x, p) satisfies (2.16).

Consider in particular one of the equilibrium conditions fi(xi, qi) = 0 when xi > 0 (we

will consider the case of xi = 0 later). We will argue that, under appropriate assumptions,

the set of (xi, qi) that satisfies this condition defines implicitly qi =: ui(xi) as a function of

xi. This will imply that any reasonable TCP design fi inevitably induces a utility function

that source i implicitly optimizes. The function fi for Reno is (see Chapter 2.2.1):

fi(xi, qi) :=
1

T 2
i

− 1

2
qi x

2
i (2.17a)
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and that for FAST is from (2.11a):

fi(wi, qi) := γ

(
αi −

wi qi
di + qi

)
(2.17b)

Hence any equilibrium will have xi > 0 and fi(xi, qi) = 0 for Reno and wi > 0 and

fi(wi, qi) = 0 for FAST. Each of these conditions defines implicitly qi as a function of

xi or wi.

In Appendix 2.4 we generalize these examples and prove conditions on the TCP

algorithm fi(xi, qi) under which the equilibrium condition (ẋi = 0)

fi(xi, qi) ≤ 0 with equality if xi > 0

uniquely defines qi as an implicit function ui(xi) of xi, i.e. given any xi ≥ 0, there exists a

unique qi = ui(xi) that satisfies the above equilibrium condition. Define the utility function

of each source i as

Ui(xi) =

∫
ui(xi)dxi, xi ≥ 0 (2.18)

that is unique up to a constant. Then Ui is a continuous function assuming ui does not

contain delta functions. Moreover ui(xi) = qi ≥ 0 for all xi ≥ 0 implies that Ui is nonde-

creasing. Under the conditions in Lemma 2.16, ui is strictly decreasing and hence Ui is

strictly concave. An increasing utility function represents a greedy source – a larger rate

yields a higher utility – and concavity represents diminishing return.

Now consider the problem of network utility maximization:

max
x≥0

∑
i

Ui(xi) subject to Rx ≤ c (2.19a)

and its Lagrangian dual:

min
p≥0

∑
i

max
xi≥0

(Ui(xi)− xiqi) +
∑
l

plcl (2.19b)

An optimal rate vector x∗ exists since the objective function in (2.19a) is continuous and

the feasible solution set is compact (c is assumed to be positive and finite). It is unique

if Ui are strictly concave. The dual problem has an optimal solution since the primal

problem is feasible. The dual variable p is a precise measure of congestion in the network.

As the sources are coupled through the shared links (the capacity constraint), solving for x∗

directly however may require coordination among possibly all sources and hence is infeasible

in a large network. The key to understanding the equilibrium of (2.15) is to regard x(t) as

primal variables, p(t) as dual variables, (f, g) = (fi, gl, i ∈ N, l ∈ L) as a distributed primal-

dual algorithm to solve the primal problem (2.19a) and its Lagrangian dual (2.19b), and an

equilibrium point as an optimal primal and dual solution.

We make the following assumptions on (f, g):
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C2.3: For all i ∈ N and l ∈ L, fi and gl are functions such that the solutions of (2.16)

are nonnegative. The link capacities are positive and finite, i.e. c > 0. R has no zero

column (every flow uses at least one link).

C2.4: For all i ∈ N , fi(xi, qi) are continuously differentiable on R+ × R+. Moreover
∂fi
∂xi

(xi, qi) < 0 and ∂fi
∂qi

(xi, qi) < 0 if xi > 0 and qi > 0. For each xi > 0 there exists

q̂i := q̂i(xi) > 0 such that fi(xi, qi) ≤ 0 for all qi ≥ q̂i. Finally fi(xi, 0) > 0.

C2.5: The condition (2.16b) is equivalent to yl ≤ cl with equality if pl > 0.

Condition C2.3 guarantees that a primal-dual optimal solution (x∗, p∗) of (2.19) exists (see

the discussion immediately after condition C2.2). Moreover the optimality (KKT) condition

in Theorem 2.12 coincides with the equilibrium condition (2.16), implying that (x∗, p∗) is

primal-dual optimal for (2.19) if and only if it is an equilibrium of (2.15). In particular, an

equilibrium of (2.15) exists. C2.4 implies the assumptions in Lemma 2.16 in the Appendix

2.4 and hence a unique ui(xi) ≥ 0 exists on R+ so that fi(xi, u(xi)) satisfies the equilibrium

condition (2.16a) (which is equivalent to (2.22) in Appendix 2.4). The discussion above

then guarantees the existence and strict concavity of utility functions Ui and hence the

uniqueness of optimal x∗. C2.5 guarantees primal feasibility and complementary slackness

of (x∗, p∗).

We summarize our discussion.

Theorem 2.15 Suppose assumptions C2.3 – C2.5 hold.

1. An equilibrium (x∗, p∗) of (2.15) exists.

2. Moreover (x∗, p∗) is an equilibrium of (2.15) if and only if it solves the primal problem

(2.19a) and its dual (2.19b) with the utility function given by (2.18).

3. The utility functions Ui are strictly concave and hence the optimal rate vector x∗ is

unique.

4. The optimal price vector p∗ is unique provided R has full row rank and x∗ > 0.

For the last claim, see the proof of Theorem 2.14 (as well as the remark about the uniqueness

of p∗ after the proof there).
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2.3 IMPLICATIONS OF NETWORK UTILITY
MAXIMIZATION

2.3.1 TCP/AQM PROTOCOLS

Various TCP/AQM protocols can be interpreted as different distributed algorithms (f, g) to

solve the network utility maximization problem (2.19a) and its dual (2.19b) with different

utility functions Ui. This computation is carried out by sources and links over the Internet

in real time in the form of congestion control. Theorem 2.15 characterizes a large class of

protocols (f, g) that admits such an interpretation. This interpretation is the consequence of

end-to-end control: it holds as long as the end-to-end congestion measure to which the TCP

algorithm reacts is the sum of the constituent link congestion measures, under some mild

assumptions on the TCP and AQM algorithms that are typically satisfied (assumptions

C2.3–C2.5). 4

The definition of utility functions Ui depends only on TCP algorithms fi. The role

of AQM gl is to ensure that the complementary slackness condition of problem (2.19) is

satisfied (Theorem 2.12.4). The complementary slackness has a simple interpretation: AQM

should match input rate to capacity to maximize utilization at every bottleneck link. Any

AQM that stabilizes queues possesses this property and generates a Lagrange multiplier p∗

that solves the dual problem.

The theorem also provides important insights that help understand, and design, prac-

tical protocols that have been deployed on the Internet (e.g., TCP FAST).

First the theorem implies that an arbitrary network under end-to-end control has a

unique equilibrium point. The equilibrium point is determined by the utility functions Ui
and network parameters such as link capacities c and routing matrix R. It is independent of,

e.g., the order in which flows have arrived (for a given set of flow arrivals). The convexity of

the underlying optimization problem that (f, g) attempts to solve also leads to a relatively

simple dynamic behavior. Even though it may not be possible, nor critical, that optimality

is exactly attained in a real network, the utility maximization framework offers a means to

steer the network towards an operating point that is easily understandable.

Second, being the Lagrange multipliers, the prices p∗ are indeed the right measure of

congestion. For implicit congestion control the prices often represent (functions of) packet

loss probabilities or queueing delays at the network links. Since the Lagrange multipliers

are determined by (U, c,R) this means that the steady-state packet loss probabilities or

queueing delays are independent of the buffer size5. In particular if p represents loss prob-

abilities at the network links then doubling the buffer sizes will not reduce the steady-state

4If the sources react to the maximum congestion price in their paths, then the networks achieves
maxmin fairness in equilibrium.

5If pl represent queueing delay then their equilibrium values p∗l are independent of the buffer
sizes as long as the buffers are large enough to accommodate the equilibrium queues.



64 2. EQUILIBRIUM STRUCTURE

packet losses but will only increase the average queueing delay – buffers will fill up to attain

the same loss probabilities before their sizes were doubled.

Third it is useful to treat a practical congestion control scheme simply as an imple-

mentation of a certain optimization algorithm. The optimization model then makes possible

a systematic method for design and refinement, where modifications to a congestion control

mechanism are guided by modifications to the optimization algorithm. For instance, the

dual algorithm (2.13) in Chapter 2.2.3 can be interpreted as the first-order gradient projec-

tion algorithm to solve the dual problem (2.14b) (see Theorem 5.8 in Chapter 5.2 for more

details). It is well known that Newton algorithms usually converge much faster than the

first-order gradient projection algorithm, but the computation of Hessian requires global

information and is hard to implement in practice. Guided by this insight, however, one

can design a practical Newton-like scheme that can attain optimality with a much higher

convergence rate without increasing the communication requirement.

2.3.2 UTILITY FUNCTION, THROUGHPUT AND FAIRNESS

A central issue in networking is how to allocate resources to competing users efficiently

and fairly in a decentralized manner. These notions are straightforward when there is a

single resource (link) but much subtler for a network of resources. For a single resource of

capacity c an allocation policy is efficient if the aggregate equilibrium throughput
∑
i x
∗
i = c

and it is fair if users are allocated an equal share x∗i = c/N for all i. On a network, the

equilibrium throughputs xi depend on their routes R and the link capacities c and are

generally unequal among users i. The aggregate equilibrium throughput T (x∗) :=
∑
i x
∗
i

that the network can support, however, remains a reasonable measure of efficiency, though

there are alternative notions.6 A natural extension of equal sharing at a single resource to a

network setting is maxmin fairness where the smallest rate is maximized. An insight from

network utility maximization is that the network bandwidth is allocated among competing

users according to their utility functions, given a network specified by (R, c). Hence a general

notion of fairness can be defined in terms of utility functions. In this section we explain two

counterintuitive behaviors of network utility maximization.

Consider the following class of utility functions parameterized by a scalar α ≥ 0:

U(xi, α) =

{
(1− α)−1 x1−αi if α 6= 1

log xi if α = 1
(2.20)

It includes many resource allocation policies considered in the literature as special cases:

e.g. maximum throughput (α = 0), proportional fairness (α = 1), and maxmin fairness (α =

∞). It provides a convenient way to compare fairness across allocation policies. Moreover it

also includes several TCP congestion control algorithms as special cases: e.g. Reno (α = 2),

6For example any Pareto-optimal allocation x∗ that lies on the boundary of the feasible set
{x : Rx ≤ c} can be defined to be efficient.
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and Vegas, FAST (α = 1). A bandwidth allocation policy can hence be defined in terms of

this class of utility functions parameterized by α.

Suppose all flows adopt the same utility (2.20) with the same α. We sometimes refer to

a network by (R, c, α) where R is the (fixed) routing matrix. We now explain how changing

c or α impacts the aggregate throughput T (x∗).

Suppose we add capacities to some links without reducing the capacity of the other

links. The new equilibrium rates x∗ will be determined by network utility maximization

with the new link capacity vector and generally be different. Will the aggregate throughput

T (x∗) be always higher? Surprisingly, the answer is “not necessarily” even though the utility

function is strictly increasing in xi. Moreover, given any parameter α0 > 0 there exists a

network specified by (R, c) such that for all α > α0, adding any equal amount of capacity

to all links will result in a strictly lower throughput T (x∗)!

Given two allocation policies identified with α1 and α2, we say the first policy is

fairer than the second policy if α1 > α2 and more efficient if the aggregate throughput

T (α1) :=
∑
i xi(α1) in equilibrium under policy α1 is higher than the aggregate throughput

T (α2) :=
∑
i xi(α2) under policy α2. It is a folklore that a fairer policy (with a larger α) is

always less efficient (with a smaller T (α)). Using the network utility maximization model,

we can show however that this is not the case for all networks. Indeed it is possible to

characterize exactly the set of networks specified by (R, c) for which a fairer allocation is

indeed always less efficient, i.e., T (α) is a decreasing function of α. This characterization

has led to the discovery of the first counterexamples, i.e., networks (R, c) where a fairer

allocation is more efficient.

Hence counterintuitive behaviors can arise in a network where sources interact

through shared links in intricate and surprising ways. The popular practice of modeling

a network by a single node will fail to capture such subtlety.

2.4 APPENDIX: EXISTENCE OF UTILITY FUNCTIONS

In this appendix we provide conditions on a TCP algorithm fi that ensure that an under-

lying utility function Ui exists. The basic idea is that ẋi = 0 if and only if the following

equilibrium condition holds:

fi(xi, qi) ≤ 0 with equality if xi > 0

We will show that this implicitly defines qi = ui(xi) as a function of xi ≥ 0. The utility

function Ui is then defined to be the integral of ui. We first derive ui in Lemma 2.16 for

the case where xi > 0 and f(xi, qi) = 0 and then extends the function ui to the case where

xi = 0 and f(0, qi) ≤ 0.

Lemma 2.16 Consider a continuously differentiable fi : R+ × R+ → R. Suppose for each

xi > 0 in an arbitrary set Xi ⊆ R+ the following conditions (dependent on xi) hold:
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1. ∂fi
∂qi

(xi, qi) < 0 over a compact interval Qi := [0, qi] for some positive finite qi;

2. there exists q̂i with 0 < q̂i ≤ qi such that fi(xi, qi) ≤ 0 for all qi ≥ q̂i.

3. fi(xi, 0) > 0.

Then given any xi ∈ Xi with xi > 0, there is a unique qi =: ui(xi) that satisfies 0 ≤ ui(xi) ≤
qi and fi(xi, ui(xi)) = 0. Moreover if for each (xi, qi) ∈ Xi ×Qi

4. ∂fi
∂xi

(xi, qi) < 0 as long as xi > 0 and qi > 0.

then ui(xi) is a strictly decreasing function on Xi \ {0}.

Before proving the lemma we explain how the conditions in the lemma are motivated by

practical TCP design fi. The fi of Reno and FAST in (2.17) both satisfy the assumptions in

the lemma.7 For example, given xi > 0 for Reno, q̂i ≥ 2/ (xiTi)
2

from (2.17a) and qi can be

any number greater than or equal to q̂i. The first assumption says that, as long as xi > 0,

as congestion price qi along source i’s path increases, the rate adjustment fi will strictly

decrease. Moreover, when it is high enough (when qi ≥ q̂i), the sending rate xi itself will be

reduced (fi(xi, qi) ≤ 0). The first two assumptions thus imply that, as congestion price qi
increases, source i will eventually reduce its rate xi; moreover the pace of reduction strictly

increases as qi ≥ q̂i. The third assumption says that when there is no congestion qi = 0,

the rate will be raised (fi > 0). The last assumption says that the higher the sending rate

xi the smaller the adjustment fi. These assumptions are satisfied by Reno/Vegas/FAST.

The conclusion that ui is strictly decreasing means that the more severe the congestion,

the smaller the sending rate. This implies the strict concavity of the utility functions.

Proof of Lemma 2.16. We first prove the existence of the implicit function ui on Xi \ {0}.
Fix any xi ∈ Xi with xi > 0. Define for each qi ∈ Qi

hi(qi) := (qi + γfi(xi, qi))
+

where (a)+ := max{a, 0} for any a ∈ R and γ > 0 will be determined below. We will prove

that hi is a contraction mapping from the closed set Qi into Qi. Then the contraction

theorem (see Theorem 5.6 in Chapter 5) implies that there is a unique fixed point qi =:

ui(xi) of hi in Qi, i.e.,

ui(xi) = (ui(xi) + γfi(xi, ui(xi)))
+

7Note that if, e.g., FAST is designed to be

fi(wi, qi) := γ

(
αi
wi
− qi
di + qi

)
then fi is not defined at wi = 0 and hence not continuously differentiable on R+ × R+ as
required by the lemma.
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Moreover ui(xi) = qi ≥ 0. If the fixed point qi = 0 then the above equation becomes 0 =

(fi(xi, 0))
+

, which is impossible under assumption 3 of the lemma. Hence the fixed point

qi > 0 and fi(xi, ui(xi)) = 0 as desired.

Hence, for the existence of ui, we are left to prove that hi is a mapping from Qi to

Qi and then hi is a contraction mapping.

First, if q̂i ≤ qi ≤ qi then fi(xi, qi) ≤ 0 by assumption 2 of the lemma and hence

hi(qi) ≤ qi ≤ qi, i.e., hi(qi) ∈ Qi. Consider now 0 ≤ qi < q̂i. Let a := maxq′i∈[0,q̂i] fi(xi, q
′
i)

which exists and is finite since fi is continuous. Moreover h(qi) ≤ (qi + γ a)
+

. If a ≤ 0 then

0 ≤ hi(qi) ≤ qi ≤ qi and hence hi(qi) ∈ Qi. Otherwise a > 0 and 0 ≤ hi(qi) ≤ qi + γ a ≤ qi
as long as 0 < γ ≤ γ1 with

γ1 :=
qi − qi
a

> 0

where the strict inequality follows from qi < qi and a is finite. This proves that hi is a

mapping from Qi into Qi.

To show that hi is a contraction on Qi, use the mean value theorem to obtain: for

any qi, q̃i in Qi, we have (since (·)+ is non-expansive)

|hi(qi)− hi(q̃i)| ≤ |(qi − q̃i) + γ (fi(xi, qi)− fi(xi, q̃i))| =

∣∣∣∣1 + γ
∂fi
∂qi

(xi, z)

∣∣∣∣ |qi − q̃i|
for some z between qi and q̃i. Since fi is continuously differentiable and Qi is compact,

assumption 1 of the lemma implies that

mi(xi) := − max
q′i∈Qi

∂fi
∂qi

(xi, q
′
i) and Mi(xi) := − min

q′i∈Qi

∂fi
∂qi

(xi, q
′
i)

satsify 0 < mi(xi) < Mi(xi) <∞. Then

1− γMi(xi) ≤ 1 + γ ∂fi
∂qi

(xi, z) ≤ 1− γ mi(xi)

Hence∣∣∣∣1 + γ
∂fi
∂qi

(xi, z)

∣∣∣∣ ≤ max { |1− γ mi(xi)| , |γMi(xi)− 1| } =: α(xi) =: α

Then α < 1 as long as 0 < γ < γ2 where

γ2 :=
2

Mi(xi)

Hence choose 0 < γ < min{γ1, γ2} and we have

|hi(qi)− hi(q̃i)| ≤ α |qi − q̃i|
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for some α ∈ (0, 1). We have thus proved that, given any xi ∈ Xi with xi > 0, the function

hi is a contraction mapping from Qi into Qi. This proves the existence of the implicit

function ui on Xi \ {0}.
Finally we prove that ui is strictly decreasing on Xi under assumption 4 of the lemma.

Consider without loss of generality 0 < x1 < x2 in Xi and the corresponding q1 := ui(x1)

and q2 := ui(x2) such that

fi(x1, q1) = 0 and fi(x2, q2) = 0

Assumption 3 of the lemma then implies that q1 > 0, q2 > 0. To show that q1 > q2 we have

by the mean value theorem

0 = fi(x2, q2) − fi(x1, q1)

= (fi(x2, q2)− fi(x2, q1)) + (fi(x2, q1)− fi(x1, q1))

=
∂fi
∂qi

(x2, q̃) (q2 − q1) +
∂fi
∂xi

(x̃, q1) (x2 − x1)

for some x̃ ∈ [x1, x2] and some q̃ between q2 and q1. Since both x̃ > 0 and q1 > 0, assumption

4 of the lemma implies that the second term is negative. Hence the first term must be

positive and this is possible only if q1 > q2 under assumption 1 of the lemma. Therefore ui
is strictly decreasing on Xi \ {0}. This completes the proof of the lemma.

Lemma 2.16 says that there is a unique function ui(xi) ≥ 0 on Xi \ {0} that satisfies

one of the equilibrium conditions fi(xi, ui(xi)) = 0 in (2.16a). We now address the case

where xi = 0. Extend ui(xi) to Xi by defining

ui(0) := lim
xi→0
xi>0

ui(xi) ≥ 0 (2.21a)

which exists (possibly +∞) since ui is strictly decreasing for xi > 0. Since fi is continuous

we have

fi(0, ui(0)) = lim
xi→0
xi>0

fi(xi, ui(xi)) = 0 (2.21b)

with the interpretation fi(0, ui(0)) = limxi→0
xi>0

fi(0, ui(xi)) if ui(0) =∞. Under conditions

C2.3 – C2.5, ui is well defined on R+, and hence {(x, u(x)) |xi ≥ 0} is exactly the set

of points that satisfy fi(xi, ui(xi)) = 0. Moreover, since fi is continuously differentiable,

assumption 4 in Lemma 2.16 implies

∂fi
∂xi

(0, qi) ≤ 0

This condition and (2.21b) together imply

ui(0) ≤ qi ⇐⇒ fi(0, qi) ≤ 0
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In summary, under the conditions of Lemma 2.16, the function ui : R+ → R+ defined

in the lemma and extended by (2.21a) has the desirable property: (xi, qi) satisfies (2.16a)

if and only if

ui(xi) ≤ qi with equality if xi > 0 (2.22)

For Reno/Vegas/FAST (treating xi rather than wi as the variable), it is not possible that

fi(0, qi) < 0 and ui(0) < qi in equilibrium because ui(xi) > 0 for all xi ≥ 0. See Exercise

2.10 for an example fi where this is possible.

2.5 BIBLIOGRAPHICAL NOTES

Excellent texts on convex optimization include [7, 11]. Network utility maximization is

first formulated in [28]. Theorem 2.15 interprets Internet congestion control as maximizing

utility and is from [34] but the proofs presented in Chapter 2.2.4 are new. In particular

Lemma 2.16 justifies the existence of a utility function Ui corresponding to a TCP algorithm

fi by appealing to properties motivated by TCP algorithms such as Reno/Vegas/FAST,

without invoking global implicit function theorems that usually require assumptions that

are difficult to satisfy. This interpretation holds as long as the sources react to the sum of

congestion prices in their paths. If they react to the maximum price in their paths then the

network achieves maxmin fairness, i.e., it maximizes the minimum source rates; see [54].

The dual algorithm (2.13) in Chapter 2.2.3 is from [35] and is the gradient projection

algorithm to solve the dual problem (2.14b). Practical Newton-like schemes that can attain

optimality with a much higher convergence rate but the same communication requirement

are proposed in [5, 51, 52, 55].

The class of utility functions (2.20) is first proposed in [39] for network congestion

control. This class has also been used earlier in economics as social welfare functions. The

counterintuitive behavior in fairness-efficiency tradeoff and in capacity-throughput relation

described in Chapter 2.3.2 is studied in [48]. See [32] for an axiomatic theory of fairness. See

also [9] for bounds on these tradeoffs for general systems whose feasible set is not necessarily

described by the linear network capacity constraint Rx ≤ c in congestion control, and [10]

for the effect of fairness on the number of random flow arrivals that can be supported on

the network.

2.6 PROBLEMS

Exercise 2.1 (Convex sets). Prove that the following sets are convex:

1. Affine set: C = {x ∈ Rn | Ax = b} where A ∈ Rm×n and b ∈ Rm, m,n ≥ 1.

2. Second-order cone: C = {(x, t) ∈ Rn+1 | ‖x‖2 ≤ t}, n ≥ 1. Here ‖x‖2 :=√
x21 + x22 + · · ·+ x2n is the Euclidean norm.
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3. Semidefinite matrices: C = {A ∈ Sn×n | A � 0}, n ≥ 1. where Sn×n is the set of sym-

metric n× n real matrices and A � 0 means xTAx ≥ 0 for any x ∈ Rn. Such a matrix

is called positive semidefinite.

Exercise 2.2 (Operations preserving set convexity). Operations that preserve convexity

are of fundamental importance to the convex optimization theory. Let X and Y be linear

subspaces. For example X := Rn and Y := Rm.

1. Linear transformation: Let f : X→ Y be linear. Prove:

(a) If A ⊆ X is convex then f(A) := {f(x) | x ∈ A} is convex.

(b) If B ⊆ Y is convex then f−1(B) = {x ∈ Rn | f(x) ∈ B} is convex.

2. Arbitrary direct product: Let A ⊆ X, B ⊆ Y be convex.

(a) Prove that the product space

X× Y := {(x, y) | x ∈ X, y ∈ Y}

with + and · defined by

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2) ∀(x1, y1), (x2, y2) ∈ X× Y;

λ(x, y) := (λx, λy) ∀λ ∈ R, ∀(x, y) ∈ X× Y

is also a linear space. For example, if X = Rm and Y = Rn for some m,n ≥ 1,

then X× Y = Rm+n.

(b) Prove that the direct product

A×B := {(x, y) | x ∈ A, y ∈ B}

is convex. In fact the direct product of an arbitrary number of convex sets is

convex.

3. Finite sum: Let A,B ⊆ X be convex. Prove that the set

A+B := {a+ b | a ∈ A, b ∈ B}

is convex. Therefore the sum of any finite number of convex sets is convex.

4. Arbitrary intersection: Let A,B ⊆ X be convex. Prove that the intersection A ∩B is

convex. In fact the intersection of an arbitrary collection of convex sets is convex.

5. Union can be nonconvex. Let A,B ⊆ X be convex. Give an example where the union

A ∪B is nonconvex. [Hint: Consider X = R].
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Exercise 2.3 (Convex functions). Prove that the following functions are convex:

1. Exponential: f(x) := eax where a, x ∈ R.

2. Entropy: f(x) := x lnx defined on R++ := (0,∞).

3. Log-exponential: f(x1, x2) := ln(ex1 + ex2), xi ∈ R.

Exercise 2.4 (Convex functions). [11, Exercise 3.6]

For each of the following functions determine if it is convex, concave, or neither.

• f(x) = ex − 1 on R.

• f(x) = x1x2 on
{

(x1, x2) ∈ R2 | x1 > 0, x2 > 0
}

.

• f(x) = 1
x1x2

on
{

(x1, x2) ∈ R2 | x1 > 0, x2 > 0
}

.

• f(x) = x1/x2 on
{

(x1, x2) ∈ R2 | x1 > 0, x2 > 0
}

.

Exercise 2.5 (Operations preserving function convexity). Prove that addition, multipli-

cation by nonnegative constants, and supremum operations preserve convexity. Specifically

suppose f1 and f2 are two convex functions on the same domain. Prove that:

1. f := αf1 + βf2, α, β ≥ 0, is convex.

2. f := max{f1, f2} is convex.

3. f(x, y) := |x|+ |y| defined on R2 is convex. [Hint: use result in 2.]

Exercise 2.6 (Level sets are convex). Let f : C → R where C ⊆ Rn. Prove that the level

set {x ∈ C | f(x) ≤ α} is convex for any α ∈ R provided that C is a convex set and f is a

convex function.

Exercise 2.7 (Convex optimization). Consider

(P) : min
x

f(x) s.t. Ax = b; gi(x) ≤ 0, i = 1, . . . , k,

where A ∈ Rm×n, b ∈ Rm, k ≥ 1, and f , g1, . . . , gk are scalar functions defined on Rn. Prove

that if f, g1, g2, . . . , gk are convex then the feasible set

C = {x | Ax = b, gi(x) ≤ 0 for i = 1, . . . , k}

is convex. In this case (P) is called a convex program. [Hint: The set C is the intersection

of k + 1 convex sets. Use the results of previous problems.]
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Exercise 2.8 (Duality theory). Consider Problem (P) in Exercise 2.7. Let µ ∈ Rm, λ ∈
Rk+ = [0,∞)k, and define

L(x, µ, λ) := f(x) + µT (Ax− b) + λT g(x)

where g(x) = (g1(x), g2(x), . . . , gk(x))T .

1. Unconstrained optimization. Let L(µ, λ) := minx∈Rn L(x, µ, λ) denote the uncon-

strained optimization over x for fixed µ, λ. Assume that Problem (P) has an optimal

solution and denote it by x∗. Show that L(µ, λ) ≤ f(x∗) for any µ ∈ Rm and λ ∈ Rk+.

2. Dual problem. Consider the dual problem

(D) : max L(µ, λ) s.t. λ ≥ 0

Assume (D) has an optimal solution and denote it by (µ∗, λ∗).

(a) Show that L(µ∗, λ∗)− f(x∗) ≤
∑k
i=1 λ

∗
i gi(x

∗) ≤ 0. It implies that Problem (D)

provides a lower bound for Problem (P). Note that this holds whether or not

f, g1, g2, . . . , gk are convex.

(b) Assume now f, g1, g2, . . . , gk are convex. Show that the equality is attained, i.e.,

L(µ∗, λ∗) = f(x∗) +
∑k
i=1 λ

∗
i gi(x

∗), if and only if

∂xL(x∗, µ∗, λ∗) = 0

assuming f, g1, g2, . . . , gk are differentiable.

(c) Show that if there exists (x, µ, λ) such that x is feasible for (P), (µ, λ) is feasible

for (D), ∂xL(x, µ, λ) = 0, and λigi(x) = 0 for i = 1, . . . , k, then x solves (P) and

(µ, λ) solves (D). These are the KKT conditions.

Exercise 2.9 (Uniqueness of p∗). We claim that when the routing matrix R has full row

rank, then the prices p are unique. Moreover, given q, p is given by

RT p = q ⇒ p = (RRT )−1Rq

This implicitly assumes that, given q, there is a solution p that satisfies RT p = q, i.e., q lies

in the row space of R.

1. Given any vector q, describe how you would check if a solution p exists.

2. Give an example where the given q does not satisfy your condition for existence of a

solution p. What is the expression (RRT )−1Rq? (Hint: Try R = [1 1].)
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Exercise 2.10 (TCP with finite u(x)). Consider a TCP design f : R+ × R+ → R given by

f(x, q) := a+ e−x − q

Show that f satisfies condition C2.4 and determine the unique function u in Lemma 2.16.

Also show that it is possible to have f(0, q) < 0 and u(0) < q in equilibrium.

Exercise 2.11 (Nonuniqueness of p∗). Consider a network with two links with capacities

c1, c2 and three flows with a routing matrix

R :=

[
1 0 1

0 1 1

]
i.e., flows 1 and 2 traverse links 1 and 2 respectively and flow 3 traverses both links. Let

the TCP design of flows 1 and 2 be the function given in Exercise 2.10:

f1(x1, q1) := a1 + e−x1 − q1, f2(x2, q2) := a2 + e−x2 − q2

and that of flow 3 be:

f3(x3, q3) := γ (α− x3 q3)

Show that, even though R has full row rank, the optimal link prices p∗ may be nonunique,

by an appropriate choice of parameters cl, ai, α.

Exercise 2.12 (Throughput vs. fairness). Consider a linear network with L links indexed

by 1, . . . , L, each of capacity c = 1. There are L+ 1 flows indexed by 0, . . . , L. Flows l =

1, . . . , L traverse only link l and the flow indexed by 0 traverses all the L links. Suppose all

flows have the following utility function with the same α ≥ 0:

Ui(xi) =

{
x1−α
i

1−α , α 6= 1

log xi, α = 1.

The rate at which each flow transmits is determined by the solution of the following utility

maximization, subject to capacity constraints:

max
x≥0

L∑
i=0

Ui(xi) s.t. Rx ≤ c

where x = (x0, . . . , xL), matrix R is a routing matrix. The expression x ≥ 0 means xi ≥ 0

for i = 0, . . . , L.

Calculate the aggregate throughput T (α) =
∑L
i=0 xi(α). Explain the dependence of

T (α) on α. Also comment on the dependence of fairness on α.
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Figure 2.5: Network topology for TCP steady state analysis.

Exercise 2.13 (TCP steady state analysis). Consider the network in Fig. 2.5, where R1–

R4 are routers, L1–L3 are links, S1–S3 are source hosts, and T1–T3 are the corresponding

destination hosts. The link capacities of L1, L2 and L3 are 2500 packets/s. The one way

propagation delay of each link L1 – L3 is 10ms and assume there is no propagation delay

between a host and a router. There are three flows: flow 1 from S1 to T1, flow 2 from S2

to T2, and flow 3 from S3 to T3. Flow 1 starts at t=0, flow 2 starts at t=10sec and flow 3

starts at t=20sec. All flows use TCP FAST, i.e., the window update is

w(t+ δt) = γ

(
RTTmin

RTT
w(t) + α

)
+ (1− γ)w(t)

with α = 50.

1. Calculate the steady-state throughput of each flow and queue length of each link, dur-

ing 0s–10s, 10s–20s and after 20s, assuming each flow knows its RTTmin (round-trip

propagation delay) accurately. Assume before flow 2 starts, all packets are buffered

at L1.

2. Repeat 1 but with each flow measuring its steady-state RTTmin that includes queue-

ing delay due to other flows that started before it does. Assume before flow 2 starts,

all packets are buffered at L1.
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C H A P T E R 3

Global stability: Lyapunov
method

In Chapter 2 we characterize the equilibrium of a network under end-to-end congestion

control and discuss some implications on network performance such as throughput, delay,

loss and fairness. This is useful because the first step in designing a congestion control

algorithm should be to ensure it has desirable equilibrium properties. In this chapter we

study whether the algorithm will indeed drive the network towards an equilibrium starting

from an arbitrary initial state. Even though in reality a network is rarely in equilibrium, a

stable control ensures that it is always pursuing a desirable state. It also makes the global

behavior of the overall network easier to understand.

Numerous congestion control algorithms have been proposed in the literature. We

will restrict our analysis to a subset that has proved useful in modeling classical congestion

control algorithms. Our purpose is not the study of particular protocols, but use these

examples to illustrate the main techniques in proving global stability and explain structural

features of congestion control algorithms. We present in this and the following two chapters

three different methods to prove global stability. They are methods based on the Lyapunov

stability theory (Chapter 3), the passivity theory (Chapter 4), and convergence theorems

for gradient algorithms (Chapter 5). In each chapter we first introduce the general method

and the associated stability results and then apply them to congestion control algorithms.

For simplicity, the models studied in these chapters ignore feedback delay even though

delay is critical in determining stability. In Chapter 6 we will study local stability around an

equilibrium in the presence of feedback delay. Global stability in the presence of feedback

delay is much more difficult and beyond the scope of this book.

3.1 LYAPUNOV STABILITY THEOREMS

Consider a time-invariant dynamical system:

ẋ = f(x(t)), t ≥ 0, x(0) = x0 (3.1)
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where f : D → Rn and D ⊆ Rn is a domain (open connected set).1 Here we allow f to be

either locally Lipschitz itself or a projection of a locally Lipschitz function f̃ to a closed

convex set, specifically,

f(x) :=
(
f̃(x)

)+
x

with a locally Lipschitz f̃ . A point x∗ ∈ D is an equilibrium of (3.1) if f(x∗) = 0. Assume

D contains an equilibrium point x∗.

Definition 3.1 Stability. An equilibrium x∗ ∈ D of (3.1) is:

1. stable if ∀ε > 0, ∃δ = δ(ε) > 0 such that

‖x0 − x∗‖ < δ ⇒ ‖x(t)− x∗‖ < ε ∀t ≥ 0

It is unstable if it is not stable.

2. asymptotically stable if it is stable and δ can be chosen such that

‖x0 − x∗‖ < δ ⇒ lim
t→∞

x(t) = x∗

3. globally asymptotically stable if D = Rn or D = Rn+, x∗ is stable and given any initial

point x0 ∈ D, limt→∞ x(t) = x∗, i.e., the solution converges to x∗.

These definitions are illustrated in Figure 3.1.

Theorem 3.2 If x∗ is a globally asymptotically stable equilibrium then it is the unique

equilibrium.

In that case we can assume without loss of generality that x∗ = 0 ∈ D by studying the

perturbed system x(t)− x∗. It is however more convenient for us not to make this assump-

tion because our (unshifted) variables in TCP congestion control often stay nonnegative

x(t) ≥ 0.

A general method to prove the stability of an equilibrium point x∗ of (3.1) is to

find what is called a Lyapunov function V (x) with the property that V (x) is finite, lower

bounded, and it decreases along the solution trajectory of (3.1). Specifically let V : D → R

1We require D to be an open set so as to avoid differentiability issues at the boundary. This is
only for simplicity of exposition and does not lose generality if, starting from any x0 on the
boundary of D, f always drives x(t) towards the interior.



3.1. LYAPUNOV STABILITY THEOREMS 77

.#x* 

δε

(a) Stable

.#x* 

δε

(b) Unstable

.#x* 

δε

(c) Asymptotically stable

Figure 3.1: Stability of an equilibrium x∗.
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be a continuously differentiable function, i.e., the row vector ∂V
∂x of partial derivatives of V

exists and is continuous. Define

V̇ (x) :=
n∑
i=1

∂V

∂xi
ẋi =

∂V

∂x
f(x)

We use V both as a function V (x) of x ∈ Rn and as a function V (x(t)) of t ∈ R+, depending

on the context. As a function of t, V̇ (x(t)) is the rate of change in V along the solution

trajectory of (3.1). If f(x) = (f̃(x))+x then f(x) is generally discontinuous in x even when f̃

is Lipschitz continuous. Hence even though V̇ (x) always exists it is generally discontinuous

in x when we allow projected dynamics.

Consider the following conditions:

C3.1: V is positive definite (lower bounded): V (x∗) is finite and V (x) > V (x∗) for

all x 6= x∗ in D.

C3.2: V has a negative semidefinite rate: V̇ (x) ≤ 0 for all x in D.

C3.2’: V has a negative definite rate: V̇ (x) < 0 for all x 6= x∗ in D.

C3.2”: There exists 0 < δ0 < ε0 with Bε0(x∗) ⊆ D such that for all 0 < δ ≤ δ0 and

δ < ε ≤ ε0, there exists α > 0 such that

V̇ (x) ≤ −α < 0 ∀x with δ ≤ ‖x− x∗‖ ≤ ε

C3.3: V is radially unbounded: ||x|| → ∞ implies V (x)→∞.

We comment on these conditions. Condition C3.1 is equivalent to the following condition

often found in the literature:

C3.1’: V is positive definite: V (x∗) = 0 and V (x) > 0 for all x 6= x∗ in D.

because, otherwise, we can always define Ṽ (x) := V (x)− V (x∗) and V satisfies C3.1 and

any of the other conditions if and only if Ṽ satisfies C3.1’ and the same set of other con-

ditions. As we will see below, condition C3.2’ is commonly used to guarantee asymptotic

stability when f is locally Lipschitz. C3.2’ is inadequate when f(x) = (f̃(x))+x is a pro-

jected dynamics and generally discontinuous, and we require C3.2”. Indeed C3.2’ implies

C3.2” when f is continuous since, in that case, V̇ (x) = ∂V
∂x f(x) is continuous in x. If V

satisfies C3.3 then the level set Ωc := {x|V (x)− V (x∗) ≤ c} is bounded for all values of

c > 0. See Exercise 3.2. Otherwise, for example, if x∗ = 0 and V (x) = (x1 − x2)2, then Ωc
is unbounded for any c (This V does not satisfy C3.1 either).

Functions V that satisfy these conditions are called Lyapunov functions because of

the following key result on the stability of nonlinear dynamical systems.
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Theorem 3.3 Lyapunov Stability (locally Lipschitz f). Suppose f in (3.1) is locally

Lipschitz on D. Let x∗ ∈ D be an equilibrium. Let V : D → R be a continuously differen-

tiable function.

1. If V satisfies C3.1, C3.2 then x∗ is stable.

2. If V satisfies C3.1, C3.2’ then x∗ is asymptotically stable.

3. If D = Rn or D = Rn+ and V satisfies C3.1, C3.2’, C3.3 then x∗ is globally asymp-

totically stable.

Proof.

Part 1. To prove stability, fix any ε > 0. We will derive an δ > 0 such that x(0) ∈ Bδ(x∗)
implies x(t) ∈ Bε(x∗) for all t ≥ 0. We can assume without loss of generality that the set

Bε(x
∗) := {x ∈ Rn | ‖x− x∗‖ ≤ ε}

lies in D. Otherwise we can pick any r ∈ (0, ε] such that the set

Br(x
∗) := {x ∈ Rn | ‖x− x∗‖ ≤ r}

lies in D and replace Bε with Br in the following. The argument proceeds in three steps

and is easy to visualize in the simple case (e.g. V (x) = x21 + x22 in R2) illustrated in Figure

3.2 and its caption.

Let v be the minimum V (x) on the boundary of the closed ball Bε(x
∗) relative to

V (x∗):

v := min
x:‖x−x∗‖=ε

V (x)− V (x∗)

Condition C3.1 means that v > 0 and hence the set2

Ωv/2 :=
{
x ∈ Bε(x∗)

∣∣∣ V (x)− V (x∗) ≤ v

2

}
is nonempty (since V is continuous). It is in the interior of Bε(x

∗) since V (x)− V (x∗) equals

v/2 on the boundary of Ωv/2 but equals v on the boundary of Bε(x
∗). Moreover Ωv/2 must

2The level set Ωv/2 is defined to be a subset of Bε(x
∗) and hence bounded. There can be x

outside Bε(x
∗) where V (x) drops below v/2 but these x are not in the set Ωv/2. Note that

the choice of v to be the minimum value of V on the bounded set ‖x− x∗‖ = ε is important.
For example if V (x) := x21/(1 + x21) + x22 and x∗ = (0, 0) then {x ∈ R2 |V (x)− V (x∗) ≤ c } is
unbounded if c > 1 because (x1, 0) is in the set for arbitrarily large |x1|. However, the definition
of v ensures that v < 1 and hence Ωv/2 is strictly contained in Bε(x

∗). See Remark 3.7 and
Figure 3.5.
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x* 

Bε x*( )

.#

v

V (x)

(a) Bε(x
∗) induces v > 0

x* 

Bε x*( )
Ωv/2

.#

v
v
2

V (x)

(b) v > 0 induces Ωv/2

x* 

Bε x*( )
Ωv/2

.#

v
v
2

Bδ x*( )

V (x)

(c) Ωv/2 induces Bδ(x
∗)

Figure 3.2: Proof of part 1. Assume without loss of generality V (x∗) = 0. (a) Since V is

continuous, v := minx:‖x−x∗‖=ε V (x) is finite and positive under condition C3.1. (b) Hence the

Ωv/2 := {x ∈ Bε(x∗)|V (x) ≤ v/2} lies in the interior of Bε(x
∗). (c) Ωv/2 must contain a ball

Bδ(x
∗) such that x(0) ∈ Bδ(x∗) implies x(t) ∈ Ωv/2 ⊂ Bε(x∗).
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contain a ball Bδ(x
∗) for some δ > 0 (see Figure 3.3(b)) since, otherwise, it means that

for k = 1, 2, . . . , there exists an xk ∈ B1/k(x∗) ∩Bε(x∗) with V (xk)− V (x∗) > v/2. Since

xk → x∗ and V is continuous, V (xk)→ V (x∗), contradicting V (xk)− V (x∗) > v/2 for all

k. These sets are illustrated in Figure 3.3(a).

.#x* 

δε

Ωv/2

(a) Level surface, ε- and δ-balls

.#x* 
B1/k (x

*)

xk
•

(b) Bδ(x
∗) must lie inside

Ωv/2

Figure 3.3: Bδ(x
∗) ⊆ Ωv/2 ⊂ Bε(x∗).

We now show that

‖x(0)− x∗‖ < δ ⇒ ‖x(t)− x∗‖ < ε for all t ≥ 0

Suppose x(0) ∈ Bδ(x∗). Then x(0) ∈ Ωv/2 and, since V̇ ≤ 0 by condition C3.2,

V (x(t))− V (x∗) ≤ V (x(0))− V (x∗) ≤ v

2
, t ≥ 0

Hence x(t) ∈ Ωv/2 ⊂ Bε(x∗) for all t ≥ 0 as desired, since Ωv/2 is in the interior of Bε(x
∗).3

Part 2. To prove asymptotic stability of x∗ we have to prove that, under C3.1 and C3.2’,

δ > 0 can be chosen such that x(0) ∈ Bδ(x∗) implies, in addition, limt→∞ x(t) = x∗. Fix any

ε0 > 0. Construct an δ0 > 0 as in part 1 such that x(0) ∈ Bδ0(x∗) implies x(t) ∈ Bε0(x∗) for

all t ≥ 0. This is convenient as it allows us to restrict attention to the compact set Bε0(x∗).

We will prove part 2 in three steps.

Step 1: We show that V (x(t))→ V (x∗) as t→∞. Condition C3.2’ implies that V (x(t))

monotonically decreases and hence V (x(t))→ v∗ for some v∗. Suppose for the sake of

3Since Bε(x
∗) is compact, Theorem 1.6 or Theorem 1.10 of Chapter 1.5.1 implies that, starting

from an initial state x(0) ∈ Bδ(x∗), a unique solution (x(t), t ≥ 0) of (3.1) indeed exists.
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contradiction that v∗ > V (x∗) and hence V (x(t)) ≥ v∗ > V (x∗) for all t ≥ 0. Then there is

a η > 0 such that ‖x(t)− x∗‖ ≥ η for all t ≥ 0, for otherwise, for every natural number k

there is a tk ≥ 0 such that x(tk) ∈ B1/k(x∗). This sequence x(tk)→ x∗ as k →∞ and since

V is continuous V (x(tk))→ V (x∗), contradicting V (x(t)) ≥ v∗ > V (x∗) for all t ≥ 0.

Then consider the slowest rate of decrease in V (x) outside Bη(x∗):

α := inf
x
−V̇ (x) := −∂V

∂x
f(x) s. t. η ≤ ‖x− x∗‖ ≤ ε0 (3.2)

Since V is continuously differentiable and f is locally Lipschitz, V̇ (x) is continuous in x

and hence α is attained in the compact feasible set {x | η ≤ ‖x− x∗‖ ≤ ε0}; moreover α > 0

by condition C3.2’.4

Hence, for t ≥ 0, since x(t) ∈ Bε0(x∗) we have

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))− α t −→ −∞ as t→∞

contradicting v∗ > V (x∗) > −∞ (condition C3.1). Hence V (x(t))→ V (x∗) as t→∞.

Step 2: We show that x(t) crosses Lyapunov surfaces, or level sets, with decreasing levels.

Specifically, following the construction in part 1, construct the neighborhoods Bεi(x
∗) and

level sets Ωvi/2 as follows. Start with any ε0 > 0 such that Bε0(x∗) lies in D. Recall the

minimum value v0 of V (x)− V (x∗) on the boundary of Bε0(x∗):

v0 := min
x:‖x−x∗‖=ε0

V (x)− V (x∗)

and the level set

Ωv0/2 :=
{
x ∈ Bε0(x∗)

∣∣∣ V (x)− V (x∗) ≤ v0
2

}
It is important that Ωv0/2 is nonempty and in the interior of Bε0(x∗). As we argued in part

1 there is a nonempty neighborhood Bε1(x∗) in Ωv0/2. Define

v1 := min
x:‖x−x∗‖=ε1

V (x)− V (x∗)

on the boundary of Bε1(x∗) and the level set

Ωv1/2 :=
{
x ∈ Bε1(x∗)

∣∣∣ V (x)− V (x∗) ≤ v1
2

}
which is nonempty and in the interior of Bε1(x∗). As before Ωv1/2 contains a nonempty

neighborhood Bε2(x∗), and so on. This collection of sets are nested as shown in Figure 3.4:

Bε0(v∗) ⊃ Ωv0/2 ⊇ Bε1(x∗) ⊃ Ωv1/2 ⊇ · · · 3 x∗
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.&x* 

B ε0
(x*)Ωv0 /2

B ε1
(x*)

Ωv1/2

Figure 3.4: Construction of the nested sets (Bεi(x
∗),Ωvi/2).
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We now argue that since V (x(t))→ V (x∗) (step 1), the trajectory x(t) enters levels sets

Ωv0/2,Ωv1/2, · · · and therefore enters the neighborhoods Bε0(v∗), Bε1(v∗), · · · , i.e., x(t)→
x∗. Specifically the nested set of pairs (Bεi(x

∗),Ωvi/2) has the properties

• If x(0) ∈ Bδ(x∗) as in part 1 then x(t) ∈ Bε0(x∗) for all t ≥ 0.

• Ωvi/2 is nonempty and in the interior of Bεi(x
∗), i.e., φ 6= Ωvi/2 ⊂ Bεi(x∗).

• The levels v0 > v1 > v2 > · · · are strictly decreasing with

vi+1 ≤ vi
2

• The sizes ε0 > ε1 > ε2 > · · · converge to zero, εi → 0 as i→∞ (because vi → 0 and

V (x) > V (x∗) for all x 6= x∗).

Step 1 shows that x(t) will cross the level sets Ωvi/2, i = 0, 1, . . . .

Step 3: We show that x(t)→ x∗ as t→∞, i.e., given any ε > 0 there exists T such that

x(t) ∈ Bε(x∗) for all t > T . Fix an ε > 0. Let εi ≤ ε and consider Ωvi/2 ⊂ Bεi(x∗). Since x(t)

will eventually enter Ωvi/2, there exists T such that, for all t ≥ T , x(t) ∈ Ωvi/2 ⊂ Bεi(x∗) ⊆
Bε(x

∗), as desired.

Part 3. To prove global asymptotic stability we must show that, given any x0 ∈ D = Rn
or Rn+, limt→∞ x(t) = x∗. Fix an x0 ∈ D and consider

Ωv0 := {x ∈ D | V (x)− V (x∗) ≤ V (x0)}

The same argument in Step 2 above applies if we can show that Ωv0 is compact, or Ωv0 ⊆
BR(x∗) for some finite R > 0. If no such R exists then, for each k = 1, 2, . . . , there exists

an xk ∈ Ωv0 such that V (xk) ≤ V (x∗) + V (x0) <∞ and ‖xk − x∗‖ > k. This contradicts

condition C3.3. (Also see Exercise 3.2.)

Example 3.4 Bounded level set. Suppose V : D → R is continuously differentiable and

satisfies C3.1. Prove that there is a level set Ωc that contains x∗, is bounded, and V (x)−
V (x∗) ≤ c for all x ∈ Ωc, provided c is small enough.

This essentially extracts the first part of the proof of Theorem 3.3. Start with an

ε > 0 small enough such that Bε(x
∗) lies in D. Define

v := min
x:‖x−x∗‖=ε

V (x)− V (x∗)

4This is the only place where the continuity of V̇ (x) in x is used. When fi are projected
dynamics, V̇ (x) may be discontinuous and we require condition C3.2” to ensure α < 0 is
attained.
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Condition C3.1 means that v > 0 and hence the set with c := v/2:

Ωv/2 :=
{
x ∈ Bε(x∗)

∣∣∣ V (x)− V (x∗) ≤ v

2

}
is nonempty (since V is continuous). It is in the interior of Bε(x

∗) since V (x)− V (x∗)

equals v/2 on the boundary of Ωv/2 but equals v on the boundary of Bε(x
∗).

Note that the choice of v to be the minimum value of V on the bounded set ‖x− x∗‖ =

ε is important. Consider

V (x) :=
x21

1 + x21
+ x22

x∗ = (0, 0). Then {x ∈ R2 |V (x)− V (x∗) ≤ c } is unbounded if c > 1 because (x1, 0) is in

the set for arbitrarily large |x1|. However, the definition of v ensures that v < 1 and hence

Ωv/2 is strictly contained in Bε(x
∗). See Remark 3.7 and Figure 3.5. See also Exercise 3.2.

When (3.1) is a projected dynamics so that f(x) is discontinuous in x, condition C3.2’

needs to be strengthened to C3.2”.

Corollary 3.5 Lyapunov Stability (projected dynamics f). Suppose f(x) =
(
f̃(x)

)+
x

in (3.1) where f̃ is locally Lipschitz on D. Let x∗ ∈ D be an equilibrium. Let V : D → R be

a continuously differentiable function.

1. If V satisfies C3.1, C3.2 then x∗ is stable.

2. If V satisfies C3.1, C3.2” then x∗ is asymptotically stable.

3. If D = Rn or D = Rn+ and V satisfies C3.1, C3.2”, C3.3 then x∗ is globally asymp-

totically stable.

Proof. As mentioned before, V̇ (x) := ∂V
∂x f(x) always exists but is in general not continuous

when f is a projected dynamics. The continuity of V̇ (x) is used only in the proof of part

2 to show that α in (3.2) is strictly positive. With condition C3.2” there always exist a

δ < min{η, δ0}, an ε with δ < ε < ε0, and an α > 0 such that V̇ (x) ≤ −α < 0 for all x with

δ ≤ ‖x− x∗‖ ≤ ε. Hence V (x(t)) ≤ V (x(0))− αt as before. The rest of the argument is

identical to the proof for Theorem 3.3.

Remark 3.6 Existence and uniqueness of solution. Since f is assumed to be only

locally Lipschitz (or a projection of a locally Lipschitz function), a solution of (3.1) is not a

priori guaranteed. The proof of Theorem 3.3.3 (or Corollary 3.5.3) for global stability shows
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that, if there is a Lyapunov function V that satisfies C3.1, C3.2 (it is not necessary to satisfy

C3.2’ or C3.2”) and C3.3 then, starting from any initial point x0, the solution trajectory

x(t), if exists, will stay entirely in a ball BR that contains the level set {x | V (x) ≤ V (x0)}.
Theorem 1.6 or Theorem 1.10 of Chapter 1.5.1 then implies that a unique solution (x(t), t ≥
0) of (3.1) indeed exists.

Remark 3.7 Radially unbounded. We comment on which part of the proof for Theorem

3.3.2 breaks down if V is not radially unbounded and Ωv0/2 is not bounded (that for

Corollary 3.5.2 is identical). Recall that the proof of part 2 first shows that V (x(t))→ V (x∗)

as t→∞ and then shows that, since V (x(t)) crosses Lyapunov surfaces to enter Ωvi/2 and

Ωvi/2 ⊂ Bεi , we must have x(t)→ x∗. Both steps require that Ωv0/2 be contained in BR for

some R <∞. To see this consider a concrete Lyapunov candidate V : R2 → R given by

V (x) := x22

and assume the origin is the equilibrium point under study. V is not radially unbounded

because (x1, 0)→∞ but V (x1, 0) = 0 as x1 →∞. But V does not satisfy condition C3.1

since V (x1, 0) = V (0, 0) (the origin is the equilibrium point by assumption). Hence V is

not a valid Lyapunov candidate for us. Consider instead

V (x) :=
x21

1 + x21
+ x22

V is not radially unbounded because (x1, 0)→∞ but V (x1, 0) ≤ 1 as x1 →∞. The set

{x ∈ R2 | V (x) = c}

is unbounded for c ≥ 1. Suppose the system starts at some x(0) = (x1(0), x2(0)) with

x2(0) ≥
√

2 so that V (x(0))/2 ≥ 1 and the set{
x ∈ R2 | V (x) ≤ V (x(0))

2

}
is unbounded. In an attempt to get a bounded set, suppose we take the intersection of the

above set with the ball defined by x(0):

Ωv0/2 :=

{
x ∈ R2 | V (x) ≤ V (x(0))

2

}
∩ B‖x(0)‖(0)

As shown in Figure 3.5, x(0) is at the boundary of Ωv0/2. Since we only know that V̇ < 0,

starting from x(0) on the boundary, x(t) may leave Ωv0/2 instead of entering it and therefore

the trajectory of x(t) may not stay in a bounded set even as V (t) is strictly decreasing in

time; see Figure 3.5(b). This means that the minimum rate α of decrease in (3.2) may be
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Figure 3.5: Plots of V (x) = x21/(1 + x21) + x22. Starting from an x(0) such that V (x(0)) > 1,

the trajectory x(t) may not stay in any bounded set even if V̇ < 0.
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0 over the region that the trajectory x(t) may visit. Hence the proof for V (x(t))→ V (x∗)

becomes invalid. Moreover since Ωvi/2 may not be contained in any ball Bεi , even if x(t)

crosses Lyapunov surfaces, x(t) is not guaranteed to stay in any small ball Bεi for sufficiently

large t. Hence the argument that x(t)→ x∗ becomes invalid.

Example 3.8 Consider

ẋ1 = −x1 + x22
ẋ2 = x1x2 − 2x32

with the origin as an equilibrium. Show that the origin is globally asymptotically stable.

Consider the Lyapunov function candidate

V (x) :=
1

2

(
x21 + x22

)
Clearly V is continuously differentiable, positive definite (condition C3.1), i.e., V (x) > 0

for all x 6= 0, and radially unbounded (C3.3). For condition C3.2’ we have

V̇ = x1 ẋ1 + x2 ẋ2
= −x21 − 2x42 + 2x1x

2
2 = −

(
x1 − x22

)2 − x42 ≤ 0

If V̇ = 0 then x2 = 0 and x1 = x22 = 0. Hence V̇ < 0 for all x 6= 0 and satisfies C3.2’. The-

orem 3.3 then implies that x∗ = 0 is globally asymptotically stable.

Finding a Lyapunov function is generally difficult. Often a given Lyapunov function

has a rate that is negative semidefinite, but not negative definite, i.e., condition C3.2 is

satisfied but not C3.2’ or C3.2”. It still guarantees global asymptotic stability if it satisfies

an additional property. By “x(t) ≡ a” or “x ≡ a” we mean “x(t) = a for all t ≥ 0.”

Theorem 3.9 LaSalle’s Invariance Principle. Let x∗ ∈ D be an equilibrium of (3.1)

where f is either locally Lipschitz or a projection of a locally Lipschitz function. Let V :

D → R be a continuously differentiable function. Let E := {x ∈ D | V̇ (x) = 0} and suppose

no solution of (3.1) can stay identically in E other than the trivial solution x(t) ≡ x∗.

1. If V satisfies conditions C3.1, C3.2 then x∗ is asymptotically stable.

2. If D = Rn or D = Rn+ and V satisfies C3.1, C3.2, C3.3 then x∗ is globally asymp-

totically stable.
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Note that we allow f in (3.1) to be discontinuous when it is a projected dynamics. When

condition C3.2 is replaced by C3.2’ or C3.2”, then E = {x∗} and the theorem reduces to

Theorem 3.3 and its corollary. Otherwise E generally contains other points a 6= x∗ where

V̇ (a) = 0. The condition in Theorem 3.9 requires that no solution trajectory (x(t), t ≥ 0)

of (3.1) can stay entirely in E except x(t) ≡ x∗. For instance E cannot contain a limit

cycle, or if V̇ (a) = 0 with a 6= x∗ then x(t) ≡ a cannot be a solution; see Example 3.13.

The intuition is that an asymptotically stable system will approach points in E that are

on a solution trajectory. If the only solution trajectory in E is x(t) ≡ x∗ then the system

will approach x∗.

Before proving Theorem 3.9 we need to introduce a few concepts. Consider a general

dynamical system

ẋ = f(x(t)) where f : D → Rn, t ≥ 0 (3.3)

and D ⊆ Rn is a domain. Given any initial state x(0) = x0 let φ(t;x0) denote a solution

of (3.3), and x(t) := φ(t;x0). A point x ∈ D is called a positive limit point of x(t) if (given

x0) there is a sequence {ti} with ti →∞ as i→∞ such that x(ti)→ x as i→∞. The set

of all positive limit points of x(t) (given x0) is called the positive limit set of x(t). A set

A ⊆ D is called a positive invariant set or just an invariant set with respect to (3.3) if

x(0) ∈ A =⇒ x(t) ∈ A ∀t ≥ 0

We say that x(t) approaches a set A as t→∞ if for all ε > 0 there is an T such that

inf
y∈A
‖x(t)− y‖ < ε ∀t > T

for some norm ‖ · ‖.
We now illustrate these concepts with simple examples. If ẋ = −x(t), t ≥ 0, then the

origin {0} is the only positive limit set of the solution x(t) for any initial state x(0). More

generally an asymptotically stable equilibrium point is a positive limit set of every solution

starting sufficiently close to the equilibrium point. If ẋ = sin t, t ≥ 0, then [x(0)− 1, x(0) +

1] is the positive limit set of the solution x(t) = − cos t for any initial state x(0). More

generally a stable limit cycle is a positive limit set of every solution starting sufficiently

close to the limit cycle. In this case, even though a solution x(t) approaches the limit cycle

A as t→∞, x(t) does not converge to any specific point in A. Hence x(t) approaching a set

does not imply the existence of limt→∞ x(t). If x(t) is bounded however then there exists

a sequence (ti, i = 0, 1, . . . ) such that x(ti) converges to a point as i→∞ by the Bolzano-

Weierstrass theorem. An equilibrium point and a limit cycle are invariant sets. Theorem

3.3 implies that the level set Ωc := {x ∈ Rn |V (x) ≤ c} with V̇ (x) ≤ 0 for all x ∈ Ωc is an

invariant set. This set is bounded for any c > 0 if V (x) is radially unbounded; see Exercise

3.2.
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Finally we need the notion of continuity of solution in initial state. Suppose, given

any initial state x0 ∈ D, there is a unique solution to (3.3) in D, denoted by φ(t;x0),

t ≥ 0. Hence φ(0;x0) = x0 and x(t) := φ(t;x0). We say that the solution φ(t; ·) of (3.3) is

continuous in its initial state if, given any x0 ∈ D and any ε > 0, there is an δ > 0 such

that for any y0 ∈ D

‖x0 − y0‖ < δ =⇒ sup
t∈[0,∞)

‖φ(t;x0)− φ(t; y0)‖ < ε

Hence if φ(t; ·) is continuous then two trajectories that start close to each other will stay

close to each other for all t ≥ 0.

A positive limit set is important because any solution trajectory x(t) approaches its

positive limit set. The next fundamental result does not require f to be continuous and is

therefore applicable to projected dynamics. See its proof in Appendix 3.4.5

Lemma 3.10 Consider a compact set Ω ⊂ D and suppose, starting from any state in Ω,

there is a unique solution to (3.3) and the solution is continuous in the initial state. Given

an initial state x(0) = x0 ∈ Ω, if the corresponding solution (x(t), t ≥ 0) lies entirely in the

compact set Ω, then its positive limit set A+ := A+(x0) is in Ω, nonempty, compact and

invariant. Moreover x(t) approaches A+ as t→∞.

The lemma only requires that (3.3) have a unique solution over the compact set Ω,

but does not require Ω to be invariant because the conclusion is for an individual solution

trajectory that lies entirely in Ω.

Proof of Theorem 3.9.

We prove part 1 of the theorem. Since V satisfies conditions C3.1 and C3.2, the

stability of x∗ follows from Theorem 3.3.1 and Corollary 3.5.1 (if a solution exists). In

addition we need to prove that x(t)→ x∗ as t→∞, provided the initial state x(0) is close

enough to x∗. We now prove this in three steps. Step 1 shows that we can apply Lemma 3.10

to our system (3.1) and hence any solution x(t) will approach its positive limit set. Step 2

shows that the positive limit set is in E. The final step concludes asymptotic stability since

the only point in E a solution x(t) can approach is x∗.

Step 1: We show that the (pre-)conditions in Lemma 3.10 are satisfied.

Lemma 3.11 Suppose f in (3.1) is either locally Lipschitz or a projection of a locally

Lipschitz function. Then there is a unique solution φ(t, x0), t ≥ 0, given any initial state

x(0) = x0 and the solution φ(t, x0) is continuous in x0.

5If the definition of a positive limit point x of a solution x(t) does not require x ∈ D (so x can
be in Rn \D) then the condition in Lemma 3.10 can be relaxed to “x(t) is bounded and lies
in D for all t ≥ 0.”
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Proof of Lemma 3.11. As at the beginning of the proof for Theorem 3.3, since V satisfies

C3.1 and is continuous, we can find an ε > 0 such that the closed-ball Bε(V
∗) ⊆ D. Let

v := minx:‖x−x∗‖=ε V (x)− V (x∗) be the minimum value of V (x)− V (x∗) on the boundary

of Bε(V
∗) and define the level set

Ωv/2 := { x ∈ Bε(x∗) |V (x)− V (x∗) ≤ v/2 } (3.4)

Then Ωv/2 is bounded and hence compact. Moreover it is invariant, i.e., x(0) ∈ Ωv/2 implies

x(t) ∈ Ωv/2 for all t ≥ 0, since V̇ (x) ≤ 0 over D. This means that, given any initial state

x(0) ∈ Ωv/2, a solution, if exists, lies entirely in the compact set Ωv/2. Then, since f is locally

Lipschitz or a projection of a locally Lipschitz function, the existence and uniqueness of

the solution x(t) follow from Theorems 1.6 and 1.10.

When f is locally Lipschitz, the continuity of the solution φ(t;x0) in its initial state

x0 is a standard result; see e.g. [29, Chapter 3.2]. When f(x) = (f̃(x))+x where f̃ is locally

Lipschitz, the continuity of φ(t; ·) is proved in [20, Lemma 2].

Step 2: We prove LaSalle’s invariance principle. Since Ωv/2 defined in (3.4) is compact

and invariant, Lemma 3.10 applies to any solution trajectory x(t) that starts in Ωv/2. In

particular x(t) approaches its nonempty, compact, invariant positive limit set A+ = A+(x0).

Let

Ev/2 := {x ∈ Ωv/2 | V̇ (x) = 0} ⊆ E

Lemma 3.12 Under the conditions of Theorem 3.9, every solution that starts in Ωv/2
approaches the largest invariant set in Ev/2 as t→∞.

Proof of Lemma 3.12. Fix any x(0) = x0 in Ωv/2 and its unique solution x(t) in Ωv/2.

Since V̇ (x) ≤ 0 on Ωv/2, V (x(t)) is nonincreasing in t and hence V (x(t)) approaches a

limit v∗ as t→∞. Since V (x) is continuous and Ωv/2 is invariant and compact, v∗ is finite.

Moreover for any positive limit point y ∈ A+ := A+(x0) there is a sequence (ti, i = 0, 1, . . . )

with ti →∞ as i→∞ such that limi x(ti) = y. Continuity of V then implies

V (y) = V (lim
i
x(ti)) = lim

i
V (x(ti)) = v∗

i.e., V (x) = v∗ on A+. Since A+ is invariant (Lemma 3.10) we have V̇ (x) = 0 on A+. This

means A+ ⊆ Ev/2. If M is the largest invariant set in Ev/2 then

A+ ⊆ M ⊆ Ev/2 ⊆ Ωv/2 ⊂ D

Lemma 3.10 implies that x(t) approaches A+ and hence M as t→∞.

Step 3: Since the only solution trajectory that can stay entirely in Ev/2 is x(t) ≡ x∗, M =

{x∗}. Lemma 3.12 then implies that x(t)→ x∗ as t→∞.
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This completes the proof of part 1 of Theorem 3.9.

To prove part 2 of Theorem 3.9, note that condition C3.3 implies that Ωc := {x ∈
Rn |V (x)− V (x∗) ≤ c} is bounded for any c > 0 (see Exercise 3.2). Hence given any initial

state x0 ∈ D = Rn we can use c := V (x(0)). The set Ωc will be compact and the argument

for part 1 proves that x(t)→ x∗, proving global asymptotic stability.

Example 3.13 LaSalle’s invariance principle Theorem 3.9. Consider

ẋ1 = −2
(
x1(t) − x22(t)

)
ẋ2 =

(
−2x1(t) − x2(t) − x32(t)

)+
x2(t)

where the domain D is R× R+, i.e., x2(t) ≥ 0 for all t ≥ 0. The equilibrium points are

given by

x1 = x22,
(
−2x1 − x2 − x32

)+
x2

= 0

The second equality is equivalent to

−2x1 − x2 − x32 = 0 or x2 = 0, −2x1 − x2 − x32 < 0

Substituting x1 = x22 we have −2x1 − x2 − x32 = −x2(x2 + 1)2 and hence x∗ = (0, 0) is the

unique equilibrium (recall that x2 ≥ 0). We now show that the origin is globally asymptot-

ically stable.

Consider the Lyapunov function candidate

V (x) :=
1

2

(
x21 + x22

)
Clearly V is continuously differentiable, positive definite (condition C3.1) and radially un-

bounded (C3.3). For condition C3.2 we have

V̇ = x1(t) ẋ1(t) + x2(t) ẋ2(t)

= −2x21(t) + 2x1(t)x22(t) + x2(t)
(
−2x1(t) − x2(t) − x32(t)

)+
x2(t)

But the last term x2(t)
(
−2x1(t)− x2(t)− x32(t)

)+
x2(t)

= x2(t)
(
−2x1(t)− x2(t)− x32(t)

)
.

Hence

V̇ = −
(
x1 − x22

)2 − (x1 + x2)
2 ≤ 0

Moreover if V̇ (x) = 0 then x1 = x22 and x1 = −x2, i.e., x2(x2 + 1) = 0. Hence

V̇ (x) = 0 if and only if x2 = 0 or x2 = −1
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Hence any trajectory x(t) that lies entirely in the set E := {x | V̇ (x) = 0} must have

either x2(t) ≡ 0 or x2(t) ≡ −1. Even though the latter trajectory lies in E, it is not a

system solution because any solution x(t) must have x2(t) ≥ 0 for all t ≥ 0. Hence any

solution trajectory x(t) that stays identically in E must have x2 ≡ 0, and hence, since

x1 ≡ x22, x1 ≡ 0, i.e., it must be the trivial solution x(t) ≡ 0. The origin is hence globally

asymptotically stable by LaSalle’s invariance principle Theorem 3.9.

3.2 STABILITY OF DUAL ALGORITHMS

Consider the class of dual algorithms considered in Chapter 2.2.3, reproduced here:

ṗl = γl (yl(t)− cl)+pl(t) =: gl(yl(t), pl(t)), l = 1, . . . , L (3.5a)

xi(t) =
(
U ′−1i (qi(t))

)+
, i = 1, . . . , N (3.5b)

where for any a ∈ R, [a]+ := max{a, 0} and U ′−1i are the inverses of the derivatives U ′i of

the utility functions Ui. For any a ∈ R and b ≥ 0, (a)+b = a if a > 0 or b > 0 and (a)+b = 0

if a ≤ 0 and b = 0. We assume p(0) ≥ 0 which guarantees that (x(t), p(t)) ≥ 0, t ≥ 0. As

before,

qi(t) =
∑
l

Rlipl(t) and yl(t) =
∑
i

Rlixi(t)

Using (3.5b) we write x(p) = x(q) and y(p) to mean, componentwise,

xi(p) := xi(qi) :=
(
U ′−1i (qi)

)+
and yl(p) :=

∑
i

Rli xi(p)

where qi :=
∑
lRlipl. We call p∗, as opposed to (x∗, p∗), an equilibrium of the dual algorithm

(3.5) if

g(y(p∗), p∗) = 0

Recall also the network utility maximization:

max
x≥0

∑
i

Ui(xi) subject to Rx ≤ c (3.6a)

and its Lagrangian dual:

min
p≥0

D(p) :=
∑
i

max
xi≥0

(Ui(xi)− xiqi) +
∑
l

plcl (3.6b)

As discussed immediately after condition C2.1 and before Theorem 2.14, C2.1 guarantees

that a primal-dual optimal solution (x∗, p∗) exists for (3.6). The condition C2.2 there (Ui
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are twice continuously differentiable and strictly concave increasing with U ′′i (xi) < 0 for

all xi ≥ 0) in addition ensures that the optimal primal solution x∗ is unique. If R has full

row rank and the optimal solution x∗ = x(p∗) > 0 then the optimal dual solution p∗ is also

unique (see the proof of Theorem 2.14).

Before stating formally the stability property of the dual algorithm (3.5) we first show

that LaSalle’s invariance principle Theorem 3.9.2 is applicable to (3.5). The dual algorithm

can be expressed in terms of only the price vector p(t) as:

ṗ = Γ (g̃(p(t)))
+
p(t) , p(0) ≥ 0, t ≥ 0

where g̃(p) := y(p)− c and Γ = diag(γl) is a diagonal gain matrix. We claim that this is a

projected dynamic with a locally Lipschitz g̃(p).

Lemma 3.14 If Ui are twice continuously differentiable with U ′′i (xi) < 0 for all xi ≥ 0,

then g̃(p) is locally Lipschitz.

Proof. Fix any p, p̂ ≥ 0 that are close enough. We will show that |xi(p)− xi(p̂)| ≤ Li‖p− p̂‖
for some finite Li for all i. This implies that

‖g̃(p) − g̃(p̂)‖ ≤
∑
i

Rli |xi(p)− xi(p̂)| ≤

(∑
i

RliLi

)
‖p− p̂‖

proving that g̃(p) is Lipschitz.

Note that (·)+ is nonexpansive: for any a, b ∈ R

|a+ − b+| =


|a− b| if a > 0, b > 0

a ≤ |a− b| if a > 0, b ≤ 0

b ≤ |b− a| if a ≤ 0, b > 0

0 ≤ |a− b| if a ≤ 0, b ≤ 0

i.e., |a+ − b+| ≤ |a− b|. Hence

|xi(p)− xi(p̂)| =
∣∣∣(U ′−1i (p)

)+ − (U ′−1i (p̂)
)+∣∣∣ ≤ ∣∣U ′−1i (p)− U ′−1i (p̂)

∣∣
Since Ui are twice continuously differentiable, U ′−1i (p) are continuously differentiable with

∂

∂pl
U ′−1i (p) =

Rli
U ′′i (xi(p))

Lemma 1.3 then implies that U ′−1i (p) are locally Lipschitz and hence |xi(p)− xi(p̂)| ≤
Li‖p− p̂‖ locally for some Lipschitz constants Li. This completes the proof of the lemma.
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Hence the dual algorithm (3.5) is a projected dynamical system with an underlying

Lipschitz derivative g̃(p), to which Theorem 3.9 is applicable for proving stability. This

also guarantees the existence and uniqueness of a solution; see Remark 3.17 after the next

theorem.

To simplify proofs we strengthen condition C2.2 to the following:

C2.2’: Ui are twice continuously differentiable and strictly concave increasing on

R+, with U ′′i (xi) < 0 for xi ≥ 0. Moreover we assume that limxi→0 U
′
i(xi) =∞ and

limxi→∞ U
′
i(xi) = 0.

Condition C2.2’ guarantees that for any p ∈ RL+ such that qi(p) > 0 there is a unique max-

imizer xi(p) for maxxi≥0 Ui(xi)− xiqi(p) given by

xi(p) := U ′−1i (qi(p)) ≥ 0

By Danskin’s theorem (e.g. [8, p. 649]) and the fact that a differentiable convex function is

continuously differentiable, the dual objective function

D(p) =
∑
i

max
xi≥0

(Ui(xi)− xi qi(p)) +
∑
l

cl pl

is continuously differentiable in p and its derivative is

∂D

∂p
(p) = c−Rx(p) = c− y(p)

Theorem 3.15 Suppose the conditions C2.1 and C2.2’ hold and R has full row rank. Then

the unique equilibrium p∗ of (3.5) is globally asymptotically stable, provided x(p∗) > 0.

Proof. Theorem 2.14 proves the existence and uniqueness of the equilibrium p∗ and the

primal-dual optimality of p∗ and the associated source rates x∗ := x(p∗) > 0. To prove that

p∗ is globally asymptotically stable we will show that D(p) is continuously differentiable and

satisfies conditions C3.1, C3.2, C3.3 and hence is a Lyapunov function for the dual algorithm

(3.5). Moreover the only solution of (3.5) that can stay identically in the set {p | Ḋ(p) = 0}
is the trivial solution p(t) ≡ p∗. LaSalle’s invariance principle (Theorem 3.9.2) then implies

the global asymptotic stability of p∗.

We now prove that D(p) satisfies conditions C3.1, C3.2, C3.3.

C3.1: The strict concavity of Ui and full row rank of R mean that the optimal p∗ is unique

and hence

D(p) > D(p∗) for all p 6= p∗

Moreover D(p∗) is finite by Theorem 2.14.
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C3.2: We have for all p(t) 6= p∗

Ḋ =
∂D

∂p
g(y(p(t)), p(t)) = (c− y(p(t)))T (y(p(t))− c)+p(t)

= −
∑
l

(yl(p(t))− cl) (yl(p(t))− cl)+pl(t)

= −
∑
l

(yl(p(t))− cl)2 1 (yl(p(t)) > cl or pl(t) > 0)

where the indicator function 1(P ) := 1 if P is true and 0 otherwise. Hence Ḋ ≤ 0.

C3.3: We have to show that D(p) is radially unbounded, i.e., D(p)→∞ as ‖p‖ → ∞,

under condition C2.2. For ease of reference in the future, this is proved as Lemma

3.16 below.

This completes the proof that D(p) is a Lyapunov function for the dual algorithm (3.5).

LaSalle’s invariance principle (Lemma 3.12) implies that any solution p(t) of (3.5)

will converge to the largest invariant set in

E := { p ∈ RL+ | Ḋ(p) = 0 }

From the proof above of condition C3.2, Ḋ(p) = 0 if and only if, for each l = 1, . . . , L,

pl ≥ 0 and yl(p) ≤ cl with equality if pl > 0

This means that p is an equilibrium point of (3.5). Since the equilibrium is unique we must

have p = p∗. Hence the only solution p(t) of (3.5) that can stay identically in E is the trivial

solution p(t) ≡ p∗. Theorem 3.9.2 then implies the global asymptotic stability of p∗.

Lemma 3.16 If Ui are strictly concave and continuously differentiable then the dual objec-

tive function D(p) is radially unbounded.

Proof. Since Ui is strictly concave and continuously differentiable, U ′−1i (qi) is a strictly

decreasing continuous function of qi. Hence yl(p) =
∑
iRlixi(p) =

∑
iRli

(
U ′−1i (qi)

)+
is

strictly decreasing in pl since qi(p) is strictly decreasing in pl if Rli = 1, unless yl(p) = 0 for

large enough p. This means that there is an ε > 0 and, for every link l = 1, . . . , L, there is

a finite threshold p̃l such that for any p ≥ 0,

pl ≥ p̃l =⇒ cl − yl (p) > ε, l = 1, . . . , L (3.7)

i.e., the flow rate yl(p) is smaller than cl by more than ε if pl ≥ p̃l even if all other links

k 6= l have zero prices. Let p̃ := (p̃l, l = 1, . . . , L). Then (3.7) implies in particular that

cl − yl (p̃) > ε, l = 1, . . . , L (3.8)
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We will take ‖p‖ → ∞ and compare the gap D(p)−D(p̃).

D(p)−D(p̃)

=
∑
i

(Ui(xi(p))− Ui(xi(p̃))) −
∑
l

(plyl(p)− p̃lyl(p̃)) +
∑
l

cl (pl − p̃l)

≥
∑
i

U ′i(xi(p)) (xi(p)− xi(p̃)) −
∑
l

(plyl(p)− p̃lyl(p̃)) +
∑
l

cl (pl − p̃l)

≥
∑
i

qi(p) (xi(p)− xi(p̃)) −
∑
l

(plyl(p)− p̃lyl(p̃)) +
∑
l

cl (pl − p̃l) (3.9)

where the first inequality follows from the concavity of Ui. To see the second inequality,

note that since xi(p) = arg maxxi≥0 Ui(xi)− xiqi(p), we have

U ′i(xi(p)) = qi(p) or U ′i(xi(p)) < qi(p) with xi(p) = 0

In either case we have, since xi(p̃) ≥ 0,

U ′(xi(p)) (xi(p)− xi(p̃)) ≥ qi(p) (xi(p)− xi(p̃))

Substitute qi =
∑
lRlipl and yl =

∑
iRlixi into (3.9) to obtain

D(p)−D(p̃)

≥
∑
l

∑
i

Rli pl (xi(p)− xi(p̃)) −
∑
l

∑
i

Rli (plxi(p)− p̃lxi(p̃)) +
∑
l

cl (pl − p̃l)

=
∑
l

(pl − p̃l)

(
cl −

∑
i

Rlixi(p̃)

)
(3.10)

Substituting (3.8) into (3.10) we have

D(p)−D(p̃) ≥
∑
l

(pl − p̃l) (cl − yl(p̃))

≥ ε
∑

l:pl>p̃l

(pl − p̃l) −
∑

l:pl≤p̃l

p̃l(cl + yl(p̃)) (3.11)

where the last inequality follows from

pl ≤ p̃l =⇒ (pl − p̃l) (cl − yl(p̃)) ≥ −p̃l(cl + yl(p̃))

The second term on the right-hand side of (3.11) is constant. Hence D(p)→∞ as ‖p‖ → ∞
as desired.

Remark 3.17 Assumptions C2.1 and C2.2 on dual algorithm. The assumptions

C2.1 and C2.2 in Chapter 2.2.3 have implications on the existence and uniqueness of solution

trajectory (p(t), x(p(t)), t ≥ 0) of the dual algorithm, the existence and uniqueness of the

equilibrium point p∗, and its global asymptotic stability. All of these are brought together

after completing the proof of Theorem 3.15.
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1. Solution. The dual algorithm g(p) := (g̃(p))+p is the projection of g̃. Lemma 3.14

shows that g̃ is locally Lipschitz under C2.2. The proof Theorem 3.15 constructs

a Lyapunov function V that satisfies C3.1, C3.2, C3.3. Then, starting from any

initial point p0 ≥ 0, a solution trajectory p(t), if exists, lies entirely in the closed

set Ω := {p ∈ RL+ |V (p) ≤ V (p0)}. The radial unboundedness condition C3.3 implies

Ω is bounded, and hence compact. Therefore a solution indeed exists and is unique

(Remark 3.6 and Theorem 1.10.2).

2. Equilibrium. As discussed before Theorem 2.14, condition C2.1 guarantees that a

primal-dual optimal solution (x∗, p∗) exists for (3.6). C2.2 (or C2.2’) on the second

derivative of Ui ensures that the primal optimal x(p∗) is unique and when R has full

row rank, the dual optimal p∗ is also unique when x(p∗) > 0.

3. Stability. The Lyapunov function V and LaSalle’s invariance principle prove the

global asymptotic stability of the unique equilibrium (Theorem 3.9.2).

3.3 STABILITY OF PRIMAL-DUAL ALGORITHMS

We consider a class of primal-dual algorithms of the form

ẋ = K

(
∂L

∂x
(x, p)

)+

x(t)

ṗ = Γ

(
−∂L
∂p

(x, p)

)+

p(t)

where K and Γ are invertible gain matrices. Note that for any a, b ∈ R,

(−a)
+
b 6= − (a)

+
b

Here L(x, p) is concave in x and convex in p. Primal-dual algorithms have dynamics in

both the source rates x and congestion prices p. Often the function L is the Lagrangian of a

constrained optimization problem and the algorithm is a first-order saddle point algorithm

that iterates on steepest ascent in the x direction and steepest descent in the p direction.

For our purposes consider the network utility maximization and its dual problem

(3.6). Its Lagrangian is

L(x, p) :=
∑
i

Ui(xi) − pT (Rx− c) (3.12)

Then the primal-dual algorithm takes a decentralized form

ẋi = κi (U ′i(xi(t))− qi(t))
+
xi(t)

=: fi(xi(t), qi(t)), i = 1, . . . , N (3.13a)

ṗl = γl (yl(t)− cl)+pl(t) =: gl(yl(t), pl(t)), l = 1, . . . , L (3.13b)
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When Ui are twice continuously differentiable the dynamics of (3.13) are defined by the

projection of locally Lipschitz functions. We assume (x(0), p(0)) ≥ 0. A point (x∗, p∗) is an

equilibrium of the primal-dual algorithm (3.13) if f(x∗, p∗) = 0, g(x∗, p∗) = 0, i.e.,

U ′(x∗) ≤ q∗, x∗ ≥ 0, (x∗)
T

(U ′(x∗)− q∗) = 0

y∗ = Rx∗ ≤ c, p∗ ≥ 0, (p∗)
T

(y∗ − c) = 0

As shown in Theorem 2.14 this means (x∗, p∗) is an equilibrium of (3.13) if and only if

x∗ is an optimal solution of the network utility maximization (3.6a) and p∗ is an optimal

solution of its dual (3.6b). Moreover when Ui are twice continuously differentiable and

strictly concave increasing (condition C2.2), x∗ is unique. When R has full row rank and

x∗ > 0, p∗ is also unique.

The same conditions that guarantee the global asymptotic stability of dual algorithms

also guarantee that of the primal-dual algorithm. We start with a simple lemma that will

be repeatedly used to remove the projection operation.

Lemma 3.18 For any scalars a ≥ 0, b ≥ 0 and c ∈ R, we have

(a− b)(c)+a ≤ (a− b)c
(a− b)(c)+b ≥ (a− b)c

where (c)+a := c if a > 0 or c > 0 and 0 otherwise. If a := (ai, i = 1, . . . , n), b := (bi, i =

1, . . . , n), c := (ci, i = 1, . . . , n) are vectors in Rn then the following inequalities hold:

(a− b)T (c)+a ≤ (a− b)T c
(a− b)T (c)+b ≥ (a− b)T c

with the interpretation (a− b)T (c)+a :=
∑
i(ai − bi)(ci)+ai and likewise for (a− b)T (c)+b .

Proof. We will prove the case when a, b, c are scalars; it implies the vector case. The first

inequality is an equality if a > 0 or c ≥ 0. When a = 0 and c < 0, the left-hand side is zero

but the right-hand side is nonnegative. The second inequality is proved similarly.

While the dual objective function D(p) serves as a Lyapunov function for proving

the global asymptotic stability of the dual algorithm, the Lagrangian L(x, p) cannot serve

as a Lyapunov function for the primal-dual algorithm because the algorithm attempts to

maximize L over x but minimize L over p.

Theorem 3.19 Suppose the conditions C2.1 and C2.2 hold and R has full row rank. Then

the unique equilibrium (x∗, p∗) of (3.13) is globally asymptotically stable, provided x∗ > 0.
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Proof. The discussion preceding Lemma 3.18 shows that there exists a unique equilibrium

z∗ := (x∗, p∗) that is primal-dual optimal for (3.6) since Ui are strictly concave and R has

full row rank. Let z := (x, p) and consider the quadratic Lyapunov function candidate

V (z) :=
1

2
(z − z∗)T

[
K−1 0

0 Γ−1

]
(z − z∗)

where K := diag(κi, i = 1, . . . , N) and Γ := diag(γl, l = 1, . . . , L). Hence V (z) = 0 if and

only if z = z∗. Since K > 0,Γ > 0, V (z) is positive definite (i.e., V (z) > 0 for all z 6= z∗)

and radially unbounded. Hence V (z) is continuously differentiable and satisfies conditions

C3.1 and C3.3. To prove the global asymptotic stability of z∗ we now show that V̇ (z) ≤ 0 for

all z 6= z∗ (condition C3.2) and that the only solution to (3.13) that can maintain V̇ (z) ≡ 0

is the equilibrium trajectory z(t) ≡ z∗. LaSalle’s Theorem 3.9.2 then implies the global

asymptotic stability of z∗.

Write the primal-dual algorithm (3.13) in terms of the Lagrangian:

ż =

[
K 0

0 Γ

](∂L∂x (x(t), p(t))
)+
x(t)

0

0
(
−∂L∂p (x(t), p(t))

)+
p(t)


Then

V̇ = (z(t)− z∗)T
[
K−1 0

0 Γ−1

]
ż

= (x(t)− x∗)T
(
∂L

∂x
(x(t), p(t))

)+

x(t)

+ (p(t)− p∗)T
(
−∂L
∂p

(x(t), p(t))

)+

p(t)

≤ (x(t)− x∗)T ∂L
∂x

(x(t), p(t)) − (p(t)− p∗)T ∂L
∂p

(x(t), p(t))

where the inequality follows from Lemma 3.18. Since L is strictly concave in x and convex

(linear) in p we have, for z 6= z∗,6

(x− x∗)T ∂L
∂x

(x, p) ≤ L(x, p)− L(x∗, p)

(p− p∗)T ∂L
∂p

(x, p) ≥ L(x, p)− L(x, p∗)

Hence

V̇ ≤ L(x(t), p∗)− L(x∗, p(t))

= (L(x(t), p∗)− L(x∗, p∗)) + (L(x∗, p∗)− L(x∗, p(t))) ≤ 0 (3.14)

6Even though L is strictly concave in x, the inequalities are both non-strict for z(t) 6= z∗ with
z(t) = (x∗, p(t)).
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where the second inequality follows from the saddle-point property of the optimal point

(x∗, p∗):

L(x, p∗) ≤ L(x∗, p∗) ≤ L(x∗, p) ∀(x, p)

This completes the proof that V (z) satisfies condition C3.2 and is hence a Lyapunov func-

tion.

To use LaSalle’s Theorem 3.9 it suffices to show that only the equilibrium trajectory

z(t) ≡ z∗ of (3.13) can stay identically in the set

E := { z ≥ 0 | V̇ (z) = 0 }

From (3.14) and the saddle-point property of z∗ we have V̇ (z(t)) ≡ 0 (i.e., V̇ (z(t)) = 0 for

all t ≥ 0) only if

L(x(t), p∗) ≡ L(x∗, p∗) and L(x∗, p(t)) ≡ L(x∗, p∗) (3.15)

The strict concavity of U and hence L means that the maximizer x∗ of L(·, p∗) is unique

and therefore we must have x(t) ≡ x∗ from the first equivalence in (3.15). In particular

ẋ ≡ 0. Hence we have from (3.13a)

U ′(x∗) ≤ q(p(t)), x∗ ≥ 0, (x∗)
T

(U ′(x∗)− q(p(t))) = 0, t ≥ 0 (3.16a)

We now argue that (x(t) ≡ x∗, p(t)) also satisfies

y∗ = Rx∗ ≤ c, p(t) ≥ 0, (p(t))
T

(y∗ − c) = 0, t ≥ 0 (3.16b)

But (3.16) implies that (x(t), p(t)) are equilibrium points of (3.13) for all t ≥ 0. Since the

equilibrium is unique we must have (x(t), p(t)) ≡ (x∗, p∗). Hence we have shown that if z(t)

stays identically in E then z(t) ≡ z∗ is the equilibrium trajectory. The theorem then follows

from Theorem 3.9.2.

Therefore the proof is complete if we can establish (3.16b). The first conditionRx∗ ≤ c
holds since x∗ is a primal feasible point for (3.6a). The second condition p(t) ≥ 0 of (3.16b)

holds since (x(t), p(t)) is a solution of (3.13). Finally substitute (3.12) into the second

equivalence in (3.15) to obtain

(p(t))
T

(y∗ − c) ≡ (p∗)
T

(y∗ − c) = 0

Hence (x∗, p) satisfies (3.16b) and the proof is complete.

3.4 APPENDIX: PROOF OF LEMMA 3.10

Fix an initial state x(0) = x0 in the compact set Ω and consider the unique solution x(t),

t ≥ 0. We first prove that its positive limit set A+ := A+(x0) is nonempty, compact, and

invariant.



102 3. GLOBAL STABILITY: LYAPUNOV METHOD

The Bolzano-Weierstrass theorem states that every bounded sequence in Rn has a

convergent subsequence. Since x(t) is bounded there is a sequence (ti, i = 0, 1, . . . ) with

ti →∞ as i→∞ such that limi→∞ x(ti) = x for some x in Rn. Since x(t) lies entirely in

the compact set Ω, x ∈ Ω ⊂ D and is hence a positive limit point of x(t), proving that A+

is nonempty.

Since all positive limit points lie in Ω, A+ ⊆ Ω and is bounded. To show that A+ is

compact, we will show that A+ is also closed, i.e., if yn ∈ A+, n = 0, 1, . . . , and limn y
n = y,

then y ∈ A+. For each n there is a sequence (tni , i = 0, 1, . . . ) such that the solution x(t)

satisfies limi x(tni ) = yn. We now construct a sequence
(
tni(n), n = 0, 1, . . .

)
and prove that

the solution x(t) on this sequence converges to y as n→∞, certifying that y ∈ A+. For

each n, since limi x(tni ) = yn, there is an i(n) such that i(n) ≥ n and∥∥∥x(tni(n))− yn∥∥∥ <
1

n

By construction, i(n)→∞ as n→∞. Moreover given any δ > 0 we have∥∥∥x(tni(n))− yn∥∥∥ < δ ∀n > 1

δ

To show that x
(
tni(n)

)
converges to y, fix an ε > 0. Since limn y

n = y there is an Ny such

that ‖yn − y‖ < ε/2 for all n > Ny. Let N := max{Ny, d2/εe}. We have for any n > N

‖x(tni(n))− y‖ ≤
∥∥∥x(tni(n))− yn∥∥∥+ ‖yn − y‖ <

ε

2
+
ε

2
= ε

as desired. This proves that A+ is closed and bounded, and hence compact.

We now prove that A+ is invariant. Note that A+ := A+(x0) is the positive limit

set of the unique solution x(t) with the given initial state x(0) = x0. Suppose the system

starts in state y ∈ A+ ⊆ Ω. Denote the unique solution by φ(t; y). Hence φ(0; y) = y and

x(t) = φ(t;x0). We will show that φ(t; y) ∈ A+ for all t ≥ 0, by exhibiting a sequence of

times (τi, i = 0, 1, . . . ) for each t ≥ 0 such that x(τi) = φ(τi;x0)→ φ(t; y) as i→∞. Since

y ∈ A+ there is a sequence (ti, i = 0, 1, . . . ) such that x(ti) = φ(ti;x0)→ y as i→∞. Hence

for sufficiently large i, x(ti) is close to y. Compare two solution trajectories at different

times: the state φ(t; y) reached at time t starting from the initial state y, and the state

φ(ti + t;x0) reached at time ti + t starting from the initial state x0. We have, for any t ≥ 0,

lim
i
‖φ(t+ ti;x0)− φ(t; y)‖ = lim

i
‖φ(t;x(ti))− φ(t; y)‖ = ‖φ(t; lim

i
x(ti))− φ(t; y)‖

where the first equality follows from the uniqueness of solution trajectory, and the sec-

ond equality follows from the continuity of φ(t; ·) in its initial state. Since limi x(ti) =

limi φ(ti;x0) = y, we have

lim
i
‖φ(t+ ti;x0)− φ(t; y)‖ = 0 ∀t ≥ 0
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Since x(t+ ti) = φ(t+ ti;x0) stays in Ω for all time, we have shown that, for each t ≥ 0,

φ(t; y) is a positive limit point of the solution x(t). Hence φ(t; y) ∈ A+ for all t ≥ 0 if y ∈ A+,

i.e., A+ is invariant.

Finally we prove that x(t), corresponding to the given initial state x0 ∈ Ω, approaches

A+ as t→∞. Suppose not and there is an ε > 0 such that for all integer k ≥ 0 there is a

time tk ≥ k such that

inf
y∈A+

‖x(tk)− y‖ ≥ ε (3.17)

Since x(t) stays entirely in Ω, the sequence (x(tk), k = 0, 1, . . . ) has a subsequence(
x
(
tkj
)
, j = 0, 1, . . .

)
that converges to a positive limit point x∗ ∈ A+. Hence

lim
j

∥∥x (tkj)− x∗∥∥ = 0

This contradicts (3.17) since x
(
tkj
)

is a subsequence of x(tk). Hence x(t) approaches A+

as t→∞.

This completes the proof of Lemma 3.10.

3.5 BIBLIOGRAPHICAL NOTES

There are many excellent texts on nonlinear systems and Lyapunov stability theory. We

have included detailed proofs of these results for smooth systems, largely following [29],

because we need to extend these results to discontinuous projected dynamics. For our pur-

poses it suffices to still use a Lyapunov functions V (x) that is continuously differentiable,

but its rate V̇ (x) := ∂V
∂x (x) f(x) is generally discontinuous when f is projected dynamics. It

turns out that continuity of V̇ (x) is crucial only for the proof of the asymptotic stability in

Theorem 3.3.2. It seems that the existence, uniqueness and continuity with respect to initial

condition of solutions to projected dynamics are first established in [20], where projection is

to a closed convex set in Rn. Lyapunov stability theorems and LaSalle’s invariance principle

are extended in [6] to a more general setting (than what we use here) of differential equa-

tions with discontinuous right-hand side and nonsmooth Lyapunov functions. Our proofs

in Chapter 3.1 are simple extensions of the classical result to projected dynamics. Strictly

speaking, LaSalle’s invariance principle is Lemma 3.12. Theorem 3.9 are due to Barbashin

and Krasovskii who proved it before LaSalle’s invariance principle. Some of the applications

of these stability results to congestion control algorithms modeled by projected dynamics

are new.

The dual algorithms in Chapter 3.2 is introduced in [35] to model TCP congestion

control. Global stability proof of the primal-dual algorithm in Chapter 3.3 is adapted from

[21] which also uses Krasovskii’s method [29] for stability analysis. Unlike [21] that treats a

projected dynamical system as a hybrid dynamical system where discontinuity is captured

by transitions of discrete states, we prove stability directly using stability theorems for



104 3. GLOBAL STABILITY: LYAPUNOV METHOD

projected dynamics. See also [15] for proofs that build on results in [6]. The proof in [21]

does not provide a complete argument why the Lagrange multiplier p(t) converges to a

point (instead of approaching the set of optimal p∗) when p∗ is nonunique. We bypass this

issue by assuming that the routing matrix R is of full row rank and x∗ > 0, guaranteeing

the uniqueness of p∗. See [56, 33] for a convergence argument using a quadratic Lyapunov

function in the presence of multiple equilibrium points. Quadratic Lyapunov functions are

first used to study primal-dual algorithms in [3]. See also [42, 44] for the analysis of various

congestion control algorithms.

3.6 PROBLEMS

Exercise 3.1 (Global asymptotic stability). Show that if x∗ is globally asymptotically

stable then it is the unique equilibrium.

Exercise 3.2 (Level sets). Consider a continuous function V : D → R where D is a domain

(open connected set in Rn).

1. Suppose V satisfies condition C3.1: V (x∗) is finite and V (x) > V (x∗) for all x 6= x∗ in

D. Is the level set Ωc := {x ∈ Rn|V (x)− V (x∗) ≤ c} always bounded for sufficiently

small c > 0? Prove or give a counterexample.

2. Suppose V satisfies C3.1. Does there exists a level set Ωc that contains x∗, is bounded,

and V (x)− V (x∗) ≤ c for all x ∈ Ωc, for sufficiently small c > 0? Prove or give a

counterexample.

3. Suppose V is radially unbounded: V (x)→∞ as ‖x‖ → ∞. Show that the level set

Ωc := {x ∈ Rn|V (x)− V (x∗) ≤ c} is bounded for all c > 0.

Exercise 3.3 (Asymptotic stability). Consider the dynamical system

ẋ1 = −x2 − x1 sin(x21 + x22)

ẋ2 = x1 − x2 sin(x21 + x22).

Prove that the origin is asymptotically stable for ‖x‖22 < π.

Exercise 3.4. Consider the linear system ẋ = Ax where x ∈ Rn. Prove that A is asymp-

totically stable if and only if there is there is a positive definite matrix P � 0 that solves

ATP + PA = −Q

for any positive definite matrix Q � 0.
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Figure 3.6: The network for Exercise 3.5.

Exercise 3.5 (Stability of TCP). Consider the network in Fig. 3.6. Suppose the TCP

algorithms are given by

x1(t) =
1

p1(t)
,

x2(t) =
1√
p2(t)

,

x3(t) =
2

(p1(t) + p2(t))1/3

and the queue management algorithms are given by

d

dt
p1(t) = γ(x1(t) + x3(t)− c1),

d

dt
p2(t) = γ(x2(t) + x3(t)− c2).

1. Find the utility functions of the 3 flows and write down the network utility maximiza-

tion problem implicitly solved by this algorithm. [Hint: Write down the equilibrium

condition and interpret that as the optimality condition of a network utility maxi-

mization problem.]

2. Is the equilibrium point (x∗, p∗) unique? Explain.

3. Prove that the equilibrium point (x∗, p∗) is asymptotically stable. [Hint: Try the dual

objective function as a candidate Lyapunov function.]

Exercise 3.6 (Lyapunov stability of primal algorithms [28]). Consider the class of algo-

rithms:

ẋi = κi (ai − xi(t)qi(t)) =: fi(xi(t), qi(t)) (3.18a)

pl(t) = gl(yl(t)) (3.18b)
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Primal algorithms have dynamics only in the source rates, not in the congestion prices. As

before,

qi(t) =
∑
l

Rlipl(t) and yl(t) =
∑
i

Rlixi(t)

Since p(t), and hence q(t), are statically determined by x(t) through (3.18b), we will call x∗,

as opposed to (x∗, p∗), an equilibrium of the primal algorithm if f(x∗) = f(x∗, q(x∗)) = 0

where q(x∗) := (qi(x
∗), i ∈ N) is given by

qi(x
∗) :=

∑
l

Rli pl(x
∗) :=

∑
l

Rli gl(y
∗
l ), i = 1, ..., N

and y∗l :=
∑
iRlix

∗
i . Suppose gl are nonnegative, continuous, increasing functions that are

not identically zero.

Prove:

1. The primal algorithm (3.18) has a unique equilibrium x∗ that is the unique solution

of

max
x∈RN

V (x) :=
∑
i

ai log xi −
∑
l

∫ yl

0

gl(z) dz

2. Moreover x∗ is globally asymptotically stable.

The exercise implies that the primal algorithm (3.18) solves a relaxation of the net-

work utility maximization with log utility functions, where the capacity constraint Rx ≤ c
is replaced by the penalty function

∫ yl
0
gl(z)dz in the objective. The reason that the primal

algorithm does not solve the exact network utility maximization problem with log utility

function is that the functions gl(yl) are independent of pl and hence do not satisfy condition

C2.5 in Chapter 2.2.4. This condition is required to ensure the complementary slackness

condition of network utility maximization. As the function gl(z) is chosen to impose heavier

penalty on violating the constraint, the equilibrium x∗ will approach the solution of the

network utility maximization.
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C H A P T E R 4

Global stability: passivity
method

In this chapter we explain the concept of passive systems and how to use passivity theorems

to prove the stability of congestion control algorithms. One of the most important features

of passivity theory is that it allows us to study the stability of an interconnected system in

terms of the passivity properties of its component systems.

4.1 PASSIVE SYSTEMS

Memoryless systems. We start with a memoryless system y = h(u) where h : Rp → Rp.
The number p of inputs is equal to the number of outputs. We say that a (time-invariant)1

memoryless system y = h(u) is passive if uT y ≥ 0.

For a scalar system with p = 1, the graph of h only appears in the first and third

quadrants, as shown in Figure 4.1. Hence a very useful property of a scalar passive system

y = h(u) 

u 

(a) Passive system

y = h(u) 

u 

(b) Nonpassive system

Figure 4.1: Examples of nonlinear memoryless passive and nonpassive scalar systems with

p = 1.

y = h(u) where uh(u) ≥ 0 is:∫ u

0

h(σ) dσ ≥ 0, u ∈ R

1All results extend to a time-varying system y = h(t, u) where h : R× Rp → Rp.
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We will use this property below in constructing what are called storage functions.

Suppose a memoryless system y = h(u) satisfies

uT y ≥ uTϕ(u) ∀u ∈ Rp

for some function ϕ, i.e., the input-output product is greater than a function that depends

only on the input u. Then

uT ỹ := uT (y − ϕ(u)) ≥ 0 ∀u ∈ Rp

i.e., by subtracting from the output y the feedforward term ϕ(u), the new system ỹ :=

h(u)− ϕ(u) is passive; see Figure 4.2(a). Note that neither h(u) nor ϕ(u) need to be passive

h(u)

ϕ(u)

u y +$
–$$

!y

(a) Input-feedforward passive

h(u)

ρ(y)

u y
+%

+%%!u

(b) Output-feedback passive

Figure 4.2: (a) Input-feedforward passive system uT ỹ ≥ 0. (b) Output-feedback passive system

ũT y ≥ 0.

themselves. If uTϕ(u) > 0 then there is “excess” passivity; otherwise there is “shortage”

of passivity. Hence a system h that satisfies uTh(u) ≥ uTϕ(u) can be transformed into

a passive system through input feedforward. Such a system h is called input-feedforward

passive. If uTϕ(u) > 0 for all u 6= 0 then h is called input strictly passive because passivity

is strict in the sense that uT y ≥ uTϕ(u) = 0 only if u = 0.

Similarly suppose a system h satisfies

uT y ≥ yT ρ(y), ∀u ∈ Rp

for some function ρ, i.e., the input-output product is greater than a function that depends

only on the output y. Then

ũT y := (u− ρ(y))T y ≥ 0, ∀u ∈ Rp

i.e., by subtracting from the input u the feedback term ρ(y) to obtain the new input

ũ := u− ρ(y), the system is made passive; see Figure 4.2(b). Such a system h is called

output-feedback passive. If yT ρ(y) > 0 for all y 6= 0 then h is called output strictly passive.

Dynamical systems. Consider:

ẋ = f(x, u) (4.1a)

y = h(x, u) (4.1b)
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where f : Rn × Rp → Rn is locally Lipschitz or f(x, u) :=
(
f̃(x, u)

)+
x

with a locally Lip-

schitz f̃ : Rn × Rp → Rn, h : Rn × Rp → Rp is continuous, f(0, 0) = 0, and h(0, 0) = 0.

Hence the origin is an equilibrium point without input (u ≡ 0). The system has the same

number p of inputs and outputs.

Definition 4.1 The system (4.1) is passive if there exists a continuously differentiable

positive semidefinite function V (x) such that

uT y ≥ V̇ :=
∂V

∂x
(x) f(x, u) ∀(x, u) ∈ Rn × Rp (4.2)

Moreover it is said to be

1. lossless if uT y = V̇ .

2. input-feedforward passive if uT y ≥ V̇ + uTϕ(u) for some function ϕ.

3. input strictly passive if uT y ≥ V̇ + uTϕ(u) and uTϕ(u) > 0 for all u 6= 0.

4. output-feedback passive if uT y ≥ V̇ + yT ρ(y) for some function ρ.

5. output strictly passive if uT y ≥ V̇ + yT ρ(y) and yT ρ(y) > 0 for all y 6= 0.

6. strictly passive if uT y ≥ V̇ + ψ(x) for some positive definite function ψ.

In all cases the inequalities should hold for all (x, u) ∈ Rn+p. The function V is called a

storage function.

These definitions reduce to those for memoryless systems y = h(u) with V (x) ≡ 0. We

emphasize that the inequalities in Definition 4.1 need to hold not just on the solution-

control trajectories of (4.1), but on all (x, u) ∈ Rn+p. Even though V (x) is a function of

the state x, its rate V̇ (x, u) is a function of both state x and input u.

To simplify notation we often write y, V, V̇ for y(x, u), V (x), V̇ (x, u) or for

y(x(t), u(t)), V (x(t)), V̇ (x(t), u(t)) when there is no risk of confusion. We also write x ≡ a
or x(t) ≡ a for x(t) = a, ∀t ≥ 0; similarly for other functions such as u, h, y, etc.

Example 4.2 In this example we illustrate different passivity concepts.

1. Integrator. Consider

ẋ = u, y = x
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To show that an integrator is passive consider the candidate storage function

V (x) :=
1

2
x2

Clearly V is continuously differentiable and positive semidefinite V (x) ≥ 0. Further-

more

V̇ =
∂V

∂x
ẋ = x ẋ = uy

Hence an integrator is lossless.

2. Integrator in cascade with a memoryless passive system. Consider

ẋ = u, y = h(x)

where h is continuous and passive. See Figure 4.3(a). Consider the candidate storage

h(⋅)∫u yx 

(a) Integrator + memoryless

h(⋅)

G(s) = 1
as+1

u yx 
–$

+$$ ∫1
a

(b) First-order + memoryless

Figure 4.3: (a) Integrator in cascade with a memoryless passive system is passive with the

storage function V (x) :=
∫ x
0
h(σ)dσ. (b) First-order system in cascade with a memoryless passive

system is passive with the storage function V (x) :=
∫ x
0
ah(σ)dσ.

function

V (x) :=

∫ x

0

h(σ) dσ

Since h is continuous, V is continuously differentiable. Since h is passive xh(x) ≥ 0,∫ x
0
h(σ)dσ ≥ 0, i.e. V is positive semidefinite. Furthermore

V̇ =
∂V

∂x
ẋ = h(x) ẋ = uy

i.e., the system is lossless.
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3. First-order system in cascade with a memoryless passive system. Suppose the inte-

grator is replaced by the transfer function (see Chapter 6.2.1 for more discussion of

transfer functions of linear time-invariant systems)

G(s) =
1

as+ 1
, a > 0

This transfer function G(s) can be implemented by a first-order system as shown in

Figure 4.3(b):

aẋ = −x+ u, y = h(x)

Consider the candidate storage function

V (x) :=

∫ x

0

a h(σ) dσ

which is continuously differentiable and positive semidefinite since h is continuous

and passive. Furthermore

V̇ =
∂V

∂x
ẋ = h(x) aẋ = h(x) (−x+ u) = uy − xh(x)

i.e., uy = V̇ + xh(x). Since h is passive, xh(x) ≥ 0 and hence the system is passive.

If xh(x) > 0 for x 6= 0 then the system is strictly passive.

Example 4.3 Input-feedforward and output-feedback passivity. Like the memory-

less systems in Figure 4.3, the dynamical systems with memoryless input feedforward or

output feedback as shown in Figure 4.4 are passive if the memoryless function h is passive.

Indeed the system in Figure 4.4(a) is

ẋ = u, y = x+ h(u)

Consider the continuously differentiable positive definite function

V (x) :=
1

2
x2

We have

V̇ = x ẋ = u(y − h(u))

Hence uy = V̇ + uh(u). Therefore the system is input-feedforward passive if h is passive

(i.e., uh(u) ≥ 0) and the system is input strictly passive if uh(u) > 0 for u 6= 0.
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∫

h(u)

u x +%
+%% y

(a) Integrator + memoryless input
feedforward

h(y)

x = y
–%

+%%u ∫

(b) Integrator + memoryless output
feedback

Figure 4.4: (a) Integrator with a memoryless passive input-feedforward h is passive with the

storage function V (x) := 1
2x

2. (b) Integrator with a memoryless passive output-feedback h is

passive with the storage function V (x) := 1
2x

2.
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The system in Figure 4.4(b) is

ẋ = u− h(y), y = x

Use the same storage function V as above we have

V̇ = x ẋ = y(u− h(y))

Hence uy = V̇ + yh(y). Therefore the system is output-feedback passive if h is passive (i.e.,

yh(y) ≥ 0) and the system is output strictly passive if yh(y) > 0 for y 6= 0.

The following properties of storage functions are key for proving Lyapunov stability

below as they pertain to the properties C3.1, C3.2, C3.2’, C3.2” of a Lyapunov function.

The system (4.1) is called zero-state observable if no solution of (4.1) can stay identically

in {x | y = h(x; 0) = 0} except x(t) ≡ 0, i.e., if the state x must stay identically zero when

both input u and output y are identically zero.

Lemma 4.4

1. If the system (4.1) is strictly passive, i.e., uT y ≥ V̇ + ψ(x), with a storage function

V and a positive definite function ψ, then we have without loss of generality

V (x) > 0 for all x 6= 0 and V (0) = 0

V̇ (x, 0) < 0 for all x 6= 0

If ψ is continuous then, for all 0 < δ < ε, there exists α > 0 such that

V̇ (x, 0) ≤ −α < 0 ∀x with δ ≤ ‖x‖ ≤ ε

2. If the system (4.1) is output strictly passive and zero-state observable with a storage

function V then we have without loss of generality

V (x) > 0 for all x 6= 0 and V (0) = 0

V̇ (x, 0) ≤ 0 for all x

Moreover the only solution of ẋ = f(x(t), 0) with zero input u ≡ 0 that can stay iden-

tically in the set E := {x | V̇ (x) = 0} is the trivial solution x ≡ 0.

Proof. Suppose the system (4.1) is strictly passive, i.e.,

uTh(x, u) ≥ V̇ (x, u) + ψ(x) for all (x, u) ∈ Rn+p
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for some positive semidefinite storage function V (x) and positive definite function ψ(x).

Take u ≡ 0 and we have

V̇ (x, 0) ≤ −ψ(x) (4.3)

Since ψ(x) > 0 for all x 6= 0, (4.3) implies the second assertion:

V̇ (x, 0) < 0 for all x 6= 0

For the third assertion note that

sup
x:δ≤‖x‖≤ε

V̇ (x, 0) ≤ − inf
x:δ≤‖x‖≤ε

ψ(x) =: −α

Since ψ(x) is continuous, α is attained and is strictly positive, proving the third assertion.

We now use (4.3) to prove V (x) > 0 for all x 6= 0. Since f is locally Lipschitz or

a projection of a locally Lipschitz function f̃ , for any x0 ∈ Rn the autonomous system

ẋ = f(x, u) with zero input u ≡ 0 has a solution, denoted by φ(t;x0) at time t, starting

from x0 at time 0, over some interval [0, δ]. Then (4.3) implies2

V (φ(τ ;x0)) − V (x0) ≤ −
∫ τ

0

ψ(φ(t;x0)) dt ∀τ ∈ [0, δ]

Since V (φ(τ ;x0)) ≥ 0 and ψ is positive definite we have for any x0 ∈ Rn

V (x0) ≥
∫ τ

0

ψ(φ(t;x0)) dt ≥ 0 ∀τ ∈ [0, δ] (4.4)

Consider any x0 6= 0. Suppose V (x0) = 0. Then (4.4) implies

ψ(φ(t;x0)) ≡ 0 (for all t ∈ [0, δ])

=⇒ φ(t;x0) ≡ 0 (ψ is positive definite)

=⇒ x0 = 0 (φ(0;x0) = x0)

contradicting x0 6= 0. Hence V (x0) > 0 for every x0 6= 0. Finally we must have V (0) ≥ 0

by the continuity of V . Indeed we can assume without loss of generality that V (0) = 0.

Otherwise replace V (x) by Ṽ (x) := V (x)− V (0). The above argument applies to the storage

function Ṽ with Ṽ (0) = 0. This completes the proof of part 1.

For part 2, suppose (4.1) is output strictly passive and zero-state observable. We have

uT y ≥ V̇ + yT ρ(y) for some positive semidefinite storage function V and some function ρ

such that yT ρ(y) > 0 for all y 6= 0. With u ≡ 0 we have the second assertion:

V̇ (x, 0) ≤ −hT (x, 0)ρ(h(x, 0)) ≤ 0 ∀x ∈ Rn

2In the following we ignore some minor measurability issues if ψ or ρ is not continuous.
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The proof of V (x) > 0 for x 6= 0 follows a similar argument (substituting y(t) ≡
h(φ(t;x0), 0) with u ≡ 0):

V (φ(τ ;x0)) − V (x0) ≤ −
∫ τ

0

hT (φ(t;x0), 0) ρ(h(φ(t;x0), 0)) dt ∀τ ∈ [0, δ]

and hence for all x0 ∈ Rn

V (x0) ≥
∫ τ

0

hT (φ(t;x0), 0) ρ(h(φ(t;x0), 0)) dt ≥ 0 ∀τ ∈ [0, δ]

Consider any x0 6= 0. Suppose V (x0) = 0. Then for t ∈ [0, δ] we have

hT (φ(t;x0), 0) ρ(h(φ(t;x0), 0)) ≡ 0 ⇒ h(φ(t;x0), 0) ≡ 0 ⇒ φ(t;x0) ≡ 0

where the last implication follows from zero-state observability. Hence x0 = φ(0;x0) = 0.

This is a contradiction and therefore V (x0) > 0 for any x0 6= 0. As in part 1 we can assume

without loss of generality that V (0) = 0.

Finally consider any solution x(t) of ẋ = f(x, 0) with zero input u ≡ 0 that stays

identically in the set E := {x | V̇ (x) = 0}. Since

V̇ (x, 0) ≤ −yT ρ(y) ≤ 0 ∀x (and y = h(x, 0))

V̇ (x(t), 0) ≡ 0 implies yT (t)ρ(y(t)) ≡ 0. But yT ρ(y) > 0 for y 6= 0, and hence y(t) ≡ 0. Zero-

state observability then implies that x(t) ≡ 0.

This completes the proof of the lemma.

Passivity ensures stability and strict passivity ensures asymptotic stability. Consider

the dynamical system (4.1) reproduced here for convenience:

ẋ = f(x, u) (4.5a)

y = h(x, u) (4.5b)

where f : Rn × Rp → Rn is locally Lipschitz or f(x, u) :=
(
f̃(x, u)

)+
x+c

, c ∈ R, with a lo-

cally Lipschitz f̃ : Rn × Rp → Rn, h : Rn × Rp → Rp is continuous. We assume f(0, 0) = 0,

and h(0, 0) = 0, i.e., the origin x = 0 is an equilibrium at zero input u ≡ 0.

Theorem 4.5 Consider the system (4.5). The origin of ẋ = f(x, 0) is

1. stable if the system is passive with a positive definite storage function V ;

2. asymptotically stable if the system is

• strictly passive uT y ≥ V̇ + ψ(x) with a continuous positive definite function ψ,

or
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• output strictly passive and zero-state observable, i.e., y(t) ≡ h(x(t), 0) ≡ 0⇒
x(t) ≡ 0;

3. globally asymptotically stable if the system is

• strictly passive uT y ≥ V̇ + ψ(x) with a continuous positive definite function ψ,

or

• output strictly passive and zero-state observable, i.e., y(t) ≡ h(x(t), 0) ≡ 0⇒
x(t) ≡ 0,

and the storage function is radially unbounded.

Proof.

1. Let V be the (continuously differentiable) storage function of the system (4.5) with

uT y(x, u) ≥ V̇ (x, u) for all (x, u) ∈ Rn+p. By assumption V is positive definite. Hence

V is a Lyapunov function for the zero-input system (u ≡ 0) as it satisfies conditions

C3.1 (V (x) > 0, for all x 6= 0) and C3.2 (V̇ (x, 0) ≤ 0).

2. Lemma 4.4.1 shows that if the system (4.5) is strictly passive with a continuous ψ

then its storage function V satisfies conditions C3.1, C3.2’ and C3.2”. V is therefore

a Lyapunov function. The claim then follows from Theorem 3.3.2 for locally Lipschitz

f or from Corollary 3.5.2 for projected dynamics.

Lemma 4.4.2 shows that if the system (4.5) is output strictly passive and zero-state

observable then its storage function V satisfies conditions C3.1 and C3.2 (but not

necessarily C3.2’ or C3.2”) and is therefore a Lyapunov function. LaSalle’s invariance

principle then implies that the solution x of ẋ = f(x, 0) will converge to the largest

invariance set in {x | V̇ (x) = 0}. But the only solution of ẋ = f(x, 0) that can stay

identically in the set {x | V̇ (x) = 0} is the trivial solution x ≡ 0 by Lemma 4.4.2.

Hence (4.5) is asymptotically stable by Theorem 3.9.1.

3. When V is radially unbounded Theorem 3.9.2 implies that the system (4.5) is globally

asymptotically stable.

4.2 FEEDBACK SYSTEMS

A main advantage of the passivity method is the important property that feedback connec-

tion preserves passivity. It allows us to analyze the stability of a feedback system through

the passivity analysis of its open-loop components. We explain this property in this section.
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Consider the feedback connection in Figure 4.5 where each of the components H1 and

H2 is either a time-invariant dynamical system represented by the state space model

ẋi = fi(xi, ei), yi = hi(xi, ei)

or a (possibly time-varying) memoryless function represented by

yi = hi(t, ei)

where

e1 := u1 − y2, e2 := u2 + y1

Suppose H1 and H2 are dynamical systems. If the set of equations

y1
–%
+%%u1 H1

H2 u2+%
+%%

y2

e1

e2

Figure 4.5: Feedback connection.

e1 = u1 − h2(x2, e2) (4.6a)

e2 = u2 + h1(x1, e1) (4.6b)

has a unique solution for (e1, e2) for every (x1, x2, u1, u2) then we can write (e1, e2) in

terms of (x1, x2, u1, u2) and represent the feedback system by a state-space model of the

form

ẋ = f(x, u), y = h(x, u) (4.7)

for some functions f, h where

x :=

[
x1
x2

]
, u :=

[
u1
u2

]
, y :=

[
y1
y2

]
We assume for the closed-loop system (4.7) that the function f is locally Lipschitz or

f(x, u) =
(
f̃(x, u)

)+
x+c

, c ∈ R, with a locally Lipschitz f̃ , h is continuous, f(0, 0) = 0 and

h(0, 0) = 0.
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The functions f, h describing the closed-loop system (4.7) may not be easy to derive

explicitly from the open-loop components fi, hi, i = 1, 2. If however h1 is independent of

e1 or h2 is independent of e2 then it is easy to write down explicitly the unique solution

for (e1, e2) in terms of (x1, x2, u1, u2). In this case the functions f and h of the closed-loop

system are locally Lipschitz if fi and h are.

If one component, say H1, is a time-invariant dynamical system and the other H2 is

a time-varying memoryless function:

ẋ1 = f1(x1, e1), y1 = h1(x1, e1), y2 = h2(t, e2)

then the closed-loop state-space model takes the form

ẋ = f(t, x, u), y = h(t, x, u) (4.8)

for some functions f, h where

x := x1, u :=

[
u1
u2

]
, y :=

[
y1
y2

]
provided the system of equations

e1 = u1 − h2(t, e2)

e2 = u2 + h1(x1, e1)

has a unique solution for (e1, e2) for every (x1, t, u1, u2). Even though the open-loop compo-

nent f1 is time-invariant the closed-loop system (4.8) becomes time-varying if the memory-

less system h2 is time-varying. We assume for the closed-loop system (4.8) that the function

f is piecewise continuous in t and locally Lipschitz in (x, u), or f(t, x, u) =
(
f̃(t, x, u)

)+
x+c

,

c ∈ R, where f̃ is piecewise continuous in t and locally Lipschitz in (x, u). We also assume

h is piecewise continuous in t and continuous in (x, u), f(t, 0, 0) = 0 and h(t, 0, 0) = 0.

Again the functions f, h describing the closed-loop system (4.8) may not be easy to

derive explicitly from the open-loop components f1, h1, h2, unless h1 is independent of e1
or h2 is independent of e2.

The next result says that if both open-loop systems Hi are passive with storage

functions Vi then the closed-loop system is passive with the storage function V1 + V2. Fur-

thermore if Hi are stable with Vi as their Lyapunov functions, then the closed-loop system is

stable with V1 + V2 as its Lyapunov function. Note that a positive definite storage function

of a passivity system implies stability of its equilibrium by Theorem 4.5.1.

Theorem 4.6 Consider the feedback connection shown in Figure 4.5 and suppose the origin

is an equilibrium of the closed-loop system (4.7) (or (4.8)) when input u ≡ 0, i.e., f(0, 0) = 0

(or f(t, 0, 0) = 0).
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1. If both open-loop components H1 and H2 are passive then the feedback connection

from (u1, u2) to (y1, y2) is passive.

2. Furthermore, if the storage functions of H1 and H2 are positive definite, then the

origin is stable.

Proof. Since Hi are passive we have

eTi yi ≥ V̇i, i = 1, 2

for some storage functions Vi that are continuously differentiable and positive semidefi-

nite (Vi is taken to be zero for a memoryless system). Then V := V1 + V2 is continuously

differentiable and positive semidefinite. Moreover

V̇1 + V̇2 ≤
∑
i

eTi yi = (u1 − y2)T y1 + (u2 + y1)T y2 = uT1 y1 + uT2 y2

Hence V is a storage function for the feedback system, proving the passivity of the feedback

connection. If Vi are positive definite then V is positive definite and Theorem 4.5.1 implies

the stability of the origin.

Passivity of components H1 and H2 with positive definite storage functions ensures

the passivity and stability of the feedback connection. For asymptotic stability we consider

first the case where both components are time-invariant dynamical systems and then the

case where one of the components is a dynamical system and the other a memoryless

function. The first case will be useful for proving the asymptotic stability of primal-dual

algorithms where both the sources and the links have dynamics. The second case will be

useful for primal or dual algorithms where there is dynamics in the sources or the links,

but not both.

Consider the feedback connection of two time-invariant dynamical components Hi:

ẋi = fi(xi, ei), i = 1, 2 (4.9a)

yi = hi(xi, ei), i = 1, 2 (4.9b)

whose closed-loop system is described by (4.7). The next result extends Theorem 4.5 from

open-loop systems to closed-loop systems.

Theorem 4.7 Consider the feedback system consisting of open-loop components specified

by (4.9) with a closed-loop description (4.7). The origin of the closed-loop system (when

u ≡ 0) is asymptotically stable if any one of the following holds:

1. both open-loop components H1 and H2 are strictly passive so that eTi yi ≥ V̇i + ψi(xi),

i = 1, 2, with continuous positive definite functions ψi.
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2. both open-loop components H1 and H2 are output strictly passive and zero-state ob-

servable (yi(t) ≡ h(xi(t), 0) ≡ 0⇒ xi(t) ≡ 0).

3. one of the feedback components is strictly passive and the other is output strictly

passive and zero-state observable.

Furthermore if the storage function of each component is radially unbounded then the origin

is globally asymptotically stable.

Proof. The proof follows a similar argument as in the proof of Theorem 4.5, using the

function V (x) := V1(x1) + V2(x2) as the candidate Lyapunov function for the closed-loop

system (4.7) where Vi(xi) are storage functions of components Hi.

When both Hi are strictly passive with storage functions Vi, Lemma 4.4.1 implies

that they satisfy the following conditions for Lyapunov function

C3.1: Vi(xi) > 0 for all xi 6= 0 and Vi(0) = 0

C3.2’: V̇i(xi) < 0 for all xi 6= 0

This implies that V (x) := V1(x1) + V2(x2) for the closed-loop system (4.7) also satisfies

conditions C3.1 and C3.2’. Theorem 3.3.2 then implies that the origin of the closed-loop

system is asymptotically stable if f in (4.7) is locally Lipschitz. If f is a projection of

a locally Lipschitz f̃ then, since ψi are continuous, Lemma 4.4.1 implies that V satisfies

C3.1 and C3.2”. Corollary 3.5.2 then implies the asymptotic stability of the origin for the

closed-loop system.

When both Hi are output strictly passive and zero-state observable with storage

functions Vi, Lemma 4.4.2 implies that they satisfy the following conditions for Lyapunov

function

C3.1: Vi(xi) > 0 for all xi 6= 0 and Vi(0) = 0

C3.2: V̇i(xi) ≤ 0 for all xi

This implies that V (x) := V1(x1) + V2(x2) also satisfies conditions C3.1 and C3.2. LaSalle’s

invariance principle then implies that the solution x of ẋ = f(x, 0) converges to the largest

invariance set in E := {x | V̇ (x) = 0}. We now argue that the only solution that can stay

identically in E is the equilibrium solution x ≡ 0. Since Hi are output strictly passive we

have eTi yi ≥ V̇i(xi, ei) + yTi ρi(yi) for some function ρi such that yTi ρi(yi) > 0 for yi 6= 0.

Taking ui ≡ 0 we have e1 = −y2, e2 = y1, and hence

V̇ (x, e) := V̇1(x1, e1) + V̇2(x2, e2) ≤ −yT1 ρ1(y1)− yT2 ρ2(y2) ≤ 0

where yi = hi(xi, ei). Hence the only solutions to ẋ = f(x, 0) that can stay identically in

E are those such that the resulting yi ≡ hi(xi, ei) ≡ 0. But y1 ≡ 0 implies e2 ≡ 0 and y2 ≡
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0 implies e1 ≡ 0 (since ui ≡ 0). Thus yi ≡ hi(xi, 0) ≡ 0 implies xi ≡ 0 by the zero-state

observability of Hi. Theorem 3.9.1 then implies that the origin of the closed-loop system

(4.7) is asymptotically stable.

In the third case where H1 is strictly passive and H2 is output strictly passive we

have (taking ui ≡ 0)

V̇ (x) ≤ −ψ1(x1)− y2ρ2(y2) ≤ 0 for all x

for some positive definite function ψ1 and some function ρ2 such that yT2 ρ2(y2) > 0 for all

y2 6= 0. A similar argument as in the proof of Lemma 4.4 shows that V (0) = 0 and V (x) > 0

for all x 6= 0. Hence LaSalle’s invariance principle implies that the solution x of ẋ = f(x, 0)

will converge to the largest invariance set in the set E := {x | V̇ (x) = 0}. We now argue that

the only solution that can stay identically in E is the equilibrium solution x ≡ 0. Since ψ1 is

positive definite and yT2 ρ2(y2) > 0 for all y2 6= 0, V̇ (x) = 0 implies x1 ≡ 0 and y2 ≡ 0. Note

that y2 ≡ 0 implies e1 ≡ 0 as u1 ≡ 0. Since h1(0, 0) = 0 by assumption, this means that

y1 ≡ h1(x1 ≡ 0, e1 ≡ 0) ≡ 0. Hence e2 ≡ 0. Then y2 ≡ 0 and zero-state observability of H2

implies x2 ≡ 0. Hence x ≡ 0 and the origin of the closed-loop system (4.7) is asymptotically

stable.

Finally if Vi(xi) are radially unbounded so is V (x). The origin is globally asymptoti-

cally stable by Theorem 3.9.2.

Consider next the feedback connection of a dynamical system H1:

ẋ1 = f1(x1, e1) (4.10a)

y1 = h1(x1, e1) (4.10b)

and a time-invariant memoryless system H2:

y2 = h2(e2) (4.10c)

whose closed-loop system is described by (the time-invariant version of) (4.8).

Theorem 4.8 Consider the feedback system consisting of open-loop components specified

by (4.10) with a closed-loop description (4.8). Suppose

• H1 is output-feedback passive, i.e.,

eT1 y1 ≥ V̇1 + yT1 ρ1(y1) (4.11)

for some ρ1 and a positive definite storage function V1, H1 is zero-state observable

(i.e., y1 ≡ h1(x1, 0) ≡ 0⇒ x1 ≡ 0); and
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• H2 is input-feedforward passive, i.e.,

eT2 y2 ≥ eT2 ϕ2(e2) (4.12)

for some ϕ2.

Then the origin of the closed-loop system (when u ≡ 0) is asymptotically stable if

vT [ρ1(v) + ϕ2(v)] > 0 for all v 6= 0 (4.13)

Furthermore, if V1 is radially unbounded, then the origin is globally asymptotically stable.

Even though, being memoryless, y2 = h2(e2) is trivially input-feedforward passive (by set-

ting ϕ2 = h2), h2 may not satisfy (4.13) but there may be some other function ϕ2 that

satisfies both (4.12) and (4.13).

Proof. Use the storage function of H1 as a Lyapunov function candidate. Since u ≡ 0 we

have e1 ≡ −y2 and y1 ≡ e2. Substituting into (4.11) yields

V̇1 ≤ eT1 y1 − yT1 ρ1(y1) = −eT2 y2 − yT1 ρ1(y1)

Combining with (4.12) we have

V̇1 ≤ −yT1 (ϕ2(y1) + ρ1(y1)) < 0 ∀y1 6= 0

where the last inequality follows from (4.13). Hence LaSalle’s invariance principle implies

that the trajectory will converge to the largest invariant set in E := {x1 | V̇ (x1) = 0}. When

V̇ (x1) ≡ 0 we have y1 ≡ 0, implying e2 ≡ 0 and hence y2 ≡ h2(0) ≡ 0. This means e1 ≡ 0

and hence zero-state observability ofH1 implies x1 ≡ 0 since y1 ≡ h1(x1, 0) ≡ 0. Asymptotic

stability of the origin then follows from Theorem 3.9.1. Global asymptotic stability when

V1 is radially unbounded follows from Theorem 3.9.2.

4.3 STABILITY OF PRIMAL ALGORITHMS

Consider the set of primal algorithms

ẋi = κi (U ′i(xi(t))− qi(t))
+
xi(t)

, i = 1, . . . , N

pl(t) = pl(yl(t)), l = 1, . . . , L

where pl : R+ → R+ is a function that models AQM at link l. Hence there is dynamics in

the sources but not in the links. Here

qi(t) :=
∑
l

Rli pl(t) and yl(t) :=
∑
i

Rli xi(t)
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In vector form they are

ẋ = K (U ′(x(t))− q(t))+x(t) (4.14a)

p(t) = p(y(t)) (4.14b)

q(t) = RT p(t), y(t) = Rx(t) (4.14c)

where K := diag(κi, i = 1, . . . , N). Since p(t), and hence q(t) = RT p(t), are statically de-

termined by x(t) through (4.14b)(4.14c) we may write p(x(t)) = p (Rx(t)) and q(x(t)) in

place of p(t) and q(t) respectively. We call x∗, as opposed to (x∗, p∗), an equilibrium of the

primal algorithm (4.14) if (U ′(x∗)− q(x∗))+x∗ = 0 which is equivalent to:

U ′i(x
∗
i ) ≤ qi(x

∗) with equality if x∗i > 0, i = 1, . . . , N

We will assume that conditions C2.1 and C2.2 hold. Then (4.14) has a unique solution

(x(t), t ≥ 0) for every initial point x(0) ≥ 0; see Remark 3.17 in Chapter 3.2. Moreover

a unique equilibrium point x∗ exists since Ui are strictly concave. The equilibrium link

prices p(Rx∗) are also unique since they are determined by x∗ (regardless of the row rank

of the routing matrix R). Finally (x∗, p(x∗)) is primal-dual optimal for a network utility

maximization problem and its dual (see Chapter 2.2). We now use Theorem 4.8 to study

the asymptotic stability of x∗.

For simplicity we assume U ′i(xi)→∞ as xi → 0 (e.g., Ui(xi) = log xi) so that the

projection is never active, i.e., (U ′(x)− q(x)))
+
x = U ′(x)− q(x). The result can be easily

extended to the general case with projection; see Chapter 4.4.

It is convenient to shift the equilibrium point of the primal algorithm to the origin.

Define the perturbed variables (dropping t to simplify notation)

x̃ := x− x∗ ⇒ x = x∗ + x̃

Then

ỹ := R x̃ = R(x− x∗) = y − y∗

and

p̃ := p(y)− p(y∗) = p(y∗ + ỹ)− p(y∗) =: p̃(ỹ)

q̃ := RT p̃ = RT (p(y)− p(y∗)) = q − q∗

Then the perturbed source rates satisfy (since U ′(x∗) = q∗)

˙̃x = ẋ = K (U ′(x∗ + x̃) − q)

= K( U ′(x∗ + x̃)− U ′(x∗)︸ ︷︷ ︸
Ũ ′(x̃)

− (q − q∗)︸ ︷︷ ︸
q̃

) =: K
(
Ũ ′(x̃)− q̃

)
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We will prove that the origin of the following perturbed system is globally asymptotically

stable:

˙̃x = K
(
Ũ ′(x̃)− q̃

)
=: f (x̃, −q̃) (4.15a)

p̃ = p̃ (ỹ) (4.15b)

where q̃ = RT p̃ and ỹ = R x̃. It is treated as a feedback connection of a time-invariant dy-

namical system and a time-invariant memoryless system, as shown in Figure 4.6. Note that

the second argument of f in (4.15a) is negative because the input to the upper component

in Figure 4.6 is the error term u1 − q = −q with zero input u1 ≡ 0.

!y

!x
–%

!"x = K !U '( !x)− !q( )  =: f ( !x,− !q)

+%%

− !q

!x
RT!q !p !y( ) R

Figure 4.6: The primal algorithm (4.15) is modeled as a feedback connection of a dynamical

system and a memoryless system.

Recall condition C2.2’ used in Theorem 3.15 that strengthens condition C2.2 by

requiring U ′i(xi)→∞ as xi → 0 as well so that D(p) is continuously differentiable.

Theorem 4.9 Suppose conditions C2.1 and C2.2’ hold, and the price functions pl(·) are

locally Lipschitz and nondecreasing. Then the origin of the primal algorithm (4.15) is glob-

ally asymptotically stable.

Proof. As discussed above the conditions in the theorem guarantee that (4.15) has a unique

solution (x(t), t ≥ 0) and the origin is its unique equilibrium. The closed-loop system of

(4.15a) is the following system of differential equations in x̃:

˙̃x = K
(
Ũ ′(x̃)− q̃(x̃)

)
(4.16)

We first show that the right-hand side is locally Lipschitz so that Theorem 4.8 is applicable.

We claim that the function q̃(x̃) is locally Lipschitz in x̃. To see this, fix any x̃. Consider

any x̂ close enough to x̃ so that the corresponding Rx̃ and Rx̂ are close enough. Then since
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p(·) is locally Lipschitz, we have ‖p(R(x∗ + x̂))− p(R(x∗ + x̃))‖ ≤ Lx̃‖Rx̂−Rx̃‖ for some

finite constant Lx̃. Hence

‖q̃(x̂)− q̃(x̃)‖ =
∥∥RT(p̃(Rx̂)− p̃(Rx̃))

∥∥
≤

∥∥RT∥∥ ‖p (R(x∗ + x̂))− p (R(x∗ + x̃))‖
≤ Lx̃

∥∥RT∥∥ ‖R‖ ‖x̂− x̃‖
i.e., the function q̃(x̃) is locally Lipschitz in x̃. Hence the right-hand side of the closed-loop

system (4.16) is locally Lipschitz in x̃ (U ′(x̃) is also locally Lipschitz since Ui are twice

continuously differentiable), and we can apply Theorem 4.8.

Consider the following positive definite candidate storage function for the open-loop

dynamical system f in (4.15a):

V1(x̃) :=
1

2

∑
i

x̃2i
κi

with

V̇1 =
∑
i

x̃i
˙̃xi
κi

=
∑
i

x̃i

(
Ũ ′i(x̃i)− q̃i

)
(4.17)

Since the input to the open-loop system f is −q̃ and the output is the state x̃, (4.17) implies

that f is output-feedback passive:

(−q̃)T x̃ = V̇1 + x̃T
(
−Ũ ′(x̃)

)
and zero-state observable. The function ρ1 in Theorem 4.8 is −Ũ ′. The lower component

of Figure 4.6 is memoryless with x̃ at the input and q̃ at the output:

q̃ = RT p̃ (Rx̃)

and hence automatically input-feedforward passive since

x̃T q̃ = x̃T
(
RT p̃ (Rx̃)

)
The function ϕ2 in Theorem 4.8 can be taken as RT p̃ (Rx̃).

We are left to prove condition (4.13) in Theorem 4.8 which translates to:

x̃T
(
−Ũ ′(x̃) +RT p̃ (Rx̃)

)
= −x̃T Ũ ′(x̃) + ỹT p̃ (ỹ) > 0 for all x̃ 6= 0

We first claim that −x̃T Ũ ′(x̃) = −
∑
i x̃iŨ

′
i(x̃i) > 0 for all x̃ 6= 0. By definition

Ũ ′i(x̃i) = U ′i(x
∗
i + x̃i)− U ′i(x∗i )
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Since Ui is strictly concave, −Ũ ′i(x̃i) is strictly increasing in x̃i. Moreover −Ũ ′i(0) = 0 and

hence the graph of −Ũ ′i(x̃i) lies in the first and third quadrants (x̃ can be negative). There-

fore −x̃T Ũ ′(x̃) > 0 as long as x̃ 6= 0. Similarly

ỹT p̃(ỹ) =
∑
l

ỹl (pl(y
∗
l + ỹl)− pl(y∗l )) ≥ 0

where the last inequality follows because pl is nondecreasing and hence

ỹl (pl(y
∗
l + ỹl)− pl(y∗l )) ≥ 0.

Hence all conditions of Theorem 4.8 are satisfied, including the radial unboundedness

of V1. The origin is therefore globally asymptotically stable.

4.4 STABILITY OF PRIMAL-DUAL ALGORITHMS

We now discuss the stability of the following class of primal-dual algorithms:

ẋi = κi (U ′i(xi(t))− qi(t))
+
xi(t)

ṗl = γl(yl(t)− cl)+pl(t)

where (a)+b = a if a > 0 or b > 0 and 0 otherwise. This is in vector form:

ẋ = K (U ′(x(t))− q(t))+x(t) (4.18a)

ṗ = Γ(y(t)− c)+p(t) (4.18b)

where K := diag(κi, i = 1, . . . , N) and Γ := diag(γl, l = 1, . . . , L). A point (x∗, p∗) is an

equilibrium of the primal-dual algorithm (4.18) if

(U ′i(x
∗
i )− q∗i )

+
x∗i

= 0 and (y∗l − cl)
+
p∗l

= 0

As for the primal algorithms we assume that conditions C2.1 and C2.2 hold and the routing

matrix R has full row rank. Then (4.18) has a unique solution (x(t), p(t), t ≥ 0) for every

initial point (x(0), p(0)) ≥ 0 (see Chapter 1.5). Moreover a unique equilibrium point (x∗, p∗)

exists, if x∗ > 0, and is primal-dual optimal for a network utility maximization problem and

its dual (see Chapter 2.2).

As in Chapter 4.3 we shift the equilibrium point to the origin by working with the

perturbed variables defined as (dropping t to simplify notation):

x̃ := x− x∗ and p̃ := p− p∗

Then

ỹ := R x̃ = R(x− x∗) = y − y∗ and q̃ := RT p̃ = RT (p− p∗) = q − q∗
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In terms of the perturbed variables the primal-dual algorithm is:3

˙̃x = ẋ = K
(
U ′(x∗ + x̃) − RT p∗ −RT p̃

)+
x∗+x̃

=: f(x̃, −p̃) (4.19a)

˙̃p = ṗ = Γ (y∗ − c+ ỹ)
+
p∗+p̃ =: g(p̃, ỹ) (4.19b)

It can be treated as a zero-input feedback connection shown in Figure 4.7.

!y

!y
–%

!"p = g !p, !y( )
+%%

− !q
R

!p

RT
− !p !x!"x = f !x,− !p( )

Figure 4.7: The primal-dual algorithm (4.19) is modeled as a feedback connection of two

time-invariant dynamical systems.

Compare the primal iterations (4.19a) with (4.15a): since we ignore the projection

to nonnegative xi(t) in (4.15a) the equilibrium for (4.15a) has a simple characterization:

Ũ ′(x̃) = q̃ which, since x̃ = 0, q̃ = 0, is equivalent to

U ′(x∗) = q∗

In contrast the equilibrium of (4.19a) is characterized by U ′i(x
∗
i + x̃i) ≤ q∗i + q̃i with equality

if x∗i + x̃i > 0, which is equivalent to

U ′i(x
∗
i ) ≤ q∗i with equality if x∗i > 0, i = 1, . . . , N

Lemma 4.10 Suppose the utility functions Ui are strictly concave.

1. The open-loop forward system from −p̃ to ỹ is strictly passive.

3Note that the second argument of f in (4.19a) is negative because the input to the integrator
in the forward path in Figure 4.7 is −q.
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2. The open-loop backward system from ỹ to p̃ is passive.

Proof of Lemma 4.10.

1. Consider the candidate storage function

V1(x̃) :=
1

2
x̃TK−1x̃

Clearly V1 is continuously differentiable, positive definite and radially unbounded.

Moreover we have from (4.19a)

V̇1(x̃) = x̃TK−1 ˙̃x = x̃T
(
U ′(x∗ + x̃)−RT p∗ −RT p̃

)+
x

≤ x̃T
(
U ′(x∗ + x̃)−RT p∗ −RT p̃

)
where the inequality follows from Lemma 3.18 and x̃ = x− x∗. Hence, using x∗ + x̃ =

x and RT p∗ +RT p̃ = RT p = q to simplify notation, we have

V̇1(x̃) ≤ x̃T (U ′(x)− q) = x̃T (U ′(x)− q) − x̃T (U ′(x∗)− q∗)+x∗

where the equality follows because (U ′(x∗)− q∗)+x∗ = 0. Lemma 3.18 implies

0 = x̃T (U ′(x∗)− q∗)+x∗ ≥ x̃T (U ′(x∗)− q∗)

and hence

V̇1(x̃) ≤ x̃T (U ′(x)− U ′(x∗)− (q − q∗))
= x̃T (U ′(x∗ + x̃)− U ′(x∗)) − x̃TRT p̃

= x̃T (U ′(x∗ + x̃)− U ′(x∗))︸ ︷︷ ︸
Ũ ′(x̃)

− p̃T ỹ

yielding

−p̃T ỹ ≥ V̇1(x̃) + ψ(x̃)

where ψ(x̃) := −x̃T Ũ ′(x̃). We now claim that ψ(x̃) > 0 for all x̃ 6= 0 (as also proved

in Theorem 4.9), implying that the (open-loop) forward path is strictly passive. To

see this note that −x̃T Ũ ′(x̃) = −
∑
i x̃iŨ

′
i(x̃i) where by definition

Ũ ′i(x̃i) = U ′i(x
∗
i + x̃i)− U ′i(x∗i )

Since Ui is strictly concave, −Ũ ′i(x̃i) is strictly increasing in x̃i. Moreover −Ũ ′i(0) = 0

and hence the graph of −Ũ ′i(x̃i) lies in the first and third quadrants (x̃ can be

negative). Therefore −x̃T Ũ ′(x̃) > 0 as long as x̃ 6= 0. This completes the proof that

the open-loop forward system from −p̃ to ỹ is strictly passive.
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2. Consider the candidate storage function

V2(p̃) :=
1

2
p̃T Γ−1 p̃

Clearly V2 is continuously differentiable, positive definite and radially unbounded.

Moreover

V̇2(p̃) = p̃T Γ−1 ṗ = p̃T (y − c)+p ≤ p̃T (y − c)

where the inequality follows from Lemma 3.18 and p̃ := p− p∗. Hence

V̇2(p̃) ≤ p̃T (y − y∗ + (y∗ − c)) = p̃T ỹ + p̃T (y∗ − c)

Using Lemma 3.18 again we have p̃T (y∗ − c) ≤ p̃T (y∗ − c)+p∗ = 0 and hence

ỹT p̃ ≥ V̇2(p̃)

i.e., the backward system from ỹ to p̃ is passive.

We cannot apply Theorem 4.7 because the backward system is neither strictly pas-

sive nor output strictly passive (though it is zero-state observable). However, since V1 and

V2 are both positive definite, we will prove that V (x̃, p̃) := V1(x̃) + V2(p̃) is indeed a Lya-

punov function for the primal-dual algorithm (4.19) and apply LaSalle’s invariance principle

Theorem 3.9.2.

Theorem 4.11 Suppose conditions C2.1 and C2.2 hold, the routing matrix R has full row

rank, and the equilibrium x∗ > 0. Then the origin of the primal-dual algorithm (4.19) is

globally asymptotically stable.

Proof. As discussed above (after (4.18)), the conditions in the theorem guarantee that

(4.19) has a unique solution (x(t), p(t), t ≥ 0 and the origin is its unique equilibrium. More-

over condition C2.2 implies that the dynamics of (4.19) are the projections of locally Lips-

chitz functions as Theorem 3.9.2 requires (this can be proved in a similar manner as Lemma

3.14).

Consider the candidate Lyapunov function consisting of the sum of the storage func-

tions V1, V2 defined in the proof of Lemma 4.10:

V (x̃, p̃) :=
1

2

(
x̃TK−1x̃ + p̃TΓ−1p̃

)
= V1(x̃) + V2(p̃)

Clearly V is continuously differentiable, positive definite, and radially unbounded. The

proof of Lemma 4.10 shows that

V̇1(x̃) ≤ x̃T Ũ ′(x̃)− p̃T ỹ and V̇2(p̃) ≤ ỹT p̃
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and hence

V̇ (x̃, p̃) ≤ x̃T Ũ ′(x̃)

It is also proved there that

x̃T Ũ ′(x̃) := x̃T (U ′(x∗ + x̃)− U ′(x∗)) < 0, x̃ 6= 0

Hence we have V̇ (x̃, p̃) ≤ 0. Hence V satisfies conditions C3.1, C3.2, and C3.3. (V does

not satisfy V̇ (x̃, p̃) < 0 for (x̃, p̃) 6= 0 because it is possible that V̇ (0, p̃) = 0 for some p̃).

LaSalle’s invariance principle implies that the trajectory (x(t), p(t)) will converge to the

largest invariance set in

E := {(x̃, p̃) | V̇ (x̃, p̃) = 0}

We now prove that the only solution to (4.19) that can stay identically in E is the equilib-

rium solution (x̃, p̃) ≡ 0. Theorem 3.9.2 then implies the global asymptotic stability of the

origin.

Since x̃T Ũ ′(x̃) < 0 for all x̃ 6= 0, V̇ ≡ 0 implies x̃T Ũ ′(x̃) ≡ 0 and hence x̃ ≡ 0. Hence
˙̃x ≡ 0. From this and (4.19a) we have (since p(t) = p∗ + p̃(t))(

U ′(x∗)−RT p(t)
)+
x∗
≡ 0 (4.20)

Since

V̇ (x̃, p̃) = x̃TK−1 ˙̃x+ p̃T Γ−1 ˙̃p = x̃T
(
U ′(x(t))−RT p(t)

)+
x(t)

+ p̃T (y(t)− c)+p(t)

(4.20) and x̃ ≡ 0 imply y(t) ≡ y∗ and hence

V̇ (x̃ ≡ 0, p̃) = p̃T (y∗ − c)+p(t)

Suppose now (0, p̃(t)) ∈ E for all t ≥ 0. Then V̇ ≡ 0 implies∑
l

p̃l(t) (y∗l − cl)
+
pl(t)

≡ 0 (4.21)

We claim that this implies, for each t and each l,

p̃l(t) (y∗l − cl)
+
pl(t)

= 0 (4.22)

To see this, fix any time t and any link l. Clearly (4.22) holds if p̃l(t) = 0. If p̃l(t) < 0 then

p∗l > pl(t) ≥ 0 and hence y∗l = cl since (x∗, p∗) is the (unique) equilibrium point, implying

(4.22). On the other hand if p̃l(t) > 0 then pl(t) > p∗l ≥ 0 and hence p̃l(t) (y∗l − cl)
+
pl(t)

=

p̃l(t) (y∗l − cl) ≤ 0. Therefore every term on the left-hand side of (4.21) is nonpositive, and

therefore every term must itself be zero.
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If p̃l(t) 6= 0 then (4.22) implies (y∗l − cl)
+
pl(t)

= 0, whereas if p̃l(t) = 0 then

(y∗l − cl)
+
pl(t)

= (y∗l − cl)
+
p∗ = 0

where the last equality follows because (x∗, p∗) is the equilibrium point of (4.18). Hence,

for all p̃l(t), we have

(y∗l − cl)
+
pl(t)

= 0 for all l, t (4.23)

But (4.20)(4.23) means that (x∗, p(t)) is an equilibrium point of the primal-dual

algorithm (4.18) for every t. Since the equilibrium of (4.18) is unique under assumptions

of the theorem we must have p(t) ≡ p∗ and p̃(t) ≡ 0. This shows that the only solution

trajectory that can stay identically in E is the equilibrium solution (x̃, p̃) = (0, 0).

The global asymptotic stability of the origin then follows from Theorem 3.9.2.

4.5 BIBLIOGRAPHICAL NOTES

The passivity theorems in Chapter 4.1 follow [29]. Passivity theory is first applied to con-

gestion control in [53]. The stability proofs here for congestion control modeled by projected

dynamics are new.
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C H A P T E R 5

Global stability: gradient
projection method

In this chapter we introduce another approach to proving stability of congestion control

algorithms. Using a discrete-time model this approach regards the dynamics of the closed-

loop system as a gradient projection algorithm for the Lagrangian dual problem of network

utility maximization. We derive sufficient conditions for this algorithm to converge to dual-

optimal link prices, from which primal-optimal rates can be recovered.

5.1 CONVERGENCE THEOREMS

Consider the problem

min
x

f(x) subject to x ∈ X (5.1)

where f : Rn → R is continuously differentiable and X ⊆ Rn is nonempty, closed and

convex. Let the column vector ∇f(x) denote the gradient of f evaluated at x, i.e.,

[∇f(x)]i := ∂f/∂xi, i = 1, . . . , n. Recall that a point x∗ is a local minimizer if f(x∗) is

minimum on a neighborhood of x∗, i.e., there exists r > 0 such that f(x∗) ≤ f(x) for all

x ∈ Br(x∗) ∩X. A necessary optimality condition for general f is: if x∗ ∈ X is a local

minimizer for (5.1) then there is a neighborhood Br(x
∗) for some r > 0 such that

(∇f(x∗))
T

(x− x∗) ≥ 0 ∀x ∈ Br(x∗) ∩X (5.2)

i.e., moving away from x∗ to any other feasible point x in Br(x
∗) can only locally increase

the function value f . If f is a convex function (X is assumed convex) then this is both

necessary and sufficient for x∗ to be a global minimum1 of (5.1). This is illustrated in

Figure 5.1.

The steepest descent (first-order gradient) algorithm for solving (5.1) is given by the

following iteration: starting from an initial point x(0) = x0,

x(t+ 1) = [ x(t)− γ∇f(x(t)) ]X (5.3)

where γ > 0 is a stepsize. Here [x]X denotes the projection of x onto X, i.e., for any x ∈ Rn,

[x]X := arg min
y∈X

‖x− y‖2 (5.4)

1For a proof see the discussion after Theorem 2.10.
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Figure 5.1: Moving away from an optimal point x∗ to any other feasible point x can only

locally increase the cost.
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where ‖ · ‖2 is the Euclidean norm. Hence [x]X is the point in X that is closest to x ∈ Rn in

the Euclidean norm. To prove the convergence of the gradient projection algorithm (5.3),

we need the following properties of the projection operation. They are illustrated in Figure

5.2.

.#x 

.#

y 

X 
z = x[ ]X

Figure 5.2: The point z := [x]X is the unique closest point to x in the convex set X under the

Euclidean norm. For all other points y ∈ X, the inner product of y − z and x− z is nonpositive.

Lemma 5.1 Projection Theorem. Suppose X ⊆ Rn is a nonempty, closed and convex

set.

1. For every x ∈ Rn there exists a unique [x]X defined by (5.4).

2. For every x ∈ Rn, z = [x]X if and only if z ∈ X and (y − z)T (x− z) ≤ 0 for all

y ∈ X.

3. The projection mapping T : Rn → X defined by T (x) := [x]X is continuous and non-

expansive under the Euclidean norm, i.e.,

‖[y]X − [x]X‖2 ≤ ‖y − x‖2 ∀x, y ∈ Rn

Note that Lemma 5.1 does not require X to be bounded (compact), only closed. This is

because since X is nonempty there is an w ∈ X. Hence the minimization in the projection

(5.4) can be equivalently restricted to the compact set {y ∈ X | ‖x− y‖2 ≤ ‖x− w‖2}.
We assume:

C5.1: The objective function f is lower bounded on X, continuously differentiable

and convex. The feasible set X is nonempty, closed and convex.
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C5.1 guarantees that (5.1) is feasible and the gradient projection algorithm (5.3) is well

defined. Since X is not necessarily compact (bounded), the optimal may not be attained

(e.g., X = R and f(x) = e−x). Moreover the sequence (x(t), t = 0, 1, . . . ) generated by the

gradient projection algorithm (5.3) may not stay bounded and hence may not have any

convergent subsequence (the Bolzano-Weierstrass theorem states that a sequence (x(t), t =

0, 1, . . . ) has a convergent subsequence if it is bounded).

To guarantee that the gradient projection algorithm makes progress towards minimz-

ing f , we need:

C5.2: The gradient of f is Lipschitz continuous with a Lipschitz constant K, i.e.,

‖∇f(y)−∇f(x)‖2 ≤ K ‖y − x‖2 ∀x, y ∈ Rn

Note that the norm is Euclidean.2 C5.2 implies the following useful result, proved in Ap-

pendix 5.3.

Lemma 5.2 Descent Lemma. If f : Rn → R is continuously differentiable and satisfies

C5.2 then

f(x+ y) ≤ f(x) + yT∇f(x) +
K

2
‖y‖22 ∀x, y ∈ Rn

The main result on the gradient projection algorithm (5.3) is the following character-

ization. Conditions C5.1 and C5.2 do not guarantee that the sequence (x(t), t = 0, 1, . . . )

generated by the gradient projection algorithm has any convergent subsequence, but if it

does (e.g., if X is also bounded) then it converges to an optimal point x∗ of (5.1) provided

the stepsize γ is sufficiently small.

This implies that, when X is bounded and hence compact, and f is strictly convex so

that a unique optimal point x∗ exists, then (x(t), t = 0, 1, . . . ) itself converges to x∗ under

the gradient projection algorithm.

Theorem 5.3 Suppose conditions C5.1 and C5.2 hold, and suppose 0 < γ < 2/K. If the

sequence (x(t), t = 0, 1, . . . ) produced by the gradient projection algorithm (5.3) has a con-

vergent subsequence (x(tk), k = 1, 2, . . . ) then its limit x∗ is an optimal solution of (5.1).

Proof. We prove the theorem in three steps. First we show the sequence (f(x(t)), t =

0, 1, . . . ) of objective values converges monotonically. Moreover the difference sequence

2In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 5.5
below).
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(x(t+ 1)− x(t), t = 0, 1, . . . ) converges to zero. Specifically, by the Descent Lemma 5.2,

we have

f(x(t+ 1)) ≤ f(x(t)) + (x(t+ 1)− x(t) )
T ∇f(x(t)) +

K

2
‖x(t+ 1)− x(t)‖22 (5.5)

Lemma 5.1.2 implies that for all t

( y − x(t+ 1) )
T

( x(t)− γ∇f(x(t)) − x(t+ 1) ) ≤ 0 ∀y ∈ X (5.6)

In particular let y = x(t) and we have, after rearranging,

(x(t+ 1)− x(t) )
T ∇f(x(t)) ≤ − 1

γ
‖x(t+ 1)− x(t)‖22

Substituting into (5.5) we have

f(x(t+ 1)) ≤ f(x(t)) −
(

1

γ
− K

2

)
‖x(t+ 1)− x(t)‖22 (5.7)

Hence the sequence (f(x(t)), t = 0, 1, . . . ) is strictly decreasing as long as x(t+ 1) 6= x(t)

provided γ < 2/K. Since f is lower bounded on X (condition C5.1), the sequence

(f(x(t)), t = 0, 1, . . . ) is bounded and monotone and thus converges. Rearranging (5.7),

we also have

‖x(t+ 1)− x(t)‖22 ≤
(

1

γ
− K

2

)−1
(f(x(t))− f(x(t+ 1)))

Since f(x(t)) converges this means that the differences x(t+ 1)− x(t) converge to zero

(though this does not guarantee that x(t) itself converges).

Second suppose there is a subsequence (x(tk), k = 1, 2, . . . ) that converges to x∗.

Consider the sequence (x(tk + 1), k = 1, 2, . . . ). By Lemma 5.1.3, the iteration x(t+ 1) =

[x(t)− γ∇f(x(t))]X defined by (5.3) is a projection and hence a continuous function of

x(t). Hence the sequence (x(tk + 1), k = 1, 2, . . . ), being the image of a continuous function

on x(tk), also converges. We now show that it converges to x∗ as k →∞. Fix any ε > 0.

We have to show that there exists an K such that

‖x(tk + 1)− x∗‖2 < ε ∀k > K

Since x(tk)→ x∗ there exists an K ′ such that

‖x(tk)− x∗‖2 <
ε

2
∀k > K ′ (5.8a)

Step 1 above shows that x(tk + 1)− x(tk) converges to zero and hence there exists K ′′ such

that

‖x(tk + 1)− x(tk)‖2 <
ε

2
∀k > K ′′ (5.8b)
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Combining (5.8) we have for k > K := max{K ′,K ′′}

‖x(tk + 1)− x∗‖2 ≤ ‖x(tk + 1)− x(tk)‖2 + ‖x(tk)− x∗‖2 < ε

as desired.

Finally note that (5.6) holds for all t. In particular consider t = tk, k = 1, 2, . . . . Taking

k →∞, (5.6) yields(
y − lim

k
x(tk + 1)

)T(
lim
k
x(tk) − γ lim

k
∇f(x(tk)) − lim

k
x(tk + 1)

)
≤ 0, ∀y ∈ X

Since f is continuously differentiable and limk x(tk) = limk x(tk + 1) = x∗, we have

γ ( y − x∗ )
T ∇f(x∗) ≥ 0 ∀y ∈ X

Hence x∗ satisfies the optimality condition (5.2) and is globally optimal since f is a convex

function over a convex set X.

When f satisfies a stronger form of convexity then the gradient projection algorithm

indeed converges and does so geometrically. Suppose f is twice continuously differentiable

(not just continuously differentiable as guaranteed by condition C5.1). Then f is strictly

convex if and only if∇2f(x) � 0 (positive definite) for all x. If, for some α > 0,∇2f(x) � αI
for all x ∈ Rn then the gradient projection algorithm (5.3) is a contraction mapping and

x(t) converges geometrically to the unique optimal solution x∗ of (5.1) with rate α. We

now make this precise.

Consider:

C5.3: For some α > 0, f satisfies

(∇f(y)−∇f(x) )T (y − x) ≥ α ‖y − x‖22 ∀x, y ∈ Rn (5.9)

We say f is strongly convex if it satisfies condition C5.3. The next result shows that it is

stronger than strict convexity. It is proved in Appendix 5.4.

Lemma 5.4 Strong convexity. Let f : Rn → Rn be continuously differentiable. If f satis-

fies C5.3 then f is strictly convex. Indeed (5.9) is equivalent to ∇2f(x) � αI for all x ∈ Rn
when f is twice continuously differentiable.

A key implication of Lemma 5.4 is that the gradient projection algorithm (5.3) is a

contraction mapping, as we now explain.
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Definition 5.5 Contraction. Consider a function T : X → X from a subset X of Rn into

itself. T is called a contraction mapping or simply a contraction if there exists an α ∈ [0, 1)

such that

‖T (y)− T (x)‖ ≤ α‖y − x‖ ∀x, y ∈ X

for an arbitrary norm ‖ · ‖.

A function T can be a contraction under a certain norm, but not under a different norm,

so the proper choice of norm is critical.

Theorem 5.6 Contraction theorem. Suppose T : X → X is a contraction mapping on

a closed subset X of Rn. Then

1. There exists a unique fixed point x∗ such that x∗ = T (x∗).

2. Starting from any initial point x(0) ∈ X, the contraction iteration x(t+ 1) := T (x(t))

converges geometrically to x∗; in particular

‖x(t)− x∗‖ ≤ αt ‖x(0)− x∗‖ ∀t ≥ 0

Proof. Consider the contraction iteration x(t+ 1) := T (x(t)). Definition 5.5 implies

‖x(t+ 1)− x(t)‖ ≤ α ‖x(t)− x(t− 1)‖ ≤ · · · ≤ αt ‖x(1)− x(0)‖

Hence, for all t ≥ 0 and s ≥ 1, we have

‖x(t+ s)− x(t)‖ =

∥∥∥∥∥
s−1∑
m=0

(x(t+m+ 1)− x(t+m))

∥∥∥∥∥
≤

s−1∑
m=0

‖x(t+m+ 1)− x(t+m)‖ ≤ ‖x(1)− x(0)‖αt
s−1∑
m=0

αm

≤ αt

1− α
‖x(1)− x(0)‖

Since α ∈ [0, 1), x(t) is a Cauchy sequence and hence must converge to a point x∗ in Rn.

Since X is closed, x∗ ∈ X. Since T is continuous,

x∗ = lim
t
x(t+ 1) = lim

t
T (x(t)) = T (lim

t
x(t)) = T (x∗)

and hence x∗ is a fixed point of T . Moreover, the fixed point is unique for, otherwise, if x∗

and y∗ are both fixed points then

‖y∗ − x∗‖ = ‖T (y∗)− T (x∗)‖ ≤ α ‖y∗ − x∗‖
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implying y∗ = x∗ since α ∈ [0, 1). This completes the proof of part 1.

For part 2, we have for all t ≥ 1,

‖x(t)− x∗‖ = ‖T (x(t− 1))− T (x∗)‖ ≤ α ‖x(t− 1)− x∗‖

Hence ‖x(t)− x∗‖ ≤ αt ‖x(0)− x∗‖.

Consider the mapping defined by the gradient projection algorithm (5.3):

T (x) := [x− γ∇f(x) ]X

The key observation is that, if f is strongly convex then T is a contraction. Theorem

5.6 then implies that the gradient projection algorithm converges geometrically to the

unique optimal solution of (5.1). In particular condition C5.2 (Lipschitz continuity of ∇f)

guarantees strict descent for sufficiently small stepsize γ > 0 and condition C5.3 (strong

convexity of f) guarantees geometric convergence.

Theorem 5.7 Suppose conditions C5.1–C5.3 hold. Then there is a unique optimal solution

x∗ for (5.1) and the gradient projection algorithm (5.3) converges geometrically to x∗,

provided the stepsize γ satisfies:

if α < K : 0 < γ <
2α

K2

if α ≥ K : 0 < γ <
α

K2
− d or

α

K2
+ d < γ <

2α

K2

where d :=
√
α2 −K2/K2. Then

‖x(t)− x∗‖ ≤ βt ‖x(0)− x∗‖ ∀t ≥ 0

where β :=
√
K2γ2 − 2αγ + 1 ∈ (0, 1).

Proof. The gradient project algorithm (5.3) is the following iteration x(t+ 1) = T (x(t))

where T : X → X is defined by T (x) := [x− γ∇f(x) ]X . We will show that T is a contrac-

tion under conditions C5.2 and C5.3. Then the assertions follow from Theorem 5.6.

We have under the Euclidean norm

‖T (y)− T (x)‖22 = ‖ [y − γ∇f(y)]X − [x− γ∇f(x)]X ‖22
≤ ‖ (y − x)− γ (∇f(y)−∇f(x))‖22
= ‖y − x‖22 − 2γ (∇f(y)−∇f(x))T (y − x) + γ2‖∇f(y)−∇f(x))‖22

where the inequality above follows from the fact that the projection operation is nonexpan-

sive (Lemma 5.1.3). Conditions C5.3 and C5.2 guarantee that (∇f(y)−∇f(x))T (y − x) ≥
α‖y − x‖22 and ‖∇f(y)−∇f(x))‖22 ≤ K2‖y − x‖22 respectively. Hence

‖T (y)− T (x)‖22 ≤
(
1− 2αγ + γ2K2

)
‖y − x‖22
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γ

1

2α
K 2

α
K 2

β 2 (γ )

γ

(a) α < K

γ

1

2α
K 2

α
K 2

γγ

β 2 (γ )

(b) α ≥ K

Figure 5.3: The function β2(γ). (a) If α < K then T is a contraction for any stepsize

γ ∈ (0, 2α/K2). (b) If α ≥ K then T is a contraction if γ ∈ (0, α/K2 − d) or if γ ∈ (α/K2 +

d, 2α/K2) where d :=
√
α2 −K2/K2.
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Hence T is a contraction if and only if β2(γ) := 1− 2αγ + γ2K2 ∈ [0, 1). The function

β2(γ) is shown in Figure 5.3. Therefore the condition on the stepsize γ in the theorem

guarantees T is a contraction with parameter β(γ) ∈ (0, 1). The assertions then follow from

Theorem 5.6.

If any subsequence of x(t) converges then Theorem 5.3 guarantees that it converges to

an optimal solution x∗. Theorem 5.7 guarantees that, indeed, x(t) converges to the unique

optimal x∗ and does so geometrically. The bound 2/K on the stepsize γ in Theorem 5.3

depends only on the first-order information (the Lipschitz constant K of the gradient ∇f
of the objective function). The bound 2α/K2 on the stepsize γ in Theorem 5.7 depends

also on the second-order information α, the strength of the convexity of f .

5.2 STABILITY OF DUAL ALGORITHMS

We now apply Theorems 5.3 and 5.7 to prove the stability of dual algorithms. Dual algo-

rithms have dynamics only in the congestion prices, but not in the source rates. They take

the form, in discrete time,

xi(t) = U ′−1i (qi(t)) (5.10a)

pl(t+ 1) = ( pl(t) + γ(yl(t)− cl) )
+

=: gl(yl(t), pl(t)) (5.10b)

where (z)+ := max{z, 0}. Here qi(t) :=
∑
lRlipl(t) and yl(t) :=

∑
iRlixi(t). Since x is

statically determined by p through (5.10a) we abuse notation and often write x(p) and

y(p) = Rx(p). We say p∗ is an equilibrium (fixed point) if g(p∗) = g(y(p∗), p∗) = p∗.

We make the following assumptions on the utility functions Ui:

C5.4:

(a) Conditions C2.1 and C2.2’ hold. Moreover the routing matrix R has full row

rank.

(b) The sequence x(t) generated by the dual algorithm (5.10) stays in a compact set

where the curvatures of Ui are bounded away from zero uniformly: −U ′′i (xi) ≥
1/α > 0 for all i, xi ≥ 0. Let P denote the corresponding set that contains p(t)

generated by (5.10).

(c) The curvatures of Ui are bounded above uniformly: 0 < −U ′′i (xi) ≤ 1/α for all

i, xi ≥ 0.

Condition C5.4(a) implies that the utility of flow i strictly increases as the sending rate

increases, but there is a strictly diminishing return. It also assumes that the sending rate

decreases to zero as the congestion price qi increases without bound. and the sending

rate increases without bound as qi approaches 0. This assumption guarantees that for any

p ∈ RL+ there is a unique maximizer to maxxi≥0 Ui(xi)− xiqi(p) given by xi(p) in (5.10a)
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without projection. Moreover the dual objective function D(p) is continuously differentiable

in p and its derivative is ∇D(p) = c−Rx(p). These are reasonable assumptions satisfied

by practical algorithms (e.g., Reno, Vegas, FAST). The other conditions are technical and

required for the convergence proof. As we will see below, conditions C5.4(a)(b) guarantee

that the dual algorithm (5.10) converges to the unique optimal solution of the dual problem

(5.11b). Condition C5.4(c) further implies that the dual algorithm is a contraction mapping

and hence converges geometrically to the optimal solution. Condition C5.4(b) cannot hold

for arbitrarily large xi since it will contradict C5.4(a) that Ui(xi) is increasing. However

since the dual objective function D(p) below is radially unbounded (Lemma 3.16), the

iterates x(t) generated by the dual algorithm (5.10) will stay in a compact set.

Consider the network utility maximization:

max
x≥0

∑
i

Ui(xi) subject to Rx ≤ c (5.11a)

and its Lagrangian dual:

min
p≥0

D(p) :=
∑
i

(
Ui(xi(p))− xi(p)

∑
l

Rlipl

)
+
∑
l

plcl (5.11b)

The dual objective function D(p) is convex and, since Ui are strictly concave (con-

dition C5.4(a)), D(p) is also continuously differentiable. By the KKT Theorem 2.12 of

Chapter 2.1.2, the necessary and sufficient condition for a point (x∗ := x(p∗), p∗) to be

optimal is:

p∗ ≥ 0, x∗ =
(
U ′−1i (RT p∗)

)+
, Rx∗ ≤ c with

∑
i

Rlix
∗
i = cl if p∗l > 0

This coincides with the equilibrium condition for the dual algorithm (5.10) since condition

C5.4(a) means that the projection on x∗ is never active. Hence (x(p∗), p∗) is an equilibrium

point of the dual algorithms (5.10) if and only if it solves the network utility maximization

(5.11a) and its dual (5.11b). The equilibrium prices p∗ are generally nonunique, but the

equilibrium rates x(p∗) are unique (for any p∗) since the utility functions Ui are strictly

concave under condition C5.4(a). When R has full row rank then p∗ is unique as well (since

x∗ > 0).

Define L := maxi∈N
∑
lRli and N := maxl∈L

∑
iRli. In words L is the length of a

longest path used by the sources, N is the number of sources sharing a most crowded link.

Conditions C5.4(a)-(c) ensures that the algorithm (5.10) defines a contraction mapping,

and hence converges geometrically to the unique equilibrium.

Theorem 5.8 Suppose conditions C5.4(a)(b) hold.
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1. The dual algorithm (5.10) has a unique equilibrium p∗ that is the unique minimizer

of the dual problem (5.11b); moreover x(p∗) is the unique maximizer of the primal

(5.11a).

2. Starting from any initial point p(0) ≥ 0, p(t) converges to p∗, provided

γ <
2

αLN

3. If, in addition, C5.4(c) holds then p(t) converges geometrically to p∗ provided γ > 0

is sufficiently small.

Proof.

Part 1. The discussion preceding the theorem proves part 1.

Part 2. We will prove in Lemmas 5.9 and 5.10 that the dual objective function D(p) satisfies

conditions C5.1 and C5.2. Then Theorem 5.3 implies that any limit point p̂ of the sequence

(p(t), t = 0, 1, . . . ) generated by the dual algorithm (5.10), if exists, is optimal, and hence

it must be equal to the unique optimal point p∗. Moreover it means that, provided the

stepsize satisfies

0 < γ <
2

αLN

(D(p(t)), t = 0, 1, . . . ) is a decreasing sequence (see the proof of Theorem 5.3). Since, from

Lemma 3.16, D(p) is radially unbounded under condition C5.4(a), this implies that the

sequence p(t) stays in the compact set {p|D(p) ≤ D(p(0))} (see Exercise 3.2). Hence the

sequence p(t) has a convergent subsequence by the Bolzano-Weierstrass theorem. Since all

such subsequences converge to p∗, the sequence (p(t), t = 0, 1, . . . ) itself converges to the

optimal point p∗.

Hence we are left with verifying C5.1 and C5.2. For C5.1 the key observation is that

(5.10) is a gradient projection algorithm for solving the dual problem (5.11b) with the

nonempty, closed and convex feasible set {p ∈ RL | p ≥ 0}.

Lemma 5.9 Under condition C5.4(a) the dual objective function D(p) is lower bounded,

continuously differentiable, and strictly convex.

Proof of Lemma 5.9. By duality D(p) is lower bounded by the optimal primal objective

value which is clearly attained. Since Ui are strictly concave xi(p) is unique for each p ≥ 0.

The assumption limxi→0 U
′
i(xi) =∞ implies that the maximizer xi(p) satisfies

U ′i(xi(p)) = qi(p)
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for all p ≥ 0. Hence D(p) in (5.11b) is differentiable with ∇D(p) = c− y(p). Moreover the

derivative ∇D(p) is continuous since Ui are continuously differentiable. Hence the dual

algorithm (5.10) is equivalent to the gradient projection (steepest descent) algorithm

p(t+ 1) = [p(t)− γ∇D(p(t))]
+

for solving the dual problem (5.11b).

Taking the derivative of ∇D(p) = c− y(p) yields the Hession of D as:

∇2D(p) = −R
[
∂x

∂p
(p)

]
= RB(p)RT

where B(p) = diag(βi(p), i ∈ N) is an N ×N diagonal matrix with diagonal elements

βi(p) =
1

−U ′′i (xi(p))
> 0 (5.12)

Since R is of full row rank, ∇2D(p) = RB(p)RT � 0 for all p ≥ 0.3 Hence D(p) is strictly

convex.

The following result shows that D(p) satisfies condition C5.2.

Lemma 5.10 Under conditions C5.4(a)(b), ∇D is Lipschitz with

||∇D(p)−∇D(p̂)||2 ≤ αLN ||p− p̂||2

for all p, p̂ in the set P in condition C5.4(b).

Proof of Lemma 5.10. We will show that ||∇2D(p)||2 = ||RB(p)RT ||2 ≤ αLN for all

p ∈ P . The lemma then follows from [41, Theorem 9.19]

||∇D(p)−∇D(p̂)||2 ≤ ||∇2D(p)||2 ||p− p̂||2 ≤ αLN ||p− p̂||2

Now

||RB(p)RT ||22 ≤ ||RB(p)RT ||∞ · ||RB(p)RT ||1

i.e., ||RB(p)RT ||22 is upper bounded by the product of the maximum row sum and the

maximum column sum of the L× L matrix RB(p)RT . Since RB(p)RT is symmetric,

3Indeed, for all p ≥ 0, w ≥ 0, we have, for w 6= 0,

wT∇2D(p)w = wTRB(p)RTw ≥
(

min
i
βi(p)

)
||RTw||22 > 0

where the last inequality follows because Ui are strictly concave and RTw is nonzero for a
nonzero w since R has full row rank.
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||RB(p)RT ||1 = ||RB(p)RT ||∞, and hence

||RB(p)RT ||2 ≤ ||RB(p)RT ||∞
= max

l

∑
l′

[RB(p)RT ]ll′

= max
l

∑
i

βi(p)Rli

(∑
l′

Rl′i

)
By definition, (

∑
l′ Rl′i) ≤ L and βi(p) ≤ α. Hence

||RB(p)RT ||2 ≤ αL max
l

(∑
i

Rli

)
≤ αLN

as desired.

This completes the proof of part 2 of the theorem.

Part 3. We first show that D(p) is not only strictly convex, but also strongly convex and

hence satisfies condition C5.3. Since R has full row rank the minimum eigenvalue λ of RRT

is positive.

Lemma 5.11 Conditions C5.4(a) and (c) imply that

(∇D(p)−∇D(p̂))
T

(p− p̂) ≥ αλ||p− p̂||22, ∀p, p̂ ≥ 0

where λ > 0 is the minimum eigenvalue of RRT .

Proof of Lemma 5.11. We claim that ∇2D(p)− αλ I � 0 for all p ≥ 0. Fix any p ≥ 0.

For all w ∈ RL we have

wT∇2D(p)w = wTRB(p)RTw ≥ min
i
βi(p)w

TRRTw ≥ αwTRRTw

≥ αλ ‖w‖22 (5.13)

where the second last inequality follows since mini βi(p) ≥ α for all p ≥ 0 by condition

C5.4(c), and the last inequality follows since λ > 0 is the smallest eigenvalue of the positive

definite matrix RRT .

Lemmas 5.11 and 5.4 imply that D(p) is strongly convex. Since D(p) satisfies condi-

tions C5.1-C5.3, Theorem 5.7 implies part 3 of Theorem 5.8. This completes the proof.

5.3 APPENDIX: PROOF OF LEMMA 5.2

We estimate the difference f(x+ y)− f(x) by considering the scalar function g(s) defined

by the intersection of the f(x) surface with the vertical plane at x in the direction y. Fix

any x, y ∈ Rn and define

g(s) := f(x+ sy) for s ∈ [0, 1]
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Then

f(x+ y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(s)ds

Using

g′(s) = yT ∇f(x+ sy)

we have

f(x+ y)− f(x) =

∫ 1

0

yT ∇f(x+ sy)ds

=

∫ 1

0

(
yT ∇f(x) + yT (∇f(x+ sy)−∇f(x))

)
ds

≤ yT ∇f(x) +

∫ 1

0

‖y‖2 ‖∇f(x+ sy)−∇f(x)‖2 ds

≤ yT ∇f(x) + ‖y‖2
∫ 1

0

K ‖sy‖2 ds

= yT ∇f(x) +
K

2
‖y‖22

where the first inequality follows from the Cauchy-Schwarz inequality and the second in-

equality follows from condition C5.2. This proves the descent lemma.

5.4 APPENDIX: PROOF OF LEMMA 5.4

We first prove the following characterization of convex functions.

Lemma 5.12 Consider a differentiable function f : Rn → R.

1. f is convex if and only if for all x, y ∈ Rn

f(y) ≥ f(x) +
∂f

∂x
(x) (y − x) (5.14)

2. f is strictly convex if and only if strictly inequality holds in (5.14) for x 6= y.

Proof of Lemma 5.12. We first prove the result for a scalar differentiable convex function

g : R→ R. Then we extend the result to scalar differentiable strictly convex function g.

Finally we use these results to prove the lemma for a differentiable function f : Rn → R.

Step 1: convex g : R→ R. Suppose g is differentiable. We now prove that the following are

equivalent:
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(a) g is convex.

(b) g(t)− g(s) ≥ g′(s)(t− s) for any s 6= t ∈ R.

(c) g′(t) ≥ g′(s) for any t ≥ s in R, i.e. g has nondecreasing slope.

Suppose (a): g is convex. Fix any s, t ∈ R. For any α ∈ [0, 1] we have g(s+ α(t− s)) ≤
(1− α)g(s) + αg(t) and hence

g(t)− g(s) ≥ g(s+ α(t− s))− g(s)

α

Taking limit

lim
α↓0

g(s+ α(t− s))− g(s)

α(t− s)
(t− s) = g′(s) (t− s)

we have (b). Conversely suppose (b) and we want to prove (a), i.e.

αg(t) + (1− α)g(s) − g(z) ≥ 0 (5.15)

for any z := s+ α(t− s), α ∈ [0, 1]. Compare the difference g(t)− g(z) and g(s)− g(z) in

terms of gradient at the common point z:

g(t)− g(z) ≥ g′(z)(t− z) and g(s)− g(z) ≥ g′(z)(s− z)

To obtain (5.15), multiply the first inequality by α and the second inequality by 1− α and

sum, noting that t− z = (1− α)(t− s) and s− z = −α(t− s) so that the right-hand sides

of these two inequalities sum to zero. This proves (a) ⇔ (b).

Now suppose (b). Fix any t ≥ s and compare g(t)− g(s) in terms of slope at s and

at t:

g′(s)(t− s) ≤ g(t)− g(s) ≤ g′(t)(t− s)

yielding (c). Conversely suppose (c) and fix any t ≥ s. By the mean value theorem we have,

for some z ∈ [s, t], g(t)− g(s) = g′(z)(t− s) ≥ g′(s)(t− s), which is (b). This proves (b)

⇔ (c).

Step 2: strictly convex g. We claim that the following are equivalent:

(a’) g is strictly convex.

(b’) g(t)− g(s) > g′(s)(t− s) for any s, t ∈ R.

(c’) g′(t) > g′(s) for any t > s in R, i.e. g has strictly increasing slope.
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Three of the four proof steps above go through with the only change that inequalities

become strict, except the step proving (a) ⇒ (b) where strict inequality is generally not

preserved when we take the limit α ↓ 0. Hence we have (a’) ⇐ (b’) ⇔ (c’).

We now prove (a’) ⇒ (c’). Suppose g is strictly convex but there exist s < t with

g′(s) = g′(t). But g being convex means g′(s) ≤ g′(z) ≤ g′(t) for all z ∈ [s, t] from Step 1.

Hence g is a straight line on [s, t] with g′(z) = g′(s) for all z ∈ [s, t], contradicting strict

convexity. This proves (c’).

Step 3: f : Rn → R. We now use the results above on scalar functions to prove the lemma.

Suppose f is convex and fix any x, y ∈ Rn. Define the function g : R→ R by

g(s) := f(x+ sy)

as a function of the scalar s ∈ R. Then it is easy to show that g(s) is convex. Indeed, this

is Theorem 2.6.3 and it says that f is (strictly) convex on Rn if and only if any of its

one-dimensional cross section is (strictly) convex. By the mean value theorem there exists

an s ∈ [0, 1] such that

f(x+ y)− f(x) = g(1)− g(0) = g′(s)

By (c) above we have g′(s) ≥ g′(0) = (∇f(x))T y and hence

f(x+ y)− f(x) ≥ (∇f(x))T y

establishing (5.14). Moreover if f is strictly convex then the inequalities above are strict.

Conversely suppose (5.14) holds. To prove the convexity of f , use the same proof

above for (b) ⇒ (a). Take z := x+ α(y − x) for any α ∈ [0, 1]. We have

f(y)− f(z) ≥ (∇f(z))T (y − z) and f(x)− f(z) ≥ (∇f(z))T (x− z)

Multiply the first inequality by α and the second inequality by 1− α and sum to obtain:

αf(y) + (1− α)f(x) − f(z) ≥ (∇f(z))T (α(y − z)− (1− α)(z − x)) = 0

proving the convexity of f . Moreover if the inequalities above are strict then f is strictly

convex.

Proof of Lemma 5.4. We first use Lemma 5.12.2 to prove that if f satisfies condition

C5.3 then f is strictly convex. As in the proof of Lemma 5.3, fix any x, y ∈ Rn and consider

the (scalar) function along the path from x to y:

g(s) := f(x+ sy) for s ∈ [0, 1]
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Then

f(x+ y)− f(x) =

∫ 1

0

g′(s)ds =

∫ 1

0

yT ∇f(x+ sy)ds

=

∫ 1

0

(
yT ∇f(x) + yT (∇f(x+ sy)−∇f(x))

)
ds

≥ yT ∇f(x) +

∫ 1

0

1

s
α ‖sy‖22 ds

= yT ∇f(x) +
α

2
‖y‖22

where the inequality follows from C5.3. Since α > 0, Lemma 5.12.2 implies the strict con-

vexity of f .4

We now show that if ∇2f(x) � αI for all x ∈ Rn then f is strongly convex, i.e., f

satisfies C5.3. Fix any x, y and let

h(s) := ∇f(x+ s(y − x))T (y − x)

Then

h′(s) = (y − x)T ∇2f(x+ s(y − x)) (y − x)

and

(∇f(y)−∇f(x))
T

(y − x) = h(1)− h(0) =

∫ 1

0

h′(s)ds

=

∫ 1

0

(y − x)T ∇2f(x+ s(y − x)) (y − x) ds

≥ α ‖y − x‖22

where the inequality follows from ∇2f(x) � αI. Hence f(x) is strongly convex.

Conversely suppose f is strongly convex. To estimate∇2f(x) we have for any x, y ∈ Rn

yT ∇2f(x) y = lim
λ→0

1

λ

(
∂f

∂x
(x+ λy)− ∂f

∂x
(x)

)
y

≥ lim
λ→0

1

λ2
(
α ‖λy‖22

)
= α ‖y‖22

where the inequality follows from the strong convexity of f . Hence ∇2f(x) � αI as desired.

This completes the proof of Lemma 5.4.

4If f satisfies both C5.2 (Lispschitz ∇f with parameter K) and C5.3 (strong convexity with
parameter α) then the proof here and that of Lemma 5.2 show that

yT ∇f(x) +
α

2
‖y‖22 ≤ f(x+ y)− f(x) ≤ yT ∇f(x) +

K

2
‖y‖22
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5.5 BIBLIOGRAPHICAL NOTES

Materials in Chapter 5.1 on convergence theorems are mainly taken from [8]. The applica-

tion of these results to proving the convergence of the dual algorithm (Theorems 5.8.1 and

5.8.2) is from [35]; the extension to gradient projection algorithm as a contraction mapping

(Theorem 5.8.3) is new. We only consider the synchronous case here, but the results ex-

tend to the asynchronous case where sources and links may update at different times with

different frequencies and where packets may be lost, experience different delays, or arrive

out of order; see [35].
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C H A P T E R 6

Local stability with delay

In Chapters 3 to 5 we study global stability of congestion control algorithms assuming there

is no feedback delay, i.e., when a source changes its sending rate the effect immediately

reaches all the links in its path, and when a link updates its congestion price the new

price is immediately sensed at all sources using that link. This is of course unrealistic. In

this chapter we incorporate feedback delay into our model and study the stability of the

closed-loop system. Global stability of nonlinear systems in the presence of feedback delay

is generally very difficult. Our goal is more modest: we will study local stability around the

equilibrium point in the presence of feedback delay using a linearized model.

6.1 LINEAR MODEL WITH FEEDBACK DELAY

We are interested in the stability of the primal algorithm or the dual algorithm specified

as follows:

Primal algorithm: ẋ = f(x(t), q(t)), p = g(y(t)) (6.1a)

Dual algorithm: ṗ = g(y(t), p(t)), x = f(q(t)) (6.1b)

where

q(t) := RT p(t) and y(t) := Rx(t) (6.1c)

Hence there is dynamics either in the sources or in the links, but not both. Suppose (x∗, p∗)

is an equilibrium point for the primal or dual algorithm, i.e.

Primal algorithm: 0 = f(x∗, q∗), p∗ = g(y∗)

Dual algorithm: 0 = g(y∗, p∗), x∗ = f(q∗)

where q∗ = RT p∗ and y∗ = Rx∗. In terms of the perturbation variables

x̃(t) := x(t)− x∗ and p̃(t) := p(t)− p∗

the linearized model of the primal algorithm (6.1a) around the equilibrium (x∗, p∗) is:

˙̃x =
∂f

∂x
(x∗, q∗) x̃(t) +

∂f

∂q
(x∗, q∗) q̃(t), p̃ =

∂g

∂y
(y∗) ỹ(t) (6.2a)
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The linearized model of the dual algorithm (6.1b) around the equilibrium (x∗, p∗) is:

˙̃p =
∂g

∂y
(y∗, p∗) ỹ(t) +

∂g

∂p
(y∗, p∗) p̃(t), x̃ =

∂f

∂q
(q∗) q̃(t) (6.2b)

Note that the updates in (6.2) only involve local variables and hence the equations contain

no feedback delay. The feedback delay is modeled by replacing (6.1c) with:

q̃i(t) :=
∑
l

Rli p̃l(t− τ bli) and ỹl(t) :=
∑
i

Rli x̃i(t− τfli)

or in vector form:

q̃(t) := RT p̃(t− τ b) and ỹ(t) := R x̃(t− τf ) (6.2c)

Here τ bli models the backward delay from link l to source i and means that a change in

link price pl at time t− τ bli is sensed at source i only at time t. Similarly τfli models the

forward delay from source i to link l and means that a change in sending rate xi at time

t− τfli affects the input traffic at link l only at time t. These feedback delays are assumed

constant. We will make use of a key assumption that for all sources i

τfli + τ bli = τi for all links l in i’s path

i.e., for each source i, the sum of forward delay to a link in its path and the backward delay

from that link is the same for every link in its path. This sum is the round-trip time τi and

depends only on the source i. This assumption holds, e.g., if all the data packets and their

ack packets of a TCP connection follow the same path and the congestion level on the path

remains unchanged over the timescale of interest.

We are interested in the stability of the linear delayed system (6.2). To this end we

will first explain the Nyquist stability theory of linear time-invariant system with delay and

then apply the theory to study the local stability of (6.2).

6.2 NYQUIST STABILITY THEORY

We will model congestion control algorithms as a feedback system with time delay consisting

of interconnection of component systems each characterized by a transfer function. An

example is shown in Figure 6.1 which is analyzed in Section 6.3 below. We will derive

sufficient conditions in terms of protocol parameters and network delays that guarantee

the asymptotic stability of the closed-loop system. The main tool is the Nyquist stability

theory that expresses the stability condition of a closed-loop system in terms of properties

of its open-loop component systems. For us these properties correspond to the design of

the TCP and AQM algorithms and their parameters. In this section we first summarize

various concepts and linear system results that build up to the Nyquist stability criterion

for linear time-invariant (LTI) multi-input-multi-output systems without time delay. Then

we extend the stability criterion to LTI multi-input-multi-output system with time delay.
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Figure 6.1: A delayed linear system model of a congestion control algorithm in Section 6.3.
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6.2.1 LTI SYSTEMS, TRANSFER FUNCTIONS AND REALIZATIONS

An multi-input multi-output (MIMO) LTI system can be specified by its input-output

behavior through a function (operator) that maps an input signal to an output signal. Such

a function can be realized by a state-space implementation. In this subsection we summarize

these concepts.

We start with the input-output description. An m-input p-output LTI system can

be specified by an operator h that maps an input signal u in an appropriate space to an

output signal y in an appropriate space according to:1

y(t) =

∫ t

0

h(τ)u(t− τ)dτ, t ≥ 0

Here, for each t ≥ 0, the matrix h(t) ∈ Rp×m, input u(t) ∈ Rm, and output y(t) ∈ Rp. Note

that the output y(t) at time t depends not just on the input value u(t) at time t, but the

function u(τ) over [0, t]. Indeed the output y(t) is the weighted sum (integral) of the past

input u(t− τ), with input that is τ time in the past weighted by the matrix h(τ). The

function h is called an impulse response of the LTI system because of the following reason.

Consider an input signal with a single impulse in the jth component, i.e., u(t) := δ(t)ej
where δ(t) is the delta function and ej is the unit vector with an 1 at the jth place and 0

everywhere else. The ith component yi(t) of the output at time t is:

yi(t) =

∫ t

0

hij(τ)δ(t− τ)dτ =

∫ t

0

hij(τ)δ(τ − t)dτ = hij(t)

i.e., hij(t) is the system response (output) yi(t) to an impulse at input uj .

An equivalent specification of the LTI system is the Laplace transform matrix H(s) ∈
Cp×m of its impulse response h(t). We call H(s) its transfer function (or transfer function

matrix). It maps the Laplace transform u(s) ∈ Cm of the input u(t) to the Laplace transform

y(s) ∈ Cp of its output y(t) over its region of convergence:2

y(s) = H(s)u(s)

We will model below congestion control by interconnection of transfer functions. Henceforth

we will focus on transfer functions H(s) rather than its impulse response h(t).

1In general

y(t) =

∫ ∞
−∞

h(τ)u(t− τ)dτ, t ≥ 0

If the LTI system is causal, i.e., h(t) = 0 for t < 0, then y(t) =
∫∞
0
h(τ)u(t− τ)dτ . If the input

signal u(t) is also causal, i.e., u(t) = 0 for t < 0, then y(t) =
∫ t
0
h(τ)u(t− τ)dτ .

2We abuse notation to use u, y to denote both the signals in the time domain and their Laplace
transforms.
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A transfer function H(s) can be realized by a state-space implementation of the form:

ẋ = Ax(t) +Bu(t), t ≥ 0 (6.3a)

y = Cx(t) +Du(t), t ≥ 0 (6.3b)

where x(t) ∈ Rn is the state of the system, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m are real matrices. We refer to such a realization by its matrices (A,B,C,D). A

transfer function H(s) can be realized by different state-space implementations with dif-

ferent matrices (A,B,C,D). These realizations have the same input-output behavior but

can have different internal behavior (see examples below). For a realization (A,B,C,D)

the impulse response h(t) and its transfer function H(s) are respectively

h(t) = CeAtB +Dδ(t) and H(s) = C(sI −A)−1B +D

where δ(t) is the delta function. For congestion control modeling we have D = 0 and there-

fore we usually refer to realizations (A,B,C) of impulse response h(t) and transfer function

H(s) given by

h(t) = CeAtB and H(s) = C(sI −A)−1B

Results are mostly given in the following for the case where D = 0, but they do not change

qualitatively when D is nonzero.

Proper and strictly proper transfer functions. For an MIMO system without time

delay, with m ≥ 1 inputs and p ≥ 1 outputs, the transfer function is an p×m complex

matrix function H(s) of s (for s in its region of convergence in C). Each entry Hij(s) is a

rational function of the form:

Hij(s) =
nij(s)

dij(s)

where nij(s) and dij(s) are polynomials of s without common factors (co-prime). As ex-

plained above Hij(s) can be interpreted as a single-input-single-output (SISO) transfer

function mapping input uj to output yi. The rational function Hij(s) is called proper if the

degree of the numerator polynomial nij(s) is no more than the degree of the denominator

polynomial dij(s); it is called strictly proper if the degree of nij(s) is smaller than that of

dij(s).
3 For our purposes we will call the transfer function matrix H(s) proper if all its

entries are proper rational functions and strictly proper if they are strictly proper rational

functions.

3More generally a rational transfer function Hij(s) is proper if Hij(s) converges to a finite
complex number as |s| → ∞. It is strictly proper if Hij(s)→ 0 as |s| → ∞.
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If a transfer function matrix H(s) has a state-space realization (A,B,C,D) then

H(s) = C(sI −A)−1B +D takes the form

H(s) =
1

det(sI −A)
C adj(sI −A)B + D

where adj(sI −A) is the adjoint matrix. The determinant det(sI −A) in the denominator is

a polynomial of degree n (the coefficient of sn is 1). All entries of the adjoint matrix adj(sI −
A) are polynomials of degrees less than n. Hence each entry of the matrix Cadj(sI −A)B

is a polynomial of degree less than n. Therefore H(s) is proper if D is nonzero and strictly

proper if D is zero. In particular H(s)→ D as |s| → ∞. Conversely if a rational transfer

function H(s) is proper (i.e. each entry of the matrix H(s) is proper) then there exists a

state-space realization (A,B,C,D). Example 6.3 shows one way to construct a realization

(A,B,C,D) for a SISO transfer function that is proper.

For a time-delayed LTI system the transfer function is infinite dimensional and its

transfer function H(s) is not a rational function. H(s) is called proper if there exists α > 0

such that each entry Hij(s) satsifies

sup { |Hij(s)| | s ∈ C, Re s > α } < ∞

H(s) is called strictly proper if

lim
α→∞

sup {Hij(s) | s ∈ C, Re s > α } = 0

An LTI system is causal if and only if it is proper. For instance H(s) = e−τs is a transfer

function of the time-delay system y(t) = u(t− τ) and it is strictly proper.

Example 6.1 Single integrator. A single integrator ẏ = u(t) has a transfer function

H(s) = 1/s. Its impulse response is the step function h(t) = 1 for t ≥ 0 and 0 for t < 0. It

can be realized by the following state-space implementation:

ẋ = u(t), y(t) = x(t)

In the Laplace domain this is sx(s) = u(s) and y(s) = x(s), yielding the transfer function

H(s) = 1/s. The same transfer function can also be realized by a different implementation:[
ẋ1
ẋ2

]
=

[
0 0

0 1

]
x(t) +

[
1

−1

]
u(t), y =

[
1 0

]
x(t)

In Laplace domain this is

sx(s) = Ax(s) +Bu(s), y(s) = Cx(s)
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where

x(s) :=

[
x1(s)

x2(s)

]
, A :=

[
0 0

0 1

]
, B :=

[
1

−1

]
, C :=

[
1 0

]
yielding the transfer function

H(s) = y(s)/u(s) = C(sI −A)−1B =
1

s

Even though both realizations have the same input-output behavior they have different

internal properties. We will comment on this in Chapter 6.2.2 on minimal realization.

Example 6.2 Single-input single-output (SISO) system. Consider the transfer func-

tion of a single-input single-output system

H(s) :=
y(s)

u(s)
=

s− 1

(s+ 1)(s+ 2)

Since (s2 + 3s2 + 2)y(s) = (s− 1)u(s), this represents the following LTI system in the time

domain:

ÿ + 3ẏ + 2y(t) = u̇− u(t)

Choose a realization (A,B,C) with n = 2 states:

A :=

[
a11 a12
a21 a22

]
, B :=

[
b1
b2

]
, C :=

[
c1 c2

]
Then

s− 1

(s+ 1)(s+ 2)
= C(sI −A)−1B =

1

det(sI −A)

[
c1 c2

][s− a22 −a12
−a21 s− a11

][
b1
b2

]
where

det(sI −A) = s2 − (a11 + a22)s+ (a11a22 − a12a21) = (s+ 1)(s+ 2)

Hence a11 + a22 = −3, a11a22 − a12a21 = 2 and, for s not equal to the eigenvalues of A,[
c1 c2

][s− a22 −a12
−a21 s− a11

][
b1
b2

]
= s− 1

There are many choices of (A,B,C) that satisfy these conditions. Here is one example

A :=

[
−4 −2

3 1

]
, B :=

[
1

0

]
, C :=

[
1 0

]
(6.4)
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with the state-space implementation:

ẋ1 = −4x1(t)− 2x2(t) + u(t)

ẋ2 = 3x1(t) + x2(t)

y(t) = x1(t)

Example 6.3 Proper transfer functions. Consider again the transfer function in Ex-

ample 6.2:

H(s) :=
y(s)

u(s)
=

s− 1

(s+ 1)(s+ 2)

Another method to design a state-space realization is observe that the transfer function

H(s) is strictly proper, i.e., the degree of the numerator is less than that of the denominator.

Then we can always write H(s) as two integrators:

H(s) =
s− 1

(s+ 1)(s+ 2)
=

−2

s+ 1
+

3

s+ 2

as shown in the block diagram in Figure 6.2(a) This can be implemented in state space as:

yu −2
s+1

3
s+ 2

x1

x2

(a) Strictly proper transfer function

cΔ1
s− a1

x1

yu c

cΔ2
s− a2

x2

cΔ1Δ2
s− a1( ) s− a2( )

x3

(b) Proper transfer function

Figure 6.2: Realization of the transfer functions in Example 6.3. (a) Strictly proper transfer

function H(s) = s−1
(s+1)(s+2) . (b) Proper transfer function H(s) = c(s−b1)(s−b2)

(s−a1)(s−a2) .

ẋ1 = −x1(t)− 2u(t)

ẋ2 = −2x2(t) + 3u(t)

y(t) = x1(t) + x2(t)
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Notice that y(t) depends only on the state (x1(t), x2(t)), not directly on the input

u(t). This is the consequence of the transfer function H(s) being strictly proper. When

H(s) is proper but not strictly proper, i.e., when the numerator and denominator of H(s)

have the same degree, then y(t) depends on u(t) directly, as the next example shows.

Consider the transfer function

H(s) =
c(s− b1)(s− b2)

(s− a1)(s− a2)

where ai 6= bj , i.e., the numerator and the denominator are co-prime. Decompose the ra-

tional function:

H(s) =
c((s− a1) + ∆1)((s− a2) + ∆2)

(s− a1)(s− a2)
= c+

c∆1

s− a1
+

c∆2

s− a2
+

c∆1∆2

(s− a1)(s− a2)

where ∆1 := a1 − b1 and ∆2 := a2 − b2. Hence H(s) can be represented by the block dia-

gram in Figure 6.2(b). The last block is second-order, corresponding to

ẍ3 − (a1 + a2)ẋ3 + a1a2x3(t) = c∆1∆2u(t)

and requires two states (x3, x4) to implement:

ẋ3 = x4(t)

ẋ4 = (a1 + a2)x4(t)− a1a2x3(t) + c∆1∆2u(t)

Hence a state-space realization of H(s) is:

ẋ = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

where x(t) := (x1(t), x2(t), x3(t), x4(t)) and

A :=


a1 0 0 0

0 a2 0 0

0 0 0 1

0 0 −a1a2 a1 + a2

 , B :=


∆1

∆2

0

∆1∆2

 , CT :=


c

c

c

0

 , D := c

Example 6.4 MIMO system. Consider the transfer function of a 2-input 2-output sys-

tem:

H(s) :=

[
s−1

(s+1)(s+2)
s+1

(s−1)(s+2)

0 s−1

]
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The input-output relation in the Laplace domain is

y1(s) =
s− 1

(s+ 1)(s+ 2)
u1(s) +

s+ 1

(s− 1)(s+ 2)
u2(s)

y2(s) = s−1 u2(s)

or equivalently(
s3 + 2s2 − s− 2

)
y1(s) =

(
s2 − 2s+ 1

)
u1(s) +

(
s2 + 2s+ 1

)
u2(s)

s y2(s) = u2(s)

This is in the time domain

...
y 1 + 2ÿ1 − ẏ1 − 2y1(t) = ü1 − 2u̇1 + u1(t) + ü2 + 2u̇2 + u2(t)

ẏ2 = u2(t)

It can be implemented in state space using the same method in Example 6.3 (see Exercise

6.5).

6.2.2 STABILITY OF LTI SYSTEMS

In this subsection we discuss two notions of stability and explain their relationship. The

first one is associated with a state-space realization (A,B,C) and the second with an input-

output description through a transfer function H(s). Both will be used later in analyzing

the stability of congestion control algorithms.

Given a realization (A,B,C) of an LTI system we are interested in the asymptotic

stability of the origin (equilibrium) when the input is zero, i.e., the asymptotic stability of

the equilibrium point of the autonomous (undriven) system:

ẋ = Ax(t), t ≥ 0 (6.5)

We say that the origin of (6.5) is exponentially stable if, there exist α > 0 and β ≥ 0 such

that, for any initial point x(0) := x0, the solution (x(t), t ≥ 0) of (6.5) satisfies

‖x(t)‖ ≤ β e−αt ‖x0‖, t ≥ 0

i.e., the trajectory x(t) converges exponentially (geometrically) to the origin. For LTI sys-

tems the origin is exponentially stable if and only if it is asymptotically stable as defined

in Definition 3.1 of Chapter 3.4 We will hence use either stability notion interchangeably

for LTI systems.

4If an LTI system is asymptotically stable then it is globally asymptotically stable. We will use
asymptotic stability instead of global asymptotic stability because our linear system originates
from the linearization of a nonlinear system and therefore describes local behavior around an
equilibrium.
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Theorem 6.5 Asymptotic stability. The origin of (6.5) is asymptotically stable if and

only if all eigenvalues λ(A) of the system matrix A are in the open left-half plane (LHP).

In this case we say that the system matrix A is stable or Hurwitz.

Example 6.6 For the first realization ẋ = u(t) of the integrator in Example 6.1 the un-

driven system is ẋ = 0 = Ax(t) with A = 0. Its eigenvalue is 0 and hence the origin is not

asymptotically stable (x(t) = x(0) for all t ≥ 0). For the second realization the undriven

system ẋ = Ax(t) has a system matrix

A =

[
0 0

0 1

]
with eigenvalues 0 and 1, and hence not asymptotically stable either. For the realization

(A,B,C) in Example 6.2, the eigenvalues of the system matrix A are −1 and −2. Hence

the origin is asymptotically stable.

Asymptotic stability is an internal property about the state x(t) of the system in

terms of the system matrix A. In contrast the second stability notion pertains to the input-

output behavior in terms of the transfer function H(s), as we now explain.

For any signal u : [0,∞)→ Rm we define its p-norm for p = 1, 2,∞ as:

‖u‖1 :=

∫ ∞
0

‖u(t)‖1dt =

∫ ∞
0

∑
i

|ui(t)|dt

‖u‖2 :=

[∫ ∞
0

‖u(t)‖22dt
]1/2

=

[∫ ∞
0

∑
i

u2i (t)dt

]1/2
‖u‖∞ := sup

t≥0
‖u(t)‖∞ = sup

t≥0
max
i
|ui(t)|

Note that ‖u(t)‖p is a norm of a vector in Rm while ‖u‖p is norm of a signal in an appropriate

function space.

Consider a causal LTI system specified by its impulse response

y(t) =

∫ t

0

h(τ)u(t− τ)dτ, t ≥ 0 (6.6a)

or its transfer function

y(s) = H(s)u(s) (6.6b)
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Definition 6.7 The LTI system (6.6) is Lp-stable for p = 1, 2,∞, if there exists a finite

γ ∈ R such that

‖y‖p ≤ γ ‖u‖p

for every input u.

The smallest constant γ that satisfies the condition in Definition 6.7 is often called the

system gain. Hence an LTI system is Lp-stable if an input of finite p-norm ‖u‖p produces

an output of finite p-norm ‖y‖p. In particular the case with p =∞ is referred to as bounded

input bounded output (BIBO) stability. For LTI systems of finite dimension, BIBO stability

is equivalent to Lp-stability.

Consider again the following LTI system in state-space form:

ẋ = Ax(t) +Bu(t), t ≥ 0 (6.7a)

y = Cx(t), t ≥ 0 (6.7b)

with impulse response h(t) and transfer function H(s) given by

h(t) = CeAtB and H(s) = C(sI −A)−1B (6.7c)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. Before we characterize BIBO stability in terms

of the transfer function H(s), we need to define poles of a transfer function matrix.

The transfer function of a SISO system (6.7) with p = m = 1 is a rational function

H(s) =
C adj(sI −A)B

det(sI −A)
=

∏k1
k=1(s− zk)∏k2
k=1(s− λk)

(6.8)

where the set of λk is a subset of the eigenvalues of A, counting multiplicity. As discussed

in Chapter 6.2.1, the transfer function is strictly proper (D = 0), i.e. k1 < k2 ≤ n. We

assume that the numerator polynomial and the denominator polynomial are co-prime, i.e.,

all common factors s− zk = s− λk′ have been canceled (pole-zero cancellation). We call a

root λk of its denominator polynomial a pole of the transfer function H(s), and a root zk
of its numerator polynomial a zero of H(s).

For an MIMO system (6.7) without time delay, with m ≥ 1 inputs and p ≥ 1 outputs,

the transfer function is an p×m complex matrix function H(s) = C(sI −A)−1B where

each entry is a rational function of the form in (6.8). Let

Hij(s) =
nij(s)

dij(s)

where nij(s) and dij(s) are co-prime, i.e., all common factors have been canceled.

Definition 6.8 The transfer function matrix H(s) = C(sI −A)−1B has a pole at s = λ if

some of its entries of Hij(s) has a pole at s = λ, i.e., dij(λ) = 0 for some ij.
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From (6.8) we have

{poles of H(s) } ⊆ { eigenvalues of A } (6.9)

There may be eigenvalues of A that are not poles of H(s) because of pole-zero cancellation.

The definition of zeros of a transfer function matrix H(s) is subtle. Roughly H(s) has a

zero at s = z if the rank of H(s) drops at s = z. This is complicated by the fact that s = z

can be both a zero and a pole of H(s).

The next result characterizes Lp-stability and BIBO stability in terms of the poles of

the transfer function H(s) and eigenvalues of the system matrix A. It implies in particular

that, for finite dimensional LTI system, BIBO stability is equivalent to Lp-stability.

Theorem 6.9 Lp-stability. Consider the finite dimensional LTI system (6.7) with transfer

function H(s) and system matrix A.

1. For any p = 1, 2,∞, the system (6.7) is Lp-stable if and only if all the poles of H(s)

are in the open LHP.

2. If the origin of the system (6.7) is asymptotically stable then the system is BIBO

stable.

By Theorem 6.5 the origin is asymptotically stable if and only if all the eigenvalues

of A are in the open LHP. This implies Theorem 6.9.2. As explained above (see (6.8)), the

set of poles of H(s) can be a strict subset of the eigenvalues of A when there is pole-zero

cancellation. This is why the converse of Theorem 6.9.2 generally does not hold, i.e., there

are systems that are BIBO stable but their realizations are not asymptotically stable. We

now describe an important class of realizations (A,B,C) where the poles of H(s) coincide

with the eigenvalues of A. Such a system is BIBO stability if and only if its origin is

asymptotically stable.

We will call a realization (A,B,C) controllable if the rank of the following controlla-

bility matrix

[B AB A2B · · · An−1B]

is n, and observable if the rank of the following observability matrix
C

CA

CA2

...

CAn−1


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is n. If (A,B) is controllable then, given any initial state x0, any target state x1, and

any time interval [t0, t1], there exists an input u(t) over [t0, t1] that will drive the state

from x0 at time t0 to x1 at time t1. If (A,C) is observable then any initial state x0 can

be uniquely determined from input/output measurements (i.e., measurements of u(t), y(t)

and their derivatives) over any finite time interval. If (A,B,C) is both controllable and

observable then it is called a minimal realization. A minimal realization has no internal

modes that are uncontrollable by applying an appropriate input nor internal modes that

are unobservable from input/output measurements. In this case H(s) has no pole-zero

cancellation and instead of (6.9) we have

{poles of H(s) } = { eigenvalues of A }

We hence have the following corollary of Theorem 6.9.

Corollary 6.10 Stability of minimal realization. Consider the finite dimensional LTI

system (6.7) with transfer function H(s) and a realization (A,B,C). If the realization is

minimal, then the following are equivalent:

1. For any p = 1, 2,∞, the system (6.7) is Lp-stable (including BIBO stability).

2. The origin of the system (6.7) is asymptotically stable.

3. All the poles of H(s) are in the open LHP.

4. All eigenvalues of A are in the open LHP.

Eigenvector dyadic expansion of H(s) with diagonalizable A. We close this sub-

section by exhibiting the particularly simple structure of H(s) and its poles in the special

case where A is diagonalizable. A complex matrix M ∈ Cn×n is called diagonalizable if it

is similar to a diagonal matrix Λ = diag(λi), i.e., there exists a nonsingular matrix V such

that

V −1MV = Λ

From MV = V Λ we see that λi are eigenvalues of M with the columns vi of V as the

corresponding eigenvectors. Hence M is diagonalizable if and only if it has an eigenbasis,

i.e. a basis consisting of eigenvectors.

Lemma 6.11 Suppose M ∈ Cn×n is diagonalizable. Then

1. M has a basis of right eigenvectors (v1, . . . , vn) such that Mvi = λivi. Let V ∈ Cn×n
with vi as its columns.
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2. M has a basis of left eigenvectors (u1, . . . , un) such that u∗iM = λiu
∗
i . Let U ∈ Cn×n

with ui as its columns.

3. The left and right eigenvectors are orthogonal, i.e. u∗i vj = 0 if i 6= j and 1 if i = j or

more compactly U∗V = I.

4. The identity matrix I has the eigenvector dyadic expansion I =
∑
i viu

∗
i = V U∗.

5. The matrix M has the eigenvector dyadic expansion

M =
∑
i

λiviu
∗
i = V ΛU∗

6. If M is nonsingular then λi 6= 0 and

M−1 =
∑
i

(λi)
−1
viu
∗
i = V Λ−1U∗

7. Every vector x ∈ Cn can be expressed in terms of the basis V as:

x =
∑
i

viu
∗
i x =

∑
i

aivi

where ai = u∗i x is the projection of x onto the left eigenvector space. Every y = Mx

can be expressed in terms of V as:

y = M

(∑
i

aivi

)
=

∑
i

λiaivi

In particular Lemmas 6.11.3–6.11.4 imply that V and U∗ are inverses of each other. When

its eigenvectors do not form a basis, a matrix M is not diagonalizable. It can still be

transformed into a block diagonal matrix called the Jordan form. Indeed any matrix M ∈
Cn×n can be uniquely written as

M = M1 +M2

such that M1 is diagonalizable and M2 is nilpotent.5 Moreover M and M1 have identical

eigenvalues and M1,M2 commute.

We now apply these properties to transfer function H(s) := C(sI −A)−1B, for the

case where A ∈ Rn×n is diagonalizable with eigenvalues λi ∈ C and the corresponding

left and right eigenvectors (ui, vi), i = 1, . . . , n. Then (sI −A) is diagonalizable and has

5A matrix A is nilpotent if Ak is the zero matrix for some finite positive integer k.
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eigenvalues (s− λi). Moreover, from Lemma 6.11.4–6, (sI −A)−1 has a unique eigenvector

dyadic expansion (V and U∗ are inverses of each other):

(sI −A)−1 = (sV U∗ − V ΛU∗)
−1

= V (sI − Λ)−1U∗ =
∑
i

(s− λi)−1 viu∗i

Hence

H(s) =
∑
i

(s− λi)−1 (Cvi) · (u∗iB)

Since (Cvi) · (u∗iB) is a dyad with column Cvi and row u∗iB, (s− λi)−1 disappears from

the sum if and only if either Cvi is the zero column vector or u∗iB is the zero row vector.

Theorem 6.12 Consider the transfer function H(s) := C(sI −A)−1B and suppose A ∈
Rn×n is diagonalizable with eigenvalues λi ∈ C and the corresponding left and right eigen-

vectors (ui, vi), i = 1, . . . , n. Then λ ∈ Cn is a pole of H(s) if and only if all the following

three conditions hold:

1. λ is an eigenvalue of A, i.e., λ = λi for some i.

2. Cvi is not the zero column vector.

3. u∗iB is not the zero row vector.

6.2.3 FEEDBACK SYSTEMS AND LOOP FUNCTIONS

We are interested in the stability of feedback connection of component dynamical systems.

Nyquist stability theory provides us with a method to assess the stability of the closed-loop

system in terms of the stability of the component systems in open loop. A central concept

is the loop function, which we now explain.

Consider a general feedback loop, as shown in Figure 6.3(a), consisting of the inter-

connection of k LTI systems (Ai, Bi, Ci) with corresponding transfer functions

Hi(s) := Ci(sI −Ai)−1Bi, i = 1, . . . , k

Inputs ui are inserted through a transfer function Gi at the input of Hi; these ui can

represent control inputs, reference signals, disturbances, or measurement noises. Since the

system is LTI, the effect on the output y of all inputs u1, u2, . . . , uk, uk+1 is the superposition

of the effects of individual inputs when all other inputs are zero (going round the loop from

the output y towards the inputs in the opposite direction of the signal flow; see Figure 6.3):

Hk · · ·H1G1u1, Hk · · ·H2G2u2, . . . , HkGkuk, Gk+1uk+1
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Figure 6.3: Loop function of a feedback system.
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To write down the effect of the output feedback, we break the loop at the output y to obtain

an “open-loop” system shown in Figure 6.3(b). The effect on y of the output feedback is

(negative sign for negative feedback):

−Hk · · ·H1 y

By superposition of linear systems we have

y = − Hk · · ·H1︸ ︷︷ ︸
loop function L

y +
k∑
i=1

Hk · · ·HiGi ui + Gk+1 uk+1

Hence the transfer functions from inputs ui to output y can be read off from

y = (I + L)−1
k∑
i=1

Hk · · ·HiGi ui + (I + L)−1Gk+1 uk+1 (6.10a)

where the loop function is:

L := Hk · · ·H1 (6.10b)

It will play a critical role in Nyquist stability method as we will see below.6 In particular

the transfer function Hyui from input ui to output y is

Hyui = (I + L)−1Hk · · ·Hi Gi, i = 1, . . . , k (6.10c)

Example 6.13 Block diagram manipulations. In this example we find the transfer

function Hyu from u to y and the loop function of the feedback system in Figure 6.4(a).

Break the loop at the output y, as shown in Figure 6.4(b), and denote the transfer function

of the local feedforward loop from u1 to y1 by H1 and that of the local feedback loop from

u3 to y3 by H3. Applying superposition to the local loops we have

H1 = G1 −G2 and H3 = (I +G3G4)−1G3

Applying again (6.10) we find the loop function to be:

L = H4H3H2H1 = H4 (I +G3G4)−1G3H2 (G1 −G2)

Hence the transfer function from u to y is

Hyu = (I + L)−1 (H4H3H2) = (I + L)−1
(
H4 (I +G3G4)−1G3H2

)

6The transfer function from Gk+1uk+1 to y is S := (I + L)−1 and is called the sensitivity func-
tion. The transfer function from G1u1 to y is T := (I + L)−1L and is called the complemen-
tary sensitivity function since S + T = I. S and T determine the dynamic performance of the
closed-loop system; see e.g. [43].
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Figure 6.4: Example 6.13.



170 6. LOCAL STABILITY WITH DELAY

6.2.4 STABILITY OF CLOSED-LOOP SYSTEMS

Consider the feedback connection in Figure 6.5 and let the component systems be

y1
–%
+%%u1 H1

H2 u2+%
+%%

y2

e1

e2

Figure 6.5: Feedback connection.

ẋi = Aixi(t) +Biei(t), yi = Cixi(t), i = 1, 2 (6.11a)

where xi(t) ∈ Rni , ei(t) ∈ Rmi , y1(t) ∈ Rm2 , y2(t) ∈ Rm1 , Ai ∈ Rni×ni , B1 ∈ Rn1×m1 , B2 ∈
Rn2×m2 , C1 ∈ Rm2×n1 , and C2 ∈ Rm1×n2 . The external inputs ui(t) are thus in Rmi . The

transfer functions of the component systems are

Hi(s) = Ci(sI −Ai)−1Bi, i = 1, 2 (6.11b)

We sometimes refer to Hi(s) as the open-loop systems and det(sI −Ai) as the open-loop

characteristic polynomials. Motivated by Theorem 6.5, we say that the open-loop system

Hi(s) is open-loop stable if all roots of det(sI −Ai) are in the open LHP, i.e., the open-loop

system matrix Ai is stable. This implies that Hi(s) is BIBO stable (Theorem 6.9); the

converse is true if (Ai, Bi, Ci) is a minimal realization of Hi(s) (Corollary 6.10).

The state of the closed-loop system is x := [xT1 xT2 ]T ∈ Rn1+n2 , input is u :=

[uT1 uT2 ]T ∈ Rm1+m2 , and output is y := [yT1 yT2 ]T ∈ Rm1+m2 . It can be shown that the

closed-loop system is also LTI, described by

ẋ = Ax(t) +Bu(t), y = Cx(t) (6.12a)

where A,B,C can be expressed in terms of Ai, Bi, Ci as (Exercise 6.7):

A :=

[
A1 −B1C2

B2C1 A2

]
B :=

[
B1 0

0 B2

]
C :=

[
C1 0

0 C2

]
(6.12b)

We are interested in sufficient conditions under which the closed-loop system (6.12) is

asymptotically stable when the input is zero u ≡ 0.

By Theorem 6.5 the origin of the closed-loop system is asymptotically stable (with

u ≡ 0) if and only if all eigvenvalues of A are in the open LHP, or equivalently all roots

of the characteristic polynomial det(sI −A) = 0 are in the open LHP. As we see from
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(6.12b), directly determining the eigenvalues of the closed-loop system matrix A can be

complicated. The following fundamental result allows us to relate the eigenvalues of the

closed-loop system matrix A to the eigvenvalues of the system matrices Ai of the open-loop

(component) systems and the loop function H1H2. It is proved in Appendix 6.5.

Theorem 6.14 The characteristic polynomial det(sI −A) of the closed-loop system (6.12)

is given by

det(sI −A) = det(sI −A1) · det(sI −A2) · det(I +H1(s)H2(s)) (6.13)

where Hi(s) = Ci(sI −Ai)−1Bi.

This theorem has several important implications. First the left-hand side of (6.13) is

a polynomial in s of degree n1 + n2. On the right-hand side, det(sI −Ai) are polynomials

but det(I +H1(s)H2(s)) are generally rational functions. Therefore any poles of det(I +

H1(s)H2(s)) must be canceled by zeros of det(sI −Ai).
Second the poles of the transfer function Hi(s) = Ci(sI −Ai)−1Bi are in general a

subset of the eigenvalues of Ai (zeros of det(sI −Ai)); see Chapter 6.2.2. If there is an

eigenvalue λ of Ai that is not a pole of Hi(s), the associated eigenvector is then associ-

ated with an uncontrollable and/or unobservable mode of the (open-loop) linear system

(Ai, Bi, Ci); in this case, we say that the system (Ai, Bi, Ci) has a hidden mode at λ. The

system (Ai, Bi, Ci) can be excited along the direction of the eigenvector associated with

the hidden mode λ but the effect on the system state xi(t) will not manifest itself at the

output yi(t). If the realization (Ai, Bi, Ci) is minimal (controllable and observable) then s

is a pole of Hi(s) if and only if it is a eigenvalue of Ai; see Corollary 6.10.

Third the closed-loop system (A,B,C) in (6.12) is asymptotically stable if and only

if the zeros of det(sI −A), or the eigenvalues of the closed-loop system matrix A, are all in

the open left-half plane (LHP). Let λi be the eigenvalues of the closed-loop system matrix

A and λ1j , λ2j be the eigenvalues of the open-loop system matrices A1, A2 respectively.

Then (6.13) can be rewritten as∏
i

(s− λi) =
∏
j

(s− λ1j) ·
∏
j

(s− λ2j) · det(I +H1(s)H2(s))

Hence the closed-loop system (A,B,C) will be asymptotically stable if and only if the ratio-

nal function det(I +H1(s)H2(s)) has no zeros (i.e. roots of its numerator polynomial) in the

closed right-half plane (RHP) and any zeros of the polynomials det(sI −A1) · det(sI −A2)

in the closed RHP are exactly canceled by the poles of det(I +H1(s)H2(s)) (i.e. roots of

its denominator polynomial). In particular if the open-loop systems are asymptotically sta-

ble, i.e., all λ1j , λ2j of A1, A2 are in the open LHP for all j, then the closed-loop system

is asymptotically stable if and only if det(I +H1(s)H2(s)) has no zero (nor pole) in the

closed RHP.
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The Nyquist stability theorem provides a graphical test for this condition. It charac-

terizes the asymptotic stability of the closed-loop system in terms of the eigenvalues of the

open-loop system matrices A1, A2 and properties of the loop function H1(s)H2(s). Let

p0+ := number of closed RHP zeros of the polynomial

det(sI −A1) det(sI −A2), counting multiplicity

If A1, A2 have an eigenvalue at λ1 in the closed RHP with combined (algebraic) multiplicity

of 3 then λ1 contributes 3 to p0+. If both A1 and A2 are open-loop asymptotically stable

then p0+ = 0. From the discussion above, the closed-loop system is asymptotically stable

if and only if det(I +H1(s)H2(s)) has no zero in the closed RHP and exactly p0+ number

of poles in the closed RHP. Define the rational function:

f(s) := det(I +H1(s)H2(s))

In the complex s-plane (s = σ + jω) consider the closed curve D that consists of the imagi-

nary jω-axis and of the right half-circle centered at the origin with arbitrarily large radius.

If the rational function f(s) has a pole on the jω-axis the curve D is indented to the left

by an arbitrarily small half-circle centered at the pole.7 By convention D is a simple (not

self-intersecting) closed curve oriented clockwise; see Figure 6.6(a). Let f(D) denote the

closed oriented curve {f(s), s ∈ D} traced by f(s) as s traverses the curve D clockwise.

Even though D is a simple curve f(D) is not necessarily a simple curve.

We call D a Nyquist path and f(D) the corresponding Nyquist plot.

Theorem 6.15 Nyquist stability criterion. Consider the closed-loop system (A,B,C)

in (6.12).

1. The origin is asymptotically stable if and only if the Nyquist plot f(D) encircles the

origin p0+ times counterclockwise and does not go through the origin.

2. Suppose the component systems are open-loop asymptotically stable (i.e., all eigenval-

ues of Ai, i = 1, 2, are in the open LHP). Then the origin of the closed-loop system is

asymptotically stable if and only if the Nyquist plot f(D) does not encircle the origin

counterclockwise nor does it go through the origin.

We now sketch a proof of Theorem 6.15. The proof relies on the argument principle,

as follows. Consider the complex plane in Figure 6.6.

7By indenting to the left, the closed curve D includes purely imaginary poles of f(s) and
therefore the stability criterion in Theorem 6.15 disallows eigenvalues of the closed-loop system
on the imaginary axis. This guarantees asymptotic stability. If we had indented to the right
instead then the stability criterion allows eigenvalues of the closed-loop system on the imaginary
axis and hence guarantees only stability, not asymptotic stability.
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Figure 6.6: Nyquist path D and the argument principle.
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The argument principle. We are given a closed, oriented, and simple (not self-

intersecting) curve C and a complex-valued function

g(s) :=

∏
i (s− zi)∏
k (s− pk)

where zi and pk are zeros and poles respectively of g with zi 6= pk for all i, k. Let g(s) be

a proper rational function with g(s) finite and nonzero for all s ∈ C (i.e., g(s) has neither

poles nor zeros on C). As s traverses C clockwise, g(s) traverses g(C) and encircles the

origin p− n times counterclockwise, where

p := # of poles of g inside C counting multiplicity

n := # of zeros of g inside C counting multiplicity

Recall that a proper rational function is one where the degree of the numerator poly-

nomial does not exceed the degree of the denominator polynomial, and g(C) := {g(s), s ∈
C}. To see why the argument principle holds, consider the argument of g:

∠g(s) =
∑
i

∠(s− zi) −
∑
k

∠(s− pk)

For any zero zi or pole pi outside of the contour C in Figure 6.6, as s completes a cycle

on C, the net change of ∠(s− zi) or of ∠(s− pk) is zero. On the other hand, for a zero zi
or pole zk inside C, as s completes a cycle on C clockwise, ∠(s− zi) or ∠(s− pk) makes

exactly one cycle clockwise, i.e., zi introduces −2π and pk introduces 2π to the curve g(s)

as it traverses g(C). Hence

# counterclockwise encirclements of the origin by g(C) = p − n

since each 2π change in angle corresonds to a counterclockwise encirclement of the origin.

Proof of Theorem 6.15. Theorem 6.5 implies that the closed-loop system matrix A

is asymptotically stable if and only if all its eigenvalues, i.e., all zeros of det(sI −A),

are in the open LHP. From Theorem 6.14 and the discussion immediately thereafter, the

zeros of det(sI −A) must come from the zeros of f(s) := det(I +H1(s)H2(s)) and those

zeros of the polynomial det(sI −A1) det(sI −A2) that are not canceled by the poles of

det(I +H1(s)H2(s)). In other words A will be asymptotically stable if and only if

• every closed RHP zero of det(sI −A1) det(sI −A2) is canceled by a closed RHP pole

of f(s).

• f(s) has no closed RHP zero.
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The rational function f(s) is proper. Since the curve D is indented to the left by an arbitrar-

ily small half-circle centered at any pole of f(s) on the jω-axis, D contains all closed RHP

poles of f(s). Moreover f(s) remains nonzero (and finite since f is proper) on D. Hence we

can apply the argument principle to conclude that these two conditions are equivalent to

that the number of counterclockwise encirclements of the origin by f(D) is exactly p = p0+
and n = 0.

Before extending the Nyquist stability criterion to the time-delayed system we state

the following simple result which is used in the stability analysis of congestion control

algorithms below.

Lemma 6.16 Let σ(AB) denote the set of nonzero eigenvalues of the product matrix AB.

Then σ(AB) = σ(BA) and hence det(I +AB) = det(I +BA).

Proof. If (λ, v) are eigenvalue and eigenvector of AB with λ 6= 0, then ABv = λv ⇒
BA(Bv) = λBv, and hence (λ,Bv) are eigenvalue and eigenvector of BA. Hence AB and

BA have the same nonzero eigenvalues. The second assertion follows since both determi-

nants equal,
∏
i (1 + λi(AB)) =

∏
i (1 + λi(BA)) where λi(M) denotes the eigenvalues of

matrix M .

The proof of Lemma 6.16 also shows that if (λ, v) are eigenvalue and eigenvector of

AB with λ 6= 0, then v 6= 0 by the definition of eigenvector. Therefore ABv = λv implies

Bv 6= 0. Hence AB and BA no only share nonzero eigenvalues, their nonzero eigenvalues

also have the same geometric multiplicities.8 Lemma 6.16 implies that

f(s) := det(I +H1(s)H2(s)) = det(I +H2(s)H1(s))

in Theorem 6.15, i.e., it does not matter where we “break the loop.”

6.2.5 GENERALIZED NYQUIST STABILITY CRITERION

The application of Theorem 6.15 requires the computation of the Nyquist plot f(jω) :=

det(I +H1(jω)H2(jω)) as ω goes from −∞ to +∞ along the imaginary axis with possible

left indentations. In the absence of delay the transfer functions Hi(s) are rational functions.

With time delay they involve e−τs and are transcendental functions. Instead of checking

the Nyquist plot f(jω), the stability analysis of the closed-loop system in the presence of

feedback delay checks the properties of a certain family of circuits formed from the eigen-

loci of the loop function L(jω) = H1(jω)H2(jω). A rigorous derivation of the generalized

8The algebraic multiplicity of any eigenvalue λ is the power of the factor (s− λ) in the charac-
teristic polynomial. The geometric multiplicity of λ is the dimension of the span of eigenvectors
associated with λ. The geometric multiplicity of any eigenvalue is upper bounded by its alge-
braic multiplicity. The sum of algebraic multiplicities of all eigenvalues of an n× n (complex)
matrix is n.
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Nyquist stability criterion for the time-delayed case is beyond the scope of this book, but

the basic idea is as follows.

Let L(s) denote a loop function. Theorem 6.15 then checks the argument of the

Nyquist plot f(s) as s traverses the Nyquist path D. Since

det(I + L(s)) =
m∏
i=1

(1 + λi(s))

where λi, i = 1, . . . ,m, are the eigenvalues of the loop function L(s) evaluated at s, we have

∠det(I + L(s)) = ∠
m∏
i=1

(1 + λi(s)) =
m∑
i=1

∠(1 + λi(s))

As s travels along the Nyquist path D, we can label the eigenvalues of L(s) such that,

for each i, s→ λi(s) is a continuous function (this is because eigenvalues of a matrix are

continuous functions of the elements of the matrix). This gives m continuous eigenloci

λi(D).

Thus it seems that, instead of counting the number of encirclements of the origin by

det(I + L(s)), we can equivalently sum the number of encirclements of the point (−1, 0) by

λi(D), i = 1, . . . ,m. Unfortunately this does not work because some eigenloci λi(D) may

not form closed paths, as the following example shows.

Example 6.17 Consider the loop function

L(s) :=

[
0 1
s−1
s+1 0

]
with two eigenloci

λ1(jω) =

√
jω − 1

jω + 1
=

j(1− jω)√
1 + ω2

= ej(
π
2−tan

−1 ω)

and

λ2(jω) = −λ1(jω) = −ej(
π
2−tan

−1 ω)

These eigenloci λ1(D) and λ2(D) are shown in Figure 6.7 where the Nyquist path D is the

jω-axis for ω ∈ [−∞,∞]. Consider λ1(jω) and Figure 6.7(a). As ω goes from −∞ to ∞,

λ1(jω) traces out a semicircular arc in the upper half plane from ejπ to ej0 in the clockwise

direction. Similarly the eigenlocus of λ2(D) is the semicircle in the lower half plane as shown

in Figure 6.7(b).

Even though some eigenloci λi(D) may not form closed paths, it can be shown how-

ever that we can always form an indexed family of closed paths (γk(D), k = 1, . . . , p) from
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Figure 6.7: (a) Eigenloci λi(D) may not be a closed curve. (b) We can always form an indexed

family of closed curves (γk, k = 1, . . . , p) from the set of eigenloci (λi, i = 1, . . . ,m).
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the set of eigenloci (λi, i = 1, . . . ,m) that encircle the same points in the complex plane.

For Example 6.17, from Figure 6.7(b), as ω goes from −∞ to +∞, λ1(jω) traces out

the upper semicircle from (−1, 0) to (1, 0) in the clockwise direction while simultaneously

λ2(jω) traces out the lower semicircle in the same direction. Moreover for any choice of

(γk(s), k = 1, . . . , p), the sum of the number of encirclements of −1 is equal to the number

of encirclements of the origin by f(D) = det(I + L(D)). We summarize this discussion as

a theorem (c.f. Theorem 6.15).

Theorem 6.18 Suppose the loop function L is proper. Construct an indexed family of closed

paths (γk(s), k = 1, . . . , p) from the eigenloci (λi(s), i = 1, . . . ,m) of the loop function L as

described above. The closed-loop system (A,B,C) in (6.12) is asymptotically stable if and

only if (γk(s), k = 1, . . . , p) does not go through −1 on the real line and encircles −1 on the

real line p0+ times counterclockwise, as s traverses the Nyquist path D.

Hence we can test closed-loop stability by checking the number of encirclements of −1 by

any such family of closed curves (γk(s), k = 1, . . . , p). Even though our discussion assumes

a proper rational loop function L, Theorem 6.18 holds for more general proper functions,

e.g., for systems involving delay or trigonometric functions.

For our purposes we only need a corollary of Theorem 6.18.

Corollary 6.19 Suppose

• The loop function L is proper.

• The open-loop systems are all asymptotically stable, i.e. the eigenvalues of Ai are all

in the open LHP.

If all eigenloci of the loop function L(s) stay entirely to the right of (and do not pass through)

−1 on the real line, as s traverses the Nyquist path D, then the origin of the closed-loop

system is asymptotically stable.

In applying the corollary it is sufficient to check the Nyquist plot of eigenloci of L(s) as s

traverses [0,∞) or (−∞, 0] instead of the complete Nyquist path D.

6.2.6 UNITY FEEDBACK SYSTEMS

When we study the primal or dual algorithm, there is dynamics in either sources or links

but not both. As we will see in Sections 6.3 and 6.4 these algorithms can be modeled by the

unity feedback system in Figure 6.8. The Nyquist stability criterion simplifies in this case

because the loop function L(s) = H1(s)H2(s) becomes L(s) = H(s) for a unity feedback

system, as we now explain.
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–%
+%% H yu

      y(s) = −H (s)y(s)+H (s)u(s)

⇒   y(s) = I +H (s)( )−1H (s) u(s)

Figure 6.8: Unity feedback system.
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Let Acl denote the system matrix of the closed-loop system in Figure 6.8. Let

(Aol, Bol, Col) be a realization of the open-loop transfer function H(s). Theorem 6.14 re-

duces to: the characteristic polynomial det(sI −Acl) of the closed-loop system is given by

(see Exercise 6.6):

det(sI −Acl) = det(sI −Aol) · det(I +H(s)) (6.14)

Hence, for unity feedback system, Theorems 6.14 and 6.15 on Nyquist stability for systems

without feedback delay, as well as Theorem 6.18 and Corollary 6.19 for delayed systems

hold with the loop function L(s) = H(s).

Moreover the discussion preceding Corollary 6.10 establishes that: if (Aol, Bol, Col) is

minimal then

{eigenvalues of Aol} = {poles of H(s)}

This implies that, for a minimal realization, every eigenvalue of Aol on the right-hand side

of (6.14) is canceled by exactly one pole of H(s). In particular the closed paths γk(s) from

the eigenloci of the loop function L(s) will always encircle −1 on the real axis p0+ times

counterclockwise as s traverses the Nyquist path D.

Example 6.20 Unity feedback system. Consider the delayed system

ẋ = u(t− τ), y(t) = x(t)

with the transfer function H(s) = e−τs/s. The unity feedback system in Figure 6.8 is the

following

ẋ = −x(t− τ) (6.15)

We now use Theorem 6.18 to show the stability of the closed-loop system (6.15) provided

the delay τ < π/2.

Since the loop function

L(s) = H(s) =
e−τs

s

has a pole at the origin, the number p0+ of poles in the closed RHP is 1. Consider the Nyquist

path D shown in Figure 6.9(a) that has a left indentation s =
(
ε e−jθ, θ ∈ [π/2, 3π/2]

)
around the origin for an arbitrarily small ε > 0. By Theorem 6.18 the closed-loop system

(6.15) is asymptotically stable if L(s) does not go through −1 on the real line and encircles

−1 on the real line once in the counterclockwise direction as s traverses the Nyquist path

D. We now show that the Nyquist plot (L(s), s ∈ D) is as shown in Figure 6.9(b). For
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(a) Nyquist path D
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(b) Nyquist plot L(s), s ∈ D

Figure 6.9: (a) Nyquist path D that indents left at the origin. The indentation is the path

(εe−jθ, θ ∈ [π/2, 3π/2]) for an arbitrarily small ε > 0. (b) The corresponding Nyquist plot

(L(s) = 1
se
−τs, s ∈ D). The plot L(s) on the indentation s = (εe−jθ, θ ∈ [π/2, 3π/2]) is the black

curve with a counterclockwise orientation.
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ω ∈ [ε,∞] we have

L(jω) = τ
e−jτω

jτω
= τ

e−jω
′

jω′
= −τ

(
sinω′

ω′
+ j

cosω′

ω′

)
, ω′ ∈ [ε,∞] (6.16)

where ω′ := τω. Hence the Nyquist plot L(jω) for ω ∈ [ε,∞] is the blue curve in Figure

6.9(b). Similarly L(jω) for ω ∈ [−∞,−ε] is the orange curve in Figure 6.9(b). For the left

indentation s =
(
ε e−jθ, θ ∈ [π/2, 3π/2]

)
around the origin, the Nyquist plot is

L(s) =
e−τεe

−jθ

εe−jθ
≈ ejθ

ε
for small ε > 0

as θ goes from π/2 to 3π/2. Hence L(s) is the black curve in Figure 6.9(b) oriented coun-

terclockwise. Therefore the stability condition in Theorem 6.18 is satisfied if and only if

the blue segment of L(jω) in (6.16) crosses the real axis (strictly) to the left of −1. At this

crossing, cos(τω) = 0, giving τω = π/2. Hence the blue curve crosses the real axis at

−sin τω

ω
= −2τ

π

Therefore the closed-loop system is asymptotically stable if and only if τ < π/2.

We now use Theorem 6.18 and Corollary 6.19 to study the linear stability of conges-

tion control algorithms in the presence of feedback delay.

6.3 STABILITY OF PRIMAL ALGORITHMS

Consider the following primal algorithm:

ẋi(t) = κi(U
′
i(xi(t))− qi(t))+xi(t), pl(t) = gl(yl(t))

qi(t) =
∑
l

Rlipl(t− τ bli), yl(t) =
∑
i

Rlixi(t− τfli)

where κi > 0, the utility functions Ui are strictly concave with U ′′i (xi) < 0 for all xi ≥ 0,

U ′i are the first derivatives of Ui, and gl are nonnegative and strictly decreasing. Here τ bli
represents the backward delay from link l to source i while τfli represents the forward delay

from source i to link l; both can depend on the pair (l, i). Let (x∗, p∗) be an equilibrium.

Without loss of generality we assume x∗i > 0, p∗l > 0 for all i, l; otherwise we remove the

zero entries from consideration in the linearized model below. Linearizing around (x∗, p∗)

and using x̃ := x− x∗, p̃ := p− p∗, etc, we obtain the following linear delayed model in the
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Laplace domain:9

sx̃i = κiU
′′
i (x∗i )x̃i − κiq̃i, p̃l = g′l(y

∗
l )ỹl

q̃i =
∑
l

Rlie
−τblisp̃l, ỹl =

∑
i

Rlie
−τflisx̃i

where U ′′i are the second derivatives of Ui. This can be written compactly in matrix form

by defining the forward (routing) matrix Rf (s) and backward matrix Rb(s) in the Laplace

domain where [
Rf (s)

]
li

:= Rlie
−sτfli ,

[
Rb(s)

]
li

:= Rlie
−sτbli (6.17)

Then the linearized system is, in Laplace domain:

sx̃ = KU ′′x̃−Kq̃, p̃ = Gỹ (6.18a)

q̃ =
(
Rb(s)

)T
p̃, ỹ = Rf (s)x̃ (6.18b)

where K :=diag(κi, i ∈ N) � 0, U ′′ := diag(U ′′i (x∗i ), i ∈ N) ≺ 0 and G := diag(g′l(y
∗
l ), l ∈

L) � 0. This is represented as a feedback system in Figure 6.10(a). Note that H(s) 6=
−(sI −KU ′′)−1K because the input to H is −q̃, not q̃.

Assume:

C6.1: All utility functions Ui are strictly concave with U ′′i (xi) < 0 for all xi ≥ 0 and

the routing matrix R has full row rank.

C6.2: For all sources i, τfli + τ bli = τi for all links l in i’s path.

Condition C6.1 implies that the equilibrium (x∗, p∗) exists and is unique. Condition C6.2

says that the forward delay from a source i to any links l in its path plus the backward

delay from that link back to the source is equal to the round-trip delay τi of source i. It is

a reasonable assumption if all packets of each source i follow the same round-trip path. We

further assume τi are constants. The main implication of Condition C6.2 is the following

relationship between the forward and backward matrix:

Rb(s) = Rf (−s)diag
(
e−τis

)
(6.19)

Let N := maxl
∑
iRli be an upper bound on the number of sources through any link

and L := maxi
∑
lRli be an upper bound on the number of links used by any source.

Theorem 6.21 Assume conditions C6.1 and C6.2 hold. The origin of the linearized primal

algorithm (6.18) is asymptotically stable if

max
i

τiκi · max
l

g′l(y
∗
l ) ≤ π

2N L

9We abuse notation to use x̃ to denote both the time function x̃(t) and its Laplace transform
x̃(s). The meaning should be clear from the context.
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!y
–$

!p =G!y
!q

R f (s)

!p
Rb(s)( )

T

!x
s!x = KU '' !x  −  K !q

− !q

H (s) = (sI −KU '')−1K

(a) Primal algorithm

–$
+$$ L̂(s) = Ĥ (s) yu

(b) Equivalent system

Figure 6.10: (a) Delayed linear feedback system representing the primal algorithm

(6.18). (b) Equivalent unity feedback system with loop function L̂(s) = Ĥ(s) :=

R̂(jω) diag
(
π
2
e−jτiω

jτiω+αi

)
R̂H(jω).



6.3. STABILITY OF PRIMAL ALGORITHMS 185

An upper bound on τiκi means that to maintain stability the source control gain κi should

be small if the round-trip time τi is large. An upper bound on g′l(y
∗
l ) means that the

congestion price p∗l = gl(y
∗
l ) at a link should not be too sensitive to its input rate y∗l in

equilibrium. The bounds N,L in the stability condition are conservative. The proof of the

theorem suggests how to modify the algorithm in (6.18) to remove these bounds (see the

dual algorithm in the next subsection).

We will apply Corollary 6.19 to prove Theorem 6.21. The loop transfer function of

(6.18) from p̃ to p̃ is (see Figure 6.10):

L(s) = GRf (s) (sI −KU ′′)−1K
(
Rb(s)

)T
(6.20)

Substituting (6.19) into (6.20), the loop transfer function becomes

L(s) = GRf (s) (sI −KU ′′)−1K diag
(
e−τis

) (
Rf (−s)

)T
= diag (g′l)R

f (s) diag

(
κi e
−τis

s− κi U ′′i

)(
Rf (−s)

)T
Since all matrices in L(s) except Rf (s) are diagonal we have

L(s) = diag (g′l)R
f (s) diag

(√
2

π
τiκi

)
diag

(
π

2

e−τis

τis+ αi

)
diag

(√
2

π
τiκi

)(
Rf (−s)

)T
(6.21)

where αi := −τiκi U ′′i (x∗i ) > 0. For any matrix M let (σ(M(jω)), jω ∈ D) denote the eigen-

loci ofM that are not identically zero as s traverses the Nyquist pathD. Lemma 6.16 implies

that we can change the order of some component matrices in L in (6.21) as far as nonzero

eigenloci are concerned. Hence

σ(L(jω)) = σ
(
L̂(jω)

)
(6.22a)

where

L̂(jω) = R̂(jω) diag

(
π

2

e−jτiω

jτiω + αi

)
R̂H(jω) (6.22b)

R̂(jω) := diag

(√
g′l

)
Rf (jω) diag

(√
2

π
τiκi

)
(6.22c)

and R̂H(jω) = R̂T (−jω) is the Hermitian transpose. This means that the (nonzero) eigen-

loci of the loop function L(jω) coincide with those of L̂(jω). Moreover we can treat L̂(jω)

as the loop function of a unity feedback system (see Chapter 6.2.6). This is illustrated
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in Figure 6.10(b). For this equivalent unity feedback system, the corresponding open-loop

transfer function is Ĥ(s) = L̂(s). From (6.22b)(6.22c) the poles of Ĥ(s) are −αi/τi < 0, i.e.

all of them are in the open LHP and p0+ = 0. By Corollary 6.19 the closed-loop system is

asymptotically stable if and only if the eigenloci of L(jω), or equivalently L̂(jω), neither

pass through nor encircle −1 in the complex plane as ω traverses the Nyquist path from 0

to +∞.

To bound the eigenloci in (6.22) as ω goes from 0 to +∞, we will use the following

property.

Lemma 6.22 Let D := diag(di, i = 1, . . . , n) ∈ Cn×n be a complex diagonal matrix and

A ∈ Cm×n be any nonzero complex matrix. Then

σ
(
ADAH

)
⊆ ρ

(
AAH

)
· co (0, di, i = 1, . . . , n)

where ρ
(
AAH

)
is the spectral radius of AAH and co(ak) is the convex hull of points ak.

Proof. Let (λ, v) be an eigenvalue and eigenvector pair of ADAH such that ‖v‖2 = 1. Then

ADAHv = λ v ⇒ λ = vHADAHv =
∑
i

di |v̂i|2 (6.23)

where v̂ := AHv. If v 6= 0 is in the null space of AH then v̂ is the zero vector and λ = 0. In

any case

‖v̂‖22 = vHAAHv ≤ ρ
(
AAH

)
· ‖v‖22 = ρ

(
AAH

)
(6.24)

since AAH is a Hermitian positive semidefinite matrix. Hence from (6.23) we have

λ = ρ
(
AAH

)∑
i

|v̂i|2

ρ (AAH)
di = ρ

(
AAH

)(∑
i

|v̂i|2

ρ (AAH)
di +

(
1− ‖v̂‖22

ρ (AAH)

)
· 0

)
The lemma then follows from (6.24).

Proof of Theorem 6.21. The closed loop system is asymptotically stable if and only if

the eigenloci in (6.22) neither pass through nor encircle the critical point −1 in the complex

plane. We now use Lemma 6.22 to bound the eigenloci (strictly) to the right of −1.

From Lemma 6.22

σ

(
R̂(jω) diag

(
π

2

e−τis

τis+ αi

)
R̂H(jω)

)
⊆ ρ

(
R̂(jω)R̂H(jω)

)
· co

(
0,
π

2

e−τis

τis+ αi

)
We examine each term on the right-hand side in turn.

Observe the sets of eigenloci in the last term satisfy:{
π

2

e−jτiω

jτiω + αi
, ω ∈ [0,+∞]

}
=

{
π

2

e−jω

jω + αi
, ω ∈ [0,+∞]

}
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Figure 6.11: The Nyquist plots
{
π
2
e−jω

jω+αi
, ω ∈ [0,+∞]

}
for αi = 0, 0.5, 1 in the complex plane.

They cross the real axis to the right of −1 as long as αi > 0. When α = 0, see Figure 6.9 in

Example 6.20 for the complete Nyquist plot.
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The set on the right-hand side is shown in Figure 6.11. These sets cross the real axis

(strictly) to the right of −1 on the complex plane for any αi > 0.

Hence we only need to check that ρ
(
R̂(jω)R̂H(jω)

)
≤ 1 under the condition of The-

orem 6.21. For any matrix A, ρ(A) ≤ ‖A‖ for any induced matrix norm. Using the ‖ · ‖∞
norm (maximum absolute row sum), (6.22c), and Lemma 6.16, we have

ρ
(
R̂(jω)R̂H(jω)

)
= ρ

(
diag (g′l)R

f (jω) diag

(
2

π
τiκi

)(
Rf (−jω)

)T)
≤

∥∥∥∥diag (g′l)R
f (jω) diag

(
2

π
τiκi

)(
Rf (−jω)

)T∥∥∥∥
∞

≤
∥∥diag (g′l)R

f (jω)
∥∥
∞ ·
∥∥∥∥diag

(
2

π
τiκi

)(
Rf (−jω)

)T∥∥∥∥
∞

≤ max
l

∑
i

∣∣∣g′l Rli e−jτfliω∣∣∣ · max
i

∑
l

∣∣∣∣ 2πτiκiRli ejτfliω
∣∣∣∣

=
2

π
· max

l
g′l
∑
i

Rli · max
i

τiκi
∑
l

Rli

≤ 2N L

π
· max

l
g′l · max

i
τiκi

Hence the condition in the theorem guarantees ρ
(
R̂(jω)R̂H(jω)

)
≤ 1.

6.4 STABILITY OF DUAL ALGORITHMS

Consider the dual algorithm

xi(t) = U
′−1
i (qi(t)), ṗl = γl(yl(t)− cl)+pl(t)

qi(t) =
∑
l

Rlipl(t− τ bli), yl(t) =
∑
i

Rlixi(t− τfli)

where γl > 0 and U
′−1
i are nonnegative and strictly decreasing. Let (x∗, p∗) be an equilib-

rium and assume without loss of generality that (x∗, p∗) > 0. Using x̃ := x− x∗, p̃ := p− p∗,
etc, the linearized system around (x∗, p∗) is, in the Laplace domain,

x̃i =
1

U
′′
i (x∗i )

q̃i, sp̃l = γlỹl

q̃i =
∑
l

Rlie
−τblisp̃l, ỹl =

∑
i

Rlie
−τflisx̃i
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As for the primal algorithm we use the delayed routing matrix Rf (s) and Rb(s) in (6.17)

to write the dual algorithm compactly in matrix form:

x̃ = diag

(
1

U
′′
i (x∗i )

)
q̃, p̃ =

1

s
Γ ỹ (6.25a)

q̃ =
(
Rb(s)

)T
p̃, ỹ = Rf (s) x̃ (6.25b)

where Γ :=diag(γl, l ∈ L) � 0. This is represented as a feedback system in Figure 6.12 (note

the minus sign in H(s) := −Γ/s because of the negative feedback).

− !y

!y

!q

R f (s)

!p

!x
!x = diag (Ui '')

−1( ) !q

–$
Rb(s)( )

T
s!p = Γ!y

H (s) = −1
s
Γ

Figure 6.12: Delayed linear system representing the dual algorithm (6.25).

The loop transfer function from ỹ to ỹ is:

L(s) = Rf (s) diag

(
1

U ′′i (x∗)

)
(Rb(s))T

−Γ

s

Under condition C6.2 we can again relate the forward and backward routing matrix:

Rb(s) = Rf (−s) diag
(
e−τis

)
Substituting into L, the loop transfer function becomes

L(s) = Rf (s) diag

(
1

−U ′′i (x∗)

)
diag

(
e−τis

s

)
(Rf (−s))T Γ

Applying Lemma 6.22 we have

σ(L(s)) = σ(L̂(s)) (6.26a)
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where

L̂(s) = R̂(s) diag

(
π

2

e−τis

τis

)
R̂H(s) (6.26b)

R̂(s) := diag(
√
γl)R

f (s) diag

(√
2

π

τi
−U ′′i (x∗)

)
(6.26c)

The set of eigenloci here has the same structure as that in (6.22).

As for the primal algorithm we can treat L̂(s) as the loop function of a unity feedback

system as shown in Figure 6.10(b) with L̂(s) given by (6.26b). For this equivalent unity

feedback system the open-loop transfer function is Ĥ(s) = L̂(s). From Lemma 6.22 we have

σ

(
R̂(s) diag

(
π

2

eτis

τis

)
R̂H(s)

)
⊆ ρ

(
R̂(s)R̂H(s)

)
· co

(
0,
π

2

eτis

τis

)
Since it is a unity feedback system, the closed paths obtained from the eigenloci of the loop

function L(s) will encircle −1 on the real axis p0+ times as s traverses the Nyquist path D

with left indentations at the origin; see Chapter 6.2.6. Example 6.20 there also shows that

the closed-loop system is asymptotically stable if

ρ
(
R̂(jω)R̂H(jω)

)
< 1 (6.27)

Then the eigenloci of the loop function L(jω) stays entirely to the right of −1 on the real

axis as ω traverse the imaginary axis from 0 to ∞ (see Corollary 6.10).

The condition (6.27) can be enforced by constraining algorithm parameters γl, U
′′
i (x∗)

based on feedback delays τi. For the primal algorithm considered in Theorem 6.21, the

(sufficient) stability condition imposes upper bounds on source control gain κi and link

price sensitivity g′l(y
∗
l ). These bounds become tighter as delay τi increase. Moreover the

condition involves bounds N,L that are likely to be conservative. To address these issues

we now specialize to a dual algorithm for which the linearized closed-loop system remains

asymptotically stable for arbitrary feedback delay and network topology. In other words

the utility functions Ui are carefully chosen to obtain asymptotic stability that is scalable

to arbitrary delay and link capacity.

Consider the utility functions

Ui(xi) =
Miτi
αi

xi

(
1− log

(
xi
xi

))
, x ≤ xi (6.28a)

where τi is the round-trip time of source i, Mi is an upper bound on the maximum number

of (bottleneck) links in the path of source i, αi > 0 is a design parameter, and xi is the

peak rate for source i. Scale the price function by the link capacity cl:

ṗl =
1

cl
(yl(t)− cl)+pl(t) (6.28b)
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This price function can be implemented by having the source algorithm reacts to queueing

delay as TCP Vegas and FAST do; see Chapter 1.3. Then the stability parameters in (6.26)

are

U
′′

i (x∗i ) = −Miτi
x∗iαi

and γl =
1

cl
(6.29)

Theorem 6.23 Suppose conditions C6.1 and C6.2 hold. The origin of the linearized dual

algorithm (6.25) with utility functions and link capacity scaling (6.28) is asymptotically

stable as long as

max
i

αi <
π

2

Proof. As discussed above the theorem is proved if we can establish (6.27). Substitute

(6.26c) into the left-hand side of (6.27) we have (again using Lemma 6.16)

ρ
(
R̂(jω)R̂H(jω)

)
= ρ

(
diag(γl)R

f (jω) diag

(
2

π

τi
U ′′i (x∗)

)(
Rf (−jω)

)T)
= ρ

(
diag

(
1

cl

)
Rf (jω) diag

(
− 2

π

x∗iαi
Mi

)(
Rf (−jω)

)T)
= ρ

(
diag

(
1

cl

)
Rf (jω)diag (x∗i ) · diag

(
−2αi

π

)
· diag

(
1

Mi

)(
Rf (−jω)

)T)
where the last second equality follows from (6.29). Since the spectral radius of a matrix is

no larger than any induced matrix norm, we use ‖ · ‖∞ (the maximum absolute row sum)

to get

ρ
(
R̂(jω)R̂H(jω)

)
≤

∥∥∥∥diag

(
1

cl

)
Rf (jω) diag (x∗i )

∥∥∥∥
∞
·
∥∥∥∥diag

(
−2αi

π

)∥∥∥∥
∞
·
∥∥∥∥diag

(
1

Mi

)(
Rf (−jω)

)T∥∥∥∥
∞

Notice ∥∥∥∥diag

(
1

cl

)
Rf (jω) diag (x∗i )

∥∥∥∥
∞

= max
l

1

cl

∑
i

∣∣∣Rli e−jτfliω x∗i ∣∣∣ ≤ 1∥∥∥∥diag

(
1

Mi

)(
Rf (−jω)

)T∥∥∥∥
∞

= max
i

1

Mi

∑
l

∣∣∣Rli ejτfliω∣∣∣ ≤ 1∥∥∥∥diag

(
−2αi

π

)∥∥∥∥
∞

= max
i

2αi
π

< 1

Hence ρ
(
R̂(jω)R̂H(jω)

)
< 1 and the proof is complete.



192 6. LOCAL STABILITY WITH DELAY

6.5 APPENDIX: PROOF OF THEOREM 6.14

Factorize the system matrix A in (6.12b) of the closed-loop system into:[
sI −A1 B1C2

−B2C1 sI −A2

]
=

[
sI −A1 0

0 sI −A2

] [
I (sI −A1)−1B1C2

−(sI −A2)−1B2C1 I

]
Apply the Schur’s determinant identity (proved below)

det

[
A B

C D

]
= detD · det(A−BD−1C) (6.30)

to obtain

det(sI −A)

= det(sI −A1) · det(sI −A2) · det
(
I + (sI −A1)−1B1C2(sI −A2)−1B2C1

)
From Lemma 6.16 we therefore have

det(sI −A)

= det(sI −A1) · det(sI −A2) · det
(
I + C1(sI −A1)−1B1C2(sI −A2)−1B2

)
= det(sI −A1) · det(sI −A2) · det (I + H1(s)H2(s))

We are left to derive the Schur’s determinant identity (6.30). Perform two successive

block Gaussian eliminations to eliminate the off-diagonal blocks:[
A B

C D

] [
I 0

−D−1C I

]
=

[
A−BD−1C B

0 D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

]
Hence we have [

A B

C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
from which (6.30) follows. This completes the proof of Theorem 6.14.

6.6 BIBLIOGRAPHICAL NOTES

The control theory of multi-input-multi-output (MIMO) systems is much subtler than that

of single-input-single-output (SISO) systems, and we have only presented a minimal set of

results that are needed to analyze local stability of TCP congestion control algorithms in

the presence of feedback delay. See, e.g. [13, 18, 38] for a detailed exposition. When A is

diagonalizable, the eigenvector dyadic expansion of A leads to a transparent structure of

the transfer function matrix and its poles, as explained in Lemma 6.11 and Theorem 6.12,

both taken from [13, Chapter 3.3]. Theorems 6.14 and 6.15 are taken from [13, Chapter

11]. Theorem 6.18 is proved in [19]. Even though our discussion assumes a proper rational

loop function L, Theorem 6.18 extends to more general proper functions, e.g., for systems

involving delay or trigonometric functions; see [19, Section III]. The dual algorithm in

Theorem 6.23 is proposed and analyzed in [40].
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6.7 PROBLEMS

Exercise 6.1. Consider the single-input single-output LTI system in Example 6.2 specified

by the transfer function:

H(s) :=
y(s)

u(s)
=

s− 1

(s+ 1)(s+ 2)

Consider realizations (A,B,C) with n = 2 states:

A :=

[
a11 a12
a21 a22

]
, B :=

[
b1
b2

]
, C :=

[
c1 c2

]
Suppose we restrict B = [1 0]T . Show that all realizations (A,B,C) are controllable.

Exercise 6.2. Consider the single-input single-output LTI system in Exercise 6.1. Suppose

we restrict C = [1 0]. Show that all realizations (A,B,C) are observable.

Exercise 6.3. The transfer function in Exercise 6.1 is strictly proper and is realized in

Example 6.3 by a different implementation:

ẋ1 = −x1(t)− 2u(t)

ẋ2 = −2x2(t) + 3u(t)

y(t) = x1(t) + x2(t)

Is this realization controllable? Observable?

Exercise 6.4. Consider the second transfer function in Example 6.3:

H(s) =
c(s− b1)(s− b2)

(s− a1)(s− a2)

where ai 6= bj , i.e., the numerator and the denominator are co-prime. This transfer function

is proper but not strictly proper. Is the following realization in Example 6.3

A :=


a1 0 0 0

0 a2 0 0

0 0 0 1

0 0 −a1a2 a1 + a2

 , B :=


∆1

∆2

0

∆1∆2

 , CT :=


c

c

c

0

 , D := c

controllable? Observable?

Exercise 6.5. Design a state-space realization of the MIMO transfer function in Example

6.4.
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Exercise 6.6. Consider the unity feedback system in Figure 6.8 with the open-loop transfer

function H(s) = Col(sI −Aol)−1Bol. Show that the characteristic polynomial of the system

matrix Acl of the closed-loop system satisfies:

det(sI −Acl) = det(sI −Aol) · det (I +H(s))

This implies that the Nyquist stability results (Theorems 6.14, 6.15, 6.18 and Corollary

6.19) hold with the loop function L(s) = H(s) for unity feedback systems.

Exercise 6.7. Consider the feedback connection in Figure 6.13 and let the component

y1
–%
+%%u1 H1

H2 u2+%
+%%

y2

e1

e2

Figure 6.13: Feedback connection.

systems be

ẋi = Aixi +Biei, yi = Cixi, i = 1, 2

where xi ∈ Rni , ei ∈ Rmi , y1 ∈ Rm2 , y2 ∈ Rm1 , Ai ∈ Rni×ni , B1 ∈ Rn1×m1 , B2 ∈ Rn2×m2 ,

C1 ∈ Rm2×n1 , and C2 ∈ Rm1×n2 . The external inputs ui are thus in Rmi . The transfer

functions of the component systems are

Hi(s) = Ci(sI −Ai)−1Bi, i = 1, 2

The state of the closed-loop system is x := [xT1 xT2 ]T ∈ Rn1+n2 , input is u := [uT1 uT2 ]T ∈
Rm1+m2 , and output is y := [yT1 yT2 ]T ∈ Rm1+m2 . Show that the closed-loop system is also

LTI, described by

ẋ = Ax(t) +Bu(t), y = Cx(t)

where

A :=

[
A1 −B1C2

B2C1 A2

]
B :=

[
B1 0

0 B2

]
C :=

[
C1 0

0 C2

]
Exercise 6.8 ([49]). Let P = P ∗ � 0 and Λ = diag(λi) be n× n matrices. Then the set

of eigenvalues σ(PΛ) ⊆ ρ(P ) · co{0, λi} where ρ(P ) is the spectral radius of P and coA is

the convex full of set A.
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Exercise 6.9 ([49]). Consider the following primal algorithm

ẋi(t) = κi(wi − xi(t− τi)qi(t)), pl(t) = gl(yl(t)) (6.31a)

qi(t) =
∑
l

Rlipl(t− τ bli), yl(t) =
∑
i

Rlixi(t− τfli) (6.31b)

Derive sufficient condition for linearized stability. (Hint: The difference between this primal

algorithm and that in the chapter is the product xi(t− τi)qi(t). Consider the variable

zi(t) := xi(t− τi)qi(t).)

Exercise 6.10. Is the linear model of the dual algorithm (6.25) a minimal realization,

assuming time delays are zero?

Exercise 6.11. Consider the following system

ẋ1(t) = y1(t)− y2(t− τ12)− u1(t)

ẋ2(t) = y2(t)− y1(t− τ21)− u2(t)

ẏi(t) = γixi(t), i = 1, 2

where τ12 > 0, τ21 > 0, γi > 0.

1. Prove that we can choose γi so that the closed-loop system with zero input ui(t) ≡ 0

is stable, but not asymptotically stable.

2. Design state feedback ui(t) = u(xi(t)) so that, with appropriate choice of γi, the

closed-loop system is asymptotically stable. (Hint: Try ui(xi) = aixi for some ai > 0.)
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discontinuous Carathéodory systems. Automatica, 42:453–458, 2006.

[7] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

[8] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computation.

Prentice-Hall, 1989.

[9] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. On the efficiency-fairness

trade-off. Journal of Management Science, 58(2):2234–2250, 2012.

[10] T. Bonald and L. Massoulie. Impact of fairness on Internet performance. In Proceedings

of ACM Sigmetrics, pages 82–91, June 2001.

[11] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

[12] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end-to-end congestion

avoidance on a global Internet. IEEE Journal on Selected Areas in Communications,

13(8):1465–80, October 1995. http://cs.princeton.edu/nsg/papers/jsac-vegas.

ps.



6.7. PROBLEMS 197

[13] Frank M. Callier and Charles A. Desoer. Linear System Theory. Springer-Verlag,

1991.

[14] V. G. Cerf and R. E. Kahn. A protocol for network intercommunication. IEEE

Transactions on Communications, 22(5), May 1974.

[15] Ashish Cherukuri, Enrique Mallada, and Jorge Cortés. Asymptotic convergence of

constrained primal-dual dynamics. Systems and Control Letters, 2016.

[16] Douglas E. Comer. Internetworking with TCP/IP, I: principles, protocol, and archi-

tecture. Pearson, 6 edition, 2013.

[17] Jorge Cortés. Discontinuous dynamical systems: a tutorial on solutions, nonsmooth

analysis, and stability. IEEE Control Systems Magazine, 28(3):36–73, 2008.

[18] Mohammed Dahleh, Munther A. Dahleh, and George Verghese. Lectures on dynamic

systems and control. Lecture notes for MIT OpenCourseWare, 2011.

[19] C. A. Desoer and Y. T. Wang. On the generalized Nyquist stability criterion. IEEE

Trans. on Automatic Control, 25(2):187–196, April 1980.

[20] P. Dupuis and A. Nagurney. Dynamical systems and variational inequalities. Annals

of Operations Research, 44:9–42, 1993.

[21] D. Feijer and F. Paganini. Stability of primal-dual gradient dynamics and applications

to network optimization. Automatica, 46(12):1974–1981, 2010.

[22] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. on Networking, 1(4):397–413, August 1993. ftp://ftp.ee.lbl.

gov/papers/early.ps.gz.

[23] William S. Hall and Martin L. Newall. The mean value theorem for vector-valued

functions: a simple proof. Mathematics Magazine, 52:157–158, 1979.

[24] Juha Heinonen. Lectures on Lipschitz analysis. Technical report, University of
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