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Goal of tutorial

Top-down summary of congestion 
control on Internet

Introduction to mathematical models 
of congestion control

Illustration of theory-guided CC 
algorithm design



Tight integration of theory, design, experiment

◼ Analysis done at design time, not after

Theory does not replace intuitions or heuristics

◼ Refines, validates/invalidates them

Theory provides structure and clarity

◼ Guides design

◼ Suggests ideas and experiments

◼ Explores boundaries that are hard to experiment

Theory-guided design



Theory-guided design

Integration of theory, design, experiment 
can be very powerful
◼ Each needs the other 

◼ Combination much more than sum

Tremendous progress in the last decade
◼ Not as impossible as most feared

◼ Very difficult; but worth the effort

◼ Most critical: mindset

How to push theory-guided design 
approach further ?



Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch



Audience background

Know TCP/IP protocols?

Know congestion control?

Experiment with ns2?  Linux kernel?

Know optimization theory?  Control 
theory?

Know network utility maximization?



CONGESTION CONTROL 
PROTOCOLS



Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)



October 1986, the first congestion collapse on the 
Internet was detected

Link between UC Berkeley and LBL
◼ 400 yards, 3 hops, 32 Kbps

◼ throughput dropped to 40 bps

◼ factor of ~1000 drop!

1988, Van Jacobson proposed TCP congestion 
control

WHY ?

Congestion collapse

throughput

load
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Network Mail (1971)
First Internet (ARPANet) application

The first network email was sent by Ray Tomlinson between these two 

computers at BBN that are connected by the ARPANet.



Internet applications (2006)

Telephony Music TV & home theatre

Cloud computing

Finding your way

Mail Friends

Library at your finger tip Games
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Congestion collapse

 October 1986, the first congestion collapse on 
the Internet was detected

 Link between UC Berkeley and LBL
◼ 400 yards, 3 hops, 32 Kbps

◼ throughput dropped to 40 bps

◼ factor of ~1000 drop!

 1988, Van Jacobson proposed TCP congestion 
control

throughput

load



Why the 1986 collapse

congestion collapse

detected at LBL



Why the 1986 collapse

 5,089 hosts on Internet (Nov 1986)

 Backbone speed: 50 – 56 kbps

 Control mechanism focused only on receiver 
congestion, not network congestion

 Large number of hosts sharing a slow (and 
small) network
◼ Network became the bottleneck, as opposed to 

receivers

◼ But TCP flow control only prevented overwhelming 
receivers

Jacobson introduced feedback control to 

deal with network congestion in 1988



Tahoe and its variants (1988)

Jacobson, Sigcomm 1988

+ Avoid overwhelming network

+ Window control mechanisms

◼ Dynamically adjust sender window based on 
congestion (as well as receiver window)

◼ Loss-based AIMD

◼ Based on idea of Chiu, Jain, Ramakrishnan

“…  important considering that TCP spans a range from 800 Mbps 

Cray channels to 1200 bps packet radio links”

               --  Jacobson, 1988
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Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)



Packet networks

Packet-switched as opposed to circuit-
switched

◼ No dedicated resources

◼ Simple & robust: states in packets

More efficient sharing of resources

◼ Multiplexing gain

Less guarantee on performance

◼ Best effort



Network mechanisms

Transmit bits across a link

◼ encoding/decoding, mod/dem, 
synchronization

Medium access

◼ who transmits when for how long

Routing

◼ choose path from source to destination

Loss recovery

◼ recover packet loss due to congestion, error, 
interference

Flow/congestion control

◼ efficient use of bandwidth/buffer without 
overwhelming receiver/network



Network mechanisms implemented as 
protocol stack

Each layer designed separately, evolves 
asynchronously

                                  

application

transport

network

link

physical

Many control mechanisms…

Error control, congestion control (TCP)

Routing (IP)

Medium access control

Coding, transmission, synchronization

Protocol stack



The Internet hourglass

IP

Web Search Mail News Video Audio Friends

Applications

TCP

Ethernet 802.11 SatelliteOptical3G/4G BluetoothATM

Link technologies



IP layer

Routing from source to destination

◼ Distributed computation of routing decisions

◼ Implemented as routing table at each router

◼ Shortest-path (Dijkstra) algorithm within an 
autonomous system

◼ BGP across autonomous systems

Datagram service

◼ Best effort

◼ Unreliable: lost, error, out-of-order

Simple and robust

◼ Robust against failures

◼ Robust against, and enables, rapid 
technological evolution above & below IP



TCP layer

End-to-end reliable byte stream

◼ On top of unreliable datagram service

◼ Correct, in-order, without loss or duplication 

Connection setup and tear down

◼ 3-way handshake

Loss and error recovery

◼ CRC to detect bit error

◼ Sequence number to detect packet 
loss/duplication

◼ Retransmit packets lost or contain errors

Congestion control

◼ Source-based distributed control



Applications (e.g. Telnet, HTTP)

TCP UDP ICMP

ARPIP

Link Layer (e.g. Ethernet, ATM)

Physical Layer (e.g. Ethernet, SONET)

Protocol data format



Protocol data format

Application Message

TCP dataTCP hdr

MSS
TCP Segment

IP dataIP hdr
IP Packet

Ethernet dataEthernet

Ethernet Frame

20 bytes

20 bytes

14 bytes 4 bytesMTU 1500 bytes



IP Header

0                         1                                  2           3

Vers(4)

Flags

H len Type of Service Total Length (16 bits)

Fragment OffsetIdentification

Header Checksum
Protocol 
(TCP=6)Time to Live

Source IP Address

Destination IP Address

Options Padding

IP data



TCP Header

Source Port Destination Port

Sequence Number (32 bits)

Checksum

Options Padding

Acknowledgement Number (32 bits)

Urgent Pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data 
Offset Reserved Receive Window (16 bits)

TCP data

0                         1                                 2           3



Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)



Window control

 ~ W packets per RTT

 Lost packet detected by missing ACK

 Self-clocking: regulates flow

RTT

time

time

Source

Destination

1 2 W

1 2 W

1 2 W

data ACKs

1 2 W



Source rate

Limit the number of packets in the network 
to window W

Source rate =                     bps

If W too small then rate < capacity

else   rate > capacity  (➔ congestion)

RTT

MSSW 

How to decide W?



Early TCP 

Pre 1988

Go-back-N ARQ

◼ Detects loss from timeout

◼ Retransmits from lost packet onward

Receiver window flow control

◼ Prevents overflow at receive buffer

◼ Receiver sets awnd in TCP header of each ACK

 Closes when data received and ack’ed

 Opens when data delivered to application

◼ Sender sets W = awnd

Self-clocking



TCP congestion control

Post 1988

ARQ, awnd from ACK, self-clocking

In addition:

Source calculates cwnd from indication of 
network congestion

◼ Packet loss

◼ Packet delay

◼ Marks, explicit congestion notification

Source sets W = min (cwnd, awnd)

Algorithms to calculate cwnd

◼ Reno, Vegas, FAST, CUBIC, CTCP, …



Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)



Key references

TCP/IP spec

 RFC 791 Internet Protocol

 RFC 793 Transmission Control Protocol

AIMD idea: Chiu, Jain, Ramakrishnan 1988-90

Tahoe/Reno: Jacobson 1988

Vegas: Brakmo and Peterson 1995

FAST: Jin, Wei, Low 2004

CUBIC: Ha, Rhee, Xu 2008

CTCP: Kun et al 2006

RED: Floyd and Jacobson 1993

REM: Athuraliya, Low, Li, Yin 2001

There are many many other proposals and references



TCP Congestion Control

Has four main parts

◼ Slow Start (SS)

◼ Congestion Avoidance (CA)

◼ Fast Retransmit

◼ Fast Recovery

ssthresh: slow start threshold determines 
whether to use SS or CA

Assumption: packet losses are caused by 
buffer overflow (congestion)

Tahoe
Reno



TCP Tahoe (Jacobson 1988)

SS
time

window

CA

SS: Slow Start

CA: Congestion Avoidance



TCP Reno (Jacobson 1990)

CASS

Fast retransmission/fast recovery



Slow Start 

Start with cwnd = 1 (slow start)

On each successful ACK increment cwnd

   cwnd  cnwd + 1

Exponential growth of cwnd

  each RTT: cwnd  2 x cwnd

Enter CA when cwnd >= ssthresh



Slow Start

data 

packet
ACK

receiversender

1 RTT

cwnd

1

2

3
4

5
6
7
8

cwnd  cwnd + 1 (for each ACK) 



Congestion Avoidance

Starts when cwnd  ssthresh

On each successful ACK:   

 cwnd  cwnd + 1/cwnd

Linear growth of cwnd

  each RTT: cwnd  cwnd + 1



Congestion Avoidance

cwnd

1

2

3

1 RTT

4

data 

packet
ACK

receiversender

cwnd  cwnd + 1 (for cwnd worth of ACKs) 



Packet Loss

Assumption: loss indicates congestion

Packet loss detected by

◼ Retransmission TimeOuts (RTO timer)

◼ Duplicate ACKs (at least 3)

1 2 3 4 5 6

1 2 3

Packets

Acknowledgements

3 3

7

3



Fast Retransmit/Fast Recovery

Motivation
◼ Waiting for timeout is too long

◼ Prevent `pipe’ from emptying during recovery

Idea
◼ 3 dupACKs indicate packet loss 

◼ Each dupACK also indicates a packet having left 
the pipe (successfully received)!



Fast Retransmit/Fast Recovery

Enter FR/FR after 3 dupACKs
◼ Set ssthresh  max(flightsize/2, 2)

◼ Retransmit lost packet

◼ Set cwnd  ssthresh + ndup (window inflation)

◼ Wait till W=min(awnd, cwnd) is large enough; 
transmit new packet(s)

◼ On non-dup ACK (1 RTT later), set cwnd  
ssthresh (window deflation)

Enter CA (unless timeout)



Example: FR/FR

Fast retransmit
◼ Retransmit on 3 dupACKs

Fast recovery
◼ Inflate window while repairing loss to fill pipe

1 2
time

S

time
D

3 4 5 6 87 1

1 1 1 1 1

9

9

1 1

0 1

11

Exit FR/FR

RTT

8

7window inflation 4 window deflates



Summary: Reno

Basic idea

◼ AIMD probes available bandwidth

◼ Fast recovery avoids slow start

◼ dupACKs: fast retransmit + fast recovery

◼ Timeout: fast retransmit + slow start

slow start retransmit

congestion 
avoidance FR/FR  

dupACKs

timeout



TCP CC variants

Differ mainly in Congestion Avoidance

◼ Vegas: delay-based

◼ FAST: delay-based, scalable

◼ CUBIC: time since last congestion

◼ CTCP: use both loss & delay

slow start retransmit

congestion 
avoidance FR/FR  

dupACKs

timeout



Congestion avoidance

for every ACK {
     W += 1/W  (AI) 
 }
 for every loss {
  W = W/2  (MD)
 }

Reno
Jacobson
1988

for every ACK {

 if W/RTTmin – W/RTT < a then W ++

   if W/RTTmin – W/RTT > b then W --

}
for every loss {
  W = W/2  
}

Vegas
Brakmo
Peterson
1995



Congestion avoidance

FAST
Jin, Wei, Low
2004

periodically

 {                       

   

 

 }   

W  =   
baseRTT

RTT
 W  +   a



Congestion control protocols

Why congestion control?

Where is CC implemented?

Window control mechanism

CC protocols and basic structure

Active queue management (AQM)



Feedback control

xi(t)

pl(t)

Example congestion measure pl(t)

◼ Loss (Reno)

◼Queueing delay (Vegas)



TCP/AQM

Congestion control is a distributed asynchronous algorithm to    
share bandwidth

It has two components

◼ TCP: adapts sending rate (window) to congestion

◼ AQM: adjusts & feeds back congestion information

They form a distributed feedback control system

◼ Equilibrium & stability depends on both TCP and AQM

◼ And on delay, capacity, routing, #connections

pl(t)

xi(t)
TCP: 

◼ Reno

◼ Vegas

◼ FAST

AQM:

◼ DropTail

◼ RED

◼ REM/PI

◼ AVQ



Implicit feedback

Drop-tail

◼ FIFO queue

◼ Drop packet that arrives at a full buffer

Implicit feedback

◼ Queueing process implicitly computes and 
feeds back congestion measure

◼ Delay: simple dynamics

◼ Loss: no convenient model



Active queue management

Explicit feedback

◼ Provide congestion information by 
probabilistically marking packets

◼ 2 ECN bit in IP header allocated for AQM

Supported by all new routers but usually 
turned off in the field



RED   (Floyd & Jacobson 1993) 

Congestion measure: average queue length

     bl(t+1)   =  [bl(t) + yl(t) - cl]
+

     rl(t+1)   =  (1-a) rl(t) + a bl(t)

Embedding: p-linear probability function

Feedback: dropping or ECN marking

Avg queue

marking

1



REM   (Athuraliya & Low 2000)

Congestion measure: price

     bl(t+1)   =  [bl(t) + yl(t) - cl]
+

     pl(t+1)   =  [pl(t) + g(al bl(t)+ xl
 (t) - cl )]

+

Embedding: exponential probability function

Feedback: dropping or ECN marking

0 2 4 6 8 10 12 14 16 18 20
0
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Match rate

Clear buffer and match rate

Clear buffer

REM

+−++=+ )]  )(ˆ    )(  ()([    )1( l

l

llll ctxtbtptp ag

)()(
1      1 tptp s

l −−
−− 

Sum prices

Theorem (Paganini 2000) 

Global asymptotic stability for general utility 

function (in the absence of delay)



Summary: CC protocols

End-to-end CC implemented in TCP
◼ Basic window mechanism

◼ TCP performs connection setup, error recovery, 
and congestion control, 

◼ CC dynamically computes cwnd that limits max 
#pkts enroute

Distributed feedback control algorithm
◼ TCP: adapts congestion window

◼ AQM: adapts congestion measure



Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch



MATHEMATICAL
MODELS



Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP



Why mathematical models

▪ Protocols are critical, yet 
difficult, to understand and 
optimize

▪ Local algorithms, distributed 
spatially and vertically → 

global behavior

▪ Designed separately, 
deployed asynchronously, 
evolves independently

application

transport

network

link

physical



Why mathematical models

Need systematic way to 
understand, design, and 
optimize

▪ Their interactions

▪ Resultant global behavior

application

transport

network

link

physical



Why mathematical models

Not to replace intuitions, expts, heuristics

Provides structure and clarity

◼ Refines intuition

◼ Guides design

◼ Suggests ideas

◼ Explores boundaries

◼ Understands structural properties

Risk

◼ “All models are wrong”

◼ “… some are useful”

◼ Validate with simulations & experiments



Structural properties

Equilibrium properties

◼ Throughput, delay, loss, fairness

Dynamic properties

◼ Stability

◼ Robustness

◼ Responsiveness

Scalability properties

◼ Information scaling (decentralization)

◼ Computation scaling

◼ Performance scaling



L., Peterson, Wang, JACM 2002



Limitations of basic model

Static and deterministic network

◼ Fixed set of flows, link capacities, routing

◼ Real networks are time-varying and random

Homogeneous protocols

◼ All flows use the same congestion measure

Fluid approximation

◼ Ignore packet level effects, e.g. burstiness

◼ Inaccurate buffering process

Difficulty in analysis of model

◼ Global stability in presence of feedback delay

◼ Robustness, responsiveness

basic model has been generalized 

to address these issues to various degrees



Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP



TCP/AQM

Congestion control is a distributed asynchronous algorithm to    
share bandwidth

It has two components

◼ TCP: adapts sending rate (window) to congestion

◼ AQM: adjusts & feeds back congestion information

They form a distributed feedback control system

◼ Equilibrium & stability depends on both TCP and AQM

◼ And on delay, capacity, routing, #connections

pl(t)

xi(t)
TCP: 

◼ Reno

◼ Vegas

◼ FAST

AQM:

◼ DropTail

◼ RED

◼ REM/PI

◼ AVQ



Network model

p1(t) p2(t)

Network

◼ Links l of capacities cl and congestion measure pl(t) 

Sources i

◼ Source rates xi(t)

Routing matrix R

  

x1(t)

x2(t)

x3(t)

x1 + x2 £ c1 x1 + x3 £ c2

R =
1   1   0

1   0   1

é

ë
ê

ù

û
ú



F1

FN

G1

GL

R  

RT  

TCP Network AQM

x y

q p

x(t +1)   =    F  (x(t),RT p(t))

p(t +1)   =    G (Rx(t), p(t))

Reno, Vegas

Droptail, RED 

liRli link  uses  source if   1= IP routing   

Network model

TCP CC model consists of

specs for Fi and Gl 



Examples

Derive (Fi, Gl) model for

◼ Reno/RED

◼ Vegas/Droptail

◼ FAST/Droptail

Focus on Congestion Avoidance



Dwi t( )    =     
xi(t)(1-qi(t))

wi
   -    

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W   }
 for every loss
 { W := W/2   }



Dwi t( )    =     
xi(t)(1-qi(t))

wi (t)
   -    

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W   }
 for every loss
 { W := W/2   }

qi(t) = Rlipl (t)
l

å

link loss 

probability

round-trip 

loss probability

window sizethroughput



Dwi t( )    =     
xi(t)(1-qi(t))

wi (t)
   -    

wi(t)

2
xi(t)qi(t)

Model: Reno

for every ack (ca)
 { W += 1/W   }
 for every loss
 { W := W/2   }

xi (t +1) = xi(t)+
1

Ti
2

-
xi

2

2
qi (t)

Fi xi (t ),qi (t )( )

Uses:

xi (t) =
wi (t)

Ti

qi (t) » 0



Model: RED

bl (t +1) = bl (t)+ yl (t)- cl[ ]
+

pl (t) = min abl (t),1{ }
pl (t )=Gl yl (t ),pl (t )( )

queue length

marking prob

1

yl (t) = Rlixi(t)
i

å

source

rate

aggregate

link rate



Model: Reno/RED

xi (t +1) = xi(t)+
1

Ti
2

-
xi

2

2
qi (t)

xi (t+1)=Fi xi (t ),qi (t )( )

bl (t +1) = bl (t)+ yl (t)- cl[ ]
+

pl (t) = max abl (t),1{ }
pl (t )=Gl yl (t ),pl (t )( )

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
i

å



F1

FN

G1

GL

R  

RT  

TCP Network AQM

x y

q p

x(t +1)   =    F(x(t),   q(t))

p(t +1)   =   G(y(t),   p(t))

Decentralization structure

q

y

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
i

å



Validation – Reno/REM

 30 sources, 3 groups with RTT = 3, 5, 7 ms
 Link capacity = 64 Mbps, buffer = 50 kB
 Smaller window due to small RTT (~0 queueing 

delay)



Queue

DropTail

queue = 94%

RED

min_th = 10 pkts

max_th = 40 pkts

max_p  = 0.1

p = Lagrange multiplier!

p increasing in queue!

REM

queue = 1.5 pkts

utilization = 92%
g = 0.05, a = 0.4,  = 1.15

p decoupled from queue



queue size

for every RTT

{   if W/RTTmin – W/RTT < a   then W ++

    if W/RTTmin – W/RTT > a   then W --   }

for every loss

 W := W/2

Model: Vegas/Droptail

xi t +1( ) = xi (t) +
1

Ti
2(t)

             if   wi(t)- dixi(t) <ai

ì
í
î

di

xi t +1( ) = xi(t)                            else

xi t +1( ) = xi (t) -
1

Ti
2(t)

             if   wi(t)- dixi(t) >ai

ì
í
î

di

Fi:

pl(t+1) =  [pl(t) + yl (t)/cl - 1]+Gl:
Ti(t) = di +qi(t)



a   W  
RTT

baseRTT
  :W  +=

periodically

 {                       

   }   

xi (t +1) = xi (t)+
g i
Ti (t)

ai - xi (t)qi (t)( )

pl (t +1) = p l (t)+
1

c l
yl (t)- cl( )

é

ë
ê

ù

û
ú

+

Model: FAST/Droptail



L., Peterson, Wang, JACM 2002



Validation: matching transients









−+










−+
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−
=  ctxtw

tpd

tw

c
p

i

f

ii

i

f

ii )()(
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)(1
0




Same RTT, no cross traffic Same RTT, cross traffic Different RTTs, no cross traffic

[Jacobsson et al 2009]



Recap

Protocol (Reno, Vegas, FAST, Droptail, RED…)

Equilibrium

◼ Performance 

◼ Throughput, loss, delay

◼ Fairness

◼ Utility

Dynamics

◼ Local stability

◼ Global stability

x(t +1)   =    F  (x(t),   q(t))

p(t +1)   =    G (y(t),   p(t))



Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP



Background: optimization
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Background: optimization

cRxxU ii
x




    subject to       )(   max
0

Called convex program if Ui are concave 

functions

Local optimum is globally optimal

◼ First order optimality (KKT) condition is 
necessary and sufficient

Convex programs are polynomial-time 
solvable

◼ Whereas nonconvex programs are generally 
NP hard



Background: optimization

cRxxU ii
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Theorem

 Optimal solution x* exists

 It is unique if Ui are strictly concave 
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Background: optimization

cRxxU ii
x




    subject to       )(   max
0

Theorem

x* is optimal if and only if there exists   

such that

Ui ' xi
*( ) = qi

* := Rlipl
*

l

å

yl
* := Rlixi

*

i

å
£ cl

= cl    if   pl
* > 0

ì
í
î

Lagrange

multiplier

Complementary

slackness: all 

bottlenecks are

fully utilized 

p* ³ 0



Background: optimization

cRxxU ii
x


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    subject to       )(   max
0

Theorem

p* can be interpreted as prices 

◼ Optimal maximizes its own benefit

max
xi

   Ui xi( ) - xi Rlipl
*

l

å

xi
*

incentive compatible



Background: optimization

cRxxU ii
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
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    subject to       )(   max
0

Theorem

Gradient decent algorithm to solve the dual 
problem is decentralized

pl (t +1) = pl (t)+g yl (t)- cl( )éë ùû
+

xi(t) =Ui
'-1 qi (t)( )

law of supply & demand

qi (t) = Rlipl (t)
l

å

yl (t) = Rlixi (t)
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Background: optimization

cRxxU ii
x




    subject to       )(   max
0

Theorem

Gradient decent algorithm to solve the dual 
problem is decentralized

pl (t +1) = pl (t)+g yl (t)- cl( )éë ùû
+

xi(t) =Ui
'-1 qi (t)( )

Gradient-like algorithm to solve NUM 

defines TCP CC algorithm !

➔ reverse/forward

  engineer TCP



Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP



Duality model of TCP/AQM

TCP/AQM

Equilibrium (x*,p*) primal-dual optimal: 

◼ F determines utility function U

◼ G guarantees complementary slackness

◼ p*  are Lagrange multipliers

x*    =    F  (x*,RT p*)

p*    =    G (Rx*, p*)

cRxxU ii
x




    subject to       )(   max
0

Uniqueness of equilibrium

◼ x*  is unique when U  is strictly concave

◼ p*  is unique when R  has full row rank

Kelly, Maloo, Tan 1998

Low,  Lapsley 1999



Duality model of TCP/AQM

TCP/AQM

Equilibrium (x*,p*) primal-dual optimal: 

◼ F determines utility function U

◼ G guarantees complementary slackness

◼ p*  are Lagrange multipliers

x*    =    F  (x*,RT p*)

p*    =    G (Rx*, p*)

cRxxU ii
x




    subject to       )(   max
0

Kelly, Maloo, Tan 1998

Low,  Lapsley 1999

The underlying convex program also 

leads to simple dynamic behavior



Duality model of TCP/AQM

Equilibrium (x*,p*) primal-dual optimal: 

cRxxU ii
x
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    subject to       )(   max
0

Mo & Walrand 2000:







−

=
=

−− 1  if      )1(

1  if                 log
)(

11 aa

a

a

i

i

ii
x

x
xU

◼ a = 1   : Vegas, FAST, STCP 

◼ a = 1.2: HSTCP

◼ a = 2   : Reno

◼ a = : XCP (single link only)  Low 2003



Duality model of TCP/AQM

Equilibrium (x*,p*) primal-dual optimal: 

cRxxU ii
x




    subject to       )(   max
0

Mo & Walrand 2000:
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Low 2003

◼ a = 0: maximum throughput 

◼ a = 1: proportional fairness 

◼ a = 2: min delay fairness 

◼ a =    : maxmin fairness 



Some implications
Equilibrium

◼ Always exists, unique if R is full rank

◼ Bandwidth allocation independent of AQM or 
arrival

◼ Can predict macroscopic behavior of large scale 
networks

Counter-intuitive throughput behavior

◼ Fair allocation is not always inefficient 

◼ Increasing link capacities do not always raise 
aggregate throughput

             [Tang, Wang, Low, ToN 2006]

Forward engineering: FAST TCP

◼ Design, analysis, experiments
         [Wei, Jin, Low, Hegde, ToN 2006]



Equilibrium throughput

Reno                 xi    =    
1

Ti
×

a

qi
0.5

HSTCP              xi    =    
1

Ti
×

a

qi
0.84

Vegas, FAST      xi    =         
a

qi

   a = 1.225 (Reno), 0.120 (HSTCP)

• Reno penalizes long flows

• Reno’s square-root-p throughput formula

• Vegas, FAST: equilibrium cond = Little’s Law



Vegas/FAST: effect of RTT error

Persistent congestion can arise due to
◼ Error in propagation delay estimation

Consequences
◼ Excessive backlog

◼ Unfairness to older sources

Theorem
 A relative error of es in propagation delay 

estimation distorts the utility function to 

Ûs(xs ) = (1+es )as log xs +esxs



Evalidation

 Single link, capacity = 6 pkt/ms, as = 2 pkts/ms, ds = 10 

ms

 With finite buffer: Vegas reverts to Reno

Without estimation error With estimation error



Validation

Source rates (pkts/ms)

# src1    src2              src3              src4               src5

1 5.98 (6)  

2 2.05 (2)    3.92 (4)

3 0.96 (0.94)    1.46 (1.49)    3.54 (3.57)

4 0.51 (0.50)    0.72 (0.73)    1.34 (1.35)    3.38 (3.39)

5 0.29 (0.29)    0.40 (0.40)    0.68 (0.67)    1.30 (1.30)    3.28 (3.34)   

# queue (pkts) baseRTT (ms)

1   19.8  (20)   10.18 (10.18)

2   59.0  (60)  13.36 (13.51)

3 127.3 (127)  20.17 (20.28)

4 237.5 (238)  31.50 (31.50)

5 416.3 (416)  49.86 (49.80)



Mathematical models

Why mathematical models?

Dynamical systems model of CC

Convex optimization primer

Reverse engr: equilibrium properties

Forward engr: FAST TCP



ACK:  W    W + 1/W

 Loss: W    W – 0.5W

Packet level

Reno TCP

Flow level

◼ Equilibrium

◼ Dynamics

pkts (Mathis formula 1996)

Reno design



Packet level 

◼ Designed and implemented first

Flow level 

◼ Understood afterwards

Flow level dynamics determines

◼ Equilibrium: performance, fairness

◼ Stability

Design flow level equilibrium & stability

Implement flow level goals at packet level

Reno design



1. Decide congestion measure

◼ Loss, delay, both

2. Design flow level equilibrium properties

◼ Throughput, loss, delay, fairness

3. Analyze stability and other dynamic properties

◼ Control theory, simulate, improve model/algorithm

4. Iterate 1 – 3 until satisfactory

5. Simulate, prototype, experiment

◼ Compare with theoretical predictions

◼ Improve model, algorithm, code

Iterate 1 – 5 until satisfactory

Forward engineering



Tight integration of theory, design, experiment

Performance analysis done at design time

◼ Not after

Theory does not replace intuitions and heuristics

◼ Refines, validates/invalidates them

Theory provides structure and clarity

◼ Guides design

◼ Suggests ideas and experiments

◼ Explores boundaries that are hard to expt

Forward engineering



ACK:  W    W + 1/W

 Loss: W    W – 0.5W

 Reno 

 AIMD(1, 0.5)

ACK:  W    W + a(w)/W

 Loss: W    W – b(w)W

 HSTCP 

 AIMD(a(w), b(w))

ACK:  W    W + 0.01

 Loss: W    W – 0.125W

 STCP 

 MIMD(a, b)

a  
RTT

baseRTT
 W  W :RTT +  FAST

Packet level description



Flow level: Reno, HSTCP, STCP, FAST

Different gain k and utility Ui 

◼ They determine equilibrium and stability

Different congestion measure qi 

◼ Loss probability (Reno, HSTCP, STCP)

◼ Queueing delay (Vegas, FAST)

Common flow level dynamics! 

window

adjustment

control

gain

flow level

goal
=



Flow level: Reno, HSTCP, STCP, FAST

Common flow level dynamics! 

window

adjustment

control

gain

flow level

goal
=

Small adjustment when close, large far away
◼ Need to estimate how far current state is wrt target

◼ Scalable

Reno, Vegas: window adjustment independent of qi 
◼ Depends only on current window

◼ Difficult to scale



rsrg SISL

NetLab
prof steven low

20012000

Lee 

Center

2002 2003 2004 2005 2006

FAST TCP 

theory

IPAM Wkp

SC02 

Demo

2007

WAN-in-

Lab 

Testbed

Caltech  FAST  Project control & optimization of networks

theory experiment

deploymenttestbed

Collaborators: Doyle (Caltech), Newman (Caltech), Paganini 

(Uruguay), Tang (Cornell), Andrew (Swinburne), Chiang (Princeton); 

CACR, CERN, Internet2, SLAC, Fermi Lab, StarLight, Cisco

Internet: largest distributed 

nonlinear feedback control system

theory

Reverse engineering: TCP is real-

time distributed algorithm over 

Internet to maximize utility 
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Forward engineering: Invention of 

FastTCP based on control theory & 

convex optimization
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CDN and Fortune 100 companies

FastTCP 
TCP 

Internet

FAST in a box

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.1 0.5 1 5 10 20 60

File size (MB)

F
T

P
 t

h
r
o

u
g

h
p

u
t 

(k
b

p
s
)

with 

FAST

without  

FAST

experiment

Internet2 LSR 
SuperComputing BC

SC 2004

Scientists have used FastTCP to 

break world records on data 

transfer between 2002 – 2006 

Lee Center

testbed

WAN-in-Lab : one-of-a-kind wind- 

tunnel in academic networking, 

with 2,400km of fiber, optical 

switches, routers, servers, 

accelerators

eq 1

eq 2
eq 3



Some benefits

Transparent interaction among components

◼ TCP, AQM

◼ Clear understanding of structural properties

Understanding effect of parameters

◼ Change protocol parameters, topology, 
routing, link capacity, set of flows

◼ Re-solve NUM

◼ Systematic way to tune parameters



SF → New York
June 3, 2007 

Heavy packet loss in Sprint network: 
FAST TCP increased throughput by 120x !

Without FAST

throughput: 1Mbps

With FAST

throughput: 120Mbps

Extreme resilience to loss



10G appliance customer data

Average download speed 8/24 – 30, 2009, CDN customer (10G appliance) 

FAST vs TCP stacks in BSD, Windows, Linux



Summary: math models

Integration of theory, design, experiment 
can be very powerful
◼ Each needs the other 

◼ Combination much more than sum

Theory-guided design approach
◼ Tremendous progress in the last decade; not 

as impossible as most feared

◼ Very difficult; but worth the effort

◼ Most critical: mindset

How to push theory-guided design 
approach further ?



Agenda

9:00 Congestion control protocols

10:00 break

10:15 Mathematical models

11:15 break

11:30 Advanced topics

12:30 lunch



ADVANCED
TOPICS



Advanced topics

Heterogeneous protocols

Layering as optimization 
decomposition



The world is heterogeneous…

 Linux 2.6.13 allows users to choose 
congestion control algorithms

 Many protocol proposals

◼ Loss-based: Reno and a large number of 
variants

◼ Delay-based: CARD (1989), DUAL (1992), Vegas 
(1995), FAST (2004), …

◼ ECN: RED (1993), REM (2001), PI (2002), AVQ 
(2003), …

◼ Explicit feedback: MaxNet (2002), XCP (2002), 
RCP (2005), … 



Some implications

homogeneous heterogeneous

equilibrium unique ?

bandwidth

allocation 

on AQM

independent ?

bandwidth

allocation

on arrival

independent ?



Throughputs depend on AQM

◼ FAST and Reno share a single bottleneck router

◼ NS2 simulation

◼ Router: DropTail with variable buffer size 

◼ With 10% heavy-tailed noise traffic

FAST throughput

buffer size = 80 pkts buffer size = 400 pkts



Multiple equilibria: throughput depends 

on arrival

eq 1 eq 2

Path 1 52M 13M

path 2 61M 13M

path 3 27M 93M

eq 1

eq 2

Tang, Wang, Hegde, Low, Telecom Systems, 2005

Dummynet experiment



eq 1 eq 2

Path 1 52M 13M

path 2 61M 13M

path 3 27M 93M
Tang, Wang, Hegde, Low, Telecom Systems, 2005

eq 1

eq 2 eq 3 (unstable)

Dummynet experiment

Multiple equilibria: throughput depends 

on arrival
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Heterogeneous protocols

 Equilibrium: p  that satisfies
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Duality model no longer applies !

◼  pl can no longer serve as Lagrange multiplier



Heterogeneous protocols

 Equilibrium: p  that satisfies
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Need to re-examine all issues

◼ Equilibrium: exists? unique? efficient? fair?

◼ Dynamics: stable? limit cycle? chaotic?

◼ Practical networks: typical behavior? design guidelines?



Notation

 Simpler notation: p is equilibrium if

                 on bottleneck links
   

 Jacobian: 

 Linearized dual algorithm:

cpy       )( =
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y
p
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Tang, Wang, L., Chiang, ToN, 2007

Tang, Wei, L., Chiang, ToN, 2010



Existence

Theorem

Equilibrium p exists, despite lack of 

underlying utility maximization 

 Generally non-unique

◼ There are networks with unique bottleneck 
set but infinitely many equilibria

◼ There are networks with multiple bottleneck 
set each with a unique (but distinct) 
equilibrium



Regular networks

Definition

A regular network is a tuple (R, c, m, U) for

which all equilibria p are locally unique, i.e., 

Theorem

 Almost all networks are regular

 A regular network has finitely many and 
odd number of equilibria (e.g. 1)

0    )(det   :  )(det 



= p

p

y
pJ



Global uniqueness

Implication

 a network of RED routers with slope inversely 
proportional to link capacity almost always has 
globally unique equilibrium

Theorem

 If price heterogeneity is small, then equilibrium is 
globally unique 
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Local stability

Theorem

 If price heterogeneity is small, then the unique 

equilibrium p is locally stable 

 If all equilibria p are locally stable, then it is 

globally unique
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Summary

homogeneous heterogeneous

equilibrium unique non-unique

bandwidth

allocation 

on AQM

independent dependent

bandwidth

allocation

on arrival

independent dependent

Interesting characterizations of equilibrium …

But not much understanding on dynamics



Efficiency

Result

 Every equilibrium p* is Pareto efficient

Proof:

 Every equilibrium p* yields a (unique) rate x(p*) 
that solves 
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Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Measure of optimality

 Achieved:
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Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Loss of optimality:

 Measure of optimality

 Achieved:
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Efficiency

Result

 Every equilibrium p* is Pareto efficient

 Loss of optimality:

e.g. A network of RED routers with default 
parameters suffers no loss of optimality
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Intra-protocol fairness

Result

 Fairness among flows within each type is 
unaffected, i.e., still determined by their utility 
functions and Kelly’s problem with reduced link 
capacities

Proof idea:

 Each equilibrium p chooses a partition of link 

capacities among types, cj:= cj(p)

 Rates xj(p) then solve   
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Inter-protocol fairness

Theorem

 Any fairness is achievable with a linear scaling of 
utility functions
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Slow timescale control

Slow timescale scaling of utility function
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ns2 simulation: buffer=80pks

FAST throughput

without slow timescale control with slow timescale control



ns2 simulation: buffer=400pks

FAST throughput

without slow timescale control with slow timescale control



Advanced topics

Heterogeneous protocols

Layering as optimization 
decomposition



The Internet hourglass

IP

Web Search Mail News Video Audio Friends

Applications

TCP

Ethernet 802.11 SatelliteOptical3G/4G BluetoothATM

Link technologies



“Architecture involves or facilitates

◼ System-level function (beyond components)

◼ Organization and structure

◼ Protocols and modules

◼ Risk mitigation, performance, evolution 

but is more than the sum of these” 

“… the architecture of a system defines how 
the system is broken into parts and how those 
parts interact.”

-- John Doyle, Caltech

But what is architecture

-- Clark, Sollins, Wroclawski, …, MIT



But what is architecture

“Things that persist over time”

“Things that are common across networks”

“Forms that enable functions”

“Frozen but evolves”

“It is intrinsic but artificial”

Key features (John Doyle, Caltech)

 Layering as optimization decomposition

 Constraints that deconstrain

 Robust yet fragile



 Each layer designed separately and 
evolves asynchronously

 Each layer optimizes certain objectives

                                  

application

transport

network

link

physical

Minimize response time (web layout)…

Maximize utility (TCP/AQM) 

Minimize path costs (IP)

Reliability, channel access, …

Minimize SIR, max capacities, …

Layering as opt decomposition
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application
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physical

Application: utility

IP: routing Link: scheduling

Phy: power

Layering as opt decomposition

 Each layer is abstracted as an optimization 
problem

Operation of a layer is a distributed solution

 Results of one problem (layer) are parameters of 
others

Operate at different timescales



 Each layer is abstracted as an optimization 
problem

Operation of a layer is a distributed solution

 Results of one problem (layer) are parameters of 
others

Operate at different timescales

application

transport

network

link

physical

1) Understand each layer in isolation, assuming

other layers are designed nearly optimally

2) Understand interactions across layers

3) Incorporate additional layers

4) Ultimate goal: entire protocol stack as 

solving one giant optimization problem, where 

individual layers are solving parts of it

Layering as opt decomposition



 Network  generalized NUM

 Layers  subproblems

 Layering  decomposition methods

 Interface  functions of primal or dual vars

application

transport

network

link

physical

1) Understand each layer in isolation, assuming

other layers are designed nearly optimally

2) Understand interactions across layers

3) Incorporate additional layers

4) Ultimate goal: entire protocol stack as 

solving one giant optimization problem, where 

individual layers are solving parts of it

Layering as opt decomposition



application

transport

network

link

physical

Optimal web layer: Zhu, Yu, 
Doyle ’01 

HTTP/TCP: Chang, Liu ’04 

TCP: Kelly, Maulloo, Tan ’98,  ……

TCP/IP: Wang et al ’05, …… 

TCP/power control: Xiao et al ’01,

                             Chiang ’04, 
……

TCP/MAC: Chen et al ’05, ……

Rate control/routing/scheduling: Eryilmax et al ’05, Lin et 
al ’05, Neely, et al ’05, Stolyar ’05, Chen, et al ’05 

detailed survey in Proc. of IEEE, 2006

Examples



Design via dual decomposition
◼ Congestion control, routing, scheduling/MAC

◼ As distributed gradient algorithm to jointly solve 
NUM

Provides
◼ basic structure of key algorithms

◼ framework to aid protocol design

Example: dual decomposition

Ref:

Cross-layer design in multihop wireless networks Lijun Chen, Steven H. Low and John C. Doyle.
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Underlying optimization problem:
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congestion control

routing
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Dual decomposition



Algorithm architecture
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