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Average temperature

"Global average land-sea temperature anomaly relative to the 1961-1990 average temperature.
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Global average temp has increased by >1C since pre-industrial time

https://ourworldindata.org/co2-and-greenhouse-gas-emissions



Average temperature

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature.
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Local temperature can be much warmer than global average

https://ourworldindata.org/co2-and-greenhouse-gas-emissions



Atmospheric CO2
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CO2 and temperature

from Antarctic ice cores
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CO2 emissions
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GHG pathways

Annual global greenhouse gas emissions
in gigatonnes of carbon dioxide-equivalents

150 Gt
No climate policies
4.1-48°C
- expected emissions in a baseline scenario
if countries had not implemented climate
reduction policies.

100 Gt

50Gt . s e Current policies

25-29°C
- emissions with current climate policies in
place result inwarming of 2.5 to 2.9°C by 2100.

Greenhouse gas emissions

up to the present |Pledges & targets (2.1 °C)
—emissions if all countries delivered on reduction
pledges result in warming of 2.1°C by 2100.
0 2°C pathways
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https://ourworldindata.org/co2-and-greenhouse-gas-emissions



M Achieved [l Inlaw []In policy document [ |Pledge [ | No data

Emissions GDP (PPP) Population

83% 80%

% coverage of net zero GHG pledges (Oxford 2022)
(2019: coverage = 16% GDP)

https://ourworldindata.org/co2-and-greenhouse-gas-emissions



CO2 and GDP
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GHG and energy use
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Energy use emitted 82% of total greenhouse gas emissions in US in 2021 (EPA)

https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf



Electricity gen & transportation

2021 consumption: fossil 79.0%; renewables 12.5% (us Era)
" e - J Agriculture

10%

Commercial &
Residential
13%

Total consumption: 97.3 Quads (LLNL)

https://flowcharts.linl.gov/sites/flowcharts/files/2022-09/Energy_2021_United-States.pdf
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#transportation

Electricity generation & transportation in US:
B Consume 65% of all energies in 2021 (s EPA)
B Emit 53% of all greenhouse gases in 2021 s EpPA)

both numbers are lower than 2019 numbers by only ~2% !



Electricity cost

LCOE $359

The price of electricity from solar
declined by 89% in these 10 years.

$300/MWh
$275
$200/MWh
® 3175 Gas peaker
$168e_ -37%
e 3155 Nuclear
+26%
e $141 Solar thermal tower
$135 16%
$123
$111 > e $109 Coal
$100/MWh -2%
$83

e $56 Gas(combined cycle)
-32%

The price of onshore wind electricity “g$41 Onshorewind . | P\/ & on-shore wind have lowest LCOE
declined by 70% in these 10 years.

$0/MWh

2009 2019

https://ourworldindata.org/cheap-renewables-growth



Li-ion battery cost
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® Electronics Electric vehicles ~ ® Residential storage Utility storage

Electric vehicle battery:

« 2010: $1,000/kWh

« 2016: $ 275/kWh

« 2030e: $ 73 [ kWh (Bloomberg New Energy Finance 2016)

Source: https://www.iea.org/gevo2018/



~% Some challenges

Numerous research needs/opportunities
B Many experts in this NSF Workshop !



Some challenges

Integration of grid & mobility Panel 1
m Technologies, economics, deployment

Data, learning, control Panels 2, 4

B Unknown/unreliable models, uncertainty, scalability, multiple
timescales, reliability

Equitable development Panel 3

B Per capita CO2(consumption): US(15.5t) vs Mexico(3.4t), AU(13.8t) vs
Indonesia(2.3t), Switzerland(12.4t) vs Portugal(4.7t) (D. Kammen)

Inverter-based resources
B Dynamics, stability, scalability

Economics & policies
®m NEM: PV+EV charging+storage, aggregation; hosting cap. (L. Tong)

Architecture
B Layering, constraints that deconstrain, RYF [John Doyle, Caltech]



Outline

Some experiences
B From EV charging ()
B .. to workplace decarbonization (i0)
B .. to unbalanced 3-phase power flows (is)



Workplace charging

CA comrrgci)g/ment
= 5 renewables by 2030, 100% by 2045

m 1.5M ZEV by 2025, 5M by 2030 (CA has ~15M cars)

This valley is ~130 GWh
=13 M EVs @10 KWh/EV

3-hour average ramp
~14,100MW

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20 21 22 23 24

-@ Hour-ahead forecast Demand @ Net demand Aprll 2021

Drivers twice as likely to get EV when workplace charging is available
(EDF Renewables survey Feb 2018)




EV charging: research - impact

Theory and algorithms

1. Broad power systems research (since 2010)
Nonconvex optimization, control & dynamical systems, distributed real-time algorithms
2. Application to EV charging

Optimal decentralized protocol for EV charging (IEEE Trans. Power Systems, 2013)
Theorem: Online LP attains offline optimal (IEEE PES General Meeting, 2017)
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EV charging: research - impact

Testbed = deployment

3. First pilot: Caltech garage (2016)
By July 2020: delivered 3M+ electric miles, avoided 1,000 tons of CO2e

4, Caltech startup: PowerFlex (2017)
Value proposition: Enable large-scale EV charging by reducing capital & operating costs
Acquired by EDF Renewables to scale business

debugging

transformer

charger & subpanels
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Caltech ACN: physical system

Utility Company

Caltech Substation  tp m

Garage Loads
(Lighting, Fans,
Elevators, etc.)

480V Main Switch
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Model predictive
control: QCQP

PF cloud

IP/cellular

Garage |

max
r

S.t.

Z Alﬂ'l‘ (t}ej‘i’i

i€V

< ep(t)

servers

database

Highly customizable QCQP

* oObjectives: cost, PV, asap, regularization
* constraints: energy, deadlines, capacities
» determine charging rates for all EVs

(7

Mobile app




Caltech ACN: open research tool

Simulation Algorithm
Scenarios Validation
* ACN-Data N — .
; ACN-Dat _Gj oy
e ACN-Sim ata ACN-Sim ACN-Live

Data
|0J1U0D

t Constraintst
¢ ACN'Live (HW-in-the-loop) ta‘ tﬁ ta‘ tﬁ

Adaptive Charging Network

open-sourced and extensible

Lee, Li, Low. ACN-Data: analysis and applications of an open EV charging Dataset
ACM e-Energy, June 2019

Lee, Johansson, Low. ACN-Sim: an open-source simulator for data-driven EV charging research
IEEE SmartGridComm, October 2019



&) ACN research portal

Adaptive Charging Network

The Adaptive
Charging Network

Accelerating Electric Vehicle Research @ Caltech and Beyond

Zach Lee
zlee@powerflex.com ev.caltech.edu




L essons learnt

Smart EV charging
B R&D to extract untapped value intrinsic to EV charging
m Critical to maintain broad theory research
B Translation of energy R&D is hard

Workplace energy systems
B Large untapped value in current system

B Bigger & more complicated system, more expensive
infrastructure, more difficult & diverse technical
challenges



energy systems

N. Wilson Parking Structure
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Opportunities

Indirect
faculty & staff commuting
Institute financed air travel

36% decrease
in total GHG

emissions
since 2008

Direct’
on-site electricity & steam
off-site electricity

Energy is a 92%-opportunity to
reduce GHG
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Caltech Facilities, 2020 Sustainability Report
Christman & Warring 2022



Basic idea

Integrate and holistically optimize operation of
electric, heating & cooling systems

B They operate independently today

B HRCs to provide net heating & cooling demand

Exploit storage (batteries & thermal) and HRCs to
shape electricity demand

B To adapt to random fluctuations in demand, prices &
CO2 intensity

B Greatly reduces capital and operating costs for 24/7
CO2 neutrality



&% Campus decarbonization

Infrastructure (caltech Admin/Facilities)

B Retiring co-gen, electrify hot & chilled water, HRCs,
thermal storage, batteries, tunnels & pipes

Data (caltech testbed)

B Comprehensive reliable data on electric, cooling &
heating systems, cost & emission data

Theory, algorithms & prototypes (focus of R&D)

B Theory & algorithms for real-time learning, control &
optimization of DERs

B Software prototypes (Digital Twin)
Pilot & deployment

B Work with Caltech Facilities
B Work with industry



R&D: theory, algorithms, prototypes

Open problems (examples)

Control Optimization-based decision : hasti L
making for planning and operation . Data-dr!ven stoc .astlc optimization
in uncertainty « Data-driven real-time OPF

Learning Data-driven continuous learning, T T

(Digital identification & tracking of system | Network identification

Twin) models & current states - —Aggregate Tlexibiity & control

Data Testbed to provide real-time

(Meter comprehensive & reliable data

Caltech)

E Inpm‘prl auUtcomes:

. T‘EF)ER live testbed: PV, building, EV, storage, monitoring system (meters & software)
« Theory & algorithms for learning, contirol, and optimization of networked DERS

« Software prototypes of some algorithms




DER testbed

Substatlon 3 (16.5kV/2.4kV/480V)

Buildings
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Network identification

-

V. i~k G#R
I = YV where Y = <Zy]§, Jj=k

l;j~l1

0 otherwise

\

Y is a complex symmetric (Laplacian) matrix with zero row sums

Learning Y from data

B Numerous control & optimization schemes assume Y is known
B But Y often unavailable or unreliable in distribution systems (e.g.,
Caltech does not know Y)

m Little is known about analytical properties of Y (e.qg., invertibility
only published in [Yuan et al 2022, Torizo & Molzahn 2022, Low 2022])

State of the art

m Full measurement: many schemes based on regressions, entropy,
sparse recovery, graph processing, ...

® With hidden nodes (for radial networks) ?



Network identification with hidden nodes

At eachtime t :

L] Y1 Yol [Vi(®)| «——— measured nodes
—t 0 B

0 injection Y21 Y22 Vz(t) 4—————— hidden nodes

at hidden node

Suppose we can exactly recover Y from (Vi(t), 1i(t)y at1 € M

L = i) i /i
with Y= Yy, = YY1 Y], A

hidden node

©0<¢€

Lemma
Kron-reduced admittance matrix Y exists, if lines are

resistive & inductive %
Kron-reduced

(Note that Y is complex symmetric !)
graph 3



Network identification with hidden nodes

At eachtime t :

L] Y1 Yol [Vi(®)| «——— measured nodes
—| o]

0 injection Y21 Y22 Vz(t) 4—————— hidden nodes

at hidden node

Suppose we can exactly recover Y from (Vi(t), 1i(t)y at1 € M

KRG 1\

hidden node

00-<¢
oo

Can we identify Y from Y for radial networks ?

P ?
o Y

graph 2



Network identification with hidden nodes

At eachtime t :

Yll le Vl(f) 4————— measured nodes
V,(t)| ¢——— hidden nodes

1,() _
0 injection — 0 Y21 Y22

at hidden node

Suppose we can exactly recover Y from (Vi(t), 1i(t)y at1 € M

R 1\

hidden node

00-<¢
oo

Can we identify Y from Y for radial networks ?

Theorem: Yes ! [Yuan et al 2022] ;
Kron-reduced

Exactly recover both topology and impedances for radial nks graph :)
Constructive proof



More broadly: ,~

.

x;(¢),t=1,....,T

min

st &%)y ())£0

aggregator

o )
af,(x(0),£y,(1))

— utility input

«— [SO input

J

«— microgrid input

min
x;(6),.=1,....T

A (x(0),3,(0)

g (x,(2),y,(t))£0
utilities

S. L.

min
x;(¢),21,....,T

AL (), 1,y,0))

g (x;(1),y,(1)) £0
ISO markets

S. L.

Difficulties:

1
1
distribution 1 transmission
grid : grid
( min C(r \ lln>1€ C(r)
ubject t ri(t) <Ti(t Vi, Vit ubje Lt ri(t) <Ti(t) Vi, Vit
ZL:?',(I‘)(S = e V - - - ;r,(t)(i = ¢ Vi
STty < P(t) Wt Sty < P(t) vt
microgrid microgrid
\_ ) \_ )
user aggregator user aggregator
input input input input

Game theoretic behavior
Unknown/partially known
models

Partial state information
Distributed alg. at scale
Real-time feedback
Uncertainty



L essons learnt

Most papers implicitly use single-phase models

B Balanced 3-phase systems have single-phase
equivalents

Single-phase models applicable for many purposes
B Transmission system applications

B Forillustrating basic ideas and analysis of most
algorithms (unbalanced 3-phase models structurally
similar to 1-phase models)

Unbalanced 3-phase modeling needed

B When control & optimization are explicitly on single-
phase devices making up a 3—-phase device

B For implementation in real systems when phases are
not balanced
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(optimization vars)
« Extension to 3-phase setting is straightforward

W



(Vie' 1)

5 Ve, 12;)
Y«

1 e
1T

)

=

T

\\'__

=

1-phase: I, V* € C ys/m €EC

s/m

) oT a 3 3x3
L= (V- v) £y 3PS e O e



(Ve 1) . (V& 1)

T S B T b b
7 o1 (V) 3.‘( L (Ve 1)
J [ e

— g_)bc r fr i I
J » p

1] :

- Terminal currents [ are externally observable, but often not directly
controllable
« If only internal currents (J#°,7¢,J§*) of current sources are directly

controllable, then need a 3-phase device model to convert between
internal & terminal vars

Q

R,
6
/

S
=0
—
-
I

&__ﬁ
= 2
s
LA

\\’__

=



% Lessons learnt

(V& Ik : (Vi 1¢;)
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Similarly for power sources or voltage sources



Lessons learnt: example

Single Phase Constraints

Aggregate
Power (kW)

o T T
5 !
©100 A ANTA(M
ze 7= “L""'W»‘w"\j """"
- O
X0 J"Nw M
cwun N
v 0 1 T T T
5
O > )
_qg) s 200 +~4< ,——-i-.”:w—\u'k—"(———————-
_Ig ‘\/JI N .o\-
QL_ )
O T T T T
7:00 10:00 13:00 16:00

Three Phase Constriants

———————— —— —— -

SOC constraints

wr

F B

SOC constraints

7:00

10:00 13:00 16:00

Left panel: Actual 3-phase currents violate capacity constraints if “single-phase
constraints” are used (ACN-Sim based on Caltech ACN on Sept 5, 2018 data)

“single-phase constraints” : }}; 1;(t) < R (no phase line constraints for lack of phase info)

[Lee et al (2021), ACN-Sim, TSG]



 device models ¥ current/power

key difference

3-phase device models
and transformer models
are far subtler because

of Y/ A configurations

nodal

Overview: 3-phase modeling

balance
line/transformer
models

single-phase or 3-phase

»{ network models |




Key question

How to derive external models of 3-phase devices

1. Voltage/current/power sources, impedances  (1-phase device: internal models)

2. ...in Y/A configurations (conversion rules: int — ext)

3. ... with or without neutral lines, grounded or ungrounded, zero or nonzero
grounding impedances

Propose a simple and unified method to derive external models

Will use 3-phase voltage source in A configuration to illustrate



Internal & terminal vars

Internal vars (A configuration)

Internal voltage, current, power across single-phase devices:

yab Jab qab yabpab
VA = VbC ) IA = Ibc , SA = Sbc = Vbcibc
yea Jcé g¢a Vca]_ca 7

Terminal vars

Terminal voltage, current, power (for both Y and A) to reference:

% ¢ s Ve
Vi=1|vel, I:=1|]°], s:= |s°]| = | Vo
Ve I¢ s¢ Vere

« Vs with respect to an arbitrary common reference point, e.g.
the ground

« [ and s are in the direction out of the device



Internal vs external model

1. External model = Internal model + Conversion rule

« External model: relation between (V, 1, 5)

* Devices interact over network only through their terminal vars

Ia
I % . Va
7
B ]ub
K Vca N
1 Vab >
i

*l_H’ Ibc Ib
o’

- 1
. ror oy




Internal vs external model

1. External model = Internal model + Conversion rule

« External model: relation between (V, 1, 5)

* Devices interact over network only through their terminal vars

2. Internal model : relation between (VY/A,IY/A, SY/A>

« Independent of Y or A configuration
» Depends only on behavior of single-phase devices
» Voltage/current/power source, impedance (voltage scr, ZIP load)




Internal vs external model

1. External model = Internal model + Conversion rule

« External model: relation between (V, 1, 5)

* Devices interact over network only through their terminal vars

2. Internal model : relation between (VY/A,IY/A, SY/A>

 Independent of Y or A configuration
» Depends only on behavior of single-phase devices
» Voltage/current/power source, impedance (voltage scr, ZIP load)

3. Conversion rule : converts between internal and terminal vars

« Depends only on Y or A configuration
* Independent of type of single-phase devices




Conversion rule

A configuration

Convert between internal vars and external vars

Vab 1 —1 0 Va I, 1 0 —1 _Iab_

Vbc — [ 0 | — 1] Vb s Ib - - [_ 1 1 O] Ibc

V., —1 0 1 V. I 0 —1 1 L,
- r - o rr o

In vector form

VA = TV, [ = -TTA o |

T T T T I'is |nC|dence matrix of:
internal terminal terminal internal @ D
voltage voltage current current



=% Conversion matrices I' & I'T

Fortescue matrix F

Spectral decomposition:

[ = FAF, I'T = FAF

0
A= l —«a , F =
1 —a?
and a 1= e~1273
| : [ T 1
Pseudo-inverses: I'T = —TIT, T EF

eigenvectors
of I, TT
1 1 1
1 a o’

1 a? a
positive-seq negative-seq
balanced balanced
vector o, vector a_



% Conversion rule

A configuration
1. Converts between internal and terminal voltages & currents

VA = TV, [ = —TT/A




Conversion rule

A configuration
1. Converts between internal and terminal voltages & currents
VA = TV, [ = -TTA
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Conversion rule

A configuration
1. Converts between internal and terminal voltages & currents
VA = TV, [ = -TTA
2. Given VA: terminal voltage V = %I‘TVA + 71, y€C

Y= %1 Ty . zero-sequence terminal voltage (fixed by reference voltage)

1
3. Given I internal current [ = —EFI + g1, pecC

1 : :
P= ?‘ITIA : zero-sequence internal current (does not affect terminal current)

4. Relation between s and s through (V, IA) ;
s = —diag (VIAHF), s& = diag (FVIAH> (no direct relation between s and %)



Example: transformers

Theorem 1. The external models of three-phase transform-
ers in YY, AA, AY and Y A configurations take the form

I = D'YyyD(V —7)

where
1 0
YY : D = _() I[]
0
AA : D = _0 F]
. - I 0] —F
AY D = _O ]I_ ]
—]I 0— . I i
YA: D = 0 I
i i il

unified & modular characterization



Overall model: device + network

1. Network model relates terminal vars (V, I, s)
* Nodal current balance (linear): I = YV

Nodal power balance (nonlinear): s 2 diag (V(V Vk)Hy + VjVij]?}jH>
kij~k

* Either can be used
2. Device model for each 3-phase device

. Internal model (VY/A IY/A .Y/A, y],ﬂ> + conversion rules

. External model <VJ, IJ, i Vs b ) with internal parameters

* Either can be used
* Power source models are nonlinear; other devices are linear



&% Unbalance 3-phase modeling

Power System Analysis
A Mathematical Approach

Steven H. Low

DRAFT available at: http://netlab.caltech.edu/book/

Corrections, questions, comments appreciated!


http://netlab.caltech.edu/book/
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Why Caltech

Caltech energy system is large & complex

B Energy needs of ~5,000 population correspond to ~20,000 people
(CA), peak (electric): 20MW [caltech Facilities, 2021]

B Stanford: 30K population correspond to 33,000 households (CA);
peak (integrated energy system): 40MW [de Chalendar et al, 2019]

B More technical challenges to overcome
B Invaluable live testbed for R&D and validation

Caltech system is representative of large campuses

B With district heating and cooling systems (more popular in EU, China,
Russia, Japan)

B e.g., Stanford, PNNL (both pursuing campus decarbonization)
B Stanford’s integrated system: first-of-a-kind [de chalendar et al, 2019]



Example path

distr. grid services  cost min
CO2 minimization

Solea enerqy trading

E
nergy green H,
Caltech .Ugrid
team OS
DERSs

(PV, EV, bldg., EV,
fuel cells, H,0)

We need to develop interfaces

« With Facilities: DER
« With Solea Energy: trading

Warehouses

B Consumes 6 kWh/sqgft-year, but can
generate 90 kWh/sqgft-year of PV

B US has 10B sqgft of warehouse space

B Can generate 100 GW PV (~10% of
total 1TW of US rooftop PV capacity)

B $6B/year annual electricity cost

B $150B microgrid infrastructure

market ($15M / 1M sqgft warehouse)

Value proposition

DER opt technology can save 10%
of annual electricity cost
($600M/year)

... and 2% of capital cost ($3B)
Emission reduction by 80-100%

Co-Pl on Solea led DoE GRIP proposal (submitted March 2023)
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