
Congestion Control & Optimization

Steven Low

netlab.CALTECH.edu
Cambridge 2011

Acknowledgments

Caltech: L. Chen, J. Doyle, C. Jin, G.
Lee, H. Newman, A. Tang, D. Wei, B.
Wydrowski, Netlab Gen1

Uruguay: F. Paganini

Swinburne: L. Andrew

Princeton: M. Chiang

Goal of tutorial

Top-down summary of congestion
control on Internet

Introduction to mathematical models
of congestion control

Illustration of theory-guided CC
algorithm design

Tight integration of theory, design, experiment

◼ Analysis done at design time, not after

Theory does not replace intuitions or heuristics

◼ Refines, validates/invalidates them

Theory provides structure and clarity

◼ Guides design

◼ Suggests ideas and experiments

◼ Explores boundaries that are hard to experiment

Theory-guided design

Theory-guided design

Integration of theory, design, experiment
can be very powerful
◼ Each needs the other

◼ Combination much more than sum

Tremendous progress in the last decade
◼ Not as impossible as most feared

◼ Very difficult; but worth the effort

◼ Most critical: mindset

How to push theory-guided design
approach further ?

Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch

Audience background

Know TCP/IP protocols?

Know congestion control?

Experiment with ns2? Linux kernel?

Know optimization theory? Control
theory?

Know network utility maximization?

CONGESTION CONTROL
PROTOCOLS

Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)

October 1986, the first congestion collapse on the
Internet was detected

Link between UC Berkeley and LBL
◼ 400 yards, 3 hops, 32 Kbps

◼ throughput dropped to 40 bps

◼ factor of ~1000 drop!

1988, Van Jacobson proposed TCP congestion
control

WHY ?

Congestion collapse

throughput

load

1969 1974

ARPANet

1988

TCP

200681

TCP/IP

50-56kbps, ARPANet

Backbone speed:

T1

NSFNet

1991

T3, NSFNet

1996 1999

OC12

MCI
OC48

vBNS

2003

OC192

Abilene

HTTPTahoe

Network is exploding

83

Cutover
to TCP/IP

Network milestones

1969

ARPANet

Application milestones

1988

TCP

81

TCP/IP

50-56kbps, ARPANet

T1

NSFNet

OC12

MCI

T3, NSFNet

OC48

vBNS

OC192

Abilene

HTTPTahoe

83

Cutover
to TCP/IP

1969 1972 1988

Tahoe

1971

ARPANet

Network
Mail

1973

File
Transfer

Telnet

Simple applications

1993 20051995

Internet
Phone

Whitehouse
online

Internet
Talk

Radio

Diverse & demanding applications

1990

Napster
music

2004

AT&T
VoIP

iTunes
video

YouTube

Network Mail (1971)
First Internet (ARPANet) application

The first network email was sent by Ray Tomlinson between these two

computers at BBN that are connected by the ARPANet.

Internet applications (2006)

Telephony Music TV & home theatre

Cloud computing

Finding your way

Mail Friends

Library at your finger tip Games

1969

ARPANet

1988

TCP

81

TCP/IP

50-56kbps, ARPANet

T1

NSFNet

OC12

MCI

T3, NSFNet

OC48

vBNS

OC192

Abilene

HTTPTahoe

83

Cutover
to TCP/IP

1969 1988

Tahoe

ARPANet

Network
Mail

File
Transfer

Telnet

1993 1995

Internet
Phone

Whitehouse
online

Internet
Talk

Radio

1990

Napster
music

2004

AT&T
VoIP

iTunes
video

YouTube

19741969 1988 20061983

TCP/IPARPANet

TCP

congestion collapse

detected at LBL

Congestion collapse

Congestion collapse

 October 1986, the first congestion collapse on
the Internet was detected

 Link between UC Berkeley and LBL
◼ 400 yards, 3 hops, 32 Kbps

◼ throughput dropped to 40 bps

◼ factor of ~1000 drop!

 1988, Van Jacobson proposed TCP congestion
control

throughput

load

Why the 1986 collapse

congestion collapse

detected at LBL

Why the 1986 collapse

 5,089 hosts on Internet (Nov 1986)

 Backbone speed: 50 – 56 kbps

 Control mechanism focused only on receiver
congestion, not network congestion

 Large number of hosts sharing a slow (and
small) network
◼ Network became the bottleneck, as opposed to

receivers

◼ But TCP flow control only prevented overwhelming
receivers

Jacobson introduced feedback control to

deal with network congestion in 1988

Tahoe and its variants (1988)

Jacobson, Sigcomm 1988

+ Avoid overwhelming network

+ Window control mechanisms

◼ Dynamically adjust sender window based on
congestion (as well as receiver window)

◼ Loss-based AIMD

◼ Based on idea of Chiu, Jain, Ramakrishnan

“… important considering that TCP spans a range from 800 Mbps

Cray channels to 1200 bps packet radio links”

 -- Jacobson, 1988

1969

ARPANet

1988

TCP

81

TCP/IP

50-56kbps, ARPANet

T1

NSFNet

OC12

MCI

T3, NSFNet

OC48

vBNS

OC192

Abilene

HTTPTahoe

83

Cutover
to TCP/IP

1969 1988

Tahoe

ARPANet

Network
Mail

File
Transfer

Telnet

1993 1995

Internet
Phone

Whitehouse
online

Internet
Talk

Radio

1990

Napster
music

2004

AT&T
VoIP

iTunes
video

YouTube

19741969 1988 20061983

TCP/IPARPANet

Flow control:

Prevent overwhelming receiver

+ Congestion control:

Prevent overwhelming network

Tahoe
TCP

congestion collapse

detected at LBL

TCP congestion control

19741969 1988 20061983

TCP/IPARPANet

TCP

DECNet
AIMD

‘94

Vegas
delay
based

Tahoe

‘96

formula

p

‘98

NUM

‘00

reverse
engr TCP

systematic

design

of TCPs

Transport milestones

Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)

Packet networks

Packet-switched as opposed to circuit-
switched

◼ No dedicated resources

◼ Simple & robust: states in packets

More efficient sharing of resources

◼ Multiplexing gain

Less guarantee on performance

◼ Best effort

Network mechanisms

Transmit bits across a link

◼ encoding/decoding, mod/dem,
synchronization

Medium access

◼ who transmits when for how long

Routing

◼ choose path from source to destination

Loss recovery

◼ recover packet loss due to congestion, error,
interference

Flow/congestion control

◼ efficient use of bandwidth/buffer without
overwhelming receiver/network

Network mechanisms implemented as
protocol stack

Each layer designed separately, evolves
asynchronously

application

transport

network

link

physical

Many control mechanisms…

Error control, congestion control (TCP)

Routing (IP)

Medium access control

Coding, transmission, synchronization

Protocol stack

The Internet hourglass

IP

Web Search Mail News Video Audio Friends

Applications

TCP

Ethernet 802.11 SatelliteOptical3G/4G BluetoothATM

Link technologies

IP layer

Routing from source to destination

◼ Distributed computation of routing decisions

◼ Implemented as routing table at each router

◼ Shortest-path (Dijkstra) algorithm within an
autonomous system

◼ BGP across autonomous systems

Datagram service

◼ Best effort

◼ Unreliable: lost, error, out-of-order

Simple and robust

◼ Robust against failures

◼ Robust against, and enables, rapid
technological evolution above & below IP

TCP layer

End-to-end reliable byte stream

◼ On top of unreliable datagram service

◼ Correct, in-order, without loss or duplication

Connection setup and tear down

◼ 3-way handshake

Loss and error recovery

◼ CRC to detect bit error

◼ Sequence number to detect packet
loss/duplication

◼ Retransmit packets lost or contain errors

Congestion control

◼ Source-based distributed control

Applications (e.g. Telnet, HTTP)

TCP UDP ICMP

ARPIP

Link Layer (e.g. Ethernet, ATM)

Physical Layer (e.g. Ethernet, SONET)

Protocol data format

Protocol data format

Application Message

TCP dataTCP hdr

MSS
TCP Segment

IP dataIP hdr
IP Packet

Ethernet dataEthernet

Ethernet Frame

20 bytes

20 bytes

14 bytes 4 bytesMTU 1500 bytes

IP Header

0 1 2 3

Vers(4)

Flags

H len Type of Service Total Length (16 bits)

Fragment OffsetIdentification

Header Checksum
Protocol
(TCP=6)Time to Live

Source IP Address

Destination IP Address

Options Padding

IP data

TCP Header

Source Port Destination Port

Sequence Number (32 bits)

Checksum

Options Padding

Acknowledgement Number (32 bits)

Urgent Pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data
Offset Reserved Receive Window (16 bits)

TCP data

0 1 2 3

Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)

Window control

 ~ W packets per RTT

 Lost packet detected by missing ACK

 Self-clocking: regulates flow

RTT

time

time

Source

Destination

1 2 W

1 2 W

1 2 W

data ACKs

1 2 W

Source rate

Limit the number of packets in the network
to window W

Source rate = bps

If W too small then rate < capacity

else rate > capacity (➔ congestion)

RTT

MSSW 

How to decide W?

Early TCP

Pre 1988

Go-back-N ARQ

◼ Detects loss from timeout

◼ Retransmits from lost packet onward

Receiver window flow control

◼ Prevents overflow at receive buffer

◼ Receiver sets awnd in TCP header of each ACK

 Closes when data received and ack’ed

 Opens when data delivered to application

◼ Sender sets W = awnd

Self-clocking

TCP congestion control

Post 1988

ARQ, awnd from ACK, self-clocking

In addition:

Source calculates cwnd from indication of
network congestion

◼ Packet loss

◼ Packet delay

◼ Marks, explicit congestion notification

Source sets W = min (cwnd, awnd)

Algorithms to calculate cwnd

◼ Reno, Vegas, FAST, CUBIC, CTCP, …

Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)

Key references

TCP/IP spec

 RFC 791 Internet Protocol

 RFC 793 Transmission Control Protocol

AIMD idea: Chiu, Jain, Ramakrishnan 1988-90

Tahoe/Reno: Jacobson 1988

Vegas: Brakmo and Peterson 1995

FAST: Jin, Wei, Low 2004

CUBIC: Ha, Rhee, Xu 2008

CTCP: Kun et al 2006

RED: Floyd and Jacobson 1993

REM: Athuraliya, Low, Li, Yin 2001

There are many many other proposals and references

TCP Congestion Control

Has four main parts

◼ Slow Start (SS)

◼ Congestion Avoidance (CA)

◼ Fast Retransmit

◼ Fast Recovery

ssthresh: slow start threshold determines
whether to use SS or CA

Assumption: packet losses are caused by
buffer overflow (congestion)

Tahoe
Reno

TCP Tahoe (Jacobson 1988)

SS
time

window

CA

SS: Slow Start

CA: Congestion Avoidance

TCP Reno (Jacobson 1990)

CASS

Fast retransmission/fast recovery

Slow Start

Start with cwnd = 1 (slow start)

On each successful ACK increment cwnd

 cwnd  cnwd + 1

Exponential growth of cwnd

 each RTT: cwnd  2 x cwnd

Enter CA when cwnd >= ssthresh

Slow Start

data

packet
ACK

receiversender

1 RTT

cwnd

1

2

3
4

5
6
7
8

cwnd  cwnd + 1 (for each ACK)

Congestion Avoidance

Starts when cwnd  ssthresh

On each successful ACK:

 cwnd  cwnd + 1/cwnd

Linear growth of cwnd

 each RTT: cwnd  cwnd + 1

Congestion Avoidance

cwnd

1

2

3

1 RTT

4

data

packet
ACK

receiversender

cwnd  cwnd + 1 (for cwnd worth of ACKs)

Packet Loss

Assumption: loss indicates congestion

Packet loss detected by

◼ Retransmission TimeOuts (RTO timer)

◼ Duplicate ACKs (at least 3)

1 2 3 4 5 6

1 2 3

Packets

Acknowledgements

3 3

7

3

Fast Retransmit/Fast Recovery

Motivation
◼ Waiting for timeout is too long

◼ Prevent `pipe’ from emptying during recovery

Idea
◼ 3 dupACKs indicate packet loss

◼ Each dupACK also indicates a packet having left
the pipe (successfully received)!

Fast Retransmit/Fast Recovery

Enter FR/FR after 3 dupACKs
◼ Set ssthresh  max(flightsize/2, 2)

◼ Retransmit lost packet

◼ Set cwnd  ssthresh + ndup (window inflation)

◼ Wait till W=min(awnd, cwnd) is large enough;
transmit new packet(s)

◼ On non-dup ACK (1 RTT later), set cwnd 
ssthresh (window deflation)

Enter CA (unless timeout)

Example: FR/FR

Fast retransmit
◼ Retransmit on 3 dupACKs

Fast recovery
◼ Inflate window while repairing loss to fill pipe

1 2
time

S

time
D

3 4 5 6 87 1

1 1 1 1 1

9

9

1 1

0 1

11

Exit FR/FR

RTT

8

7window inflation 4 window deflates

Summary: Reno

Basic idea

◼ AIMD probes available bandwidth

◼ Fast recovery avoids slow start

◼ dupACKs: fast retransmit + fast recovery

◼ Timeout: fast retransmit + slow start

slow start retransmit

congestion
avoidance FR/FR

dupACKs

timeout

TCP CC variants

Differ mainly in Congestion Avoidance

◼ Vegas: delay-based

◼ FAST: delay-based, scalable

◼ CUBIC: time since last congestion

◼ CTCP: use both loss & delay

slow start retransmit

congestion
avoidance FR/FR

dupACKs

timeout

Congestion avoidance

for every ACK {
 W += 1/W (AI)
 }
 for every loss {
 W = W/2 (MD)
 }

Reno
Jacobson
1988

for every ACK {

 if W/RTTmin – W/RTT < a then W ++

 if W/RTTmin – W/RTT > b then W --

}
for every loss {
 W = W/2
}

Vegas
Brakmo
Peterson
1995

Congestion avoidance

FAST
Jin, Wei, Low
2004

periodically

 {

 }

W =
baseRTT

RTT
 W + a

Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)

Feedback control

xi(t)

pl(t)

Example congestion measure pl(t)

◼ Loss (Reno)

◼Queueing delay (Vegas)

TCP/AQM

Congestion control is a distributed asynchronous algorithm to
share bandwidth

It has two components

◼ TCP: adapts sending rate (window) to congestion

◼ AQM: adjusts & feeds back congestion information

They form a distributed feedback control system

◼ Equilibrium & stability depends on both TCP and AQM

◼ And on delay, capacity, routing, #connections

pl(t)

xi(t)
TCP:

◼ Reno

◼ Vegas

◼ FAST

AQM:

◼ DropTail

◼ RED

◼ REM/PI

◼ AVQ

Implicit feedback

Drop-tail

◼ FIFO queue

◼ Drop packet that arrives at a full buffer

Implicit feedback

◼ Queueing process implicitly computes and
feeds back congestion measure

◼ Delay: simple dynamics

◼ Loss: no convenient model

Active queue management

Explicit feedback

◼ Provide congestion information by
probabilistically marking packets

◼ 2 ECN bit in IP header allocated for AQM

Supported by all new routers but usually
turned off in the field

RED (Floyd & Jacobson 1993)

Congestion measure: average queue length

 bl(t+1) = [bl(t) + yl(t) - cl]
+

 rl(t+1) = (1-a) rl(t) + a bl(t)

Embedding: p-linear probability function

Feedback: dropping or ECN marking

Avg queue

marking

1

REM (Athuraliya & Low 2000)

Congestion measure: price

 bl(t+1) = [bl(t) + yl(t) - cl]
+

 pl(t+1) = [pl(t) + g(al bl(t)+ xl
 (t) - cl)]

+

Embedding: exponential probability function

Feedback: dropping or ECN marking

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link congestion measure

Lin
k m

ark
ing

 pr
ob

ab
ilit

y

Match rate

Clear buffer and match rate

Clear buffer

REM

+−++=+)])(ˆ)(()([)1(l

l

llll ctxtbtptp ag

)()(
1 1 tptp s

l −−
−− 

Sum prices

Theorem (Paganini 2000)

Global asymptotic stability for general utility

function (in the absence of delay)

Summary: CC protocols

End-to-end CC implemented in TCP
◼ Basic window mechanism

◼ TCP performs connection setup, error recovery,
and congestion control,

◼ CC dynamically computes cwnd that limits max
#pkts enroute

Distributed feedback control algorithm
◼ TCP: adapts congestion window

◼ AQM: adapts congestion measure

Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch

MATHEMATICAL
MODELS

Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP

Why mathematical models

▪ Protocols are critical, yet
difficult, to understand and
optimize

▪ Local algorithms, distributed
spatially and vertically →

global behavior

▪ Designed separately,
deployed asynchronously,
evolves independently

application

transport

network

link

physical

Why mathematical models

Need systematic way to
understand, design, and
optimize

▪ Their interactions

▪ Resultant global behavior

application

transport

network

link

physical

Why mathematical models

Not to replace intuitions, expts, heuristics

Provides structure and clarity

◼ Refines intuition

◼ Guides design

◼ Suggests ideas

◼ Explores boundaries

◼ Understands structural properties

Risk

◼ “All models are wrong”

◼ “… some are useful”

◼ Validate with simulations & experiments

Structural properties

Equilibrium properties

◼ Throughput, delay, loss, fairness

Dynamic properties

◼ Stability

◼ Robustness

◼ Responsiveness

Scalability properties

◼ Information scaling (decentralization)

◼ Computation scaling

◼ Performance scaling

L., Peterson, Wang, JACM 2002

Limitations of basic model

Static and deterministic network

◼ Fixed set of flows, link capacities, routing

◼ Real networks are time-varying and random

Homogeneous protocols

◼ All flows use the same congestion measure

Fluid approximation

◼ Ignore packet level effects, e.g. burstiness

◼ Inaccurate buffering process

Difficulty in analysis of model

◼ Global stability in presence of feedback delay

◼ Robustness, responsiveness

basic model has been generalized

to address these issues to various degrees

Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP

TCP/AQM

Congestion control is a distributed asynchronous algorithm to
share bandwidth

It has two components

◼ TCP: adapts sending rate (window) to congestion

◼ AQM: adjusts & feeds back congestion information

They form a distributed feedback control system

◼ Equilibrium & stability depends on both TCP and AQM

◼ And on delay, capacity, routing, #connections

pl(t)

xi(t)
TCP:

◼ Reno

◼ Vegas

◼ FAST

AQM:

◼ DropTail

◼ RED

◼ REM/PI

◼ AVQ

Network model

p1(t) p2(t)

Network

◼ Links l of capacities cl and congestion measure pl(t)

Sources i

◼ Source rates xi(t)

Routing matrix R

x1(t)

x2(t)

x3(t)

x1 + x2 £ c1 x1 + x3 £ c2

R =
1 1 0

1 0 1

é

ë
ê

ù

û
ú

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

x(t +1) = F (x(t),RT p(t))

p(t +1) = G (Rx(t), p(t))

Reno, Vegas

Droptail, RED

liRli link uses source if 1= IP routing

Network model

TCP CC model consists of

specs for Fi and Gl

Examples

Derive (Fi, Gl) model for

◼ Reno/RED

◼ Vegas/Droptail

◼ FAST/Droptail

Focus on Congestion Avoidance

Dwi t() =
xi(t)(1-qi(t))

wi
 -

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W }
 for every loss
 { W := W/2 }

Dwi t() =
xi(t)(1-qi(t))

wi (t)
 -

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W }
 for every loss
 { W := W/2 }

qi(t) = Rlipl (t)
l

å

link loss

probability

round-trip

loss probability

window sizethroughput

Dwi t() =
xi(t)(1-qi(t))

wi (t)
 -

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W }
 for every loss
 { W := W/2 }

xi (t +1) = xi(t)+
1

Ti
2

-
xi

2

2
qi (t)

Fi xi (t),qi (t)()

Uses:

xi (t) =
wi (t)

Ti

qi (t) » 0

Model: RED

bl (t +1) = bl (t)+ yl (t)- cl[]
+

pl (t) = min abl (t),1{ }
pl (t)=Gl yl (t),pl (t)()

queue length

marking prob

1

yl (t) = Rlixi(t)
i

å

source

rate

aggregate

link rate

Model: Reno/RED

xi (t +1) = xi(t)+
1

Ti
2

-
xi

2

2
qi (t)

xi (t+1)=Fi xi (t),qi (t)()

bl (t +1) = bl (t)+ yl (t)- cl[]
+

pl (t) = max abl (t),1{ }
pl (t)=Gl yl (t),pl (t)()

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
i

å

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

x(t +1) = F(x(t), q(t))

p(t +1) = G(y(t), p(t))

Decentralization structure

q

y

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
i

å

Validation – Reno/REM

 30 sources, 3 groups with RTT = 3, 5, 7 ms
 Link capacity = 64 Mbps, buffer = 50 kB
 Smaller window due to small RTT (~0 queueing

delay)

Queue

DropTail

queue = 94%

RED

min_th = 10 pkts

max_th = 40 pkts

max_p = 0.1

p = Lagrange multiplier!

p increasing in queue!

REM

queue = 1.5 pkts

utilization = 92%
g = 0.05, a = 0.4,  = 1.15

p decoupled from queue

queue size

for every RTT

{ if W/RTTmin – W/RTT < a then W ++

 if W/RTTmin – W/RTT > a then W -- }

for every loss

 W := W/2

Model: Vegas/Droptail

xi t +1() = xi (t) +
1

Ti
2(t)

 if wi(t)- dixi(t) <ai

ì
í
î

di

xi t +1() = xi(t) else

xi t +1() = xi (t) -
1

Ti
2(t)

 if wi(t)- dixi(t) >ai

ì
í
î

di

Fi:

pl(t+1) = [pl(t) + yl (t)/cl - 1]+Gl:
Ti(t) = di +qi(t)

a W
RTT

baseRTT
 :W +=

periodically

 {

 }

xi (t +1) = xi (t)+
g i
Ti (t)

ai - xi (t)qi (t)()

pl (t +1) = p l (t)+
1

c l
yl (t)- cl()

é

ë
ê

ù

û
ú

+

Model: FAST/Droptail

L., Peterson, Wang, JACM 2002

Validation: matching transients









−+










−+

+

−
=  ctxtw

tpd

tw

c
p

i

f

ii

i

f

ii)()(
)(

)(1
0




Same RTT, no cross traffic Same RTT, cross traffic Different RTTs, no cross traffic

[Jacobsson et al 2009]

Recap

Protocol (Reno, Vegas, FAST, Droptail, RED…)

Equilibrium

◼ Performance

◼ Throughput, loss, delay

◼ Fairness

◼ Utility

Dynamics

◼ Local stability

◼ Global stability

x(t +1) = F (x(t), q(t))

p(t +1) = G (y(t), p(t))

Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP

Background: optimization

cRxxU ii
x




 subject to)(max
0

Called convex program if Ui are concave

functions

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link congestion measure

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

Background: optimization

cRxxU ii
x




 subject to)(max
0

Called convex program if Ui are concave

functions

Local optimum is globally optimal

◼ First order optimality (KKT) condition is
necessary and sufficient

Convex programs are polynomial-time
solvable

◼ Whereas nonconvex programs are generally
NP hard

Background: optimization

cRxxU ii
x




 subject to)(max
0

Theorem

 Optimal solution x* exists

 It is unique if Ui are strictly concave

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link congestion measure

L
in

k
 m

a
rk

in
g
 p

ro
b
a
b
ili

ty

strictly concave not

Background: optimization

cRxxU ii
x




 subject to)(max
0

Theorem

x* is optimal if and only if there exists

such that

Ui ' xi
*() = qi

* := Rlipl
*

l

å

yl
* := Rlixi

*

i

å
£ cl

= cl if pl
* > 0

ì
í
î

Lagrange

multiplier

Complementary

slackness: all

bottlenecks are

fully utilized

p* ³ 0

Background: optimization

cRxxU ii
x




 subject to)(max
0

Theorem

p* can be interpreted as prices

◼ Optimal maximizes its own benefit

max
xi

 Ui xi() - xi Rlipl
*

l

å

xi
*

incentive compatible

Background: optimization

cRxxU ii
x




 subject to)(max
0

Theorem

Gradient decent algorithm to solve the dual
problem is decentralized

pl (t +1) = pl (t)+g yl (t)- cl()éë ùû
+

xi(t) =Ui
'-1 qi (t)()

law of supply & demand

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
i

å

Background: optimization

cRxxU ii
x




 subject to)(max
0

Theorem

Gradient decent algorithm to solve the dual
problem is decentralized

pl (t +1) = pl (t)+g yl (t)- cl()éë ùû
+

xi(t) =Ui
'-1 qi (t)()

Gradient-like algorithm to solve NUM

defines TCP CC algorithm !

➔ reverse/forward

 engineer TCP

Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP

Duality model of TCP/AQM

TCP/AQM

Equilibrium (x*,p*) primal-dual optimal:

◼ F determines utility function U

◼ G guarantees complementary slackness

◼ p* are Lagrange multipliers

x* = F (x*,RT p*)

p* = G (Rx*, p*)

cRxxU ii
x




 subject to)(max
0

Uniqueness of equilibrium

◼ x* is unique when U is strictly concave

◼ p* is unique when R has full row rank

Kelly, Maloo, Tan 1998

Low, Lapsley 1999

Duality model of TCP/AQM

TCP/AQM

Equilibrium (x*,p*) primal-dual optimal:

◼ F determines utility function U

◼ G guarantees complementary slackness

◼ p* are Lagrange multipliers

x* = F (x*,RT p*)

p* = G (Rx*, p*)

cRxxU ii
x




 subject to)(max
0

Kelly, Maloo, Tan 1998

Low, Lapsley 1999

The underlying convex program also

leads to simple dynamic behavior

Duality model of TCP/AQM

Equilibrium (x*,p*) primal-dual optimal:

cRxxU ii
x




 subject to)(max
0

Mo & Walrand 2000:







−

=
=

−− 1 if)1(

1 if log
)(

11 aa

a

a

i

i

ii
x

x
xU

◼ a = 1 : Vegas, FAST, STCP

◼ a = 1.2: HSTCP

◼ a = 2 : Reno

◼ a = : XCP (single link only)  Low 2003

Duality model of TCP/AQM

Equilibrium (x*,p*) primal-dual optimal:

cRxxU ii
x




 subject to)(max
0

Mo & Walrand 2000:







−

=
=

−− 1 if)1(

1 if log
)(

11 aa

a

a

i

i

ii
x

x
xU

Low 2003

◼ a = 0: maximum throughput

◼ a = 1: proportional fairness

◼ a = 2: min delay fairness

◼ a = : maxmin fairness 

Some implications
Equilibrium

◼ Always exists, unique if R is full rank

◼ Bandwidth allocation independent of AQM or
arrival

◼ Can predict macroscopic behavior of large scale
networks

Counter-intuitive throughput behavior

◼ Fair allocation is not always inefficient

◼ Increasing link capacities do not always raise
aggregate throughput

 [Tang, Wang, Low, ToN 2006]

Forward engineering: FAST TCP

◼ Design, analysis, experiments
 [Wei, Jin, Low, Hegde, ToN 2006]

Equilibrium throughput

Reno xi =
1

Ti
×

a

qi
0.5

HSTCP xi =
1

Ti
×

a

qi
0.84

Vegas, FAST xi =
a

qi

 a = 1.225 (Reno), 0.120 (HSTCP)

• Reno penalizes long flows

• Reno’s square-root-p throughput formula

• Vegas, FAST: equilibrium cond = Little’s Law

Vegas/FAST: effect of RTT error

Persistent congestion can arise due to
◼ Error in propagation delay estimation

Consequences
◼ Excessive backlog

◼ Unfairness to older sources

Theorem
 A relative error of es in propagation delay

estimation distorts the utility function to

Ûs(xs) = (1+es)as log xs +esxs

Evalidation

 Single link, capacity = 6 pkt/ms, as = 2 pkts/ms, ds = 10

ms

 With finite buffer: Vegas reverts to Reno

Without estimation error With estimation error

Validation

Source rates (pkts/ms)

src1 src2 src3 src4 src5

1 5.98 (6)

2 2.05 (2) 3.92 (4)

3 0.96 (0.94) 1.46 (1.49) 3.54 (3.57)

4 0.51 (0.50) 0.72 (0.73) 1.34 (1.35) 3.38 (3.39)

5 0.29 (0.29) 0.40 (0.40) 0.68 (0.67) 1.30 (1.30) 3.28 (3.34)

queue (pkts) baseRTT (ms)

1 19.8 (20) 10.18 (10.18)

2 59.0 (60) 13.36 (13.51)

3 127.3 (127) 20.17 (20.28)

4 237.5 (238) 31.50 (31.50)

5 416.3 (416) 49.86 (49.80)

Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP

ACK: W  W + 1/W

 Loss: W  W – 0.5W

Packet level

Reno TCP

Flow level

◼ Equilibrium

◼ Dynamics

pkts (Mathis formula 1996)

Reno design

Packet level

◼ Designed and implemented first

Flow level

◼ Understood afterwards

Flow level dynamics determines

◼ Equilibrium: performance, fairness

◼ Stability

Design flow level equilibrium & stability

Implement flow level goals at packet level

Reno design

1. Decide congestion measure

◼ Loss, delay, both

2. Design flow level equilibrium properties

◼ Throughput, loss, delay, fairness

3. Analyze stability and other dynamic properties

◼ Control theory, simulate, improve model/algorithm

4. Iterate 1 – 3 until satisfactory

5. Simulate, prototype, experiment

◼ Compare with theoretical predictions

◼ Improve model, algorithm, code

Iterate 1 – 5 until satisfactory

Forward engineering

Tight integration of theory, design, experiment

Performance analysis done at design time

◼ Not after

Theory does not replace intuitions and heuristics

◼ Refines, validates/invalidates them

Theory provides structure and clarity

◼ Guides design

◼ Suggests ideas and experiments

◼ Explores boundaries that are hard to expt

Forward engineering

ACK: W  W + 1/W

 Loss: W  W – 0.5W

 Reno

 AIMD(1, 0.5)

ACK: W  W + a(w)/W

 Loss: W  W – b(w)W

 HSTCP

 AIMD(a(w), b(w))

ACK: W  W + 0.01

 Loss: W  W – 0.125W

 STCP

 MIMD(a, b)

a
RTT

baseRTT
 W W :RTT + FAST

Packet level description

Flow level: Reno, HSTCP, STCP, FAST

Different gain k and utility Ui

◼ They determine equilibrium and stability

Different congestion measure qi

◼ Loss probability (Reno, HSTCP, STCP)

◼ Queueing delay (Vegas, FAST)

Common flow level dynamics!

window

adjustment

control

gain

flow level

goal
=

Flow level: Reno, HSTCP, STCP, FAST

Common flow level dynamics!

window

adjustment

control

gain

flow level

goal
=

Small adjustment when close, large far away
◼ Need to estimate how far current state is wrt target

◼ Scalable

Reno, Vegas: window adjustment independent of qi
◼ Depends only on current window

◼ Difficult to scale

rsrg SISL

NetLab
prof steven low

20012000

Lee

Center

2002 2003 2004 2005 2006

FAST TCP

theory

IPAM Wkp

SC02

Demo

2007

WAN-in-

Lab

Testbed

Caltech FAST Project control & optimization of networks

theory experiment

deploymenttestbed

Collaborators: Doyle (Caltech), Newman (Caltech), Paganini

(Uruguay), Tang (Cornell), Andrew (Swinburne), Chiang (Princeton);

CACR, CERN, Internet2, SLAC, Fermi Lab, StarLight, Cisco

Internet: largest distributed

nonlinear feedback control system

theory

Reverse engineering: TCP is real-

time distributed algorithm over

Internet to maximize utility

cRxxU ii
x




 t.s.)(max
0

Forward engineering: Invention of

FastTCP based on control theory &

convex optimization









−=









−=





i

lili

l

l

l

lliii

i

i
i

ctxR
c

p

tpRtx
T

x

)(
1

)()(



 a
g

deployment

FAST is commercialized by FastSoft;

it accelerates world’s 2nd largest

CDN and Fortune 100 companies

FastTCP
TCP

Internet

FAST in a box

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.1 0.5 1 5 10 20 60

File size (MB)

F
T

P
 t

h
r
o

u
g

h
p

u
t

(k
b

p
s
)

with

FAST

without

FAST

experiment

Internet2 LSR
SuperComputing BC

SC 2004

Scientists have used FastTCP to

break world records on data

transfer between 2002 – 2006

Lee Center

testbed

WAN-in-Lab : one-of-a-kind wind-

tunnel in academic networking,

with 2,400km of fiber, optical

switches, routers, servers,

accelerators

eq 1

eq 2
eq 3

Some benefits

Transparent interaction among components

◼ TCP, AQM

◼ Clear understanding of structural properties

Understanding effect of parameters

◼ Change protocol parameters, topology,
routing, link capacity, set of flows

◼ Re-solve NUM

◼ Systematic way to tune parameters

SF → New York
June 3, 2007

Heavy packet loss in Sprint network:
FAST TCP increased throughput by 120x !

Without FAST

throughput: 1Mbps

With FAST

throughput: 120Mbps

Extreme resilience to loss

10G appliance customer data

Average download speed 8/24 – 30, 2009, CDN customer (10G appliance)

FAST vs TCP stacks in BSD, Windows, Linux

Summary: math models

Integration of theory, design, experiment
can be very powerful
◼ Each needs the other

◼ Combination much more than sum

Theory-guided design approach
◼ Tremendous progress in the last decade; not

as impossible as most feared

◼ Very difficult; but worth the effort

◼ Most critical: mindset

How to push theory-guided design
approach further ?

Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch

ADVANCED
TOPICS

Advanced topics

Heterogeneous protocols

Layering as optimization
decomposition

The world is heterogeneous…

 Linux 2.6.13 allows users to choose
congestion control algorithms

 Many protocol proposals

◼ Loss-based: Reno and a large number of
variants

◼ Delay-based: CARD (1989), DUAL (1992), Vegas
(1995), FAST (2004), …

◼ ECN: RED (1993), REM (2001), PI (2002), AVQ
(2003), …

◼ Explicit feedback: MaxNet (2002), XCP (2002),
RCP (2005), …

Some implications

homogeneous heterogeneous

equilibrium unique ?

bandwidth

allocation

on AQM

independent ?

bandwidth

allocation

on arrival

independent ?

Throughputs depend on AQM

◼ FAST and Reno share a single bottleneck router

◼ NS2 simulation

◼ Router: DropTail with variable buffer size

◼ With 10% heavy-tailed noise traffic

FAST throughput

buffer size = 80 pkts buffer size = 400 pkts

Multiple equilibria: throughput depends

on arrival

eq 1 eq 2

Path 1 52M 13M

path 2 61M 13M

path 3 27M 93M

eq 1

eq 2

Tang, Wang, Hegde, Low, Telecom Systems, 2005

Dummynet experiment

eq 1 eq 2

Path 1 52M 13M

path 2 61M 13M

path 3 27M 93M
Tang, Wang, Hegde, Low, Telecom Systems, 2005

eq 1

eq 2 eq 3 (unstable)

Dummynet experiment

Multiple equilibria: throughput depends

on arrival

 Duality model:

 , ***








= 

l

illiii xpRFxcRxxU ii
x




 s.t.)(max
0









−+= 

l

lliii

i

i
ii pRx

T
xF a

g

 Why can’t use Fi’s of FAST and Reno in

duality model?

−=
l

lli
i

i

i pR
x

T
F

2

1 2

2

delay for FAST

loss for Reno

They use different prices!

 Duality model:

 , ***








= 

l

illiii xpRFxcRxxU ii
x




 s.t.)(max
0









−+= 

l

lliii

i

i
ii pRx

T
xF a

g

 Why can’t use Fi’s of FAST and Reno in

duality model?

−=
l

lli
i

i

i pR
x

T
F

2

1 2

2

They use different prices!









−= 

i

lili

l

l ctxR
c

p)(
1











= 

i

ililll txRtpgp)(),(

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

Homogeneous protocol

() 







=+









=+





)(,)()1(

)(,)()1(

txtpmRFtx

txtpRFtx

j

i

l

l

j

lli

j

i

j

i

i

l

lliii

same price

for all sources

F1

FN

G1

GL

R

RT

TCP Network AQM

x y

q p

Heterogeneous protocol

() 







=+









=+





)(,)()1(

)(,)()1(

txtpmRFtx

txtpRFtx

j

i

l

l

j

lli

j

i

j

i

i

l

lliii

heterogeneous

prices for

type j sources

Heterogeneous protocols

 Equilibrium: p that satisfies









=


=









=

i,j ll

lj

i

j

lil

l

l

j

lli

j

i

j

i

pc

c
pxRpy

pmRfpx

0 if

)(:)(

)()(

Duality model no longer applies !

◼ pl can no longer serve as Lagrange multiplier

Heterogeneous protocols

 Equilibrium: p that satisfies









=


=









=

i,j ll

lj

i

j

lil

l

l

j

lli

j

i

j

i

pc

c
pxRpy

pmRfpx

0 if

)(:)(

)()(

Need to re-examine all issues

◼ Equilibrium: exists? unique? efficient? fair?

◼ Dynamics: stable? limit cycle? chaotic?

◼ Practical networks: typical behavior? design guidelines?

Notation

 Simpler notation: p is equilibrium if

 on bottleneck links

 Jacobian:

 Linearized dual algorithm:

cpy)(=

)(:)(p
p

y
p




=J

p(t)pp =)(*Jg

Tang, Wang, L., Chiang, ToN, 2007

Tang, Wei, L., Chiang, ToN, 2010

Existence

Theorem

Equilibrium p exists, despite lack of

underlying utility maximization

 Generally non-unique

◼ There are networks with unique bottleneck
set but infinitely many equilibria

◼ There are networks with multiple bottleneck
set each with a unique (but distinct)
equilibrium

Regular networks

Definition

A regular network is a tuple (R, c, m, U) for

which all equilibria p are locally unique, i.e.,

Theorem

 Almost all networks are regular

 A regular network has finitely many and
odd number of equilibria (e.g. 1)

0)(det :)(det 



= p

p

y
pJ

Global uniqueness

Implication

 a network of RED routers with slope inversely
proportional to link capacity almost always has
globally unique equilibrium

Theorem

 If price heterogeneity is small, then equilibrium is
globally unique

0any for]2,[

0any for]2,[

/1

/1





jjLjj

l

ll

L

l

j

l

aaam

aaam





Local stability

Theorem

 If price heterogeneity is small, then the unique

equilibrium p is locally stable

 If all equilibria p are locally stable, then it is

globally unique

0any for]2,[

0any for]2,[

/1

/1





jjLjj

l

ll

L

l

j

l

aaam

aaam





p(t)pp g)(*J=Linearized dual algorithm:

Equilibrium p is locally stable if

() 0)(Re pJ

Summary

homogeneous heterogeneous

equilibrium unique non-unique

bandwidth

allocation

on AQM

independent dependent

bandwidth

allocation

on arrival

independent dependent

Interesting characterizations of equilibrium …

But not much understanding on dynamics

Efficiency

Result

 Every equilibrium p* is Pareto efficient

Proof:

 Every equilibrium p* yields a (unique) rate x(p*)
that solves

 


j i

j

i

j

i

j

i
x

cRxxUp t.s.)()(max *

0


Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Measure of optimality

 Achieved:

 =


j i

j

i

j

i
x

cRxxUV t.s.)(max :
0

*

=
j i

j

i

j

i pxUpV))((:)(**

Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Loss of optimality:

 Measure of optimality

 Achieved:

 =


j i

j

i

j

i
x

cRxxUV t.s.)(max :
0

*

=
j i

j

i

j

i pxUpV))((:)(**

j

l

j

l

m

m

V

pV





max

 min

)(
*

*



Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Loss of optimality:

e.g. A network of RED routers with default
parameters suffers no loss of optimality

j

l

j

l

m

m

V

pV





max

 min

)(
*

*



Intra-protocol fairness

Result

 Fairness among flows within each type is
unaffected, i.e., still determined by their utility
functions and Kelly’s problem with reduced link
capacities

Proof idea:

 Each equilibrium p chooses a partition of link

capacities among types, cj:= cj(p)

 Rates xj(p) then solve

j

i

jjj

i

j

i
x

cxRxU
j




 t.s.)(max
0

Inter-protocol fairness

Theorem

 Any fairness is achievable with a linear scaling of
utility functions









==

=






j

jj

i

jjj

i

j

i
x

j

xaxX

cxRxUx
j

 : rates achievable all

 t.s.)(maxarg :
0

Slow timescale control

Slow timescale scaling of utility function




−+=+











=

l

l

l

l

j

l
j

i

j

i

j

i

j

i

j

i

j

ij

i

j

i

tp

tpm

t

t

tq
ftx

)(

))((

)1()(1)(t

)(

)(
)(

kk


scaling of end--to-end price

slow timescale update of scaling factor

ns2 simulation: buffer=80pks

FAST throughput

without slow timescale control with slow timescale control

ns2 simulation: buffer=400pks

FAST throughput

without slow timescale control with slow timescale control

Advanced topics

Heterogeneous protocols

Layering as optimization
decomposition

The Internet hourglass

IP

Web Search Mail News Video Audio Friends

Applications

TCP

Ethernet 802.11 SatelliteOptical3G/4G BluetoothATM

Link technologies

“Architecture involves or facilitates

◼ System-level function (beyond components)

◼ Organization and structure

◼ Protocols and modules

◼ Risk mitigation, performance, evolution

but is more than the sum of these”

“… the architecture of a system defines how
the system is broken into parts and how those
parts interact.”

-- John Doyle, Caltech

But what is architecture

-- Clark, Sollins, Wroclawski, …, MIT

But what is architecture

“Things that persist over time”

“Things that are common across networks”

“Forms that enable functions”

“Frozen but evolves”

“It is intrinsic but artificial”

Key features (John Doyle, Caltech)

 Layering as optimization decomposition

 Constraints that deconstrain

 Robust yet fragile

 Each layer designed separately and
evolves asynchronously

 Each layer optimizes certain objectives

application

transport

network

link

physical

Minimize response time (web layout)…

Maximize utility (TCP/AQM)

Minimize path costs (IP)

Reliability, channel access, …

Minimize SIR, max capacities, …

Layering as opt decomposition

Xx

pcRx

xU
i

ii
x








)(tosubj

)(max
0

application

transport

network

link

physical

Application: utility

IP: routing Link: scheduling

Phy: power

Layering as opt decomposition

 Each layer is abstracted as an optimization
problem

Operation of a layer is a distributed solution

 Results of one problem (layer) are parameters of
others

Operate at different timescales

 Each layer is abstracted as an optimization
problem

Operation of a layer is a distributed solution

 Results of one problem (layer) are parameters of
others

Operate at different timescales

application

transport

network

link

physical

1) Understand each layer in isolation, assuming

other layers are designed nearly optimally

2) Understand interactions across layers

3) Incorporate additional layers

4) Ultimate goal: entire protocol stack as

solving one giant optimization problem, where

individual layers are solving parts of it

Layering as opt decomposition

 Network generalized NUM

 Layers subproblems

 Layering decomposition methods

 Interface functions of primal or dual vars

application

transport

network

link

physical

1) Understand each layer in isolation, assuming

other layers are designed nearly optimally

2) Understand interactions across layers

3) Incorporate additional layers

4) Ultimate goal: entire protocol stack as

solving one giant optimization problem, where

individual layers are solving parts of it

Layering as opt decomposition

application

transport

network

link

physical

Optimal web layer: Zhu, Yu,
Doyle ’01

HTTP/TCP: Chang, Liu ’04

TCP: Kelly, Maulloo, Tan ’98, ……

TCP/IP: Wang et al ’05, ……

TCP/power control: Xiao et al ’01,

 Chiang ’04,
……

TCP/MAC: Chen et al ’05, ……

Rate control/routing/scheduling: Eryilmax et al ’05, Lin et
al ’05, Neely, et al ’05, Stolyar ’05, Chen, et al ’05

detailed survey in Proc. of IEEE, 2006

Examples

Design via dual decomposition
◼ Congestion control, routing, scheduling/MAC

◼ As distributed gradient algorithm to jointly solve
NUM

Provides
◼ basic structure of key algorithms

◼ framework to aid protocol design

Example: dual decomposition

Ref:

Cross-layer design in multihop wireless networks Lijun Chen, Steven H. Low and John C. Doyle.

s

i dj

d

ix

d

sif
d

ijf

()

Six

DdNiffx

d

i

j

d

ji

d

ij

d

i

=

− 

 if 0

, allfor

Wireless mesh network

Underlying optimization problem:

()



−

−






f

ffx

fxU

j

d

ji

d

ij

d

i

d

ij

ji d

d

ij

d

s

ds

d

s
fx

 s.t.

)(max
),(),(

0,


Utility to flows (s,d) Cost of using links (i,j)

Local flow constraint

Schedulability
constraint

Wireless mesh network

congestion control

routing

scheduling

transmission rate
xi

d

output queue d*
to service

utility function Ui
d

d

ix


s

d

sif

k

ix


s

k

sif

k

ip

d

ip


j

d

ijf


j

k

ijf

local congestion price
pi

d

neighbor congestion prices
pj

d, ij
d

links (i,j) to
transmit

conflict graph

link weights wij

price = queueing delay

Dual decomposition

Algorithm architecture

other

nodes conflict

graph

utility
d

iU

weights jiw ,

Application

Congestion Control

Routing

Scheduling/MAC

Topology Control

Mobility Management

d

ij

d

jp ,

E
s
tim

a
tio

n

d*

Security Mgt

En/Dequeue

Xmit/Rcv

Radio Mgt

Physical

Xmission

queue

length

d

iplocal price

d

ix

	幻灯片 1: Congestion Control & Optimization
	幻灯片 2: Acknowledgments
	幻灯片 3: Goal of tutorial
	幻灯片 4: Theory-guided design
	幻灯片 5: Theory-guided design
	幻灯片 6: Agenda
	幻灯片 7: Audience background
	幻灯片 8: Congestion Control Protocols
	幻灯片 9: Congestion control protocols
	幻灯片 10: Congestion collapse
	幻灯片 11: Network milestones
	幻灯片 12: Application milestones
	幻灯片 13: Network Mail (1971)
	幻灯片 14: Internet applications (2006)
	幻灯片 15: Congestion collapse
	幻灯片 16: Congestion collapse
	幻灯片 17: Why the 1986 collapse
	幻灯片 18: Why the 1986 collapse
	幻灯片 19: Tahoe and its variants (1988)
	幻灯片 20: TCP congestion control
	幻灯片 21: Transport milestones
	幻灯片 22: Congestion control protocols
	幻灯片 23: Packet networks
	幻灯片 24: Network mechanisms
	幻灯片 25: Protocol stack
	幻灯片 26: The Internet hourglass
	幻灯片 27: IP layer
	幻灯片 28: TCP layer
	幻灯片 29: Protocol data format
	幻灯片 30: Protocol data format
	幻灯片 31: IP Header
	幻灯片 32: TCP Header
	幻灯片 33: Congestion control protocols
	幻灯片 34: Window control
	幻灯片 35: Source rate
	幻灯片 36: Early TCP
	幻灯片 37: TCP congestion control
	幻灯片 38: Congestion control protocols
	幻灯片 39: Key references
	幻灯片 40: TCP Congestion Control
	幻灯片 41: TCP Tahoe (Jacobson 1988)
	幻灯片 42: TCP Reno (Jacobson 1990)
	幻灯片 43: Slow Start
	幻灯片 44: Slow Start
	幻灯片 45: Congestion Avoidance
	幻灯片 46: Congestion Avoidance
	幻灯片 47: Packet Loss
	幻灯片 48: Fast Retransmit/Fast Recovery
	幻灯片 49: Fast Retransmit/Fast Recovery
	幻灯片 50: Example: FR/FR
	幻灯片 51: Summary: Reno
	幻灯片 52: TCP CC variants
	幻灯片 53: Congestion avoidance
	幻灯片 54: Congestion avoidance
	幻灯片 55: Congestion control protocols
	幻灯片 56: Feedback control
	幻灯片 57: TCP/AQM
	幻灯片 58: Implicit feedback
	幻灯片 59: Active queue management
	幻灯片 60: RED (Floyd & Jacobson 1993)
	幻灯片 61: REM (Athuraliya & Low 2000)
	幻灯片 62: REM
	幻灯片 63: Summary: CC protocols
	幻灯片 64: Agenda
	幻灯片 65: Mathematical Models
	幻灯片 66: Mathematical models
	幻灯片 67: Why mathematical models
	幻灯片 68: Why mathematical models
	幻灯片 69: Why mathematical models
	幻灯片 70: Structural properties
	幻灯片 71
	幻灯片 72: Limitations of basic model
	幻灯片 73: Mathematical models
	幻灯片 74: TCP/AQM
	幻灯片 75: Network model
	幻灯片 76: Network model
	幻灯片 77: Examples
	幻灯片 78: Model: Reno
	幻灯片 79: Model: Reno
	幻灯片 80: Model: Reno
	幻灯片 81: Model: RED
	幻灯片 82: Model: Reno/RED
	幻灯片 83: Decentralization structure
	幻灯片 84: Validation – Reno/REM
	幻灯片 85: Queue
	幻灯片 86: Model: Vegas/Droptail
	幻灯片 87: Model: FAST/Droptail
	幻灯片 88
	幻灯片 89: Validation: matching transients
	幻灯片 90: Recap
	幻灯片 91: Mathematical models
	幻灯片 92: Background: optimization
	幻灯片 93: Background: optimization
	幻灯片 94: Background: optimization
	幻灯片 95: Background: optimization
	幻灯片 96: Background: optimization
	幻灯片 97: Background: optimization
	幻灯片 98: Background: optimization
	幻灯片 99: Mathematical models
	幻灯片 100: Duality model of TCP/AQM
	幻灯片 101: Duality model of TCP/AQM
	幻灯片 102: Duality model of TCP/AQM
	幻灯片 103: Duality model of TCP/AQM
	幻灯片 104: Some implications
	幻灯片 105: Equilibrium throughput
	幻灯片 106: Vegas/FAST: effect of RTT error
	幻灯片 107: Evalidation
	幻灯片 108: Validation
	幻灯片 109: Mathematical models
	幻灯片 110: Reno design
	幻灯片 111: Reno design
	幻灯片 112: Forward engineering
	幻灯片 113: Forward engineering
	幻灯片 114: Packet level description
	幻灯片 115: Flow level: Reno, HSTCP, STCP, FAST
	幻灯片 116: Flow level: Reno, HSTCP, STCP, FAST
	幻灯片 117: rsrg
	幻灯片 118: Some benefits
	幻灯片 119: Extreme resilience to loss
	幻灯片 120: 10G appliance customer data
	幻灯片 121: Summary: math models
	幻灯片 122: Agenda
	幻灯片 123: Advanced Topics
	幻灯片 124: Advanced topics
	幻灯片 125: The world is heterogeneous…
	幻灯片 126: Some implications
	幻灯片 127: Throughputs depend on AQM
	幻灯片 128: Multiple equilibria: throughput depends on arrival
	幻灯片 129: Multiple equilibria: throughput depends on arrival
	幻灯片 130
	幻灯片 131
	幻灯片 132: Homogeneous protocol
	幻灯片 133: Heterogeneous protocol
	幻灯片 134: Heterogeneous protocols
	幻灯片 135: Heterogeneous protocols
	幻灯片 136: Notation
	幻灯片 137: Existence
	幻灯片 138: Regular networks
	幻灯片 139: Global uniqueness
	幻灯片 140: Local stability
	幻灯片 141: Summary
	幻灯片 142: Efficiency
	幻灯片 143: Efficiency
	幻灯片 144: Efficiency
	幻灯片 145: Efficiency
	幻灯片 146: Intra-protocol fairness
	幻灯片 147: Inter-protocol fairness
	幻灯片 149: Slow timescale control
	幻灯片 150: ns2 simulation: buffer=80pks
	幻灯片 151: ns2 simulation: buffer=400pks
	幻灯片 152: Advanced topics
	幻灯片 153: The Internet hourglass
	幻灯片 154: But what is architecture
	幻灯片 155: But what is architecture
	幻灯片 156: Layering as opt decomposition
	幻灯片 157: Layering as opt decomposition
	幻灯片 158: Layering as opt decomposition
	幻灯片 159: Layering as opt decomposition
	幻灯片 160: Examples
	幻灯片 161: Example: dual decomposition
	幻灯片 162: Wireless mesh network
	幻灯片 163: Wireless mesh network
	幻灯片 164: Dual decomposition
	幻灯片 165: Algorithm architecture

