

Adaptive Charging Network

Prof Steven Low, Netlab

Opportunity

CA 2025 goal

- 1.5 million zero emission cars
 Painpoint
- Overcrowding, EV shuffling nightmare

Adaptive charging network (ACN) values

- Provide target charging capacity at smaller infrastructure and operating costs (30%-60%)
- Provide ancillary energy services

Technology

Network of adaptive EV chargers

Real-time sensing, communication, optimization

Scalable scheduling algorithms

- Optimally meet user energy demands
- ... without exceeding infrastructure capacity

Management software

- Real-time optimization and control
- Mobile app, monitoring, alert

$\text{LP}(t): \quad \min_{r \geq 0} \quad C_t(r)$ s. t. $r_i(\tau) \leq \overline{r_i}(\tau), \qquad \tau \geq t$ $\sum_{\tau = t}^{T-1} r_i(\tau) \delta = e_i(t)$ $\sum_{\tau = t} r_i(\tau) \leq P(\tau), \qquad \tau \geq t$

Online LP algorithm

Suppose costs are uniformly monotone:

$$C(r) := \sum_{t} c_t \sum_{t} r_{it}$$
 with c_t increasing in t

Theorem

Online LP attains offline optimal

Performance

Deployment

